WorldWideScience

Sample records for superior absorption properties

  1. Sound absorption property of openpore aluminum foams

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2007-02-01

    Full Text Available This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.

  2. Unique properties of halide perovskites as possible origins of the superior solar cell performance.

    Science.gov (United States)

    Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa

    2014-07-16

    Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries.

  3. Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance.

    Science.gov (United States)

    Huang, Yongchao; Li, Haibo; Balogun, Muhammad-Sadeeq; Liu, Wenyue; Tong, Yexiang; Lu, Xihong; Ji, Hongbing

    2014-12-24

    With the increasingly serious environmental problems, photocatalysis has recently attracted a great deal of attention, with particular focus on water and air purification and disinfection. Herein, we show an electroreduction strategy to improve significantly the solar absorption and donor density of BiOI nanosheet photocatalyst by introducing oxygen vacancies. These oxygen-deficient BiOI nanosheets exhibit an unexpected red shift of about 100 nm in light absorption band and 1 order of magnitude improvement in donor density compared to the untreated BiOI nanosheets and show 10 times higher photocatalytic activity than the untreated BiOI nanosheets for methyl orange (MO) degradation under visible light irradiation. Moreover, the as-prepared oxygen-deficient BiOI nanosheets also have excellent cycling stability and superior photocatalytic performance toward other dye pollutants.

  4. Superior Gas Sensing Properties of Monolayer PtSe2

    KAUST Repository

    Sajjad, Muhammad

    2016-12-15

    First-principles calculations of the structural and electronic properties of monolayer 1T-PtSe2 with adsorbed (a) NO2, (b) NO, (c) NH3, (d) H2O, (e) CO2, and (f) CO molecules are discussed. The results point to great potential of the material in gas sensor applications. Superior sensitivity is demonstrated by transport calculations using the nonequilibrium Green\\'s function method.

  5. Broadband superior electromagnetic absorption of a discrete-structure microwave coating

    Science.gov (United States)

    Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin

    2016-10-01

    A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.

  6. Designing functionally graded materials with superior load-bearing properties.

    Science.gov (United States)

    Zhang, Yu; Sun, Ming-Jie; Zhang, Denzil

    2012-03-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidelines for designing FGMs with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (E(b)/E(s)) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15graded materials with various n values and E(b)/E(s) ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20-50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications.

  7. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  8. Sound absorption property of open-pore aluminum foams

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WANG Lu-cai; WU Jian-guo; YOU Xiao-hong

    2007-01-01

    This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range) are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.

  9. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DEFF Research Database (Denmark)

    Bialy, Agata; Jensen, Peter Bjerre; Blanchard, Didier

    2015-01-01

    with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained......Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction...... with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides...

  10. The Reverse Saturation Absorption Property of Indanthrone and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    LIU Dajun; DUAN Qian; HE Xingquan; ZOU Ying

    2005-01-01

    The syntheses of three nonlinear reverse saturation absorption compounds-Indanthrone and its two derivatives are discussed. The properties of nonlinear reverse saturable absorption of the compounds were studied by using the Z- scanning technique, and the influences of its conjugated structure on the absorption threshold value and the absorbable light density were discussed based on the reverse saturation absorption principle. The results shows that when the structure' s conjugation property of Indanthrone and its derivatives becomes more powerful , its absorption threshold reduces, the light lowest transmittance increases.

  11. Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial

    Science.gov (United States)

    Zhou, Min; Lu, Fei; Lv, Tianyi; Yang, Xing; Xia, Weiwei; Shen, Xiaoshuang; He, Hui; Zeng, Xianghua

    2015-06-01

    Understanding the loss mechanism of microwave absorption is of great significance for the design and fabrication of low-cost, high-efficient and light-weight microwave absorbing materials. In this study, the microwave absorption of a hierarchical NiCo2O4 nanomaterial synthesized via a hydrothermal method and a subsequent annealing process was investigated in detail. The effects of the annealing temperature on the phase evaluation and microwave absorption properties were also investigated to reveal the microwave loss mechanism of NiCo2O4 nanostructures. The results show that the Debye relaxation and superior electric conductivity of NiCo2O4 are beneficial to its excellent microwave absorption performance. This study will be useful for the fundamental understanding of microwave absorption in NiCo2O4 nanomaterial, and for the design of a novel microwave absorbent.

  12. Sound absorption property of wood for five eucalypt species

    Institute of Scientific and Technical Information of China (English)

    JIANGZe-hui; ZHAORong-jun; FEIBen-hua

    2004-01-01

    The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Eucalyptus urophylla×E. grandis, Eucalyptus urophylla×E. tereticornis, Eucalyptus urophylla×E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with standing wave method and their sound absorption properties were also compared. The results showed that the sound absorption coefficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200-2000 Hz), but the sound absorption property of Eucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant.

  13. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    OpenAIRE

    Amuthakkannan Pandian; Manikandan Vairavan; Winowlin Jappes Jebbas Thangaiah; Marimuthu Uthayakumar

    2014-01-01

    The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavi...

  14. On sound absorption and thermal properties of non-wovens

    OpenAIRE

    Chen Jin-Jing; Yu Hong-Qin; Guo Zheng; You Jin-Zhang; Song Wen-Fang

    2015-01-01

    Non-woven is widely used as auxiliary materials of automobile industry due to its excellent sound absorption capability and good thermal property. The paper concludes that its density greatly affects sound absorption and thermal resistance, and an aluminum evaporated film can enhance the thermal resistance.

  15. On sound absorption and thermal properties of non-wovens

    Directory of Open Access Journals (Sweden)

    Chen Jin-Jing

    2015-01-01

    Full Text Available Non-woven is widely used as auxiliary materials of automobile industry due to its excellent sound absorption capability and good thermal property. The paper concludes that its density greatly affects sound absorption and thermal resistance, and an aluminum evaporated film can enhance the thermal resistance.

  16. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Amuthakkannan Pandian

    2014-01-01

    Full Text Available The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.

  17. Sound absorption property of open-pore aluminum foams

    Institute of Scientific and Technical Information of China (English)

    WANG Lu-cai; WANG Fang; WU Jian-guo; YOU Xiao-hong

    2006-01-01

    The sound absorption property of aluminum foam was studied by testing its sound absorption coefficients using standing wave tube method. The open-pore aluminum foams were prepared by infiltration process, with pore size of 0.5 mm to 3.2 mm and porosity of 54.2% to 77%. The frequency of indicted sound wave was ranging from 125 Hz to 10 kHz. The results show that the average values of sound absorption coefficients are all over 0.4 and the aluminum foam has better sound absorption property, its coefficients is influenced by frequency and pore structure, and reaches the maximum at about 1 kHz, with increasing porosity and decreasing cell diameter the sound absorption coefficient values increase.

  18. Novel Properties of Twisted-Photon Absorption

    CERN Document Server

    Afanasev, Andrei; Mukherjee, Asmita

    2014-01-01

    We discuss novel features of twisted-photon absorption both by atoms and by micro-particles. First, we extend the treatment of atomic photoexcitation by twisted photons to include atomic recoil, derive generalized quantum selection rules and consider phenomena of forbidden atomic transitions. Second, we analyze the radiation pressure from twisted-photon beams on micro- and nano-sized particles and observe that for particular conditions the pressure is negative in a small area near the beam axis. A central part of the beam therefore acts as a "tractor beam".

  19. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    Science.gov (United States)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  20. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bialy, Agata [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark); Jensen, Peter B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Fysikvej 311, DK-2800 Kgs. Lyngby (Denmark); Blanchard, Didier [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Vegge, Tejs, E-mail: teve@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Quaade, Ulrich J., E-mail: ujq@amminex.com [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark)

    2015-01-15

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.

  1. Silicone elastomers with superior softness and dielectric properties

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin;

    of electrical breakdown and achievable strain.[2]In this work, three liquid additives - inert silicone oil, chloropropyl-functional silicone oil, and synthesized chloropropyl-functional copolymer - were blended into commercial silicone elastomers, and their properties were investigated.The functional groups......Dielectric elastomers (DEs) change their shape and size under a high voltage or reversibly generate a high voltage when deformed. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young......’s modulus and increasing the dielectric permittivity of silicone elastomers. One such prominent method of modifying the properties is by adding suitable additives.[1] The major drawbacks for adding solid fillers are agglomeration and increasing stiffness which is often accompanied by the decrease...

  2. Silicone elastomers with superior softness and dielectric properties

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin;

    of electrical breakdown and achievable strain.[2] In this work, three liquid additives - inert silicone oil, chloropropyl-functional silicone oil, and synthesized chloropropyl-functional copolymer - were blended into commercial silicone elastomers, and their properties were investigated.The functional groups......Dielectric elastomers (DEs) change their shape and size under a high voltage or reversibly generate a high voltage when deformed. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young......’s modulus and increasing the dielectric permittivity of silicone elastomers. One such prominent method of modifying the properties is by adding suitable additives. [1] The major drawbacks for adding solid fillers are agglomeration and increasing stiffness which is often accompanied by the decrease...

  3. Nonlinear Absorption Properties of nc-Si:H Thin Films

    Institute of Scientific and Technical Information of China (English)

    GUO Zhenning; GUO Hengqun; LI Shichen; HUANG Yongzhen; WANG Qiming

    2001-01-01

    It is reported in this paper that the phenomenon of the saturated absorption of the exciton in hydrogenated nanocrystalline silicon (nc-Si:H) thin film fabricated by plasma enhanced chemical vapor deposition (PECVD) without any post-processing is observed at room temperature using pump-probe technology. This nonlinear optical absorption property is induced by the surface effect of the silicon nanoparticles in nc-Si:H thin films.

  4. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  5. Thermal properties of carbon black aqueous nanofluids for solar absorption.

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-18

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  6. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  7. Absorption and emission properties of photonic crystals and metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Lili [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  8. INVESTIGATION ON SOUND ABSORPTION PROPERTIES OF KAPOK FIBERS

    Institute of Scientific and Technical Information of China (English)

    Hai-fan Xiang; Dong Wang; Hui-chao Liu; Ning Zhao; Jian Xu

    2013-01-01

    Sound absorption properties of natural kapok fibers have been investigated.Kapok fibrous assemblies with different bulk density,thickness,fiber length and orientation were manufactured,and their acoustical performances were evaluated by using an impedance tube instrument.Results show that the kapok fiber has excellent acoustical damping performance due to its natural hollow structure,and the sound absorption coefficients of kapok fibrous assemblies are significantly affected by the bulk density,thickness and arrangement of kapok fibers but less dependent on the fiber length.Compared with assemblies of commercial glass wool and degreasing cotton fibers,the kapok fiber assemblies with the same thickness but much smaller bulk density may have the similar sound absorption coefficients.Theoretical modelling of the acoustical damping performance of kapok fibers shows a good agreement with the experimental data.All the results demonstrate that kapok fiber is a promising light and environment-friendly sound absorption material.

  9. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    Science.gov (United States)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  10. The properties of the extraocular muscles of the frog. I. Mechanical properties of the isolated superior oblique and superior rectus muscles.

    Science.gov (United States)

    Asmussen, G

    1978-01-01

    The mechanical properties of two extraocular muscles (superior oblique and superior rectus muscles) of the frog were studied and compared with those of a frog's skeletal muscle (iliofibularis muscle) which contains the same types of muscle fibres as the oculorotatory muscles. The extraocular muscles are very fast twitching muscles. They exhibit a smaller contraction time, a smaller half-relaxation time, a higher fusion frequency, and a lower twitch-tetanus ratio than the skeletal muscles. The maximum isometric tetanic tension produced per unit cross-sectional area is lower in the extraocular muscles than in skeletal muscles. However, the extraocular muscles show a higher fatigue resistance than the skeletal muscles. With respect to the dynamic properties there are some differences between the various oculorotatory muscles of the frog. The superior rectus muscle exhibits a faster time-course of the contraction, a higher fusion frequency, and a higher fatigability than the superior oblique muscle. An increase of the extracellular K+-concentration evokes sustained contractures not only in the extraocular muscles but also in the iliofibularis muscle; between these muscles there are no striking differences in the mechanical threshold of the whole muscle preparation. The mechanical threshold depends on the Ca++-concentration of the bathing solution and it is found in a range between 12.5 and 17.5 mM K+ in a normal Ringer solution containing 1.8 mM Ca++. The static-mechanical properties of the extraocular muscles of the frog and the dependence of the active developed tension on the muscle extension are very similar to those which are known to exist in the extraocular muscles of other vertebrates. In tetanic activated frog's oculorotatory muscles a linear relationship exists between length and tension. A variation of the stimulation frequency does not change the slope of this curve but causes parallel shifts of the curve. The peculiar properties of the extraocular muscles

  11. Low and High Ionization Absorption Properties of Mg II Absorption-Selected Galaxies at Intermediate Redshifts; 1, General Properties

    CERN Document Server

    Churchill, C W; Charlton, J C; Jannuzi, B T; Kirhakos, S; Steidel, C C; Schneider, D P; Churchill, Christopher W.; Mellon, Richard R.; Charlton, Jane C.; Jannuzi, Buell T.; Kirhakos, Sofia; Steidel, Charles C.; Schneider, Donald P.

    2000-01-01

    We present extensive metal-line absorption properties for 45 absorption systems that were selected by their Mg II absorption at redshifts between 0.4 and 1.4. For each system the properties of several chemical species are determined, including a wide range of ionization conditions. In the optical, the absorption systems have been observed at ~6 km/s resolution with HIRES/Keck, which covered Mg II, several Fe II transitions, Mg I, and in some cases (depending upon redshift), Ca II, Ti II, Mn II, and Al III. Ultraviolet, lower resolution (~230 km/s) Faint Object Spectrograph data (1600 - 3275 Ang) were obtained from the Hubble Space Telescope archive. These spectra covered Al II, Al III, Si II, Si III, Si IV, C II, C III, C IV, N V, O VI, and several Lyman series transitions, with coverage dependent upon the absorption system redshift. From these data, we infer that Mg II absorbing galaxies at intermediate redshifts have multiphase gaseous structures.

  12. Time-Resolved Nonlinear Absorptive Properties of Phenyleneethynylenes.

    Science.gov (United States)

    Slepkov, A. D.; Hegmann, F. A.; Tykwinski, R. R.; Marsden, J. A.; Miller, J. J.; Haley, M. M.

    2004-03-01

    Conjugated organic chromophores of varying polar symmetries are attractive candidate materials for two-photon absorption (TPA) applications. Central to the realization of useful TPA chromophores is a combination of optimized functionalization and special geometry. Phenyleneethynylene molecular scaffolds are small but heavily conjugated systems that display strong two-photon absorption. Furthermore, using optimized synthetic routes, the three-dimensional organization of these molecules can be conveniently controlled. The ultrafast two-photon and excited-state absorption of three substituted molecules display complex temporal behaviour. The nonlinear response of these materials depends drastically on the donor-acceptor symmetry about the central core. Understanding these trends impacts both on designing materials with desirable TPA properties and on understanding the electronic landscape in functionalized organic materials.

  13. A polythiophene derivative with superior properties for practical application in polymer solar cells.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Ma, Wei; Ade, Harald; Hou, Jianhui

    2014-09-03

    A polythiophene derivative called PDCBT, which has a backbone of thiophene units and just carboxylate functional groups to modulate its properties, exhibits properties superior to those of poly(3-hexylthiophene), the classic polythiophene derivative, when used as an electron donor in polymer solar cells (PSCs). The best device, based on PDCBT/PC71BM (1:1), develops a good power conversion efficiency of 7.2%.

  14. The properties of the extraocular muscles of the frog. II. Pharmacological properties of the isolated superior oblique and superior rectus muscles.

    Science.gov (United States)

    Asmussen, G

    1978-01-01

    The pharmacological properties of the superior oblique and the superior rectus muscles of the frog's eye were investigated in comparison with those of a skeletal muscle (iliofibularis muscle) of the same animal. Acetylcholine causes sustained contractures of the extraocular muscles; this effect is increased by physostigmine and decreased or abolished by d-tubocurarine. Also the applications of succinylcholine, choline or caffeine are able to evoke contractures. There are no striking differences in pharmacological properties between extraocular and skeletal muscles of the frog. The time-course of the contractures and the sensitivity of the muscle preparations to the drugs which evoke contractures are identical in extraocular and iliofibularis muscles. In comparison with skeletal muscles there is no higher sensitivity of the extraocular muscles against curare-like drugs. The existence of adrenergic receptors could not be found neither in extraocular nor in skeletal muscles of the frog. It is concluded that in frogs no pharmacological differences exist between the muscle fibre types which compose the extraocular and the skeletal muscles.

  15. Microwave absorption properties of gold nanoparticle doped polymers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Ouattara, Lassana; Ingrosso, Chiara

    2011-01-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5GHz to 20GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property...... of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate...... that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect....

  16. Electromagnetic absorption properties of flowerlike cobalt composites at microwave frequencies

    Institute of Scientific and Technical Information of China (English)

    Liu Tao; Zhou Pei-Heng; Liang Di-Fei; Deng Long-Jiang

    2012-01-01

    In this work,we report the electromagnetic absorption(EMA)properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared with the conventional spherical Co-paraffin composites,the flowerlike Co-paraffin composites are favorable with respect to EMA performance in the low frequency region,ascribing interfacial polarization loss and Ohmic loss to the improvement in the impedance match.

  17. Synthesis and microwave absorption properties of PPy/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Gao, Duoduo [School of Material Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2014-11-15

    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was −20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth. - Highlights: • The influence of PPy on the structure of Co is discussed. • The influence of PPy on the magnetic properties of Co is discussed. • The influence of PPy on the absorption property of Co is discussed. • PPy/Co possessed the excellent absorption property.

  18. Evaluation of absorption and emission properties of Yb(3+) doped crystals for laser applications

    Science.gov (United States)

    Deloach, Laura D.; Payne, Stephen A.; Chase, L. L.; Smith, Larry K.; Kway, Wayne L.; Krupke, William F.

    1993-04-01

    The emission and absorption properties of numerous host crystals doped with Yb(3+) ions have been studied. The hosts which have been selected present a variety of crystal field environments for the ytterbium ion, including fluoride and oxide crystals with six-, seven-, eight-, nine- and twelvefold coordinated substitutional sites. The crystal compounds include LiYF4, LaF3, SrF2, BaF2, KCaF3, KY3F10, Rb2NaYF6, BaY2F8, Y2SiO5, Y3Al5O12, YAlO3, LuPO4, Ca5(PO4)3F, LiYO2, and ScBO3. Spectral determinations have been made of the resonant absorption and emission cross sections between 850 and 1100 nm, and the emission decay times of the upper laser level have been measured. The emission cross sections have been evaluated using the absorption cross section and principle of reciprocity. Ca5(PO4)3F:Yb is predicted to exhibit the most useful laser properties and is expected to be superior to Y3Al5O12:Yb in many key spectroscopic parameter values.

  19. Synthesis and Microwave Absorption Properties of Core-Shell Structured Co3O4-PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hongyan Xu

    2015-01-01

    Full Text Available The core-shell structured Co3O4-PANI nanocomposites have been successfully prepared using an in situ polymerization method, while the core Co3O4 nanoparticles were synthesized by carbon-assisted method using degreasing cotton as a template. The obtained samples were characterized by XRD, TEM, FTIR, and XPS. The results indicated that the amorphous PANI was well covered on the surface of the spinel Co3O4 and the Co3O4-PANI with core-shell structure was formed with particle size of about 100 nm. The interfacial interaction of the core-shell nanocomposite greatly enhances the microwave absorption properties. The maximum reflection loss of Co3O4-PANI is up to −45.8 dB at 11.7 GHz with a thickness of 2.5 mm and the adsorption bandwidth with the reflection loss below −10 dB reaches 14.1 GHz ranging from 3.9 to 18 GHz when the thickness is between 2 and 5.5 mm. Therefore, the facilely synthesized and low-cost Co3O4-PANI nanocomposite with superior microwave absorption properties can be a promising nanomaterial for high efficient microwave absorption.

  20. Mechanical properties and energy absorption characteristics of a polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  1. Mechanical properties and energy absorption characteristics of a polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  2. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    Science.gov (United States)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  3. Light absorption properties of laboratory generated tar ball particles

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2015-06-01

    Full Text Available Tar balls (TBs are a specific particle type which is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g. organic particles with inorganic inclusions and soot, the latter is emitted mainly during flaming conditions from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study we have installed on-line instruments to our laboratory set-up generating pure TB particles to measure the absorption and scattering, as well as size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM and total carbon (TC analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory generated TBs were found to be in the range of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström exponents (AAE between 2.7 and 3.4 (average 2.9 in the wavelength range 467–652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84–0.21i at 550 nm. In the brown carbon continuum these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS. Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may

  4. Electromagnetic absorption properties of graphene/Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yujin, E-mail: chenyujin@hrbeu.edu.cn [Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, College of Science, Harbin Engineering University, Harbin 150001 (China); Lei, Zhenyu; Wu, Hongyu [Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, College of Science, Harbin Engineering University, Harbin 150001 (China); Zhu, Chunling [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Gao, Peng, E-mail: gaopeng@hrbeu.edu.cn [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ouyang, Qiuyun; Qi, Li-Hong [Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, College of Science, Harbin Engineering University, Harbin 150001 (China); Qin, Wei, E-mail: qinwei@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-09-01

    Graphical abstract: - Highlights: • Graphene/Fe nanocomposites were prepared by a facile and green method. • 10 nm Fe nanoparticles were uniformly dispersed over the surface of the graphene sheets. • The nanocomposites exhibited strong electromagnetic wave absorption properties. - Abstract: Graphene (G)/Fe nanocomposites with ferromagnetic properties at room temperature were fabricated by a facile and green method. Transmission electron microscope (TEM) and atomic force microscopy (AFM) amylases reveal that the α-Fe nanoparticles with a diameter of only about 10 nm were uniformly dispersed over the surface of the graphene sheets. Compared with other magnetic materials and the graphene, the nanocomposites exhibited significantly enhanced electromagnetic absorption properties. The maximum reflection loss to electromagnetic wave was up to −31.5 dB at a frequency of 14.2 GHz for G/Fe nanocomposites with a thickness of 2.5 mm. Importantly, the addition of the nanocomposites is only about 20 wt.% in the matrix. The enhanced mechanism is discussed and it is related to high surface areas of G/Fe nanocomposites, interfacial polarizations between graphene and iron, synergetic effect and efficient dispersity of magnetic NPs.

  5. Microwave absorption properties of graphite flakes-phenolic resin composite

    Science.gov (United States)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigation, microwave absorption properties of a conductor back single layer designed on graphite flakes (GF)-novolac phenolic resin (NPR) composites is studied. The complex permittivity of the developed composite enhance for higher GF percentages. The reflection loss(RL) measured using E8362C VNA shows a maximum RL values -25 dB at 9.8 GHz for 7 wt. % composition with -10 dB bandwidth of 0.3 GHz. The developed composites are being light weight and cost effective shows potential to be used as dielectric absorber.

  6. Electromagnetic absorption properties of spacecraft and space debris

    Science.gov (United States)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  7. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    Science.gov (United States)

    Zhong, Bo; Liu, Wei; Yu, Yuanlie; Xia, Long; Zhang, Jiulin; Chai, Zhenfei; Wen, Guangwu

    2017-10-01

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach -32.38 dB (>99.99% attenuation) with the absorber thickness of 2.0 mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than -10 dB is 3.49-17.28 GHz with the corresponding thickness of 5.0-1.5 mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  8. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo

    2017-05-31

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  9. Physiological properties of neurons in superficial layers of superior colliculus of rabbits

    Institute of Scientific and Technical Information of China (English)

    刘剑; 罗茀荪

    1996-01-01

    Neurons in superficial layers of the superior colliculus of the rabbit are classified into three types by their electrophysiological properties. Among them, two types belong to projecting neurons which send axons to the thalamic pulvinar (N=52) and dorsal lateral geniculate nucleus (N = 54) respectively. All other neurons are pooled into the third type (N=99). Projecting neurons of both types receive monosynaptic visual inputs via optic tract fibers of similar conduction velocity, indicating that in the superior colliculus of the rabbit, there is no difference in conduction velocity between the two pathways. They also receive trisynaptic inhibitory inputs, most likely via recurrent inhibitory circuits. The third type of neurons receives disynaptic optic and trisynaptic inhibitory inputs. The function of neurons of the third type is studied.

  10. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    Science.gov (United States)

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  11. Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics

    Science.gov (United States)

    Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo

    2017-03-01

    The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.

  12. Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics

    Science.gov (United States)

    Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo

    2017-08-01

    The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.

  13. HAB detection based on absorption and backscattering properties of phytoplankton

    Science.gov (United States)

    Lei, Hui; Pan, Delu; Bai, Yan; Chen, Xiaoyan; Zhou, Yan; Zhu, Qiankun

    2011-11-01

    The coastal area of East China Sea (ECS) suffers from the harmful algal blooms (HAB) frequently every year in the warm season. The most common causative phytoplankton algal species of HAB in the ECS in recent years are Prorocentrum donghaiense (dinoflagellates), Karenia mikimotoi (dinoflagellates which could produce hemolytic and ichthyotoxins) and Skeletonema costatum (diatom). The discrimination between the dinoflagellates and diatom HAB through ocean color remote sensing approach can add the knowledge of HAB events in ECS and help to the precaution. A series of in-situ measurement consisted of absorption coefficient, total scattering and particulate backscattering coefficient was conducted in the southern coast of Zhejiang Province in May 2009, and the estuary of Changjiang River in August 2009 and December 2010, which encountered two HAB events and a moderate bloom. The Inherent Optical Properties (IOPs) of the bloom waters have significant difference between phytoplankton species in absorption and backscattering properties. The chlorophyll a specific absorption coefficient (a*phy(λ)) for the bloom patches (chlorophyll a concentration >6mg m-3) differ greatly from the adjacent normal seawater, with the a*phy(λ) of bloom water lower than 0.03 m2 mg-1 while the a*phy(λ) of the adjacent normal seawater is much higher (even up to 0.06 m2 mg-1). Meanwhile, the backscattering coefficients at 6 wavebands (420, 442, 470, 510, 590 and 700nm) are also remarkably lower for bloom waters ( 0.02 m-1). The backscattering coefficient ratio (Rbp(λ)) is much lower for diatom bloom waters than for dinoflagellates types (0.01079 vs. 0.01227). A discrimination model based on IOPs is established, and several typical dinoflagellates and diatom bloom events including Prorocentrum donghaiense, Karenia mikimotoi and Skeletonema costatum in the ECS are picked out for testing with the MODIS-L2 and L3 ocean color remote sensing products from NASA website. The result proves that the

  14. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    Science.gov (United States)

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  15. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  16. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Science.gov (United States)

    Taylor, Robert A.; Phelan, Patrick E.; Otanicar, Todd P.; Adrian, Ronald; Prasher, Ravi

    2011-12-01

    Suspensions of nanoparticles (i.e., particles with diameters nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  17. Electromagnetic Shielding and Absorption Properties of Fiber Reinforced Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuzhi; SUN Wei

    2012-01-01

    In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete,steel fiber,carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched.The results show that with the increase of fiber volume fraction,the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced.When the volume content of steel fiber is 3%,the SE of concrete is above 50 dB and its frequency is above 1.8 GHz.Moreover,in the range of 8-18 GHz,steel fiber,carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete.The concrete with 0.5% carbon fiber can achieve the best absorbing property,the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%.The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency,and the minimum value of the reflectivity is below -10 dB.The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.

  18. EM-wave absorption properties of hollow spiral iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenqiang, E-mail: zwqcau@gmail.com [College of Engineering, China Agricultural University, Beijing 100083 (China); Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2015-12-15

    Hollow iron spiral particles were fabricated successfully by thermal decomposition method, and they were heat-treated at different temperatures in N{sub 2} atmosphere. The electromagnetic wave absorption properties of hollow iron spiral particles were investigated ranging between 1 GHz and 18 GHz. The results indicated that the phase structures of the particles changed from amorphous to nanocrystal with the treating temperature rising, also causing the significant change in electromagnetic parameters and the reflection loss. The reflection loss could reach −33 dB at 16.2 GHz, indicating that the hollow iron spiral particles had the potential to be used in prepare the a high property EM-wave absorber. - Highlights: • Hollow iron spiral particles were fabricated by thermal decomposition method. • The particles changed from amorphous to nanocrystals with heat-treatment. • Particles’ EM-parameters have a great change after high temperature heat-treatment. • RL results show the particles have potential to be high property EM-wave absorber.

  19. Development of a Nickel-base Cast Superalloy with High Strength and Superior Creep Properties

    Institute of Scientific and Technical Information of China (English)

    Jieshan HOU; Jianting GUO; Lanzhang ZHOU; Zhijun LI

    2005-01-01

    Derived from Russian alloy CHS88U, six experimental Ni-base alloys named as A to F in the Ni-Cr-Co-W-Ti-Al-Hf system are designed, evaluated and processed. One of these alloys, F, shows excellent high temperature tensile strength and ductility with superior creep rupture properties. As predicted by using modeling tools such as PHACOM and NEW PHACOMP, there is hardly the tendency for formation of topologically close-packed phase (TCP) phase in alloy F. Furthermore, through microstructural observation, it is also found that no TCP phase is formed in alloy F after long-time exposure at high temperature. So alloy F has well balance of phase stability and mechanical properties in view of application for gas turbines. It is proved that d-electron approach can be applied for design and development of nickel-base superalloys for gas turbine application.

  20. Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix

    Science.gov (United States)

    Wu, Hao; Wang, Liuding; Wu, Hongjing

    2014-01-01

    Magnetite dendrites/sugar carbon (MDs/SC) nanocomposites, embedding MDs within amorphous SC matrix, were prepared by simple carbonization-reduction method using α-Fe2O3 dendrites (HDs) as precursor of MDs and sucrose as SC source, while still maintain the dendritic shape of the precursor. The morphology, composition, structure and static magnetic properties of the as-prepared MDs/SC nanocomposites were characterized by various techniques thoroughly. Particularly, the electromagnetic and microwave absorption properties of the MDs/SC and MDs paraffin composites (40 wt.%) were compared over 2-14 GHz. The results show that the microwave absorption performance of MDs/SC samples is comparable or even superior to that of MDs case. The absorption band with reflection loss (RL) below -20 dB for one of the MDs/SC samples can cover the whole X-band (8-12 GHz) with thickness of 1.8-2.4 mm when the content of MDs in the MDs/SC nanocomposite is 25.8 wt.%, and the minimum RL can reach -49.9 dB at 12.1 GHz when the layer thickness is only 1.9 mm. The excellent microwave absorption properties of the MDs/SC paraffin composites are attributed to the proper match between the complex permittivity and permeability, and the unique fractal structures of MDs.

  1. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.

    Science.gov (United States)

    Carosio, F; Kochumalayil, J; Cuttica, F; Camino, G; Berglund, L

    2015-03-18

    The toxicity of the most efficient fire retardant additives is a major problem for polymeric materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to other clay nanocomposites and fiber composites. The corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/MTM interactions for char formation.

  2. Substituent Effects on the Absorption and Fluorescence Properties of Anthracene.

    Science.gov (United States)

    Abou-Hatab, Salsabil; Spata, Vincent A; Matsika, Spiridoula

    2017-02-16

    Substitution can be used to efficiently tune the photophysical properties of chromophores. In this study, we examine the effect of substituents on the absorption and fluorescence properties of anthracene. The effects of mono-, di-, and tetrasubstitution of electron-donating and -withdrawing functional groups were explored. In addition, the influence of a donor-acceptor substituent pair and the position of substitution were investigated. Eleven functional groups were varied on positions 1, 2, and 9 of anthracene, and on position 6 of 2-methoxyanthracene and 2-carboxyanthracene. Moreover, the donor-acceptor pair NH2/CO2H was added on different positions of anthracene for additional studies of doubly substituted anthracenes. Finally, we looked into quadruple substitutions on positions 1,4,5,8 and 2,3,6,7. Vertical excitation energies and oscillator strengths were computed using density functional theory with the hybrid CAM-B3LYP functional and 6-311G(d) basis set. Correlations between the excitation energies or oscillator strengths of the low-lying bright La state and the Hammett sigma parameter, σp(+), of the substituents were examined. The energy is red-shifted for all cases of substitution. Oscillator strengths increase when substituents are placed along the direction of the transition dipole moment of the bright La excited state. Substitution of long chain conjugated groups significantly increases the oscillator strength in comparison to the cases for other substituents. In addition, the results of quadruply substituted geometries reveal symmetric substitution at the 1,4,5,8 positions significantly increases the oscillator strength and can lower the band gap compared to that of the unsubstituted anthracene molecule by up to 0.5 eV.

  3. Electrochemical Synthesis and Absorption Properties of Gold Nanorods

    Institute of Scientific and Technical Information of China (English)

    ZHU Jian; WANG Yong-Chang; YAN Shi-Nong; LU Yi-min

    2003-01-01

    Suspended gold nanorods have been synthesized via an electrochemical methad. The absorption spectrum features show two peaks at 520nm and 650mn, which resttlt from the transverse and longitudinal surface plasmon resonance. The spectra at different growth stages indicate that the absorption peaks split and shift after electrolysis , which correspond to the anisotropy growth of nanorods . The quasi-static calculation results indicate that with increasing the mean aspect ratio of the nanorods, the longer waavelength absorption peak decreases and red shifts obviously, whereas the shorter wavelength absorption peak blue shifts slightly.

  4. Electrodeposition of Gold on Lignocelluloses and Graphite-Based Composite Paper Electrodes for Superior Electrical Properties

    Science.gov (United States)

    Sultana, Ishrat; Razaq, Aamir; Idrees, M.; Asif, M. H.; Ali, Hassan; Arshad, Asim; Iqbal, Shahid; Ramay, Shahid M.; Hussain, Shahzada Qamar

    2016-10-01

    Graphite-based composites are commonly used as an anode and current collector for energy storage devices; however, they have inherently limited potential for large scale rechargeable systems due to a brittle structure. In this study, flexible and light-weight graphite-based electrodes are prepared by incorporation of lignocelluloses fibers directly collected from a self-growing plant, Typha Angistifolia. Electrical properties of graphite and lignocelluloses composite sheets are enhanced by electrodeposition of gold in a three-electrode setup. Electrochemical deposition of gold on a lignocelluloses/graphite paper electrode was obtained in potentiostatic mode by the application of reduction potential -0.95 V for 2000 s, 600 s, and 100 s. The gold-deposited paper electrodes showed efficient kinetics by shifting redox peaks towards lower potentials in cyclic voltammetry measurements, whereas impedance measurements revealed seven orders of magnitude reduction in the resistive properties. Incorporated flexibility and superior electrical/electrochemical performance within presented graphite-based composites will provide cutting-edge characteristics for high-tech application of energy storage devices by keeping a focus on modern disposable technology.

  5. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    Science.gov (United States)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10(-5) mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  6. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    Science.gov (United States)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-11-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  7. Measurements of the Absorptive Properties of the Ionosphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absorption of radio waves occurs when electrons responding to the wave fields collide with and transfer energy to the neutral particles. A study of ionospheric...

  8. UV absorption and scattering properties of inorganic-based sunscreens.

    Science.gov (United States)

    Egerton, Terry A; Tooley, Ian R

    2012-04-01

    This article first introduces the concepts that underlie the calculations of scattering and absorption of light by small particles. Results of Mie theory calculations of light scattering and light absorption by 20, 50 and 100 nm TiO₂ and ZnO particles are then presented. As the attenuation, or extinction, by these particles is the sum of the scattering and absorption, the attenuation can then be calculated for wavelengths over the UVA and UVB region. These theoretical results are then shown to be in reasonable agreement with experimental results for alkyl benzoate dispersions of three different types of TiO₂ particle whose mean sizes range from 35 to 145 nm. Finally, the link between these measurements and the absorption curves of formulated dispersions of sunscreens are demonstrated and related to in vitro SPF and UVAPF measurements.

  9. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties.

    Science.gov (United States)

    Konwar, Achyut; Gogoi, Neelam; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-01-22

    In this work we report novel chitosan-carbon dots nanocomposite hydrogel films. A new green source "tea" was used as precursor for carbon dots (CDs). The electrostatic interaction of positive charge on chitosan and negative charge on CDs prepared from tea was used for the successful preparation of a stable and robust chitosan-carbon dots nanocomposite hydrogel film. The hydrogel films were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transformed infra-red spectroscopy (FTIR), scanning electron microscope (SEM), fluorescent microscopy, thermogravimetric analysis (TGA) and contact angle analysis. It was observed that chitosan-carbon dots hydrogel films are soft but tough with superior UV-visible blocking, swelling, thermal and mechanical properties in comparison to chitosan hydrogel film. Moreover chitosan-carbon dots films are more water repellent (hydrophobic) as indicated by their high contact angle values. Thus, fabrication of such green soft but tough biocompatible chitosan-carbon dots nanocomposite hydrogel films offers tremendous bio-medical and industrial applications.

  10. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    Science.gov (United States)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  11. Interstellar Silicate Dust Grain Properties in Distant Galaxies Probed by Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2015-01-01

    Dust grains are a fundamental component of the interstellar medium, and significantly impact many of the physical processes driving galaxy evolution, including star formation, and the heating, cooling and ionization of interstellar material. Using the absorption features produced by dust in the spectra of luminous background quasars, it is possible to study the properties of extragalactic interstellar dust grains. We will present results from an ongoing program utilizing existing Spitzer Space Telescope infrared quasar spectra to probe silicate dust grain properties in z<1.4 quasar absorption systems. In combination with complementary ground-based data on associated gas-phase metal absorption lines, we explore connections between the interstellar dust and gas in the quasar absorption systems. Our project yields clear detections of the 10 micron silicate dust absorption feature in the studied systems, as well as detections of the 18 micron silicate dust absorption feature in sources with adequate spectral coverage. Based on measured variations in the breath, peak wavelength, and substructure of the 10 micron absorption features, there appear to be differences in the silicate dust grain properties from system-to-system. We also show indications of trends between the gas-phase metal properties, such as metallicity and gas velocity spread, with the silicate dust grain absorption properties. Support for this work is provided by NASA through an award issued by JPL/Caltech and through NASA grant NNX14AG74G, and from National Science Foundation grants AST-0908890 and AST-1108830 to the University of South Carolina.

  12. Lymphatic fat absorption varies among rats administered dairy products differing in physiochemical properties

    DEFF Research Database (Denmark)

    Fruekilde, Maj-Britt; Høy, Carl-Erik

    2004-01-01

    We examined in rats the intestinal absorption of fat from dairy products differing in physiochemical properties. Five dairy products (cream cheese, cream, sour cream, butter, and mixed butter) with minor differences in fatty acid composition were administered by gavage to rats, and lymphatic fat...... absorption was examined. Absorption was followed for 8 h after administration of 300 mg fat from the dairy products. Administration of cream and sour cream resulted in faster lymphatic fat absorption than cream cheese, butter, and mixed butter, and at 8 h the accumulated absorption of fat was significantly......, these results demonstrated different lymphatic absorption patterns of fat from dairy products differing in physiochemical properties. Because the fatty acid composition of the dairy products differed only slightly, other factors such as viscosity, type of emulsion, particle size, and likely also protein content...

  13. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-06-02

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  14. Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties

    NARCIS (Netherlands)

    Kostina, Nina Yu.; Sharifi, Shahriar; Pereira, Andres de los Santos; Michalek, Jiri; Grijpma, Dirk W.; Rodriguez-Emmenegger, Cesar

    2013-01-01

    Novel antifouling highly wettable hydrogels with superior mechanical and self-healing properties are presented. Hydrogels were prepared by UV-initiated copolymerisation of non-fouling zwitterionic carboxybetaine methacrylamide (CBMAA-3) and 2-hydroxyethyl methacrylate (HEMA) in the presence of unifo

  15. Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique

    Science.gov (United States)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-05-01

    Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.

  16. Sound Absorption Properties Of Single-Hole Hollow Polyester Fiber Reinforced Hydrogenated Carboxyl Nitrile Rubber Composites

    Directory of Open Access Journals (Sweden)

    Jie Hong

    2017-09-01

    Full Text Available A series of single-hole hollow polyester fiber (SHHPF reinforced hydrogenated carboxyl nitrile rubber (HXNBR composites were fabricated. In this study, the sound absorption property of the HXNBR/SHHPF composite was tested in an impedance tube, the composite morphology was characterized by scanning electron microscope (SEM, and the tensile mechanical property was measured by strength tester. The results demonstrated that a remarkable change in sound absorption can be observed by increasing the SHHPF content from 0% to 40%. In the composite with 40% SHHPF in 1 mm thickness, the sound absorption coefficient reached 0.671 at 2,500 Hz; the effective bandwidth was 1,800-2,500 Hz for sound absorption coefficient larger than 0.2. But the sound absorption property of the composite deteriorated when the SHHPF content increased to 50% in 1 mm thickness. While with 20% SHHPF proportion, the sound absorption property was improved by increasing the thickness of composites from 1 to 5 mm. Compared with the pure HXNBR of the same thickness, the tensile mechanical property of the composite improved significantly by increasing the SHHPF proportion. As a lightweight composite with excellent sound absorption property, the HXNBR/SHHPF composite has potential practical application value in the fields of engineering.

  17. Absorption properties of water-in-oil emulsions in the low THz frequency range

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    We use transmission THz spectroscopy to investigate the absorption properties of water-in-oil emulsions with water content varying in the 0-20% range, relevant for a range of food products. We find that at low frequencies the effective absorption coefficient of the emulsion is suppressed compared...... to bulk water....

  18. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    WEI Peng; LIU Lin

    2007-01-01

    The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellular foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.

  19. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    OpenAIRE

    Marynowicz Andrzej

    2016-01-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera du...

  20. Actinides in molecules: exotic properties probed by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Moisy, P.; Guilbaud, P.; Guillaumont, D.; Simoni, E.; Conradson, S.D

    2004-07-01

    Dealing with actinide elements in molecular chemistry may result in particularly attractive and exotic physico-chemical properties. In solution, one of the spectroscopic tools able to selectively probe the structural or electronic properties of these molecules is the X-ray absorption process. Different aspects of absorption edge or EXAFS analysis related to actinide studies are presented, including phenomenological and semi-quantitative approaches. (authors)

  1. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Becker, K.; Brau, C.A. [Vanderbilt Univ., Nashville, TN (United States)

    1995-12-31

    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  2. Experimental Study on the Energy Absorption Properties of MWK Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rong-xing; LI Wei; CHEN Nan-liang; FENG Xun-wei

    2002-01-01

    The energy absorption properties of MWK fabric reinforced composite plates were studied. Low velocity and low energy impact experiments were carried out for MWK fabric reinforced Glassfibre/Epoxy composite plate, by setting up a drop weight impact test system.Using this system, the drop weight velocity during impacting was obtained and recorded by transducer and corresponding signal processing system. Based on the velocity record, the impact energy and dissipated impact energy (energy absorption) were obtained. The influences of structure parameters of MWK on the impact behavior and energy absorption properties were then investigated.

  3. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  4. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Science.gov (United States)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  5. Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian lakes

    Science.gov (United States)

    Meler, Justyna; Kowalczuk, Piotr; Ostrowska, Mirosława; Ficek, Dariusz; Zabłocka, Monika; Zdun, Agnieszka

    2016-08-01

    This study presents three alternative models for estimating the absorption properties of chromophoric dissolved organic matter aCDOM(λ). For this analysis we used a database containing 556 absorption spectra measured in 2006-2009 in different regions of the Baltic Sea (open and coastal waters, the Gulf of Gdańsk and the Pomeranian Bay), at river mouths, in the Szczecin Lagoon and also in three lakes in Pomerania (Poland) - Obłęskie, Łebsko and Chotkowskie. The variability range of the chromophoric dissolved organic matter (CDOM) absorption coefficient at 400 nm, aCDOM(400), lay within 0.15-8.85 m-1. The variability in aCDOM(λ) was parameterized with respect to the variability over 3 orders of magnitude in the chlorophyll a concentration Chl a (0.7-119 mg m-3). The chlorophyll a concentration and aCDOM(400) were correlated, and a statistically significant, nonlinear empirical relationship between these parameters was derived (R2 = 0.83). On the basis of the covariance between these parameters, we derived two empirical mathematical models that enabled us to design the CDOM absorption coefficient dynamics in natural waters and reconstruct the complete CDOM absorption spectrum in the UV and visible spectral domains. The input variable in the first model was the chlorophyll a concentration, and in the second one it was aCDOM(400). Both models were fitted to a power function, and a second-order polynomial function was used as the exponent. Regression coefficients for these formulas were determined for wavelengths from 240 to 700 nm at 5 nm intervals. Both approximations reflected the real shape of the absorption spectra with a low level of uncertainty. Comparison of these approximations with other models of light absorption by CDOM demonstrated that our parameterizations were superior (bias from -1.45 to 62 %, RSME from 22 to 220 %) for estimating CDOM absorption in the optically complex waters of the Baltic Sea and Pomeranian lakes.

  6. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    Science.gov (United States)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  7. Effect of water absorption on the mechanical properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Marinho, Vithória A. D.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the effect of water absorption on the performance of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree.Water resistance is an important characteristic of structural composites, that may exposed to rain and humid environments. Both water absorption capacity (water solubility in the material) and the rate of water absorption (controlled by the diffusivity of water in the material) are important parameters. However, water absorption per se may not be the most important characteristic, insofar as the performance and applications of the compounds. It is the effect of the water content on the ultimate properties that determine the suitability of the material for applications that involve prolonged exposure to water.PHB/babassu composites with 0-20% load were prepared in an internal mixer. Two different types of babassu fibers having two different article size ranges were compounded with PHB and test specimens molded by compression. The water absorption capacity and the kinetic constant of water absorption were measured in triplicate. Mechanical properties under tension were measured for dry and moist specimens with different amounts of absorbed water.Results indicate that the performance of the composites is comparable to that of the pure matrix. Water absorption capacity increases from 0.7% (pure PHB) to 4% (PHB/20% babassu), but the water diffusivity (4.10□8 cm2/s) was found to be virtually independent of the water absorption level. Water absorption results in moderate drop in elastic modulus (10-30% at saturation, according to fiber content) but has little effect on tensile strength and elongation at break. Fiber type and initial particle size do not have a significant effect on water absorption or mechanical properties.

  8. Relationships between absorption efficiency of elements in mammals and chemical properties.

    Science.gov (United States)

    Le, T T Yen; Hendriks, A Jan

    2013-10-01

    Oral absorption efficiency is an important factor to consider in human risk assessment and varies widely between elements. Linking absorption efficiency to chemical properties facilitates the understanding of underlying processes and enables extrapolation across elements. In our study, oral absorption efficiency in humans was predicted for a number of elements based on their ionization energy and electronegativity. Data on oral absorption efficiency in humans were retrieved via a literature survey. A model was developed based on the assumption that ionic species readily react with biotic ligands. Accordingly, ionization energy was presumed to represent the reactivity and absorption of atoms in the gastrointestinal tract. The coefficients of the model were parameterized by fitting the quantitative relationship between absorption efficiency and ionization energy to data collected from well-standardized studies. Generally, absorption efficiency was strongly related to ionization energy, explaining 94% of the variability in absorption efficiency between elements reported by the International Commission on Radiological Protection (ICRP). In addition, the absorption efficiencies predicted based on ionization energy were within a factor of two of those given by the ICRP (ME = -0.05; RMSE = 0.31). However, the model is not applicable to alkaline metals and molybdenum because of the uniquely high solubility of their compounds or the flexible electron configuration of these elements. Approximately 56% of the variability in absorption efficiency between elements could be explained by electronegativity. These strong relationships between absorption efficiency and ionization energy and, to a lesser extent, electronegativity indicate potential for extrapolation across elements using atomic properties.

  9. Spectral properties of molecular iodine absorption cells filled to saturation pressure

    Science.gov (United States)

    Hrabina, Jan; Sarbort, Martin; Cip, Ondrej; Lazar, Josef

    2014-05-01

    The absorption cells - optical frequencies references - represent the crucial part of setups for practical realization of the meter unit - highly stable laser standards, where varied laser sources are frequency locked to the selected absorption transitions. Furthermore, not only in the most precise laboratory instruments, but also in less demanding interferometric measuring setups the frequency stabilization of the lasers throught the absorption in suitable media ensure the direct traceability to the fundamental standard of length. We present the results of measurement and evaluation of spectral properties of molecular iodine absorption cells filled to saturation pressure of absorption media. A set of cells filled with different amounts of molecular iodine was prepared and an agreement between expected and resulting spectral properties of these cells was observed and evaluated. The cells made of borosilicate glass instead of common fused silica were tested for their spectral properties in greater detail with special care for the absorption media purity - the measured hyperfine transitions linewidths were compared to cells traditionally made of fused silica glass with well known iodine purity. The usage of borosilicate glass material represents easier manufacturing process and also significant costs reduction but a great care must be taken to control/avoid the risk of absorption media contamination. An approach relying on measurement of linewidth of the hyperfine transitions is proposed and discussed.

  10. Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant

    OpenAIRE

    Erwin Arno Galinski; Christoph eTanne; Andrea eMeffert; Golovina, Elena A; Hoekstra, Folkert A.

    2014-01-01

    We were able to demonstrate that hydroxyectoine, in contrast to ectoine, is a good glass-forming compound. Fourier transform infrared (FTIR) and spin label electron spin resonance (ESR) studies of dry ectoine and hydroxyectoine have shown that the superior glass-forming properties of hydroxyectoine result from stronger intermolecular H-bonds with the OH group of hydroxyectoine. Spin probe experiments have also shown that better molecular immobilization in dry hydroxyectoine provides better re...

  11. Moving mesh cosmology: properties of neutral hydrogen in absorption

    CERN Document Server

    Bird, Simeon; Sijacki, Debora; Zaldarriaga, Matias; Springel, Volker; Hernquist, Lars

    2012-01-01

    We examine the distribution of neutral hydrogen in cosmological simulations carried out with the new moving-mesh code AREPO and compare it with the corresponding GADGET simulations based on the smoothed particle hydrodynamics (SPH) technique. The two codes use identical gravity solvers and baryonic physics implementations, but very different methods for solving the Euler equations, allowing us to assess how numerical effects associated with the hydro-solver impact the results of simulations. Here we focus on an analysis of the neutral gas, as detected in quasar absorption lines. We find that the high column density regime probed by Damped Lyman-alpha (DLA) and Lyman Limit Systems (LLS) exhibits significant differences between the codes. GADGET produces spurious artefacts in large halos in the form of gaseous clumps, boosting the LLS cross-section. Furthermore, it forms halos with denser central baryonic cores than AREPO, which leads to a substantially greater DLA cross-section from smaller halos. AREPO thus p...

  12. Microstructural and Optical Absorption Properties of Cu-MgF2 Nanoparticle Cermet Film

    Institute of Scientific and Technical Information of China (English)

    孙兆奇; 孙大明; 阮图南

    2002-01-01

    We examine the microstructural and optical absorption spectra of 10-30 vol% Cu-MgF2 nanoparticle cermet films prepared by co-evaporation in vacuum. The results show that the Cu-MgF2 cermet films are mainly composed of the amorphous MgF2 matrix with embedded fcc Cu nanoparticles of average size 12-24 nm. The results also show that the optical absorption of the films decreases as the wavelength increases in the range of 200-800nm. The surface plasmon resonance absorption peaks of Cu nanoparticles in 10, 20 and 30 vo1% Cu-MgF2 films appear at 578, 588 and 606nm, respectively. The interband transition absorption of Cu starts from 590nm downwards.Based on the Maxwell-Garnett theory, the experimental optical absorption properties of the films have been quantitatively evaluated.

  13. Effect of thickness on nonlinear absorption properties of graphite oxide thin films

    Science.gov (United States)

    Sreeja, V. G.; Cheruvalathu, Ajina; Reshmi, R.; Anila, E. I.; Thomas, Sheenu; Jayaraj, M. K.

    2016-10-01

    We report the thickness dependent structural, linear and nonlinear optical properties of graphite oxide (GO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned by the film thickness in GO. The nonlinear absorption studies by open aperture z scan technique exhibited a saturable absorption. The nonlinear absorption coefficient and saturation intensity varies with film thickness which is attributed to increased localized defect states in the energy band gap. Our results emphasize relatively large thickness dependent optical nonlinearity of GO thin films and its potential for optical pulse generation, exploring the way to GO based nonlinear applications in Q switched mode locking laser systems. All the coated GO films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  14. Synthesis and microwave absorption properties of graphene/nickel composite materials

    Science.gov (United States)

    Wang, Xiaoxia; Yu, Mingxun; Zhang, Wei; Zhang, Baoqin; Dong, Lifeng

    2015-03-01

    Graphene/nickel composite materials were successfully prepared via a one-step in situ reduction from nickel chloride, graphene oxide, and hydrazine at 80 °C for 3 h. Face-centered cubic Ni nanostructures with uniform size and high dispersion assembled on graphene sheets. Through the measurement of complex relative permittivity and permeability, their microwave absorption properties were evaluated. In comparison with pure Ni nanoparticles and graphene, the composite materials demonstrated much better characteristics of microwave absorption. The lowest reflection loss value of the composites with a thickness of 3 mm can reach -23.3 dB at 7.5 GHz. Our research reveals that graphene/Ni composites are promising microwave absorption materials with desirable absorption properties and reduced material weight.

  15. Cheminformatics Modeling of Amine Solutions for Assessing their CO2 Absorption Properties.

    Science.gov (United States)

    Kuenemann, Melaine A; Fourches, Denis

    2017-03-07

    As stricter regulations on CO2 emissions are adopted worldwide, identifying efficient chemical processes to capture and recycle CO2 is of critical importance for industry. The most common process known as amine scrubbing suffers from the lack of available amine solutions capable of capturing CO2 efficiently. Tertiary amines characterized by low heats of reaction are considered good candidates but their absorption properties can significantly differ from one analogue to another despite high structural similarity. Herein, after collecting and curating experimental data from the literature, we have built a modeling set of 41 amine structures with their absorption properties. Then we analyzed their chemical composition using molecular descriptors and non-supervised clustering. Furthermore, we developed a series of quantitative structure-property relationships (QSPR) to assess amines' CO2 absorption properties from their structural characteristics. These models afforded reasonable prediction performances (e. g., Q(2)LOO =0.63 for CO2 absorption amount) even though they are solely based on 2D chemical descriptors and individual machine learning techniques (random forest and neural network). Overall, we believe the chemical analysis and the series of QSPR models presented in this proof-of-concept study represent new knowledge and innovative tools that could be very useful for screening and prioritizing hypothetical amines to be synthesized and tested experimentally for their CO2 absorption properties.

  16. Absorption Properties of Urban/Suburban Aerosols in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA selection criteria are proposed for quality control. The method is used to retrieve AIP, SSA and absorptive optical thickness (AbOT) from routine hourly-exposed pyrheliometer and paranometer measurements over 11 sites (meteorological observatories) in China during 1998-2003. Apart from one suburban site (Ejin Qi), the other urban sites are all located around big or medium cities. As shown in the retrieval results,annual mean SSA during 1998-2003 changes from 0.941 (Wuhan) to 0.849 (Lanzhou), and AIP from 0.0054 to 0.0203. The 11-site average annual mean SSA and AIP are 0.898 and 0.0119, respectively. SSA during winter is smaller for most sites. There is an evidently positive correlation between SSA and aerosol optical thickness (AOT) for all sites. There is also a positive correlation between SSA and relative humidity for most sites, but a negative correlation for a few sites, such as Kashi and (U)rümqi in Northwest China.

  17. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  18. SYNTHESIS AND PROPERTIES OF HIGHLY OIL-ABSORPTIVE RESIN WITH HYDROXY ETHYLACRYLATE AS POTENTIAL CROSSLINKING AGENT

    Institute of Scientific and Technical Information of China (English)

    FENG Yan; XIAO Changfa

    2006-01-01

    A concept of potential crosslinking agent was introduced into the synthesizing process of highly oil-absorptive resin that is traditionally prepared by single chemical crosslinking. The resin was heated after manufactured to obtain three-dimension network structure. The effects of potential crosslinking agent and the crosslinking conditions on the absorptive properties of resin were studied.The results showed that hydroxyl ethylacrylate got satisfied results, and the resin with it had good oil absorbency and oil retention.

  19. Effect of Fatigue Damage on Energy Absorption Properties of Honeycomb Paperboard

    Directory of Open Access Journals (Sweden)

    Zhi-geng Fan

    2015-01-01

    Full Text Available The effect of fatigue damage (FD on the energy absorption properties of precompressed honeycomb paperboard is investigated by fatigue compression experiments. The constitutive relations of honeycomb paperboard have been changed after the fatigue damage. The results show that FD has effect on plateau stress and energy absorption capacity of honeycomb paperboard after fatigue cycles but has no significant effect on densification strain. Energy absorption diagram based on the effect of FD is constructed from the stress-strain curves obtained after fatigue compression experiments. FD is a significant consideration for honeycomb paperboard after transports. The results of this paper could be used for optimization design of packaging materials.

  20. The Effect of Various Fabric Parameters on the Sound Absorption Properties of Circular Knitted Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Arzu Marmaralı

    2014-07-01

    Full Text Available Spacer fabrics which can be produced through weaving or nonwoven technique beside warp knitting and weft knitting processes, can be used for functional applications such as automotive textiles, medical textiles, geotextiles, sportswear, protective textiles and composites due to the possibility of using a variety of different materials, flexible product range and the three dimensional construction. Additionally they can also be used for sound absorption applications with different pore geometry. In this study, the effect of fabric parameters like material type, fabric thickness and surface structures on the sound absorption properties of circular knitted spacer fabrics was investigated and aimed to determine the optimum fabric parameters for better sound absorption.

  1. The studies of high-frequency magnetic properties and absorption characteristics for amorphous-filler composites

    Science.gov (United States)

    Li, Z. W.; Yang, Z. H.

    2015-10-01

    Pure amorphous flake fillers and amorphous flakes coated by ferrite nanoparticles with core-shell-like structure were fabricated using mechanical ball-milling. The later with core-shell-like structure can greatly decrease permittivity and improve the absorption properties, as compared to the former. The absorption of all amorphous-filler composites has its origin in a quarter-wavelength resonator. Based on the resonator model, absorption frequency fA and the corresponding return loss RL are calculated, which are well consistent with observed values. It is also found that the resonance frequency is proportional to effective resistivity, based on William-Shockley-Kittel's eddy model.

  2. Variations in light absorption properties during a phytoplankton bloom in the Pearl River estuary

    Science.gov (United States)

    Wang, Guifen; Cao, Wenxi; Yang, Yuezhong; Zhou, Wen; Liu, Sheng; Yang, Dingtian

    2010-05-01

    From 15 to 28 August in 2007, a Chaetoceros socialis bloom was detected in the Pearl River Estuary water with chlorophyll a concentration (Chl a) up to 30 mg m -3 and cell density up to 10 6 cells L -1. Time series of bio-optical measurements was obtained at a single site (114.29°E, 22.06°N) with the mooring of marine optical buoy. Light absorption properties of seawater experienced large variability throughout the algal bloom. Absorption by colored dissolved organic matter (CDOM) was one of the dominant optical components of the light absorption (30-70%) especially for pre- and post-bloom waters, and it tended to decrease with Chl a during the algal bloom. Absorption by phytoplankton was another dominant optical component (18-50%) and increased rapidly with Chl a. Phytoplankton and accompanying material played dominant roles in light absorption as indicated by the relationship between absorption coefficient and Chl a. At high pigment concentrations, water samples showed significantly lower specific phytoplankton absorption, compared with pre- and post-bloom conditions, with the specific phytoplankton concentration at 443 nm varied between 0.011 and 0.022 m 2 mg -1 and that at 676 nm between 0.007 and 0.018 m 2 mg -1; small values of blue-to-red ratio of phytoplankton were also observed. These lower values were associated with variations in phytoplankton size structure. Spectral variability of phytoplankton absorption and total absorption (not including the fixed background absorption by pure water itself) could be expressed as simple linear functions linking absorption at one wavelength to the absorption at the other wavelengths, with the slope of the relationship changing with wavelength. The absorption coefficients by non-algal particles and CDOM follow the general exponential functions with remarkably limited variability in the exponent with means of 0.0105 and 0.0166 nm -1, respectively. These spectral dependencies of absorption coefficients provide useful

  3. Sound absorption and insulation property of closed-cell aluminum foam

    Institute of Scientific and Technical Information of China (English)

    YU Hai-jun; LI Bing; YAO Guang-chun; WANG Xiao-lin; LUO Hong-jie; LIU Yi-han

    2006-01-01

    The closed-cell aluminum foams (specimen p=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimen p=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for sound insulation testing) were prepared by the method of molten body transitional foaming process. Its sound absorption property under frequency of 160-2 000 Hz and the sound insulation property under frequency of 100-4 000 Hz were tested. The sound absorption results show that the sound absorption property is much better under middle frequencies than that under low and high frequencies. The sound absorption coefficient climbs when frequency increases from 160 Hz to 800 Hz and then drops when frequency is increased from 800 Hz to 2 000 Hz. The function of the sound absorption mainly depends on the Helmholtz resonator, the microphone as well as cracks of closed-cell aluminum foam. The sound insulation experiments show that the sound reduction index (R) is small under low frequencies, and large under high frequencies; the weighted sound reduction index (Rw) and the highest sound reduction index (R)can reach around 30.8 dB and 43 dB, respectively.

  4. Experimental and Theoretical Analysis of Sound Absorption Properties of Finely Perforated Wooden Panels

    Directory of Open Access Journals (Sweden)

    Boqi Song

    2016-11-01

    Full Text Available Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1–3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design.

  5. Influence of Doppler-broadening on absorption-dispersion properties in a resonant coherent medium

    Institute of Scientific and Technical Information of China (English)

    Xu Wei-Hua; Gao Jin-Yue

    2005-01-01

    We investigate the influence of Doppler broadening on absorption-dispersion properties in a four-level atomic system that can evolve from a normal dispersion to an anomalous dispersion. Our results show that the absorption-dispersion properties become strongly dependent on the propagation directions of the applied fields if Doppler broadening is taken into account. Especially, the switchover in the sign of the dispersion is still achievable even in the presence of Doppler broadening if properly arranging the propagation directions of the applied fields, which is in contrast with the otherwise behaviours in some other configurations.

  6. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liuding, E-mail: wangld@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Shen, Zhongyuan; Guo, Shaoli; Wang, Yiming [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer OMC-Ni/PANI nanocomposites were prepared by in situ polymerization method. Black-Right-Pointing-Pointer The effective absorption bandwidth was 4.7 GHz for OMC-Ni0.15/PANI. Black-Right-Pointing-Pointer OMC-Ni/PANI showed excellent microwave absorption with respect to OMC-Ni. Black-Right-Pointing-Pointer This effect could be mainly attributed to the improvement of impendence matching. - Abstract: We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) {<=} -10 dB) of 4.7 GHz and an absorption peak of -51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.

  7. Effect of Moisture Absorption on the Mechanical Properties of Ceramic Filled Jute/Epoxy Hybrid Composites

    Science.gov (United States)

    Tapas Ranjan Swain, Priyadarshi; Biswas, Sandhyarani

    2017-02-01

    The present work emphasizes on the mechanical properties such as micro-hardness, flexural and impact strength of jute fiber and Al2O3 filler based polymer composites at dry and wet conditions. Composite samples reinforced with different wt.% of fibers and filler were prepared by hand lay-up technique. To improve the mechanical properties, jute fiber was hybridized with Al2O3 filler. The maximum flexural strength of 72.94 MPa and impact strength of 1.902 J is obtained for composites with 30 wt.% fiber content and 10 wt.% of filler content. The hardness of composite increases with increase in fiber and filler loading i.e 40 wt.% fiber content and 10 wt.% of filler content. The maximum hardness value is obtained 29.9 Hv. The effect of water absorption on mechanical properties of jute reinforced hybrid polymer composites is also investigated. To determine the influence of water absorption on the mechanical properties, specimens were immersed in distilled water for 10 days before testing. For reference purpose, dry specimens were tested. It is observed that the rate of water absorption depends on the fiber content as well as filler content. All the mechanical properties of composites are decreased after water absorption. Scanning electron microscopy (SEM) is used to characterise the microstructure and failure mechanisms of dry and wet jute fiber reinforced polymer composites.

  8. Absorption properties of GaAsBi based p-i-n heterojunction diodes

    Science.gov (United States)

    Zhou, Zhize; Mendes, Danuta F.; Richards, Robert D.; Bastiman, Faebian; David, John PR

    2015-09-01

    The absorption properties of GaAsBi have been investigated using GaAsBi based p-i-n diodes with different bismuth compositions (˜2.1 and ˜3.4%). The absorption behaviour of GaAsBi as a function of incident photon energy above the band gap follows that of a direct band gap material. With increasing bismuth content, the absorption of photons with energy lower than the band gap in GaAsBi is enhanced, probably due to localized states caused by Bi-related defects. A simplified analysis has been undertaken on the behaviour of absorption as a function of bias voltage. By undertaking photoresponsivity measurements as a function of reverse bias, the background doping type and the minority carriers diffusion lengths in GaAsBi have been determined.

  9. Study on Sound Absorption Properties of Coconut Coir Fibre Reinforced Composite with Added Recycled Rubber

    Directory of Open Access Journals (Sweden)

    S. Mahzan

    2010-06-01

    Full Text Available Sound pollutions have become worsen and creating concerns for many peoples. Conventionally, expensive sound absorption materials are employed to control noise disturbances. However, recent developments on natural fibres have created interest for researchers especially for acoustics application purposes. This paper investigates the viability of coconut coir added with recycled rubber to be implemented as sound absorption panel. The composite is constructed at prescribed percentages of fillers and polyurethane as resin. The two-microphone method was applied to obtain the acoustic properties of the samples. The samples were also tested for physical properties such as density and porosity, as well as the microstructures. The results demonstrate good acoustics performances and highlight the potential of the coconut coir reinforced with recycled rubber as the sound absorption panel.

  10. Morphological Properties of z~0.5 Absorption-Selected Galaxies: The Role of Galaxy Inclination

    CERN Document Server

    Kacprzak, G G; Evans, Jessica L; Murphy, M T; Steidel, Charles C

    2011-01-01

    We have used GIM2D to quantify the morphological properties of 40 intermediate redshift MgII absorption-selected galaxies (0.03properties measured form HIRES/Keck and UVES/VLT quasar spectra. We find that as the quasar-galaxy separation, D, increases the MgII equivalent decreases with large scatter, implying that D is not the only physical parameter affecting the distribution and quantity of halo gas. Our main result shows that inclination correlates with MgII absorption properties after normalizing out the relationship (and scatter) between the absorption properties and D. We find a 4.3 sigma correlation between Wr(2796) and galaxy inclination, normalized by impact parameter, i/D. Other measures of absorption optical depth also correlate with i/D at greater than 3.2 sigma significance. Overall, this result suggests that MgII gas has a co-planer geometry, not necessarily disk-like, that is coupled to the galaxy inclination. It...

  11. Nature and statistical properties of quasar associated absorption systems in the XQ-100 Legacy Survey

    DEFF Research Database (Denmark)

    Perrotta, Serena; D'Odorico, Valentina; Prochaska, J. Xavier

    2016-01-01

    We statistically study the physical properties of a sample of narrow absorption line (NAL) systems looking for empirical evidences to distinguish between intrinsic and intervening NALs without taking into account any a priori definition or velocity cut-off. We analyze the spectra of 100 quasars...

  12. Optical properties of black carbon aggregates with non-absorptive coating

    Science.gov (United States)

    Liu, Chao; Li, Ji; Yin, Yan; Zhu, Bin; Feng, Qian

    2017-01-01

    This study develops an idealized model to account for the effects of non-absorptive coating on the optical properties of black carbon (BC) aggregates. The classic fractal aggregate is applied to represent realistic BC particles, and the coating is assumed to be spherical. To accelerate the single-scattering simulation, BC monomers that were overlapped with coating sphere (not those completely inside the coating) are slightly moved to avoid overlapping. The multiple-sphere T-matrix method (MSTM) becomes applicable to calculate the optical properties of inhomogeneous particles with any coating amount, and is generally two orders of magnitude faster than the discrete-dipole approximation for particles we considered. Furthermore, the simple spherical coating is found to have similar effects on the optical properties to those based on more complicated coating structure. With the simple particle model and the efficient MSTM, it becomes possible to consider the influence of coating with much more details. The non-absorptive coating of BC aggregates can significantly enhance BC extinction and absorption, which is consistent with previous studies. The absorption of coated aggregates can be over two times stronger than that of BC particles without coating. Besides the coating volume, the relative position between the mass centers of BC aggregate and coating also plays an important role on the optical properties, and should obviously be considered in further studies.

  13. Sound absorption properties of porous composites fabricated by a hydrogel templating technique

    NARCIS (Netherlands)

    Rutkevicius, M.; Mehl, G.H.; Paunov, V.N.; Qin, Q.; Rubini, P.A.; Stoyanov, S.D.; Petkov, J.

    2013-01-01

    We have used a hydrogel templating technique followed by the subsequent evaporation of water present to fabricate porous cement and porous PDMS composites, and we have analyzed their sound absorption properties. All experiments were carried out with hydrogel slurries of broad bead size distributions

  14. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  15. Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant

    Science.gov (United States)

    Tanne, Christoph; Golovina, Elena A.; Hoekstra, Folkert A.; Meffert, Andrea; Galinski, Erwin A.

    2014-01-01

    We were able to demonstrate that hydroxyectoine, in contrast to ectoine, is a good glass-forming compound. Fourier transform infrared and spin label electron spin resonance studies of dry ectoine and hydroxyectoine have shown that the superior glass-forming properties of hydroxyectoine result from stronger intermolecular H-bonds with the OH group of hydroxyectoine. Spin probe experiments have also shown that better molecular immobilization in dry hydroxyectoine provides better redox stability of the molecules embedded in this dry matrix. With a glass transition temperature of 87°C (vs. 47°C for ectoine) hydroxyectoine displays remarkable desiccation protection properties, on a par with sucrose and trehalose. This explains its accumulation in response to increased salinity and elevated temperature by halophiles such as Halomonas elongata and its successful application in ``anhydrobiotic engineering'' of both enzymes and whole cells. PMID:24772110

  16. Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant

    Directory of Open Access Journals (Sweden)

    Erwin Arno Galinski

    2014-04-01

    Full Text Available We were able to demonstrate that hydroxyectoine, in contrast to ectoine, is a good glass-forming compound. Fourier transform infrared (FTIR and spin label electron spin resonance (ESR studies of dry ectoine and hydroxyectoine have shown that the superior glass-forming properties of hydroxyectoine result from stronger intermolecular H-bonds with the OH group of hydroxyectoine. Spin probe experiments have also shown that better molecular immobilization in dry hydroxyectoine provides better redox stability of the molecules embedded in this dry matrix. With a glass transition temperature of 87 0C (vs. 47 0C for ectoine hydroxyectoine displays remarkable desiccation protection properties, on a par with sucrose and trehalose. This explains its accumulation in response to increased salinity and elevated temperature by halophiles such as Halomonas elongata and its successful application in anhydrobiotic engineering of both enzymes and whole cells.

  17. Synthesis of High-Quality α-MnSe Nanostructures with Superior Lithium Storage Properties.

    Science.gov (United States)

    Li, Na; Zhang, Yi; Zhao, Hongyang; Liu, Zhengqing; Zhang, Xinyu; Du, Yaping

    2016-03-21

    High-quality α-MnSe nanocubes were successfully prepared for the first time by an effective hot injection synthesis strategy. This approach was simple but robust and had been applied to the controllable synthesis of different sizes and diverse morphologies of α-MnSe nanostructures. The crystal phases, compositions, and microstructures of these nanostructures had been systematically characterized with a series of techniques. As a proof-of-concept application, the as-prepared α-MnSe nanocubes were used as an anode material for a lithium ion battery, which exhibited superior rate ability and ultralong cycle stability in half-cell and full-cell tests. Importantly, the phase transition from α-MnSe to β-MnSe during the electrochemical process was proved by ex situ X-ray diffraction and selected area electron diffraction. The excellent electrochemical performance of α-MnSe endowed its potential as an anode material candidate for high performance lithium storage.

  18. Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes.

    Science.gov (United States)

    Chiu, Hung-Ta; Shiang, Tzyy-Yuang

    2007-05-01

    The purpose of this study was to investigate the effects of insoles and additional shock absorption foam on the cushioning properties of various sport shoes with an impact testing method. Three commercial sport shoes were used in this study, and shock absorption foam (TPE5020; Vers Tech Science Co. Ltd., Taiwan) with 2-mm thickness was placed below the insole in the heel region for each shoe. Eight total impacts with potential energy ranged from 1.82 to 6.08 J were performed onto the heel region of the shoe. The order of testing conditions was first without insole, then with insole, and finally interposing the shock absorption foam for each shoe. Peak deceleration of the striker was measured with an accelerometer attached to the striker during impact. The results of this study seemed to show that the insole or additional shock absorption foam could perform its shock absorption effect well for the shoes with limited midsole cushioning. Further, our findings showed that insoles absorbed more, even up to 24-32% of impact energy under low impact energy. It seemed to indicate that insoles play a more important role in cushioning properties of sport shoes under a low impact energy condition.

  19. Water absorption characteristics and structural properties of rice for sake brewing.

    Science.gov (United States)

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  20. Superior austempered ductile iron (ADI) properties achieved by prior hot isostatic pressing (HIP)

    Energy Technology Data Exchange (ETDEWEB)

    LaGoy, J.L.; Widmer, R.; Zick, D.H. [Industrial Materials Technology Inc., Andover, MA (United States)

    1996-12-31

    Ductile iron obtained from different foundries and cast by dissimilar methods has been successfully hot isostatically pressed (HIPed) before austempering to achieve substantially higher ductilities, without significant detriment to other properties, than those reached by austempering along. HIP was attempted to solve different mechanical deficiencies in austempered ductile iron (ADI) such as the lack of ductility in higher strength grades, inconsistent mechanical properties, and service life limitations. A variety of HIP temperatures were analyzed from near the austenitizing region up to within 56 C (100 F) of the melting point of ductile iron. Microporosity was eliminated by HIP at all temperatures, and subsequent austempering revealed a uniform ADI microstructure. HIP proved successful with both unencapsulated castings and those enclosed within steel canisters. Additional benefits caused by HIP processing of ductile iron castings without the austempering treatment include a significant decrease in mechanical property data scatter, high hardness at reasonable ductility levels, and a substantially reduced scrap rate.

  1. A Relative Study on Two-photon Absorption Properties of C60 and C70

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Xin(周新); REN,Ai-Min(任爱民); FENG,Ji-Kang(封继康); LIU,Xiao-Juan(刘孝娟)

    2004-01-01

    We have theoretically investigated the one- and two-photon absorption properties of C60 and C70 using the ZINDO method. From the results it is suggested that the one-photon absorption spectra are in agreement with the experimental observations. It is found that the maximum TPA cross section of C70 is more than twice that of C60,which is consistent with the experimental results. A notable point is that the TPA process of C60 is different from that of C70 as well as other ordinary conjugated molecules.

  2. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies

    Science.gov (United States)

    Wan, Yizao; Xiao, Jian; Li, Chunzhi; Xiong, Guangyao; Guo, Ruisong; Li, Lili; Han, Ming; Luo, Honglin

    2016-02-01

    Hybridizing carbon materials with magnetic metals and oxides has attracted much attention for enhanced microwave absorption. In this study, a magnetic Fe-Co alloy was coated on the surface of carbon fibers (FeCo@CFs) by electrodeposition. For the first time, different Fe-Co coating morphologies (thin plate, irregular particle, and pyramid) were obtained by adjusting the plating temperature. The morphology, structure, magnetic properties, and complex permittivity and permeability of the FeCo@CFs were determined as a function of plating temperature. Results show that the FeCo@CFs with different coating morphologies exhibit different magnetic properties and complex permittivity. The FeCo@CFs with plate-like morphology demonstrate the best absorption performance. It has been shown that the absorption of FeCo@CFs can be controlled by adjusting the morphology of Fe-Co coating, which provides a new and effective way to endow Fe-Co-coated carbon fibers with good microwave absorption properties.

  3. Preparation and investigation of structural, magnetic and microwave absorption properties of cerium doped barium hexaferrite

    Directory of Open Access Journals (Sweden)

    P Kameli

    2015-01-01

    Full Text Available In this study the structure, magnetic and microwave absorption properties of cerium (Ce doped barium hexaferrite with general formulae BaCexFe12-xO19 (x=0.0, 0.05, 0.1, 0.15, 0.2 have been investigated. These samples have been prepared by sol- gel method. Influence of replacing Fe+3 ion by rare- earth Ce+3 ion on the structural, magnetic and microwave absorption properties have been investigated by X- ray diffraction (XRD, Fourier transform infrared (FT-IR, Vibrating sample magnetometer (VSM and vector network analyzer (VNA. X-ray diffraction analysis indicated that the samples are of single phase with space group p63/mmc. The magnetic properties of samples indicated that with the Ce doping the saturation magnetization show no regular behavior. Moreover, coercivity (Hc first decreased and reached to the minimum value for x=0.1 sample and then increased with Ce content increasing. Also, measurement of electromagnetic wave absorption in X and Ku frequency bands indicated that the maximum of reflection loss obtained for x=0.15 sample. Moreover, result indicated that absorption peak shifted toward a lower frequency when thickness was increased.

  4. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  5. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  6. Near-infrared radiation absorption properties of covellite (CuS) using first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihua, E-mail: xiaolihua@git.edu.cn [School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003 (China); College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China); Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003 (China); Wu, Jianming; Liu, Yike; Lu, Fanghai [School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003 (China); Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003 (China); Ran, Jingyu; Qiu, Wei; Shao, Fang [Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003 (China); Tang, Dongsheng, E-mail: dstang@hunnu.edu.cn [College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China); Peng, Ping [School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2016-08-15

    First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR) absorption of covellite (CuS). The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS) as a NIR absorbing material. Our results show that covellite (CuS) exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  7. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

    Science.gov (United States)

    Marino, Robert A; Levy, Ron; Munoz, Douglas P

    2015-08-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was

  8. Tensile properties and water absorption of zein sheets plasticized with oleic and linoleic acids.

    Science.gov (United States)

    Budi Santosa, F X; Padua, G W

    1999-05-01

    Corn zein has been investigated for fabrication of biodegradable packaging materials. Our objective was to investigate the effect of added plasticizers, oleic and linoleic acids, on tensile properties and water absorption of zein sheets. Moldable resins were precipitated from aqueous ethanol dispersions of zein and fatty acids and rolled into sheets of approximately 0.5 mm in thickness. To increase plasticization effects, zein-oleic acid sheets were replasticized by heating them in fatty acid baths. Plasticization resulted in flexible sheets of high clarity, low modulus, and high elongation and toughness, although low tensile strength. Water absorption of zein sheets was lowered by plasticization, attributed in part to reduced mass fraction of zein. Polymerization of linoleic acid may have sealed off pores on sheet surfaces, thus slowing water absorption.

  9. Mechanical Properties and Water Absorption Behaviour of Durian Rind Cellulose Reinforced Poly(lactic acid Biocomposites

    Directory of Open Access Journals (Sweden)

    Patpen Penjumras

    2015-01-01

    Full Text Available Environmental concerns have resulted in replacing petrochemically derived polymer with biodegradable renewable resource. In this study, mechanical properties and water absorption behaviour of durian rind cellulose reinforced poly(lactic acid biocomposites were investigated. Poly(lactic acid was mixed with 25 and 35 wt. % of durian rind cellulose that was derived from durian consumption wastes. The biocomposties were melt-blended at 165 and 175 °C with 15 min using a Brabender internal mixer followed by a hot compression moulding technique. The results showed that impact strength and modulus of Young increased with increasing of cellulose content but decreased at higher mixing temperature. Water absorption behaviour of biocomposites as function of days was also investigated. It was found that the water absorption amount of biocomposites increased with increasing of cellulose content and exposure time.    

  10. Two-photon absorption properties of a new series of 2CTσ chromophores

    Science.gov (United States)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  11. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Science.gov (United States)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  12. Two-Photon Absorption Properties of Mn-Doped ZnS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-Jin; ZHANG Gui-Lan; GUO Yang-Xue; WANG Xiao-Yan; CHEN Wen-Ju; ZHANG Xiao-Song; HUA Yu-Lin

    2006-01-01

    @@ We investigate the two-photon absorption and nonlinear refractive index properties of a quantum dot material based on ZnS nanocrystals doped with Mn isoelectronic impurities, using the Z-scan technique with 532nm picosecond laser pulses. The Mn-doped ZnS quantum dots have an average two-photon absorption cross section as high as 13600 Goeppert-Mayer units, which turn it into a very promising material for fluorescent label and imaging in biological samples. In addition, we also found that the two-photon absorption coeflicient initially increases and then decreases with increasing pulse irradiance, which demonstrates the presence of the higherorder nonlinearity under the strong excitation.

  13. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators.

    Science.gov (United States)

    Groby, J-P; Lagarrigue, C; Brouard, B; Dazel, O; Tournat, V; Nennig, B

    2015-01-01

    This paper studies the acoustical properties of hard-backed porous layers with periodically embedded air filled Helmholtz resonators. It is demonstrated that some enhancements in the acoustic absorption coefficient can be achieved in the viscous and inertial regimes at wavelengths much larger than the layer thickness. This enhancement is attributed to the excitation of two specific modes: Helmholtz resonance in the viscous regime and a trapped mode in the inertial regime. The enhancement in the absorption that is attributed to the Helmholtz resonance can be further improved when a small amount of porous material is removed from the resonator necks. In this way the frequency range in which these porous materials exhibit high values of the absorption coefficient can be extended by using Helmholtz resonators with a range of carefully tuned neck lengths.

  14. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  15. Superior tribological properties of an amorphous carbon film with a graphite-like structure

    Institute of Scientific and Technical Information of China (English)

    Wang Yong-Jun; Li Hong-Xuan; Ji Li; Liu Xiao-Hong; Wu Yan-Xia; Zhou Hui-Di; Chen Jian-Min

    2012-01-01

    Amorphous carbon films with high sp2 concentrations are deposited by unbalanced magnetron sputtering with a narrow range of substrate bias voltage. Field emission scanning electron microscopes (FESEMs),high resolution transmission electron microscopes (HRTEMs),atomic force microscopes (AFMs),the Raman spectrometers,nanoindentation,and tribometers are subsequently used to characterize the microstructures and the properties of the resulting films.It is found that the present films are dominated by the sp2 sites.However,the films demonstrate a moderate hardness together with a low internal stress.The high hardness of the deposited film originates from the crosslinking of the sp2 clusters by the sp3 sites.The presence of the graphite-like clusters in the film structure may be responsible for the low internal stress.What is more important is that the resulting films show excellent tribological properties with high load capacity and excellent wear resistance in humid atmospheres.The relationship between the microstructure determined by the deposition condition and the film characteristic is discussed in detail.

  16. Superior Charpy impact properties of ODS ferritic steel irradiated in JOYO

    Science.gov (United States)

    Kuwabara, T.; Kurishita, H.; Ukai, S.; Narui, M.; Mizuta, S.; Yamazaki, M.; Kayano, H.

    1998-10-01

    The effect of neutron irradiation on Charpy impact properties of an ODS ferritic steel developed by PNC was studied. The miniaturized Charpy V-notch (MCVN) specimens (1.5 × 1.5 × 20 mm) of two orientations (longitudinal, called 1DS-L, and transverse, 1DS-T) were irradiated to fluence levels of (0.3-3.8) × 10 26 n/m 2 ( E n > 0.1 MeV) between 646 and 845 K in JOYO. MCVN specimens before and after the irradiation were subjected to instrumented Charpy impact tests. The test results and fracture surface observations showed that in the unirradiated state the steel showed no ductile-to-brittle transition behavior until 153 K regardless of orientation and the upper shelf energy of the steel was as high as that of a high-strength ferritic steel without dispersed oxide. Such excellent impact properties were essentially maintained after the irradiation although an appreciable decrease in absorbed energy occurred by higher temperature irradiations at and above 793 K.

  17. Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube

    Energy Technology Data Exchange (ETDEWEB)

    Okano, M.; Sugimoto, K. [Kyoto Institute of Technology, Kyoto (Japan). Div. of Advanced Fibro Science; Saito, H. [Kanazawa Institute of Technology, Kanazawa (Japan); Nakai, A.; Hamada, H. [Kyoto Institute of Technology, Kyoto (Japan)

    2005-07-01

    Energy absorption is achieved by the combination of various fracture mechanisms such as fibre fracture, delamination, and central crack. However, serious problems would arise if this energy absorption ability were compromised by brittle crack propagation of the cross-sectional central part. In a previous study, the use of flexible resin with lower stiffness and higher toughness than the resin generally used was suggested as a method to restrain brittle crack propagation. In this study, hybrid braided fibre reinforced plastic (FRP) tubes were fabricated according to the previous study involving FRP rods. In this case, the flexible resin was applied to middle-end-fibre. The energy absorption characteristics and crushing mechanisms based on precise cross-sectional observation of the crush zone of the braided FRP tubes with or without the presence of flexible resin in middle-end-fibre were investigated. It was found that braided FRP tubes with or without the presence of flexible resin in middle-end-fibre were investigated. It was found that braided FRP tube with a 30{sup o} braiding angle, together with the presence of flexible resins, shows significant improvement in terms of energy absorption ability. The added flexibility of the tubes owing to the addition of flexible resin in turn causes short cracks, more fibre breakage, and consequently enhanced energy absorption properties. (author)

  18. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Marcelo GONZALEZ

    2016-09-01

    Full Text Available This paper presents the feasibility of superhydrophobic films to create the nano-lotus leaf effect on concrete surface and their influence on sound absorption and friction properties of concrete for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement. A number of laboratory specimens were produced by applying different amounts of nano-lotus leaf coating on the top of the textured concrete surface. The British pendulum test was used to measure the friction number, and an impedance tube was used to determine the sound absorption coefficient. Laboratory results indicate that nano-lotus leaf coated concrete can maintain the required friction property for rigid pavement, but may not increase the noise absorption. Further research must be carried out to determine possible benefit of the lotus leaf effect for reducing hydroplaning, particularly during heavy rainfall.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7638

  19. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    Science.gov (United States)

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-11-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately ‑65.6, ‑58.1, ‑41.1 and ‑47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below ‑20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials.

  20. Water absorption and its effect on the tensile properties of tapioca starch/polyvinyl alcohol bioplastics

    Science.gov (United States)

    Judawisastra, H.; Sitohang, R. D. R.; Marta, L.; Mardiyati

    2017-07-01

    Tapioca is one of the largest sources of starch and makes it suitable to be used for bioplastic material. Addition of polyvinyl alcohol (PVA) has been shown to successfully reduce the brittleness of starch bioplastic. This study aims to investigate the influence of PVA addition to water absorption behavior and its effect on the tensile properties of tapioca starch/PVA bioplastics, which are still not yet fully understood until now. The bioplastics were prepared by solution casting method at gelatinization temperature, with PVA addition from 0 to 29 wt%. Examinations were carried out by means of water absorption test, tensile test and Fourier Transform Infrared (FTIR) Spectroscopy. Increasing content of PVA, up to 29 wt%, was found to decrease the water absorption of the bioplastics, with the lowest water saturation point of 251%. This is due to the interaction between starch and PVA which reduces the free OH groups in the resulting bioplastics. Consequently, this led to a decrease in water absorption-related deterioration, i.e. tensile properties degradation of the bioplastics. The addition of 29 wt% resulted into the lowest degradation in tensile strength (6%) and stiffness (30%), while accompanied with the highest elongation increase (39%) after water immersion.

  1. Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties

    Science.gov (United States)

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Guo, Wenhui; Xie, Yajun; Zhang, Rui

    2015-05-01

    In this work, Ni/ZnO composites with varying morphologies were synthesized by a facile hydrothermal method. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were performed to characterize Ni/ZnO composites. SEM images reveal that NH3·H2O concentration play a vital role on morphology of Ni/ZnO composite. The complex permittivity and permeability of three different morphologies of Ni/ZnO were measured in the frequency range of 1-18 GHz and their microwave absorption properties were investigated. The core-shell structured Ni/ZnO (ZnO polyhedron coating) composite prepared for 1.0 mL NH3·H2O shows excellent microwave absorption properties. A minimum reflection loss is -48.6 dB at 13.4 GHz and the corresponding thickness is 2.0 mm. The effective absorption (below -10 dB) can be tuned between 9.0 GHz and 18.0 GHz by adjusting thickness in 1.5-2.5 mm, and the frequency for RL exceeding -20 dB is located at 11.1-16.2 GHz with thickness of 1.8-2.2 mm. It is demonstrated that the polyhedron ZnO-coated Ni composite is a promising microwave absorbent with small thickness, strong absorption, and broad bandwidth.

  2. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Marcelo GONZALEZ

    2016-09-01

    Full Text Available This paper presents the feasibility of superhydrophobic films to create the nano-lotus leaf effect on concrete surface and their influence on sound absorption and friction properties of concrete for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement. A number of laboratory specimens were produced by applying different amounts of nano-lotus leaf coating on the top of the textured concrete surface. The British pendulum test was used to measure the friction number, and an impedance tube was used to determine the sound absorption coefficient. Laboratory results indicate that nano-lotus leaf coated concrete can maintain the required friction property for rigid pavement, but may not increase the noise absorption. Further research must be carried out to determine possible benefit of the lotus leaf effect for reducing hydroplaning, particularly during heavy rainfall.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7638

  3. Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties

    Science.gov (United States)

    Xiao, Yinglin; Zai, Jiantao; Tian, Bingbing; Qian, Xuefeng

    2017-07-01

    A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g-1 at a current of 1 A g-1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.

  4. Mussel-Inspired Anchoring of Polymer Loops That Provide Superior Surface Lubrication and Antifouling Properties.

    Science.gov (United States)

    Kang, Taegon; Banquy, Xavier; Heo, Jinhwa; Lim, Chanoong; Lynd, Nathaniel A; Lundberg, Pontus; Oh, Dongyeop X; Lee, Han-Koo; Hong, Yong-Ki; Hwang, Dong Soo; Waite, John Herbert; Israelachvili, Jacob N; Hawker, Craig J

    2016-01-26

    We describe robustly anchored triblock copolymers that adopt loop conformations on surfaces and endow them with unprecedented lubricating and antifouling properties. The triblocks have two end blocks with catechol-anchoring groups and a looping poly(ethylene oxide) (PEO) midblock. The loops mediate strong steric repulsion between two mica surfaces. When sheared at constant speeds of ∼2.5 μm/s, the surfaces exhibit an extremely low friction coefficient of ∼0.002-0.004 without any signs of damage up to pressures of ∼2-3 MPa that are close to most biological bearing systems. Moreover, the polymer loops enhance inhibition of cell adhesion and proliferation compared to polymers in the random coil or brush conformations. These results demonstrate that strongly anchored polymer loops are effective for high lubrication and low cell adhesion and represent a promising candidate for the development of specialized high-performance biomedical coatings.

  5. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Science.gov (United States)

    Kuo, Cheng-Yu; Liu, Yinghao; Yarotski, Dmitry; Li, Hao; Xu, Ping; Yen, Hung-Ju; Tretiak, Sergei; Wang, Hsing-Lin

    2016-12-01

    Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au-S covalent bond. Our UV-Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered-ordered-disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π-π couplings, hydrophobic interaction and the propensity to form Au-S covalent bond. Such hypothesis has been validated by our computational results suggesting different interaction patterns of oligothiophenes with odd numbered and even numbered thiophene repeat units placed in a dimer configuration. Observed correlations between oligomer geometry and structural order of monolayer assembly elucidate important structure-property relationships and have implications for these molecular structures in organic optoelectronic devices and energy

  6. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  7. Probing Interstellar Silicate Dust Grain Properties in Quasar Absorption Systems at Redshifts z<1.4

    Science.gov (United States)

    Aller, M.; Kulkarni, V. P.; York, D. G.; Welty, D. E.; Vladilo, G.; Som, D.

    Absorption lines in the spectra of distant quasars whose sightlines serendipitously pass through foreground galaxies provide a valuable tool to simultaneously probe the dust and gas compositions of the interstellar medium (ISM) in galaxies. In particular, the damped and sub-damped Lyman- α (DLA/sub-DLA) absorbers trace gas-rich galaxies, independent of the intrinsic luminosities or star-formation rates of the associated galaxy stellar populations. The first evidence of silicate dust in a quasar absorption system was provided through our detection of the 10 µ m silicate feature in the z=0.52 DLA absorber toward the quasar AO 0235+164. We present results from 2 follow-up programs using archival Spitzer Space Telescope infrared spectra to study the interstellar silicate dust grain properties in a total of 13 quasar absorption systems at 0.1 < z < 1.4. We find clear detections of the 10 µ m silicate feature in the quasar absorption systems studied. In addition, we also detect the 18 µ m silicate feature in the sources with adequate spectral coverage. We find variations in the breadth, peak wavelength, and substructure of the 10 µ m interstellar silicate absorption features among the absorbers. This suggests that the silicate dust grain properties in these distant galaxies may differ relative to one another, and relative to those in the Milky Way. We also find suggestions in several sources, based on comparisons with laboratory-derived profiles from the literature, that the silicate dust grains may be significantly more crystalline than those in the amorphous Milky Way ISM. This is particularly evident in the z=0.89 absorber toward the quasar PKS 1830-211, where substructure near 10 µ m is consistent with a crystalline olivine composition. If confirmed, these grain property variations may have implications for both dust and galaxy evolution over the past 9 Gyrs, and for the commonly-made assumption that highredshift dust is similar to local dust. We also discuss

  8. The Effects of Fluid Absorption on the Mechanical Properties of Joint Prostheses Components

    Science.gov (United States)

    Yarbrough, David; Viano, Ann

    2010-02-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is the material playing the role of cartilage in human prosthetic joints. Wear debris from UHMWPE is a common reason for joint arthroplasty failure, and the exact mechanism responsible for wear remains an area of investigation. In this study, the microstructure of UHMWPE was examined as a function of fluid absorption. Samples with varying exposure to e-beam radiation (as part of the manufacturing process) were soaked for forty days in saline or artificial synovial fluid, under zero or 100 lbs load. Samples were then tensile-tested according to ASTM D-3895. The post-stressed material was then examined by transmission electron microscopy to evaluate the molecular response to stress, which correlates with macroscopic mechanical properties. Three parameters of the crystalline lamellae were measured: thickness, stacking ratio, and alignment to stress direction. Results indicate that fluid absorption does affect the mechanical properties of UHMWPE at both the microscopic and microscopic levels. )

  9. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    T. Alomayri

    2014-09-01

    Full Text Available Cotton fabric (CF reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.

  10. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    Science.gov (United States)

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl2) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm(3), depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  11. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility.

    Science.gov (United States)

    Numata, Keiji; Yamazaki, Shoya; Katashima, Takuya; Chuah, Jo-Ann; Naga, Naofumi; Sakai, Takamasa

    2014-06-01

    A new method is developed to prepare silk hydrogels and silk-pectin hydrogels via dialysis against methanol to obtain hydrogels with high concentrations of silk fibroin. The relationship between the mechanical and biological properties and the structure of the silk-pectin hydrogels is subsequently evaluated. The present results suggest that pectin associates with silk molecules when the silk concentration exceeds 15 wt%, suggesting that a silk concentration of over 15 wt% is critical to construct interacting silk-pectin networks. The silk-pectin hydrogel reported here is composed of a heterogeneous network, which is different from fiber-reinforced, interpenetrated networks and double-network hydrogels, as well as high-stiffness hydrogels (elastic modulus of 4.7 ± 0.9 MPa, elastic stress limit of 3.9 ± 0.1 MPa, and elastic strain limit of 48.4 ± 0.5%) with regard to biocompatibility and biodegradability.

  12. Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives.

    Science.gov (United States)

    Lachowicz, Dorota; Szpak, Agnieszka; Malek-Zietek, Katarzyna E; Kepczynski, Mariusz; Muller, Robert N; Laurent, Sophie; Nowakowska, Maria; Zapotoczny, Szczepan

    2017-02-01

    Syntheses and characterizations of biocompatible superparamagnetic iron oxide nanoparticles with embedded curcumin and coated with ultrathin layer of hyaluronic acid-curcumin (HA-Cur) conjugate have been reported. Zeta potential measurements confirmed effective coating of native iron oxide nanoparticles stabilized by cationic derivative of chitosan (SPION-CCh) with the synthesized HA-Cur conjugate. Both SPIONs with embedded curcumin and the ones coated with HA-Cur (SPION-CCh/HA-Cur) revealed desired magnetic characteristics while fluorescent properties were much better for the coated nanoparticles. SPION-CCh/HA-Cur nanoparticles were shown to be very promising candidates for T2 MRI contrast agents as they can easily penetrate cell membrane and their relaxivity is exceptionally high (ca. 470mM(-1)s(-1)). They may be also tracked using confocal fluorescence microscopy due to the presence of fluorescent curcumin in the coating. In vitro studies indicated that the obtained SPIONs-CCh/HA-Cur were non-toxic for EA.hy926 endothelial cells.

  13. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Science.gov (United States)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  14. Sound absorption properties of unbleached cellulose loose-fill insulation material

    OpenAIRE

    Jorge P Arenas; Juan Rebolledo; Romina del Rey; Jesús Alba

    2014-01-01

    Recyclable cellulose loose-fill insulation has been commonly used in heavy timber construction for treating attic areas, under floors, and wall cavities. Through the kraft process, the unbleached cellulose adopts a texture characterized by small crumbs, forming a porous medium. In this work, different samples of a single layer of loose-fill cellulose insulation with different thicknesses were tested to measure their sound absorption properties, the airflow resistivity, and porosity for both d...

  15. Spin canting effect and microwave absorption properties of Sm–Mn substituted nanosized material

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq, Imran, E-mail: khanphysics@yahoo.com [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Naeem Ashiq, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M.; Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, M.A. [Department of Physics, BUITEMS, Quetta (Pakistan); Niaz, Shanawar [Department of Physics, University of Sargodha, Sargodha (Pakistan); Rana, M.U. [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2015-12-01

    In order to understand the substitutional effect of rare earth element Sm{sup 3+} and divalent Mn{sup 2+} on structural, magnetic and microwave absorption properties of hexagonal ferrites, a series of Sr{sub 2−x} Sm{sub x} Ni{sub 2} Fe{sub 28−y}Mn{sub y}O{sub 46} X-type hexagonal ferrites with concentration (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by the sol–gel method. The XRD analysis shows that the material crystallized into single X-type hexagonal phase. The absorption bands at low wave number in FTIR curves are the characteristics of the X-type hexagonal ferrites. Decreasing trend in the magnetic properties with the substitution of Sm–Mn contents was also observed, which may be attributed to the oxidation of Mn{sup 2+} ions into Mn{sup 3+} ions and spin canting effect of rare earth element Sm{sup 3+}. The reflection loss peak shifted towards the low frequency and microwave absorption properties of the material enhanced with the substitution of Sm–Mn contents which reflects its applications in super high frequency (SHF) devices. The attenuation constant curves are in good agreement with the reflection loss peak. - Highlights: • A series of x-type hexagonal ferrites were prepared by sol–gel method. • The XRD analysis showed that the X-type hexagonal structure. • The c/a ratio of these samples falls in the range of X-type hexagonal ferrites. • The spin canting effect diminishes the magnetic properties. • The microwave absorption peak shifts towards the low frequency.

  16. Optical absorption and fluorescence properties of $Er^{3+}$ in sodium borate glass

    OpenAIRE

    Ratnakaram, YC; J.Lakshmi; Chakradhar, RPS

    2005-01-01

    Spectroscopic properties of $Er^{3+}$ ions in sodium borate glass have been studied. The indirect and direct optical band gaps $(E_{opt})$ and energy level parameters (Racah $(E^{1}, E^{2} and E^{3})$, spin-orbit $(\\xi_{4f})$ and configurational interaction (\\alpha)) are evaluated. Spectral intensities for various absorption bands of $Er^{3+}$ doped sodium borate glass are calculated. Using Judd-Ofelt intensity parameters $(\\Omega_{2},\\Omega_{4}, \\Omega_{6})$, radiative transition probabiliti...

  17. Impact of wet season river flood discharge on phytoplankton absorption properties in the southern Great Barrier Reef region coastal waters

    Science.gov (United States)

    Cherukuru, Nagur; Brando, Vittorio E.; Blondeau-Patissier, David; Ford, Phillip W.; Clementson, Lesley A.; Robson, Barbara J.

    2017-09-01

    Light absorption due to particulate and dissolved material plays an important role in controlling the underwater light environment and the above water reflectance signature. Thorough understanding of absorption properties and their variability is important to estimate light propagation in the water column. However, knowledge of light absorption properties in flood impacted coastal waters is limited. To address this knowledge gap we investigated a bio-optical dataset collected during a flood (2008) in the southern Great Barrier Reef (GBR) region coastal waters. Results presented here show strong impact of river flood discharges on water column stratification, distribution of suspended substances and light absorption properties in the study area. Bio-optical analysis showed phytoplankton absorption efficiency to reduce in response to increased coloured dissolved organic matter presence in flood impacted coastal waters. Biogeophysical property ranges, relationships and parametrisation presented here will help model realistic underwater light environment and optical signature in flood impacted coastal waters.

  18. Exploratory Study of the X-Ray Properties of Quasars With Intrinsic Narrow Absorption Lines

    CERN Document Server

    Misawa, Toru; Chartas, George; Charlton, Jane C

    2008-01-01

    We have used archival Chandra and XMM-Newton observations of quasars hosting intrinsic narrow UV absorption lines (intrinsic NALs) to carry out an exploratory survey of their X-ray properties. Our sample consists of three intrinsic-NAL quasars and one "mini-BAL" quasar, plus four quasars without intrinsic absorption lines for comparison. These were drawn in a systematic manner from an optical/UV-selected sample. The X-ray properties of intrinsic-NAL quasars are indistinguishable from those of "normal" quasars. We do not find any excess absorption in quasars with intrinsic NALs, with upper limits of a few times 10^22 cm^-2. We compare the X-ray and UV properties of our sample quasars by plotting the equivalent width and blueshift velocity of the intrinsic NALs and the X-ray spectral index against the "optical-to-X-ray" slope, alpha-ox. When BAL quasars and other AGNs with intrinsic NALs are included, the plots suggest that intrinsic-NAL quasars form an extension of the BAL sequences and tend to bridge the gap ...

  19. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials.

    Science.gov (United States)

    Bellmann, Susann; Carlander, David; Fasano, Alessio; Momcilovic, Dragan; Scimeca, Joseph A; Waldman, W James; Gombau, Lourdes; Tsytsikova, Lyubov; Canady, Richard; Pereira, Dora I A; Lefebvre, David E

    2015-01-01

    Many natural chemicals in food are in the nanometer size range, and the selective uptake of nutrients with nanoscale dimensions by the gastrointestinal (GI) tract is a normal physiological process. Novel engineered nanomaterials (NMs) can bring various benefits to food, e.g., enhancing nutrition. Assessing potential risks requires an understanding of the stability of these entities in the GI lumen, and an understanding of whether or not they can be absorbed and thus become systemically available. Data are emerging on the mammalian in vivo absorption of engineered NMs composed of chemicals with a range of properties, including metal, mineral, biochemical macromolecules, and lipid-based entities. In vitro and in silico fluid incubation data has also provided some evidence of changes in particle stability, aggregation, and surface properties following interaction with luminal factors present in the GI tract. The variables include physical forces, osmotic concentration, pH, digestive enzymes, other food, and endogenous biochemicals, and commensal microbes. Further research is required to fill remaining data gaps on the effects of these parameters on NM integrity, physicochemical properties, and GI absorption. Knowledge of the most influential luminal parameters will be essential when developing models of the GI tract to quantify the percent absorption of food-relevant engineered NMs for risk assessment. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  20. Influence of uniaxial tension on the microwave absorption properties of filled polymers

    Science.gov (United States)

    Brosseau, C.; NDong, W.; Mdarhri, A.

    2008-10-01

    The evolution of the frequency-dependent absorption spectra for plastoferrites and carbon black-filled ethylene butylacrylate copolymer composites subjected to a uniaxial tension is evaluated using a vector network analyzer as a function of the elongation ratio over the frequency range of 0.3-5 GHz and at room temperature. The absorption spectrum has a double-peaked structure with two broad and symmetrical components. The positions of the lower-frequency peak (1.5 GHz) and the higher-frequency (≅4±0.3 GHz) do not change with extension over the considered range of strain, however, their relative absorption energy changes versus tensile stress can be explained in terms of a Gaussian molecular network model (affine behavior) provided that the elasticity network in the material occurs in a manner that is topologically similar to the elasticity network of a conventional rubber. The sensitivity of the microwave absorption to elongation ratio can be exploited to provide artificially structured materials with tunable electromagnetic properties.

  1. Two-photon absorption and frequency-upconversion properties of a new organic dye HMASPS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two-photon absorption (TPA) and frequency- upconversion properties of a new upconversion laser dye trans-4-[p-(N-hydroxyethyl-N-methyl-amino)styryl]-N-meth- ylpyridinium toluene-p-sulfonate (abbreviated to HMASPS) were reported in this note. The linear absorption, TPA, single-photon induced fluorescence, TPA induced fluorescence and TPA induced upconverted lasing spectra of HMASPS solution in dimethyl formamide (abbreviated to DMF) were measured at room temperature. The red shift for the central wavelength of TPA induced fluorescence peak, which was compared with that of the single-photon induced fluorescen-ce peak, and the blue shift for that of TPA induced upcon-verted lasing compared with that of TPA induced fluores-cence, were explained by using re-absorption effect. TPA peak was at 930 nm. There is an 11 nm blue shift for two-photon energy of TPA peak compared with the linear ab-sorption peak. The molecular TPA cross-section at 1064 nm was measured to be 6.0′10-48 cm4 ·s/photon by using the open aperture Z-scanning system. The highest upconversion efficiency was measured to be 8.4% at 1064 nm.

  2. Origin and Properties of Strong Mg II Quasar Absorption Line Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Strong Mg II quasar absorption line systems provide us with a useful tool to understand the gas that plays an important role in galaxy formation. In this paper, placing the theories of galaxy formation in a cosmological context, we present semi-analytic models and Monte-Carlo simulations for strong Mg II absorbers produced in gaseous galactic haloes and/or galaxy discs. We investigate the redshift path density for the MgII absorption lines and the properties of galaxy/absorber pairs, in particular the anti-correlation between the equivalent width of Mg II absorption line and the projected galaxy-to-sightline distance. The simulated result of the mean redshift path density of strong Mg II systems is consistent with the observational result. The fraction of strong Mg II systems arising from galaxy disks is predicted to be ~ 10% of the total. There exists an anti-correlation between the absorption line equivalent and the projected distance of sightline to galaxy center and galaxy luminosity. We determined that the mean absorbing radius Rabs ≈ 29h-1 kpc(LB/LB*)0.35. After taking selection effects into consideration, this becomes Rabs ≈ 38 h-1 kpc(LB/LB*)0.18, which is in good agreement with the observational result. This shows the importance of considering selection effects when comparing models with observations.

  3. Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption

    Science.gov (United States)

    Chehrghani, A.; Torkamany, M. J.

    2014-01-01

    In this paper, the spectral and nonlinear optical properties of a colloidal solution of platinum nanoparticles (Pt NPs) in water are presented. The Pt NPs were prepared by laser ablation of a Pt metallic target in distilled water using a 1064 nm high frequency Nd:YAG laser. The intensity-dependent nonlinear optical absorption and nonlinear refraction behaviors of the sample exposed to the 532 nm nanosecond laser pulses were investigated by applying the Z-scan technique. The saturated nonlinear absorption coefficient 5.4 × 10-7 cm W-1 was obtained in a saturation intensity of 1.8 × 107 W cm-2. The saturable absorption response of the Pt NPs was switched to the reverse saturable absorption in the higher laser intensities. The nonlinear refractive index that has a negative value was increased from -3.5 × 10-13 cm2 W-1 up to -15 × 10-13 cm2 W-1 by increasing the laser intensity.

  4. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties.

    Science.gov (United States)

    Lü, Yinyun; Wang, Yiting; Li, Hongli; Lin, Yuan; Jiang, Zhiyuan; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun

    2015-06-24

    Composites incorporating ferromagnetic metal nanopartices into a highly porous carbon matrix are promising as electromagnetic wave absorption materials. Such special composite nanomaterials are potentially prepared by the thermal decomposition of metal-organic framework (MOF) materials under controlled atmospheres. In this study, using Co-based MOFs (Co-MOF, ZIF-67) as an example, the feasibility of this synthetic strategy was demonstrated by the successful fabrication of porous Co/C composite nanomaterials. The atmosphere and temperature for the thermal decomposition of MOF precursors were crucial factors for the formation of the ferromagnetic metal nanopartices and carbon matrix in the porous Co/C composites. Among the three Co/C composites obtained at different temperatures, Co/C-500 obtained at 500 °C exhibited the best performance for electromagnetic wave absorption. In particular, the maximum reflection loss (RL) of Co/C-500 reached -35.3 dB, and the effective absorption bandwidth (RL ≤ -10 dB) was 5.80 GHz (8.40 GHz-14.20 GHz) corresponding to an absorber thickness of 2.5 mm. Such excellent electromagnetic wave absorption properties are ascribed to the synergetic effects between the highly porous structure and multiple components, which significantly improved impedance matching.

  5. Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae.

    Science.gov (United States)

    Tsuruta, Takehiko; Umenai, Daishi; Hatano, Tomonobu; Hirajima, Tsuyoshi; Sasaki, Keiko

    2014-01-01

    To obtain basic information on how microbial cells absorb cadmium from aqueous solution, we examined cadmium absorption in various micro-organisms. Of 51 micro-organism strains tested, we found that some Gram-positive bacteria, such as, Arthrobacter nicotianae and Bacillus subtilis, and some actinomycetes, such as, Streptomyces flavoviridis and S. levoris were highly capable of absorbing cadmium from an aqueous solution. A. nicotianae absorbed the largest amount of cadmium, over 800 μmol cadmium per gram of dry wt. cells. However, cadmium absorption by A. nicotianae was affected by the solution pH, cadmium concentration, and cell density. The absorption of cadmium was very rapid. Some factors that affected cadmium absorption by A. nicotianae cells were also discussed.

  6. Microwave absorption property of aligned MWCNT/Fe{sub 3}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hekmatara, H., E-mail: hd_hekmat@yahoo.com [Department of Physics, Faculty of Science, Guilan University, Postal code 4193833697, Rasht (Iran, Islamic Republic of); Seifi, M., E-mail: m_seifi2000@yahoo.com [Department of Physics, Faculty of Science, Guilan University, Postal code 4193833697, Rasht (Iran, Islamic Republic of); Forooraghi, K., E-mail: kforooraghi@yahoo.com [Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    This study investigated the microwave absorption properties of magnetic modified multiwall carbon nanotubes (MWCNTs) with different alignments to the electric field (E vector) of the incident electromagnetic (EM) waves. MWCNTs were decorated with Fe{sub 3}O{sub 4} nanoparticles using the wet chemical method and the resulting MWCNT/Fe{sub 3}O{sub 4} was then used as a filler in a MWCNT/Fe{sub 3}O{sub 4}/epoxy resin composite at different weight-to-epoxy-resin ratios (2%, 5%, and 8%) with good uniformity and alignment. For each filler concentration, three samples were produced with different alignments of carbon nanotubes using the solution-casting method. For sample one, the nanotube axis (k) was parallel to the E vector of the EM wave, for sample two, k was perpendicular to E, and the third sample contained randomly oriented nanotubes. Magnetic MWCNTs were exposed to a 0.4 T magnetic field in the desired direction to achieve the desired alignment of carbon nanotubes in epoxy resin. Microwave absorption characterization of the considered ranging band (X-band) at all concentrations where the alignment of MWCNT/Fe{sub 3}O{sub 4} was parallel to the incident E vector showed increased absorption. Samples with a perpendicular alignment of MWCNT/Fe{sub 3}O{sub 4} to incident E had the lowest absorption. Samples containing 2 wt% and 8 wt% MWCNT/Fe{sub 3}O{sub 4} aligned parallel to E and had reflection losses exceeding 14.4 dB and 23.6 dB, respectively, over a 10–11 GHz range. The 5 wt% parallel aligned MWCNT/Fe{sub 3}O{sub 4} showed an absorbing peak of 27 dB and a bandwidth broadened to 1.2 GHz. - Highlights: • Multiwall carbon nanotube decorated with Fe{sub 3}O{sub 4} nanoparticles (MWCNT/Fe{sub 3}O{sub 4}) using the wet chemical method. • MWCNT/Fe{sub 3}O{sub 4} aligned in an epoxy resin matrix by being exposed to a weak magnetic field. • Aligned magnetic carbon nanotubes were parallel and perpendicular to the electric field of incident electromagnetic wave.

  7. Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs

    Directory of Open Access Journals (Sweden)

    Mark William Matthews

    2013-09-01

    Full Text Available Characterizing the specific inherent optical properties (SIOPs of water constituents is fundamental to remote sensing applications. Therefore, this paper presents the absorption properties of phytoplankton, gelbstoff and tripton for three small, optically-diverse South African inland waters. The three reservoirs,  Hartbeespoort, Loskop and Theewaterskloof, are challenging for remote sensing, due to differences in phytoplankton assemblage and the considerable range of constituent concentrations. Relationships between the absorption properties and biogeophysical parameters, chlorophyll-a (chl-a, TChl (chl-a plus  phaeopigments,  seston,  minerals  and  tripton, are established. The value determined for the mass-specific tripton absorption coefficient at 442 nm, a∗ (442, ranges from 0.024 to 0.263 m2·g−1. The value of the TChl-specific phytoplankton absorption coefficient (a∗ was strongly influenced by phytoplankton species, size, accessory pigmentation and biomass. a∗ (440 ranged from 0.056 to 0.018 m2·mg−1 in oligotrophic to hypertrophic waters. The positive relationship between cell size and trophic state observed in open ocean waters was violated by significant small cyanobacterial populations. The phycocyanin-specific phytoplankton  absorption  at  620  nm,  a∗ (620, was determined as 0.007 m2·g−1 in a M. aeruginosa bloom. Chl-a was a better indicator of phytoplankton biomass than phycocyanin (PC in surface scums, due to reduced accessory pigment production. Absorption budgets demonstrate that monospecific blooms of M. aeruginosa and C. hirundinella may be treated as “cultures”, removing some complexities for remote sensing applications.   These results contribute toward a better understanding of IOPs and remote sensing applications in hypertrophic inland waters. However, the majority of the water is optically complex, requiring the usage of all the SIOPs derived here for remote sensing applications. The

  8. Investigation on Sound Absorption Properties of Warp-Knitted Spacer Fabric%经编间隔织物的吸声性能研究

    Institute of Scientific and Technical Information of China (English)

    粱丽娟; 龙海如

    2011-01-01

    采用阻抗管传递函数法测试了5种不同规格经编间隔织物在声频为100~2 500 Hz时的吸声系数,分析了织物结构参数对吸声性能的影响,并比较了该织物与常用吸声、衬垫材料海绵在吸声性能方面的差异.研究结果表明:织物的吸声性能与织物的密度、厚度、孔隙率等参数有关;经编间隔织物的吸声性能优于同厚度的海绵,在汽车行业中将是海绵类产品的优异替代品.%The sound absorption coefficient (SAC) of five warp-knitted spacer fabrics with different specifications under the frequency of 100-2 500 Hz are tested in a impedance tube by transfer function method. The effect of the structural parameters on sound absorption properties is analyzed, and the differences in the sound absorption performance between spacer fabrics and the sponge with similar thickness are compared. The research results indicate that the sound absorption properties of the fabric are related to its structural parameters, such as thickness, density, porosity rate and so on. The sound absorption of spacer fabric is superior to sponge with the same thickness. Therefore, warp-knitted spacer fabric is the good alternatives of sponge in the automobile industry.

  9. Optical Absorption and Photo-Thermal Conversion Properties of CuO/H2O Nanofluids.

    Science.gov (United States)

    Wang, Liangang; Wu, Mingyan; Wu, Daxiong; Zhang, Canying; Zhu, Qunzhi; Zhu, Haitao

    2015-04-01

    Stable CuO/H2O nanofluids were synthesized in a wet chemical method. Optical absorption property of CuO/H2O nanofluids was investigated with hemispheric transmission spectrum in the wavelength range from 200 nm to 2500 nm. Photo-thermal conversion property of the CuO/H2O nanofluids was studied with an evaluation system equipped with an AUT-FSL semiconductor/solid state laser. The results indicate that CuO/H2O nanofluids have strong absorption in visible light region where water has little absorption. Under the irradiation of laser beam with a wavelength of 635 nm and a power of 0.015 W, the temperature of CuO/H2O nanofluids with 1.0% mass fraction increased by 5.6 °C within 40 seconds. Furthermore, the temperature elevation of CuO/H2O nanofluids was proved to increase with increasing mass fractions. On the contrast, water showed little temperature elevation under the identical conditions. The present work shows that the CuO/H2O nanofluids have high potential in the application as working fluids for solar utilization purpose.

  10. Probing Interstellar Silicate Dust Grain Properties in Quasar Absorption Systems at Redshifts z<1.4

    CERN Document Server

    Aller, Monique C; York, Donald G; Welty, Daniel E; Vladilo, Giovanni; Som, Debopam

    2014-01-01

    Absorption lines in the spectra of distant quasars whose sightlines pass through foreground galaxies provide a valuable tool to probe the dust and gas compositions of the interstellar medium (ISM) in galaxies. The first evidence of silicate dust in a quasar absorption system (QAS) was provided through our detection of the 10 micron silicate feature in the z=0.52 absorber toward the quasar AO 0235+164. We present results from 2 follow-up programs using archival Spitzer Space Telescope infrared spectra to study the interstellar silicate dust grain properties in a total of 13 QASs at 0.1absorption features among the absorbers. This suggests that the silicate dust grain properties in these distant galaxies may differ relat...

  11. Electrical and absorption properties of fresh cassava tubers and cassava starch

    Science.gov (United States)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  12. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties.

    Science.gov (United States)

    Thueler, Philippe; Charvet, Igor; Bevilacqua, Frederic; St Ghislain, M; Ory, G; Marquet, Pierre; Meda, Paolo; Vermeulen, Ben; Depeursinge, Christian

    2003-07-01

    A fast spectroscopic system for superficial and local determination of the absorption and scattering properties of tissue (480 to 950 nm) is described. The probe can be used in the working channel of an endoscope. The scattering properties include the reduced scattering coefficient and a parameter of the phase function called gamma, which depends on its first two moments. The inverse problem algorithm is based on the fit of absolute reflectance measurements to cubic B-spline functions derived from the interpolation of a set of Monte Carlo simulations. The algorithm's robustness was tested with simulations altered with various amounts of noise. The method was also assessed on tissue phantoms of known optical properties. Finally, clinical measurements performed endoscopically in vivo in the stomach of human subjects are presented. The absorption and scattering properties were found to be significantly different in the antrum and in the fundus and are correlated with histopathologic observations. The method and the instrument show promise for noninvasive tissue diagnostics of various epithelia.

  13. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    Science.gov (United States)

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  14. Temperature dependent magnetic and microwave absorption properties of doubly substituted nanosized material

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq, Imran, E-mail: khanphysics@yahoo.com [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Naseem, Shahzad; Rana, M.U. [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Ashiq, Muhammad Naeem [Institute of chemical sciences, Bahauddin Zakariya University, Multan (Pakistan); Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan)

    2015-07-01

    The sol gel method has been adopted to synthesize a series of X-type hexagonal ferrites with concentration Sr{sub 2−x} Gd{sub x} Ni{sub 2} Fe{sub 28−y}Cd{sub y}O{sub 46} (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5). The XRD analysis reveals the single phase of the prepared material and the lattice constants a (Å) and c (Å) varies with additives. The crystallite size of the present investigated ferrite is found in the range of 20–30 nm measured from TEM image. The enhancement in the magnetic properties (saturation magnetization, remanance magnetization and coercivity) can be observed with the increase of dopping concentration and the coercivity lies in the range of (484.22–887.47) G. The saturation and remanance magnetization decreases monotonically with the temperature which is the characteristic of the hexagonal ferrites. The Gd–Cd substituted sample possesses low values of complex relative permittivity and permeability than the pure samples. The material exhibits maximum microwave absorption −23 dB at 11.87 GHz and attenuation peak is in good agreement with the reflection loss value. The microwave absorption properties reflect the applications of this material in super high frequency devices (SHF). - Highlights: • A series of X-type hexagonal ferrites were prepared by Sol–gel method. • The XRD analysis showed that the X-type hexagonal structure. • The c/a ratio of these samples falls in the range of X-type hexagonal ferrites. • The magnetic properties improved with the increase of Gd–Cd contents. • The microwave absorption properties enhanced with Gd–Cd substitution.

  15. Some new progress on the light absorption properties of linear alkyl benzene solvent

    CERN Document Server

    Yu, Guang-You; Huang, Ai-Zhong; Yu, Lei; Loh, Chang-Wei; Wang, Wen-Wen; Qian, Zhi-Qiang; Yang, Hai-Bo; Huang, Huang; Xu, Zong-Qiang; Zhu, Xue-Yuan; Xu, Bin; Qi, Ming

    2015-01-01

    Linear alkyl benzene (LAB) will be used as the solvent of a liquid scintillator mixture for the JUNO antineutrino experiment in the near future. Its light absorption property should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the purpose of the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we have also presented in this work, a study on the carbon-hydrogen ratio and the relationship thereof with the attenuation length of the samples.

  16. Optical absorption and fluorescence properties of Er3+ in sodium borate glass

    Indian Academy of Sciences (India)

    Y C Ratnakaram; J Lakshmi; R P S Chakradhar

    2005-08-01

    Spectroscopic properties of Er3+ ions in sodium borate glass have been studied. The indirect and direct optical band gaps (opt) and energy level parameters (Racah (1, 2 and 3), spin-orbit (4f) and configurational interaction ()) are evaluated. Spectral intensities for various absorption bands of Er3+ doped sodium borate glass are calculated. Using Judd–Ofelt intensity parameters (2, 4, 6), radiative transition probabilities (), branching ratios () and integrated absorption cross sections ( ) are reported for certain transitions. The radiative lifetimes (R) for different excited states are estimated. From the fluorescence spectra, the emission cross section (p) for the transition, ${}^{4}I_{13/2} \\rightarrow {}^{4}I_{15/2}$ is reported.

  17. High sensitivity of Indian summer monsoon to Middle East dust absorptive properties

    Science.gov (United States)

    Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng

    2016-07-01

    The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.

  18. Effect of yttrium oxide addition on absorption and emission properties of bismuth-doped silicate glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Nengli; WANG Yanshan; XU Bing; YANG Lüyun; LUAN Huaixun; LI Jinyan

    2012-01-01

    Y/Bi co-doped silicate glasses were prepared,and the effects of Y2O3 on the absorption and emission properties were investigated by spectrum measurement.It was found that the absorption intensity in visible region decreases with increase of Y3+ concentration in (70-x)SiO2-xY2O3-30CaO-1.5Bi2O3 (x=0mol.%,1mol.%,3 mol.%,5 mol.%,7 mol.%) glasses.The emissions centered at 410,630,1200 and 1290 nmwere observed under 280,470,514 and 808 nm excitation,respectively.The emission intensity had the similar change tendency in the visible and near infrared region.We also discussed the actual role of Y 3+ ions playing in the visible and near infrared emissions of the silicate glasses.

  19. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2013-08-01

    Full Text Available Helical carbon nanofibers (HCNFs coated-carbon fibers (CFs were fabricated by catalytic chemical vapor deposition method. TEM and Raman spectroscopy characterizations indicate that the graphitic layers of the HCNFs changed from disorder to order after high temperature annealing. The electromagnetic parameters and microwave absorption properties were measured at 2–18 GHz. The maximum reflection loss is 32 dB at 9 GHz and the widest bandwidth under −10 dB is 9.8 GHz from 8.2 to 18 GHz for the unannealed HCNFs coated-CFs composite with 2.5 mm in thickness, suggesting that HCNFs coated-CFs should have potential applications in high performance microwave absorption materials.

  20. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)

    2011-05-15

    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  1. Dielectric and microwave absorption properties of TiO{sub 2}/Al{sub 2}O{sub 3} coatings and improved microwave absorption by FSS incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoning, E-mail: yangzhaoning83@gmail.com; Luo, Fa; Hu, Yang; Duan, Shichang; Zhu, Dongmei; Zhou, Wancheng

    2016-09-05

    In this paper, TiO{sub 2}/Al{sub 2}O{sub 3} ceramic coatings were prepared by atmospheric plasma spraying (APS) technique. The phase composition and morphological characterizations of the synthesized TiO{sub 2}/Al{sub 2}O{sub 3} powders and coatings were performed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The dielectric properties of these coatings were discussed in the frequency range from 8.2 to 12.4 GHz (X-band). By calculating the microwave-absorption as a single-layer absorber, their microwave absorption properties were investigated at different content and thickness in details. Furthermore, by combination of the Frequency selective surface (FSS) and ceramic coatings, a double absorption band of the reflection loss spectra had been observed. The microwave absorbing properties of coatings both in absorbing intensity and absorbing bandwidth were improved. The reflection loss values of TiO{sub 2}/Al{sub 2}O{sub 3} coatings exceeding −10 dB (larger than 90% absorption) can be obtained in the whole frequency range of X-band with 17 wt% TiO{sub 2} content when the coating thickness is 2.3 mm. - Highlights: • Dielectric properties of TiO{sub 2}/Al{sub 2}O{sub 3} ceramics fabricated by APS technique are reported for the first time. • Microwave absorption properties of TiO{sub 2}/Al{sub 2}O{sub 3} composites are improved by FSS. • Reflection loss values exceeding −10 dB can be obtained in the whole X-band when coating thickness is 2.3 mm.

  2. Superior hydrogen storage and electrochemical properties of Mg(x)Ni(100-x)/Pd films at room temperature.

    Science.gov (United States)

    Liu, Tong; Cao, Yurong; Xin, Gongbiao; Li, Xingguo

    2013-10-07

    The Mg(x)Ni(100-x) films of 100 nm have been prepared by magnetron co-sputtering Mg and Ni targets, and a Pd layer of 10 nm was deposited on these films by magnetron sputtering a Pd target. Mg2Ni and MgNi2 are directly generated during the co-sputtering process in the Mg84Ni16/Pd and Mg48Ni52/Pd films. The hydrogen storage properties of the films under 0.1 MPa H2 at 298 K were investigated. The hydrogenation of the Mg84Ni16/Pd film saturates within 45 s and exhibits the faster absorption kinetics compared with Mg94Ni6/Pd and Mg48Ni52/Pd films. The electrochemical properties of the Mg(x)Ni(100-x)/Pd films were investigated in 6 M KOH with a three-electrode cell. The Mg84Ni16/Pd film can be activated just at the first cycle. The maximum discharge capacity of the Mg84Ni16/Pd film is 482.7 mAh g(-1), the highest among these films.

  3. A Comparison of the Mineral Dust Absorptive Properties between Two Asian Dust Events

    Directory of Open Access Journals (Sweden)

    Xiquan Dong

    2013-01-01

    Full Text Available Asian dust events are generated by deep convection from strong low pressure systems that form over mineral dust source regions. This study compares the mineral dust optical properties of two strong Asian dust events from the winter (December 2007 and spring (March 2010 seasons using AERONET retrieved parameters from three sites along the dust event path: SACOL (dust source region, Xianghe (downwind mixed aerosol region, and Taihu (downwind pollution region. The parameters include: aerosol effective radius, optical depth (t, absorptive optical depth (tabs, their respective wavelength dependences or Angstrom exponents (a and aabs, and the spectral single scattering albedo (wo(λ. The a440–870 values in both cases do not exceed 0.62 indicating coarse mode particle dominance at all three sites. The winter case is shown to have carbonaceous influences at all three sites as given by aabs440–870 between 1.3 and 1.8 with strong spectral tabs absorption. The spring case is more dust dominant with aabs440–870 of 1.7–2.5 (noting that the largest value occurred at Taihu with strong tabs absorption primarily in the visible wavelengths. Comparison studies between the observed and theoretically calculated wo(λ for the winter and spring cases have shown an excellent agreement except for the winter case at Taihu due to pollution influences. The comparison studies also suggest that wo(λ is more sensitive to particle absorptive properties rather than particle size. The sharp increase in the aerosol radiative effect (ARE during the dust events with AREBOA > ARETOA suggests a stronger aerosol cooling effect at the surface than at the TOA.

  4. Effects of torsional disorder and position isomerism on two-photon absorption properties of polar chromophore dimers

    Science.gov (United States)

    Jia, Hai-Hong; Zhao, Ke; Wu, Xiang-Lian

    2014-09-01

    Two-photon absorption properties of a push-pull molecule and its covalent dimers have been studied by density functional response theory in combination with polarizable continuum model. A set of constrained geometries with different torsional angles are optimized and used to calculate two-photon absorption spectra. It is found that the torsional disorder could possibly produce the experimental two-photon absorption additive behavior. We have also designed a series of covalent dimers and investigated the effects of position isomerism. Our results suggest that the cooperative two-photon absorption enhancement can be achieved when the subunits are substituted in closer proximity and have larger interchromophore angle.

  5. Synthesis, Structural Characterization, and Field-Effect Transistor Properties of n-Channel Semiconducting Polymers Containing Five-Membered Heterocyclic Acceptors: Superiority of Thiadiazole Compared with Oxadiazole.

    Science.gov (United States)

    Chen, Huajie; Liu, Zhaoxia; Zhao, Zhiyuan; Zheng, Liping; Tan, Songting; Yin, Zhihong; Zhu, Chunguang; Liu, Yunqi

    2016-12-07

    Five-membered 1,3,4-oxadiazole (OZ) and 1,3,4-thiadiazole (TZ) heterocycle-based copolymers as active layer have long been ignored in solution-processable n-channel polymer field-effect transistors (PFETs) despite the long history of using OZ or TZ derivatives as the electron-injecting materials in organic light-emitting devices and their favorable electron affinities. Herein, we first report the synthesis and PFETs performance of two n-channel conjugated polymers bearing OZ- or TZ-based acceptor moieties, i.e., PNOZ and PNTZ, where simple thiophene units are utilized as the weak donors and additional alkylated-naphthalenediimides units are used as the second acceptors. A comparative study has been performed to reveal the effect of different heterocyclic acceptors on thermal properties, electronic properties, ordering structures, and carrier transport performance of the target polymers. It is found that both polymers possess low-lying LUMO values below -4.0 eV, indicating high electron affinity for both heterocycle-based polymers. Because of strong polarizable ability of sulfur atom in TZ heterocycle, PNTZ exhibits a red shift in maximal absorption and stronger molecular aggregation even in the diluted chlorobenzene solution as compared to the OZ-containing PNOZ. Surface morphological study reveals that a nodule-like surface with a rough surface morphology is observed clearly for PNOZ films, whereas PNTZ films display highly uniform surface morphology with well interconnected fiber-like polycrystalline grains. Investigation of PFETs performance indicates that both polymers afford air-stable n-channel transport characteristics. The uniform morphological structure and compact π-π stacking endow PNTZ with a high electron mobility of 0.36 cm(2) V(-1) s(-1), much higher than that of PNOZ (0.026 cm(2) V(-1) s(-1)). These results manifest the feasibility in improving electron-transporting property simply by tuning heteroatom substitutes in n-channel polymers; further

  6. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs.

    Science.gov (United States)

    Wu, Minghong; Zhan, Jing; Geng, Bijiang; He, Piaopiao; Wu, Kuan; Wang, Liang; Xu, Gang; Li, Zhen; Yin, Luqiao; Pan, Dengyu

    2017-09-14

    Carbon quantum dots (CQDs) have attracted much attention owing to their unique optical properties and a wide range of applications. The fabrication and control of CQDs with organic solubility and long-wavelength emission are still urgent issues to be addressed for their practical use in LEDs. Here, organic-soluble CQDs were produced at a high yield of ∼90% by a facile solvent engineering treatment of 1,3,6-trinitropyrene, which were simultaneously used as the nitrogen and carbon sources. The optical properties of the organic-soluble CQDs (o-CQDs) were investigated in nonpolar and polar solvents, films, and LED devices. The CQDs have a narrow size distribution around 2.66 nm, and can be dispersed in different organic solvents. Significantly, the as-prepared CQDs present an excitation-independent emission at 607 nm with fluorescence quantum yields (QYs) up to 65.93% in toluene solution. A pronounced solvent effect was observed and their strong absorption bands can be tuned in the whole visible region (400-750 nm) by changing the solvent. The CQDs in various solvents can emit bright, excitation-independent, long-wavelength fluorescence (orange to red). Furthermore, benefiting from the unique oil-solution properties, the as-prepared CQDs can be processed in thin film and device forms to meet the requirements of various applications, such as phosphor-based white-light LEDs. The color coordinate for these CQD modified LEDs is realized at (0.32, 0.31), which is close to pure white light (0.33, 0.33).

  7. Domain-dependent electronic structure and optical absorption property in hybrid organic-inorganic perovskite.

    Science.gov (United States)

    Meng, Xiang; Zhang, Ruifeng; Fu, Zhongheng; Zhang, Qianfan

    2016-10-05

    Hybrid organic-inorganic perovskites, represented by materials in the CH3NH3PbI3 series, have become one of the most promising materials for solar cells with a high power conversion efficiency and low cost. The ordered Pb-I cage in such hybrid perovskites can induce the polarized cations to form a variety of polarization domains with long-range order, which will lead to the formation of specific atomic conformations or metastable crystalline phases, unique electronic band structures and optical absorption properties. Such domain-dependent characteristics play a critical role in the phase transition and service stability of such solar cells, and also open up the opportunity of tuning their electronic structure. In the present study, we systematically investigate the band structures and optical absorption properties of different electronically ordered domains in CH3NH3PbI3. By comparing different perovskites containing various cations, we have clarified the important influence of cation polarization on domain-dependent properties. Our results provide not only a possible pathway for the manipulation of band structure by applying an external field, but also a novel scheme for improving the performance and stability of hybrid perovskites.

  8. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties

    Science.gov (United States)

    Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro

    2016-12-01

    Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application.

  9. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  10. Research on EM pulse protection property of plasma-microwave absorptive material-plasma sandwich structure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A plasma-microwave absorptive material (MAM)-plasma sandwich structure is presented to protect the electronic device against high power electromagnetic pulse. The model of electromagnetic wave reflected by and transmitting through the structure is established. Based on the characteristic parameters of plasma generated by discharge and usual MAM, the electromagnetic transmissive properties of the sandwich structure are investigated by the method of finite difference in time domain. The results indicate that in a rather broad frequency range, the electromagnetic attenuations by the structure are obviously better than the sum of attenuations resulted from plasma and MAM respectively. The models and results presented are instructive for electromagnetic pulse protection.

  11. Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability

    DEFF Research Database (Denmark)

    Yu, Yang; De Andrade, Leandro Carvalho Xavier; Fang, Liming

    2015-01-01

    Hyperbranched polymers or/and graphene oxide nanosheets were used to synthesize poly(acrylic acid)-based hybrid hydrogels with high water absorption ability, excellent mechanical properties, and environmental remediation abilities through a novel one-step, cost-effective, and environmentally...... friendly method. The combination of hyperbranched polymers and graphene oxide nanosheets had synergistic effects on the final hybrid hydrogel, especially on the mechanical behaviors of the hydrogels, with Young's modulus, tensile strength at break and elongation at break increasing by 69, 308, and 848...

  12. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  13. Comparison of absorption properties of colored dissolved organic matter in six different case 2 water bodies

    Science.gov (United States)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.

    2017-02-01

    Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.

  14. Variations in Spectral Absorption Properties of Phytoplankton, Non-algal Particles and Chromophoric Dissolved Organic Matter in Lake Qiandaohu

    Directory of Open Access Journals (Sweden)

    Liangliang Shi

    2017-05-01

    Full Text Available Light absorption by phytoplankton, non-algal particles (NAP and chromophoric dissolved organic matter (CDOM was investigated at 90 sites of a clear, deep artificial lake (Lake Qiandaohu to study natural variability of absorption coefficients. Our study shows that CDOM absorption is a major contributor to the total absorption signal in Lake Qiandaohu during all seasons, except autumn when it has an equivalent contribution as total particle absorption. The exponential slope of CDOM absorption varies within a narrow range around a mean value of 0.0164 nm−1 ( s d = 0.00176 nm−1. Our study finds some evidence for thIS autochthonous production of CDOM in winter and spring. Absorption by phytoplankton, and therefore its contribution to total absorption, is generally greatest in spring, suggesting that phytoplankton growth in Lake Qiandaohu occurs predominantly in the spring. Phytoplankton absorption in freshwater lakes generally has a direct relationship with chlorophyll-a concentration, similar to the one established for open ocean waters. The NAP absorption, whose relative contribution to total absorption is highest in summer, has a spectral shape that can be well fitted by an exponential function with an average slope of 0.0065 nm−1 ( s d = 0.00076 nm−1. There is significant spatial variability present in the summer of Lake Qiandaohu, especially in the northwestern and southwestern extremes where the optical properties of the water column are strongly affected by the presence of allochthonous matter. Variations in the properties of the particle absorption spectra with depths provides evidence that the water column was vertically inhomogeneous and can be monitored with an optical measurement program. Moreover, the optical inhomogeneity in winter is less obvious. Our study will support the parameterization of the Bio-optical model for Lake Qiandaohu from in situ or remotely sensing aquatic color signals.

  15. Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries.

    Science.gov (United States)

    Jang, Yong Seung; Kang, Yun Chan

    2013-10-21

    A novel and simple one-pot method of systematically synthesizing spherical metal sulfide-carbon composite powders is reported for the first time. The zinc sulfide-carbon composite is selected as the first target material. The prepared composite powders show superior electrochemical properties as anode materials for lithium-ion batteries.

  16. Tensile Characteristics of Bond of Stainless Steel Overlay Weld after Absorption of Hydrogen : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 4)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; The Japan Steel Works, Ltd., Muroran Plant

    1987-01-01

    The tensile characteristics of the bond of the disbanding-resistant overlay weld after absorption of hydrogen were studied and compared with those of the conventional overlay weld. It was found that the tensile strength of the bond of the conventional overlay weld was lower than that of the disbanding-resistant overlay weld. This is due to existence of the coarse planar grains in first layer overlay weld metal adjacent to the bond. The coarse planar grains strongly reduce the resistance to hy...

  17. Measurements of scattering and absorption properties of surface aerosols at a semi-arid site, Anantapur

    Science.gov (United States)

    Rama Gopal, K.; Balakrishnaiah, G.; Arafath, S. Md.; Raja Obul Reddy, K.; Siva Kumar Reddy, N.; Pavan Kumari, S.; Raghavendra Kumar, K.; Chakradhar Rao, T.; Lokeswara Reddy, T.; Reddy, R. R.; Nazeer Hussain, S.; Vasudeva Reddy, M.; Suresh Babu, S.; Mallikarjuna Reddy, P.

    2017-01-01

    Aerosol optical properties are continuously measured at a semi-arid station, Anantapur from June 2012 to May 2013 which describes the impact of surface aerosols on climate change over the region. Scattering coefficient (σsct) and absorption coefficient (σabs) are obtained from integrating Nephelometer and Aethalometer, respectively. Also, the single scattering albedo (ω0), Scattering/absorption Ångström exponents were examined during the period of study. Diurnal variations of σsct and σabs show a bi-peak pattern with two maxima and one minimum in a day. The largest values of σsct and σabs are obtained in winter while the lowest values are measured in monsoon. From the measurements σsct550 and σabs550 are found to be 110 ± 12.23 Mm- 1 and 33 ± 5.2 Mm- 1, respectively during the study period. An analysis of the ω0 suggests that there is a more absorbing fraction in the particle composition over the measurement site. The ω0 obtained in the surface boundary layer of Anantapur is below the critical value of 0.86 that determines the shift from cooling to warming. A relationship between scattering/absorption coefficients and scattering/absorption Ångström exponent and single scattering albedo is further examined. In order to understand the origins of the air masses in the study region, we performed seven-day back trajectory analyses based on the NOAA HYSPLIT model. These trajectories were computed at several altitudes (3000 m, 1500 m, and 500 m) for June 2012 and May 2013. These results put in evidence the need of efforts to reduce absorbing particles (black carbon) emissions to avoid the possible warming that would result from the reductions of the cooling aerosol only.

  18. Microwave absorption property of aligned MWCNT/Fe3O4

    Science.gov (United States)

    Hekmatara, H.; Seifi, M.; Forooraghi, K.

    2013-11-01

    This study investigated the microwave absorption properties of magnetic modified multiwall carbon nanotubes (MWCNTs) with different alignments to the electric field (E vector) of the incident electromagnetic (EM) waves. MWCNTs were decorated with Fe3O4 nanoparticles using the wet chemical method and the resulting MWCNT/Fe3O4 was then used as a filler in a MWCNT/Fe3O4/epoxy resin composite at different weight-to-epoxy-resin ratios (2%, 5%, and 8%) with good uniformity and alignment. For each filler concentration, three samples were produced with different alignments of carbon nanotubes using the solution-casting method. For sample one, the nanotube axis (k) was parallel to the E vector of the EM wave, for sample two, k was perpendicular to E, and the third sample contained randomly oriented nanotubes. Magnetic MWCNTs were exposed to a 0.4 T magnetic field in the desired direction to achieve the desired alignment of carbon nanotubes in epoxy resin. Microwave absorption characterization of the considered ranging band (X-band) at all concentrations where the alignment of MWCNT/Fe3O4 was parallel to the incident E vector showed increased absorption. Samples with a perpendicular alignment of MWCNT/Fe3O4 to incident E had the lowest absorption. Samples containing 2 wt% and 8 wt% MWCNT/Fe3O4 aligned parallel to E and had reflection losses exceeding 14.4 dB and 23.6 dB, respectively, over a 10-11 GHz range. The 5 wt% parallel aligned MWCNT/Fe3O4 showed an absorbing peak of 27 dB and a bandwidth broadened to 1.2 GHz.

  19. Investigation on the temperature-dependence of absorption properties of solar cells with micro-structured surfaces

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The temperature of a solar cell will increase when it is exposed to the sunlight,which results in variations of optical parameters and thermal expansion coefficient of the cell,thus affecting its spectral absorption feature.This paper is aimed to investigate the effects of temperature on the absorption property of solar cells with micro-structured surfaces.By taking hemispherical, cylindrical and spherical surfaces as models,numerical computation is conducted to obtain spectral distribution of absorptance of such surfaces with different structural parameters by means of the finite difference time domain(FDTD)method.Furthermore,the effects of material properties and structural period on the absorption property are also investigated.

  20. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  1. Research on various factors influencing the moisture absorption property of sodium polyacrylate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sodium polyacrylate was synthesized with acrylic acid as the monomer, and sodium bisulfate and ammonium persulfate as the initiator, by means of aqueous solution polymerization. The factors influencing the properties of moisture absorption, such as monomer concentration, dosage of initiator, and reaction temperature were systematically investigated. The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material, such as silica gel, and molecular sieve. The best reaction condition and formula are based on the orthogonal experiment design. The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g. The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis. The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency, followed by monomer concentration and reaction temperature, while other factors have less influence.

  2. Two-photon Absorption and Nonlinear Optical Properties of A New Organic Dye DEASPI

    Institute of Scientific and Technical Information of China (English)

    Guangyong ZHOU; Xiaomei WANG; Dong WANG; Chun WANG; Xian ZHAO; Zongshu SHAO; Minhua JIANG

    2001-01-01

    A new organic dye trans-4- [p-(N,N-diethylamino) styryl ]-N-methylpyridinium iodide (abbreviatedas DEASPI thereafter) with large two-photon absorption (TPA) cross section and excellent upconverted lasing properties was synthesized. The melting point and decompound point were measured to be 230℃ and 264.7℃ respectively. The molecular TPA cross section was meaThe linear and nonlinear optical properties of this dye were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted lasing energy is as high as 18.6% at the pump energy of 2.17 mJ from a mode-locked Nd:YAG ps laser.The nonlinear transmittance at the wavelengths from 720 to 1100 nm was measured. The dye solution also shows a clear optical power limiting effect.

  3. Improved Oral Bioavailability of Lacidipine Using Nanosuspension Technology: Inferior in vitro Dissolution and Superior in vivo Drug Absorption versus Lacipil®.

    Science.gov (United States)

    Zhao, Juanhang; Luo, Lei; Fu, Qiang; Guo, Bei; Li, Yun; Geng, Yajie; Wang, Junfeng; Zhang, Tianhong

    2016-01-01

    Improved dissolution is a better way of increasing the oral absorption of lacidipine (LCDP) because it is a BCS II class drug. The purpose of this study is to improve the oral bioavailability of LCDP by applying nanosuspension technology. LCDP nanosuspensions were prepared by a hybrid method of microprecipitation and high pressure homogenization. The effects of the production parameters (shearing rate and time, the stabilizers and their concentrations, homogenization pressure and number of cycles) were investigated to optimize the preparation process. In vitro characterizations (X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy and dissolution measurement) were carried out and an oral pharmacokinetic study was performed in beagle dogs. LCDP was transformed into an amorphous state during the preparation process, and the mean particle size was about 714.0 ± 12.7 nm. The dissolution rate of LCDP nanosuspensions was faster than that of physical mixtures, but slower than that of Lacipil® (the commercial tablet). Regarding the in vivo pharmacokinetics, the key pharmacokinetic parameters (Cmax and AUC0-∞) of the nanosuspensions were statistically significantly higher than those of both the commercial tablet and physical mixtures. So, this is an efficient drug delivery strategy to facilitate the oral administration of LCDP by using nanosuspension technology, and should be generally applicable to many poorly water-soluble drugs with dissolution rate-limited absorption.

  4. Enhanced microwave absorption properties of CTAB assisted Pr–Cu substituted nanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq, Imran, E-mail: Imran.cssp@pu.edu.pk [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Naseem, Shahzad; Riaz, Saira [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Ashiq, Muhammad Naeem [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Hussain, S. Sajjad; Rana, Mazhar [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2016-09-15

    In this study, the rare earth Pr{sup 3+}and divalent Cu{sup 2+} elements substituted Sr{sub 1−x}Pr{sub x}Mn{sub 2}Fe{sub 16−y}Cu{sub y}O{sub 27} (x=0, 0.02, 0.06, 0.1 and y=0, 0.1, 0.3, 0.5) W-type hexagonal ferrites were prepared by Sol–Gel method. TGA and DSC analysis of as prepared material was carried out to confirm the temperature at which required phase can be obtained. The XRD patterns exhibit the single phase for all the samples and the lattice parameters were changed with the additives. The absorption bands at wave number 636 and 554 cm{sup −1} in FTIR spectrum indicate the stretching vibration of metal–oxygen ions which also ratifies the single phase for the prepared material. Microstructural analysis confirms the agglomeration of nanograins which leads to formation of platelet like structure which cause in the enhancement of the microwave absorption properties of material. The minimum reflection loss of −59.8 dB at 9.34 GHz frequency was observed makes the prepared material good candidate to be used in super high frequency application. The attenuation constant and reflectivity results are also in good agreement with minimum reflection losses results. - Highlights: • A series of W-type hexagonal ferrites were prepared by Sol–Gel method. • The XRD analysis showed that the W-type hexagonal structure. • The c/a ratio of these samples falls in the range of W-type hexagonal ferrites. • The FTIR spectrum also confirms the single W-type hexagonal phase. • The microwave absorption properties enhanced with Pr–Cu substitution.

  5. Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone.

    Science.gov (United States)

    Albarran, Guadalupe; Boggess, William; Rassolov, Vitaly; Schuler, Robert H

    2010-07-22

    Absorption spectrophotometric and mass spectrometric properties of 1,2-benzoquinone, prepared in aqueous solution by the hexachloroiridate(IV) oxidation of catechol and isolated by HPLC, are reported. Its absorption spectrum has a broad moderately intense band in the near UV with an extinction coefficient of 1370 M(-1)cm(-1) at its 389 nm maximum. The oscillator strength of this band contrasts with those of the order-of-magnitude stronger approximately 250 nm bands of most 1,4-benzoquinones. Gaussian analysis of its absorption spectrum indicates that it also has modestly intense higher energy bands in the 250-320 nm region. In atmospheric pressure mass spectrometric studies 1,2-benzoquinone exhibits very strong positive and negative mass 109 signals that result from the addition of protons and hydride ions in APCI and ESI ion sources. It is suggested that the hydride adduct is formed as the result of the highly polar character of ortho-quinone. On energetic collision the hydride adduct loses an H atom to produce the 1,2-benzosemiquinone radical anion. The present studies also show that atmospheric pressure mass spectral patterns observed for catechol are dominated by signals of 1,2-benzoquinone resulting from oxidation of catechol in the ion sources. Computational studies of the electronic structures of 1,2-benzoquinone, its proton and hydride ion adducts, and 1,2-benzosemiquinone radical anion are reported. These computational studies show that the structures of the proton and hydride adducts are similar and indicate that the hydride adduct is the proton adduct of a doubly negatively charged 1,2-benzoquinone. The contrast between the properties of 1,2- and 1,4-benzoquinone provides the basis for considerations on the effects of conjugation in aromatic systems.

  6. Preparation, electromagnetic and enhanced microwave absorption properties of Fe nanoparticles encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaosi, E-mail: sci.xsqi@gzu.edu.cn [Physics Department, Guizhou University, Guiyang 550025 (China); Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Xu, Jianle; Hu, Q. [Physics Department, Guizhou University, Guiyang 550025 (China); Zhong, Wei, E-mail: wzhong@nju.edu.cn [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China)

    2015-08-15

    Graphical abstract: In the article, core/shell structured Fe/CNT hybrid have been synthesized over the hollow Fe{sub 2}O{sub 3} nanoparticles. Compared with those representative Fe/CNTs, the obtained Fe/CNT hybrid exhibits enhanced microwave-absorbing ability and can be used as light-weight microwave absorber. - Highlights: • The paper reports the synthesis of Fe/CNT hybrid directly over Fe{sub 2}O{sub 3} particles. • The RL value below −20 dB can be obtained in the 1.0–18 GHz frequency range. • The obtained Fe/CNT hybrid exhibits enhanced microwave absorption property. - Abstract: Using hollow Fe{sub 2}O{sub 3} particles as the catalyst, the core/shell structured Fe/carbon nanotube (CNT) hybrid could be synthesized by a chemical vapor deposition method without the hydrogen reduction process. Based on the obtained results, a possible growth mechanism of the Fe/CNT hybrid was discussed. And the investigations of electromagnetic and microwave absorption performances indicate that a minimum reflection loss (RL) value of the obtained sample is ca. −40.15 dB at 17.15 GHz with a matching thickness of 1.5 mm, and the RL value below −20 dB can be obtained in the whole frequency range (1.0–18 GHz) with the sample thickness varies from 1.3 to 10.0 mm. The results demonstrate that a simple and environment-friendly route has been proposed for the production of core/shell structured carbon nanohybrid. The obtained Fe/CNT hybrid exhibits excellent microwave absorption properties and has potential applications in thin thickness and light-weight microwave absorbers.

  7. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China); Feng, W.J., E-mail: wjfeng@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050 (China); School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China); Wang, J.S.; Zhao, X.; Zheng, W.Q. [School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China); Yang, H. [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050 (China); School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China)

    2015-11-01

    Microwave absorption properties, especially the band width and depth of reflection loss are highlighted as key measurement in studies of microwave absorber. In order to improve the band width and depth of reflection loss of carbonyl iron powder (CIP), we prepared SiO{sub 2} layers on the surface of CIP by using tetraethyl orthosilicate (TEOS) as a SiO{sub 2} source and 3-aminopropyl triethoxysilane (APTES) as a surface modifier. SiO{sub 2} layer was formed by the hydrolysis of TEOS. The results show that after treatment the CIP is covered by a 5–10 nm coating layer. Contrast to uncoated samples, coated samples show improved absorption properties. The minimum of reflection loss is −38.8 dB at 11 GHz and the band width of reflection loss exceeding −10 dB is from 8 GHz to 14 GHz. - Highlights: • Silica coatings were prepared on the surface of carbonyl iron powder. • Coating layers were identified by several ways. • We discussed the absorbing mechanism of coated samples. • Reflection loss was significantly improved, the width of RL exceeding −10 dB is from 8 GHz to 14 GHz.

  8. Development of hybrid cotton/hydrogel yarns with improved absorption properties for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pollini, Mauro; Paladini, Federica, E-mail: federica.paladini@unisalento.it; Sannino, Alessandro; Maffezzoli, Alfonso

    2016-06-01

    Hyperhidrosis, or excessive sweating, is an overlooked and potentially disabling symptom, which is often seen in social anxiety disorder. In this work an innovative advanced textile material was developed for application in the management of excessive sweating, preparing a drying yarn providing improved comfort. Hybrid cotton/hydrogel yarns were obtained by combining cotton with superabsorbent hydrogels through an optimization study focused on the achievement of the most promising product in terms of absorption properties and resistance to washings. Swelling and washing tests were performed using different hydrogels, and the effect of an additional crosslinking on the materials was also evaluated by testing different solutions containing Al{sup 3+} and Ca{sup 2+} ions. Scanning electron microscopy and infrared spectroscopy analyses were adopted to characterize morphology and chemical structure of the hydrogels undergoing different production processes. The biocompatibility of the hybrid fabrics was demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) through the extract method. - Highlights: • Novel textile based on natural fibres and superabsorbent hydrogels was developed. • The swelling ratio and the durability to washings were evaluated. • The effect of the choice of the hydrogel was studied. • The effects of additional crosslinking on hydrogel and fabrics were evaluated. • The optimized parameters determined durable and improved absorption properties.

  9. Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial

    Science.gov (United States)

    Xu, Jianle; Qi, Xiaosi; Luo, Chengzhi; Qiao, Jie; Xie, Ren; Sun, Yuan; Zhong, Wei; Fu, Qiang; Pan, Chunxu

    2017-10-01

    Due to its improved physical and chemical performances, a strongly hydrogenated TiO2 was designed and produced successfully by using a sealing-transfer reduction method at a relatively low temperature (425 °C). The microstructures, electromagnetic and microwave absorbing properties were investigated in detail. Experimental results revealed that: (1) the minimum reflection loss (RL) value of the hydrogenated TiO2 up to ‑53.8 dB (99.999 99% of EM wave attenuation) was reached at 11.2 GHz, and the RL values below ‑20 dB (99%) were obtained in a frequency range of 7.3–16.8 GHz. (2) Compared to pristine TiO2 and black TiO2 in other reports, the present hydrogenated TiO2 exhibited greatly improved microwave absorption performance. Moreover, the mechanism was also discussed. It was demonstrated that the excellent microwave absorption performance of the black TiO2 arose from the strong dielectric loss, excellent impedance matching and attention loss due to associated relaxation and interfacial polarization. It is expected that the hydrogenated TiO2 exhibits great potential applications in the area of high performance microwave absorbing materials. In addition, it is believed that the black TiO2 @ magnetic metals composites will display an excellent microwave absorbing property.

  10. The INTEGRAL/IBIS AGN catalogue I: X-ray absorption properties versus optical classification

    CERN Document Server

    Malizia, A; Bazzano, A; Bird, A J; Masetti, N; Panessa, F; Stephen, J B; Ubertini, P

    2012-01-01

    In this work we present the most comprehensive INTEGRAL AGN sample which lists 272 objects. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48%) of the sample is absorbed while the fraction of Compton thick AGN is small (~7%). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80% and 17%. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. Few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 XBONG, 5 type 2 QSOs and 11 LINERs. In terms of optical classification, our sample contains 57% of type 1 and 43% of type 2 AGN; this subdivision is simila...

  11. Temperature dependent magnetic and microwave absorption properties of doubly substituted nanosized material

    Science.gov (United States)

    Sadiq, Imran; Naseem, Shahzad; Rana, M. U.; Ashiq, Muhammad Naeem; Ali, Irshad

    2015-07-01

    The sol gel method has been adopted to synthesize a series of X-type hexagonal ferrites with concentration Sr2-x Gdx Ni2 Fe28-yCdyO46 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5). The XRD analysis reveals the single phase of the prepared material and the lattice constants a (Å) and c (Å) varies with additives. The crystallite size of the present investigated ferrite is found in the range of 20-30 nm measured from TEM image. The enhancement in the magnetic properties (saturation magnetization, remanance magnetization and coercivity) can be observed with the increase of dopping concentration and the coercivity lies in the range of (484.22-887.47) G. The saturation and remanance magnetization decreases monotonically with the temperature which is the characteristic of the hexagonal ferrites. The Gd-Cd substituted sample possesses low values of complex relative permittivity and permeability than the pure samples. The material exhibits maximum microwave absorption -23 dB at 11.87 GHz and attenuation peak is in good agreement with the reflection loss value. The microwave absorption properties reflect the applications of this material in super high frequency devices (SHF).

  12. One- and two-photon absorption properties of two metalloporphyrin complexes

    Institute of Scientific and Technical Information of China (English)

    Sun Yuan-Hong; Wang Chuan-Kui

    2011-01-01

    The linear and nonlinear optical properties of two metalloporphyrin complexes formed by the complementary coordination of central zinc or magnesium ions to the ligand 5,10,15-tri-(p-tolyl)-20-phenylethynylporphyrin are theoretically investigated by using the analytic response theory at the density functional theory level.The results indicate that the studied complexes present more symmetric geometry structures than the ligand.The charge-transfer states of the two complexes in the lower energy region are all almost degenerate but those of the ligand are well separated.The ratio of the two-photon absorption cross sections of the ligand,zinc-porphyrin and magnesium-porphyrin complexes is 1.0:1.5:1.8,demonstrating that the two-photon absorption capability can be greatly increased when the ligand is coordinated with a metal ion.Moreover,several physical micro-mechanisms including electron transitions and intramolecular charge-transfer processes are discussed to explore the differences in optical property between the ligand and two complexes.

  13. Magnetic and microwave absorption properties of La-Nd-Fe alloys

    Science.gov (United States)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Yao, Qingrong; Lin, Peihao

    2017-02-01

    Through arc smelting and high energy ball milling method to synthesized the powders of LaxNd2-xFe17 (x=0.0, 0.2, 0.4, 0.6). By x-ray diffraction (XRD), scanning electron microscopy (SEM) and laser particle analyzer (LPS) to study the structural, morphology, particle size distribution of the powders, respectively. The electromagnetic parameters and saturation magnetization of the powers were measured by a vector network analyzer (VNA) and vibrating sample magnetometer (VSM), respectively. The saturation magnetization decreases with the La increasing. The minimum absorption peak frequency shifts towards a lower frequency region with an increase of La concentration. The microwave absorbing properties of the composite with different ratios of La0.2Nd1.8Fe17/Ni were studied. The microwave absorbing peaks of the composite shift to higher frequencies, and the microwave absorbing properties improved with the Ni content increase to 20%. The minimum reflection loss is -32.5 dB at 9.8 GHz and the bandwidth less than -10 dB (Microwave absorption rate 90%) reaches 3 GHz with a thickness of 1.8 mm.

  14. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    Science.gov (United States)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  15. Three-dimensional printed optical phantoms with customized absorption and scattering properties.

    Science.gov (United States)

    Diep, Phuong; Pannem, Sanjana; Sweer, Jordan; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren

    2015-11-01

    Three-dimensional (3D) printing offers the promise of fabricating optical phantoms with arbitrary geometry, but commercially available thermoplastics provide only a small range of physiologically relevant absorption (µa) and reduced scattering (µs`) values. Here we demonstrate customizable acrylonitrile butadiene styrene (ABS) filaments for dual extrusion 3D printing of tissue mimicking optical phantoms. µa and µs` values were adjusted by incorporating nigrosin and titanium dioxide (TiO2) in the filament extrusion process. A wide range of physiologically relevant optical properties was demonstrated with an average repeatability within 11.5% for µa and 7.71% for µs`. Additionally, a mouse-simulating phantom, which mimicked both the geometry and optical properties of a hairless mouse with an implanted xenograft tumor, was printed using dual extrusion methods. 3D printed tumor optical properties matched the live tumor with less than 3% error at a wavelength of 659 nm. 3D printing with user defined optical properties may provide a viable method for durable optically diffusive phantoms for instrument characterization and calibration.

  16. Parametrization of acoustic boundary absorption and dispersion properties in time-domain source/receiver reflection measurement

    NARCIS (Netherlands)

    De Hoop, A.T.; Lam, C.H.; Kooij, B.J.

    2005-01-01

    Closed-form analytic time-domain expressions are obtained for the acoustic pressure associated with the reflection of a monopole point-source excited impulsive acoustic wave by a planar boundary with absorptive and dispersive properties. The acoustic properties of the boundary are modeled as a local

  17. Parametrization of acoustic boundary absorption and dispersion properties in time-domain source/receiver reflection measurement

    NARCIS (Netherlands)

    De Hoop, A.T.; Lam, C.H.; Kooij, B.J.

    2005-01-01

    Closed-form analytic time-domain expressions are obtained for the acoustic pressure associated with the reflection of a monopole point-source excited impulsive acoustic wave by a planar boundary with absorptive and dispersive properties. The acoustic properties of the boundary are modeled as a local

  18. Kenaf/recycled Jute Natural Fibers Unsaturated Polyester Composites: Water Absorption/dimensional Stability and Mechanical Properties

    Science.gov (United States)

    Osman, Ekhlas A.; Vakhguelt, Anatoli; Sbarski, Igor; Mutasher, Saad A.

    2012-03-01

    Effects of water absorption on the flexural properties of kenaf-unsaturated polyester composites and kenaf/recycled jute-unsaturated polyester composites were investigated. In the hybrid composites, the total fiber content was fixed to 20 wt%. In this 20 wt%, the addition of jute fiber varied from 0 to 75%, with increment of 25%. The result demonstrates the water absorption and the thickness swelling increased with increase in immersion time. Effects of water absorption on flexural properties of kenaf fiber composites can be reduced significantly with incorporation of recycled jute in composites formulation. The process of absorption of water was found to approach Fickian diffusion behavior for both kenaf composites and hybrid composites.

  19. Theoretical studies on the one- and two-photon absorption properties of azulenylporphyrins and azulene-fused porphyrins

    Institute of Scientific and Technical Information of China (English)

    Li Wen-Chao; Feng Ji-Kang; Ren Ai-Min; Zhang Xiang-Biao; Sun Jia-Zhong

    2009-01-01

    The electronic structures, one-photon absorption (OPA) and two-photon absorption (TPA) properties of the azulenylporphyrins and azulene-fused porphyrins have been comparatively studied by using DFT/B3LYP/6-31G(d)and the ZINDO/SDCI method. With the number of azulenyl groups increasing, the OPA wavelengths of all molecules are red-shifted in 400-600 nm and the two-photon absorption cross section is gradually enlarged. The azulene-fused structures facilitate an expanding conjugated area and increasing TPA cross section. The origin of TPA properties of studied compounds is studied with a two-level model. In summary, the azulene-fused porphyrins exhibit strong two-photon absorption.

  20. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    Science.gov (United States)

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  1. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    Science.gov (United States)

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  2. Solvent and branching effect on the two-photon absorption properties of push-pull triphenylamine derivatives

    OpenAIRE

    Cvejn, Daniel; Michail, E.; Seintis, M.; Klikar, M.; Pytela, Oldřich; Mikysek, Tomáš; Almonasy, Numan; Ludwig, Miroslav; Giannetas, V.; Fakis, M.; Bureš, Filip

    2016-01-01

    The photophysical and two-photon absorption (2PA) properties of two tri-podal molecules and of their quadrupolar and dipolar counterparts are reported for a series of solvents with varying polarity. The molecules possess a tri-phenylamine electron donating group and mono-cyano acceptors while olefinic and acetylenic π-linkers have been used. Branching led to an increase of the molar extinction coefficient and to a slight bathochromic shift of the absorption spectra while the fluorescence quan...

  3. Nature and statistical properties of quasar associated absorption systems in the XQ-100 Legacy Survey

    CERN Document Server

    Perrotta, Serena; Prochaska, J Xavier; Cristiani, Stefano; Cupani, Guido; Ellison, Sara; Lòpez, Sebastian; Becker, George D; Berg, Trystyn A M; Christensen, Lise; Denney, Kelly D; Hamann, Frederick; Pâris, Isabelle; Vestergaard, Marianne; Worseck, Gábor

    2016-01-01

    We statistically study the physical properties of a sample of narrow absorption line (NAL) systems looking for empirical evidences to distinguish between intrinsic and intervening NALs without taking into account any a priori definition or velocity cut-off. We analyze the spectra of 100 quasars with 3.5 < z$\\rm_{em}$ < 4.5, observed with X-shooter/VLT in the context of the XQ-100 Legacy Survey. We detect a $\\sim$ 8 $\\sigma$ excess in the number density of absorbers within 10,000 km/s of the quasar emission redshift with respect to the random occurrence of NALs. This excess does not show a dependence on the quasar bolometric luminosity and it is not due to the redshift evolution of NALs. It extends far beyond the standard 5000 km/s cut-off traditionally defined for associated absorption lines. We propose to modify this definition, extending the threshold to 10,000 km/s when also weak absorbers (equivalent width < 0.2 \\AA) are considered. We infer NV is the ion that better traces the effects of the qua...

  4. Enhanced microwave absorption properties of CTAB assisted Pr-Cu substituted nanomaterial

    Science.gov (United States)

    Sadiq, Imran; Naseem, Shahzad; Riaz, Saira; Khan, Hasan M.; Ashiq, Muhammad Naeem; Hussain, S. Sajjad; Rana, Mazhar

    2016-09-01

    In this study, the rare earth Pr3+and divalent Cu2+ elements substituted Sr1-xPrxMn2Fe16-yCuyO27 (x=0, 0.02, 0.06, 0.1 and y=0, 0.1, 0.3, 0.5) W-type hexagonal ferrites were prepared by Sol-Gel method. TGA and DSC analysis of as prepared material was carried out to confirm the temperature at which required phase can be obtained. The XRD patterns exhibit the single phase for all the samples and the lattice parameters were changed with the additives. The absorption bands at wave number 636 and 554 cm-1 in FTIR spectrum indicate the stretching vibration of metal-oxygen ions which also ratifies the single phase for the prepared material. Microstructural analysis confirms the agglomeration of nanograins which leads to formation of platelet like structure which cause in the enhancement of the microwave absorption properties of material. The minimum reflection loss of -59.8 dB at 9.34 GHz frequency was observed makes the prepared material good candidate to be used in super high frequency application. The attenuation constant and reflectivity results are also in good agreement with minimum reflection losses results.

  5. Fabxication and electromagnetic wave absorption properties of amorphous Ni-P nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lu Hai-Peng; Han Man-Gui; Cai Li; Deng Long-Jiang

    2011-01-01

    Amorphous Ni-P nanotubes are fabricated through electrolees chemical deposition inside an anodic aluminum oxide template. The hysteresis loops of Ni-P nanotube arrays are each found to exhibit an unusual isotropic behaviour,which is believed to be due to the competition results between the shape anisotropy and the magnetostatic interaction among nanotubes. The dynamic dependence of permittivity on the frequency spectrum is fitted to the Lorentzian-type dispersion law. The permeability dispersion behaviours have been fitted based on the Kittel equation. Electromagnetic wave absorption properties of Ni-P nanotubes/paraffin composites with different values of thickness (t) are clearly shown by a three-dimensional graph. Furthermore, the bandwidths of composites with different "t" values can be well presented by a two-dimensional contour graph, which is a novel presentation form. The results show that the composites each have a good microwave absorption performance with t larger than 5.5 mm and with the frequency around 8 gigahertz.

  6. Effects of dietary fiber on gastrointestinal transit time, fecal properties and fat absorption in rats.

    Science.gov (United States)

    Munakata, A; Iwane, S; Todate, M; Nakaji, S; Sugawara, K

    1995-08-01

    The gastrointestinal transit time of food was determined by x-ray fluoroscopy using barium sulfate in rats fed with diets of various dietary fiber contents, and the effects of dietary fiber on the transit time, properties of feces, and fat absorption were examined. In 4- and 16-month-old rats fed with the diet for 3 and 15 month, respectively, the transit time of the cecum and colon in those receiving 20 and 40% wheat bran diets was shortened compared with that in the 0% group. The fecal pellet number and volume increased as the wheat bran content of the diet increased. In another experiments, the daily total fat excretion was found to be the greatest in rats receiving 15% pectin diet, followed by rats receiving 15% cellulose and non-fiber diets, respectively. These results suggest that shortening of the transit time through the cecum and colon with increase of fecal volume and suppression of fat absorption all participate in the mechanism of the inhibitory action of wheat bran on carcinogenesis and on the development of diverticulum of the large intestine.

  7. Enhanced absorption properties of ordered mesoporous carbon/Co-doped ordered mesoporous carbon double-layer absorbers

    Science.gov (United States)

    Guo, Shao-Li; Wang, Liu-Ding; Wang, Yi-Ming; Wu, Hong-Jing; Shen, Zhong-Yuan

    2013-04-01

    Ordered mesoporous carbon (OMC) and metal-doped (M-doped) OMC composites are prepared, and their electromagnetic (EM) parameters are measured. Using the measured EM parameters we calculate the EM wave absorption properties of a double-layer absorber, which is composed of OMC as an absorbing layer and M-doped OMC as the matching layer. The calculated results show that the EM wave absorption performance of OMC/OMC—Co (2.2 mm/2.1 mm) is improved remarkably. The obtained effective absorption bandwidth is up to 10.3 GHz and the minimum reflection loss reaches -47.6 dB at 14.3 GHz. The enhanced absorption property of OMC/OMC—Co can be attributed to the impedance match between the air and the absorber. Moreover, it can be found that for the absorber with a given matching layer, a larger value of Δtanδɛ(= tanδ69 absorbing - tanδɛ matching) can induce better absorption performance, indicating that the difference in impedance between the absorbing layer and the matching layer plays an important role in improving the absorption property of double-layer absorbers.

  8. Enhanced absorption properties of ordered mesoporous carbon/Co-doped ordered mesoporous carbon double-layer absorbers

    Institute of Scientific and Technical Information of China (English)

    Guo Shao-Li; Wang Liu-Ding; Wang Yi-Ming; Wu Hong-Jing; Shen Zhong-Yuan

    2013-01-01

    Ordered mesoporous carbon (OMC) and metal-doped (M-doped) OMC composites are prepared,and their electromagnetic (EM) parameters are measured.Using the measured EM parameters we calculate the EM wave absorption properties of a double-layer absorber,which is composed of OMC as an absorbing layer and M-doped OMC as the matching layer.The calculated results show that the EM wave absorption performance of OMC/OMC-Co (2.2 mm/2.1 mm) is improved remarkably.The obtained effective absorption bandwidth is up to 10.3 GHz and the minimum reflection loss reaches -47.6 dB at 14.3 GHz.The enhanced absorption property of OMC/OMC-Co can be attributed to the impedance match between the air and the absorber.Moreover,it can be found that for the absorber with a given matching layer,a larger value of △tanδε (=tan δε absorbing--tan δε matching) can induce better absorption performance,indicating that the difference in impedance between the absorbing layer and the matching layer plays an important role in improving the absorption property of double-layer absorbers.

  9. Hydrogen absorption-desorption properties of UZr sub 0 sub . sub 2 sub 9 alloy

    CERN Document Server

    Shuai Mao Bing; WangZhenHong; Zhang Yi Tao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr sub 0 sub . sub 2 sub 9 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ centre dot mol sup - sup 1 H sub 2 and 205.3 J centre dot(K centre dot mol H sub 2) sup - sup 1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr sub 0 sub . sub 2 sub 9 alloy may be a suitable material for tritium treatment and storage

  10. Conjugated polymers with pyrrole as the conjugated bridge: synthesis, characterization, and two-photon absorption properties.

    Science.gov (United States)

    Li, Qianqian; Zhong, Cheng; Huang, Jing; Huang, Zhenli; Pei, Zhiguo; Liu, Jun; Qin, Jingui; Li, Zhen

    2011-07-14

    The synthesis, one- and two-photon absorption (2PA) and emission properties of two novel pyrrole-based conjugated polymers (P1 and P2) are reported. They emitted strong yellow-green and orange fluorescence with fluorescent quantum yields (Φ) of 46 and 33%, respectively. Their maximal 2PA cross sections (δ) measured by the two-photon-induced fluorescence method using femtosecond laser pulses in THF were 2392 and 1938 GM per repeating unit, respectively, indicating that the 2PA chromophores consisting of the triphenylamine with nonplanar structure as the donor and electron-rich pyrrole as the conjugated bridge could be the effective repeating units to enhance the δ values.

  11. Waveguiding, absorption and emission properties of dye-impregnated oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Urrios, D. [Nanoscience Laboratory, Department of Physics, University of Trento (Italy); Dpto. de Fisica Basica, University of La Laguna, Tenerife (Spain); Ghulinyan, M.; Riboli, F.; Pavesi, L. [Nanoscience Laboratory, Department of Physics, University of Trento (Italy); Capuj, N.E.; Oton, C.J. [Dpto. de Fisica Basica, University of La Laguna, Tenerife (Spain); Martin, I.R. [Dpto. de Fisica Fund. y Exp. Electr. y Sist., University of La Laguna, Tenerife (Spain)

    2007-05-15

    The waveguiding, absorption and emission properties of oxidised porous silicon waveguides when impregnated with Nile Blue have been studied. We present m-line measurements before and after the impregnation showing that the effective indices of the modes remain the same. When performing guided luminescence experiments, a structured emission band is measured. Using the refractive index profile extracted from m-line measurements it has been possible to simulate the emission lineshape assuming the observation of an interference pattern formed across the waveguide. We demonstrate that these oscillations appear because in the first hundreds of nanometers the dye concentration is several orders of magnitude higher than in the rest of the sample. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  13. Morphology Control and Optical Absorption Properties of Ag Nanoparticles by Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    G.X. Cai; F. Ren; X.H. Xiao; L.X. Fan; X.D. Zhou; C.Z. Jiang

    2009-01-01

    Ion implantation is a powerful method for fabricating nanoparticles in dielectric. For the actual application of nanoparticle composites, a careful control of nanoparticles has to be achieved. In this letter, the size, distribution and morphology of Ag nanoparticles are controlled by controlling the ion current density, ion implantation sequence and ion irradiation dose. Single layer Ag nanoparticles are formed by Ag~+ ion implantation at current density of 2.5 μA/cm~2. By Ag and Cu ions sequential implantation, the size of single layer Ag nanoparticles increases. While, by Cu and Ag ions sequential implantation, uniform Ag nanoparticles with wide distribution are formed. The morphology of Ag nanoparticles changes to hollow and sandwiched nanoparticles by Cu~+ ion irradiation to doses of 3×10~(16) and 5×10~(16) ions/cm~2. The optical absorption properties of Ag nanoparticles are also tailored by these ways.

  14. Synthesis, Characterization and Microwave Absorption Properties of Polyaniline/Er-Doped Strontium Ferrite Nanocomposite.

    Science.gov (United States)

    Luo, Juhua; Wang, Eryong; Xu, Yang

    2016-06-01

    Er-doped strontium ferrite nanopowders (SrEr0.3Fe11.7O19) were prepared by the sol-gel method, and then their composites of PANI/SrEr0.3Fe11.7O19 with 10 wt% and 20 wt% ferrite were prepared by an in-situ polymerization process. The characterization of obtained samples was accomplished by XRD, FT-IR, TEM, VSM, and vector network analyzer techniques. A successful conjugation of ferrite nanoparticles with polyaniline could be indicated by XRD and FT-IR analysis. TEM confirmed the formation of polyaniline packed on strontium ferrite surface. Magnetization measurements showed the substituted Er3+ of Fe3+ on basis site enhanced the magnetic property notably and the content of polyaniline also influenced the magnetic property prominently. PANI/SrEr0.3Fe11.7O19 possessed the best absorption property with the optimum matching thickness of 3 mm in the frequency of 2-18 GHz. The value of the maximum RL was -42.0 dB at 12.0 GHz with the 5.5 GHz bandwidth.

  15. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Yong [Precision Machinery Research Institute of Shanghai Space Flight Academy, Shanghai 201600 (China); Jiang, Jian-tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-xun [Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak’s shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of −10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1–4 GHz band. - Highlights: • Large quantity of flakey FeSi particles were produced through a simple way. • Coatings with as-milled FeSi particles exhibit excellent EMA performance in L-S band. • Shape and size of particles can be controlled via adjusting the ball-milling time. • Shape/size along with the microstructure influence the electromagnetic properties. • Shape/size contribute more to the excellent EMA performance compared to microstructure.

  16. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    Science.gov (United States)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  17. UV absorption and fluorescence properties of gas-phase p-difluorobenzene

    Science.gov (United States)

    Benzler, Thorsten; Dreier, Thomas; Schulz, Christof

    2017-01-01

    1,4-Difluorobenzene ( p-DFB) is a promising aromatic tracer for determining concentration, temperature, and O2 partial pressure in mixing gas flows based on laser-induced fluorescence (LIF). Signal quantification requires the knowledge of absorption and fluorescence properties as a function of environmental conditions. We report absorption and fluorescence spectra as well as fluorescence lifetimes of p-DFB in the temperature, pressure, and oxygen partial pressure range that is relevant for many applications including internal combustion engines. The UV absorption cross section, investigated between 296 and 675 K, has a peak value close to 266 nm and decreases with temperature, while still exceeding other single-ring aromatics. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (296-1180 K), pressure (1-10 bar), and O2 partial pressure (0-210 mbar) using a streak camera (temporal resolution 50 ps) coupled to a spectrometer. The fluorescence spectra red-shift ( 2 nm/100 K) and broaden (increase in full width at half maximum by 58% in the investigated temperature range) with temperature. In N2 as bath gas (1 bar), the fluorescence lifetime τ eff decreases with temperature by a factor of about 20 (from 7 ns at 298 K down to 0.32 ns at 1180 K), while at 8 bar the shortest lifetime at 975 K is 0.4 ns. A noticeable pressure dependence (i.e., reduced τ eff) is only visible at 675 K and above. Quenching of p-DFB LIF by O2 (for partial pressures up to 210 mbar) shortens the fluorescence lifetime significantly at room temperature (by a factor of 8), but much less at higher temperatures (by a factor of 1.8 at 970 K). For fixed O2 partial pressures (52 mbar and above), τ eff shows a plateau region with temperature which shifts toward higher temperatures at the higher O2 partial pressures. O2 quenching is less prominent for p-DFB compared to other aromatic compounds investigated so far. The temperature

  18. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang, E-mail: xuyonggang221@163.com; Zhang, Deyuan

    2015-08-15

    Highlights: • The bio-absorbent coated Fe-CoNiP was fabricated by electroless and CVD. • The EM parameters were enlarged as Fe coated on the diatomite. • The coating CIPs play a key role in the enhancement mechanism. • The Fe-CoNiP diatomite had a better absorbing and shielding properties. - Abstract: A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2–18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL −11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  19. Influence of Water Absorption on Volume Resistivity and the Dielectric Properties of Neat Epoxy Material

    KAUST Repository

    Sulaimani, Anwar Ali

    2014-07-15

    Influence of Water Absorption on the Dielectric Properties and Volume Resistivity of Neat Epoxy Material Anwar Ali Sulaimani Epoxy resins are widely used materials in the industry as electrical insulators, adhesives and in aircrafts structural components because of their high mechanical sti ness, strength and high temperature and chemical resistance properties. But still, the in uence of water uptake due to moisture adsorption is not fully understood as it detrimentally modi es the electrical and chemical properties of the material. Here, we investigate the in uence of water moisture uptake on the neat epoxy material by monitoring the change in the volume resistivity and dielectric properties of epoxy material at three di erent thickness con gurations: 0.250 mm, 0.50 mm and 1 mm thicknesses. Gravimetric analysis was done to monitor the mass uptake behaviour, Volume Resistivity was measured to monitor the change in conductivity of the material, and the dielectric properties were mapped to characterise the type of water mechanism available within the material during two ageing processes of sorption and desorption. Two-stage behaviours of di usion and reaction have been identi ed by the mass uptake analysis. Moreover, the plot of volume resistivity versus mass uptake has indi- cated a non-uniform relationship between the two quantities. However, the analysis of the dielectric spectrum at medium range of frequency and time has showed a change 5 in the dipolar activities and also showed the extent to which the water molecules can be segregated between bounding to the resin or existing as free water.

  20. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  1. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    Science.gov (United States)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  2. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaosi, E-mail: sci.xsqi@gzu.edu.cn [Physics Department, Guizhou University, Guiyang 550025 (China); Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Hu, Qi; Xu, Jianle; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie [Physics Department, Guizhou University, Guiyang 550025 (China); Zhong, Wei, E-mail: wzhong@nju.edu.cn [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China)

    2016-09-15

    Graphical abstract: In the article, core/shell Fe{sub 3}O{sub 4}/C, Fe/helical carbon nanotubes were synthesized selectively. The results indicated that the optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possibly enhanced microwave absorption mechanisms were also discussed in detail. - Highlights: • An efficient scheme was designed to synthesize core/shell magnetic nanoparticles/carbon-based hybrids. • By controlling the temperature, different categories of core/shell nanohybrids were synthesized. • The obtained Fe/CNT hybrid exhibits enhanced microwave absorption property. • Enhanced microwave absorbing mechanism was discussed in detail. - Abstract: An efficient scheme was designed to selectively synthesize different categories of core/shell structured magnetic nanoparticles/carbon-based nanohybrids such as Fe{sub 3}O{sub 4}/C and Fe/helical carbon nanotubes (HCNTs) through the decomposition of acetylene directly over Fe{sub 2}O{sub 3} nanotubes by controlling the pyrolysis temperature. The measured electromagnetic parameters indicated that the Fe/HCNT nanohybrids exhibited enhanced microwave absorption properties, which may be related to their special structures. The optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL values below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possible enhanced EM absorption mechanisms were also discussed in detail. The results show excellent microwave absorption materials that are lightweight, have strong absorption and a wide absorption frequency band may be realized in these nanohybrids.

  3. A method for determination of the absorption and scattering properties interstitially in turbid media

    Science.gov (United States)

    Dimofte, Andreea; Finlay, Jarod C.; Zhu, Timothy C.

    2005-05-01

    We have developed a method to quickly determine tissue optical properties (absorption coefficient μa and transport scattering coefficient μ's) by measuring the ratio of light fluence rate to source power along a linear channel at a fixed distance (5 mm) from an isotropic point source. Diffuse light is collected by an isotropic detector whose position is determined by a computer-controlled step motor, with a positioning accuracy of better than 0.1 mm. The system automatically records and plots the light fluence rate per unit source power as a function of position. The result is fitted with a diffusion equation to determine μa and μ's. We use an integrating sphere to calibrate each source-detector pair, thus reducing uncertainty of individual calibrations. To test the ability of this algorithm to accurately recover the optical properties of the tissue, we made measurements in tissue simulating phantoms consisting of Liposyn at concentrations of 0.23, 0.53 and 1.14% (μ's = 1.7-9.1 cm-1) in the presence of Higgins black India ink at concentrations of 0.002, 0.012 and 0.023% (μa = 0.1-1 cm-1). For comparison, the optical properties of each phantom are determined independently using broad-beam illumination. We find that μa and μ's can be determined by this method with a standard (maximum) deviation of 8% (15%) and 18% (32%) for μa and μ's, respectively. The current method is effective for samples whose optical properties satisfy the requirement of the diffusion approximation. The error caused by the air cavity introduced by the catheter is small, except when μa is large (μa > 1 cm-1). We presented in vivo data measured in human prostate using this method.

  4. Synthesis and Absorption Properties of Calix[6]amides-based Polymers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Reacting calix[6]arene hexaesters with poly(ethyleneimine), a series of calix [6]amides- based polymers were obtained for the first time.It is found that they show high absorption capacities towards soft cations comparing to hard cations, and the absorption abilities enhanced with the increasing of calixarene content, which may indicates the cavity of calixarene plays crucial role in absorption.Polymer 2c shows good selective absorption capability towards Ag+ among the tested cations.

  5. Isothermal section at 773 K and microwave absorption properties of Pr-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shunkang, E-mail: skpan88@163.com [School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Xiong, Jilei [School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Yao, Qingrong [School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials and Engineering, Central South University, Changsha 410083 (China); Rao, Guanghui, E-mail: rgh@guet.edu.cn [School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Cheng, Lichun [School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials and Engineering, Central South University, Changsha 410083 (China); Zhou, Huaiying [School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-10-15

    The isothermal section at 773 K of the phase diagram of Pr-Fe-Ni system was investigated by X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive spectroscopy. The isothermal section consists of 11 single phase regions, 19 two-phase regions and 9 three-phase regions. The maximum solid solubilities of Fe in Ni, PrNi{sub 5}, Pr{sub 2}Ni{sub 7}, PrNi{sub 3}, PrNi{sub 2}, Pr{sub 7}Ni{sub 3} and Pr{sub 3}Ni are about 80.0, 18.2, 15.4, 11.8, 1.9, 1.7 and 4.4 at%, respectively. The maximum solid solubilities of Ni in Fe and Pr{sub 2}Fe{sub 17} are about 5.0 and 1.2 at%, respectively. The solid solubility of Fe in PrNi phase is negligible. The influence of Fe substitution on the microwave absorbing properties of the PrNi{sub 5} alloy was investigated. The frequency corresponding to the minimum absorption peak of Pr{sub 16.67}Ni{sub 83.33-x}Fe{sub x} (x = 0.0–17.5) shifts towards higher frequency region upon the Fe substitution. The Pr{sub 16.67}Ni{sub 68.33}Fe{sub 15.0} alloy exhibits the best microwave absorption properties. The minimum reflection loss of Pr{sub 16.67}Ni{sub 68.33}Fe{sub 15.0} powder is −35.10 dB at 9.76 GHz, and the frequency bandwidth of reflection loss smaller than −10 dB reaches about 1.60 GHz with the best matching thickness of 1.5 mm. - Highlights: • The phase equilibria of Pr-Fe-Ni system at 773 K were determined experimentally. • The isothermal section consists of 11 single phase regions, 19 two-phase regions and 9 three-phase regions. • The solid solubility of each binary compound was determined experimentally. • The microwave absorbing properties of the PrNi{sub 5}-based Pr-Ni-Fe alloys was investigated.

  6. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Rizzuto, Anthony M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  7. Research on various factors influencing the moisture absorption property of sodium polyacrylate

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChunXiao; ZHANG WanXi; PAN ZhenYuan; ZHANG XiYao; LIU Jian; YUE ChongWang

    2009-01-01

    Sodium polyacrylate was synthesized with acrylic acid as the monomer,and sodium bisulfate and ammonium persulfate as the initiator,by means of aqueous solution polymerization.The factors influencing the properties of moisture absorption,such as monomer concentration,dosage of initiator,and reaction temperature were systematically investigated.The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material,such as silica gel,and molecular sieve.The best reaction condition and formula are based on the orthogonal experiment design.The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g.The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis.The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency,followed by monomer concentration and reaction temperature,while other factors have less influence.

  8. Physical-mechanical, moisture absorption and bioadhesive properties of hydroxypropylcellulose hot-melt extruded films.

    Science.gov (United States)

    Repka, M A; McGinity, J W

    2000-07-01

    The objective of this study was to investigate the moisture absorption, physical-mechanical and bioadhesive properties of hot-melt extruded hydroxypropylcellulose (HPC) films containing polymer additives. These additives included polyethylene glycol (PEG) 5%, polycarbophil 5%, carbomer 5%, Eudragit E-100 5%, and sodium starch glycolate (SSG) 5%. Relative humidity (RH) and temperature parameters of the films studied included 25 degree C at 0, 50, 80 and 100% RH, and 40 degrees C at 0 and 100% RH, stored for 2 weeks. Tensile strength and percent elongation were determined on an Instron according to the ASTM standards. The bioadhesive properties of the HPC/PEG 3350 5% film and the polycarbophil 5% containing films, with and without PEG, were investigated in vivo on the human epidermis. Although all films studied exhibited an increase in percent water content as the percent RH increased, the SSG containing film exhibited an almost three-fold increase in percent water content compared to that of the HPC/PEG film. The temperature storage condition of 40 degrees C/100% RH (versus 25 degrees C/100% RH) increased the percent water content of the SSG containing film. Percent elongation was highest for films containing polycarbophil 5% (without PEG). In addition, the HPC film containing polycarbophil 5% exhibited a greater force of adhesion and elongation at adhesive failure in vivo, and a lower modulus of adhesion when compared to the HPC/PEG film. A novel approach to determine bioadhesion of films to the human epidermis is presented.

  9. A cost-effective process to prepare VO{sub 2} (M) powder and films with superior thermochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiudi; Zhang, Hua; Chai, Guanqi; Sun, Yaoming [Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang, Tao [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 (China); Cheng, Haoliang; Chen, Lihua; Miao, Lei [Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Xu, Gang, E-mail: xiudixiao@163.com [Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-03-01

    Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition

  10. Tailoring Microwave-Absorption Properties of Co x Ni y Alloy/RGO Nanocomposites with Tunable Atomic Ratios

    Science.gov (United States)

    Guo, Xiaoqin; Bai, Zhongyi; Zhao, Biao; Zhang, Rui; Chen, Jingbo

    2017-04-01

    Co x Ni y nanoparticles anchored on reduced graphene oxide (rGO) composites with different Co(0)/Ni(0) ratios were successfully prepared by a simple hydrothermal method. The morphology, structure, and magnetic and microwave electromagnetic properties of Co x Ni y /rGO composites were characterized by the x-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy, Raman spectroscopy and a vector network analyzer. The Co x Ni y /rGO composites exhibited enhanced microwave absorption properties, which are attributed to the effective complementarities between dielectric loss and magnetic loss. For the Co3Ni1/rGO composite, the minimum reflection loss (RLmin) is -44.89 dB at 12.22 GHz with absorber thickness of 2.5 mm, and the effective absorption bandwidth of the reflection loss (RL) absorption, wide band and low thickness.

  11. Impact of chemical treatments on the mechanical and water absorption properties of coconut fibre (Cocos nucifera reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Isiaka O. OLADELE

    2016-07-01

    Full Text Available In this work, chemically treated coconut fibres were used to reinforce Homopolymer Polypropylene in order to ascertain the effect of the treatments on the mechanical and water absorption properties of the composites produced. Coconut fibre was first extracted from its husk by soaking it in water and was dried before it was cut into 10 mm lengths. It was then chemically treated in alkali solution of sodium hydroxide (NaOH and potassium hydroxide (KOH in a shaker water bath. The treated coconut fibres were used as reinforcements in polypropylene matrix to produce composites of varied fibre weight contents; 2, 4, 6, 8 and 10 wt.%. Tensile and flexural properties were investigated using universal testing machine while water absorption test was carried out on the samples for 7 days. It was observed from the results that, NaOH treated samples gave the best tensile properties while KOH treated samples gave the best flexural and water repellent properties.

  12. Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder

    OpenAIRE

    2016-01-01

    International audience; A recent study investigated the mechanical, thermal and acoustical properties of a bio-based composite made from crushed particles of sunflower stalks binded together by chitosan, a bio-based binder. The acoustical performance in absorption was found to be poor as the material was highly compacted and with low porosity. The present study focuses on the acoustical properties of a higher porosity composite, with lower density while the mechanical rigidity remains fairly ...

  13. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    Science.gov (United States)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  14. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    Science.gov (United States)

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  15. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Massimiliano, E-mail: m.anselmi@caspur.it [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Marocchi, Simone [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Aschi, Massimiliano [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Via Vetoio (Coppito 1), 67100 Coppito, L' Aquila (Italy); Amadei, Andrea [Department of Chemistry, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2012-01-02

    Highlights: Black-Right-Pointing-Pointer The calculated absorption spectra were compared with experimental data. Black-Right-Pointing-Pointer Shapes and absorption maxima were reproduced for luciferin and oxyluciferin spectra. Black-Right-Pointing-Pointer The effect of the solvent largely changes the electronic transition probabilities. Black-Right-Pointing-Pointer Higher excitations provide an important contribution to the main absorption peak. - Abstract: Firefly luciferin and its oxidated form, oxyluciferin, are two heterocyclic compounds involved in the enzymatic reaction, catalyzed by redox proteins called luciferases, which provides the bioluminescence in a wide group of arthropods. Whereas the electronic absorption spectra of D-luciferin in water at different pHs are known since 1960s, only recently reliable experimental electronic spectra of oxyluciferin have become available. In addition oxyluciferin is involved in a triple chemical equilibria (deprotonation of the two hydroxyl groups and keto-enol tautomerism of the 4-hydroxythiazole ring), that obligates to select during an experiment a predominant species, tuning pH or solvent polarity besides introducing chemical modifications. In this study we report the absorption spectra of luciferin and oxyluciferin in each principal chemical form, calculated by means of perturbed matrix method (PMM), which allowed us to successfully introduce the effect of the solvent on the spectroscopic absorption properties, and compare the result with available experimental data.

  16. Absorption and luminescence properties of terbium ions in heavy metal glasses

    Energy Technology Data Exchange (ETDEWEB)

    Żur, Lidia, E-mail: lzur@us.edu.pl; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.

    2013-11-25

    Highlights: •Tb-doped heavy metal glasses were studied as a function of glass composition. •Excitation and luminescence spectra of Tb ions in heavy metal glasses were examined. •Luminescence intensity ratios (G/B) and measured lifetimes of Tb were determined. •Correlation between G/B factor, measured lifetimes and energy phonon was proposed. -- Abstract: Heavy metal glasses doped with Tb{sup 3+} ions have been investigated. Influence of glass-former oxides on the absorption and luminescence properties of terbium ions in inorganic glasses containing lead are discussed. Green emission line located at 543 nm due to {sup 5}D{sub 4} → {sup 7}F{sub 5} transition of Tb{sup 3+} was observed as a most intensive line. Green-to-blue luminescence ratio related to the integrated emission intensity of the {sup 5}D{sub 4} → {sup 7}F{sub 5} transition to that of the {sup 5}D{sub 4} → {sup 7}F{sub 6} transition was calculated and examined as a function of glass composition. Luminescence lifetimes for the {sup 5}D{sub 4} excited state of Tb{sup 3+} ions in heavy metal glasses were also determined. Correlation between green-to-blue luminescence ratios, measured lifetimes and the energy phonon of the glass hosts was proposed.

  17. Enhanced microwave absorption properties in cobalt-zinc ferrite based nanocomposites

    Science.gov (United States)

    Poorbafrani, A.; Kiani, E.

    2016-10-01

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were investigated. Cobalt-zinc ferrite powders, synthesized through PVA sol-gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt-zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than -10 dB in the whole C-band and 30% of the X-band frequencies.

  18. Infrared absorption and fluorescence properties of Ho-doped KPb2Br5

    Science.gov (United States)

    Brown, Ei E.; Hömmerich, Uwe; Hyater-Adams, Simone; Oyebola, Olusola; Bluiett, Althea; Trivedi, Sudhir

    2014-03-01

    Spectroscopic properties of the 2 μm infrared (IR) emission (5I7 --> 5I8) from trivalent holmium (Ho3+) doped potassium lead bromide (KPb2Br5) are presented. The investigated Ho3+ doped KPb2Br5 (KPB) material was synthesized through purification of starting materials including multi-pass zone-refinement, bromination, and subsequently grown using horizontal Bridgman technique. The bromination process was critical for removing oxidic impurities and enhancing the quality of the crystal. Judd-Ofelt intensity parameters, radiative rates, branching ratios, and emission lifetimes were calculated and compared with results reported for Ho3+ doped KPb2Cl5 (KPC). Under resonant pumping (~1.907 μm), Ho: KPB showed a broad IR emission centered at ~2 μm with an exponential decay time of 7.1 ms at room temperature. The nearly temperature independent emission lifetime is consistent with a negligibly small non-radiative decay rate for the 5I7 excited state of Ho3+, as predicted by the multiphonon energy gap law. The optical absorption, emission and gain cross-sections of Ho: KPB were determined for the 2 μm transition. The Ho: KPB crystal was also evaluated as a potential solid-state material for laser cooling applications.

  19. Optical absorption and fluorescence properties of Er3+/Yb3+ codoped lead bismuth alumina borate glasses

    Science.gov (United States)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2014-04-01

    Lead bismuth alumina borate glasses codoped with Er3+/Yb3+ were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω2, Ω4 and Ω6 parameters. Radiative properties like branching ratio βr and the radiative life time τR have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  20. Development of hybrid cotton/hydrogel yarns with improved absorption properties for biomedical applications.

    Science.gov (United States)

    Pollini, Mauro; Paladini, Federica; Sannino, Alessandro; Maffezzoli, Alfonso

    2016-06-01

    Hyperhidrosis, or excessive sweating, is an overlooked and potentially disabling symptom, which is often seen in social anxiety disorder. In this work an innovative advanced textile material was developed for application in the management of excessive sweating, preparing a drying yarn providing improved comfort. Hybrid cotton/hydrogel yarns were obtained by combining cotton with superabsorbent hydrogels through an optimization study focused on the achievement of the most promising product in terms of absorption properties and resistance to washings. Swelling and washing tests were performed using different hydrogels, and the effect of an additional crosslinking on the materials was also evaluated by testing different solutions containing Al(3+) and Ca(2+) ions. Scanning electron microscopy and infrared spectroscopy analyses were adopted to characterize morphology and chemical structure of the hydrogels undergoing different production processes. The biocompatibility of the hybrid fabrics was demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) through the extract method. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation and microwave absorption properties of Ag-doped BaTiO{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Meng; Zheng, Ji, E-mail: zheng_ji@tju.edu.cn; Liang, Lu; Jiang, Fei; Wang, Ying

    2014-11-15

    In this paper, a series of novel Ag doped BaTiO{sub 3} (Ba{sub 1−x}Ag{sub x}TiO{sub 3}) nanocomposites have been successfully synthesized via the sol-gel method. The XRD pattern indicates that the structure of the synthesized samples is exactly the same as the pure BaTiO{sub 3}, which belongs to the tetragonal system. Besides, the prepared materials were characterized by employing scanning electron microscope (SEM), of which the results show that the morphologies of the samples are closer to tetragonal with an average diameter below 100 nm. Moreover, for the sample with x equal to 0.8%, the maximum reflection loss of 26.8 dB is obtained at 14.8 GHz. Most importantly, for those samples with less than 1% Ag doped, the bandwidth with the loss above 10 dB are even wider than 2 GHz. - Highlights: • We synthesized Ba{sub 1−x}Ag{sub x}TiO{sub 3} nanocomposites using the sol–gel method. • The microwave absorption properties of Ba{sub 1−x}Ag{sub x}TiO{sub 3} samples were discussed. • The maximum reflection loss reaches 26.8 dB for the sample when x equals to 0.8%. • The bandwidth is wider than 2 GHz for samples with modicum Ag doping.

  2. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    Institute of Scientific and Technical Information of China (English)

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  3. Electronic structure and excited state properties of iron carbene photosensitizers - A combined X-ray absorption and quantum chemical investigation

    Science.gov (United States)

    Ericson, Fredric; Honarfar, Alireza; Prakash, Om; Tatsuno, Hideyuki; Fredin, Lisa A.; Handrup, Karsten; Chabera, Pavel; Gordivska, Olga; Kjær, Kasper S.; Liu, Yizhu; Schnadt, Joachim; Wärnmark, Kenneth; Sundström, Villy; Persson, Petter; Uhlig, Jens

    2017-09-01

    The electronic structure and excited state properties of a series of iron carbene photosensitizers are elucidated through a combination of X-ray absorption measurements and density functional theory calculations. The X-ray absorption spectra are discussed with regard to the unusual bonding environment in these carbene complexes, highlighting the difference between ferrous and ferric carbene complexes. The valence electronic structure of the core excited FeIII - 3d5 complex is predicted by calculating the properties of a CoIII - 3d6 carbene complex using the Z+1 approximation. Insight is gained into the potential of sigma-donating ligands as strategy to tune properties for light harvesting applications.

  4. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements

    Science.gov (United States)

    Krishnan A. Iyer; Gregory T. Schueneman; John M. Torkelson

    2015-01-01

    Cellulose nanocrystals (CNCs), a class of renewable bionanomaterials with excellent mechanical properties, have gained major interest as filler for polymers. However, challenges associated with effective CNC dispersion have hindered the production of composites with desired property enhancements. Here, composites of polypropylene (PP) and low density polyethylene (LDPE...

  5. Microwave absorption properties of NiCoFe2O4-graphite embedded poly(o-phenetidine nanocomposites

    Directory of Open Access Journals (Sweden)

    Anil Ohlan

    2011-09-01

    Full Text Available Poly(o-phenetidine nanocomposites (PNG with NiCoFe2O4 and exfoliated graphite have been synthesized via in-situ emulsion polymerization. Systematic investigations reveal that the NiCoFe2O4 nanoparticles (30-40 nm in the poly(o-phenetidine matrix have phenomenal effect in determining the electrical, magnetic, and the microwave absorption properties of the nanocomposites. Shielding effectiveness due to absorption (SEA value of 32 dB (>99.9% has been achieved for PNG composite for its use as broadband microwave absorbing material. The microwave absorption of these composites can be attributed to dielectric loss from graphite and poly(o-phenetidine matrix, and magnetic loss from NiCoFe2O4 nanoparticles.

  6. Pressure-induced changes in the structural and absorption properties of crystalline 5-nitramino-3,4-dinitropyrazole

    Indian Academy of Sciences (India)

    Dong Xiang; Qiong Wu; Zhichao Liu; Weihua Zhu; Heming Xiao

    2015-10-01

    Periodic density functional theory with dispersion correction (DFT-D) was used to study the structural, electronic, and absorption properties of crystalline 5-nitramino-3, 4-dinitropyrazole (NADNP) under hydrostatic compression of 0-140 GPa. The results indicate that the PBE-G06 is the best functional for studying NADNP. As the pressure increases, the lattice of parameters, band gap, density of states and absorption spectra change regularly except for 126 GPa, where NADNP begins to decompose and form a new bond. An analysis of the band gap and density of states indicates that NADNP becomes more and more sensitive under compression. The absorption spectra show that NADNP has relatively high optical activity with increasing pressure.

  7. Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate

    Science.gov (United States)

    Chen, Qian; Bie, Shaowei; Yuan, Wei; Xu, Yongshun; Xu, Haibing; Jiang, Jianjun

    2016-10-01

    The design, fabrication, and measurement of a metamaterial with broadband microwave absorption properties in the low frequency range are presented in this paper. The metamaterial has a layered structure with a thickness of 2.2 mm, and consists of a conventional printed circuit board (PCB) process fabricated cross array on the surface of a flake-shaped carbonyl iron (CI) powder-filled silicon rubber composite magnetic substrate backed by a metal plane. The measurement results indicate that the absorption bandwidth (defined as the frequency range with reflection coefficient below  -10 dB) of the proposed structure is 2.55 GHz-5.68 GHz. The power loss mechanism was outlined according to the current distribution on and off the resonance frequency. Moreover, the absorption performance of the proposed structure for incident angles ranging from 0° to 60° for both transverse electric (TE) wave and transverse magnetic (TM) waves were exhibited.

  8. Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212000 (China); Luo, Juhua, E-mail: luojuhua@163.com [School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Yao, Wei; Xu, Jianguang [School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Li, Tao [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212000 (China)

    2015-07-05

    Highlights: • A novel composite of R-GO/F-CIP/PANI was prepared. • The formation mechanism of R-GO/F-CIP/PANI composites was discussed. • R-GO/F-CIP/PANI composites possessed excellent microwave absorption properties. - Abstract: The composites of reduced graphene/flake carbonyl iron powders/polyaniline (R-GO/F-CIP/PANI) were synthesized via two-step method, a green chemical route which was based on the reductive nature of the iron ion in first step and followed by the in situ polymerization of PANI on the surface of R-GO/F-CIP. The structures and morphologies were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. The results revealed that the core–shell structure of the composites of R-GO/F-CIP/PANI was successfully prepared and the shape of F-CIP had a great influence on the magnetic properties of the composites. The composites possessed the excellent microwave absorption properties in 2–18 GHz and the best microwave absorption property was obtained in 11.8 GHz with the minimum reflection loss of −38.8 dB at the thickness of 2.0 mm.

  9. Modelling the light absorption properties of particulate matter forming organic particles suspended in sea water. Part 3. Practical applications

    Directory of Open Access Journals (Sweden)

    Roman Majchrowski

    2006-12-01

    Full Text Available This paper brings to a close our cycle of articles on modelling the light absorption properties of particulate organic matter (POM in the sea. In the first two parts of this cycle (Woźniaket al. 2005a,b we discussed these properties with reference to various model chemical classes and physical types of POM. We have put these results into practice in the present third part. As a result of the appropriate theoretical speculations, logically underpinned by empirical knowledge, we selected 25 morphological variants of marine organic detritus, to which we ascribed definite chemical compositions and physical types. On this basis and using known spectra of the mass-specific coefficients of light absorption by various naturally occurring organic substances (systematised in Parts 1 and 2, we determined the absorption properties of these 25 morphological groups of particles, that is, the spectra of the imaginary part of the refractive index n'p(λ (in the 200-700 nm range of the particulate matter. They can be applied, with the aid of Mie's or some other similar theory, to calculate the bulk optical properties (absorbing and scattering of such sets of particles in the sea.

  10. Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Yiqun Wu; Yang Wang

    2012-01-01

    Two novel anthracene derivatives containing 4-vinylpyridine (FPEA) and 2-vinylpyridine (TPEA) poly(methyl methacrylate) films are prepared on quartz glass substrates.Their nonlinear absorption properties are investigated by using a 120-fs,800-am Ti:sapphire femtosecond pulsed laser operating at a 1-kHz repetition rate.The unique nonlinear absorption properties of these new compounds are observed by utilizing a Z-scan system.These two-photon absorption (TPA) properties are proven by the two-photon fluorescence excited at 800 nm.The FPEA and TPEA films have nonlinear TPA coefficients of 0.164 and 0.148 cm/GW and the TPA cross sections of 3.345 × 10-48 and 3.081 × 10-48 cm4.s/photon,respectively.The influence of the chemical structures on the nonlinear TPA properties of the compounds is also discussed.The highly nonlinear TPA activities of the films implied that the new anthracene derivatives are suitable materials with promising applications in super-high-density three-dimensional data storage and nano- or microstructure fabrication.

  11. Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption capacity and emulsifying properties of mucuna bean (Mucuna pruriens) protein concentrate.

    Science.gov (United States)

    Lawal, O S; Adebowale, K O

    2004-04-01

    Mucuna protein concentrate was acylated with succinic and acetic anhydride. The effects of acylation on solubility, water absorption capacity, oil absorption capacity and emulsifying properties were investigated. The pH-dependent solubility profile of unmodified mucuna protein concentrate (U-mpc) showed a decrease in solubility with decrease in pH and resolubilisation at pH values acidic to isoelectric pH (pH 4). Apart from pH 2, both acetylated mucuna protein concentrates (A-mpc) and succinylated mucuna protein concentrate (S-mpc) had improved solubility over the unmodified derivative. Acylation increased the water absorption capacity (WAC) at all levels of ionic strength (0.1-1.0 M). WAC of the protein samples increased with increase in ionic strength up to 0.2 M after which a decline occurred with increase in ionic strength from 0.4-1.0 M. When protein solutions were prepared in salts of various ions, increase in WAC followed the Hofmeister series in the order: NaSCN oil absorption capacity while the lipophilic tendency reduced the following succinylation. Emulsifying capacity increased with increase in concentration up to 2, 4 and 5% w/v for U-mpc, A-mpc and S-mpc, respectively, after which an increase in concentration reduced the emulsifying capacity. Both acetylation and succinylation significantly (P < 0.05) improved the emulsifying capacity at pH 4-10. Initial increase in ionic strength up to 0.4 M for U-mpc and 0.4 M for A-mpc and S-mpc increased the emulsion capacity progressively. Further increase in ionic strength reduced emulsion capacity (EC). Contrary to the effect of various salts on WAC, increase in EC generally follows the series Na2SO4 < NaCl < NaBr < NaI < NaClO4 < NaSCN. At all levels of ionic strength studied, S-mpc had a better emulsifying activity (EA) than both A-mpc and U-mpc. EA and emulsifying stability (ES) were pH-dependent. Maximum EA and ES were recorded at pH 10. ES of protein derivatives were higher than those of U-mpc in the range

  12. Four-State Model for Three-Branch Molecule's Two-Photon Absorption Properties

    Institute of Scientific and Technical Information of China (English)

    SU Yan; WANG Pei-Ji; ZHAO Peng; RONG Zhen-Yu

    2006-01-01

    @@ We present a four-state model for calculating the two-photon absorption of multi-branched molecules by using the time-depended function method. The numerical results indicate that the two-photon absorption cross section has a strong enhancement for three-branch molecules compared to two-branch structures. The maximal two-photon-absorption cross section is 2.358 × 10-47 cm 4 s/photon. At the same time, the charge-transfer process for the charge-transfer states is visualized in order to explain mechanism about the maximal TPA cross section.

  13. Optical absorption properties of electron bubbles and experiments on monitoring individual electron bubbles in liquid helium

    Science.gov (United States)

    Guo, Wei

    When a free electron is injected into liquid helium, it forms a microscopic bubble essentially free of helium atoms, which is referred to as an electron bubble. It represents a fine example of a quantum-mechanical particle confined in a potential well. In this dissertation, we describe our studies on bubble properties, especially the optical absorption properties of ground state electron bubbles and experiments on imaging individual electron bubbles in liquid helium. We studied the effect of zero-point and thermal fluctuations on the shape of ground state electron bubbles in liquid helium. The results are used to determine the line shape for the 1S to 1P optical transition. The calculated line shape is in very good agreement with the experimental measurements of Grimes and Adams. For 1S to 2P transition, the obtained transition line width agrees well with the measured data of Zipfel over a range of pressure up to 15 bars. Fluctuations in the bubble shape also make other "unallowed" transitions possible. The transition cross-sections from the 1S state to the 1D and 2D states are calculated with magnitude approximately two orders smaller than that of the 1S to 1P and 2P transitions. In our electron bubble imaging experiments, a planar ultrasonic transducer was used to generate strong sound wave pulse in liquid helium. The sound pulse passed through the liquid so as to produce a transient negative pressure over a large volume (˜ 1 cm3). An electron bubble that was passed by the sound pulse exploded for a fraction of a microsecond and grew to have a radius of around 10 microns. While the bubble had this large size it was illuminated with a flash lamp and its position was recorded. In this way, we can determine its position. Through the application of a series of sound pulses, we can then take images along the track of individual electrons. The motion of individual electron bubbles has been successfully monitored. Interesting bubble tracks that may relate to electrons

  14. Physicochemical Properties of Solid Phospholipid Particles as a Drug Delivery Platform for Improving Oral Absorption of Poorly Soluble Drugs.

    Science.gov (United States)

    Kawakami, Kohsaku; Miyazaki, Aoi; Fukushima, Mayuko; Sato, Keiko; Yamamura, Yuko; Mohri, Kohta; Sakuma, Shinji

    2017-01-01

    A novel drug delivery platform, mesoporous phospholipid particle (MPP), is introduced. Its physicochemical properties and ability as a carrier for enhancing oral absorption of poorly soluble drugs are discussed. MPP was prepared through freeze-drying a cyclohexane/t-butyl alcohol solution of phosphatidylcholine. Its basic properties were revealed using scanning electron microscopy, x-ray diffraction, thermal analysis, hygroscopicity measurement, and so on. Fenofibrate was loaded to MPP as a poorly soluble model drug, and effect of MPP on the oral absorption behavior was observed. MPP is spherical in shape with a diameter typically in the range of 10-15 μm and a wide surface area that exceeds 10 m(2)/g. It has a bilayer structure that may accommodate hydrophobic drugs in the acyl chain region. When fenofibrate was loaded in MPP as a model drug, it existed partially in a crystalline state and improvement in the dissolution behavior was achieved in the presence of a surfactant, because of the formation of mixed micelles composed of phospholipids and surfactants in the dissolution media. MPP greatly improved the oral absorption of fenofibrate compared to that of the crystalline drug and its efficacy was almost equivalent to that of an amorphous drug dispersion. MPP is a promising option for improving the oral absorption of poorly soluble drugs based on the novel mechanism of dissolution improvement.

  15. Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies

    CERN Document Server

    Chen, Yan-Mei; Heckman, Timothy M; Kauffmann, Guinevere; Weiner, Benjamin J; Brinchmann, Jarle; Wang, Jing

    2010-01-01

    We analyze star forming galaxies drawn from SDSS DR7 to show how the interstellar medium (ISM) Na I 5890, 5896 (Na D) absorption lines depend on galaxy physical properties, and to look for evidence of galactic winds. We combine the spectra of galaxies with similar geometry/physical parameters to create composite spectra with signal-to-noise ~300. The stellar continuum is modeled using stellar population synthesis models, and the continuum-normalized spectrum is fit with two Na I absorption components. We find that: (1) ISM Na D absorption lines with equivalent widths EW > 0.8A are only prevalent in disk galaxies with specific properties -- large extinction (Av), high star formation rates (SFR), high star formation rate per unit area ($\\Sigma_{\\rm SFR}$), or high stellar mass (M*). (2) the ISM Na D absorption lines can be separated into two components: a quiescent disk-like component at the galaxy systemic velocity and an outflow component; (3) the disk-like component is much stronger in the edge-on systems, a...

  16. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    National Research Council Canada - National Science Library

    GONZALEZ, Marcelo; SAFIUDDIN, Md; CAO, Jingwen; TIGHE, Susan

    2016-01-01

    ... for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement...

  17. Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties

    Science.gov (United States)

    Qi, Xiaobao; Poernomo, Gunawan; Wang, Kean; Chen, Yuan; Chan-Park, Mary B.; Xu, Rong; Chang, Matthew Wook

    2011-04-01

    Despite unique and useful properties of multi-walled carbon nanotubes (MWNTs) such as high strength and a low synthesis cost, their weak antimicrobial property hampers their use as an antimicrobial material. Herein, we demonstrate that the immobilization of nisin, a natural and inexpensive antimicrobial peptide, with poly(ethylene glycol) (PEG1000) as a linker significantly enhanced the antimicrobial and anti-biofilm properties of MWNTs. The MWNT-nisin composite showed up to 7-fold higher antimicrobial property than pristine MWNTs against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. Moreover, the MWNT-nisin composite had a dramatically improved capability to prevent biofilm formation both on a deposited film and in suspension. In particular, the MWNT-nisin deposit film exhibited a 100-fold higher anti-biofilm property than the MWNT deposit film. Further, it has been shown that PEG and nisin are covalently attached to MWNTs with excellent stability against leaching. We envision that our novel MWNT-nisin composite can serve as an effective and economical antimicrobial material.

  18. Microwave Absorption Properties of Ni-Foped SiC Powders in the 2-18 GHz Frequency Range

    Science.gov (United States)

    Jin, Hai-Bo; Li, Dan; Cao, Mao-Sheng; Dou, Yan-Kun; Chen, Tao; Wen, Bo; Simeon, Agathopoulos

    2011-03-01

    Ni-doped SiC powder with improved dielectric and microwave absorption properties was prepared by self-propagating high-temperature synthesis (SHS). The XRD analysis of the as-synthesized powders suggests that Ni is accommodated in the sites of Si in the lattice of SiC, which shrinks in the presence of Ni. The experimental results show an improvement in the dielectric properties of the Ni-doped SiC powder in the frequency range of 2-18 GHz. The bandwidth of the reflection loss below -10 dB is broadened from 3.04 (for pure SiC) to 4.56 GHz (for Ni-doped SiC), as well as the maximum reflection loss of produced powders from 13.34 to 22.57 dB, indicating that Ni-doped SiC could be used as an effective microwave absorption material.

  19. Microwave Absorption Properties of Ni-Foped SiC Powders in the 2-18 GHz Frequency Range

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-Bo; LI Dan; CAO Mao-Sheng; DOU Yan-Kun; CHEN Tao; WEN Bo; Simeon Agathopoulos

    2011-01-01

    Ni-doped SiC powder with improved dielectric and microwave absorption properties was prepared by selfpropagating high-temperature synthesis(SHS). The XRD analysis of the asynthesized powders suggests that Ni is accommodated in the sites of Si in the lattice of SiC, which shrinks in the presence of Ni. The experimental results show an improvement in the dielectric properties of the Ni-doped SiC powder in the frequency range of 2-18 GHz. The bandwidth of the reflection loss below-10 dB is broadened from 3.04(for pure SiC) to 4.56 GHz (for Ni-doped SiC), as well as the maximum reflection loss of produced powders from 13.34 to 22.57dB, indicating that Ni-doped SiC could be used as an effective microwave absorption material.

  20. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Ahmad, E-mail: ahmadrahimpour@yahoo.com [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Jahanshahi, Mohsen [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Mansourpanah, Yaghoub [Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad (Iran, Islamic Republic of); Mortazavian, Narmin [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2009-08-30

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  1. Carbon dioxide absorption and release properties of pyrolysis products of dolomite calcined in vacuum atmosphere.

    Science.gov (United States)

    Wang, Fei; Kuzuya, Toshihiro; Hirai, Shinji; Li, Jihua; Li, Te

    2014-01-01

    The decomposition of dolomite into CaO and MgO was performed at 1073 K in vacuum and at 1273 K in an Ar atmosphere. The dolomite calcined in vacuum was found to have a higher specific surface area and a higher micropore volume when compared to the dolomite calcined in the Ar atmosphere. These pyrolysis products of dolomite were reacted with CO2 at 673 K for 21.6 ks. On the absorption of CO2, the formation of CaCO3 was observed. The degree of absorption of the dolomite calcined in vacuum was determined to be above 50%, which was higher than the degree of absorption of the dolomite calcined in the Ar atmosphere. The CO2 absorption and release procedures were repeated three times for the dolomite calcined in vacuum. The specific surface area and micropore volume of calcined dolomite decreased with successive repetitions of the CO2 absorption and release cycles leading to a decrease in the degree of absorption of CO2.

  2. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays

    OpenAIRE

    Spurgeon, Joshua M.; Walter, Michael G.; Zhou, Junfeng; Kohl, Paul A.; Lewis, Nathan S.

    2011-01-01

    The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were...

  3. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics

    Institute of Scientific and Technical Information of China (English)

    Xuan Hao; Xiaowei Yin; Litong Zhang; Laifei Cheng

    2013-01-01

    Pyrolytic carbon (PyC) was infiltrated into silicon nitride (Si3N4) ceramics by precursor infiltration and pyrolysis (PIP) of phenolic resin,and Ni nanoparticles were added into the phenolic resin to change the electric conductivity of Si3N4-PyC composite ceramics.Dielectric permittivity,electromagnetic interference (EMI)shielding and absorption properties of Si3N4-PγC composite ceramics were studied as a function of Ni content at 8.2-12.4 GHz (X-band).When Ni nanoparticles were added into phenolic resin,the electric conductivity of the prepared composite ceramics decreased with increasing Ni content,which was attributed to the decrease of graphitization degree of PyC.The decrease in electric conductivity led to the decrease in both permittivity and EMI shielding effectiveness.Since too high permittivity is harmful to the impendence match and results in the strong reflection,the electromagnetic wave absorption property of Si3N4-PyC composite ceramics increases with increasing Ni content.When the content of Ni nanoparticles added into phenolic resin was 2 wt%,the composite ceramics possessed the lowest electric conductivity and displayed the most excellent absorption property with a minimum reflection loss as low as-28.9 dB.

  4. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  5. Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rui; Liao, SongYi [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Dai, ChangLu [Guangdong Bode Fine Building Material Co. Ltd., Foshan 528000 (China); Liu, YuChen; Chen, XiaoYu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Zheng, Feng, E-mail: fzheng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Phase diagrams and materials design center, Central South University, Changsha 410083 (China)

    2015-03-15

    A novel glass–ceramic tile consisting of one glass–ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73–99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass–ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn{sup 2+}{sub 0.17}Fe{sup 3+}{sub 0.83})[Fe{sup 3+}{sub 1.17}Fe{sup 2+}{sub 0.06}Ni{sup 2+}{sub 0.77}]O{sub 4} were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass–ceramic layer at frequency of 2–18 GHz reached peak reflection loss (RL) of −17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass–ceramic layer can meet the requirements of different level of microwave absorption. - Highlights: • Iron ore tailings (IOTs) have been used as one of the main raw materials. • Glass–ceramic tile contains spinel ferrite has been prepared. • The cation distribution of the spinel ferrite has been calculated. • The intrinsic complex permeability and permittivity have been evaluated.

  6. Absorption properties of high-latitude Norwegian coastal water: The impact of CDOM and particulate matter

    Science.gov (United States)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Stamnes, Jakob J.

    2016-09-01

    We present data from measurements and analyses of the spectral absorption due to colored dissolved organic matter (CDOM), total suspended matter (TSM), phytoplankton, and non-algal particles (NAP) in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn. The Chlorophyll-a (Chl-a) concentration was found to vary significantly with season, whereas regardless of season CDOM was found to be the dominant absorber for wavelengths shorter than 600 nm. The absorption spectral slope S350-500 for CDOM varied between 0.011 and 0.022 nm-1 with mean value and standard deviation given by (0.015 ± 0.002) nm-1. The absorption spectral slope was found to be strongly dependent on the wavelength interval used for fitting. On average, S280-500 was found to be 43% higher than S350-500. A linear relationship was found between the base 10 logarithm of the absorption coefficient at 440 nm [log(ag(440))] and S350-500. Regardless of season, phytoplankton were the dominant component of the TSM absorption indicating little influence from land drainage. The mean values of the Chl-a specific absorption coefficient of phytoplankton aph*(λ) at 440 nm and 676 nm were 0.052 m2 mg-1 and 0.023 m2 mg-1, respectively, and aph*(λ) was found to vary with season, being higher in summer and autumn than in spring. The absorption spectral slope SNAP, which is the spectral slope of absorption spectrum for non-algal particles, was lower than that for European coastal water in general. It varied between 0.0048 and 0.022 nm-1 with mean value and standard deviation given by (0.0083-1 ± 0.003) nm-1. Comparisons of absorption coefficients measured in situ using an ac-9 instrument with those measured in the laboratory from water samples show a good agreement.

  7. Growth of NiCo2O4@MnMoO4 Nanocolumn Arrays with Superior Pseudocapacitor Properties.

    Science.gov (United States)

    Cui, Chunyu; Xu, Jiantie; Wang, Lei; Guo, Di; Mao, Minglei; Ma, Jianmin; Wang, Taihong

    2016-04-06

    Three-dimensional heterostructured NiCo2O4@MnMoO4 nanocolumn arrays (NCAs) on Ni foam were first fabricated through an improved two-step hydrothermal process associated with a successive annealing treatment. The hybrid NiCo2O4@MnMoO4 electrode exhibited remarkable pseudocapacitor property with high initial mass specific capacitance of 1705.3 F g(-1) at 5 mA cm(-2), and retained 92.6% after 5000 cycles, compared to the bare NiCo2O4 electrode with 839.1 F g(-1) and 90.9%. The excellent capacitive property of the NiCo2O4@MnMoO4 hydrid was attributed to its high-electron/ion-transfer rate, large electrolyte infiltrate area, and more electroactive reaction sites.

  8. Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators

    Institute of Scientific and Technical Information of China (English)

    Dr.Richard Larker

    2009-01-01

    Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts. In the production of hydraulic rotators, dimensional tolerances are typically 20 μm to obtain designated performance.For castings where intermediate strength and ductility is required, it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations. These are mainly caused by the notoriously varying pearlite content, both at different locations within a part and between parts in the same or different batches. Cooling rate variations due to different wall thickness and position in the molding box, as well as varying amounts of pearlite-stabilizing elements, all contribute to detrimental hardness variations.The obvious remedy is to avoid pearlite formation, and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt% -3.8wt%. The Swedish development in this field 1998 resulted in a national standardization as SS 140725, followed in 2004 by ISO 1083/ JS/500-10.Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts. Improvements include reduction by 75% in hardness variations and increase by 30% in cutting tool life, combined with consistently better mechanical properties.

  9. Occurrence and Global Properties of Narrow CIV lambda 1549 Absorption Lines in Moderate-Redshift Quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2003-01-01

    A statistical study is presented of (a) the frequency of narrow CIV lambda 1549 absorption lines in 1.5 ~50%) of narrow CIV absorbers is detected for the radio-quiet and radio-loud quasars, and a constant ~25% of all the quasars, irrespective of radio type display associated CIV absorbers stronger...... than a rest equivalent width of 0.5A. Both radio-quiet and radio-loud quasars with narrow absorption lines have systematically redder continua, especially strongly absorbed objects. There is evidence of inclination dependent dust reddening and absorption for the radio quasars. An additional key result...... is that the most strongly absorbed radio quasars have the largest radio source extent. This result is in stark contrast to a recent study of the low-frequency selected Molonglo survey in which a connection between the strength of the narrow absorbers and the (young) age of the radio source has been proposed...

  10. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Gama, Adriana M., E-mail: adrianaamg@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Rezende, Mirabel C., E-mail: mirabelmcr@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Dantas, Christine C., E-mail: christineccd@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2011-11-15

    We report the analysis of measurements of the complex magnetic permeability ({mu}{sub r}) and dielectric permittivity ({epsilon}{sub r}) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM. - Highlights: > Permeability and permittivity spectra of a MnZn ferrite RAM (2-18 GHz) are given. > Higher MnZn volume fraction favors increase of RAM/'s permeability and permittivity. > Minimum RL as a function of frequency, thickness and MnZn volume fraction given. > Higher thicknesses imply better absorption; optimum band shifts to lower frequencies. > For higher volume fractions, smaller thickness might offer better absorption (>10 GHz).

  11. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells.

    Science.gov (United States)

    Liu, Jiwei; Cheng, Jin; Che, Renchao; Xu, Junjie; Liu, Mengmei; Liu, Zhengwang

    2013-04-10

    Yolk-shell microspheres with magnetic Fe3O4 cores and hierarchical copper silicate shells have been successfully synthesized by combining the versatile sol-gel process and hydrothermal reaction. Various yolk-shell microspheres with different core size and shell thickness can be readily synthesized by varying the experimental conditions. Compared to pure Fe3O4, the as-synthesized yolk-shell microspheres exhibit significantly enhanced microwave absorption properties in terms of both the maximum reflection loss value and the absorption bandwidth. The maximum reflection loss value of these yolk-shell microspheres can reach -23.5 dB at 7 GHz with a thickness of 2 mm, and the absorption bandwidths with reflection loss lower than -10 dB are up to 10.4 GHz. Owing to the large specific surface area, high porosity, and synergistic effect of both the magnetic Fe3O4 cores and hierarchical copper silicate shells, these unique yolk-shell microspheres may have the potential as high-efficient absorbers for microwave absorption applications.

  12. Three-Photon Absorption and Upconversion Fluorescence Properties of Series 1,3,4-Oxadiazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; LU Chang-Gui; QIAN Ying; LIU Chang; WANG Zhu-Yuan; CUI Yi-Ping

    2008-01-01

    @@ A newly synthesized 1,3,4-oxadiazole derivatives have been studied using a femtosecond Ti:sapphire laser system.The series molecules present strong three-photon absorption and frequency upconversion fluorescence at wavelengths from 1205nm to 1575nm.Furthermore,there is no proportional relationship between three-photon absorption cross sections and the chemical structure transformation from monomer,dimer to trimer.Effective charge-transfer distance by π-conjugation bonds may be the contributing factor.In the experimental design,the far-field intensity distribution of femtosecond laeer beam has been taken into account.

  13. Anisotropy of optical absorption and luminescent properties of CaMoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Ya., E-mail: zakharko@electronics.wups.lviv.u [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., 79017 Lviv (Ukraine); Luchechko, A. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., 79017 Lviv (Ukraine); Syvorotka, I.; Stryganyuk, G.; Solskii, I. [Institute for Materials, SRC ' Carat' , 202 Stryjska St., 79031 Lviv (Ukraine)

    2010-03-15

    Optical absorption, excitation and emission spectra, as well as photoluminescence decay time of CaMoO{sub 4} single crystals have been measured. It has been revealed that annealing of crystals in oxygen atmosphere leads to the disappearance of their anisotropic behavior in optical absorption, as well as in X-ray luminescence and decay time. Moreover, it has been found that annealing can significantly affect the value of the decay time. The relative intensity of the long-wavelength emission band increases under excitation in the region of indirect band-to-band transitions.

  14. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  15. Light absorption properties of CDOM in the Changjiang (Yangtze) estuarine and coastal waters: An alternative approach for DOC estimation

    Science.gov (United States)

    Yu, Xiaolong; Shen, Fang; Liu, Yangyang

    2016-11-01

    Field measurements of CDOM absorption properties and DOC concentrations were collected in the Changjiang estuarine and coastal waters from 2011 to 2013. CDOM absorption coefficient at 355 nm (ag (355)) was found to be inversely correlated with salinity, with Pearson's coefficients r of -0.901 and -0.826 for summer and winter observations, respectively. Analysis results of the relationships between salinity and CDOM optical properties (i.e., absorption coefficient and spectral slope) suggested that terrigenous inputs dominated CDOM sources in the Changjiang estuary, but the proportion of terrigenous CDOM declined with increasing salinity. The level of CDOM in the Changjiang estuary was lower compared to some of the major estuaries in the world, which could be attributed to several controlling factors such as vegetation cover in the drainage basin, the origin of recharged streams and high sediment load in the Changjiang estuary. We further evaluated the relationships between CDOM and DOC and their mixing behavior among world's major estuaries. An empirical model was finally developed to estimate DOC concentration from ag (355) and spectral slope S275-295 using a non-linear regression. This empirical relationship was calibrated using the Cal dataset, and was validated with the Val dataset, resulting in an acceptable error with the R2 of 0.746, the RMSE of 20.99 μmol/L and the rMAD of 14.46%.

  16. Theoretical investigation of one-photon and two-photon absorption properties for multiply N-confused porphyrins.

    Science.gov (United States)

    Yang, Zhao-Di; Feng, Ji-Kang; Ren, Ai-Min; Sun, Chia-Chung

    2006-12-28

    We have theoretically investigated a series of multiply N-confused porphyrins and their Zn or Cu complexes for the first time by using DFT(B3LYP/6-31G*) and ZINDO/SOS methods. The electronic structure, one-photon absorption (OPA), and two-photon absorption (TPA) properties have been studied in detail. The calculated results indicate that the OPA spectra of multiply N-confused porphyrins are red-shifted and the OPA intensities decrease compared to normal porphyrin. The maximum two photon absorption wavelengths lambda(max) are blue-shifted and the TPA cross sections delta(max) are increased 22.7-112.1 GM when the N atoms one by one are inverted from core to beta position to form multiply N-confused porphyrins. Especially delta(max) of N3CP get to 164.7 GM. The electron donors -C6F5s at meso-position can make the TPA cross section delta(max) increase. After forming metal complexes with Cu or Zn, the TPA properties of multiply N-confused porphyrins are further increased except for N3CP, N4CP. Our theoretical findings demonstrate that the multiply N-confused prophyrins as well as their metal complexes and derivatives are promising molecules that can be assembled series of materials with large TPA cross section, and are sure to be the subject of further investigation.

  17. Microwave absorption properties of polyaniline-Fe3O4/ZnO-polyester nanocomposite: Preparation and optimization

    Science.gov (United States)

    Dorraji, M. S. Seyed; Rasoulifard, M. H.; Khodabandeloo, M. H.; Rastgouy-Houjaghan, M.; Zarajabad, H. Karimi

    2016-03-01

    New nanocomposites have been successfully prepared based on polyester resin, including various metal oxides (ZnO nanorod bundles, Fe3O4 nanoparticles, and nano Fe3O4/ZnO) and Polyaniline (PANI) synthesized with different dopants. The microwave absorption properties of nanocomposites were investigated in X-band range. The Taguchi experimental design was used to study the effects of the type of metal oxide and that of PANI (doped with various acids) and the weight percent of metal oxide in PANI and that of filler (metal oxide and PANI) in polyester matrix on the microwave absorption properties with the absorber thickness of only 2 mm. The weight percent of metal oxide in PANI was found to be the most significant parameter, accounting for 45.611% of the total contribution of the four selected parameters. Fe3O4/ZnO as inorganic oxide, PTSA as dopant of PANI, 25 wt.% for inorganic oxide in PANI, and filler in the polyester matrix were selected as optimum conditions by Taguchi method. The sample prepared in optimal conditions had reflection loss of less than -10 dB (absorption >90%) and covering a frequency range of 8.4-11.6 GHz.

  18. Third-order nonlinear optical properties of spin-coating films containing benzo[α]phenoxazinium: from reverse saturated to saturated absorptions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei [College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren' Ai Road, Suzhou 215123 (China); Fang, Yu [School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006 (China); Sun, Ru; Guo, Xiao-Zhi [College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren' Ai Road, Suzhou 215123 (China); Song, Ying-Lin [School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006 (China); Ge, Jian-Feng, E-mail: ge_jianfeng@hotmail.com [College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren' Ai Road, Suzhou 215123 (China); Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China)

    2015-08-31

    The optical films based on poly(4-vinylphenol) and benzo[α]phenoxazinium dye with a long alkyl chain were obtained by spin-coating, and their optical properties are reported in this paper. UV–vis absorptions of the optical films showed that the absorption maxima were shifted about 40 nm by the influence of dye aggregation with increasing dye ratio. The third-order nonlinear optical properties of films were tested by Z-scan technique with a picosecond laser beam at 532 nm. The third-order nonlinear optical susceptibilities and second hyperpolarizabilities were up to 10{sup −10} and 10{sup −32} esu respectively. Meanwhile, the third-order nonlinear absorptions transformed from reverse saturated absorptions to saturated absorptions with increasing ratios of dye in doped films. The result of aggregation induced adjustable third-order nonlinear absorption can be confirmed from their TEM images. - Highlights: • Benzo[α]phenoxazinium containing optical films with poly(4-vinylphenol). • Optical property was influenced by dye aggregation. • The third-order nonlinear absorptions transformed from reverse saturated absorptions to saturated absorptions with increasing ratios of dye.

  19. Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations

    National Research Council Canada - National Science Library

    M. Mallet; O. Dubovik; P. Nabat; F. Dulac; R. Kahn; J. Sciare; D. Paronis; J. F. Léon

    2013-01-01

    .... The AAOD and Absorption Angström Exponent (AAE) dataset is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust...

  20. Characterizing the absorption properties for remote sensing of three small optically-diverse South African reservoirs

    CSIR Research Space (South Africa)

    Matthews, MW

    2013-09-01

    Full Text Available at 442 nm, a* (442), ranges from 0.024 to 0.263 m2·g-1. The value of the TChl-specific phytoplankton absorption coefficient (a* ) was strongly influenced by phytoplankton species, size, accessory pigmentation and biomass. a(sup*) (440) ranged from 0...

  1. Effect of filler water absorption on water swelling properties of natural rubber

    Science.gov (United States)

    Trakuldee, J.; Boonkerd, K.

    2017-07-01

    The efficient water swelling rubber can be obtained by using high hydrophilic rubber such as chloroprene rubber. However, chloroprene rubber is synthetic rubber developed from the petroleum. Recently, many researches try to replace the usage of synthetic rubber with natural rubber. This is not only due to the concerning of environment but the cost reduction as well. However, natural rubber is hydrophobic, thus not absorbing water. To develop the water swelling rubber from natural rubber, the addition of water absorption filler is needed. The study was aimed to formulate water swelling rubber from natural rubber filled with sodium polyacrylate (SA)/sodium bentonite clay (SBC) hybrid filler used to water absorbent. The filler loading was kept constantly at 150 phr. The effect of SA/SBC ratio varied from 1:0, 1:1, 1:2 and 1:3 on the water absorption of the hybrid filled natural rubber was determined. The obtained result showed that the water adsorption proportionally increased with increasing SA loading but decreased with increasing SBC loading. The effect of glycidyl methacrylate (GM) and poly ethylene glycol (PEG) on the water absorption was studied later. The result from a scanning electron microscope depicted that the presence of GM can depress the falling out of SA from the rubber matrix while the presence of PEG increased water absorption.

  2. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    Science.gov (United States)

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  3. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    Science.gov (United States)

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-01

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  4. Geotechnical properties of La Arganosa Formation (Upper Cretaceous, Oviedo); Propiedades geotecnicas de la Formacion La Arganosa (Cretacico Superior, Oviedo)

    Energy Technology Data Exchange (ETDEWEB)

    Pando, L.; Gutierrez Claverol, M.; Flor-Blanco, G.

    2011-07-01

    It is performed the first geotechnical synthesis for La Arganosa Formation, the Cretaceous lithostratigraphic unit with very low geomechanical quality under the urban core of Oviedo; it also configures a major regional aquifer. In this study, geotechnical parameters of identification and condition, as well as physical and hydraulic ones, are compiled, statistically treated and interpreted. They were obtained from about 400 laboratory tests and more than 250 field tests around the city. The unit, of detrital origin, is bounded at the bottom and top by limestone lithologies, and is made up of soils and very soft rocks in alternating granular and cohesive layers. It discusses the main properties that define its geotechnical behavior: particle size distribution, plasticity, strength, compactness, consistency, compressibility, expansivity, collapsibility, permeability, and chemical aggressiveness of the materials and water. Furthermore, same numerical values are provided for reference forward guidance for future research to develop on this formation. (Author) 31 refs.

  5. A simple and low-cost combustion method to prepare monoclinic VO2 with superior thermochromic properties

    Science.gov (United States)

    Cao, Ziyi; Xiao, Xiudi; Lu, Xuanming; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2016-12-01

    In this approach, the VO2 nanoparticles have been successfully fabricated via combusting the low-cost precursor solution consisted of NH4VO3, C2H6O2 and C2H5OH. By the XRD, TEM and XPS analysis, it can be found that the synthetic monoclinic VO2 is single crystal and no impurity is defined. After dispersing the VO2 nanoparticles into the polymer, the solar modulation of VO2-based composite film is up to 12.5% with luminous transmission and haze around 62.2% and 0.5%, respectively. In other words, the composite films show high performance of thermochromic properties. This could open an efficient way to fabricate low-cost and large-scale VO2 (M) nanoparticles and thermochromic films.

  6. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    Science.gov (United States)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  7. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Weichun, E-mail: yewch@lzu.edu.cn [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Fu, Jiajia; Wang, Qin; Wang, Chunming [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Xue, Desheng, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2015-12-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni{sup 2+}, Co{sup 2+} and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2–18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to −17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications. - Highlights: • NiCoP alloys supported on graphene were prepared via a co-reduction method. • The nanocomposites exhibited strong microwave wave absorption properties. • The microwave absorption properties enhanced with the increase of Ni content. • The nanocomposites showed good anti-corrosion property.

  8. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Directory of Open Access Journals (Sweden)

    Zhenjun Xia

    2016-05-01

    Full Text Available Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  9. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Science.gov (United States)

    Xia, Zhenjun; He, Jun; Ou, Xiulong; Wang, Yu; He, Shuli; Zhao, Dongliang; Yu, Guanghua

    2016-05-01

    Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  10. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption

    Science.gov (United States)

    Huang, Lina; Liu, Xiaofang; Chuai, Dan; Chen, Yaxin; Yu, Ronghai

    2016-01-01

    Flaky FeSiAl alloy/multi-wall carbon nanotube (FeSiAl/MWCNT) composite was fabricated by facile and scalable ball milling method. The morphology and electromagnetic properties of the FeSiAl alloy can be well tuned by controlling the milling time. It is found that the magnetic loss of the FeSiAl alloy is improved by optimizing the milling time due to the increased anisotropy field. Meanwhile the addition of MWCNTs enhances the dielectric loss of the composite by increasing the interfacial polarizations, dipolar polarizations and conductive paths. Relative to conventional FeSiAl absorbers, the FeSiAl/MWCNT composite exhibits greatly improved microwave absorption performance with advantages of strong absorption and small thickness. The minimum reflection loss of the composite reaches −42.8 dB at 12.3 GHz at a very thin thickness of 1.9 mm. PMID:27762327

  11. Solvent effects on the absorption spectra of potentially pharmacologically active 5-alkyl-5-arylhydantoins: A structure-property relationship study

    Directory of Open Access Journals (Sweden)

    Hmuda Sleem F.

    2013-01-01

    Full Text Available To obtain an insight into the interactions of potential anticonvulsant drugs with their surrounding, two series of 5-methyl-5-aryl- and 5-ethyl-5-arylhydantoins were synthesized and their absorption spectra were recorded in the region from 200 to 400 nm in a set of selected solvents. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima shifts were analyzed by means of the linear solvation energy relationship (LSER concept of Kamlet and Taft. The ratio of the contributions of specific and nonspecific solvent-solute interactions were correlated with the corresponding ADME properties of the studied compounds. The correlation equations were combined with different physicochemical parameters to generate new equations, which demonstrate the reasonable relationships between solvent-solute interactions and the structure-activity parameters. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  12. The Dependence of C IV Broad Absorption Line Properties on Accompanying Si IV and Al III Absorption: Relating Quasar-Wind Ionization Levels, Kinematics, and Column Densities

    CERN Document Server

    Ak, N Filiz; Hall, P B; Schneider, D P; Trump, J R; Anderson, S F; Hamann, F; Myers, Adam D; Paris, I; Petitjean, P; Ross, Nicholas P; Shen, Yue; York, Don

    2014-01-01

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line-of-sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines-of-sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C ...

  13. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3 (Canada); Anderson, S. F. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Hamann, F. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Pâris, I. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, P. [Institut d' Astrophysique de Paris, Universite Paris 6, F-75014 Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); York, Don, E-mail: nfilizak@astro.psu.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  14. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  15. A theoretical analysis of the optical absorption properties in one-dimensional InAs/GaAs quantum dot superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Teruhisa, E-mail: kotani.teruhisa@sharp.co.jp [Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567 (Japan); Institute for Nanoelectronics, Technische Universität München, Arcisstr. 21, 80333 Munich (Germany); Birner, Stefan [Institute for Nanoelectronics, Technische Universität München, Arcisstr. 21, 80333 Munich (Germany); Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, 85748 Garching (Germany); Lugli, Paolo [Institute for Nanoelectronics, Technische Universität München, Arcisstr. 21, 80333 Munich (Germany); Hamaguchi, Chihiro [Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567 (Japan)

    2014-04-14

    We present theoretical investigations of miniband structures and optical properties of InAs/GaAs one-dimensional quantum dot superlattices (1D-QDSLs). The calculation is based on the multi-band k·p theory, including the conduction and valence band mixing effects, the strain effect, and the piezoelectric effect; all three effects have periodic boundary conditions. We find that both the electronic and optical properties of the 1D-QDSLs show unique states which are different from those of well known single quantum dots (QDs) or quantum wires. We predict that the optical absorption spectra of the 1D-QDSLs strongly depend on the inter-dot spacing because of the inter-dot carrier coupling and changing strain states, which strongly influence the conduction and valence band potentials. The inter-miniband transitions form the absorption bands. Those absorption bands can be tuned from almost continuous (closely stacked QD case) to spike-like shape (almost isolated QD case) by changing the inter-dot spacing. The polarization of the lowest absorption peak for the 1D-QDSLs changes from being parallel to the stacking direction to being perpendicular to the stacking direction as the inter-dot spacing increases. In the case of closely stacked QDs, in-plane anisotropy, especially [110] and [11{sup ¯}0] directions also depend on the inter-dot spacing. Our findings and predictions will provide an additional degree of freedom for the design of QD-based optoelectronic devices.

  16. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption.

    Science.gov (United States)

    Jose, Jithin; Willemink, Rene G H; Resink, Steffen; Piras, Daniele; van Hespen, J C G; Slump, Cornelis H; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-01-31

    We present a 'hybrid' imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneities.

  17. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Science.gov (United States)

    Rathnayake, R. M. N. M.; Mantilaka, M. M. M. G. P. G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H. W. M. A. C.; Yoshimura, Masamichi; Pitawala, H. M. T. G. A.

    2017-07-01

    Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g-1, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.

  18. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  19. Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes.

    Science.gov (United States)

    Sengupta, D; Mondal, B; Mukherjee, K

    2015-09-05

    Herein, chlorophyll and betalain dyes are extracted from fresh spinach leaves and beetroots. Fourier transform infrared spectra are used to identify the characteristic peaks of the extracted dyes. UV-vis light absorption characteristics of the dyes and their mixed counterpart are investigated by varying their pH and temperature. These dyes are used as photo sensitizer for fabrication of zinc oxide photo-anode based dye sensitized solar cells (DSSCs). The photo-voltaic characteristics of the developed DSSCs are measured under simulated solar light (power of incident light 100 mW cm(-2) from Air Mass 1.5G). The solar to electric conversion efficiencies for the chlorophyll, betalain and mixed dye based solar cells are estimated as 0.148%, 0.197% and 0.294% respectively. The highest conversion efficiency for mixed dye based solar cell is attributed due to the absorption of wider range of solar spectrum.

  20. ABSORPTION PROPERTIES OF A DRIVEN FOUR-LEVEL DOPPLER-BROADENED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YUAN SHI; WU JIN-HUI; GAO JIN-YUE

    2001-01-01

    This paper deals with the absorption spectra of a weak probe in a four-level Doppler-broadened system driven by three coherent fields. The main aim is to extend earlier studies of the spontaneous emission spectrum and to present a comprehensive survey of the spectral features of this system. In addition to a derivation of exact formulae for the spectra, we give an explanation with the help of an appropriate set of dressed atomic states. We also get a deeper insight into the physical origin of gain in view of the existence of a population inversion between the levels of the lasing transition. Finally, we explore the effect of Doppler broadening on the absorption profile of the weak probe.

  1. The effects of pH and surfactants on the absorption and fluorescence properties of ochratoxin A and zearalenone.

    Science.gov (United States)

    Li, Taihua; Kim, Bo Bae; Ha, Tae Hwan; Shin, Yong-Beom; Kim, Min-Gon

    2015-11-01

    The pH and surfactant dependencies of the absorption and fluorescence properties of ochratoxin A (OTA) and zearalenone (ZEN), the main mycotoxins found as contaminants in foods and feeds, were evaluated. Three surfactants with different ionic properties were investigated, namely sodium dodecyl sulfate (SDS, anionic), Tween 20 (nonionic) and hexadecyltrimethylammonium bromide (CTAB, cationic). The results show that the effects of pH on the absorption wavelength maxima and fluorescence efficiencies of the mycotoxins, which are a consequence of the presence of acidic phenol and/or carboxyl containing fluorophores, are dependent on the ionic nature of the added surfactants. Specifically, the fluorescence responses to pH changes of OTA and ZEN are similar in the presence or absence of Tween 20 and SDS. By contrast, the pH-dependent fluorescence properties of these mycotoxins are altered when CTAB is present in the solutions. Moreover, unlike OTA, ZEN in aqueous solution displays almost no fluorescence. However, fluorescence enhancement takes place when surfactants are present in aqueous solutions of this mycotoxin. The results of this study demonstrate that the different microenvironments, present in the organized micellar systems created by the individual surfactants, can be potentially employed to modulate the sensitivities and selectivities of the fluorescence detection of OTA or ZEN. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  3. Aerosol Scattering and Absorption Properties Over the Central Himalayan Location Nainital: Results from Gvax

    Science.gov (United States)

    Gogoi, M. M.; Babu, S.; Nair, V. S.; Satheesh, S.; Naja, M.; Kotamarthi, V. R.

    2012-12-01

    Extensive characterization of aerosols over a central Himalayan location, Nainital (29.4° N, 79.5° E, 1958 m amsl) were carried out during June 2011 to March 2012 under the Ganges Valley Aerosol Experiment (GVAX). Owing to the highly turbid, persistent and increasing aerosol concentration over the Ganges Valley in northern India, their influence on surface dimming, mid-tropospheric warming and monsoon circulations, the experimental site Nainital is best suited for studying the regional distribution of complex aerosol sources, their transport and direct and indirect radiative forcing mechanisms. During the study period, aerosol scattering (absorption) coefficients showed values as high as > 500 Mm-1 (> 50 Mm-1) in local noon time during the onset of winter and early spring and as low as 0.9, for 81% of occurrences) during summer. Based on the spectral distribution of scattering coefficients, fine mode aerosols dominate the summer compared to winter season. The strong absorption during the winter and early spring is associated with the prevalence of biomass burning aerosols and/or dust as reveal by the steep spectral dependence of absorption coefficients (αabs >2.0). These observed seasonal variations are attributed to the dynamics of the atmospheric boundary layer as well as the influence of long range transport over the Himalayan location.

  4. Microwave-assisted synthesis of graphene–Ni composites with enhanced microwave absorption properties in Ku-band

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zetao [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China); Sun, Xin [Science and Technology on Electromagnetic Scattering Laboratory, 100854 Beijing (China); Li, Guoxian [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang (China); Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China); He, Jianping, E-mail: jianph@nuaa.edu.cn [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide–nickel (RGO–Ni) composites. The phase and morphology of as-synthesized RGO–Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO–Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO–Ni-2 composite with the thickness of 2 mm can reaches −42 dB at 17.6 GHz. The RGO–Ni composite is an attractive candidate for the new type of high performance microwave absorbing material. - Highlights: • Ni nanoparticles are grown densely and uniformly on the RGO sheets via microwave-assisted heating approach. • Ni resistance effect is proposed to explain the mechanism to decrease the permittivity with the rising combination of Ni and RGO. • The microwave absorption properties in Ku-band of RGO–Ni composites are effectively enhanced. • The mechanism to improve the microwave absorption properties is discussed.

  5. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Science.gov (United States)

    Saravanan, M.; T. C., Sabari Girisun

    2017-01-01

    Nonlinear absorption and optical limiting properties of ZnFe2O4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe2O4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe2O4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10-10 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe2O4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe2O4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe2O4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy applications.

  6. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, Gan Jet Hong [Interdisciplinary Graduate School of Science and Technology, Shinshu University, Tokida, Ueda 386-8576 (Japan); Ni, Qing-Qing, E-mail: niqq@shinshu-u.ac.jp [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan); Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou (China); Natsuki, Toshiaki [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan)

    2014-12-05

    Highlights: • BTO/CNT hybrid nanocomposites was prepared by sol–gel method. • BTO/CNT 60 wt.%, t = 1.1 mm showed a minimum reflection loss of ∼−56.5 dB. • Weight fraction and thickness can be manipulated for various absorption bands. - Abstract: Barium titanate/carbon nanotube (BTO/CNT) hybrid nanocomposites were fabricated by sol–gel method. The BTO/CNT hybrid nanomaterials were characterized using X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. The BTO/CNT hybrid nanomaterials were then loaded in paraffin wax with different weight percentage, and pressed into toroidal shape with thickness of 1.0 mm to evaluate their complex permittivity and complex permeability using vector network analyzer. The reflection loss of the samples was calculated according to their measured complex permittivity and permeability. The minimum reflection loss of the BTO/CNT 60 wt.% hybrid nanocomposites sample with a thickness of 1.0 mm reached 29.6 dB (over 99.9% absorption) at 13.6 GHz, and also exhibited a wide response bandwidth where the frequency bandwidth of the reflection loss of less than −10 dB (over 90% absorption) was from 12.1 to 13.8 GHz. The BTO/CNT 60 wt.% hybrid nanocomposites with thickness of 1.1 mm showed a minimum reflection loss of ∼−56.5 dB (over 99.999% absorption) at 13.2 GHz and was the best absorber when compared with the other samples of different thickness. The reflection loss peak shifted to lower frequency and wider response bandwidth can be obtained as the thickness of the samples increased. The capability to modulate the absorption band of these samples to suit various applications in different frequency bands simply by manipulating their weight percentage and thickness indicates that these hybrid nanocomposites could be a promising electromagnetic wave absorber.

  7. Effect of Silver Addition on the Ethanol-Sensing Properties of Indium Oxide Nanoparticle Layers: Optical Absorption Study

    Directory of Open Access Journals (Sweden)

    Vidya Nand Singh

    2007-01-01

    Full Text Available In2O3 and In2O3:Ag nanoparticle layers have been deposited using a two-step method consisting of chemical capping and dip coating techniques. The result of optical absorption analysis of In2O3:Ag samples shows the presence of Ag2O and Ag in air-annealed and vacuum-annealed samples, respectively. These results have been correlated with the gas sensing properties of these layers towards ethanol and support the proposed mechanism that increase in sensor response on Ag addition is due to the conversion of Ag2O to Ag in the presence of ethanol.

  8. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range

    Science.gov (United States)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths tissues and organs for interstitial optical interrogation.

  9. Self-assembly of large-scale aggregates of porphyrin from its dimers and their absorption and luminescence properties

    Science.gov (United States)

    Udal'tsov, A. V.; Kazarin, L. A.; Sweshnikov, A. A.

    2001-05-01

    Properties of aggregates of protonated meso-tetraphenylporphine (TPP) dimers have been investigated by absorption and luminescence spectroscopies and scanning electron microscopy. It was found that the absorption and fluorescence spectra obtained at a low and several times higher concentration of porphyrin differ considerably. The changes in absorption spectra of TPP in the water-THF-glycerol (84:6:10, v/v) mixture in the presence of 0.4 N HCl with time and the appearance of a green precipitate after several days indicate aggregation of the porphyrin. The near IR emission at 1000 nm, which is assigned to the fluorescence of donor-acceptor water-porphyrin dimeric complex, is revealed in the fluorescence spectra of TPP in aqueous solution of THF in the presence of 0.4 N HCl at the low concentration of porphyrin on excitation at 465 nm. In contrast, the near IR emission is not observed in the solution with several times higher concentration of porphyrin, but a shoulder at ca 800 nm is appreciable in the corresponding spectrum. The large-scale aggregates of TPP with sizes approximately from 1 μm to several micrometers are found in thin films of the protonated porphyrin. It is proposed that the aggregates are formed as a result of self-assembly from different protonated porphyrin dimers and have an ordered structure.

  10. Optical absorption measurements and quantum-chemical simulations of optical properties of novel fluoro derivatives of pyrazoloquinoline

    Science.gov (United States)

    Brik, M. G.; Kuznik, W.; Gondek, E.; Kityk, I. V.; Uchacz, T.; Szlachcic, P.; Jarosz, B.; Plucinski, K. J.

    2010-05-01

    The results of experimental research and quantum-chemical simulations of the absorption spectra of 1-(4-fluorophenyl)-3,4-diphenyl, 3-(4-fluorophenyl)-1,4-diphenyl, and 4-(4-fluorophenyl)-1,3-diphenyl-pyrazolo[3,4- b] quinoline are presented. Although the fluorine atom is located on different phenyl rings in these molecules, the absorption spectra do not differ significantly. Semi-empirical AM1, PM3 and RM1 methods, as well as ab initio ADF code-based calculations were used to optimize geometry, calculate the infrared and visible spectra of the afore mentioned compounds and analyze the molecular orbitals schemes. The results of calculations are in good agreement with the experimental data. It was also demonstrated that the positions of the fluorescence maxima depend significantly on the solvent (contrary to the absorption spectra), in which the molecules are embedded, which allows for manipulating with fluorescence properties of the synthesized molecules by changing the solvent.

  11. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    Science.gov (United States)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  12. 聚酰亚胺泡沫吸声性能与理论分析%Acoustic Absorption Properties and Theoretics of Polyimide Foams

    Institute of Scientific and Technical Information of China (English)

    潘丕昌; 詹茂盛; 沈燕侠; 王凯

    2009-01-01

    采用前驱体微球法制备闭孔聚酰亚胺泡沫,并对其吸声性能进行了研究.结果表明,闭孔聚酰亚胺泡沫具有共振吸声特点;对闭孔聚酰亚胺泡沫的吸声系数进行了理论推导,研究了泡沫厚度对泡沫吸声性能的影响,分析了聚酰亚胺泡沫的吸声理论;采用闭孔泡沫与开孔泡沫组合后,泡沫整体吸声性能显著提高.%The closed cell polyimide foams were fabricated by foaming the precursor balloons, and the foams' acoustic absorption properties were tested. The results show that the acoustic absorption properties of closed cell polyimide foams have the typical resonance acoustic absorption characteristic. The acoustic absorption properties of polyimide foams were researched, and the influence of thickness and density on its acoustic absorption properties were also studied, the acoustic absorption theoretics of polyimide foams was analyzed. The combination of closed cell and open cell polyimide foams can notable enhance the acoustic absorption coefficient.

  13. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    Science.gov (United States)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems

  14. Influence of river discharge on phytoplankton absorption properties: a case study in the East China Sea and Tsushima Strait

    Directory of Open Access Journals (Sweden)

    S. Wang

    2013-08-01

    Full Text Available To investigate the influence of fresh water on phytoplankton absorption properties, the phytoplankton absorption coefficient and pigments identified by high-performance liquid chromatography (HPLC were measured at the surface and subsurface chlorophyll a maximum (SCM in the East China Sea (ECS, which is highly influenced by river discharge from the Changjiang during summer. For comparison, data were also collected in the Tsushima Strait (TS at the surface and SCM. The majority of ECS surface samples taken from the low-salinity Changjiang diluted water (CDW, and even most of SCM samples taken from waters beneath the CDW, displayed significant freshwater influences. The specific absorption coefficient normalized by total chlorophyll a concentration (Tchl a, a*ph(λ, of these samples was substantially higher than values derived from global regressions between a*ph(λ and the Tchl a. Using the pigment data derived from HPLC, the increase of a*ph(λ was found to be mainly caused by the phytoplankton size structure, which indicated that both surface and SCM samples in the ECS still incorporated considerable portions of picophytoplankton (cyanobacteria, even though the Tchl a was high. When water from the surface and the SCM were merged, variations in the phytoplankton size-fractions and a*ph(λ vs. Tchl a that were consistent with values for the global ocean were found in the TS but not in the ECS. Data for the ECS indicated that there was no correlation between Tchl a and the size-fraction or total pigment absorption. As a consequence, a*ph(λ was poorly correlated with Tchl a and displayed large variability within a small Tchl a range. These findings suggest the need for care when considering the changing patterns of size-fractions vs. Tchl a and the relationship between a*ph(λ and Tchl ain coastal regions that are significantly influenced by fresh water.

  15. Absorption-Dispersion Properties in a Four-Level Atomic System with Vacuum-Induced Coherence

    Institute of Scientific and Technical Information of China (English)

    WEIHua; LIJia-Hua; ZHANZhi-Ming; PENGJu-Cun

    2005-01-01

    We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (FIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.

  16. Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties

    Science.gov (United States)

    Zhang, Tao; Xiao, Bo; Zhou, Pengyu; Xia, Long; Wen, Guangwu; Zhang, Haibin

    2017-09-01

    Carbon nanofibers decorated with porous carbon nanotubes were prepared by electrospinning and annealing methods. The microwave reflection loss of the products was investigated in the frequency range of 2-18 GHz. The bandwidth with a reflection loss less than -10 dB covers a wide frequency, ranging from 7.0 to 14.1 GHz with thickness of 3.0-5.5 mm, and the minimum reflection loss is -44.5 dB at 10.7 GHz with thickness of 2.0 mm. The large reflection loss and wide reflection band reveal that the products could be a promising candidate for microwave absorption.

  17. Emission factors and light absorption properties of brown carbon from household coal combustion in China

    Science.gov (United States)

    Sun, Jianzhong; Zhi, Guorui; Hitzenberger, Regina; Chen, Yingjun; Tian, Chongguo; Zhang, Yayun; Feng, Yanli; Cheng, Miaomiao; Zhang, Yuzhe; Cai, Jing; Chen, Feng; Qiu, Yiqin; Jiang, Zhiming; Li, Jun; Zhang, Gan; Mo, Yangzhi

    2017-04-01

    Brown carbon (BrC) draws increasing attention due to its effects on climate and other environmental factors. In China, household coal burned for heating and cooking purposes releases huge amounts of carbonaceous particles every year; however, BrC emissions have rarely been estimated in a persuasive manner due to the unavailable emission characteristics. Here, seven coals jointly covering geological maturity from low to high were burned in four typical stoves as both chunk and briquette styles. The optical integrating sphere (IS) method was applied to measure the emission factors (EFs) of BrC and black carbon (BC) via an iterative process using the different spectral dependence of light absorption for BrC and BC and using humic acid sodium salt (HASS) and carbon black (CarB) as reference materials. The following results have been found: (i) the average EFs of BrC for anthracite coal chunks and briquettes are 1.08 ± 0.80 and 1.52 ± 0.16 g kg-1, respectively, and those for bituminous coal chunks and briquettes are 8.59 ± 2.70 and 4.01 ± 2.19 g kg-1, respectively, reflecting a more significant decline in BrC EFs for bituminous coals than for anthracites due to briquetting. (ii) The BrC EF peaks at the middle of coal's geological maturity, displaying a bell-shaped curve between EF and volatile matter (Vdaf). (iii) The calculated BrC emissions from China's residential coal burning amounted to 592 Gg (1 Gg = 109 g) in 2013, which is nearly half of China's total BC emissions. (iv) The absorption Ångström exponents (AAEs) of all coal briquettes are higher than those of coal chunks, indicating that the measure of coal briquetting increases the BrC / BC emission ratio and thus offsets some of the climate cooling effect of briquetting. (v) In the scenario of current household coal burning in China, solar light absorption by BrC (350-850 nm in this study) accounts for more than a quarter (0.265) of the total absorption. This implies the significance of BrC to climate

  18. Absorption properties of a driven Doppler-broadened ladder system with hyperfine structure

    Institute of Scientific and Technical Information of China (English)

    吴金辉; 高锦岳

    2002-01-01

    We have studied the absorption spectrum of a Doppler-broadened ladder system, where the highest level is coupled into two middle hyperfine sublevels by a strong coherent field. We find that, when the system is considered as homoge- neous, either two or three spectral components are observed, depending on the detuning of the coherent field. But when the velocity distribution of atoms is considered, we can always observe one electromagnetically induced transparency (EIT) window with high dispersion. So the atomic hyperfine structure cannot be an impediment for obtaining EIT.

  19. Two-Photon Absorption-Induced Emission Properties of Dye HMASPS Doped Polymer

    Institute of Scientific and Technical Information of China (English)

    王东; 周广勇; 任燕; 杨胜军; 许心光; 邵宗书; 蒋民华

    2002-01-01

    The 0.01M two-photon absorption dye trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl-pyridinium p-toluene sulfonate (HMASPS) doped polymer has been prepared. When pumped by the picosecond pulse from the pulsed mode-locked Nd: YAG laser, the polymer emits more intense upconverted fluorescence and superradiance compared to the solution sample of the dye. The two-photon pumped lasing with oscillating pulses has also been obtained. Compared to the dye in its solution state, the emission spectra of the polymer are all blueshifted.The polymer has a long upconverted fluorescent lifetime of about 4.041 ± 0.04 ns.

  20. Absorption-Dispersion Properties in a Four-Level Atomic System with Vacuum-Induced Coherence

    Institute of Scientific and Technical Information of China (English)

    WEI Hua; LI Jia-Hua; ZHAN Zhi-Ming; PENG Ju-Cun

    2005-01-01

    We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (EIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.

  1. Influence of moisture absorption on the flexural properties of composites made of epoxy resin reinforced with low-content iron particles

    Indian Academy of Sciences (India)

    E SIDERIDIS; J VENETIS; E KYRIAZI; V KYTOPOULOS

    2017-08-01

    In this work, the effect of moisture absorption on the mechanical properties of particulate composite materials isstudied. Moisture absorption constitutes a main parameter affecting the thermomechanical behaviour of composites, since itcauses plasticization of the polymer matrix with a concurrent swelling. In the present work, the influence of water absorptionon the flexural properties of particle-reinforced composites was thoroughly investigated. It was found that during the processof moisture absorption there exists a variation of the flexural properties closely related to the degradation of the mechanicalbehaviour of the composite, as well as the percentage amount of moisture absorbed. Experiments were carried out withcomposite made of epoxy resin reinforced with low-content iron particles. The variation of ultimate stress, breaking strain,deflection, elastic modulus and Poisson ratio due to water absorption was examined.

  2. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge

    Science.gov (United States)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2017-07-01

    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize

  3. Cationic effect on dye-sensitized solar cell properties using electrochemical impedance and transient absorption spectroscopy techniques

    Science.gov (United States)

    Gupta, Ravindra Kumar; Bedja, Idriss

    2017-06-01

    Redox-couple polymer electrolytes, (poly(ethylene oxide)-succinonitrile) blend/MI-I2, where M  =  Li or K, were prepared by the solution cast method. Owing to the plasticizing property of K+ ions, the K+ ion-based electrolyte exhibited better electrical conductivity than the Li+ ion-based electrolyte, which did however exhibit better photovoltaic properties. Electrochemical impedance spectroscopy revealed faster redox species diffusions and interfacial processes in the Li+ ion-based dye-sensitized solar cells than in the K+ ion-based ones. Transient absorption spectroscopy ascertained faster dye-regeneration by the Li+ ion-based electrolyte than the K+ ion-based electrolyte.

  4. Influence of Absorption and Insulation Properties for Phonic Treatment of Public Works Equipment

    Directory of Open Access Journals (Sweden)

    Ovidiu Vasile

    2012-01-01

    Full Text Available This study presents the problem of designing, manufacturing and testing of some protective systems made from composite materials which can simultaneously perform the next requirements: noise absorption for middle and high range frequencies, noise insulation for low frequencies, vibration damping in order to avoid noise transmission by structure and finally, modularity and adaptability for using to different types of public works equipment, also for other technological equipment with a high level of noise, vibration and mechanical shocks. Decreasing of sound and vibration global level inside and/or outside the public works equipment’s cabin as well as the reduction the noise pollution or the pollution due to the vibration and mechanical shocks on construction site is an actual matter, especially for the countries –last became members of EU; these countries must harmonize theirs national legislations regarding the environment pollution and the labor protection with the EU Directives. The article presents the experimental data of four composite structures with noise absorption and insulation features and three case studies of global level noise reduction inside the cabin for a vibrating compactor, a crawler excavator and a frontal loader.

  5. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films.

    Science.gov (United States)

    Bajpai, M; Bajpai, S K; Jyotishi, Pooja

    2016-03-01

    In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day.

  6. Preparation and radar absorptive properties of BaFe12O19 -coated glass fiber

    Science.gov (United States)

    Jia, F.; Xu, M.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Traditional passive jamming materials such as chaff and foil showed some limitations in use because they can only reflect the electromagnetic wave. Therefore, to develop a kind of absorptive passive jamming material to make up for deficiencies of traditional passive jamming materials and improve the jamming efficiency is of great significance. In this paper, the BaFe12O19-coated glass fiber, used as a kind of radar absorptive chaff, was prepared by sol-gel dip-coating method. The effects of heat treatment temperature, heat treatment time and coating times on film quality, tensile strength and attenuation efficiency of the samples were discussed. The study shows that an increase of the heat treatment temperature and an extension of the heat treatment time is conducive to the growth of barium ferrite grain, while they would introduce the loss of chaff strength at the same time. In addition, multi-coating process can improve the film quality and attenuation efficiency of the sample. Data show that the 10 times coated samples have a best reflectivity of (15GHz, -6.65dB) and the bandwidth of reflectivity lower than -5dB is11.8 GHz. According to the test results, the prepared material has certain attenuation efficiency in the range of 2GHz-18GHz, having a high practical value.

  7. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    Science.gov (United States)

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption.

  8. Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires

    Science.gov (United States)

    Gupta, Manoj Kumar; Aneesh, Janardhanakurup; Yadav, Rajesh; Adarsh, K. V.; Kim, Sang-Woo

    2017-05-01

    We present a high performance flexible piezoelectric nanogenerator (NG) device based on the hydrothermally grown lead-free piezoelectric lithium niobate (LiNbO3) nanowires (NWs) for scavenging mechanical energies. The non-linear optical coefficient and optical limiting properties of LiNbO3 were analyzed using femtosecond laser pulse assisted two photon absorption techniques for the first time. Further, a flexible hybrid type NG using a composite structure of the polydimethylsiloxane polymer and LiNbO3 NWs was fabricated, and their piezoelectric output signals were measured. A large output voltage of ˜4.0 V and a recordable large current density of about 1.5 μA cm-2 were obtained under the cyclic compressive force of 1 kgf. A subsequent UV-Vis analysis of the as-prepared sample provides a remarkable increase in the optical band gap (UV absorption cut-off, ˜251 nm) due to the nanoscale size effect. The high piezoelectric output voltage and current are discussed in terms of large band gap, significant nonlinear optical response, and electric dipole alignments under poling effects. Such high performance and unique optical properties of LiNbO3 show its great potential towards various next generation smart electronic applications and self-powered optoelectronic devices.

  9. The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems

    Science.gov (United States)

    Pang, Xiao-feng

    2012-05-01

    The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang's theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person's finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

  10. Comparison of key absorption and optical properties between pure and transported anthropogenic dust over East and Central Asia

    Science.gov (United States)

    Bi, Jianrong; Huang, Jianping; Holben, Brent; Zhang, Guolong

    2016-12-01

    Asian dust particulate is one of the primary aerosol constituents in the Earth-atmosphere system that exerts profound influences on environmental quality, human health, the marine biogeochemical cycle, and Earth's climate. To date, the absorptive capacity of dust aerosol generated from the Asian desert region is still an open question. In this article, we compile columnar key absorption and optical properties of mineral dust over East and Central Asian areas by utilizing the multiyear quality-assured datasets observed at 13 sites of the Aerosol Robotic Network (AERONET). We identify two types of Asian dust according to threshold criteria from previously published literature. (1) The particles with high aerosol optical depth at 440 nm (AOD440 ≥ 0.4) and a low Ångström wavelength exponent at 440-870 nm (α TOA), at the surface (SFC), and in the atmospheric layer (ATM) for Asian PDU (α < 0.2) and TDU (0.2 < α < 0.6) computed in this study, are a factor of 2 smaller than the results of Optical Properties of Aerosols and Clouds (OPAC) mineral-accumulated (mineral-acc.) and mineral-transported (mineral-tran.) modes. Therefore, we are convinced that our results hold promise for updating and improving accuracies of Asian dust characteristics in present-day remote sensing applications and regional or global climate models.

  11. Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles

    Institute of Scientific and Technical Information of China (English)

    耿欣; 何大伟; 王永生; 赵文; 周亦康; 李树磊

    2015-01-01

    In order to investigate the impedance matching properties of microwave absorbers, the ternary nanocomposites of GO/PANI/Fe3O4 (GPF) are prepared via a two-step method, GO/PANI composites are synthesized by dilute polymerization in the presence of aniline monomer and GO, and GO/PANI/Fe3O4 is prepared via a co-precipitation method. The obtained nanocomposites are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), respectively. The microwave absorbability reveals enhanced microwave absorption properties compared with GO, PANI, and GO/PANI. The maximum reflection loss of GO/PANI/Fe3O4 is up to−27 dB at 14 GHz with its thickness being 2 mm, and its absorption bandwidths exceeding−10 dB are more than 11.2 GHz with its thickness values being in a range of 1.5 mm–4 mm. It provides that GO/PANI/Fe3O4 can be used as an attractive candidate for microwave absorbers.

  12. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    Science.gov (United States)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  13. Results of fission products β decay properties measurement performed with a total absorption spectrometer

    Directory of Open Access Journals (Sweden)

    Zakari-Issoufou A.-A.

    2014-03-01

    Full Text Available β-decay properties of fission products are very important for applied reactor physics, for instance to estimate the decay heat released immediately after the reactor shutdown and to estimate the ν¯$\\bar \

  14. Investigation of molecule properties from electronic absorption spectra of solid and liquid crystals

    Science.gov (United States)

    Klimusheva, G. V.

    2004-12-01

    Among the achievements of 20th century, there is the origin and violent development of the low-temperature technique and low-temperature spectroscopy of molecular crystals in the polarized light. Many obtained results became possible due to the close cooperation between experiment investigators and theorists. This short review traces the evolution of only one trend in the physics of molecular crystals, namely, the investigation of energetic and spatial structure of molecules from the analysis of electronic spectra of molecular crystals. First, for this purpose the possibilities of using the electronic spectra of molecular crystals at low temperatures benzene derivatives and the electronic spectra of liquid ionic crystals are considered. The results of investigations of the electronic absorption spectra for the new class of liquid crystals, namely, ionic metal-organic smectics are presented. Changes in the structure of doping molecules in the ionic liquid crystals under the influence of the dc electric field are analyzed.

  15. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property.

    Science.gov (United States)

    Guo, Chongshen; Yin, Shu; Huang, Lijun; Sato, Tsugio

    2011-07-01

    Potassium tungsten oxide nanofibers were successfully synthesized via a facile hydrothermal reaction route in the presence of sulfate. After reduction under a reductive atmosphere of H(2)(5 vol %)/N(2), the potassium tungsten oxide transformed to potassium tungsten bronze. Because of the lack of free electrons, the potassium tungsten oxide (K(x)WO(3+x/2)) showed no NIR shielding performance; however, the potassium tungsten bronze (K(x)WO(3)) showed promising optical characteristics such as high transmittance for visible light, as well as high shielding performance for near-infrared lights, indicating its potential application as a solar filter. Meanwhile, the potassium tungsten bronze (K(x)WO(3)) showed strong absorption of near-infrared light and instantaneous conversion of photoenergy to heat.

  16. Optical absorption and photoluminescence properties of ZnO/PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kulyk, B; Kapustianyk, V [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Krupka, O [Department of Chemistry, Kyiv Taras Shevchenko National University, 60 Volodymyrska Str., Kyiv (Ukraine); Sahraoui, B, E-mail: bohdan_kulyk@yahoo.com [Department of Physics, University of Angers, 2 Lavoisier Av., Angers (France)

    2011-04-01

    The ZnO nanocrystals (ZnO NCs) with particle size, less than 100 nm, have been blended with polymethylmethacrylate (PMMA) by solution mixing to prepare PMMA/ZnO nanocomposite films. The structure of ZnO/PMMA nanocomposite films was characterized using X-ray diffractometry. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurements of temperature evolution of the photoluminescence (PL) spectra show intensive UV emission peak corresponding to the donor-bound excitons with binding energy of 51 meV and green emission band related to the intrinsic defects in ZnO. The temperature evolution of the emission peaks energy position, intensity and integral intensity in ZnO/PMMA nanocomposite films were examined.

  17. Scattering and Absorption Properties of Polydisperse Wavelength-sized Particles Covered with Much Smaller Grains

    Science.gov (United States)

    Dlugach, Jana M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-01-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains.The results pertain to the complex refractive indices1.55 + i0.0003,1.55 + i0.3, and 3 + i0.1. We show that the optical effects of dusting wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  18. Measurement of fission products β decay properties using a total absorption spectrometer

    Directory of Open Access Journals (Sweden)

    Zakari-Issoufou A.-A.

    2013-12-01

    Full Text Available In a nuclear reactor, the β decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyväskylä with a Total Absorption Spectrometer (TAS in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented.

  19. Absorption and emission properties of Ho{sup 3+} doped lead-zinc-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sooraj Hussain, N. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal) and INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal)]. E-mail: sooraj@fe.up.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Dias, A.G. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); Lopes, M.A. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); Santos, J.D. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); Buddhudu, S. [Department of Physics, S.V. University, Tirupati, 517502-AP (India)

    2006-09-25

    This paper reports on the affect of lead content on the absorption and emission spectra of the Ho{sup 3+} ion doped lead-zinc-borate glasses in the composition (mol%) of (20 - x)PbO-20ZnO-(59 + x)B{sub 2}O{sub 3}-1.0Ho{sub 2}O{sub 3} where x 0, 5,10,15 of PbO content with {lambda} {sub exc} = 405 nm. The experimental absorption band energies have satisfactorily been correlated with the theoretical results with an r.m.s deviation of zero with the following correction factors obtained by a least square fit analysis: {delta}E {sup 1} 348.495936 cm{sup -1}, {delta}E {sup 2} = 1.436043 cm{sup -1}, {delta}E {sup 3} = 46.481575 cm{sup -1}, {delta}{xi} {sub 4f} = - 28.512979 cm{sup -1}, {delta}{alpha} = 55.508936 cm{sup -1}, {delta}{beta} = - 1394.339908 cm{sup -1} and {delta}{gamma} 1208.424336 cm{sup -1}. By applying the Judd-Ofelt intensity parameter {omega} {sub 2} has been found to be linearly decreasing with the PbO content from 5 to 10 mol% and then increasing. And also radiative (A, A {sub T}, {beta}, {tau} {sub r}) characteristic factors of the luminescent transitions ({sup 5}I{sub 8} <- {sup 5}F{sub 3,4,5} and {sup 5}S{sub 2}) of the glasses have been evaluated. Stimulated emission cross-sections ({sigma} {sub p} {sup E}) of the measured emission transitions of holmium glasses have also been computed.

  20. Synthesis and two-photon absorption property of new -conjugated donor-acceptor polymers carrying different heteroaromatics

    Indian Academy of Sciences (India)

    M S Sunitha; K A Vishnumurthy; A V Adhikari

    2013-01-01

    In this communication, we report the synthesis of three newly designed fluorescent polymers P1-P3, starting from simple thiophene derivatives through precursor polyhydrazide route. The new polymers, carrying donor and acceptor heterocyclic moieties with different spacer groups were found to be thermally stable and good of nonlinear optical (NLO) materials with two photon absorption property. The structures of newly synthesized monomers and polymers were confirmed by FTIR, NMR spectral and elemental analyses. Further, polymers were characterized by GPC and TGA studies. Their linear optical and electrochemical properties were evaluated by UV-vis, fluorescence spectroscopic and cyclic voltammetric (CV) studies, respectively, whereas their NLO properties were studied by Z-scan technique using Nd: YAG laser at 532 nm with 7 ns pulse. The electrochemical band gap of P1-P3 was determined to be 1.98, 1.91 and 2.05 eV, respectively. The NLO results reveal that polymers P1-P3 show good optical limiting property with TPA coefficient values 2.9 × 10−11 m/W, 8.0 × 10−11 m/W and 1.4 × 10−11 m/W, respectively.

  1. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation.

    Science.gov (United States)

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-10-30

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.).

  2. Mg-AI Mixed Oxides Supported Bimetallic Au-Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol

    Institute of Scientific and Technical Information of China (English)

    王亮; 张伟; 曾尚景; 苏党生; 孟祥举; 肖丰收

    2012-01-01

    Nano-sized Au and Pd catalysts are favorable for oxidations with molecular oxygen, and the preparation of this kind of nanoparticles with high catalytic activities is strongly desirable. We report a successful synthesis of bimetal- lic Au-Pd nanoparticles with rich edge and comer sites on unique support of Mg-AI mixed oxides (Au-Pd/MAO), which are favorable for producing metal nanoparticles with high degree of coordinative unsaturation of metal atoms The systematic microscopic characterizations confirm the bimetallic Au-Pd nanoparticles are present as Au-Pd alloy The irregular shape of the bimetallic nanoparticles are directly observed in HRTEM images. As we expected, Au-Pd/MAO gives very excellent catalytic performances in the aerobic oxidation of benzyl alcohol and glycerol. For example, Au-Pd/MAO shows very high TOF of 91000 h i at 433 K with molecular oxygen at air pressure in solvent-free oxidation of benzyl alcohol; this catalyst also shows relatively high selectivity for tartronic acid (TA- RAC, 36.6%) at high conversion (98.5%) in aerobic oxidation of glycerol. The superior catalytic properties of Au-Pd/MAO would be potentially important tbr production of fine chemicals.

  3. Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties

    Science.gov (United States)

    Wang, Huanwen; Zhang, Yu; Sun, Wenping; Tan, Hui Teng; Franklin, Joseph B.; Guo, Yuanyuan; Fan, Haosen; Ulaganathan, Mani; Wu, Xing-Long; Luo, Zhong-Zhen; Madhavi, Srinivasan; Yan, Qingyu

    2016-03-01

    Two-dimensional (2D) graphene oxide/polypyrrole (GO/PPy) hybrid materials derived from in-situ polymerization are used as precursors for constructing functionalized three-dimensional (3D) porous nitrogen-doped carbon nanosheet frameworks (FT-PNCNFs) through a one-step activation strategy. In the formation process of FT-PNCNFs, PPY is directly converted into hierarchical porous nitrogen-doped carbon layers, while GO is simultaneously reduced to become electrically conductive. The complementary functions of individual components endow the FT-PNCNFs with excellent properties for both supercapacitors (SCs) and sodium ion batteries (SIBs) applications. When tested in symmetrical SC, the FT-PNCNFs demonstrate superior energy storage behaviour. At an extremely high scan rate of 3000 mV s-1, the cyclic voltammetry (CV) curve retains an inspiring quasi-rectangle shape in KOH solution. Meanwhile, high capacitances (∼247 F g-1 at 10 mV s-1; ∼146 F g-1 at 3000 mV s-1) and good cycling stability (∼95% retention after 8000 cycles) are achieved. In addition, an attractive SIB anode performance could be achieved. The FT-PNCNFs electrode delivers a reversible capacity of 187 mAh g-1 during 160th cycle at 100 mA g-1. Its reversible capacity retains 144 mAh g-1 after extending the number of cycles to 500 at 500 mA g-1.

  4. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  5. Influence of moisture absorption on properties of fiber reinforced polyamide 6 composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Løgstrup Andersen, Tom; Lystrup, Aage

    2011-01-01

    A state-of-the art study of thermoplastic polymer matrix materials for fiber composites has identified polyamide 6 (PA6) as a potential candidate thermoplastic polymer relevant for manufacturing large composite structures like wind turbine blades. The mechanical properties of PA6 are highly...... sensitive to moisture, and if PA6 is used as matrix material in a fiber composite, the properties of the fiber composite will depend on the moisture content of the material. At standard condition (23 °C and 50% RH) polyamide6 absorbs about 3 weight-% of water, whereas the PA6 material is dry right after...

  6. Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo; Sheng, Leimei, E-mail: slmss@shu.edu.cn; Yu, Liming; An, Kang; Ren, Wei; Zhao, Xinluo, E-mail: xlzhao@shu.edu.cn

    2015-03-15

    Highlights: • LPA-SWCNTs have been abundantly fabricated by a facile, time-saving, economical and non-hazardous method using DC arc discharge technique in low-pressure air. • The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites were investigated and the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites exhibited excellent microwave absorption properties. • The Debye theory and impedance matching were used to analyze the electromagnetic parameters and microwave absorption properties. - Abstract: Single-walled carbon nanotubes were facilely and abundantly synthesized by low-pressure air arc discharge method (LPA-SWCNTs), and CoFe{sub 2}O{sub 4} nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and their nanocomposites were investigated. The LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites showed excellent microwave absorption properties. The minimum efficient reflection loss is −30.7 dB at 12.9 GHz for 10 wt% of LPA-SWCNTs in the nanocomposites, and an effective absorption bandwidth with a reflection loss below −10 dB is 7.2 GHz. The Debye equation and impedance matching were introduced to explain the microwave absorption properties. Compared with the single-component materials, the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites are an excellent candidate for microwave absorbers.

  7. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    Science.gov (United States)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  8. Difluorenyl carbo-Benzenes: Synthesis, Electronic Structure, and Two-Photon Absorption Properties of Hydrocarbon Quadrupolar Chromophores.

    Science.gov (United States)

    Baglai, Iaroslav; de Anda-Villa, Manuel; Barba-Barba, Rodrigo M; Poidevin, Corentin; Ramos-Ortíz, Gabriel; Maraval, Valérie; Lepetit, Christine; Saffon-Merceron, Nathalie; Maldonado, José-Luis; Chauvin, Remi

    2015-09-28

    The synthesis, crystal and electronic structures, and one- and two-photon absorption properties of two quadrupolar fluorenyl-substituted tetraphenyl carbo-benzenes are described. These all-hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo-benzene core (C-C bonds for 3 a, C-C=C-C expanders for 3 b), exhibit quasi-superimposable one-photon absorption (1PA) spectra but different two-photon absorption (2PA) cross-sections σ2PA. Z-scan measurements (under NIR femtosecond excitation) indeed showed that the C≡C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at λ = 800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum-over-state estimations of σ2PA(λi), in which λi = 2 hc/Ei, h is Planck's constant, c is the speed of light, and Ei is the energy of the 2PA-allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z-scan results.

  9. Effect of heat treatment on absorption and fluorescence properties of PbS-doped silica optical fibre

    Science.gov (United States)

    Qin, Fu; Dong, Yanhua; Wen, Jianxiang; Pang, Fufei; Luo, Yanhua; Peng, Gang-Ding; Chen, Zhenyi; Wang, Tingyun

    2017-02-01

    The effect of heat treatment on the optical properties of a PbS-doped silica optical fibre was investigated. The experimental results showed that the absorption peak of the fibre red shifted from 1032 to 1133 nm when the heat treatment temperatures were carried out at 900, 950, 1000, and 1100 °C for 1 h, respectively. At the same time, when the heat treatment at 900 °C was carried out for 2, 5, 10, 20, and 40 h, the absorption spectra of the fibre showed a red shift from 1074 to 1143 nm. In addition, the intensity of the absorption peak increased from 0.258 to 1.384 dB/m and the full width at half maximum (FWHM) became narrower (from 130 to 50 nm) as the heat treatment proceeded. Moreover, the photoluminescence (PL) intensity in the wavelength range of 1100-1500 nm decreased with an increase in the heat treatment temperature. The theoretical analysis, using an effective mass method, showed that the effective band gap energy and average size of the lead sulphide (PbS) quantum dots (QDs) in the silica fibre core varied from 1.199 to 1.083 eV and from 4.28 to 4.81 nm, respectively. The results indicate that the size of the PbS QDs present in the silica fibre core could be controlled by a proper heat treatment, which is of great interest in optical fibre amplifiers and other fibre optic devices.

  10. Influence of Helium Atoms Absorption on the Emission Properties of Carbon Nanotubes

    Science.gov (United States)

    Umaev, S. M.; Levchenko, A. A.; Kolesnikov, N. N.; Filatov, S. V.

    2017-04-01

    We investigated the emission properties of charge sources based on carbon nanotubes prepared by arc discharge deposition of nanotubes onto a flat copper substrate (Borisenko et al. in Instrum Exp Tech 57(6):755, 2014; Low Temp Phys 41(7):567, 2015). The charge sources were submerged into superfluid helium at temperature T=1.3 K. The collector fixed above the charge source at a distance of 0.3 mm was connected to an electrometer. The current of charges was measured by the electrometer when a high voltage was applied to the charge source. In the originally prepared source, the emission of charges (electrons) on the level of 10^{-10}A is observed at a negative voltage above U=80 V and increases with increasing voltage. If the source of charge was kept in liquid helium for 15 h, the current-voltage characteristic changed significantly. The current of charges on the same level of 10^{-10} A was registered at a voltage of U=150 V. Extraction of gases from the source placed in a vacuum chamber at room temperature for 48 h leads to the complete recovery of the emission properties. One can assume that the degradation of the emission properties of the sources is associated with the adsorption of helium atoms by carbon nanotubes at low temperatures. We did not observe any degradation of the emission properties of the charge sources in the case of positive charges injection into superfluid helium.

  11. Optical absorption and near infrared emission properties of Nd 3+ ions in alkali lead tellurofluoroborate glasses

    Science.gov (United States)

    Saleem, S. A.; Jamalaiah, B. C.; Kumar, J. Suresh; Babu, A. Mohan; Moorthy, L. Rama; Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Yi, Soung Soo; Jeong, Jung Hyun

    2009-12-01

    Nd 3+ doped H 3BO 3-PbO-TeO 2-RF (R = Li, Na and K) glasses were prepared through melt quenching technique. Optical absorption and near infrared (NIR) fluorescence spectra were recorded at room temperature. The spectral intensities were analyzed in terms of the Judd-Ofelt (J-O) parameters ( Ω λ = 2, 4, 6). The covalency effect of Nd-O bond on the J-O parameters was estimated from the relative absorbance ratio (R) between 4I 9/2 → 4F 7/2 and 4I 9/2 → 4S 3/2 transitions. The effect of Nd-O covalency on the Ω4 and Ω6 intensity parameters as well as on the spontaneous emission probabilities ( AR) was discussed. Lomheim and Shazer hybrid method was applied to determine the fluorescence branching ratios ( βR) of each emission transition from the 4F 3/2 metastable level to its lower lying levels. The evaluated total radiative transition probabilities ( AT), stimulated emission cross-sections ( σe) and gain bandwidth parameters ( σe × Δ λP) were compared with the earlier reports.

  12. Development And Optical Absorption Properties Of A Laser Induced Plasma During CO2-Laser Processing

    Science.gov (United States)

    Beyer, E.; Bakowsky, L.; Loosen, P.; Poprawe, R.; Herziger, G.

    1984-03-01

    Laser material processing is accompanied by a laser induced plasma in front of the target surface as soon as the laser radiation exceeds a certain critical intensity. For cw CO2-laser machining of metal targets the threshold for plasma onset is about 106 W/cm2. Critical condition for plasma generation at this intensity level is to reach evaporation temperature at the target's surface. At intensity levels exceeding 106 W/cm2 the laser light is interacting with the laser induced plasma and then the plasma in turn interacts with the target. The absorptivity is no longer constant, but increases with increasing intensity of the incident radiation, so that the total amount of power coupled to the target is increasing. This holds up to intensity levels of 2'10 Wicm2. Then the plasma begins to withdraw from the target surface, thus interrupting plasma-target interaction so that the laser power is no longer coupled into the target completely. The results of laser welding (welding depth) in the intensity level of 106 W/cm2 are governed by the product of incident intensity times focus radius, so that welding results are a measure to determine focus radius and laser intensity.

  13. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure-Property Relationship and Biological Imaging.

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-02-23

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  14. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure–Property Relationship and Biological Imaging

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-01-01

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  15. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure–Property Relationship and Biological Imaging

    Directory of Open Access Journals (Sweden)

    Qiong Zhang

    2017-02-01

    Full Text Available The application of two-photon absorption (2PA materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1 The two-photon absorption cross-section (δ of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2 Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3 Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA

  16. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  17. Reddening, Emission-Line, and Intrinsic Absorption Properties in the Narrow-Line Seyfert 1 Galaxy Akn 564

    CERN Document Server

    Crenshaw, D M; Turner, T J; Collier, S J; Peterson, B M; Brandt, W N; Clavel, J; George, I M; Horne, K; Kriss, G A; Mathur, S; Netzer, H; Pogge, R W; Pounds, K A; Romano, P; Shemmer, O; Wamsteker, W

    2002-01-01

    We use Hubble Space Telescope UV and optical spectra of the narrow-line Seyfert 1 (NLS1) galaxy Akn 564 to investigate its internal reddening and properties of its emission-line and intrinsic UV absorption gas. We find that the extinction curve of Akn 564, derived from a comparison of its UV/optical continuum to that of an unreddened NLS1, lacks a 2200 A bump and turns up towards the UV at a longer wavelength (4000 A) than the standard Galactic, LMC, and SMC curves. However, it does not show the extremely steep rise to 1200 A that characterizes the extinction curve of the Seyfert 1 galaxy NGC 3227. The emission-lines and continuum experience the same amount of reddening, indicating the presence of a dust screen that is external to the narrow-line region (NLR). Echelle spectra from the Space Telescope Imaging Spectrograph show intrinsic UV absorption lines due to Ly-alpha, N V, C IV, Si IV, and Si III, centered at a radial velocity of -190 km/s (relative to the host galaxy). Photoionization models of the UV ab...

  18. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  19. Theoretical Studies on the One- and Two-Photon Absorption Properties of Double-bis(styryl)benzene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HAN,De-Ming; FENG,Ji-Kang; REN,Ai-Min; SHANG,Xiao-Hong; ZHANG,Xiang-Biao; MA,Yu-Guang; HE,Feng

    2008-01-01

    Two series of bis(styryl)benzene derivatives (BSBD), namely the single-BSBD and the double-BSBD, were investigated. The equilibrium geometries and electronic structures were obtained by using the density functional theory B3LYP and 6-31G basis set. In succession, the one- and two-photon absorption properties of all the molecules were studied theoretically with a ZINDO-SOS (sum-over-states) method in detail. It can be seen that the double-BSBDs have larger two-photon absorption (TPA) cross sections in the visible-IR range than the corresponding single-BSBDs,demonstrating that increasing the molecular dimension is a very effective method to enhance the values of the TPA cross sections. On the other hand, it can be also noticed that the values of the TPA cross sections are correlative with the ability of donating (accepting) electrons of the terminal substituent groups R[N(CH3)2, CH3, H and CF3] in these molecules. That is, the intramolecular charge transfer is also a factor for the enhancement of the TPA efficiency. To sum up, the idea of increasing the molecular dimension to enhance the TPA cross section value is a helpful direction to explore better TPA materials for practical applications. And the double-BSBD molecules are promising TPA materials for the further investigation from the standpoint of the high transparency and the larger TPA cross sections.

  20. Preparation and electromagnetic wave absorption properties of Sm2O3/α-Fe/Sm2Fe17Nx composites

    Science.gov (United States)

    Ye, Jinwen; Liu, Ying; Zhang, Jiao; Chen, Xianfu; Yao, Mingying

    2013-06-01

    Sm2O3/α-Fe/Sm2Fe17Nx composites were prepared in situ by hydrogenation-disproportionation-oxygen-desorption-recombination and nitrogen process, and their electromagnetic wave absorption properties were measured in the frequency range of 0.5-18 GHz. The result showed that saturation magnetization and coercivity of as-prepared powder with 25.3 wt% Sm2O3, 64.4 wt% α-Fe and 10.3 wt% Sm2Fe17N3 were 134.57 emu/g and 654.5 G, respectively. The dielectric constant of composites was low over the frequency range of 0.5-18 GHz, and their resonance frequencies were at a high frequency range. The resin composite of Sm2O3/α-Fe/Sm2Fe17N3 exhibited effective electromagnetic wave absorption (RL≤20 dB) in a frequency range 3-9 GHz, for absorber thickness ranging from 3 to 8 mm, respectively. A minimum reflection loss of -53 dB from the samples was observed at 7 GHz with an absorber thickness of 3.59 mm.

  1. Radio spectra and polarisation properties of a bright sample of Radio-Loud Broad Absorption Line Quasars

    CERN Document Server

    Bruni, G; Salerno, E; Montenegro-Montes, F M; Carballo, R; Benn, C R; González-Serrano, J I; Holt, J; Jiménez-Luján, F

    2012-01-01

    The origin of broad-absorption-line quasars (BAL QSOs) is still an open issue. Accounting for ~20% of the QSO population, these objects present broad absorption lines in their optical spectra generated from outflows with velocities up to 0.2c. In this work we present the results of a multi-frequency study of a well-defined radio-loud BAL QSO sample, and a comparison sample of radio-loud non-BAL QSOs, both selected from the Sloan Digital Sky Survey (SDSS). We aim to test which of the currently-popular models for the BAL phenomenon - `orientation' or 'evolutionary' - best accounts for the radio properties of BAL quasars. Observations from 1.4 to 43 GHz have been obtained with the VLA and Effelsberg telescopes, and data from 74 to 408 MHz have been compiled from the literature. The fractions of candidate GHz-peaked sources are similar in the two samples (36\\pm12% vs 23\\pm8%), suggesting that BAL QSOs are not generally younger than non-BAL QSOs. BAL and non-BAL QSOs show a large range of spectral indices, consist...

  2. Simulation model of absorption and scattering properties of laser light applied to urban aerosols over the city of Popayan, Colombia

    Science.gov (United States)

    Bastidas, Alvaro E.; Rodriguez, Edith; Jaramillo, Mauricio; Solarte, Efrain

    2004-11-01

    Aerosols are among the most spatially variable components of the atmosphere, and thus their study requires their monitoring over a broad geographic range. The backscattering of light from suspended solid and liquid particles in the atmosphere obeys Mie scattering theory. Light attenuation in the spectral region from 300 to 4000 nm due to Mie scattering exceeds that due to molecular (Rayleigh) scattering and ozone absorption combined. This occurs despite the fact that aerosol particle concentrations in the atmosphere are many orders of magnitude smaller than molecular concentrations. Starting from the characteristics of urban aerosols measured over the city of Popayan, Colombia), 2° 27" N; 76° 37' W, with a PM10 particle selector, we present the results of a study of light attenuation properties generated using Matlab computer code, to simulate and predict measurements with a Lidar system operating at 514.5 nm.

  3. Solvothermal Synthesis of Caesium Tungsten Bronze in the Presence of Various Organic Acids and Its NIR Absorption Properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chongshen; Yin, Shu; Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai (Japan); Adachi, Kenji; Chonan, Takeshi, E-mail: bigguop@mail.tagen.tohoku.ac.jp [Ichikawa Research Laboratory, Sumitomo Metal Mining Co., Ltd (Japan)

    2011-10-29

    Nanoparticles of caesium tungsten bronze were successfully synthesized by solvothermal reactions in ethanol with the introduction of different organic fatty acids with various carbon numbers of 1 to 5. Compared to the sample prepared in pure ethanol, the samples obtained by mixed solvent of ethanol and fatty acids showed higher production yield, smaller particle size, more uniform particles size distribution and higher Cs/W atomic ratio. In addition, all of samples obtained using acids-ethanol mixed solvent exhibited higher visible light transmittance and greater NIR absorption performance, indicating the potential application for smart window and heat-ray shielding materials. The addition of acetic acid showed the best performance to facilitate the formation of well dispersed Cs{sub x}WO{sub 3} regular nanorods, leading to its excellent optical properties.

  4. New insights into two-photon absorption properties of functionalized aza-BODIPY dyes at telecommunication wavelengths: a theoretical study.

    Science.gov (United States)

    Liu, Xiaoting; Zhang, Jilong; Li, Kai; Sun, Xiaobo; Wu, Zhijian; Ren, Aimin; Feng, Jikang

    2013-04-01

    Special attention has been paid to understanding the structural effect on electronic structure and absorption spectra for an extensive series of functionalized aza-BODIPY molecules. We have employed the quadratic response theory as well as a sum-over-states approach involving few intermediate states to calculate the two-photon cross section (δmax). The results suggest that chemical modifications on the aza-BODIPY core and peripheral moieties using various substituents can finely tune their linear and nonlinear optical properties. Therefore, some new fluorophores absorbing in the near infrared region and featuring considerably high δmax at telecommunication wavelengths are proposed, which are excellent candidates for nonlinear transmission and fluorescent labeling materials. The investigation contributes a useful starting point for further design of more effective aza-BODIPY dyes and can be valuable as a foundation for future experimental research and development.

  5. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 2. Modelling results

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2005-12-01

    Full Text Available Model spectra of mass-specific absorption coefficients a*OM(λ were established for 26 naturally occurring organic substances or their possible mixtures, capable of forming particulate organic matter (POM in the sea. An algorithm was constructed, and the set of spectra of a*OM(λ was used to determine the spectra of the imaginary part of the complex refractive index n'p(λ characteristic of different physical types and chemical classes of POM commonly occurring in sea water. The variability in the spectra and absolute values of n'p for the various model classes and types of POM was shown to range over many orders of magnitude. This implies that modelling the optical properties of sea water requires a multi-component approach that takes account of the numerous living and non-living fractions of POM, each of which has a different value of n'p.

  6. Adsorption and absorption of Boron, Nitrogen, Aluminium and Phosphorus on Silicene: stability, electronic and phonon properties

    OpenAIRE

    Sivek, Jozef; Şahin, Hasan; Partoens, Bart; Peeters, François M.

    2013-01-01

    Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of silicon - silicene - with B, N, Al or P atoms. The structural, electronic, magnetic and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill site for B, N, Al and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behav...

  7. Mono azo dyes derived from 5-nitroanthranilic acid: Synthesis, absorption properties and DFT calculations

    Science.gov (United States)

    Karabacak Atay, Çiğdem; Gökalp, Merve; Kart, Sevgi Özdemir; Tilki, Tahir

    2017-08-01

    Four new azo dyes: 2-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (A), 2-[(3-hydroxy-5-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (B), 2-[(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (C) and 2-[(5-amino-3-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (D) which have the same 4-nitrobenzene/azo/pyrazole skeleton and different substituted groups are synthesized in this work. The structures and spectroscopic properties of these new azo dyes are characterized by using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR and UV-vis. Their solvatochromic properties in chloroform, acetic acid, methanol, dimethylformamide (DMF) and dimethylsulphoxide (DMSO) are studied. Moreover, molecular structures and some spectroscopic properties of azo dyes are investigated by utilizing the quantum computational chemistry method based on Density Functional Theory (DFT) employing B3LYP hybrid functional level with 6-31G(d) basis set. It is seen that experimental and theoretical results are compatible with each other.

  8. Two-photon absorption, nonlinear optical and UV-vis spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuxi, E-mail: yuxisun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China) and Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Hao Qingli; Tang Weihua; Wang Yufeng [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Xujie, E-mail: yangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu Lude; Wang Xin [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-09-15

    Highlights: {yields} Three imine-bridged aromatic antipyrine derivatives as photo-responsive materials. {yields} The compounds exhibit two-photon absorption and first-hyperpolarization properties {yields} The compounds have long-range electron transfer characteristics. - Abstract: Organic compounds as functional materials have attracted much keen interest in the past three decades owing to their potential applications in science and technology. Currently, great efforts have been made in looking for suitable photo-responsive materials among the multifarious organic compounds. Herein we reported the photophysical properties of 2-furanylmethylene-aminoantipyrine (FMAAP), benzylideneaminoantipyrine (BIAAP) and cinnamilideneamino-antipyrine (CIAAP) studied by a combined experimental and theoretical investigation. Two-photon absorption measurements give the cross-section values of 1.350 x 10{sup -50} cm{sup 4} s/photon for FMAAP, 1.046 x 10{sup -50} cm{sup 4} s/photon for BIAAP and 2.047 x 10{sup -50} cm{sup 4} s/photon for CIAAP. The calculated first-hyperpolarization values are of 2.303 x 10{sup -30}, 1.257 x 10{sup -29}, 2.889 x 10{sup -29} cm{sup 5}/esu for FMAAP, BIAAP and CIAAP, respectively. UV-vis spectroscopy technique further reveals that the studied compounds display long-range electron transfer characteristics by absorbing light of specific wavelengths of 294.5 nm for FMAAP, 293.2 nm for BIAAP and 303.1 nm for CIAAP. All the results indicate that the studied compounds are promising candidates of functionally photo-responsive materials.

  9. 芳纶毡体/阻尼弹性薄膜复合材料的吸声隔声性能%Sound Absorption and Sound Insulation Properties of Aramid Felt/Damping Elastic Film Composite

    Institute of Scientific and Technical Information of China (English)

    鲁灿灿; 李华; 康红梅; 刘河洲

    2012-01-01

    Nonwoven aramid felt, damping elastic films, and double, three layer compound structure nonwoven aramid felt/damping elastic film composite materials were prepared. Standing wave tube test method was used to investigate the influence of sound absorption coefficient in different thickness of aramid fdt and different compound structures of the composite. Aramid felt and damping elastic film were placed in reverberation and anechoic room to test the sound-insulation capabilities. The results showed that the sound absorption and sound insulation properties of the three-layer eomposite material was superior to a composite of two layers; for the same thickness of three layer compound materials, good sound-absorption property of the surface layer material should be selected.%制备了非织造芳纶毡体、阻尼弹性薄膜及双层、三层结构的非织造芳纶毡体/阻尼弹性薄膜复合材料.牙1用驻波管测试方法研究了非织造芳纶毡体厚度及不同复合结构对复合材料吸声性能的影响;利用混响室一消声室法研究了各试样的隔声性能。结果表明:三层复合材料的吸声隔声性能优于两层复合材料的;对于厚度相同的三层复合材料,表层材料应选择吸声性能较好的材料。

  10. Optical Absorption Property and Photo-catalytic Activity of Tin Dioxide-doped Titanium Dioxides

    Institute of Scientific and Technical Information of China (English)

    LI,Huai-Xiang; XIA,Rong-Hua; JIANG,Zheng-Wei; CHEN,Shan-Shan; CHEN,De-Zhan

    2008-01-01

    SnO2-doped TiO2 films and composite oxide powders have been prepared by a sol-gel method. Ti(OC4H9)4 and SnCl4·5H2O were used as precursors and C2H5OH was used as solvent. The optical absorption measurements indicate that the composite oxide SnO2-TiO2 thin films exhibit smaller optical energy band gaps than pure TiO2 thin films and the optical energy band gap decreases as calcining temperature increases. X-ray diffraction was used to characterize the phase transition for the composite oxide powders at different calcining temperatures. Aanatase phase is the main crystal structure in both pure TiO2 and Sn0.05Ti0.95O2 samples if calcining temperature is below 500℃. The rutile phase has appeared and coexisted with the anatase crystal phase for both pure TiO2 and Sn0.05Ti0.95O2 composite oxides when calcining was at 600℃ . Transmission electron microscopy analysis shows a smaller grain size in Sn0.05Ti0.95O2 powders than TiO2 powders calcined at 600℃. When calcining temperature is 700℃ , there is only rutile phase in Sn0.05Ti0.95O2 samples, but there are still two crystal phases, anatase and rutile, coexisting in the pure TiO2 samples. Assuming the grain growth obeys the first order kinetics, Arrhenius empirical relation has been used to estimate the activation energy of 47.486 and 33.103 kJ·mol-1 for the grain growth of TiO2 and Sn0.05Ti0.95O2, respectively. The photo-catalytic activity of the powder samples has been examined by measuring the degradation of methylene blue solution under ultra-violet irradiation. Two effective factors of photo-catalytic activity namely, the content of SnO2 in the TiO2 samples and the calcining temperature, have been optimized based on the photo-catalytic degradation of methylene blue solution.

  11. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  12. Sound absorption performance of natural fibers and their composites

    Institute of Scientific and Technical Information of China (English)

    YANG WeiDong; LI Yan

    2012-01-01

    This research aimed to study the sound absorption properties of natural fibers and their reinforced composites.Sound absorption coefficients of three types of natural fibers,i.e.,ramie,flax and jute fibers and their composites were measured by the two-microphone transfer function technique in the impedance tube.The results were compared with synthetic fibers and their composites.It was found that both natural fibers and their composites had superior capability of noise reduction.The multi-scale and hollow lumen structures of natural fibers contributed to the high sound absorption performance.Moreover,the sound absorption properties of these natural fibers were also calculated by the Delany-Bazley and Garai-Pompoli models.They showed good agreement with the experimental data.It was concluded that multi-functional composite materials can be made by natural fibers so that both the mechanical and acoustical functions can be achieved.

  13. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  14. Hydrogen Absorption Thermodynamic Properties of Rare Earth Based Hydrogen Storage Alloy in Benzene

    Institute of Scientific and Technical Information of China (English)

    蔡官明; 陈长聘; 安越; 徐国华; 陈立新; 王启东

    2002-01-01

    The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La-rich mischmetal nickel hydrogen storage alloy (MlNi5) in Benzene (C6H6) were investigated. The pressure-composition isotherms for both the alloy powder and the slurry suspended with MlNi5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation ΔH° and standard entropy of formation ΔS° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of ΔH° and ΔS° for the hydriding reaction of hydrogen storage alloy (MlNi5) of the slurry system and the gas-solid system are all very close.

  15. Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline.

    Science.gov (United States)

    Manda, Vamshi K; Avula, Bharathi; Ali, Zulfiqar; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2014-05-01

    Mitragyna speciosa (kratom) is a popular herb in Southeast Asia, which is traditionally used to treat withdrawal symptoms associated with opiate addiction. Mitragynine, 7-hydroxymitragynine, and mitraphylline are reported to be the central nervous system active alkaloids which bind to the opiate receptors. Mitraphylline is also present in the bark of Uncaria tomentosa (cat's claw). Several therapeutic properties have been reported for these compounds but limited information is available on the absorption and distribution properties. This study focuses on evaluating the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds and their effect on major efflux transporter P-glycoprotein, using in vitro methods. Quantitative analysis was performed by the Q-TOF LC-MS system. Mitragynine was unstable in simulated gastric fluid with 26 % degradation but stable in simulated intestinal fluid. 7-Hydroxymitragynine degraded up to 27 % in simulated gastric fluid, which could account for its conversion to mitragynine (23 %), while only 6 % degradation was seen in simulated intestinal fluid. Mitraphylline was stable in simulated gastric fluid but unstable in simulated intestinal fluid (13.6 % degradation). Mitragynine and 7-hydroxymitragynine showed moderate permeability across Caco-2 and MDR-MDCK monolayers with no significant efflux. However, mitraphylline was subjected to efflux mediated by P-glycoprotein in both Caco-2 and MDR-MDCK monolayers. Mitragynine was found to be metabolically stable in both human liver microsomes and S9 fractions. In contrast, both 7-hydroxymitragynine and mitraphylline were metabolized by human liver microsomes with half-lives of 24 and 50 min, respectively. All three compounds exhibited high plasma protein binding (> 90 %) determined by equilibrium dialysis. Mitragynine and 7-hydroxymitragynine inhibited P-glycoprotein with EC50 values of 18.2 ± 3.6 µM and 32.4 ± 1.9 µM, respectively

  16. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenqiang, E-mail: zwqcau@gmail.com [College of Engineering, China Agricultural University, Beijing 100083 (China); Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Zhang, Deyuan; Xu, Yonggang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); McNaughton, Ryan [Department of Biomedical Engineering, Boston University, Boston 02215 (United States)

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately −5.1 dB at 14.4 GHz. - Highlights: • Light weight absorbing composites were fabricated with bio-flaky particles added. • SEM results show bio-flaky particles could help the arrangement of FCIPs. • Composites' RL could be improved with bio-flaky particles added. • The RL peak move to lower frequency with bio-flaky particles added.

  17. Absorption and fluorescence properties of oligothiophene biomarkers from long-range-corrected time-dependent density functional theory.

    Science.gov (United States)

    Wong, Bryan M; Piacenza, Manuel; Della Sala, Fabio

    2009-06-14

    The absorption and fluorescence properties in a class of oligothiophene push-pull biomarkers are investigated with a long-range-corrected (LC) density functional method. Using linear-response time-dependent density functional theory (TDDFT), we calculate excitation energies, fluorescence energies, oscillator strengths, and excited-state dipole moments. To benchmark and assess the quality of the LC-TDDFT formalism, an extensive comparison is made between LC-BLYP excitation energies and approximate coupled cluster singles and doubles (CC2) calculations. When using a properly-optimized value of the range parameter, mu, we find that the LC technique provides an accurate description of charge-transfer excitations as a function of biomarker size and chemical functionalization. In contrast, we find that re-optimizing the fraction of Hartree Fock exchange in conventional hybrid functionals still yields an inconsistent description of excitation energies and oscillator strengths for the two lowest excited states in our series of biomarkers. The results of the present study emphasize the importance of a distance-dependent contribution of exchange in TDDFT for investigating excited-state properties.

  18. Microwave Absorption and Shielding, Property of Composites with FeSiA1 and Carbonous Materials as Filler

    Institute of Scientific and Technical Information of China (English)

    Wenqiang Zhang; Yonggang Xu; Liming Yuan; Jun Cai; Deyuan Zhangt

    2012-01-01

    Silicone rubber composites filled with FeSiAI alloys and multi-walled carbon nanotubes (MWCNT)/graphite have been prepared for the first time by a coating process. The complex permittivity and permeability of the composites were measured with a vector network analyzer in a 1-4 GHz frequency range, and the DC electric conductivity was measured by a standard four-point contact method. These parameters were then used to calculate the reflection loss (RL) and shielding effectiveness (SE) of the composites. The results showed that the added MWCNT increased the permittivity and permeability of composites in the L-band, while the added graphite increased only the permittivity. The variation lies in the interactions between two carbonous absorbents. Addition of 1 wt% MWCNT enhanced the RL in the L-band (minimum -5.7 dB at 1 ram, -7.3 dB at 1.5 ram), while the addition of graphite did not. Addition of MWCNT as well as graphite reinforced the shielding property of the composites (maximum SE 13.3 dB at 1 ram, 18.3 dB at 1.5 ram) owing to the increase of conductivity. The addition of these carbonous materials could hold the promise of enforcing the absorption and shielding property of the absorbers.

  19. Eruption combustion synthesis of NiO/Ni nanocomposites with enhanced properties for dye-absorption and lithium storage.

    Science.gov (United States)

    Wen, Wei; Wu, Jin-Ming

    2011-10-01

    Large-scale energy-efficient productions of oxide nanoparticles are of great importance in energy and environmental applications. In nature, volcano eruptions create large amounts of volcano ashes within a short duration. Inspired by such phenomena, we report herein our first attempt to achieve an artificial volcano for mass productions of various oxide nanoparticles with enhanced properties for energy and environmental applications. The introduction of NaF into the solution combustion synthesis (SCS), which is a generally adopted synthetic route for mass productions of various oxide nanoparticles, results in better particle dispersity and a drastic increase in specific surface area compared to the conventional SCS. In a fixed dosage of NaF, a new eruption combustion pattern emerges, which may be contributed to the more gas evolution, lower apparent density, and weaker interparticle force. The novel eruption combustion pattern observed in SCS provides a versatile alternative for SCS to control combustion behavior, microstructure, and property of the products. NiO/Ni nanocomposite yielded by the new approach shows an ideal dye-absorption ability as well as lithium storage capacity. The new SCS pattern reported in this paper is versatile, emerging in various systems of Ni-Co-O, Co-O, La-O, Ni-Co-O, Zn-Co-O, and La-Ni-O.

  20. Tunable electronic and magnetic properties in stanene by 3d transition metal atoms absorption

    Science.gov (United States)

    Xing, Dan-Xu; Ren, Ceng-Ceng; Zhang, Shu-Feng; Feng, Yong; Chen, Xin-Lian; Zhang, Chang-Wen; Wang, Pei-Ji

    2017-03-01

    The electronic and magnetic properties of transition metal (TM) atoms (V, Cr, Mn, Fe, Co, Ni) adsorption on stanene are investigated by first-principles calculations. The results indicate that the TM atoms prefer to be relaxed on a H site on stanene except V atom which lies on the valley site. Fe-absorbed stanene is a spin gapless semiconductor with up-spin electron and down-spin hole carriers allowing the coexistence of charge current and the pure spin current. Co-absorbed stanene lies in the half metal phase. The V-, Cr-, Mn-, and Cu-absorbed stanene turn the stanene into metal, while Ni- and Zn-absorbed stanene open a narrow band gap. For V-, Cr-, Mn-, Fe-, and Co-absorbed stanene, the magnetic moment of the TM will survive while the Ni-, Cu-, and Zn-absorbed stanene will be non-magnetic material. These findings may have great potential in the design of new electrically controllable spintronic devices.

  1. Hydrogen as a Modifier of the Structure and Electronic Properties of Platinum in Acidic Zeolite. LTL: A Combined Infrared and X-ray Absorption Spectroscopy Study.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Vaarkamp, M.; Mojet, B.L.; Kappers, M.J.; Miller, J.T.

    1995-01-01

    The structure and electronic properties of platinum in WH-LTL after reduction at 300 'C and heating in helium to 500 or 690 'C were determined using X-ray absorption and infrared spectroscopy. After reduction at 300 'C, the platinum particles were metallic, consisted of 4 or 5 atoms, and were locate

  2. Preparation and properties of composite multilayer sound absorption structures%多层复合吸声结构的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    姜生; 蔡永东; 周祥; 晏雄

    2012-01-01

    将穿孔板与氯化聚乙烯/七孔涤纶纤维复合材料进行复合,制备了一系列无后部空腔层的多层复合吸声结构.采用SW230驻波管运用传递函数法测试了复合吸声结构的吸声性能,分析了组合层数、组合方式、复合材料厚度以及穿孔板的孔隙率对吸声性能的影响.结果表明:在双层复合结构中,当穿孔板为测试面时,其吸声性能呈现多孔材料的特性;而测试面为复合材料时,吸声结构具有膜空腔共振的特性;当穿孔板层数超过2层时,复合吸声结构能将多孔材料吸声机制和共振吸声机制进行有机结合,拓宽了其吸声频域,是一种具有工程应用潜的吸声结构.%A series of composite multilayer sound absorption structures without cavity layer at the back were prepared by compounding the perforated plate and chlorinated polyethylene/seven-hole hollow polyester fiber composite. The sound absorption properties of the composite multilayer structures were tested by transfer function method using SW230 impedance tubes, and the effects of the number of compound layer, compound mode, thickness of composite and porosity of perforated plate on sound absorption properties were analyzed. The results showed that in the case of double structure, sound absorption properties presented the acoustic characteristics of porous materials when measuring face was perforation plate, while sound absorption properties presented acoustic characteristics of film cavity resonance when measuring face was a composite. In the case of a structure with more than two layers of perforated plate, the composite structure can well combine the sound-absorption mechanism and resonance sound-absorption of porous materials, thus widening its sound-absorption frequency range, and hence this sound absorption structure has potential applications in engineering field.

  3. Identification and Characterization of Differentially Expressed Genes in Inferior and Superior Spikelets of Rice Cultivars with Contrasting Panicle-Compactness and Grain-Filling Properties.

    Directory of Open Access Journals (Sweden)

    Sudhanshu Sekhar

    Full Text Available Breeding programs for increasing spikelet number in rice have resulted in compactness of the panicle, accompanied by poor grain filling in inferior spikelets. Although the inefficient utilization of assimilate has been indicated as responsible for this poor grain filling, the underlying cause remains elusive. The current study utilized the suppression subtractive hybridization technique to identify 57 and 79 genes that overexpressed in the superior and inferior spikelets (with respect to each other, respectively, of the compact-panicle rice cultivar Mahalaxmi. Functional categorization of these differentially expressed genes revealed a marked metabolic difference between the spikelets according to their spatial location on the panicle. The expression of genes encoding seed storage proteins was dominant in inferior spikelets, whereas genes encoding regulatory proteins, such as serine-threonine kinase, zinc finger protein and E3 ligase, were highly expressed in superior spikelets. The expression patterns of these genes in the inferior and superior spikelets of Mahalaxmi were similar to those observed in another compact-panicle cultivar, OR-1918, but differed from those obtained in two lax-panicle cultivars, Upahar and Lalat. The results first suggest that the regulatory proteins abundantly expressed in the superior spikelets of compact-panicle cultivars and in both the superior and inferior spikelets of lax-panicle cultivars but poorly expressed in the inferior spikelets of compact-panicle cultivars promote grain filling. Second, the high expression of seed-storage proteins observed in the inferior spikelets of compact-panicle cultivars appears to inhibit the grain filling process. Third, the low expression of enzymes of the Krebs cycle in inferior spikelets compared with superior spikelets of compact-panicle cultivars is bound to lead to poor ATP generation in the former and consequently limit starch biosynthesis, an ATP-consuming process

  4. Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material

    Institute of Scientific and Technical Information of China (English)

    DING Chun-Ling; LI Jia-Hua; YANG Xiao-Xue

    2011-01-01

    The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RFinduced quantum interference and the density of states (DOS) of the PBG reservoir.

  5. Photophysiological and light absorption properties of phytoplankton communities in the river-dominated margin of the northern Gulf of Mexico

    Science.gov (United States)

    Chakraborty, Sumit; Lohrenz, Steven E.; Gundersen, Kjell

    2017-06-01

    Spatial and temporal variability in photophysiological properties of phytoplankton were examined in relationship to phytoplankton community composition in the river-dominated continental margin of the northern Gulf of Mexico (NGOM). Observations made during five research cruises in the NGOM included phytoplankton photosynthetic and optical properties and associated environmental conditions and phytoplankton community structure. Distinct patterns of spatial and temporal variability in photophysiological parameters were found for waters dominated by different phytoplankton groups. Photophysiological properties for locations associated with dominance by a particular group of phytoplankton showed evidence of photoacclimation as reflected by differences in light absorption and pigment characteristics in relationship to different light environments. The maximum rate of photosynthesis normalized to chlorophyll (PmaxB) was significantly higher for communities dominated (>60% biomass) by cyanobacteria + prochlorophyte (cyano + prochl). The initial slope of the photosynthesis-irradiance (P-E) curve normalized to chlorophyll (αB) was not clearly related to phytoplankton community structure and no significant differences were found in PmaxB and αB between different geographic regions. In contrast, maximum quantum yield of carbon fixation in photosynthesis (Φcmax) differed significantly between regions and was higher for diatom-dominated communities. Multiple linear regression models, specific for the different phytoplankton communities, using a combination of environmental and bio-optical proxies as predictor variables showed considerable promise for estimation of the photophysiological parameters on a regional scale. Such an approach may be utilized to develop size class-specific or phytoplankton group-specific primary productivity models for the NGOM.Plain Language SummaryThis study examined the relationships between phytoplankton community composition and associated

  6. Near-infrared absorption properties of oxygen-rich stardust analogues: The influence of coloring metal ions

    CERN Document Server

    Zeidler, Simon; Mutschke, Harald; Richter, Hannes; Wehrhan, Ortrud

    2011-01-01

    Several astrophysically relevant solid oxides and silicates have extremely small opacities in the visual and near-infrared in their pure forms. Datasets for the opacities and for the imaginary part k of their complex indices of refraction are hardly available in these wavelength ranges. We aimed at determining k for spinel, rutile, anatase, and olivine, especially in the near-infrared region. Our measurements were made with impurity-containing, natural, and synthetic stardust analogs. Two experimental methods were used: preparing small sections of natural minerals and synthesizing melt droplets under the electric arc furnace. In both cases, the aborption properties of the samples were measured by transmission spectroscopy. For spinel (MgAl2O4), anatase, rutile (both TiO2), and olivine ((Mg,Fe)2SiO4), the optical constants have been extended to the visual and near-infrared. We highlight that the individual values of k and the absorption cross section depend strongly on the content in transition metals like iro...

  7. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-15

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below −5 dB can be obtained in the frequency range of 5.76–18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed. - Highlights: • Carbonyl iron particles/silicone resin composites are prepared by a spraying method. • Reflection loss values exceed −5 dB at 5.76–18 GHz for an absorber of 0.8 mm thickness. • The variation of reflection loss was studied from room temperature to 300 °C.

  8. Optical absorption and fluorescence properties of Er{sup 3+}/Yb{sup 3+} codoped lead bismuth alumina borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Goud, K. Krishna Murthy, E-mail: krishnamurthy.phy@gmail.com; Reddy, M. Chandra Shekhar, E-mail: krishnamurthy.phy@gmail.com; Rao, B. Appa, E-mail: krishnamurthy.phy@gmail.com [Dept. of Physics, Osmania University, Hyderabad-500007, Andhra Pradesh (India)

    2014-04-24

    Lead bismuth alumina borate glasses codoped with Er{sup 3+}/Yb{sup 3+} were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω{sub 2}, Ω{sub 4} and Ω{sub 6} parameters. Radiative properties like branching ratio β{sub r} and the radiative life time τ{sub R} have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+} respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb{sup 3+} and Er{sup 3+}.

  9. Crystal microstructure, infrared absorption, and microwave electromagnetic properties of (La1-xDyx)2/3Sr1/3MnO3

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; YUN Guohong; SU Meiling

    2009-01-01

    The manganite perovskite polycrystal samples of (La1-xDyx)Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 20 in-creases from 0.05° to 0.5°. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at roomtemperature. An absorption peak corresponding to the stretching vibration mode of Mn--O bonds appears within the range of 591-629 cm-1.The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency dependence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε", for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attributed to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.

  10. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    Science.gov (United States)

    Street, Kenneth (Inventor); Voronov, Oleg A (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  11. Modulation of electromagnetic and absorption properties in 18-26.5 GHz frequency range of strontium hexaferrites with doping of cobalt-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Pubby, Kunal; Narang, Sukhleen Bindra [Guru Nanak Dev University, Department of Electronics Technology, Amritsar (India); Kaur, Prabhjyot; Chawla, S.K. [Guru Nanak Dev University, Department of Chemistry, Centre for Advanced Studies-I, Amritsar (India)

    2017-05-15

    Hexaferrite nano-particles of stoichiometric composition Sr(CoZr){sub x}Fe{sub 12-2x}O{sub 19}, with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared using sol-gel auto-combustion route owing to its advantages such as low sintering temperature requirement, homogeneity and uniformity of grains. Tartaric acid as a fuel was utilized to complete the chemical reaction. The goal of this study is to analyse the effect of co-substitution of cobalt and zirconium on the electromagnetic and absorption properties of pure SrFe{sub 12}O{sub 19} hexaferrite. The properties were measured on the rectangular pellets of thickness 2.5 mm for K-frequency band using Vector Network Analyzer. The doping of Co-Zr has resulted in increase in real as well as imaginary parts of permittivity. The values of real permittivity lie in the range 3.6-7.0 for all the composition. The real part of permeability remains in range 0.7-1.6 in the studied frequency band for all the samples and shows slightly increasing trend with frequency. The maximum values of dielectric loss tangent peak (3.04) and magnetic loss tangent peak (2.34), among all the prepared compositions, have been observed for composition x = 0.2. Compositions with x = 0.6 and x = 0.0 also have high dielectric and magnetic loss peaks. Dielectric loss peaks are attributed to dielectric resonance and magnetic loss peaks are attributed to natural resonance. Experimentally determined reflection loss results show that all six compositions of prepared series have high values of absorption to propose them as single-layer absorbers in 18-26.5 GHz frequency range. The composition with x = 0.2 has maximum absorption capacity with reflection loss peak of -37.2 dB at 24.3 GHz frequency. The undoped composition also has high absorption peak (-25.46 dB), but -10 dB absorption bandwidth is minimum (2.2 GHz) out of the present series. Maximum absorption bandwidth is obtained for x = 1.0 (4.1 GHz). Other doped compositions also have high absorption bandwidth

  12. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  13. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.

    Science.gov (United States)

    Liu, Pan-Bo; Huang, Ying; Sun, Xu

    2013-12-11

    The ternary composites of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 (PEDOT-RGO-Co3O4) were synthesized and the electromagnetic absorption property of the composites was investigated. The structure of the composites was characterized with Fourier-transform infrared spectra, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscope. The electromagnetic parameters indicate the enhanced electromagnetic absorption property of the composites was attributed to the better impedance matching. On the basis of the above characterization, an electromagnetic complementary theory was proposed to explain the impedance matching. It can be found that the maximum reflection loss of PEDOT-RGO-Co3O4 can reach -51.1 dB at 10.7 GHz, and the bandwidth exceeding -10 dB is 3.1 GHz with absorber thickness of 2.0 mm. Therefore, the PEDOT-RGO-Co3O4 composites, with such excellent electromagnetic absorption properties and wide absorption bandwidth, can be used as a new kind of candidate for microwave absorbing materials.

  14. 废旧羊毛非织造布的制备及其吸声性能%Preparation and sound absorption properties of waste wool nonwoven material

    Institute of Scientific and Technical Information of China (English)

    栾巧丽; 邱华; 成钢; 葛明桥

    2016-01-01

    为研究废旧羊毛材料的吸声性能,利用非织造布的生产工艺,以废旧羊毛为主要原料,制备一种新型羊毛非织造布。通过使用传递函数法和驻波管法,对羊毛非织造布的吸声性能进行了测试,分析了在声波频率为250~6300 Hz范围内材料厚度、密度和空腔深度对其吸声性能的影响。结果表明,羊毛非织造布吸声性能优异,对高频的吸声性能优于对低频;在中低声波频率,随材料厚度、密度和空腔深度的增加,其吸声性能越好。材料厚度和空腔深度是影响羊毛非织造材料吸声性能的主要因素;通过增加空腔深度提升材料的吸声性能,是较为经济合理的办法。%In order to study the sound absorption properties of waste wool fiber, a kind of novel wool nonwoven material was prepared by a conventional non⁃woven technique with waste wool fibers as the main raw material. Using the transfer⁃function method and standing wave tube method, the sound absorption properties of wool nonwoven materials in a frequency range of 250-6 300 Hz were studied by changing the thickness, density, and cavity depth. Results indicated that wool nonwoven materials exhibit excellent sound absorption properties, which at high frequencies are better than those at low frequencies. At the sound waves of low frequencies, with the increase of thickness, density and cavity depth, sound absorption properties improve. The thickness and cavity depth are the main factors affecting the sound absorption properties of the material. Moreover, it is an economic and reasonable way to increase the sound absorption properties of the material by enhancing the cavity depth.

  15. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae.

    Science.gov (United States)

    Blache, Ulrich; Jakob, Torsten; Su, Wanwen; Wilhelm, Christian

    2011-08-01

    Photosynthesis-irradiance (P-E)-curves describe the photosynthetic performance of autotrophic organisms. From these P-E-curves the photosynthetic parameters α-slope, P(max), and E(k) can be deduced which are often used to characterize and to compare different organisms or organisms in acclimation to different environmental conditions. Particularly, for in situ-measurements of P-E curves of phytoplankton the analysis of variable chlorophyll fluorescence proved its potential as a sensitive and rapid method. By using Chlorella vulgaris (Trebouxiophyceae), Nannochloropsis salina (Eustigmatophyceae), Skeletonema costatum and Cyclotella meneghiniana (Bacillariophyceae), the present study investigated the influence of cellular bio-optical properties on the correlation of the photosynthetic parameters derived from fluorescence-based P-E-curves with photosynthetic parameters obtained from the measurement of oxygen evolution. It is demonstrated that small planktonic algae show a wide range of cellular absorptivity which was subject to species-specifity, growth stage and environmental conditions, e.g. nutrient limitation. This variability in bio-optical properties resulted in a great deviation of relative electron transport rates (rETRs) from oxygen-based photosynthesis rates. Thus, the photosynthetic parameters α-slope and P(max) derived from rETRs strongly depend on the specific cellular absorptivity and cannot be used to compare the photosynthetic performance of cells with different optical properties. However, it was shown that E(k) is independent of cellular absorptivity and could be used to compare samples with unknown optical properties.

  16. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    Science.gov (United States)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  17. 土壤特性对保水剂吸水性能的影响%Effect Mechanism of Soil Properties on Water Absorption of Absorbent Polymers

    Institute of Scientific and Technical Information of China (English)

    陈学文

    2011-01-01

    [ Objective ] The research aimed to study the effects of soil properties on water absorption of super absorbent polymers. [ Method]The water absorption ratio of super absorbent polymers in different pH and soil were tested. [Result] The results indicated that the water absorption ratio of super absorbent polymers changed with the pH and soil changing. The water absorption rate was the largest when pH was 7.0. The water absorption ratio was lower in the soil that its clay percent was higher. At the beginning of absorption in the soils, the water absorption ratio of super absorbent polymers was restricted by the soil porosity. With the increase of water absorption time, the ion exchange capacity increased the water absorption ratio decreased gradually by. [ Conclusion] The study reveals the effect mechanism of different pH and soil on the ater absorption of super absorbent polymers, can provide the basis for effectively applying the super absorbent polymers.%[目的]研究了土壤特性时保水剂吸水性能的影响.[方法]分别测试了聚丙烯酸钠系高分子保水剂在不同pH、不同土质土壤中的吸水倍率.[结果]保水剂的吸水倍率随着土壤pH和土质变化而发生变化.在pH为7.0左右,达到最大.黏粒、有机质含量越高吸水倍率越低.吸水初期,吸水倍率主要受土壤孔隙特性的影响;随着吸水时间的加长,土壤溶液中离子交换量增大,吸水倍率逐渐下降.[结论]揭示了不同pH、土质对保水剂吸水性能的影响机理,为高效应用保水剂提供依据.

  18. Study of nonlinear optical absorption properties of V{sub 2}O{sub 5} nanoparticles in the femtosecond excitation regime

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna; Bhat Kademane, Abhijit; Pradhan, Prabin; Sai Muthukumar, V. [Sri Sathya Sai Institute of Higher Learning, Department of Physics, Puttaparthi, Andhra Pradesh (India)

    2016-08-15

    In this work, we report for the first time, the nonlinear optical absorption properties of vanadium pentoxide (V{sub 2}O{sub 5}) nanoparticles in the femtosecond excitation regime. V{sub 2}O{sub 5} nanoparticles were synthesized through solution combustion technique. The as-synthesized samples were further characterized using XRD, FESEM, EDAX, TEM and UV-visible spectroscopy. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies showed the size of the nanoparticles to be ∝200 nm. Open-aperture z-scan technique was employed to study the nonlinear optical absorption behavior of the synthesized samples using a 100-fs laser pulses at 800 nm from a regeneratively amplified Ti: sapphire laser. The mechanism of nonlinear absorption was found to be a three-photon absorption process which was explained using the density of states of V{sub 2}O{sub 5} obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered for optical-power-limiting applications. (orig.)

  19. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Pushpa [CSIR Emeritus Scientist, IUCAA, Ganeshkhind, Pune 411007 (India); Daniel, Vanden Berk [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Rahmani, Hadi [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); York, Donald G., E-mail: pushpakhare@gmail.com [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-10

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s{sup –1}; in units of velocity of light, β, ≤0.01) with 0.4 ≤z {sub abs} ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10{sup 9} M {sub ☉} than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z {sub abs} > z {sub em}, which could be infalling galaxies.

  20. Dielectric Response and Broadband Microwave Absorption Properties of Three-Layer Graded ZnO Nanowhisker/Polyester Composites

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan; SHI Xiao-Ling; YUAN Jie; FANG Xiao-Yong; CAO Mao-Sheng

    2007-01-01

    We design and prepare three-layer graded ZnO nanowhisker/polyester composites. The dispersion configuration of ZnO nanowhiskers in the polyester is investigated, and their microwave reflectivity curves are also measured. Experimental results have shown that the graded dispersion with ZnO nanowhiskers contributes to broadband microwave absorption. In other words, the absorption band depends on the graded dispersion configuration of ZnO nanowhiskers in polyester matrix.

  1. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R., E-mail: shane.johnson@asu.edu [Center for Photonics Innovation and School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Steenbergen, E. H. [U.S. Air Force Research Laboratory, AFRL/RXAN, Wright Patterson, Ohio 45433 (United States); Synowicki, R. A. [J. A. Woollam Co., Inc., 645 M. Street, Suite 102, Lincoln, Nebraska 68508 (United States)

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  2. CONTROLLED-VALENCE PROPERTIES OF LA1-XSRXFEO3 AND LA1-XSRXMNO3 STUDIED BY SOFT-X-RAY ABSORPTION-SPECTROSCOPY

    NARCIS (Netherlands)

    ABBATE, M; DEGROOT, FMF; FUGGLE, JC; FUJIMORI, A; STREBEL, O; LOPEZ, F; DOMKE, M; KAINDL, G; SAWATZKY, GA; TAKANO, M; TAKEDA, Y; EISAKI, H; UCHIDA, S

    1992-01-01

    The controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 are studied by means of soft-x-ray absorption spectroscopy. A comparison between the transition-metal 2p spectra and atomic-multiplet calculations is used to determine the 3d count. The 0 Is spectrum is used to characterize changes

  3. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    Science.gov (United States)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated

  4. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  5. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  6. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  7. Finding consistency between different views of the absorption enhancement of black carbon: An observationally constrained hybrid model to support a transition in optical properties with mass fraction

    Science.gov (United States)

    Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.

    2015-12-01

    The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.

  8. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

    Science.gov (United States)

    Sun, Min; Zhao, Lixia; Guo, Chenyu; Cao, Fengliang; Chen, Huanlei; Zhao, Liyan; Tan, Qi; Zhu, Xiuqing; Zhu, Fanping; Ding, Tingting; Zhai, Yingjie; Zhai, Guangxi

    2012-02-01

    A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40-400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

  9. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Min; Zhao Lixia; Guo Chenyu; Cao Fengliang; Chen Huanlei; Zhao Liyan; Tan Qi; Zhu Xiuqing; Zhu Fanping; Ding Tingting; Zhai Yingjie; Zhai Guangxi, E-mail: professorzhai@yeah.net [Shandong University, Department of Pharmaceutics, College of Pharmacy (China)

    2012-02-15

    A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40-400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

  10. Scattering and absorption properties of near-surface aerosol over Gangetic–Himalayan region: the role of boundary layer dynamics and long-range transport

    Directory of Open Access Journals (Sweden)

    U. C. Dumka

    2014-08-01

    Full Text Available Knowledge of light scattering and absorption properties of atmospheric aerosols is of vital importance in evaluating their types, sources and radiative forcing. This is of particular interest over the Gangetic–Himalayan (GH region due to large aerosol loading over the plains and the uplift over the Himalayan range causing serious effects on atmospheric heating, glaciology and monsoon circulation. In this respect, Ganges Valley Aerosol Experiment (GVAX was initiated over the region aiming to examine the aerosol properties, source regions, uplift mechanisms and aerosol-cloud interactions. The present study examines the temporal (monthly, seasonal evolution of scattering (σsp and absorption (σap coefficients, their wavelength dependence, and the role of the Indo-Gangetic plains (IGP, boundary-layer dynamics (BLD and long-range transport (LRT in the aerosol uplift over the Himalayas. The measurements are performed at the elevated site Nainital via the Atmospheric Radiation Measurement Mobile Facility including several instruments (Nephelometer, Particle Soot Absorption Photometer, etc. during June 2011 to March 2012. The σsp and σap exhibit a pronounced seasonal variation with monsoon low and post-monsoon (November high, while the scattering wavelength exponent exhibits higher values during monsoon, in contrast to the absorption Ångström exponent which maximizes in December–March. The analysis is performed separately for particles bellow 10 and 1μm in diameter in order to examine the influence of the particle size on optical properties. The elevated-background measuring site provides the advantage of examining the LRT of natural and anthropogenic aerosols from the IGP and southwest Asia and the role of BLD in the aerosol lifting processes, while the aerosols are found to be well-mixed and aged-type dominant.

  11. Pall摩擦耗能减震器减震性能研究%The shock absorption properties of Pall frictional energy dissipation shock absorber

    Institute of Scientific and Technical Information of China (English)

    孙志松

    2009-01-01

    Against to the fast developing status of structural shock absorption technology, the applied situation of Pall frictional energy dissipa-tion shock absorber was introduced. The basic constitution and shack absorption properties of Pall frictional energy dissipation shock absorber were analyzed, the result indicated that it can dissipate large amount seismic energy and had better shock absorption effect with energy dissipa-tion supporting of Pall frictional shock absorption device as protective structure.%针对结构减震技术迅速发展的现状,介绍了Pall摩擦耗能减震器的应用情况,就Pall摩擦耗能减震器的基本构造及减震性能进行了分析,结果表明:采用安装Pall摩擦减震装置的耗能支撑来保护结构,可耗散大量地震能量,减震效果好.

  12. Variation in light absorption properties of mentha aquatica L. as a function of leaf form: Implications for plant growth

    DEFF Research Database (Denmark)

    Enriquez, Susana; Jensen, Kaj Sand

    2008-01-01

    area increased. This relationship indicates that dispersive samples, such as leaves, although efficient light traps, can also be affected by the "package effect." Mentha aquatica leaves, by expanding their biomass (increased specific leaf area [SLA]), improve their light absorption efficiency per unit...

  13. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  14. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    Science.gov (United States)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-01

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (˜1020 cm-3). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  15. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    Science.gov (United States)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  16. PERSISTENT LEFT SUPERIOR VENACAVA

    Directory of Open Access Journals (Sweden)

    Devinder Singh

    2014-05-01

    Full Text Available A Persistent Left Superior Venacava (PLSVC is the most common variation of the thoracic venous system and rare congenital vascular anomaly and is prevalent in 0.3% of the population. It may be associated with other cardiovascular abnormalities including atrial septal defect, bicuspid aortic valve, coarctation of aorta, coronary sinus ostial atresia, and cor triatriatum. Incidental rotation of a dilated coronary sinus on echocardiography should raise the suspicion of PLSVC. The diagnosis should be confirmed by saline contrast echocardiography. Condition is usually asymptomatic. Here we present a rare case of persistent left superior vena cava presented in OPD with dyspnoea & palpitations.

  17. Correlation between the compressibility and absorption properties of hydrogen in some AB{sub 5} Haucke compounds; Correlation entre les proprietes de compressibilite et d'absorption en hydrogene dans quelques composes de Haucke AB{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.C.; Gupta, M. [Paris-11 Univ., TPCHO, 91 - Orsay (France)

    2007-07-01

    In this paper, we present the results of ab initio band structure calculations based on the local approximation of the density functional theory for several AB{sub 5} compounds: YNi{sub 5}, LaNi{sub 5}, LaCu{sub 5} and some substituted compounds such as: LaNi{sub 4.5}Al{sub 0.5}LaNi{sub 4}Al, LaNi{sub 4}Cu, LaNi{sub 4.5}Ge{sub 0.5}, LaNi{sub 4.5}Sn{sub 0.5}. The bulk moduli obtained by total energy minimizations are in satisfactory agreement with available experimental data . These results are used, in conjunction with electronic features such as band filling and Fermi energy characteristics, to discuss the relationship between compressibilities, electronic and H - absorption properties in Haucke compounds. (authors)

  18. Superior electro-optical properties of electrically controlled birefringence mode using solution-derived La{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Oh, Byeong-Yun [ZeSHTech Co., Ltd., Business Incubator, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-11-15

    The authors demonstrate a high performance electrically controlled birefringence (ECB) mode with solution-derived La{sub 2}O{sub 3} films at various molar concentrations. Uniform and homogeneous liquid crystal (LC) alignment was spontaneously achieved on the La{sub 2}O{sub 3} films for lanthanum concentrations at ratios greater than and equal to 0.2. A preferred orientation of LC molecules appeared along the filling direction, and the LC alignment was maintained via van der Waals force by nanocrystals of the La{sub 2}O{sub 3} films. The LC alignment mechanism was confirmed by x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. Superior electro-optical characteristics of the ECB cells constructed with solution-derived La{sub 2}O{sub 3} films were observed, which suggests that the proposed solution-derived La{sub 2}O{sub 3} films have strong potential for use in the production of advanced LC displays.

  19. Reduced Graphene Oxide-Cu0.5Ni0.5Fe2O4-Polyaniline Nanocomposite: Preparation, Characterization and Microwave Absorption Properties

    Science.gov (United States)

    Dat, Tran Quang; Ha, Nguyen Tran; Hung, Do Quoc

    2017-02-01

    Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite (RGO-CNF-PANI) was synthesized by a three-step method. The morphology, structure and magnetic properties of composite samples were characterized by scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy (RAMAN) and vibrating sample magnetometer. It was found that reduced graphene oxide was exfoliated and decorated homogeneously with ferrite nanoparticles having diameters between 11 nm and 21 nm. The polyaniline was coated by an in situ chemical oxidation polymerization. The measurement of magnetic properties found the remanence (Mr) and coercive field (Hc) were near zero, indicating that the obtained material was superparamagnetic. The microwave measurements found that the nanocomposite exhibited a good absorption property with the optimum matching thickness of 3 mm in the frequency of 8-12 GHz. The value of the maximum RL was -40.7 dB at 9.8 GHz.

  20. Energy absorption and anti-impact properties of mine diameter-expanding energy absorption components%矿用扩径式吸能构件吸能防冲特性研究

    Institute of Scientific and Technical Information of China (English)

    杨巨文; 唐治; 何峰; 张莹莹; 于永江

    2015-01-01

    为增强液压立柱的防冲性能,有效防治煤矿冲击地压,或在一定程度上减小冲击地压事故造成的损失,提出了一种与液压立柱结合使用的扩径式吸能构件。采用理论分析和试验研究方法,对构件吸能防冲特性进行研究,结果表明:轴向压缩下扩径式吸能构件具有非常好的稳定性和可重复性的变形破坏模式,且构件变形后向四周膨胀值仅为薄壁圆管厚度,几乎不占用其它空间。扩径式吸能构件压缩过程中具有较为理想的力-位移曲线。扩径式吸能构件冲程效率不受几何尺寸影响,扩径式防冲构件具有较小的载荷波动系数。理论推导得出了构件吸能防冲评价指标,并与试验结果具有较好吻合,为构件选取提供了理论依据。扩径式防冲构件是较为理想的吸能防冲构件。%To enhance the anti-impact performance of hydraulic columns,prevent and control the rockburst in coal mine effectively or at a certain level and to reduce the losses caused by rockburst accident,a kind of diameter-expanding energy absorption components combined with the hydraulic columns was put forward.The energy absorption and anti-impact properties of the components were studied by using the methods of theory analysis and experimental study.The results showed that the diameter-expanding energy absorption components under axial pressure have an excellent stability and repeatability of deformation and failure modes;the expansion value of the components after deformation is only equal to the thickness of the thin-walled circular tube,and it doesn't occupy any other space;the diameter-expanding energy absorption components have an ideal force-displacement curve in their compression process;their geometric size has no effect on their stroke efficiency, the diameter expanding anti-impact components have a smaller load fluctuation coefficient.The energy absorption and anti-impact evaluation index of

  1. Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations

    Science.gov (United States)

    Sarmiento-Pérez, Rafael; Botti, Silvana; Schnohr, Claudia S.; Lauermann, Iver; Rubio, Angel; Johnson, Benjamin

    2014-09-01

    Element-specific unoccupied electronic states of Cu(In, Ga)S2 were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.

  2. Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Botti, Silvana, E-mail: silvana.botti@univ-lyon1.fr [Institut Lumière Matière and ETSF, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Schnohr, Claudia S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lauermann, Iver [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Centro de Física de Materiales CSIC-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastián (Spain); Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Johnson, Benjamin, E-mail: benjamin.johnson@alumni.tu-berlin.de [Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-09-07

    Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.

  3. Study of influencing factors to chromophoric dissolved organic matter absorption properties from fluorescence features in Taihu lake in autumn

    Directory of Open Access Journals (Sweden)

    Chuang-Chun Huang

    2013-04-01

    Full Text Available In order to identify the components of chromophoric dissolved organic matter (CDOM, confirm the influence of components to the absorption coefficient of CDOM (aCDOM, and estimate aCDOM from fluorescence spectra, fluorescence and optical measurements of CDOM were carried out in November 2008. The results indicate that, the primary component of CDOM is humic-like. The secondary component is tryptophan-like, which is the product of phytoplankton and aquatic debris rather than the wastewater treatment drainaged from city. In this study, six fluorophores with multiple excitation-emission matrices (EEMs peaks (A, B, C, N, M, T were identified according to the parallel factor analysis (PARAFAC. The average contribution of each component to the CDOM is 19.93, 18.82, 16.88, 16.39, 12.26, and 15.72%, respectively. Red Shifted phenomenon will happen with the increase of fluorescence intensity for ultraviolet and terrestrially humic-like. Conversely, marine humic-like will appear Reverse Red Shifted with the increase of fluorescence intensity. The primary contributor to the shoulder value of CDOM’s absorption coefficient at 275 nm is phytoplankton productivity, followed by marine humic-like. The main contributors to the shoulder shape are UV humic-like and phytoplankton productivity, followed by marine humic-like and tryptophan-like. A strong correlation between CDOM absorption and fluorescence intensity at emission wavelength of 424 nm and excitation wavelength ranging from 280 to 360 nm was found. The absorption coefficient can be retrieved successfully from the same excitation wavelength’s fluorescence intensity by an exponential model.

  4. THERMAL, MECHANICAL, AND MOISTURE ABSORPTION PROPERTIES OF WOOD-TiO2 COMPOSITES PREPARED BY A SOL-GEL PROCESS

    OpenAIRE

    Xiaoqing Wang; Junliang Liu,; Yubo Chai

    2012-01-01

    Wood-TiO2 (titania) composites were prepared by a sol-gel process, in which wood was impregnated with the precursor solutions prepared from tetrabutyl titanate (TBT), followed by a curing step. The surface morphology and moisture absorption behavior of the wood composites, as well as their thermal and mechanical performances, were examined. Environmental scanning electron microscopy (ESEM) analysis revealed that TiO2 gels were deposited principally in the cell lumens and partly in the cell wa...

  5. Understanding the Electronic Structures and Absorption Properties of Porphyrin Sensitizers YD2 and YD2-o-C8 for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Zi-Jiang Liu

    2013-10-01

    Full Text Available The electronic structures and excitation properties of dye sensitizers determine the photon-to-current conversion efficiency of dye sensitized solar cells (DSSCs. In order to understand the different performance of porphyrin dye sensitizers YD2 and YD2-o-C8 in DSSC, their geometries and electronic structures have been studied using density functional theory (DFT, and the electronic absorption properties have been investigated via time-dependent DFT (TDDFT with polarizable continuum model for solvent effects. The geometrical parameters indicate that YD2 and YD2-o-C8 have similar conjugate length and charge transfer (CT distance. According to the experimental spectra, the HSE06 functional in TDDFT is the most suitable functional for describing the Q and B absorption bands of porphyrins. The transition configurations and molecular orbital analysis suggest that the diarylamino groups are major chromophores for effective CT excitations (ECTE, and therefore act as electron donor in photon-induced electron injection in DSSCs. The analysis of excited states properties and the free energy changes for electron injection support that the better performance of YD2-o-C8 in DSSCs result from the more excited states with ECTE character and the larger absolute value of free energy change for electron injection.

  6. Understanding the electronic structures and absorption properties of porphyrin sensitizers YD2 and YD2-o-C8 for dye-sensitized solar cells.

    Science.gov (United States)

    Han, Li-Heng; Zhang, Cai-Rong; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wang, Wei; Gong, Ji-Jun; Chen, Yu-Hong; Liu, Zi-Jiang

    2013-10-10

    The electronic structures and excitation properties of dye sensitizers determine the photon-to-current conversion efficiency of dye sensitized solar cells (DSSCs). In order to understand the different performance of porphyrin dye sensitizers YD2 and YD2-o-C8 in DSSC, their geometries and electronic structures have been studied using density functional theory (DFT), and the electronic absorption properties have been investigated via time-dependent DFT (TDDFT) with polarizable continuum model for solvent effects. The geometrical parameters indicate that YD2 and YD2-o-C8 have similar conjugate length and charge transfer (CT) distance. According to the experimental spectra, the HSE06 functional in TDDFT is the most suitable functional for describing the Q and B absorption bands of porphyrins. The transition configurations and molecular orbital analysis suggest that the diarylamino groups are major chromophores for effective CT excitations (ECTE), and therefore act as electron donor in photon-induced electron injection in DSSCs. The analysis of excited states properties and the free energy changes for electron injection support that the better performance of YD2-o-C8 in DSSCs result from the more excited states with ECTE character and the larger absolute value of free energy change for electron injection.

  7. Average Properties of a Large Sample of z_abs ~ z_em associated Mg II Absorption Line Systems

    CERN Document Server

    Berk, D Vanden; York, D G; Richards, G T; Lundgren, B; Alsayyad, Y; Kulkarni, V P; Subba-Rao, M; Schneider, D P; Heckman, T; Anderson, S; Crotts, A P S; Frieman, J; Stoughton, C; Lauroesch, J T; Hall, P B; Meiksin, A; Steffing, M; Vanlandingham, J

    2008-01-01

    We have studied a sample of 415 associated (z_ab z_em; relative velocity with respect to QSO 3000km/s), so as to understand their origin. From the analysis of the composite spectra, as well as from the comparison of measured equivalent widths in individual spectra, we conclude that the associated Mg II absorbers have higher apparent ionization, measured by the strength of the C IV absorption lines compared to the Mg II absorption lines, than the intervening absorbers. The ionization so measured appears to be related to apparent ejection velocity, being lower as the apparent ejection velocity is more and more positive. There is clear evidence, from the composite spectra, for SMC like dust attenuation in these systems; the 2175AA absorption feature is not present. The extinction is almost twice that observed in the similarly selected sample of intervening systems. We reconfirm that QSOs with non-zero FIRST radio flux are intrinsically redder than the QSOs with no detection in the FIRST survey. The incidence of ...

  8. CHARACTERIZATION OF PHYSICOCHEMICAL PROPERTIES OF MISCANTHUS FLORIDULUS STEMS AND STUDY OF THEIR OIL ABSORPTION ABILITY USING GOLD NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Wayne Liao,

    2012-07-01

    Full Text Available Miscanthus floridulus, which originated from a high elevation mountain area in Taiwan, is a newly cultivated species of Miscanthus. Instead of Miscanthus × giganteus, M. floridulus can be used as an alternative fuel for energy production as well. Except for leaves, stems of M. floridulus count for a major portion of the biomass. In this study, the lignin and cellulose contents of M. floridulus stems were determined to be 22.33 ± 2.21% and 43.13 ± 2.79%, respectively. In addition, a new application of M. floridulus stems was proposed. Oil absorption ability represented by the amount of soybean and motor oils absorbed by one gram of pulverized M. floridulus stems was estimated to be 2.25 ± 0.25 and 2.33 ± 0.18 g, respectively. Gold nanoparticles were used to investigate the absorption ability of M. floridulus stems. The absorption of gold nanoparticles by M. floridulus stems was visualized using SEM and TEM. In addition, the IR spectrum of M. floridulus stems was recorded for comparison with other studies.

  9. A new route for graphene wrapping LiVPO{sub 4}F/C nano composite toward superior lithium storage property

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaomeng; Peng, Wenjie, E-mail: wjpeng_csu@163.com; Fan, Yulei; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Wang, Jiexi, E-mail: wangjiexikeen@csu.edu.cn

    2015-08-05

    Highlights: • Simple solution route was used for coating process. • Core–shell structure with multi conductive shell was obtained. • Greatly enhanced electrochemical performance was demonstrated. - Abstract: To enhance the electronic conductivity of LiVPO{sub 4}F, graphene-decorated LiVPO{sub 4}F/C nano composites were prepared via a solution route followed by low-temperature calcination. XRD results reveal that the crystal structure of LiVPO{sub 4}F/C with graphene wrapping remains unchanged. SEM and TEM images demonstrate that the as-synthesized graphene modified particles tend to become smaller and are dispersed uniformly into the graphene layers. The graphene sheets stretch out and cross-link into a conducting network around the LiVPO{sub 4}F particles, resulting in improved electronic conductivity and enhanced electrolyte permeability. SAED patterns confirmed the presence of graphene, as well as crystalline nature of LiVPO{sub 4}F with clear lattice structure and sharp diffraction spots. When applied as cathodes for lithium ion batteries, the graphene wrapped LiVPO{sub 4}F/C nano composites exhibit better cycle ability and rate capability than the pristine one. Particularly, the sample prepared by using 60 mL graphene oxide dispersion demonstrates a superior rate capability with a discharge capacity of 117 mA h g{sup −1} at 8 C, as well as excellent cycling stability, maintaining 83.7% capacity retention after 350 cycles at 8 C. CV and EIS tests separately indicate that the graphene modified samples possess lower polarization and faster charge transfer than the bare sample.

  10. Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells.

    Science.gov (United States)

    Kumar, Ranjan; Sinha, Sarthak; Hagner, Andrew; Stykel, Morgan; Raharjo, Eko; Singh, Karun K; Midha, Rajiv; Biernaskie, Jeff

    2016-04-01

    Functional outcomes following delayed peripheral nerve repair are poor. Schwann cells (SCs) play key roles in supporting axonal regeneration and remyelination following nerve injury, thus understanding the impact of chronic denervation on SC function is critical toward developing therapies to enhance regeneration. To improve our understanding of SC function following acute versus chronic-denervation, we performed functional assays of SCs from adult rodent sciatic nerve with acute- (Day 5 post) or chronic-denervation (Day 56 post), versus embryonic nerves. We also compared Schwann cells derived from adult skin-derived precursors (aSKP-SCs) as an accessible, autologous alternative to supplement the distal (denervated) nerve. We found that acutely-injured SCs and aSKP-SCs exhibited superior proliferative capacity, promotion of neurite outgrowth and myelination of axons, both in vitro and following transplant into a sciatic nerve crush injury model, while chronically-denervated SCs were severely impaired. Acute injury caused re-activation of transcription factors associated with an immature and pro-myelinating SC state (Oct-6, cJun, Sox2, AP2α, cadherin-19), but was diminished with prolonged denervation in vivo and could not be rescued following expansion in vitro suggesting that this is a permanent deficiency. Interestingly, aSKP-SCs closely resembled acutely injured and embryonic SCs, exhibiting elevated expression of these same transcription factors. In summary, prolonged denervation resulted in SC deficiency in several functional parameters that may contribute to impaired regeneration. In contrast, aSKP-SCs closely resemble the regenerative attributes ascribed to acutely-denervated or embryonic SCs emphasizing their potential as an accessible and autologous source of glia cells to enhance nerve regeneration, particularly following delays to surgical repair. Copyright © 2016. Published by Elsevier Inc.

  11. Effects of the structure of the branches on the two-photon absorption properties for the multi-branched molecules with nitrogen (N) as coupling center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effects of the structure of branches on the TPA properties for multi-branched molecules, the TPA cross section is calculated by using ZINDO/SOS method. The investigated mole- cules have different branches (chomorfores based on stilbene, dithienothiophene and flourene) with nitrogen(N) as coupling center. The results show that the cooperative enhancement in multi-branched molecules depends on the structures of the branches and the structures of branches play an important role in the enhancement of the TPA cross section. The designed molecules with stilbene and dithie- nothiophene as branched possess relatively larger two-photon absorption cross sections.

  12. Effects of the structure of the branches on the two-photon absorption properties for the multi-branched molecules with nitrogen (N) as coupling center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effects of the structure of branches on the TPA properties for multi-branched molecules, the TPA cross section is calculated by using ZINDO/SOS method. The investigated molecules have different branches (chomorfores based on stilbene, dithienothiophene and flourene) with nitrogen(N) as coupling center. The results show that the cooperative enhancement in multi-branched molecules depends on the structures of the branches and the structures of branches play an important role in the enhancement of the TPA cross section. The designed molecules with stilbene and dithienothiophene as branched possess relatively larger two-photon absorption cross sections.

  13. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    Science.gov (United States)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  14. Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe2) Nanoplates for Superior Li/Na Ion Storage Properties.

    Science.gov (United States)

    Fan, Haosen; Yu, Hong; Wu, Xinglong; Zhang, Yu; Luo, Zhongzhen; Wang, Huanwen; Guo, Yuanyuan; Madhavi, Srinivasan; Yan, Qingyu

    2016-09-28

    A facile and bottom-up approach has been presented to prepare 2D Ni-MOFs based on cyanide-bridged hybrid coordination polymers. After thermally induced sulfurization and selenization processes, Ni-MOFs were successfully converted into NiS and NiSe2 nanoplates with carbon coating due to the decomposition of its organic parts. When evaluated as anodes of Li-ion batteries (LIBs) and Na-ion batteries (NIBs), NiS and NiSe2 nanoplates show high specific capacities, excellent rate capabilities, and stable cycling stability. The NiS plates show good Li storage properties, while NiSe2 plates show good Na storage properties as anode materials. The study of the diffusivity of Li(+) in NiS and Na(+) in NiSe2 shows consistent results with their Li/Na storage properties. The 2D MOFs-derived NiS and NiSe2 nanoplates reported in this work explore a new approach for the large-scale synthesis of 2D metal sulfides or selenides with potential applications for advanced energy storage.

  15. Absorption Properties of Simply Fabricated All-Metal Mushroom Plasmonic Metamaterials Incorporating Tube-Shaped Posts for Multi-Color Uncooled Infrared Image Sensor Applications

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa

    2016-03-01

    Full Text Available Wavelength-selective infrared (IR absorbers have attracted considerable interest due to their potential for a wide range of applications. In particular, they can be employed as advanced uncooled IR sensors that identify objects through their radiation spectra. Herein, we propose a mushroom plasmonic metamaterial absorber incorporating tube-shaped metal posts (MPMAT for use in the long-wavelength IR (LWIR region. The MPMAT design consists of a periodic array of thin metal micropatches connected to a thin metal plate via tube-shaped metal posts. Both the micropatches and posts can be constructed simultaneously as a result of the tube-shaped structure of the metal post structure; thus, the fabrication procedure is both simple and low cost. The absorption properties of these MPMATs were assessed both theoretically and experimentally, and the results of both investigations demonstrated that these devices exhibit suitable levels of LWIR absorption regardless of the specific tube-shaped structures employed. It was also found to be possible to tune the absorption wavelength by varying the micropatch width and the inner diameter of the tube-shaped metal posts, and to obtain absorbance values of over 90%. Focal plane array structures based on such MPMATs could potentially serve as high-performance, low-cost, multi-spectral uncooled IR image sensors.

  16. Synthesis and optical absorption properties of TiO2 nanostructures in SiO2 by sequential implantation of Cu and Ti ions

    Science.gov (United States)

    Jing, Yaqi; Mu, Xiaoyu; Liu, Xiaoyu; Liu, Changlong

    2017-09-01

    Optical-grade silica samples were singly or sequentially implanted with 100 keV Cu and 40 keV Ti ions at the same fluence of 1 × 1017 ions/cm2, and were then subjected to furnace annealing in nitrogen ambient. Structure, spatial distribution as well as optical absorption properties of the synthesized nanostructures have been investigated in detail by using various techniques. Our results clearly show that high fluence Ti ion implantation together with subsequent annealing at high temperature could lead to formation of TiO2 nanoparticles with both rutile and anatase phases in SiO2 substrate, which causes an absorption band edge at about 365 nm. The pre-implantation of Cu ion could not only largely enhance growth of the TiO2 nanoparticles during annealing, but also significantly reduce the corresponding band gap energy. Moreover, results from cross sectional transmission electron microscopy measurements demonstrate that the pre-implanted Cu atoms participates into the thermal growth of the TiO2 nanoparticles, which may be responsible for the large redshift of the absorption behavior obtained in the Cu and Ti sequentially implanted SiO2.

  17. Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies

    Science.gov (United States)

    Titos, G.; Foyo-Moreno, I.; Lyamani, H.; Querol, X.; Alastuey, A.; Alados-Arboledas, L.

    2012-02-01

    We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM10 and PM1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM10 and PM1 mass concentrations showed a mean value of 44 ± 19 μg/m3 and 15 ± 7 μg/m3, respectively. The mineral matter was the major constituent of the PM10-1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm-1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm-1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM1 and opposite to PM10-1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass

  18. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    Science.gov (United States)

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension.

  19. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  20. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    Science.gov (United States)

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-04-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  1. Air Superiority Fighter Characteristics.

    Science.gov (United States)

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World

  2. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties

    Science.gov (United States)

    Shi, Hengchong; Shi, Dean; Yin, Ligang; Yang, Zhihua; Luan, Shifang; Gao, Jiefeng; Zha, Junwei; Yin, Jinghua; Li, Robert K. Y.

    2014-10-01

    In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical durability even when it was subjected to 500 cyclic compression. The CNP-PU foam had excellent absorption of organic solvents up to 121 times the weight of the initial PU foam. In addition, the electrical conductivity of PU foams was considerably increased with the anchoring of CNP onto the matrix. In addition, compression experiments confirmed that the electrical conductivity of CNP-PU foams changed with their compression ratios, thus exhibiting excellent pressure sensitivity. The as-prepared materials have significant potential as oil absorbents, elastic conductors, flexible electrodes, pressure sensors, etc.In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical

  3. Sensitivity test of GOCI dust aerosol index with aerosol absorptivity by using radiative transfer simulation and comparison with AERONET aerosol optical properties

    Science.gov (United States)

    Choi, M.; Kim, J.; Lee, J.; Park, Y. J.

    2016-12-01

    For the monitoring of aerosol properties in East Asia using the Geostationary Ocean Color Imager (GOCI), the GOCI Yonsei aerosol retrieval (YAER) algorithm was developed and has been improved continuously since 2011. GOCI YAER algorithm contains several aerosol models consisted of various optical properties such as aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA) for assuming every possible aerosol status. Then, AOD at 550 nm is retrieved from selected aerosol models which show least difference between observed top-of-atmosphere (TOA) reflectance and simulated TOA reflectance in terms of spectral AODs. Current inversion method is optimized for spectral AODs, especially AOD at 550 nm. Therefore, GOCI YAER AOD, FMF, and Angstrom exponent show reliable accuracy with ground-based AERONET and satellite-based MODIS and VIIRS products. However, SSA shows least accuracy (R = 0.2) with AERONET SSA, which is different from AOD, FMF, and AE. To improve accuracy of SSA retrieval, the inversion method should reflect a characteristic of aerosol absorptivity well, not only in the aerosol model construction as forward modeling. UV aerosol index from TOMS and OMI measurements, calculated by using 354 and 388 nm, provides the extent of aerosol absorptivity, which can be used for the improvement of aerosol model quality between absorbing and non-absorbing aerosol model. Instead of UV index, a dust aerosol index (DAI) can be calculated using two visible channels such as 412 and 443 (or 490) nm. Heavy dust plume, which is coarse and absorbing aerosol, in 47 April 2012 show DAI of 5, but heavy haze plume, which is fine and non-absorbing aerosol, in 6 May 2012 shows DAI close to 0. To find relationship between DAI and aerosol absorptivity properties, sensitivity is tested by using radiative transfer model (RTM), and retrieved GOCI DAI from observed TOA reflectance is compared with ground-based AERONET SSA and other optical properties. Both of

  4. Modeling optical properties of polymer-solvent complexes: the chloroform influence on the P3HT and N2200 absorption spectra.

    Science.gov (United States)

    Dias Ledo, Rodrigo Maia; Leal, Luciano Almeida; de Brito Silva, Patrick Pascoal; da Cunha, Wiliam Ferreira; de Souza, Leonardo Evaristo; Almeida Fonseca, Antonio Luciano; Ceschin, Artemis Marti; da Silva Filho, Demétrio Antonio; Ribeiro Junior, Luiz Antonio

    2017-02-01

    The optical properties of polymer/solvent systems composed by the polymers P3HT and PolyeraActivInk N2200 under the present of chloroform as solvent are experimentally and theoretically investigated using UV-Vis spectroscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. The study is focused on obtaining the theoretical methodologies that properly describes the experimentally obtained absorption spectra of polymer-solvent complexes. In order to investigate the solvent influence, two different approaches are taken into account: the solvation shell method (SSM) and the polarizable continuum model (PCM). Our findings shown that SSM simulations, which combine MD and DFT calculations, are in good agreement with the experimental data. Moreover, it is obtained that simulations in the framework of PCM do not provide a fair description of the real system. Importantly, these results may pave the way for better descriptions of some optoelectronic properties of interest in polymer/solvent systems. Graphical Abstract ᅟ.

  5. Enhanced Microwave Absorption Properties of Flexible Polymer Composite Based on Hexagonal NiCo2O4 Microplates and PVDF

    Science.gov (United States)

    Luo, Hui; Wang, Xian; Song, Kai; Yang, Jing; Gong, Rongzhou

    2016-08-01

    Hexagonal NiCo2O4 microplates were synthesized via a facile one-pot hydrothermal method and followed by a subsequent annealing process. The complex permittivity and permeability of a NiCo2O4 and polyvinylidene fluoride (PVDF) composite were investigated over 2-18 GHz. The experiment indicated that the good microwave absorption performance of NiCo2O4@PVDF depends on dielectric loss and quarter-wavelength cancellation. Our results show that the absorption frequency bandwidth of reflection loss (RL) less than -20 dB for the NiCo2O4@PVDF composite can be measured over the frequency range of 3-15.5 GHz with an absorbing thickness that varies in the range of 1.25-5 mm. Furthermore, an optimal RL of -44.8 dB was observed at 10.7 GHz with a thickness of 1.75 mm. The loss mechanism is also discussed.

  6. Optical diffusion property of cerumen from ear canal and correlation to metal content measured by synchrotron x-ray absorption

    Science.gov (United States)

    Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.

    2012-03-01

    Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.

  7. Physical Properties of the Interstellar Medium Using High-resolution Chandra Spectra: O K-edge Absorption

    Science.gov (United States)

    Gatuzz, E.; García, J.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W.

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = -2.90 and oxygen abundance of A O = 0.70. The latter is given relative to the standard by Grevesse & Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N O = 9.2 × 1017 cm-2) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  8. Effect of silanized-chitosan on flammability, mechanical, water absorption and biodegradability properties of pseudo-stem banana fiber and montmorillonite filled waste polypropylene biocomposite

    Science.gov (United States)

    Prasetyo, W. E.; Prihandoko, A.; Pujiasih, S.; Widianto, A.; Rahmawati, N.; Saputra, O. A.; Handayani, D. S.

    2017-02-01

    Growing consciousness for an eco-friendly environment has revived the interest to develop composite fibers from biobased products. In this study, flammability, mechanical, water absorption and biodegradability properties of chitosan filled biocomposite waste polypropylene (wPP) reinforced with pseudo-stem banana fiber (PBF) and montmorillonite (MMt) biocomposites has been conducted investigate. It was successfully processed in solution method. Chitosan was chemically treated with glycidyloxypropyltrimethoxysilane (GPTMS) to improve interfacial adhesion between chitosan and wPP. The chitosan treated with GPTMS content in the biocomposites were varied from 0 to 7% (dry wt. basis). Flammability, tensile strength and water absorption index of biocomposites were measured according to ASTM D635, ASTM D638, and ASTM D570 respectively. To study the nature of its biodegradability, the biocomposites were technically buried in garbage dump land. The results show that the addition of treated chitosan 3-GPTMS has improved thermal properties such as Time to Ignition (TTi), Burning Rate (BR), and Heat release (HR) of treated biocomposites compared with neat PP and untreated biocomposite with treated chitosan. The treated biocomposites exhibit higher tensile strength and Young’s modulus, but lower elongation at break compared with neat PP and untreated biocomposites with treated chitosan. The biocomposites show a reduction in the rate of water uptake with higher loading of CH.

  9. Biomechanical properties of the biceps-labral complex submitted to mechanical stress Propriedades biomecânicas do complexo labrum-glenóide bicipital superior submetido ao estresse mecânico

    Directory of Open Access Journals (Sweden)

    Adson do Socorro Sá Costa

    2006-08-01

    Full Text Available PURPOSE: To determine biomechanical properties of the superior labrum-biceps tendon complex submitted to continuous and sudden mechanical strain. METHODS: Eighteen shoulder specimens from 15 unclaimed corpses, ages ranging from 20 to 40 years, were submitted to continuous or sudden tensile tests using 3 different traction machines. Shoulders presenting signs of degenerative diseases or preexisting traumatic lesions were excluded. RESULTS: Rupture of the distal portion of the long hand of the biceps occurred when stretching forces reached 290N in continuous traction and 384N in sudden traction. No labral-complex lesions were observed. CONCLUSION: Either a simple continuous or a sudden uniaxial traction of the arm do not play a role in the genesis of superior labrum anterior-posterior (SLAP lesions in the shoulder joint. produceOBJETIVO: Determinar as propriedades biomecânicas do complexo labrum-glenóide bicipital superior submetido ao estresse mecânico contínuo ou repetitivo (repentino. MÉTODOS: Dezoito ombros provenientes de 15 cadáveres não reclamados, idades na faixa de 20 a 40 anos, foram submetidos aos testes de tração contínua ou repentina usando três diferentes máquinas de tração. Foram excluídos do estudo os ombros que apresentavam lesões degenerativas ou evidências de lesões traumáticas pré-existentes. RESULTADOS: Ocorreu ruptura da porção distal do tendão do bíceps sob a tensão contínua de 290 N e de 348N na tração repentina. Não foram observadas lesões no complexo labrum-bicipital. CONCLUSÃO: A simples tração contínua ou súbita do braço não produz lesões do complexo Labrum Glenóide Bicipital Superior (SLAP na articulação do ombro.

  10. Superior electrochemical properties of manganese dioxide/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries

    Science.gov (United States)

    Lee, Suk-Woo; Lee, Chang-Wook; Yoon, Seung-Beom; Kim, Myeong-Seong; Jeong, Jun Hui; Nam, Kyung-Wan; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-04-01

    MnO2/reduced graphene oxide (rGO) nanocomposites were synthesized via a simple solution method at room temperature for use in Li-ion batteries. Owing to the mesoporous features as well as the high electrical conductivity of rGO, the overall electronic and ionic conductivities of the nanocomposite were increased, resulting in improved electrochemical properties in terms of specific capacity, rate capability, and cyclability. In particular, as-prepared nanocomposites showed 222 and 115 mAh g-1 at a current density of as high as 5 and 10 A g-1, and the specific capacitance was well maintained after 400 cycles. In addition, MnO2, via composite formation with rGO, permitted the additional conversion reaction between MnO and Mn3O4, resulting in the reduction of the initial irreversible capacity despite the high first discharge capacity caused by the large specific surface area.

  11. Expanding understanding of optical variability in Lake Superior with a 4-year dataset

    Science.gov (United States)

    Mouw, Colleen B.; Ciochetto, Audrey B.; Grunert, Brice; Yu, Angela

    2017-07-01

    Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing inherent and apparent optical properties along with biogeochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscattering, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013-2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton, and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/.

  12. Magnetic and microwave absorption properties of rare earth ions (Sm{sup 3+}, Er{sup 3+}) doped strontium ferrite and its nanocomposites with polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Xu, Yang; Mao, Hongkai [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm{sup 3+}, Er{sup 3+}) were prepared via a sol–gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2–38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50–100 nm after coating with PPy. In the magnetization for the PPy/SrSm{sub 0.3}Fe{sub 11.7}O{sub 19} (SrEr{sub 0.3}Fe{sub 11.7}O{sub 19}) composites, the coercivity (H{sub c}) of the composites both increased compared with the undoped composite while the saturation magnetization (M{sub s}) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of −24.01 dB in 13.8 GHz at 3.0 mm. And its width (<−10 dB) has reached 7.2 GHz which has covered the whole Ku band. - Highlights: • The influence of RE ions on the structure of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on the magnetic properties of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on electromagnetic losses of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • PPy/SrEr{sub 0.3}Fe{sub 11.7}O{sub 19} possessed the excellent absorption property.

  13. Magnetic Properties and Microwave Absorption Properties of Ni-Co-B Alloy Decorated Carbon Nanofibers%Ni-Co-B修饰纳米碳纤维的磁性能与微波吸收性能

    Institute of Scientific and Technical Information of China (English)

    宋安康; 吕少勇; 王桂雪; 谢广文

    2011-01-01

    Ni-Co-B alloy coatings were prepared to carbon nanofibers by an electroless plating method. The component and morphologies of the products were characterized by EDS and SEM. The magnetic properties of the prepared Ni-Co-B alloy decorated carbon nanofibers were investigated by vibration magnetometer. The microwave absorption properties of the products were also measured by the vector network analyzer. The results show that the prepared Ni-Co-B alloy decorated carbon nanofibers exhibit fine ferromagnetic properties and microwave absorption properties.%采用化学镀法在纳米碳纤维表面沉积了Ni-Co-B磁性镀层,分别利用EDS、SEM等手段对制品的成分、形貌进行了表征;采用振动样品磁强计测量了Ni-Co-B修饰纳米碳纤维的磁性;采用矢量网络分析仪测量了制品的微波吸收性能.结果表明,Ni-Co-B修饰的纳米碳纤维具有良好的铁磁性能和微波吸收性.

  14. Synthesis and crystal structure of a Pr5Ni19 superlattice alloy and its hydrogen absorption-desorption property.

    Science.gov (United States)

    Iwase, Kenji; Sakaki, Kouji; Matsuda, Junko; Nakamura, Yumiko; Ishigaki, Toru; Akiba, Etsuo

    2011-05-16

    The intermetallic compound Pr(5)Ni(19), which is not shown in the Pr-Ni binary phase diagram, was synthesized, and the crystal structure was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two superlattice reflections with the Sm(5)Co(19)-type structure (002 and 004) and the Pr(5)Co(19)-type structure (003 and 006) were observed in the 2θ region between 2° and 15° in the XRD pattern using Cu Kα radiation. Rietveld refinement provided the goodness-of-fit parameter S = 6.7 for the Pr(5)Co(19)-type (3R) structure model and S = 1.7 for the Sm(5)Co(19)-type (2H) structure model, indicating that the synthesized compound has a Sm(5)Co(19) structure. The refined lattice parameters were a = 0.50010(9) nm and c = 3.2420(4) nm. The high-resolution TEM image also clearly revealed that the crystal structure of Pr(5)Ni(19) is of the Sm(5)Co(19) type, which agrees with the results from Rietveld refinement of the XRD data. The P-C isotherm of Pr(5)Ni(19) in the first absorption was clearly different from that in the first desorption. A single plateau in absorption and three plateaus in desorption were observed. The maximum hydrogen storage capacity of the first cycle reached 1.1 H/M, and that of the second cycle was 0.8 H/M. The 0.3 H/M of hydrogen remained in the metal lattice after the first desorption process.

  15. Unveiling the intrinsic X-ray properties of broad absorption line quasars with a relatively unbiased sample

    Energy Technology Data Exchange (ETDEWEB)

    Morabito, Leah K.; Dai, Xinyu; Leighly, Karen M. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Sivakoff, Gregory R. [Department of Physics, University of Alberta, CCIS 4-183 Edmonton, AB T6G 2E1 (Canada); Shankar, Francesco [School of Physics and Astronomy, University of Southampton, Southampton SO17 IBJ (United Kingdom)

    2014-05-01

    There is growing evidence of a higher intrinsic fraction of broad absorption line quasars (BALQSOs) than that obtained in optical surveys, on which most previous X-ray studies of BALQSOs have focused. Here we present Chandra observations of 18 BALQSOs at z ∼ 2, selected from a near-infrared (Two Micron All Sky Survey) sample, where the BALQSO fraction is likely to be close to the intrinsic fraction. We measure photon indices using the stacked spectra of the optically faint (i – K{sub s} ≥ 2.3 mag) and optically bright (i – K{sub s} < 2.3 mag) samples to be Γ ≅ 1.5-2.1. We constrain their intrinsic column density by modeling the X-ray fractional hardness ratio, finding a mean column density of 3.5 × 10{sup 22} cm{sup –2} assuming neutral absorption. We incorporate Sloan Digital Sky Survey optical measurements (rest frame UV) to study the broadband spectral index between the X-ray and UV bands, and compare this to a large sample of normal quasars. We estimate that the optically faint BALQSOs are X-ray weaker than the optically bright ones, and the entire sample of BALQSOs are intrinsically X-ray weak when compared to normal active galactic nuclei (AGNs). Correcting for magnification of X-ray emission via gravitational lensing by the central black hole viewed at large inclination angles makes these BALQSOs even more intrinsically X-ray weak. Finally, we estimate AGN kinetic feedback efficiencies of a few percent for an X-ray wind of 0.3c in high-ionization BALQSOs. Combined with energy carried by low-ionization BALQSOs and UV winds, the total kinetic energy in BALQSOs can be sufficient to provide AGN kinetic feedback required to explain the co-evolution between black holes and host galaxies.

  16. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  17. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  18. Novel zinc(II)phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties

    Science.gov (United States)

    Kantar, Cihan; Mavi, Vildan; Baltaş, Nimet; İslamoğlu, Fatih; Şaşmaz, Selami

    2016-10-01

    Azo-containing schiff bases are well known and there are many studies about their various properties in literature. However, phthalocyanines bearing azo-containing schiff bases, their spectral, analytical and biological properties are unknown. Therefore, new zinc (II) phthalocyanines bearing azo-containing schiff base were synthesized and investigated to determine pKa values, absorption, emission, enzyme inhibition and photochemical properties. Emission spectra were reported and large Stokes shift values were determined for all compounds, indicating that all molecules exhibit excited state intramolecular proton transfer. These phthalocyanines were the first examples of phthalocyanine showing excited state intramolecular proton transfer. Singlet oxygen quantum yields of zinc (II) phthalocyanines were determined. pKa values and indicator properties of all compounds were investigated by potentiometry. All compounds were assayed for inhibitory activity against bovine milk xanthine oxidase and acetylcholinesterase enzyme in vitro. Compound 2 showed the high inhibitory effect against xanthine oxidase (IC50 = 0.24 ± 0.01 μM). However, phthalocyanine compounds did not show enzyme inhibitor behavior.

  19. Statistics of superior records

    Science.gov (United States)

    Ben-Naim, E.; Krapivsky, P. L.

    2013-08-01

    We study statistics of records in a sequence of random variables. These identical and independently distributed variables are drawn from the parent distribution ρ. The running record equals the maximum of all elements in the sequence up to a given point. We define a superior sequence as one where all running records are above the average record expected for the parent distribution ρ. We find that the fraction of superior sequences SN decays algebraically with sequence length N, SN˜N-β in the limit N→∞. Interestingly, the decay exponent β is nontrivial, being the root of an integral equation. For example, when ρ is a uniform distribution with compact support, we find β=0.450265. In general, the tail of the parent distribution governs the exponent β. We also consider the dual problem of inferior sequences, where all records are below average, and find that the fraction of inferior sequences IN decays algebraically, albeit with a different decay exponent, IN˜N-α. We use the above statistical measures to analyze earthquake data.

  20. Frenillo labial superior doble

    Directory of Open Access Journals (Sweden)

    Carlos Albornoz López del Castillo

    Full Text Available El frenillo labial superior doble no sindrómico es una anomalía del desarrollo que no hemos encontrado reportada en la revisión bibliográfica realizada. Se presenta una niña de 11 años de edad que fue remitida al servicio de Cirugía Maxilofacial del Hospital "Eduardo Agramonte Piña", de Camagüey, por presentar un frenillo labial superior doble de baja inserción. Se describen los síntomas clínicos asociados a esta anomalía y el tratamiento quirúrgico utilizado para su solución: una frenectomía y plastia sobre la banda muscular frénica anormal que provocaba exceso de tejido en la mucosa labial. Consideramos muy interesante la descripción de este caso, por no haber encontrado reporte similar en la literatura revisada.

  1. Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application

    Energy Technology Data Exchange (ETDEWEB)

    Farag, A.A.M., E-mail: alaafaragg@yahoo.com [Thin Film Laboratory, Physics Department, Faculty of Education, Ain shams University, PO Box 11757, Roxy, Cairo (Egypt); Mansour, A.M. [Solid State Electronics Laboratory, Physics Department, Physics Division, National Research Center, Dokki, Giza (Egypt); Ammar, A.H. [Thin Film Laboratory, Physics Department, Faculty of Education, Ain shams University, PO Box 11757, Roxy, Cairo (Egypt); Rafea, M. Abdel [Electronic Materials Department, Advanced Technologies and New Materials Institute, City for Scientific Research and Technology Applications, PO Box 21934, New Borg El-Arab City, Alexandria (Egypt); Farid, A.M. [Thin Film Laboratory, Physics Department, Faculty of Education, Ain shams University, PO Box 11757, Roxy, Cairo (Egypt)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Prime novelty of this study is the preparation of nanocrystalline SCC thin films for the first time. Black-Right-Pointing-Pointer Temperature dependence of the DC electrical conductivity can be described by VR H model. Black-Right-Pointing-Pointer The AC conductivity, {sigma}{sub AC}({omega}) results have been discussed in terms of CBH model. Black-Right-Pointing-Pointer Position dependent SCC thin film photo-detector has been studied by using laser diode source. - Abstract: Sodium copper chlorophyllin (SCC) thin films were successfully prepared, using dip coating technique. Thermal gravimetric analysis (TGA) was performed for studying the thermal stability of SCC film. The surface morphology of thin films was studied by using scanning electron microscopy (SEM). The crystalline structural characteristics were undertaken with the aim of determining the lattice parameters together with a complete list of the Miller indices and interplanar spacing for SCC. The molecular structure and electronic transitions of SCC were investigated by Fourier-transform infrared (FTIR) and absorption spectrum, respectively. Temperature dependence of the DC electrical conductivity, ({sigma}{sub DC}) was investigated in the temperature range 289-373 K. Measurements revealed that the {sigma}{sub DC} behavior of the films can be described by Mott's one-dimensional variable range hopping (VRH) model in the entire temperature range. The AC conductivity, ({sigma}{sub AC}({omega})) results were discussed in terms of the correlated barrier hopping (CBH) mechanism for charge carrier transport. The maximum barrier height and the hopping length were estimated. The temperature dependence of the {sigma}{sub AC}({omega}) shows Arrhenius type with one thermal activation energy for each frequency. The behavior of the real and imaginary parts of the dielectric constant as a function of both temperature and frequency were discussed. The energy band model was

  2. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  3. 闭孔泡沫铝的力学性能和吸能能力%Mechanical Properties and Energy Absorption Capability of Closed-cell Al Foam

    Institute of Scientific and Technical Information of China (English)

    王展光; 蔡萍; 应建中; 李书琴; 胡景智

    2012-01-01

    在闭孔泡沫铝准静态压缩试验的基础上,研究了其力学性能、吸能能力.结果表明,闭孔泡沫铝单轴压缩应力-应变曲线呈现践弹性变形、塑性平台阶段、致密化阶段3个阶段;闭孔泡沫铝的压缩强度、吸能能力随着孔隙率的增大而减小,采用Gibson-Ashby模型分析闭孔泡沫铝的压缩屈服强度,吻合良好.并在此基础上,提出可供工程使用的多孔泡沫金属吸能能力公式,为其工程应用提供理论支持.%Based on the compressive test of closed-cell Al foam, mechanical properties and energy absorption capacity under uniaxial compression were investigated. Compressive stress-strain curve of closed-cell Al foam consists of three distinct rcgions, the linear elasticity region, the plastic collapse region and the densification region. Compressive strength and energy absorption capacity of closed-cell Al foam decreases with the increase of porosity. Compressive yield stress is in good agreement with Gibson-Ashby model's expectation. Formula on energy absorption capability of closed-cell Al alloy foam was presentedt which could provide theoretical support for its engineering application.

  4. 近红外吸收滤光片的制备与性能研究%Preparation of near infrared absorption filter and its property

    Institute of Scientific and Technical Information of China (English)

    戴峰; 樊卫华; 吴金华; 王丽熙; 张其土

    2011-01-01

    将两种近红外吸收剂添加到丙烯酸树脂基体中再与PET薄膜复合,制备了可用于夜视兼容照明的双层复合型近红外吸收滤光片.研究了两种近红外吸收剂的吸收特性,以及近红外吸收剂添加量与滤光片吸收性能的关系,并确定了两种近红外吸收剂的用量.所制备的滤光片在660 ~930 nm波长范围内的光线平均透过率为0.10%,能有效吸收发光器件的干扰光,是一种性能良好的近红外吸收滤光片.另外,经过测试表明滤光片强度大、热稳定性较好,具有良好的应用性能.%Near infrared(NIR)absorption filters are prepared by NIR-dyes and optical plastics. These NIR absorption filters can be applied to light apparatus for night vision imaging system( NVIS) which is compatible with lighting. The optical performance of the filters is studied under different dye dosage. The results show the optical properties of the filters can be easily controlled by changing the amount of NIR-dyes. Besides, there is a good linear relationship between absorbance and NIR-dyes dosage. A NIR absorption filter with optimal dye dosage has been prepared. The filter shows strong absorbing ability in the region between 660nm and 930nm. Meanwhile, the filter has sufficient transmit-tance between 400 nm and 630 nm. The test result shows that the filter has good application performance.

  5. Effect of changes in chlorophyll concentration on photosynthetic properties I. Fluorescence and absorption of greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1961-01-01

    In order to obtain new information about the way of functioning of chlorophyll in vivo a study was made of optical properties and photosynthesis under condition of a low chlorophyll content in the leave. It was found that the fluorescence yeild of greening bean leaves decreased from a value

  6. Effect of changes in chlorophyll concentration on photosynthetic properties I. Fluorescence and absorption of greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1961-01-01

    In order to obtain new information about the way of functioning of chlorophyll in vivo a study was made of optical properties and photosynthesis under condition of a low chlorophyll content in the leave. It was found that the fluorescence yeild of greening bean leaves decreased from a value approxim

  7. Comparison of the magnetic properties of GeMn thin films through Mn L-edge x-ray absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, S.; Stone, P.R.; Sircar, N.; Arenholz, E.; Dubon, O. D.; Bougeard, D.

    2009-08-04

    X-ray absorption spectroscopy of epitaxial GeMn thin films reveals an experimentally indistinguishable electronic configuration of Mn atoms incorporated in Ge{sub 1?x}Mn{sub x} nanoclusters and in precipitates of the intermetallic compound Mn{sub 5}Ge{sub 3}, respectively. However, the average magnetic response of thin films containing Ge{sub 1?x}Mn{sub x} nanoclusters is lower than the response of films containing Mn{sub 5}Ge{sub 3} precipitates. This reduced magnetic response of Ge{sub 1?x}Mn{sub x} nanoclusters is explained in terms of a fraction of Mn atoms being magnetically inactive due to antiferromagnetic coupling or the presence of structural disorder. A determination of the role of magnetically inactive Mn atoms in the self-assembly of the thermodynamically metastable Ge{sub 1?x}Mn{sub x} nanoclusters seems to be an essential ingredient for an enhanced control of this promising high Curie temperature magnetic semiconductor.

  8. THERMAL, MECHANICAL, AND MOISTURE ABSORPTION PROPERTIES OF WOOD-TiO2 COMPOSITES PREPARED BY A SOL-GEL PROCESS

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang,

    2012-01-01

    Full Text Available Wood-TiO2 (titania composites were prepared by a sol-gel process, in which wood was impregnated with the precursor solutions prepared from tetrabutyl titanate (TBT, followed by a curing step. The surface morphology and moisture absorption behavior of the wood composites, as well as their thermal and mechanical performances, were examined. Environmental scanning electron microscopy (ESEM analysis revealed that TiO2 gels were deposited principally in the cell lumens and partly in the cell walls, as confirmed by the energy dispersive X-ray (EDX analysis. By this inorganic modification, the hygroscopicity of wood was significantly reduced and its dimensional stability was improved consequently. Greater amounts of TiO2 gel deposited in the cell lumens were not helpful in enhancing the hygroscopicity of wood. Thermal analysis (TG-DTA showed that the incorporation of TiO2 gel retarded the thermal decomposition of wood matrix and improved the thermal stability of wood. The incorporated inorganic gel seemed to stiffen the wood cell walls, as indicated by the increased resistance of the wood composites to deformation and collapse in compression.

  9. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  10. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    Science.gov (United States)

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks.