WorldWideScience

Sample records for superinvar filler material

  1. Thermal pretreatment of silica composite filler materials

    OpenAIRE

    Wan, Quan; Ramsey, Christopher; Baran, George

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent s...

  2. New Manufacturing Method for Paper filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  3. New Filler Material for Reference Free Part Encapsulation Fixture

    Institute of Scientific and Technical Information of China (English)

    LI Bei-zhi; YANG Jian-guo; ZHOU Hu

    2002-01-01

    Reference free part encapsulation (RFPE) is a nontraditional universal fixturing technique. In this paper,new filler material-a lower melting point alloy for RFPE technique is introduced. Based on experiment, the shrinlkage and expansion rate, the effect of filler on workpiece drift and the effect of filler thickness on cutting distortion are studied. The alloy has a good mechanical and physical performance and the need of RFPE fixturing can be perfectly satisfied. The result shows that if the formula and process parameters of filler material are properly selected, it can obviously improve the quality of the workpiece, enhance the machining efficiency and reduce the manufacturing cost.

  4. Fillers

    Science.gov (United States)

    McLain, Leslie; Ingle, Danny

    The American Heritage dictionary defines filler as ‘something added to augment weight or size or fill space'. Historically, commercial papermakers have used a variety of inexpensive, minimally beneficiated minerals as fillers for economic extension of more costly wood fibre. As such, these fillers played a relatively inconsequential role in contributing specific quality characteristics to the final sheet. However, as paper grades have evolved, the role of mineral fillers has dramatically expanded to contribute specific functionality to final paper grades. In general, this has resulted in a broader offering of mineral products to the papermaker delivering a range of optical and physical properties. Additionally, the use of mineral fillers may significantly impact dynamics on the paper machine itself. For example, the type and level of filler can dramatically affect chemical demand, drainage, speed and drying rates. A basic understanding of the fundamental characteristics of fillers and their resulting impact, both within the paper matrix and on the paper machine, is a critical requirement for cost-effective grade optimization.

  5. New Manufacturing Method for Paper Filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus [SUNY College of Environmental Science and Forestry

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  6. Phosphogypsum Utilization Part III: as Adhesive Filler and Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The aim of this work is to make use of phosphogypsum (PG) waste material, which is produced in phosphoric acid and phosphate fertilizer manufactures. A number of wood adhesive formulations based on polyvinyl acetate (PVAc) polymer and phosphogypsum as a filler have been prepared, using different percentages of phusphogypsum, ranging between 5~20 wt pct. The prepared formulations wore tested for adhesion strength and compared with both natural and pure gypsum fillers. The results indicate that PG improves the adhesion strenth when 5 wt pct added, and that may be due to filling the porous surface of wood with the fine particles of PG, as well as coating the particles of the filler (PG) with PVAc units. Also, a number of formulations based on urea-formaldehyde polymer have been prepared using phosphogypsum as an active filler in the ratio of 40~75 wt pct to prepare composite materials used for some decoration purposes and construction. Mechanical, physical, and thermal properties of these formulations were studied. Also, the activation energy was calculated. The results indicate that PG without acid hardener can be used for preparation of composite materials based on urea-formaldehyde between 40~63.64 wt pct for construction purposes in the humid atmosphere, while between 63.64~75 wt pct for decoration purposes. The improvement of the physical, mechanical and thermal properties of the composite material may be attributed to the simultaneous hydration hardening action of phosphogypsum and the presence of 0.8% P2O5. These effects act as an active hardener for urea-formaldehyde resin and accelerate the cross-linking and network formation reinforced by the fine dusty inorganic particles of PG. The advantage of this method is to prepare composite material gypsum-urea-formaldehyde, which achieves the utilization of large amount of PG, reducing the price of the main product phosphate, minimizing the pollution and producing new materials which possess high thermal

  7. Standard Guide for Identification of Fibers, Fillers, and Core Materials in Computerized Material Property Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide establishes the essential and desirable elements of data required for the identification in computerized material property databases of fibers, fillers, and core materials used in composite materials. A recommended format for entry of these fields into a computerized database is provided. Examples of the application of this guide are also included. 1.2 The recommended format described in this guide is suggested for use in recording data in a database, which is different from contractural reporting of actual test results. The latter type of information is described in materials specifications shown in business transactions and is subject to agreement between vendor and purchaser. 1.3 The materials covered by this guide include fibers, both continuous and discontinuous, and fillers of various geometries which are used as reinforcements in composite materials, as well as core materials used in sandwich composites. Cores may be foam, honeycomb, or naturally occurring materials such as balsa wood....

  8. Investigation of Thermostability of a Composite Resistive Material with Nanodimensional Carbon Fillers

    Science.gov (United States)

    Malinovskaya, T. D.; Vlasov, V. A.; Volokitin, G. G.; Melentyev, S. V.

    2014-06-01

    Thermostability of resistive materials based on polyurethane used as heat-liberating elements in the design of heating elements of thermoactive formworks is investigated. The application of polyurethane as a binder provides solid contact of polymer molecules with nanodimensional carbon fillers and their uniform distribution in a composite material. The influence of thermal treatment and dispersed fillers on the stability of electrophysical and thermophysical properties of carbon-filled polyurethane coatings is established.

  9. A Study on Mechanical Properties of Vinylester Based BioComposite Material with Starch as a Filler Material

    Directory of Open Access Journals (Sweden)

    Mr. Vignesh M

    2014-11-01

    Full Text Available In composites a conglomeration produces material properties which are unavailable from individual constituent materials. The use of petroleum based products as constituents in polymer matrix composite has raised concerns regarding environmental issue and non-renewability of the resource. Therefore in this work an attempt has been made to develop a biocomposite material using untreated dupion silk fiber as reinforcement material and vinyl ester as matrix material with Potato Starch used as filler material by hand layup technique. The biocomposites were prepared in varying percentage of filler addition (0%, 10%, 20%, and 30% and different mechanical tests (tensile, flexure and hardness were conducted on the samples prepared to the ASTM standards. From the results of the experiments conducted on the specimen it can be concluded that the performance of 10% Starch filler content Biocomposite is satisfactory in all aspects compared to 0%, 20%, and 30% Starch filler content Biocomposites.

  10. DIFFERENT TYPES OF MICROFIBRILLATED CELLULOSE AS FILLER MATERIALS IN POLYSODIUM ACRYLATE SUPERABSORBENTS

    Institute of Scientific and Technical Information of China (English)

    Mikael Larsson; Qi Zhou; Anette Larsson

    2011-01-01

    Three types of microfibrillated cellulose (MFC) with differences in structure and surface charge were used at low concentration as filler materials in polysodium acrylate superabsorbents (SAPs). The swelling of the composite hydrogels was determined in 0.9% NaCl solution as well as in deionized water. The shear modulus of the samples was determined through uniaxial compression analysis after synthesis and after swelling in 0.9% NaCl solution. Furthermore, the ability to retain filler effects after washing was investigated. The results showed that all of the investigated MFCs had a strong reinforcing effect on the shear modulus after synthesis. The filler effect on swelling and on the associated shear modulus of swollen samples showed a more complicated dependence on structure and surface charge. Finally, it was found that the filler effects were reasonably retained after washing and subsequent drying. The results confirm that MFC holds great potential as a filler material in superabsorbent applications. Furthermore, the results provide some insight on how the structural properties and surface charge of MFC will affect gel properties depending on swelling conditions. This information should be useful in evaluating the use of different types of MFC in future applications.

  11. Synthesis of nanodispersed filler for polymer composite materials of thermostatic purpose

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-10-01

    Full Text Available The paper presents data on the synthesis of nanosized filler for nonpolar polymer matrix. Aqueous solution of sodium methylsiliconate with empirical formula CH3–Si(OH2ONa was used as the base component for the synthesis of nanosized filler. The production process of filler consists of several stages, these are the main ones: synthesizing of gel that was obtained in gel formation from sol colloidal solution – transformation of free-dispersed system (sol into connected-dispersed one; gel precipitation by centrifugation and washing from ion Na+; gel drying at temperature of 100оC to obtain a powder filler; dispersion in the mill to the particle size of 0,1–1 microns. To destroy globules and diminish particle size to nanoscale level the obtained material was exposed to dispersion in planetary mill with further sonication (22 Hz. To study the obtained filler X-ray, differential thermal and microscopic methods have been used. For quantification of colloidal component (nanoparticles in the suspension the centrifugation method was used at high speeds. It has been determined that the content of nanoparticles (up to 200 nm in the obtained substance is about 10%. Damping edge angle of the obtained material is 110–120оC, that shows high hydrophobic properties of the synthesized powder. The obtained material possesses high dispersiveness, hydrophobicity and silicone frame resistant to the temperature range up to 531оC (there are no significant chemical transformations except dealkylation and dehydration reactions. Thermal degradation of the synthesized filler distinctly observed at the temperaturemore than 531оC.

  12. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  13. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    Directory of Open Access Journals (Sweden)

    Peiqiang Cui

    2014-08-01

    Full Text Available Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC, making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS and ultraviolet-visible spectroscopy testing (UV-Vis were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  14. Effects of Al2O3-Particulate-Contained Composite Filler Materials on the Shear Strength of Alumina Joints

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    All2O3/Al2O3 joints were brazed with a new kind of filler materials, which were formed by adding Al2O3 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(Al2O3p 0 vol. pct) to 135.32 MPa(Al2O3p 15 vol. pct).

  15. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Science.gov (United States)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  16. Neutron Spectrometry for Identification of filler material in UXO - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary

    2007-09-12

    Unexploded ordnance (UXO)-contaminated sites often include ordnance filled with inert substances that were used in dummy rounds. During UXO surveys, it is difficult to determine whether ordnance is filled with explosives or inert material (e.g., concrete, plaster-of-paris, wax, etc.) or is empty. Without verification of the filler material, handling procedures often necessitate that the object be blown in place, which has potential impacts to the environment, personnel, communities and survey costs. The Department of Defense (DoD) needs a reliable, timely, non-intrusive and cost-effective way to identify filler material before a removal action. A new technology that serves this purpose would minimize environmental impacts, personnel safety risks and removal costs; and, thus, would be especially beneficial to remediation activities.

  17. Aluminum-matrix composite materials with shungite rock fillers

    Science.gov (United States)

    Kalashnikov, I. E.; Kovalevski, V. V.; Chernyshova, T. A.; Bolotova, L. K.

    2010-11-01

    A method is proposed for the introduction of shungite rocks into aluminum melts by mechanical mixing with carriers, namely, aluminum granules and reactive titanium powders taking part in exothermic in situ reactions. The structures of composite materials with shungite rock additions are studied, and a stabilizing effect of these additions on dry sliding friction is revealed.

  18. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Marco, E-mail: marco.valente@uniroma1.it; Tirillò, Jacopo; Quitadamo, Alessia, E-mail: alessia.quitadamo@uniroma1.it [University of Rome La Sapienza Dep. of Chemical and Material Engineering (Italy); Santulli, Carlo [University of Camerino, School of Architecture and Design (Italy)

    2016-05-18

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  19. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Science.gov (United States)

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-05-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  20. Experimental Investigation of Effect of Aluminum Filler Material on Thermal Properties of Palmyra Fiber Reinforced Composite

    Directory of Open Access Journals (Sweden)

    J. Pavanu Sai

    2014-12-01

    Full Text Available Natural fiber composites are renewable, cheap, completely or partially recyclable, carbon neutral and biodegradable. Their easy availability, lower density, higher specific properties, lower cost, satisfactory mechanical and thermal properties, non-corrosive nature, lesser abrasion to processing equipment, makes them an attractive ecological alternative to glass, carbon or other man-made synthetic fibers. Natural fiber composites are generally very good thermal insulators and thus cannot be used where thermal conduction is desirable. Increase in thermal conduction may be done by adding metal filler powders to the matrix. In this work, the effect of aluminum filler material on thermal properties of chemically treated palmyra fiber reinforced composites is investigated. Thermal properties studied include thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation and stability. Five different samples with 0%, 25%, 50%, 75%, 100% aluminum powder are considered. With the addition of aluminum filler powder, thermal conductivity increases, specific heat capacity decreases, thermal diffusivity increases and thermal stability improves with maximum at 50% aluminum powder.

  1. Investigating the weight ratio variation of alginate-hydroxyapatite composites for vertebroplasty method bone filler material

    Science.gov (United States)

    Lestari, Gusti Ruri; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    One of the newly developed methods for curing spinal fracture due to osteoporosis is vertebroplasty. The method is basically based on injection of special material directly to the fractured spine in order to commence the formation of new bone. Therefore, appropriate injectable materials are very important to the curing success. In this study, injectable alginate-hydroxyapatite (HA) composites were fabricated varying the weight percentage of alginate upon synthesis procedure. The result of injection capability and compressive tests as well as Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) suggested that bone filler composite containing 60 wt% alginate is the optimum composition obtaining a compressive modulus up to 0.15 MPa, injection capability of more than 85% and morphology with uniform porous and fibrous structure. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method.

  2. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    Science.gov (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  3. Al2O3/Al2O3 Joint Brazed with Al2O3-particulate-contained Composite Ag-Cu-Ti Filler Material

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Hongyuan FANG; Xin WAN

    2005-01-01

    Microstructure and interfacial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA),energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interfacial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interfacial layer growth of joints brazed with active composite filler material is t1/2 as described by Fickian law as the joints brazed with conventional active filler metal.

  4. Investigation of Using Waste Welded Tuff Material as Mineral Filler in Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Sebnem KARAHANCER

    2016-08-01

    Full Text Available In this paper, the welded tuff waste- known as koyke in Isparta region - was used in the hot mix asphalt (HMA as mineral filler for reduction of the moisture susceptibility of HMA. Optimum binder content was assessed with Marshall Design Method. First of all, welded tuff was substituted as filler with limestone filler in proportion of 50% and 100%. After that Marshall Stability test was performed on specimens. The results showed that the 50% substitution was more effective than the 100% substitution. Therefore, welded tuff was substituted with limestone filler in proportion of 25%, 50%, 65% and 75%. Next, Indirect Tensile Strength test was practiced on the fabricated specimens and the results were assessed. According to the Indirect Tensile Strength results, welded tuff with 65% was given higher strength than the limestone filler. As a result, it has come up that welded tuff can be used as mineral filler in the hot mix asphalt.

  5. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    Directory of Open Access Journals (Sweden)

    Susumu Yada

    2016-01-01

    Full Text Available When installing thermal interface material (TIM between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness, and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness.

  6. Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials

    Directory of Open Access Journals (Sweden)

    N. Rodella

    2016-09-01

    Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.

  7. THE QUANTUM – MECHANICAL MODEL OF FORMING CONTACT AREAS IN COMPOSITE MATERIALS WITH SPHERICAL FILLER

    Directory of Open Access Journals (Sweden)

    E. V. Suhovaya

    2011-01-01

    Full Text Available The structure and properties of the composites having Fe-C-B-Р binders alloyed with molybdenum and strengthened by the W-C quickly-cooled filler were investigated in this work. The model based on quantum mechanics principles explaining the dependencies of contact interaction zones width on filler diameter was suggested.

  8. Novel nano-particles as fillers for an experimental resin-based restorative material.

    Science.gov (United States)

    Rüttermann, S; Wandrey, C; Raab, W H-M; Janda, R

    2008-11-01

    The purpose of this study is to compare the properties of two experimental materials, nano-material (Nano) and Microhybrid, and two trade products, Clearfil AP-X and Filtek Supreme XT. The flexural strength and modulus after 24h water storage and 5000 thermocycles, water sorption, solubility and X-ray opacity were determined according to ISO 4049. The volumetric behavior (DeltaV) after curing and after water storage was investigated with the Archimedes principle. ANOVA was calculated with p<0.05. Clearfil AP-X showed the highest flexural strength (154+/-14 MPa) and flexural modulus (11,600+/-550 MPa) prior to and after thermocycling (117+/-14 MPa and 13,000+/-300 MPa). The flexural strength of all materials decreased after thermocycling, but the flexural modulus decreased only for Filtek Supreme XT. After thermocycling, there were no significant differences in flexural strength and modulus between Filtek Supreme XT, Microhybrid and Nano. Clearfil AP-X had the lowest water sorption (22+/-1.1 microg mm(-3)) and Nano had the highest water sorption (82+/-2.6 microg mm(-3)) and solubility (27+/-2.9 microg mm(-3)) of all the materials. No significant differences occurred between the solubility of Clearfil AP-X, Filtek Supreme XT and Microhybrid. Microhybrid and Nano provided the highest X-ray opacity. Owing to the lower filler content, Nano showed higher shrinkage than the commercial materials. Nano had the highest expansion after water storage. After thermocycling, Nano performed as well as Filtek Supreme XT for flexural strength, even better for X-ray opacity but significantly worse for flexural modulus, water sorption and solubility. The performances of microhybrids were superior to those of the nano-materials.

  9. In vitro toxicity of filler particles and methacrylates used in dental composite materials. Cytokine release and cell death

    OpenAIRE

    Ansteinsson, Vibeke

    2013-01-01

    Dental polymer-based composite materials are complex materials consisting of several components, the main components being filler particles (inorganic component) and polymer matrix (organic component). The organic component consists of monomers that usually are polymerized upon activation by visible light illumination.The polymerization process is never complete, and leakage of unreacted methacrylate monomers occurs during clinical service. Degradation processes may weaken the bon...

  10. Heat storage containers filled with the combination of a eutectic salt and a non-biodegradable filler material

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, J.L.

    1980-09-23

    A heat storage article adapted for prevention of stratification of heat storage materials, such as eutectic salts contained within the container element. The article is comprised of a heavy thermally conductive container with an internal cavity. The internal cavity of the container is substantially completely filled with a combination of a non-biodegradable filler material such as glass fiber insulation and a eutectic salt.

  11. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    Science.gov (United States)

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  12. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Caroline Kohn-Polster

    2017-05-01

    Full Text Available Toward the next generation of nerve guidance conduits (NGCs, novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR. As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM-like characteristics and specific biochemical cues holds great potential to support PNR.

  13. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  14. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-07-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field. Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  15. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers.

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-12-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field.Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  16. LDH dye hybrid material as coloured filler into polystyrene: Structural characterization and rheological properties

    Science.gov (United States)

    Taviot-Gueho, C.; Illaik, A.; Vuillermoz, C.; Commereuc, S.; Verney, V.; Leroux, F.

    2007-05-01

    The organic inorganic hybrid assembly composed of a dye molecule of large size, direct yellow®50, as interleaved anionic molecule and layered double hydroxide host was investigated by X-ray diffraction. Upon hydrothermal post-synthesis treatment, the basal spacing is strongly decreased, explained by a drastic change in the orientation of the organic molecule against the LDH sheets, from perpendicular to parallel. The interactions were studied by 13C CPMAS NMR technique. Dispersed into polystyrene, the coloured filler was found to behave better in the viscoelastic domain than conventional surfactant LDH filler, maintaining similar rheological properties to filler-free PS. We demonstrate here that an intercalated nanocomposite polymer structure, providing an additional function as colour, is not preposterous.

  17. Simplified approaches for the numerical simulation of welding processes with filler material

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Toselli, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy)

    2001-07-01

    Due to the very high computation times, required by the methodologies pointed out during the studies carried out at ENEA-Bologna concerning the numerical simulations of welds with filler material of steel pieces of high thickness (studies presented also at the 12. and 13. International ABAQUS Users' Conferences), new simplified methodologies have been proposed and applied to an experimental model of significant dimensions. (These studies are of interest in the nuclear field for the construction of the toroidal field coil case, TFCC, for the international thermonuclear experimental reactor, ITER machine). In this paper these new methodologies are presented together the obtained results, which have been compared, successfully, with the ones obtained by the use of the previous numerical methodologies considered and also with the corresponding experimental measures. These new calculation techniques are in course of application for the simulation of welds of pieces constituting a real component of ITER TF coil case. [Italian] A causa dei tempi di calcolo molto elevati richiesti dalle metodologie individuate e messe a punto durante gli studi eseguiti in ENEA-Bologna riguardanti le simulazioni numeriche di saldature, con apporto di materiale, di pezzi di acciaio di grande spessore (studi presentati anche alle precedenti Conferenze Utenti ABAQUS, 12{sup 0} e 13{sup 0} ABAQUS Users' Conferences), sono state cercate e proposte nuove metodologie semplificate, che sono state poi applicate ad un modello sperimentale di dimensioni significative. (Si ricorda che questi studi sono di interesse nel campo nucleare per la costruzione delle casse per contenere le bobine che daranno luogo al campo magnetico della macchina ITER, reattore internazione sperimentale termonucleare). Nel lavoro qui presentato sono descritte queste nuove metodologie e sono riportati i risultati ottenuti dalla loro applicazione unitamente ai confronti (abbastanza soddisfacenti) con i risultati

  18. Synthesis and characterization of polymer matrix composite material with combination of ZnO filler and nata de coco fiber as a candidate of semiconductor material

    Science.gov (United States)

    Saputra, Asep Handaya; Anindita, Hana Nabila

    2015-12-01

    Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that has a good mechanical strength and thermal resistance. In situ polymerization method is used in this research and the composites are ready to be characterized after 12 hours. The main parameter that is characterized is the electric conductivity of the composite. Additional parameters are also characterized such as composite's elastic modulus and glass transition temperature. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The highest semiconductor characteristic in acrylic/ZnO composite is obtained from 30% volume filler that reach 3.4 x 10-7 S/cm. Similar with acrylic/ZnO composite, in acrylic/nata de coco fiber composite the highest semiconductor characteristic is also obtained from 30% volume filler that reach 1.15 x 10-7 S/cm. Combination of 20% volume of ZnO, 10% volume of nata de coco, and 70% volume of acrylic resulting in composite with electric conductivity of 1.92 x 10-7 S/cm. In addition, combination of ZnO and nata de coco fiber as filler in composite can also improve the characteristic of composite where composite with 20% volume of ZnO filler and 10% volume of nata de coco fiber resulting in composite with elastic modulus of 1.79 GPa and glass transition temperature of 175.73°C which is higher than those in acrylic/ZnO composite.

  19. Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Gallot-Lavallee, O [Laboratoire de Genie Electrique de Toulouse, Universite Paul Sabatier-118, Route de Narbonne, Toulouse 31062 (France); Teyssedre, G [Laboratoire de Genie Electrique de Toulouse, Universite Paul Sabatier-118, Route de Narbonne, Toulouse 31062 (France); Laurent, C [Laboratoire de Genie Electrique de Toulouse, Universite Paul Sabatier-118, Route de Narbonne, Toulouse 31062 (France); Rowe, S [Direction des Recherches Materiaux, Schneider Electric SA-20, Rue Henri Tarze, Grenoble 38050 (France)

    2005-06-21

    This study aims to characterize the behaviour of the space charge in an epoxy resin used as electrical insulation in systems such as transformers and bus bars. Temperature, field level, filler content and nature of the electrodes are the parameters that were considered. Space charge measurements were performed using the pulsed electro acoustic technique, in a range of field and temperature up to 40 kV mm{sup -1} and 72 deg. C, respectively, on gold-coated and un-coated samples. We discuss the possibility of performing space charge measurement on filled epoxy resin despite the piezoelectricity of quartz fillers. Under dc field we observed a quasi-symmetrical build-up of homocharges at both electrodes, followed by a substitution of the homocharges by heterocharges, mainly close to the cathode. In addition, we recorded the space charge behaviour just before breakdown on a filled sample at 72 deg. C under 12 kV mm{sup -1}.

  20. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  1. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  2. The use of a volcanic material as filler in self-compacting concrete production for lower strength applications

    Directory of Open Access Journals (Sweden)

    D. Burgos

    2017-01-01

    Full Text Available This study evaluates the use of large amounts of fine powders (fillers derived from a Colombian volcanic material into the production of self-compacting concrete (SCC for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.

  3. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.

    Science.gov (United States)

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Wrinkle Fillers

    Science.gov (United States)

    ... packages for authenticity. The FDA is aware of counterfeit products being marketed and used in the U.S. Do ... dermal filler products online, because they could be counterfeit products, or products not approved for use in the ...

  5. Theoretical study and numerical simulation of the stress fields of the Al2O3 joints brazed with composite filler materials

    Institute of Scientific and Technical Information of China (English)

    Yang Jianguo; Ji Shude; Fang Hongyuan

    2006-01-01

    Non-linear finite element code MSC.Marc(c) was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials.The properties of the filler materials were defined by using the mixing law, method of MoriTanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM).The results show stress in brazed beam is higher than that in base material.The maximal stress can be found in the interface of joint.And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p 0vol.%) to 135.32 MPa ( Al2O3p 15vol.% ) when composition of titanium is 3wt% in the filler metal.

  6. Fabrication of porous titanium scaffold materials by a fugitive filler method.

    Science.gov (United States)

    Hong, T F; Guo, Z X; Yang, R

    2008-12-01

    A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.

  7. Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers

    Science.gov (United States)

    Burmistr, M. V.; Boiko, V. S.; Lipko, E. O.; Gerasimenko, K. O.; Gomza, Yu. P.; Vesnin, R. L.; Chernyayev, A. V.; Ananchenko, B. A.; Kovalenko, V. L.

    2014-05-01

    Novel polymer composite materials (PCM) based on resole phenol-formaldehyde resins modified with polyamide and reinforced with a combination of organic and inorganic fibrous fillers have been developed. PCM are characterized by a Charpy impact strength of up to 250 kJ/m2, an ultimate strength in static bending of up to 468 MPa, an ultimate strength in compression of up to 178 MPa, a Martens thermal stability of up to 300 °C, a friction coefficient of up to 0.12, and mass wear of up to 0.76 mg/(cm2 · km). They can be used for the fabrication of products intended for antifriction and constructional purposes.

  8. Utilization of Swedish fly ash from bio fuel fired power plants as a filler material in concrete; Anvaendning av svenska flygaskor som fillermaterial i betong

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2006-03-15

    The tested Swedish fly ashes (FA) (FA from bio combustion) in this project proved to have good filler qualities such as improving the stability and the rheological behavior of the concrete. One of tested FA could directly replace the compared limestone filler in the concrete recipes in booth laboratory investigation and in full-scale demonstration. The other FA demanded more water. The recipes were modified in the laboratory investigation to get a functional recipe for full-scale demonstration. The process to investigate the Swedish FA has been following (this project is one part of several investigation): Basic characterization; Characterization as a filler material; Full-scale demonstration; Certification, regularly quality assurance; Continuous use of Swedish FA in the Swedish Concrete Industry. Three representatives Swedish FA have been investigated in step 1-3 according to the process above. There were two FA in a full-scale demonstration a FA from bio fuel/paper sludge fired circulated fluidized bed boiler (at a paper mill) and a FA from a peat fired pulverized boiler. The test made was basic chemical and physical characterization, investigation as a filler material and strength development of a crushed aggregate self-compacting concrete in laboratory and in a full-scale demonstration. The conclusion were following: FA from the paper mill CFB boiler changes in strength development depending on the combustion temperature. It seems the reason is in the way CaO is distribute into different chemical compounds. Higher compressive strength with higher free CaO (analyzed in XRD) Higher content of reactive SiO{sub 2} and free lime in the CFB FA comparing with the PF FA. The soundness of the FA have been tested in early research projects. The sieves curves demonstrated that the FA from the CFB boiler coarser than the other FA tested and the limestone filler compared. The coarser grain fraction could explain why the FA demanded more water in the laboratory and full

  9. Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.

    Science.gov (United States)

    Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi

    2017-01-24

    We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p materials (p materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.

  10. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate Denture Base Material Doped with Inorganic Filler

    Directory of Open Access Journals (Sweden)

    Grzegorz Chladek

    2016-04-01

    Full Text Available The colonization of poly(methyl methacrylate (PMMA denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w. The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.

  11. Study on Measuring Methods for Martensitic Transformation Temperature of Nb-containing Super-Invar Alloy%含Nb超低膨胀合金马氏体相变温度测量方法的研究

    Institute of Scientific and Technical Information of China (English)

    蔡波; 于一鹏; 张敬霖; 卢凤双; 张建生; 张建福

    2012-01-01

    本文利用DSC(差示扫描量热仪)、热膨胀法、共振法研究稀土Ce对超低膨胀合金马氏体相变温度的影响,并对3种方法测试结果加以比较.研究发现,3种相变温度测试方法所得出的实验规律一致,即添加适量Ce,能降低超低膨胀合金的马氏体相变温度,有助于提高超低膨胀合金的低温组织稳定性.热膨胀法和共振法所测得结果较为接近,两者的测试结果较DSC法所测得的结果更准确.%The influence of cerium on the martensitic transformation temperature of Super-Invar alloy was investigated by DSC, thermal dilation method and resonance method. It is found that the experimental laws are identical with results by the three methods of martensitic transformation temperature measuring. The additon of appropriate cerium will decrease the martensitic transformation temperature of Super-Invar alloy and increase the cryogenic structure stability of Super-Invar alloy. The results obtained by thermal dilation method and resonance method are similar. The Ms temperature obtained by thermal dilation method and the resonance method is more reliable than DSC results.

  12. Effect of micrometer-scale metallic fillers on the mechanical and corrosion resistance properties of alternative materials for conservative dentistry.

    Science.gov (United States)

    Luponio, C; Causa, F; Angelini, E; Pinasco, M R; Ambrosio, L

    2006-01-01

    In conservative dentistry, glass-ionomer cements (GICs) have been proposed as substitutes for composite resins. This is because the latter, although widely used over the last 10 yrs, exhibit inadequate physico-chemical properties. Although the performance of a typical commercial GIC is not yet optimal for restorative dentistry, the addition of metallic filler could improve this. In this study, a series of commercially available GICs were incorporated in trial dental amalgams, whose mechanical and calorimetric properties and morphologies, were examined. The metallic component of these amalgams comprised one of three metallic fillers, each including micrometer-scale metal particles of a different shape. The corrosion resistance of the amalgams, in fluids simulating the oral cavity environment, was also studied. The addition of metallic filler to GIC produced a general improvement in mechanical properties. Of particular note were increases in the elastic modulus, up to around sixfold, with the addition of Valiant metallic filler to the GIC Fuji II, and of the stress at break, up to around fourfold, for the New Gen metallic filler/GIC Fuji II amalgam. In these cases, the mechanical properties of dentine were studied. Micrographic observations showed a highly compact structure of the added GICs, thus reflecting a reduction in shrinkage. Calorimetric and dilatometric analyses further confirmed the suitability for applications in preservative dentistry. Finally, with respect to corrosion resistance, the effect of the introduction of the metallic filler was beneficial in samples with low porosity.

  13. Experimental Investigation of Mechanical and Thermal properties of sisal fibre reinforced composite and effect of sic filler material

    Science.gov (United States)

    Surya Teja, Malla; Ramana, M. V.; Sriramulu, D.; Rao, C. J.

    2016-09-01

    With a view of exploring the potential use of natural recourses, we made an attempt to fabricate sisal fibre polymer composites by hand lay-up method. Natural fiber composites are renewable, cheap and biodegradable. Their easy availability, lower density, higher specific properties, lower cost, satisfactory mechanical and thermal properties, non-corrosive nature, makes them an attractive ecological alternative to glass, carbon or other man-made synthetic fibers. In this work, the effect of SiC on mechanical and thermal properties of natural sisal fiber composites are investigated. The composite has been made with and without SiC incorporating natural sisal fiber with polyester as bonding material. The experimental outcomes exhibited that the tensile strength of composite with 10%SiC 2.53 times greater than that of composite without SiC. The impact strength of composite with 10% SiC is 1.73 times greater than that of composite without SiC plain polyester. Thermal properties studied include thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation and stability. Three different samples with 0%, 5%, 10% SiC powder are considered. With the addition of SiC filler powder, thermal conductivity increases, specific heat capacity gradually increases then decreases, thermal diffusivity increases and thermal stability improves with Sic powder.

  14. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  15. Novel synthesis of Eu-doped SiAlON luminescent materials from a preceramic polymer and nano-sized fillers

    Directory of Open Access Journals (Sweden)

    E. Bernardo

    2014-06-01

    The reduction of Eu3+ into Eu2+ incorporated in SiAlON was favored by the presence of carbon derived from the pyrolysis of the preceramic polymers. The nanometric distribution of filler materials and the high yield of the selected preceramic polymers in terms of Si and N atoms led to the formation of the desired phases at relatively low firing temperatures (e.g. 3 h at 1550–1600 °C in pure nitrogen.

  16. Fracture resistance of endodontically treated teeth restored with Zirconia filler containing composite core material and fiber posts

    Science.gov (United States)

    Jeaidi, Zaid Al

    2016-01-01

    Objectives: To assess the fracture resistance of endodontically treated teeth with a novel Zirconia (Zr) nano-particle filler containing bulk fill resin composite. Methods: Forty-five freshly extracted maxillary central incisors were endodontically treated using conventional step back preparation and warm lateral condensation filling. Post space preparation was performed using drills compatible for fiber posts (Rely X Fiber Post) on all teeth (n=45), and posts were cemented using self etch resin cement (Rely X Unicem). Samples were equally divided into three groups (n=15) based on the type of core materials, ZirconCore (ZC) MulticCore Flow (MC) and Luxacore Dual (LC). All specimens were mounted in acrylic resin and loads were applied (Universal testing machine) at 130° to the long axis of teeth, at a crosshead speed of 0.5 mm/min until failure. The loads and the site at which the failures occurred were recorded. Data obtained was tabulated and analyzed using a statistical program. The means and standard deviations were compared using ANOVA and Multiple comparisons test. Results: The lowest and highest failure loads were shown by groups LC (18.741±3.02) and MC (25.16±3.30) respectively. Group LC (18.741±3.02) showed significantly lower failure loads compared to groups ZC (23.02±4.21) and MC (25.16±3.30) (pcomposite cores was comparable to teeth restored with conventional Zr free bulk fill composites. Zr filled bulk fill composites are recommended for restoration of endodontically treated teeth as they show comparable fracture resistance to conventional composite materials with less catastrophic failures. PMID:28083048

  17. Preliminary Research Concerning Optimal Percentage of Hemp Hurds for Lining Panels and Filler Materials in Buildings

    Directory of Open Access Journals (Sweden)

    Maria - Adriana GHERGHISAN

    2013-03-01

    Full Text Available Composite materials for liningst and wall fillermade of hemp hurds and mineral binders represent again in recovery of mineral binders and use ofrepresent lignocellulosic fiber resulted afterprocessing.This paper aims to establish the optimumpercentual range of hemp hurds that can beembedded in ceramic mass, which is able to supportin various stages, the physical and dimensionalintegrity, manipulation, transport and during sandingresistance, the remaining viable recipes being theones that successfully pass this preliminary test. It isexpected for these samples to have comparablethermal and acoustic properties with similar industrialproducts, currently manufactured, which givesthepractical applicability of these composites.

  18. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  19. Kinetic features of foaming thermosetting polymers in the preparation of thermal insulation materials in the presence of a mineral filler

    Directory of Open Access Journals (Sweden)

    A.E. Burdonov

    2014-05-01

    Full Text Available This article presents the research of dependencies with a filler in the form of fly ash, the mixture temperature and other factors influencing the kinetic characteristics of composite foaming based on the mixture of thermosetting resin (phenol-formaldehyde resins of different brands, fly ash and special modifiers. The article shows the duration and multiplicity of foaming, as well as the induction period of the composition depending on the amount of the filler used and other process parameters. It was found out that to obtain a homogeneous composite, the minimum thickness of the upper layer in the wooden form (S = 1m2 should be not less than 4 mm. The reaction with fly ash Thermal Power Station-9 (Open joint-stock company “Irkutskenergo”, Angarsk starts by 27% earlier than the use of fly ash in Ust-Ilimsk Hydroelectric Power Station. Using the obtained data, we developed mathematical models, expressed by regression equations.

  20. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  1. 7 CFR 58.914 - Fillers.

    Science.gov (United States)

    2010-01-01

    ... gravity and vacuum type fillers shall be of sanitary design and all product contact surfaces, if metal... Standards for Plastic, and Rubber and Rubber-Like Materials. Fillers shall be designed so that they in no... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION,...

  2. Evaluation of Wood and Cellulosic Materials as Fillers in Artificial Diets for Lyctus africanus Lesne (Coleoptera: Bostrichidae

    Directory of Open Access Journals (Sweden)

    Titik Kartika

    2015-07-01

    Full Text Available We studied the usefulness of wood- and cellulose-based diets for L. africanus Lesne. Three diets were prepared which differed on the base ingredients; wood particles (Diet 1, cellulose powder (Diet 2, and alpha-cellulose (Diet 3. The diets were provided to adult L. africanus and the number of larvae, as well as the number of adults that emerged sex ratio, and body weight of the progeny was determined. Findings indicated similar results for the number of larvae, sex ratio and body weight of the emerged L. africanus fed on each diet. However, the number of adult produced by L. africanus on Diet 3 was significantly lower. The results indicate that the amount of vital nutrients is not the only important factor in selecting a suitable diet for L. africanus because the filler used in artificial diets influences the beetles overall population growth. For the population upon which the diets were tested, Diet 1 and Diet 2 could be utilized to rear beetles in the laboratory.

  3. Cosmetic Fillers: Perspectives on the Industry.

    Science.gov (United States)

    Basta, Steven L

    2015-11-01

    The cosmetic filler industry has evolved substantially over the last 30 years. The market is characterized by multiple fillers and a competitive dynamic among major aesthetics companies. Marketing in the United States and Europe has been different owing to regulatory constraints. Differences have led to more rapid growth in the European market. The US market has evolved owing to growth of major companies with multiple product portfolios and leverage in consumer promotion and aesthetics office marketing owing to scale. The evolution of the filler market will include new materials, injection techniques, and facilitation devices, and new areas of injection.

  4. Utilization starch of jackfruit seed (Artocarpus heterophyllus) as raw material for bioplastics manufacturing using sorbitol as plasticizer and chitosan as filler

    Science.gov (United States)

    Lubis, M.; Harahap, M. B.; Manullang, A.; Alfarodo; Ginting, M. H. S.; Sartika, M.

    2017-01-01

    Starch is a natural polymer that can be used for the production of bioplastics because its source is abundant, renewable and easily degraded. Jackfruit seeds can be used as raw material for bioplastics because its contains starch. The aim of this study to determine the characteristics of jackfruit seeds and determine the effect of chitosan and sorbitol on the physicochemical properties of bioplastics from jackfruit seeds. Starch is extracted from jackfruit seeds were then characterized to determine its chemical composition. In the manufacture of bioplastics starch composition jackfruit seeds - chitosan used was 7: 3, 8: 2 and 9: 1 (g/g), while the concentration of sorbitol used was 20%, 25%, 30%, 35%, and 40% by weight dry ingredients. From the analysis of jackfruit seed starch obtained water content of 6.04%, ash content of 1.08%, the starch content of 70.22%, 16.39% amylose content, amylopectin content of 53.83%, 4.68% protein content, fat content 0.54%. The best conditions of starch bioplastics jackfruit seeds obtained at a ratio of starch: chitosan (w/w) = 8: 2 and the concentration of plasticizer sorbitol 25% with tensile strength 13.524 MPa. From the results of FT-IR analysis indicated an increase for the OH group and the group NH on bioplastics due to the addition of chitosan and sorbitol. The results of mechanical tests is further supported by analysis of scanning electron microscopy (SEM) showing jackfruit seed starch has a small granule size with the size of 7.6 μm and in bioplastics with chitosan filler and plasticizer sorbitol their fracture surface is smooth and slightly hollow compared bioplastics without fillers chitosan and plasticizer sorbitol.

  5. Effect of Ca–Al–Si–O common glass on dielectric properties of low-temperature co-fired ceramic materials with different fillers

    Science.gov (United States)

    Park, Zee-hoon; Yeo, Dong-hun; Shin, Hyo-soon

    2014-01-01

    High-density integration in single component used for mobile communication is highly demanded with the miniaturization trend in multi-functional light-weighted mobile communication devices. Embedding passive components into multi-layered ceramic chips is also increasingly needed for high integrity. The need for high strength materials to be used in handheld devices has also increased. To this end, many attempts to join different low-temperature co-fired ceramics (LTCC) materials with different dielectric constants have been made, but failed with de-laminations or internal cracks mainly due to difference of thermal expansion coefficients. It is thought that this difference could be minimized with the use of common glass in different LTCC materials. In this study, several candidates of common glass were mixed with various fillers of LTCC to have various dielectric constants in the radio-frequency, and to minimize the mismatch in joining. Ca–Al–Si–O glass was mixed with 1.3MgO-TiO2, cordierite and CaTiO3. Mixtures were tape-cast and sintered to be compared with their micro-structures, dielectric properties and thermo-mechanical characteristics. When 1.3MgO-TiO2 with volumetric ratio of 30% was mixed with Ca–Al–Si–O glass, the measured dielectric constant was 7.9, the quality factor was 3708. With 45 volumetric percent of cordierite, the dielectric constant was 5 and the quality factor was 1052. PMID:26019606

  6. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  7. Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material

    Science.gov (United States)

    Enz, Josephin; Riekehr, Stefan; Ventzke, Volker; Huber, Norbert; Kashaev, Nikolai

    2016-06-01

    Heat-treatable Al-Zn alloys are promising candidates for use as structural lightweight materials in automotive and aircraft applications. This is mainly due to their high strength-to-density ratio in comparison to conventionally employed Al alloys. Laser beam welding is an efficient method for producing joints with high weld quality and has been established in the industry for many years. However, it is well known that aluminum alloys with a high Zn content or, more precisely, with a high (Zn + Mg + Cu) content are difficult to fusion weld due to the formation of porosity and hot cracks. The present study concerns the laser weldability of these hard-to-weld Al-Zn alloys. In order to improve weldability, it was first necessary to understand the reasons for weldability problems and to identify crucial influencing factors. Based on this knowledge, it was finally possible to develop an appropriate approach. For this purpose, vanadium was selected as additional filler material. Vanadium exhibits favorable thermophysical properties and, thereby, can improve the weldability of Al-Zn alloys. The effectiveness of the approach was verified by its application to several Al-Zn alloys with differing amounts of (Zn + Mg + Cu).

  8. FILLER ENGINEERING FOR PAPERMAKING: COMPARISION WITH FIBER ENGINEERING AND SOME IMPORTANT RESEARCH TOPICS

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2010-05-01

    Full Text Available Fibers and fillers are important raw materials for the preparation of paper products. Similar to fiber engineering, filler engineering for papermaking has become an active research area. There are similarities as well as differences between engineering involving each of these classes of materials. There are differences in such aspects as the nature of materials to be engineered, applicable engineering methods, and engineerablity of the material surfaces. The co-development of fiber engineering and filler engineering can potentially provide many benefits to the papermaking industry. For filler engineering, the relevant research topics broadly can include fibrous filler engineering, hollow/porous filler engineering, acid-stabilization of calcium carbonate fillers, surface encapsulation of naturally occurring polymers or their derivatives, preflocculation, precoagulation, cationic modification, filler/size hybrid formation, organic filler engineering, using combinations of different types of available fillers, multilayer deposition modification, modification with polymer latexes or dispersants, physical modification, mechanical modification, surface functionalization, fines-filler composite/hybrids or fiber-filler composite/ hybrid formation, in-situ polymerization modification, surface grafting, physical treatment in the presence of polymeric additives, filler precipitation, and core-shell composite filler engineering.

  9. Monte Carlo simulations of radioactive waste encapsulated by bisphenol-A polycarbonate and effect of bismuth-III oxide filler material

    Science.gov (United States)

    Özdemir, Tonguç

    2017-06-01

    Radioactive waste generated from the nuclear industry and non-power applications should carefully be treated, conditioned and disposed according to the regulations set by the competent authority(ies). Bisphenol-a polycarbonate (BPA-PC), a very widely used polymer, might be considered as a potential candidate material for low level radioactive waste encapsulation. In this work, the dose rate distribution in the radioactive waste drum (containing radioactive waste and the BPA-PC polymer matrix) was determined using Monte Carlo simulations. Moreover, the change of mechanical properties of BPA-PC was estimated and their variation within the waste drum was determined for the periods of 15, 30 and 300 years after disposal to the final disposal site. The change of the dose rate within the waste drum with different contents of bismuth-III oxide were also simulated. It was concluded that addition of bismuth-III oxide filler decreases the dose delivered to the polymeric matrix due to photoelectric effect.

  10. Evolution of Microstructure in Brazed Joints of Austenitic-Martensitic Stainless Steel with Pure Silver Obtained with Ag-27Cu-5Sn Brazing Filler Material

    Science.gov (United States)

    Gangadharan, S.; Sivakumar, D.; Venkateswaran, T.; Kulkarni, Kaustubh

    2016-12-01

    Brazing of an austenitic-martensitic stainless steel (AMSS) with pure silver was carried out at 1053 K, 1073 K, and 1093 K (780 °C, 800 °C, and 820 °C) with Ag-27Cu-5Sn (wt pct) as brazing filler material (BFM). Wettability of the liquid BFM over base AMSS surface was found to be poor. Application of nickel coating to the steel was observed to enhance the wettability and to enable the formation of a good bond between BFM and the steel. The mechanism responsible for enhanced metallurgical bonding of the BFM with AMSS in the presence of nickel coating was explained based on diffusional interactions and uphill diffusion of iron, chromium and nickel observed in the brazed microstructure. Good diffusion-assisted zone was observed to form on silver side at all three temperatures. Four phases were encountered within the joint including silver solid solution, copper solid solution, Cu3Sn intermetallic and Ni-Fe solid solution. The Cu3Sn intermetallic was present in small amounts in the joints brazed at 1053 K and 1073 K (780 °C and 800 °C). The joint formed at 1093 K (820 °C) exhibited the absence of Cu3Sn, fewer defects and larger diffusion-assisted zone. Hardness of base AMSS was found to reduce during brazing due to austenite reversion and post-brazing sub-zero treatment for 2.5 hours was found suitable to recover the hardness.

  11. Tuning the Mechanical Properties of Tapioca Starch by Plasticizers, Inorganic Fillers and Agrowaste-Based Fillers

    OpenAIRE

    Edwin Azwar; Minna Hakkarainen

    2012-01-01

    Mechanical properties of tapioca starch-based films were tuned by different additives and additive combinations. The additives included plasticizers (glycerol, sorbitol, and citric acid), inorganic fillers (halloysite and kaolin), and agrowaste-based fillers (milled wood flour and rice bran). In addition, new biobased additives were prepared from wood flour and rice bran through liquefaction reaction. Through different additive combinations, starch-based materials with significant differences...

  12. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    Science.gov (United States)

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement.

  13. Microwave Absorption and Shielding, Property of Composites with FeSiA1 and Carbonous Materials as Filler

    Institute of Scientific and Technical Information of China (English)

    Wenqiang Zhang; Yonggang Xu; Liming Yuan; Jun Cai; Deyuan Zhangt

    2012-01-01

    Silicone rubber composites filled with FeSiAI alloys and multi-walled carbon nanotubes (MWCNT)/graphite have been prepared for the first time by a coating process. The complex permittivity and permeability of the composites were measured with a vector network analyzer in a 1-4 GHz frequency range, and the DC electric conductivity was measured by a standard four-point contact method. These parameters were then used to calculate the reflection loss (RL) and shielding effectiveness (SE) of the composites. The results showed that the added MWCNT increased the permittivity and permeability of composites in the L-band, while the added graphite increased only the permittivity. The variation lies in the interactions between two carbonous absorbents. Addition of 1 wt% MWCNT enhanced the RL in the L-band (minimum -5.7 dB at 1 ram, -7.3 dB at 1.5 ram), while the addition of graphite did not. Addition of MWCNT as well as graphite reinforced the shielding property of the composites (maximum SE 13.3 dB at 1 ram, 18.3 dB at 1.5 ram) owing to the increase of conductivity. The addition of these carbonous materials could hold the promise of enforcing the absorption and shielding property of the absorbers.

  14. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    Science.gov (United States)

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one.

  15. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man [Korea Maritime University, Dong Sam-Dong,Yong Do-ku, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-04-15

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H{sub 2}SO{sub 4} solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

  16. Bio-based fillers for environmentally friendly composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-03-01

    Full Text Available of Composites from Renewable Materials, Volume 1, Structure and Chemistry, p. 243-270 Bio-based Fillers for Environmentally Friendly Composites Thabang H. Mokhothu and Maya J. John ABSTRACT: The use of bio-based fillers as alternative replacement...

  17. Effect of Thermal Conductive Fillers on the Property of HDPE/Paraffin Shape - stabilized Phase - Change Materials%导热填料对 HDPE/石蜡定形相变材料性能的影响

    Institute of Scientific and Technical Information of China (English)

    杨序平; 刘菁伟; 杨文彬; 范敬辉; 张凯

    2014-01-01

    Four kinds of thermal conductive fillers,such as graphite,oxide expanded graphite,ultrasonic expanded graphite and expanded graphite were added into HDPE / paraffin shape - stabilized phase -change materials by using melt blending method to fabricate heat - conductive phase - change materials. SEM images show that the heat - conductive fillers are mixed well with the HDPE / paraffin. When graph-ite and ultrasound expanded graphite were added,the leakage rate of phase - change materials was in-creased with the increase of the filler content. When oxide expanded graphite and expanded graphite are added,the leakage rate of phase - change materials was decreased with the increase of the filler content. The thermal conductivity of the PCM is improved significantly with the thermal conductive filler added. When expanded graphite are added,the thermal conductivity rate can reach up to 144. 7% .%采用熔融共混技术,在高密度聚乙烯(HDPE)/石蜡定形相变材料中添加普通石墨、氧化膨胀石墨、超声膨胀石墨以及膨胀石墨(EG)4种导热填料制备导热定形相变材料(PCM)。SEM 图表明导热填料可以与 HDPE、石蜡均匀混合。添加导热填料后定形相变材料的渗漏率有增大的趋势,但添加普通石墨和超声膨胀石墨时,渗漏率随导热填料含量的增加而增加,添加氧化膨胀石墨和 EG 时,PCM 的渗漏率随导热填料含量的增加而降低。定形相变材料中添加导热填料时其热导率有显著提高。添加 EG 时,定形相变材料的热导率提高最多,提高率达144.7%。

  18. Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mold fungi

    Science.gov (United States)

    Mastalygina, E. E.; Popov, A. A.; Pantyukhov, P. V.

    2017-06-01

    The paper is devoted to investigation of deterioration of natural fillers and polyethylene composites on their basis (polyethylene/filler=70/30) due to the action of mold fungi. The fillers chemical composition, dimensional parameters and biodegradability have been analyzed as factors exert a considerable impact on composite materials biodeterioration. It has been found that the principal factor determining the biodeterioration of polyethylene/filler composites by mold fungi is chemical composition of a filler and, in turn, its biodegradability. The excess of holocellulose content over lignin content and high protein content in a filler are able to induce biofouling of the polymeric composite materials. The presence of soluble and easy hydrolysed fraction in a filler increases its availability in a polymeric matrix. According to the study results, most effective natural fillers as additives stimulating polyethylene composites biodegradability are milled straw of seed flax and hydrolyzed keratin of bird’s feather.

  19. The influence of filler on the properties of elastomeric materials based on poly(ethylene-co-propylene-co-2-ehylidene-5-norbornene rubber

    Directory of Open Access Journals (Sweden)

    Budinski-Simendić Jaroslava

    2006-01-01

    Full Text Available Crosslinked samples based on poly(ethylene-co-propylene-co-2-ehylidene5-norbornene EPDM rubber, carbon black as active filler and natural chalk as inactive filler were cured with sulphur. The content of carbon black was varied from 100 to 200 pph. The content of chalk was varied from 0 to 100 pph. The content of paraffin oil was also varied in some samples. The compounds were prepared by mixing ingredients on a laboratory two-roll mill. Vulcanizates were prepared by curing at 180°C. Various methods were used for the physical and mechanical characterizations. The dynamic mechanical properties of the elastomers were measured in the temperature range from -120 to 80°C.

  20. Standard guidelines for the use of dermal fillers

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2008-03-01

    Full Text Available Currently used fillers vary greatly in their sources, efficacy duration and site of deposition; detailed knowledge of these properties is essential for administering them. Indications for fillers include facial lines (wrinkles, folds, lip enhancement, facial deformities, depressed scars, periocular melanoses, sunken eyes, dermatological diseases-angular cheilitis, scleroderma, AIDS lipoatrophy, earlobe plumping, earring ptosis, hand, neck, dιcolletι rejuvenation. Physicians′ qualifications : Any qualified dermatologist may use fillers after receiving adequate training in the field. This may be obtained either during postgraduation or at any workshop dedicated to the subject of fillers. The physicians should have a thorough knowledge of the anatomy of the area designated to receive an injection of fillers and the aesthetic principles involved. They should also have a thorough knowledge of the chemical nature of the material of the filler, its longevity, injection techniques, and any possible side effects. Facility: Fillers can be administered in the dermatologist′s minor procedure room. Preoperative counseling and informed consent: Detailed counseling with respect to the treatment, desired effects, and longevity of the filler should be discussed with the patient. Patients should be given brochures to study and adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. A consent form should include the type of filler, longevity expected and possible postoperative complications. Preoperative photography should be carried out. Choice of the filler depends on the site, type of defect, results needed, and the physician′s experience. Injection technique and volume depend on the filler and the physician′s preference, as outlined in these guidelines.

  1. Effect of Natural Fillers on Mechanical Properties of GFRP Composites

    Directory of Open Access Journals (Sweden)

    Vikas Dhawan

    2013-01-01

    Full Text Available Fiber reinforced plastics (FRPs have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs. In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites.

  2. Advanced Laser Techniques for Filler-Induced Complications

    DEFF Research Database (Denmark)

    Cassuto, D.; Marangoni, O.; Santis, G. De

    2009-01-01

    BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...

  3. Transformation behaviour and residual stresses in welding of new LTT filler materials; Umwandlungsverhalten und Eigenspannungen beim Schweissen neuartiger LTT-Zusatzwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Kromm, Arne

    2011-07-06

    is seen to occur. This is observed for the considered alloys to be particularly pronounced in transverse direction of the weld. By contrast, the residual stress level in longitudinal weld direction is nearly independent of the shrinkage conditions. With the help of residual stress depth gradients it could be established that the additional shrinkage restraint manifests itself in a parallel shift of the residual stress level in the weld metal. Application of energy-dispersive diffraction methods additionally allowed it for the first time to determine residual stresses in the austenitic phase of the LTT alloy which is present parallel to martensite. Results gained under laboratory conditions mostly need to be verified under real fabrication conditions. For this purpose, a component weld test was performed in a special large-scale testing facility. Under structural shrinkage restraint, the load relieving effect of a specific LTT welding filler material could be proven by means of a pronounced stress reduction duringwelding. Overall, evidence was furnished that the concept of Low Transformation Temperature (LTT)alloys is successful and that the proven austenite-martensite transformation exerts a significanteffect on the residual stress level. [German] Die Erkenntnis, dass die Phasenumwandlung bei der Schweisseigenspannungsentstehung hochfester Staehle eine bedeutende Rolle spielt, gibt es bereits seit langer Zeit. Bisher existierten jedoch keine Ansaetze, diesen Effekt praktisch zur Schweisseigenspannungskontrolle zu nutzen. Neuartige Low Transformation Temperature (LTT) Legierungen bieten aufgrund ihrer charakteristischen chemischen Zusammensetzung die Moeglichkeit, hochfeste Staehle auf deren Festigkeitsniveau zu fuegen. Die martensitische Phasenumwandlung soll zudem eine gezielte Einstellung der Schweisseigenspannungen erlauben. Die im Schrifttum vorliegenden Untersuchungen zu diesem Thema sind zwar zahlreich, bieten jedoch nur wenige Erkenntnisse zur Wechselwirkung

  4. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    Science.gov (United States)

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior.

  5. Wear of nanofilled dental composites at varying filler concentrations.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles. © 2014 Wiley Periodicals, Inc.

  6. Evaluation of Hydrated Lime Filler in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Mohammed Abbas Hasan Al-Jumaily

    2008-01-01

    Full Text Available Mineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction of surface course pavement in Iraq in accordance with SCRB specifications was used .The materials used in this study included mineral aggregate materials (coarse and fine sizes were originally obtained from Najaf Sea quarries and two grades of asphalt cements produced from Daurah refinery which are D47 and D66 . The physical properties , stiffness modulus and chemical composition are evaluated for the recovered asphalt cement from prepared asphalt mixes containing various filler types .The paper results indicated that the addition of hydrated lime as mineral filler improved the permanent deformation characteristics and fatigue life and the use of hydrated lime will decrease the moisture susceptibility of the asphalt mixtures.

  7. Transformation behaviour and residual stresses in welding of new LTT filler materials; Umwandlungsverhalten und Eigenspannungen beim Schweissen neuartiger LTT-Zusatzwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Kromm, Arne

    2011-07-06

    is seen to occur. This is observed for the considered alloys to be particularly pronounced in transverse direction of the weld. By contrast, the residual stress level in longitudinal weld direction is nearly independent of the shrinkage conditions. With the help of residual stress depth gradients it could be established that the additional shrinkage restraint manifests itself in a parallel shift of the residual stress level in the weld metal. Application of energy-dispersive diffraction methods additionally allowed it for the first time to determine residual stresses in the austenitic phase of the LTT alloy which is present parallel to martensite. Results gained under laboratory conditions mostly need to be verified under real fabrication conditions. For this purpose, a component weld test was performed in a special large-scale testing facility. Under structural shrinkage restraint, the load relieving effect of a specific LTT welding filler material could be proven by means of a pronounced stress reduction duringwelding. Overall, evidence was furnished that the concept of Low Transformation Temperature (LTT)alloys is successful and that the proven austenite-martensite transformation exerts a significanteffect on the residual stress level. [German] Die Erkenntnis, dass die Phasenumwandlung bei der Schweisseigenspannungsentstehung hochfester Staehle eine bedeutende Rolle spielt, gibt es bereits seit langer Zeit. Bisher existierten jedoch keine Ansaetze, diesen Effekt praktisch zur Schweisseigenspannungskontrolle zu nutzen. Neuartige Low Transformation Temperature (LTT) Legierungen bieten aufgrund ihrer charakteristischen chemischen Zusammensetzung die Moeglichkeit, hochfeste Staehle auf deren Festigkeitsniveau zu fuegen. Die martensitische Phasenumwandlung soll zudem eine gezielte Einstellung der Schweisseigenspannungen erlauben. Die im Schrifttum vorliegenden Untersuchungen zu diesem Thema sind zwar zahlreich, bieten jedoch nur wenige Erkenntnisse zur Wechselwirkung

  8. [Rhinoplasty and dermal fillers].

    Science.gov (United States)

    Jallut, Y; Nguyen, P S

    2014-12-01

    The use of fillers for camouflage after surgical rhinoplasty or during medical rhinoplasty process represent an attractive technique which allows to avoid or to delay surgical time often dreaded by the patients. This technique apparently quite simple, must be applied carefully in order to avoid possible complications that can sometimes be very serious. Through their seven years of experience, the authors have selected absorbable type of products: hyaluronic acid or calcium hydroxylapatite, both approved by ANSM. Preference is given to microcannulas (27G) over needles and injection techniques through multiple tunnels fitted with small fragmented boluses. Due to possible Tyndall effect and skin necrosis risk, a one-shot injection with a lot of product should be avoided. Calcium hydroxyapaptite is preferred for the dorsum area while hyaluronic acid is recommended for the tip. The authors also relate the major encountered complications and describe the appropriated treatments. Nevertheless the strict application of the described technique represents the best way to prevent adverse complications.

  9. Use of Cellulose-Containing Fillers in Composites with Polypropylene

    Directory of Open Access Journals (Sweden)

    Marianna LAKA

    2011-07-01

    Full Text Available The composites, containing recycled polypropylene and fillers, obtained from different lignocellulosics by the thermocatalytic destruction method, were investigated. Birch sawdust, newsprint wastes, cotton residues and wood bleached sulphate pulp were used as raw materials for obtaining fillers. The indices of mechanical properties (tensile strength, modulus of elasticity, deformation at break, shear modulus, toughness, twisting moment of the composites' samples were determined. It has been found that the obtained composites have relatively good mechanical properties. Better results were obtained, using fillers from sawdust and wood pulp. After treating the fillers with rapeseed oil, their water vapour sorption and water retention value (WRV decreased. In this case, the strength of the composites was higher.http://dx.doi.org/10.5755/j01.ms.17.2.484

  10. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties.

    Science.gov (United States)

    Oral, Onur; Lassila, Lippo V; Kumbuloglu, Ovul; Vallittu, Pekka K

    2014-05-01

    The aim of this study was to investigate the effect of silanization of biostable and bioactive glass fillers in a polymer matrix on some of the physical properties of the composite. The water absorption, solubility, flexural strength, flexural modulus and toughness of different particulate filler composite resins were studied in vitro. Five different specimen groups were analyzed: A glass-free control, a non-silanized bioactive glass, a silanized bioactive glass, a non-silanized biostable glass and a silanized biostable glass groups. All of these five groups were further divided into sub-groups of dry and water-stored materials, both of them containing groups with 3wt%, 6wt%, 9wt% or 12wt% of glass particles (n=8 per group). The silanization of the glass particles was carried out with 2% of gamma-3-methacryloxyproyltrimethoxysilane (MPS). For the water absorption and solubility tests, the test specimens were stored in water for 60 days, and the percentages of weight change were statistically analyzed. Flexural strength, flexural modulus and toughness values were tested with a three-point bending test and statistically analyzed. Higher solubility values were observed in non-silanized glass in proportion to the percentage of glass particles. Silanization, on the other hand, decreased the solubility values of both types of glass particles and polymer. While 12wt% non-silanized bioactive glass specimens showed -0.98wt% solubility, 12wt% silanized biostable glass specimens were observed to have only -0.34wt% solubility. The three-point bending results of the dry specimens showed that flexural strength, toughness and flexural modulus decreased in proportion to the increase of glass fillers. The control group presented the highest results (106.6MPa for flexural strength, 335.7kPA for toughness, 3.23GPa for flexural modulus), whereas for flexural strength and toughness, 12wt% of non-silanized biostable glass filler groups presented the lowest (70.3MPa for flexural strength

  11. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  12. Optical substrate materials for synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  13. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  14. Natural Rubber-Filler Interactions: What Are the Parameters?

    Science.gov (United States)

    Chan, Alan Jenkin; Steenkeste, Karine; Canette, Alexis; Eloy, Marie; Brosson, Damien; Gaboriaud, Fabien; Fontaine-Aupart, Marie-Pierre

    2015-11-17

    Reinforcement of a polymer matrix through the incorporation of nanoparticles (fillers) is a common industrial practice that greatly enhances the mechanical properties of the composite material. The origin of such mechanical reinforcement has been linked to the interaction between the polymer and filler as well as the homogeneous dispersion of the filler within the polymer matrix. In natural rubber (NR) technology, knowledge of the conditions necessary to achieve more efficient NR-filler interactions is improving continuously. This study explores the important physicochemical parameters required to achieve NR-filler interactions under dilute aqueous conditions by varying both the properties of the filler (size, composition, surface activity, concentration) and the aqueous solution (ionic strength, ion valency). By combining fluorescence and electron microscopy methods, we show that NR and silica interact only in the presence of ions and that heteroaggregation is favored more than homoaggregation of silica-silica or NR-NR. The interaction kinetics increases with the ion valence, whereas the morphology of the heteroaggregates depends on the size of silica and the volume percent ratio (dry silica/dry NR). We observe dendritic structures using silica with a diameter (d) of 100 nm at a ∼20-50 vol % ratio, whereas we obtain raspberry-like structures using silica with d = 30 nm particles. We observe that in liquid the interaction is controlled by the hydrophilic bioshell, in contrast to dried conditions, where hydrophobic polymer dominates the interaction of NR with the fillers. A good correlation between the nanoscopic aggregation behavior and the macroscopic aggregation dynamics of the particles was observed. These results provide insight into improving the reinforcement of a polymer matrix using NR-filler films.

  15. Influence of inorganic filler content on the radiopacity of dental resin cements.

    Science.gov (United States)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura; Moldovan, Marioara; Prejmerean, Cristina; Nica, Luminita

    2012-01-01

    Digital radiography was used to measure the radiopacity of 18 resin cements to determine the influence of inorganic filler content on radiopacity. Four disk specimens (n=4) of each light-curing cement were digitally radiographed alongside an aluminum step wedge using an intraoral sensor (XIOS Plus, Sirona, Germany), and their mean gray value measured. Percentage of filler by weight was determined using an analytical combustion furnace. Data were statistically analyzed using one-way ANOVA and Tukey's test (α=0.05). All materials were more radiopaque than dentin and 12 materials were more radiopaque than enamel. Filler percentage ranged between 17.36 to 53.56 vol% and radiopacity between 1.02 to 3.40 mm Al. There were no statistically significant differences in inorganic filler percentage and radiopacity among the different shades of the same material (p>0.05), but the highest radiopacity was measured for the material which contained a higher percentage of filler.

  16. The influence of filler on the properties of epoxy encapsulating materials%硅微粉填料对环氧灌封材料性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘运学; 王晓丹; 范兆荣; 谷亚新; 礼航; 杨水林

    2009-01-01

    以液态双酚A环氧树脂为基料,苯酐为固化剂,咪唑类为促进剂,苄基缩水甘油醚为稀释荆,硅微粉为填料制得了性能优异的电器灌封材料.考察了硅微粉的种类及用量对环氧灌封材料的凝胶化时间、冲击强度、吸水率、体积电阻率的影响.结果表明活性硅微粉对提高环氧灌封材料的性能有利,当活性硅微粉用量为150质量份时,环氧灌封材料的综合性能较佳.%Epoxy encapsulateing materials with high property were prepared using epoxy as matrix.PA as curing agent,imidazole as accelerant,benzyl glycidol ether as thinner,silica powder as the filler.The influence of the kind and using level of silica powder on the gelation time,impact strength,water absorption and volume resistivety of the epoxy encapsulateing materials were studied.The experimental results indicated that the active silica powder played an important role in materiall's property,the combination property is better when the using level of active silica powder is 150 mass number.

  17. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  18. An investigation of tendon sheathing filler migration into concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.

  19. Effect of three filler types on mechanical properties of dental composite

    Directory of Open Access Journals (Sweden)

    Pahlavan A.

    2005-06-01

    Full Text Available Statement of Problem: Despite the improvements achieved in the field of dental composites, their strength, longevity, and service life specially in high stress areas is not confirmed. Finding better fillers can be a promising step in this task. Purpose: The purpose of this study was to investigate the effect of the filler type on the mechanical properties of a new experimental dental composite and compare these with the properties of composite containing conventional glass filler. Materials and Methods: Experimental composites were prepared by mixing silane-treated fillers with monomers, composed of 70% Bis-GMA and 30% TEGDMA by weight. Fillers were different among the groups. Glass, leucite ceramic and lithium disilicate were prepared as different filler types. All three groups contained 73% wt filler. Comphorquinone and amines were chosen as photo initiator system. Post curing was done for all groups. Diametral tensile strength (DTS, flexural strength and flexural modulus were measured and compared among groups. Data were analyzed with SPSS package using one-way ANOVA test with P<0.05 as the limit of significance. Results: The results showed that the stronger ceramic fillers have positive effect on the flexural strength. Ceramic fillers increased the flexural strength significantly. No significant differences could be determined in DTS among the groups. Flexural modulus can be affected and increased by using ceramic fillers. Conclusion: Flexural strength is one of the most significant properties of restorative dental materials. The higher flexural strength and flexural modulus can be achieved by stronger ceramic fillers. Any further investigation in this field would be beneficial in the development of restorative dental materials.

  20. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    Directory of Open Access Journals (Sweden)

    Yunxia Chen

    2017-04-01

    Full Text Available The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability.

  1. Optical substrate materials for synchrotron radiation beam lines

    Science.gov (United States)

    Howells, Malcolm R.; Paquin, Roger A.

    1997-09-01

    We consider the materials choices available for making optical substrates for synchrotron radiation beam lines. We find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors we explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. We conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. We then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, GlidcopTM, aluminum, precipitation- hardening stainless steel, mild steel, invar and superinvar. Finally we summarize conclusions and propose ideas for further research.

  2. Perspectives for Titanium-Derived Fillers Usage on Denture Base Composite Construction: A Review Article

    Directory of Open Access Journals (Sweden)

    Nidal W. Elshereksi

    2014-01-01

    Full Text Available Poly(methyl methacrylate (PMMA is an extensively used material in dentistry because of its aesthetics, processability, and reparability. However, PMMA is still far from being ideal in fulfilling the mechanical requirements of prosthesis. PMMA-based denture base polymers exhibit low fracture resistance and radiopacity behavior. Efforts to improve the mechanical and radiopacity properties of denture base materials through inclusion of silica-based fillers are ongoing. Although silane-treated siliceous fillers are commonly used, they are not sufficiently strong. They also exhibit cracks, which either cut through the glass fillers or propagate around the filler particles. This defect occurs when the dental composites are placed in aqueous oral environment because of the hydrolytic degradation of silica-based fillers and silane-coupling agents. The clinical problem of using silanes in adhesion promotion is bond degradation over time in oral environment. In addition, silanes do not bond effectively to nonsilica-based dental restorative materials. This review presents titanium-derived fillers as alternatives to siliceous fillers. Titanate-coupling agents are found to be effective couplers in treating Ti-based fillers because of their chemical compatibility and relatively high stability in aqueous environment.

  3. Alternative Fillers for the Production of Bituminous Mixtures: A Screening Investigation on Waste Powders

    Directory of Open Access Journals (Sweden)

    Cesare Sangiorgi

    2017-06-01

    Full Text Available There has been a significant increase in the demand for using recycled materials in construction because of the lack and limitation of available natural resources. A number of industrial and domestic waste products are being used in the replacement of traditional materials for road construction, and many studies have been carried out in recent years on the use of different recycled materials in substitution of conventional fillers in Asphalt Concretes (AC. The aim of this laboratory research is to analyze the physical characteristics of three different recycled fillers and compare them with those of a traditional limestone filler. The alternative fillers presented in this paper are: a waste bleaching clay that comes from two consecutive stages in the industrial process for decolouring vegetable oils and producing biogas (Ud filler, a dried mud waste from a tungsten mine (MW filler and a recycled glass powder (Gl filler. Results show significant differences between the fillers, and, in particular, Rigden Voids (RV seem to have the largest potential influence on the rheology of ACs.

  4. Research Progress in Conductive Polymer-Nanocomposite with Carbon Materials as Thermal-Conductive Filler%聚合物/碳基导热复合材料研究进展

    Institute of Scientific and Technical Information of China (English)

    郭文满; 李四中; 陈国华

    2013-01-01

    碳家族主要包括石墨、碳纤维、碳纳米管、富勒烯、石墨烯以及无定形碳等.其中石墨、碳纤维、碳纳米管以及石墨烯具有良好的导热性能,最近被广泛研究的石墨烯是1种很有前景的导热填料.综述近年来国内外以碳材料为填料的导热复合材料研究进展,阐述了碳材料及其纳米导热复合材料导热性的影响因素,最后对碳材料的发展方向进行了展望.%Carbon family consists of graphite,carbon fiber,carbon nanotube,fullerene,graphene and amorphous carbon and so on,of which graphite,carbon fiber,carbon nanotube and graphene own high thermal conductivity,especially graphene recently widely research of a promising thermal-conductive filler.The recent years' status of worldwide research in the thermal conductivity of polymer heat-conductive composite is reviewed.The thermal-conductive mechanism and influencing factors of carbon materials and composite are reported.At last,the future of thermal-conductive composite is looked forward.

  5. Complications caused by injection of dermal filler in Danish patients

    DEFF Research Database (Denmark)

    Uth, Charlotte Caspara; Elberg, Jens Jørgen; Zachariae, Claus

    2016-01-01

    Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number of complicati......Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number...... of complications is likely to increase as well.  Methods: A total of 37 patients with complications were collected retrospectively during a period of 13 years using original data files. Information on the type, date, number and location of the injections, type and date of complications, treatment, bacteria...... and complications was 2 years (range 1 day–8 years). The most common reported complications were edema (81 %), noduli (67.7 %), infections (54.1 %), discoloration (51.4 %), and granuloma formation (48.6 %). Surgical removal of the filler material was attempted in four patients.  Conclusions: With the increased use...

  6. Induction heating of mastic containing conductive fibers and fillers

    NARCIS (Netherlands)

    García, Á.; Schlangen, E.; Ven, M. van de; Vliet, D. van

    2011-01-01

    The objective of this research is to examine the induction heating of mastic through the addition of electrically conductive fillers and fibers (graphite and steel wool), and to prove that this material can be healed with induction energy. The effect of fibers content, sand-bitumen ratio and the com

  7. Induction heating of mastic containing conductive fibers and fillers

    NARCIS (Netherlands)

    García, Á.; Schlangen, E.; Van de Ven, M.; Van Vliet, D.

    The objective of this research is to examine the induction heating of mastic through the addition of electrically conductive fillers and fibers (graphite and steel wool), and to prove that this material can be healed with induction energy. The effect of fibers content, sand–bitumen ratio and the com

  8. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  9. Study of Diamond like Carbon as template for nanoimprint lithography and as a filler material for vertically aligned carbon nanotube forests

    Science.gov (United States)

    Ramachandran, Seetharaman

    Due to its tunable properties like hardness, optical gap, chemical inertness, electrical resistivity, biocompatibility etc., coatings of the material Diamond like Carbon (DLC) have been used as protective layers for various applications. In this research effort, we add to the growing list of its potential applications by proposing them as a template material for the emerging field of nanoimprint lithography. Using capacitive and inductive plasmas, we demonstrate the possibility of depositing DLC films of reasonable hardness (10-25 GPa) and wear resistance (2X that of Si and 3X that of Quartz). We have successfully used these films as a mold material to obtain feature sizes as small as 40 nm. In addition, to further the understanding of the effect of the gas phase chemistry on the film properties, the Methane discharge used for obtaining these films has been studied using techniques like Fourier Transform Infrared Spectroscopy and Optical Emission Spectroscopy. The higher degree of dissociation (up to 70%) of the precursor in case of inductive plasmas leads to selected conditions under which hard DLC films are obtained. We also show that for the same deposition conditions, films deposited on the insulating Quartz substrates are softer and more polymeric than those deposited on Si substrates. Carbon nanotubes with their unique physical properties are seen as ideal candidates for applications like field effect transistors, supercapacitors, AFM tips and electronic devices. One of the chief challenges in using them for these applications is obtaining them in a form that is easier to handle, thus enabling them to withstand the various post-processing steps. The second part of this dissertation focuses on the possibility of obtaining a Carbon-Carbon composite structure by subjecting vertically aligned Carbon nanotube forests to a PECVD based process. The distance from the top of the CNT forest that is coated with the deposited film (termed as the depth of infusion) shows

  10. 凸轮式填料装置排料器的结构优化与运动仿真%Structure Optimization and Motion Simulation of Material Covering Device of Cam Tray Filler

    Institute of Scientific and Technical Information of China (English)

    姜迎春; 王君玲; 田佳玄; 张祖立

    2016-01-01

    Stress is affected by the thickness of sliding plate of material covering device of Cam tray filler .The minimum safety factor and allowable safety coefficient by comparing by static analysis of sliding plate , the thickness of sliding plate is optimized under the condition of meet the design requirements .so as to reduce weight and saving material of the mate-rial covering device .Motion simulation for centroid of roller of material covering device by the thickness of the sliding plate is optimized show that trajectory of roller centroid is corresponding by comparing cam contour line of theoretical de -sign;extending the length of sliding plate by displacement curve of roller is corresponding by comparing design ; radial velocity and acceleration curves of roller are accord with the design requirements .%在凸轮式填料装置的设计中,排料器滑板结构的厚度影响其应力。为此,对滑板结构进行了静力分析,并将最小安全系数与许用安全系数进行对比,在满足设计要求条件下对滑板结构的厚度进行优化,从而减轻排料器质量以节省材料。通过对滑板结构厚度优化后的排料器滚子质心的运动仿真可得到:滚子质心的运动轨迹与理论设计的凸轮轮廓线一致;滚子位移曲线所得到的滑板伸出滚筒长度的最大值与设计一致;滚子径向运动速度和加速度曲线规律符合设计要求。

  11. Soy-based fillers for thermoset composites

    Science.gov (United States)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  12. Effect of Geopolymer filler in Glass Reinforced Epoxy (GRE) Pipe for Piping Application: Mechanical Properties

    Science.gov (United States)

    Firdaus Abu Hashim, Mohammad; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Hussin, Kamarudin; Binhussain, Mohammed

    2016-06-01

    The present work is aimed to carry out the effect of geopolymer material which is fly ash as filler in the glass reinforced epoxy pipe on the micro structure of fly ash geopolymer, compression properties, and bulk density using the filament winding method. Conventional glass reinforced epoxy pipes has its own disadvantages such as high corrosion resistance at acidic environment and low strength which can be replaced by the composite pipes. Geopolymer is a type of amorphous alumino-silicate and can be synthesized by geopolymerization process. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentage geopolymer filler which is fly ash with 4 Molarity were prepared. Morphology of the raw material fly ash and fly ash based-geopolymer surface was characterized using scanning electron microscopy. It was found that the additions of fly ash at the beginning with 10 wt% are showing higher compressive strength than glass reinforced epoxy pipe without fly ash geopolymer filler. The compressive test of these series of samples was determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples fly ash based-geopolymer filler are higher as compared to glass reinforced epoxy pipe without geopolymer filler. However, the compressive strength of glass reinforced epoxy pipe with fly ash geopolymer filler continues to decline when added to 20 wt% - 40 wt% of geopolymer filler loading. The results showed that the mixing of geopolymer materials in epoxy system can be obtained in this study.

  13. A novel technique for preparing dental CAD/CAM composite resin blocks using the filler press and monomer infiltration method.

    Science.gov (United States)

    Okada, Koichi; Kameya, Takehiro; Ishino, Hiroshige; Hayakawa, Tohru

    2014-01-01

    The authors have developed a new technique for preparing dental CAD/CAM composite resin blocks (CRBs): the filler press and monomer infiltration (FPMI) method. In this method, surface-treated filler is molded into a green body in which the filler particles are compressed to form an agglomeration. The green body is then infiltrated with a monomer mixture before being polymerized. It is possible to produce CRBs using this method through which densely packed nanofiller is uniformly dispersed. The greater the pressure of the filler molding, the more filler in the CRB, resulting at high pressure in a very dense CRB. A CRB obtained by applying 170 MPa of pressure contained up to 70 wt% of nano-silica filler and had a flexural strength of 200 MPa, as well. It is anticipated that CRBs obtained using the FPMI method will be useful as a dental CAD/CAM material for the fabrication of permanent crown restorations.

  14. Visibly transparent and radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Maedler, Lutz [University of California, Los Angeles, Department of Chemical Engineering (United States)], E-mail: lutz@seas.ucla.edu; Krumeich, Frank [Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences (Switzerland); Burtscher, Peter; Moszner, Norbert [Ivoclar Vivadent AG (Liechtenstein)

    2006-08-15

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  15. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    Science.gov (United States)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  16. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Science.gov (United States)

    Mädler, Lutz; Krumeich, Frank; Burtscher, Peter; Moszner, Norbert

    2006-08-01

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  17. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  18. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization

    NARCIS (Netherlands)

    Sarkawi, S.S.; Dierkes, W.K.; Noordermeer, J.W.M.

    2014-01-01

    Filler-to-rubber interaction is a key parameter in the reinforcement of rubber. This paper presents an investigation into filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber (NR) in the presence and absence of a silane coupling agent. Using a special network visual

  19. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  20. Degradation kinetics of ethylene-octene copolymer/wood flour biocomposites in dependence to filler content

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Popov, A. A.

    2017-06-01

    This article is focused on thermal oxidative degradation and biodegradation in soil of biocomposites based on ethylene-octene copolymer (EOC), filled by wood flour (from 30 to 70% wt.), in dependence to the filler content. The study of oxidative degradation of composites was carried out at two temperatures (80 and 130°C respectively). The induction period and the rates of oxidation were determined. It was concluded that as filler content raises, the induction period increases. It can be explained by the higher specific area of composites in comparison with pure EOC. However, high filled composites (60 and 70 % of the filler) are oxidized with a huge induction period because polyphenols in the filler inhibit the oxidation process. Biodegradation test under laboratory conditions was carried out to investigate the biodegradability of the material. Composites with lower filler content have lower weight loss rate. Small particles are capsulated by polymer and are isolated from moisture and microorganisms. On the other hand, at a high filling of the composite small particles stick together and act as large ones. Such filler agglomerates are connected with each other and allow microorganisms to penetrate into the composite. It was concluded as filler content raises the mass loss increases.

  1. Effect of Coconut Fillers on Hybrid Coconut Kevlar Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S. P. Jani

    2015-12-01

    Full Text Available This project focuses on the conversion of naturally available coconut fibers and shells into a useful composite. In addition to it, some mechanical properties of the resultant composite is determined and also the effect of coconut shell fillers on the composite is also investigated. The few portion of the composite is incorporated with synthetic Kevlar fiber, thus the coconut fiber is hybridized to enhance the mechanical properties of coconut. In this work two types of composite is fabricate, kevelar coconut fibre (kc composite and kevelarcoco nut fibre coconut shell filler (kccsf composite. Coconut fibers have low weight and considerable properties among the natural fibers, while coconut fillers have a good ductile and impact property. The natural fibers and fillers are treated with Na-OH to make it free of organic impurities. Epoxy resin is used as the polymer matrix. Two composite are produced one with fillers and the other without the fillers using compression molding method. Mechanical properties like tensile strength, flexural strength and water absorption tests are done with ASTM standard. It is observed that that the addition of filler materials improves the adhesiveness of the fibers leading to the increase in the above mentioned properties. The density of the composite is also low hence the strength to weight ratio is very high. The water absorption test also showed that the resultant composite had a small adhesion to water and absorption of water.

  2. Adverse reactions to injectable soft tissue fillers

    DEFF Research Database (Denmark)

    Requena, Luis; Requena, Celia; Christensen, Lise

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable...

  3. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    at 28 days from about 35 MPa down to about 13 MPa. The cementing efficiency factor of the chalk filler was found to be in the range 0.21 - 0.42. The chalk filler performed equally well with a grey and a white cement; the latter opens the possibility to produce white SCC more cost effectively....

  4. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  5. 7 CFR 58.514 - Container fillers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging...

  6. Fatigue and Creep Properties of Al-Si Brazing Filler Metals

    Science.gov (United States)

    Edo, Masakazu; Enomoto, Masatoshi; Takayama, Yoshimasa

    The manufacturing process for automotive heat exchangers involves brazing using an aluminum brazing sheet. To ensure structural strength and improve durability, it is necessary to acquire mechanical properties for each of the materials. Al-Si alloys are most commonly used as the filler metal; however, the properties of the fillets formed by the solidification of the Al-Si filler melt have scarcely been reported previously.

  7. Effects of Metal Fillers on Properties of Epoxy for Rapid Tooling Inserts

    Directory of Open Access Journals (Sweden)

    Mohd Tanwyn Mohd Khushairi

    2017-08-01

    Full Text Available Metal filled epoxy has been recognised as an alternative material used in rapid tooling application such as core and cavity for injection moulding. The addition of fillers into the metal filled epoxy has proven to increase the epoxy’s mechanical performance such as wear, strength, improved machinability and thermal properties. Physical and thermal properties such as density, thermal diffusivity, thermal conductivity and compressive strength were analysed to evaluate the effects of inclusion of metal fillers such as copper and brass particles into the blended epoxy matrix. Brass and copper powders were added separately ranging from 10%, 20% and 30% of its weight into the aluminium filled epoxy mix ratio. Increased density, thermal diffusivity and thermal conductivity values were evident with a linear trend when both filler compositions were increased from 10% to 30%. Brass and copper density values of 2.22 g/cm3 and 2.08 g/cm3 respectively were recorded at the highest filler composition. Copper fillers with 30% composition in epoxy matrix exhibited the highest average value of thermal diffusivity of 1.12 mm2/s and thermal conductivity of 1.87 W/mK, while inclusion of brass showed no significant improvement on the properties. Compressive strength increased from 76.8 MPa to 93.2 MPa with 20% of brass fillers and 80.8 MPa with 10% of copper fillers composition. The addition of more metal fillers resulted in a decrease in compressive strength due to the presence of porosity. This study validated previous researchers that fillers enhance mechanical, thermal properties and density of aluminium filled epoxy.

  8. Nanotubularchrysotile fillers for radiationand protective constructional composites

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-08-01

    Full Text Available Strengthening of manifestation of quantum-dimensional effect in nanoparticles will make considerable impact on absorption of photon radiation. Therefore, application of ultradisperse systems will promote high-quality strengthening of radiation protective properties of material and will allow creation of more compact material with improved protective characteristics. The unique combination of properties of chrysotile allows creation of the materials on its basis which possess high mechanical and thermal strength, radiation resistance. The presence of the combined water in its structure favours appearance of radiation protective properties by neutron radiation in such materials. In this connection the authors offered to fill chrysotile nanotubes with nanodispersed compounds that make it possible to raise its radiation protective characteristics. As a result, these compounds have to possess higher extinction coefficient of γ-radiation, and respectively possess high density and content of heavy elements. Nanocrystal plumbous tungstate of PbWO4 is offered to use as compound for intercalation. The authors developed a method to produce nanotubular filler of radiation protective composite materials by filling hydrosilicate nanotubes of chrysotile structure with refractory slightly soluble compound on the basis of PbWO4 and serial processing of material with solutions of reagents. The best result has been achieved when chrysotile was treated consistently in K2WO4 and Pb(СН3СОО2 solutions, at the same time mass content of PbWO4 in an end product reaches 30%. The introduced K2WO4 filled nanotubes not only in the internal channel, but also in interlayered space, and localization of PbWO4 happens both in internal channels of nanotubes and on their surface. In spite of the fact that the developed technology does not allow us to modify chrysotile so that all injected PbWO4 could be contained only in internal canals of nanotubes, the obtained product gets

  9. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  10. Characterization of granite and limestone powders for use as fillers in bituminous mastics dosage

    Directory of Open Access Journals (Sweden)

    BRENO BARRA

    2014-06-01

    Full Text Available This paper discusses the importance of studies on materials known as fillers from different mineral origins, used in asphalt mixes, specifically in the formulation of mastics. The research was carried out on samples of limestone and granite rock filler and asphalt binder (50/70. The samples were evaluated through semiquantitative chemical analyses by X-ray fluorescence, granulometry by low angle laser emission, scanning electron microscopy, softening point tests, penetration tests, and aggregate-asphalt binder and aggregate-mastic adhesion tests. The results highlighted convergent trends, indicating that the active behavior of the fillers in the mastic formulation is not related to the size of the particles, but rather to their form, surface texture, specific surface area and mineralogical nature, allowing the filler activity concept to be divided into two components: physical (hardening and chemical (adhesion.

  11. Effect of Chromite-Silica Sands Characteristics on Performance of Ladle Filler Sands for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.

  12. Effect of elastic filler on the fatigue failure of thermoplastic polyurethane film at low temperature

    Science.gov (United States)

    Grishetskii, I. V.; Parfeev, V. M.; Erykalova, T. A.; Borisova, E. Yu.

    1989-11-01

    It was established by mathematical modeling of the curves of spectral transmissivity and by comparing them with experiments that in the mixture of polyurethane with caoutchouc an increase of the volume fraction of filler entails changes of the characteristic dimensions of its particles. With small volume fractions of filler (less than 10%), in consequence of the predominantly small size of the impurities, the mechanism of quasibrittle failure is realized without development of bulk damage to the mixture. When the mixture contains 20-30% filler, satisfactory static elastic and strength properties are retained, and in case of fatigue a considerable amount of damage accumulates and the mechanism of inhibiting macrocracks on the boundaries of impurities begins to act. When the proportion of filler increases further, the elastic and strength properties of the mixture are rapidly impaired, and as a consequence the material becomes practically unusable in operation.

  13. Hydrodynamic parameters of mesh fillers relevant to miniature regenerative cryocoolers

    Science.gov (United States)

    Landrum, E. C.; Conrad, T. J.; Ghiaasiaan, S. M.; Kirkconnell, Carl S.

    2010-06-01

    Directional hydrodynamic parameters of two fine-mesh porous materials that are suitable for miniature regenerative cryocoolers were studied under steady and oscillating flows of helium. These materials included stacked discs of #635 stainless steel (wire diameter of 20.3 μm) and #325 phosphor bronze (wire diameter of 35.6 μm) wire mesh screens, which are among the commercially available fillers for use in small-scale regenerators and heat exchangers, respectively. Experiments were performed in test sections in which pressure variations across these fillers, in the axial and lateral (radial) directions, were measured under steady and oscillatory flows. The directional permeability and Forchheimer's inertial coefficient were then obtained by using a Computational Fluid Dynamics (CFD)-assisted method. The oscillatory flow experiments covered a frequency range of 50-200 Hz. The results confirmed the importance of anisotropy in the mesh screen fillers, and indicated differences between the directional hydrodynamic resistance parameters for steady and oscillating flow regimes.

  14. Effect of Limestone Fillers the Physic-Mechanical Properties of Limestone Concrete

    Science.gov (United States)

    bederina, Madani; makhloufi, Zoubir; bouziani, Tayeb

    This work focuses on the exploitation of local industrial wastes and their use in the formulation of new concretes which can be used in local constructions. The valorised materials are limestone crushing sand (0/5 mm) and limestone fillers (80 μm). The two materials are extracted from local aggregate crushing wastes. Thus, and since the used gravels are also of limestone nature, the formulated composite is a limestone concrete. So this study constitutes an experimental work that aims at the study of the effect of the addition of limestone fillers on the physico-mechanical behaviour of limestone concrete. To carry out this study, different proportions of fillers ranging from 0 to 40% were considered. Very important results have been achieved on the workability and strength. By increasing the amount of limestone filler in concrete, the first one improves, but the second one increases then decreases passing by an optimal content of fillers which gives a maximum mechanical strength. Finally, and concerning the dimensional variations, it is noteworthy that they decrease at the beginning till an optimal value of fillers content, but beyond this optimum, they start increasing without exceeding recommended values.

  15. Fillers for the improvement in acne scars

    Directory of Open Access Journals (Sweden)

    Wollina U

    2015-09-01

    Full Text Available Uwe Wollina,1 Alberto Goldman2 1Department of Dermatology and Allergology, Academic Teaching Hospital, Dresden-Friedrichstadt, Dresden, Germany; 2Clinica Goldman, Porto Alegre, Rio Grande do Sul, Brazil Abstract: Acne is a common inflammatory disease. Scarring is an unwanted end point of acne. Both atrophic and hypertrophic scar types occur. Soft-tissue augmentation aims to improve atrophic scars. In this review, we will focus on the use of dermal fillers for acne scar improvement. Therefore, various filler types are characterized, and available data on their use in acne scar improvement are analyzed. Keywords: acne, scars, dermal fillers, injection, extracellular matrix

  16. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  17. Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites

    Science.gov (United States)

    Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B.

    2011-01-01

    Nonpercolated composites based on polyurethane (PU) filled with low concentrations copper (Cu) powders of varying sizes were studied as electrostrictive materials for mechanical energy harvesting. The dispersion of the fillers within the polymeric matrix was investigated by scanning electron microscopy, and results showed a relatively homogeneous dispersion for the microsized fillers and the existence of agglomerates for their nanosized counterparts. Differential scanning calorimetry measurements displayed that there occurred no interaction between the polymeric matrix and the microsized fillers whereas the nanosized fillers slightly enhanced the glass transition of the soft segments of PU and significantly affected the recrystallization temperature. The dependence of the dielectric properties of the composites as a function of the filler volume fraction and filler size was investigated over a broad range of frequencies, showing an increase in the permittivity when fillers were used. This increase was more pronounced for the composites containing nanosized fillers. The measurement of the harvested current and of the harvested power also demonstrated an enhancement of the energy harvesting capability when nanofillers were employed. From the experimental data, it appeared that the electrostrictive coefficient Q was not proportional to the inverse ratio of the permittivity and the Young modulus for the studied composites. Finally, analytical modeling of the harvested current and of the harvested energy offered an accurate description of the experimental data.

  18. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-01-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  19. Epoxy composites based on inexpensive tire waste filler

    Science.gov (United States)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  20. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  1. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    Science.gov (United States)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  2. Nanoparticle fillers obtained from wood processing wastes for reinforcing of paper

    Science.gov (United States)

    Laka, Marianna; Vikele, Laura; Rozenberga, Linda; Janceva, Sarmite

    2016-05-01

    Paper sheets were produced from bleached kraft pulp, and office and newsprint waste paper. Nanoparticles from black alder bark, grey alder bark and pine bark as well as birch sawdust were obtained for using them as reinforcing fillers in paper. Non-extracted bark and that extracted in biorefinery were used. For producing nanoparticles, the materials were destructed using the thermocatalytic destruction method and then dispersed in water medium in a ball mill. At a sufficient concentration, gel-like dispersions were obtained, which contained nanoparticles with the size ~300 nm. The dispersions were introduced in paper furnish in different amounts. It has been established that all the nanoparticle fillers increase the tensile index and burst index in dry and wet states. The nanoparticle fillers from extracted bark increase the mechanical indices to a higher extent. At 20% filler content, tensile index in a dry state increases in the case of non-extracted grey alder bark, black alder bark and pine bark by 28, 30 and 15%, and in the case of extracted ones - by 44, 40 and 30%, respectively; the burst index increases by 78, 19 and 4%, and 91, 25 and 14%, respectively. The nanoparticle filler from birch sawdust increases the tensile strength in a dry state by 9% and burst index by 20%. The obtained nanoparticle fillers slightly improve also the water resistance of paper.

  3. The Influence of Chicken Egg Shell as Fillers on Biocomposite Acrylic Resin for Denture Based

    Science.gov (United States)

    Lubis, M.; Ginting, M. H. S.; Dalimunthe, N. F.; Hasibuan, D. M. T.; Sastrodihardjo, S.

    2017-03-01

    This research was conducted to discover the influence of the addition of chicken egg shells microparticle as filler on the mechanical properties such as modulus of elasticity, modulus of rapture and particle size analysis on biocomposite acrylic resin for denture based. The raw materials used in this research were acrylic resin, egg shell, cold mold seals, gypsum, Vaseline and wax. The process of making biocomposite acrylic resin for denture based with mix the acrylic resin in ratio 2:1 (w/w). Then added the microparticle filler 0,10,20,30 (%w) to mold and boil in 75°C for 90 minutes and increase the temperature to 90 °C for 30 minutes. Took the sample and let it dried. The results of research showed the increase of modulus elasticity and modulus of rapture. The modulus of elasticity showed a very significant increase by adding fillers 10% of 2.123 GPa, which was only 1.932 GPa without adding the filler of chicken egg shells. For modulus of rapture showed the increase by adding fillers 20% of 48,311MPa, which was only 46,865 GPa without adding the filler of chicken egg shells

  4. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    Science.gov (United States)

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  5. Effects of Filler Components on Surface Roughness of Composite Resin Materials after Polishing%复合树脂填料组成对抛光后表面粗糙度的影响

    Institute of Scientific and Technical Information of China (English)

    闫鹏; 岳林

    2014-01-01

    Objective :To evaluate fillers like quartz ,nano-silica and glass in resin composites on surface roughness af-ter polishing .Methods :8 commercial resin composites with different components and technique were studied in this study .Atter consistent baseline had obtained ,the specimens were polished by use of abrasive disks .Ra values were tested by surface profilometer (Surftest SJ-401) .Results:(1) Surface roughness of AP-X ,Quixfil and TPH3 with large glass fillers was greater than composites with smaller quartz and nano fillers like Z 250 ,P60 ,P90 ,Z350 .(2)Composites with quartz and nano fillers from the same company had the similar surface roughness .(3)Ra value from the perpendic-ular direction was greater than parallel direction .Conclusion:Factors like filler component ,particle size and polishing di-rection can influent the surface roughness after polishing .%目的:观察复合树脂抛光后组成成分对其表面粗糙度的影响。方法:选择三个厂家不同组成成分和工艺配置的8种复合树脂,制作表面统一基线的试样,用Sof-Lex系列抛光,采用表面粗糙度仪(Surftest SJ-401)检测抛光后树脂的表面粗糙度(Ra值)。结果:(1)同属较大颗粒玻璃填料的复合树脂(AP-X、Quixfil和 TPH3 Spectrum)抛光后表面粗糙度较小粒度和纳米工艺的石英填料复合树脂(Z250、P60、P90和Z350)高;(2)同一厂家的石英混合填料复合树脂与石英纳米树脂抛光后的表面粗糙度相同;(3)复合树脂在垂直于抛光方向上获得的表面粗糙度要比平行于抛光方向的粗糙度高。各树脂Ra值经One-Way ANOVA分析和配对 t检验,P<0.05。结论:填料的成分和粒度会影响复合树脂抛光后表面的粗糙程度,抛光方向也是重要的影响因素。

  6. Filler leachability of composites stored in distilled water or artificial saliva.

    Science.gov (United States)

    Söderholm, K J; Mukherjee, R; Longmate, J

    1996-09-01

    Though dental composite materials leach filler elements when stored in distilled water, it is not known whether similar leaching occurs in saliva. The hypothesis to be tested was that due to ion exchange occurring at the filler surfaces, more filler elements leach from composites stored in a salt solution simulating saliva than from composites stored in distilled water. Another aim was to determine how matrix selection, filler composition, and filler silanization affect filler leachability of composites after storage in the simulated saliva and water media. We made 128 batches of experimental composites. Half of these used a bis-GMA/TEGDMA matrix and the other a UEDMA/TEGDMA matrix. Either silica or barium glass filler particles were incorporated into these matrices. Filler silanization was followed by a filler drying at 60 degrees C for 24 h. Half of the silanized particles received an additional heat treatment for 1 h at 110 degrees C in vacuum. One specimen per batch was stored in distilled water and the other in artificial saliva at 37 degrees C. After each 30-day interval for one year, the specimens were transferred to either freshly distilled water or newly mixed artificial saliva. The "old" solutions were analyzed by ICP for determination of the Si, Ba, and Al concentrations. Analysis of variance revealed that storage solution, filler composition, and total time in the storage solution had strong effects on the leachability (p water) and 2.80 +/- 1.20 microgram/mL (artificial saliva). For barium-glass-filled composites, the corresponding Si leaching values were 0.73 +/- 0.48 microgram/mL and 5.00 +/- 2.20 microgram/mL. The monthly means of the barium leaching values were 2.00 +/- 1.00 microgram/mL (distilled water) and 3.10 +/- 1.80 microgram/mL (artificial saliva). The large difference between leaching in artificial saliva and in distilled water, as well as the interaction between storage medium and filler, cast doubt on the clinical relevance of in vitro

  7. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  8. Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy

    Indian Academy of Sciences (India)

    Nikhil Gupta; Balraj Singh Brar; Eyassu Woldesenbet

    2001-04-01

    Flyash is incorporated in glass fibre reinforced epoxies to study their response to the filler addition. Low cost of flyash can reduce the overall cost of the component. Only very low volume fractions of filler are investigated in the present study. To obtain further clarification of the observed phenomenon, another abundantly available low cost material, calcium carbonate is incorporated in one set of the specimens. Compressive strength of the material is found to decrease, whereas steep increase in impact strength is observed by introduction of very small quantity of fillers. Specimens containing calcium carbonate are tested for impact properties only. Effect of specimen aspect ratio on the compressive strength values is also studied by testing specimens of three different aspect ratios. Scanning electron microscopic observations are taken to develop a better understanding of the phenomena taking place in the material system at microscopic level.

  9. Acceleration of percolation for cementitious sensors using conductive paint filler

    Science.gov (United States)

    Pinto, Irvin Jude Joseph

    Structural health monitoring has emerged as an important branch of civil engineering in recent times, with the need to automatically monitor structural performance over time to ensure structural integrity. More recently, the advent of smart sensing materials has given this field a major boost. Research has shown that smart sensing materials fabricated with conductive filler at a concentration close to the percolation threshold results in high sensitivity to strain due to the piezoresistive effect. Of particular interest to this research are cementitious sensors fabricated using carbon black fillers. Carbon black is considered because of its widespread availability and low cost over other conductive fillers such as carbon nanotubes and carbon nanofibers. A challenge in the fabrication of these sensors is that cementitious materials require a significant amount of carbon black to percolate, resulting in a loss in mechanical properties. This research investigates a new method to accelerate percolation of the materials, enabling cementitious sensors with fewer carbon black particles. A carbon black-based conductive paint that allows earlier percolation by facilitating conducting networks in cementitious sensors is used. The conductive paint consists of a block copolymer, SEBS (styrene-co-ethylene-co-butylene-co-styrene), filled with carbon black particles. The percolation thresholds of sensors fabricated both with and without conductive paint are, as well as their strain sensing characteristics and compressive strength. The study found that SEBS could successfully reduce the percolation threshold by 42%, and that samples with SEBS showed better electrical responses in dynamic conditions. Despite showing lower compressive strength, cementitious sensors fabricated with this novel conductive paint show promise for real time health monitoring applications.

  10. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler

    Science.gov (United States)

    Sun, Yuning; Yun, Ki Nam; Leti, Guillaume; Lee, Sang Heon; Song, Yoon-Ho; Lee, Cheol Jin

    2017-02-01

    Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters. After fabricating the emitters, sandpaper treatment was applied to increase the density of emission sites. The CNT paste emitters showed a high field emission performance, for example a high emission current of 8.5 mA from a cylindrical emitter with a diameter of 0.7 mm (corresponding to a current density of 2.2 A cm-2) and an extremely stable emission current at 1 mA (260 mA cm-2 for 20 h). Interestingly, after a number of electrical arcing events, the emitters still showed a high emission current of 5-8 mA (higher than 1 A cm-2). In addition to the sound electrical and thermal properties of the graphite filler, effective mechanical adhesion of the CNTs onto the graphite cathode induced by the use of the graphite nanopowder filler contributed the excellent field emission properties of the CNT paste emitters.

  11. Effect of electromagnetic Stirring on the Element Distribution in Laser Beam Welding of Aluminium with Filler Wire

    Science.gov (United States)

    Gatzen, M.; Tang, Z.; Vollertsen, F.

    Additional external electromagnetic fields are used in laser beam welding of aluminium with silicon containing filler wire to manipulate the flow of the liquid metal due to induced volume forces and hence to modify the element distribution. Aiming for a better understanding of the fluid-dynamic processes inside the meld pool, a CFD model has been implemented to simulate the melt flow. In this paper, simulation results on the resulting element distribution of filler wire material under a coaxial magnetic field with different frequencies is compared to experimental results for the same parameters. It is shown that in both cases the concentration of alloying elements of the filler material has a spatial periodicity. From the CFD model it can be concluded that the change of the distribution of the filler material results from a modulation of the melt flow due to the periodic induced electromagnetic volume forces.

  12. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics

    Directory of Open Access Journals (Sweden)

    F. Cardone

    2015-12-01

    Full Text Available The rheological properties of the bituminous components (bitumen and bituminous mastic within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking. Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggregates. The purpose of this study is to investigate the effects of mineral fillers on the rheological behaviour of several polymer-modified bitumens (PMBs through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric were used to produce PMBs, and two fillers with different minerals (limestone and basalt were selected to obtain mastics. The dynamic shear rheometer (DSR and bending beam rheometer (BBR were used to characterize the rheological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combination of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical–chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.

  13. Effect of filler wire on the joint properties of AZ31 magnesium alloys using CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun

    2007-01-01

    Laser welding with filler wire of AZ31 magnesium alloys is investigated using a CO2 laser experimental system. The effect of three different filler wires on the joint properties is researched. The results show that the weld appearance can be effectively improved when using laser welding with filler wire. The microhardness and tensile strength of joints are almost the same as those of the base metal when ER AZ31 or ER AZ61 wire is adopted. However, when the filler wire of ER 5356 aluminum alloy is used, the mechanical properties of joints become worse. For ER AZ31 and ER AZ61 filler wires, the microstructure of weld zone shows small dendrite grains. In comparison, for ER 5356 filler wire, the weld shows a structure of snowy dendrites and many intermetallic compounds and eutectic phases distribute in the dendrites. These intermetallic constituents with low melting point increase the tendency of hot crack and result in fragile joint properties. Therefore, ER AZ31 and ER AZ61 wire are more suitable filler material than ER 5356 for CO2 laser welding of AZ31 magnesium alloys.

  14. Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH{sub 2}) + B composite filler

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yangwu, E-mail: yangwu.mao@gmail.com [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Si [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China); Zhang, Yizhong [Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Guo, Beibei; Ma, Zhibin; Deng, Quanrong [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China)

    2015-11-15

    Highlights: • TiB whiskers are synthesized in situ in the filler layer of graphite/copper joints. • Boron content has a considerable effect on the strength and microstructure of joints. • TiB whiskers could serve as reinforcements, contributing to the improvement of joints. - Abstract: Joining of carbon materials to copper will benefit the fabrication of plasma facing components for fusion applications. Graphite/Cu joints have been prepared by brazing with (Cu-50TiH{sub 2}) + B composite filler in a vacuum. The effect of boron content in the composite filler on the mechanical property and microstructure of brazed graphite/Cu joints has been investigated. The average shear strength of joints increases with boron content raising from 0 to 15 vol%. The maximum average shear strength of 19.8 MPa was obtained with boron content of 15 vol%. Then, the strength of joints decreases with boron content higher than 15 vol%. The microstructure analysis of joints brazed with (Cu-50TiH{sub 2}) + 15 vol% B filler indicates that TiB whiskers have been in situ synthesized in the filler layer. The filler layer is mainly composed of Cu based solid solution and Ti-Cu intermetallic compounds with TiB whiskers distributed inside. The distribution of TiB whiskers in the filler layer could serve as reinforcements, contributing to the improvement of graphite/Cu joints.

  15. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  16. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers

    Science.gov (United States)

    Seyedin, Shayan; Razal, Joselito M.; Innis, Peter C.; Wallace, Gordon G.

    2016-03-01

    Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors.

  17. Surface Modifications of Organic Fillers to Improve the Strength of Paperboard

    Directory of Open Access Journals (Sweden)

    Sun Young Kim

    2015-01-01

    Full Text Available In a previous study the authors determined that non-woody materials including brewers’ grain (BG and oil palm frond (OPF could be alternatives to wood powder as organic fillers. However, they have the disadvantage of deteriorating the strength of paperboard. If the strength of paperboard could be improved, then one would expect more production cost reductions and bulk improvements by increasing the addition of organic fillers. In this study, surface modification of organic fillers was used as a method to improve paperboard strength. The goal was to find the most effective condition for surface modifications. Surface modifications of BG and OPF fillers were carried out using cationic and oxidized starches, and the strengths and reductions in the drying energies of the sheets were measured. The zeta potentials of the modified organic fillers showed that the surface modifications were performed properly. Surface modification with starches improved the bulk and strength of the sheets simultaneously, and modification with the addition of a large amount of cationic starch was more effective in improving the strengths and the reductions in drying energies of the sheets than using cationic and oxidized starches together.

  18. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  19. Filler functionality in edible solid foams

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2016-01-01

    We review the functionality of particulate ingredients in edible brittle foams, such as expanded starchy snacks. In food science and industry there is not a complete awareness of the full functionality of these filler ingredients, which can be fibers, proteins, starch granules and whole grains. B

  20. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  1. Examining the Effects of Filler Concentration and Mold Geometry on Performance of Cylindrical Injection Molded Composites

    Science.gov (United States)

    There is growing interest in using fillers in plastic products to displace petroleum components, reduce cost, and improve mechanical properties. Many studies have examined the use of materials such as clay, talc, paper, wood flour, lignin, flax, and bamboo, to name just a few. For successful utili...

  2. Effects of Filler Concentration and Geometry on Performance of Cylindrical Injection Molded Composites

    Science.gov (United States)

    There is growing interest in using fillers in plastic products to displace petroleum components, reduce cost, and improve mechanical properties. Many studies have examined the use of materials such as clay, talc, paper, wood flour, lignin, flax, and bamboo, to name just a few. For successful utili...

  3. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  4. Influence of filler existence on microleakage of a self-etch adhesive system

    NARCIS (Netherlands)

    Mirmohammadi, H.; Khosravi, K.; Kashani, K.; Kleverlaan, C.J.; Feilzer, A.J.

    2014-01-01

    Aim: This study evaluated the effect of filler existence in self-etch adhesive resin on the marginal leakage of a class V restoration. Materials and Methods: Class V cavities were prepared and restored with a resin composite on the buccal surfaces of 48 premolars lined with unfilled or filled adhesi

  5. Effect of film thickness and filler properties on sulphuric acid permeation in various commercially available epoxy mortar coatings.

    Science.gov (United States)

    Valix, M; Mineyama, H; Chen, C; Cheung, W H; Shi, J; Bustamante, H

    2011-01-01

    The performance of various commercially available epoxy mortar coatings was compared by measuring their sulphuric acid diffusivity. Apparent diffusivities, which were measured gravimetrically, were found to be dependent on coating tortuosity. In composite materials like epoxy mortars, the tortuosity was determined by filler properties and polymer alignment. Tortuosity was found to depend on the filler size, their dispersion, filler aspect ratio and concentration. The order and greater alignment of polymer aggregates, which characterises thinner coatings effects higher tortuosity and thus lower permeabilities. The result is that sulphuric acid diffusivities were observed to increase with coating thickness, which challenges the notion that greater coating thicknesses provide greater protection or environmental barrier. The effect of film thickness and filler properties observed in this study has significant implications to the current selection of coatings and sewer protection.

  6. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M. E. (Marilyn E.); Wrobleski, Debra A.; Orler, E. B. (E. Bruce); Houlton, R. J. (Robert J.); Chitanvis, K. E. (Kiran E.); Brown, G. W. (Geoffrey W.); Hanson, D. E. (David E.)

    2004-01-01

    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  7. Epoxy composites based on inexpensive tire waste filler

    Energy Technology Data Exchange (ETDEWEB)

    Ahmetli, Gulnare, E-mail: ahmetli@selcuk.edu.tr; Gungor, Ahmet, E-mail: ahmetli@selcuk.edu.tr; Kocaman, Suheyla, E-mail: ahmetli@selcuk.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42031 Konya (Turkey)

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  8. Facial rejuvenation with fillers: The dual plane technique

    Directory of Open Access Journals (Sweden)

    Giovanni Salti

    2015-01-01

    Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.

  9. Evaluation of Polymer-Filler Interaction Characteristics by Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, T; Saab, A

    2007-04-23

    Silicone polymers are frequently used as cushions and inserts between load bearing parts. In this capacity, they must act to position their associated parts and distribute mechanical force as appropriate. One type of failure is specific to silicones that are filled with high surface area particulates for purposes of tailoring the polymer compressive properties. Additives such as fumed silicon oxide are presumed to have a high degree of surface interaction with the polymer matrix, thus causing the polymer to stiffen and to display greater dimensional stability as a function of temperature. However, it has been observed that the compressive behavior of these materials is not always invariant over long times. There is evidence that suggests changes in humidity and temperature can irreversibly alter the silicone-filler interaction, thereby changing the overall characteristics of parts made from such materials. As before, changes in compressive or shear stability can have serious effects on the ability of these materials to effectively position precision parts or distribute high mechanical loads. We approach the analysis of the filled systems by creating controlled layers of silicone polymers attached to silicon oxide substrates. Straight chain vinyl-silicone polymers identical to those used in the formulation of pads for stockpile systems are chemically appended to a substrate surface, and cross-linked to form a three dimensional network. This type of structure serves as a model of silicone polymer coating a silicon oxide filler particle. We study these model systems first by using Atomic Force Microscopy (AFM) to image the samples with nanometer resolution, and then by measuring the forces of interactions between single model silica filler particles and polymer-coated surfaces. We use normal longitudinal force AFM to measure adhesion, and a relatively newly developed technique, lateral force AFM, to determine the frictional forces between the silica particles and the

  10. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  11. Dermal fillers for tissue augmentation: an overview

    Directory of Open Access Journals (Sweden)

    Zeplin, Philip H.

    2014-06-01

    Full Text Available [english] Treatments with dermal fillers for tissue augmentation constitute the majority of all non-surgical procedures in plastic surgery. Newly developed products get launched and the market grows continuously, but the “ideal” substance has yet not been found. The substances used these days are high molecular compounds. They have substantial differences in their physicochemical properties and are suspended in complex matrices. This overview describes the latest history of dermal fillers and the commonly used substances of different origin and formalizes the need for the development of systematic procedures of standardized pre-clinical tests with subsequent certification as well as the establishment of interdisciplinary clinical guidelines to ensure custumer’s safety.

  12. Technical Considerations for Filler and Neuromodulator Refinements

    Science.gov (United States)

    Wilson, Anthony J.; Chang, Brian L.; Percec, Ivona

    2016-01-01

    Background: The toolbox for cosmetic practitioners is growing at an unprecedented rate. There are novel products every year and expanding off-label indications for neurotoxin and soft-tissue filler applications. Consequently, aesthetic physicians are increasingly challenged by the task of selecting the most appropriate products and techniques to achieve optimal patient outcomes. Methods: We employed a PubMed literature search of facial injectables from the past 10 years (2005–2015), with emphasis on those articles embracing evidence-based medicine. We evaluated the scientific background of every product and the physicochemical properties that make each one ideal for specific indications. The 2 senior authors provide commentary regarding their clinical experience with specific technical refinements of neuromodulators and soft-tissue fillers. Results: Neurotoxins and fillers are characterized by unique physical characteristics that distinguish each product. This results in subtle but important differences in their clinical applications. Specific indications and recommendations for the use of the various neurotoxins and soft-tissue fillers are reviewed. The discussion highlights refinements in combination treatments and product physical modifications, according to specific treatment zones. Conclusions: The field of facial aesthetics has evolved dramatically, mostly secondary to our increased understanding of 3-dimensional structural volume restoration. Our work reviews Food and Drug Administration–approved injectables. In addition, we describe how to modify products to fulfill specific indications such as treatment of the mid face, décolletage, hands, and periorbital regions. Although we cannot directly evaluate the duration or exact physical properties of blended products, we argue that “product customization” is safe and provides natural results with excellent patient outcomes. PMID:28018778

  13. Technical Considerations for Filler and Neuromodulator Refinements.

    Science.gov (United States)

    Montes, José Raúl; Wilson, Anthony J; Chang, Brian L; Percec, Ivona

    2016-12-01

    Background: The toolbox for cosmetic practitioners is growing at an unprecedented rate. There are novel products every year and expanding off-label indications for neurotoxin and soft-tissue filler applications. Consequently, aesthetic physicians are increasingly challenged by the task of selecting the most appropriate products and techniques to achieve optimal patient outcomes. Methods: We employed a PubMed literature search of facial injectables from the past 10 years (2005-2015), with emphasis on those articles embracing evidence-based medicine. We evaluated the scientific background of every product and the physicochemical properties that make each one ideal for specific indications. The 2 senior authors provide commentary regarding their clinical experience with specific technical refinements of neuromodulators and soft-tissue fillers. Results: Neurotoxins and fillers are characterized by unique physical characteristics that distinguish each product. This results in subtle but important differences in their clinical applications. Specific indications and recommendations for the use of the various neurotoxins and soft-tissue fillers are reviewed. The discussion highlights refinements in combination treatments and product physical modifications, according to specific treatment zones. Conclusions: The field of facial aesthetics has evolved dramatically, mostly secondary to our increased understanding of 3-dimensional structural volume restoration. Our work reviews Food and Drug Administration-approved injectables. In addition, we describe how to modify products to fulfill specific indications such as treatment of the mid face, décolletage, hands, and periorbital regions. Although we cannot directly evaluate the duration or exact physical properties of blended products, we argue that "product customization" is safe and provides natural results with excellent patient outcomes.

  14. Evaluation of dermal fillers with noncontact optical coherence elastography

    Science.gov (United States)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Over 2 million dermal filler procedures are performed each year in the USA alone, and this figure is only expected to increase as the aging population continues to grow. Dermal filler treatments can last from a few months to years depending on the type of filler and its placement. Although adverse reactions are rare, they can be quite severe due to ischemic events and filler migration. Previously, techniques such as ultrasound or magnetic resonance imaging have been used to evaluate the filler injections. However, these techniques are not practical for real-time filler injection guidance due to limitations such as the physical presence of the transducer. In this work, we propose the use of optical coherence tomography (OCT) for image-guided dermal filler injections due to the high spatial and temporal resolution of OCT. In addition, we utilize a noncontact optical coherence elastography (OCE) technique, to evaluate the efficacy of the dermal filler injection. A grid of air-pulse OCE measurements was taken, and the dynamic response of the skin to the air-pulse was translated to the Young's modulus and shear viscosity. Our results show that OCT was able to visualize the dermal filler injection process, and that OCE was able to localize the dermal filler injection sites. Combined with functional techniques such as optical microangiography, and recent advanced in OCT hardware, OCT may be able to provide real-time injection guidance in 3D by visualizing blood vessels to prevent ischemic events.

  15. Photons transport through ultra-high molecular weight polyethylene based composite containing tungsten and boron carbide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.M. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kuznetsov, S.A. [Russian State Technological University “MATI”, Moscow 121552 (Russian Federation); Volkov, A.E.; Terekhin, P.N.; Dmitriev, S.V. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Tcherdyntsev, V.V.; Gorshenkov, M.V. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Boykov, A.A., E-mail: kink03@gmail.com [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation)

    2014-02-15

    Highlights: • The developed method for predicting X-ray properties of the polymer. • Higher content of the fillers results in an increase of mechanical properties. • X-ray defensive properties of the samples were investigated experimentally. -- Abstract: Polymers are a base for creating of composite materials with high mechanical and chemical properties. Using the heavy metals as filler in these composites can give them X-ray protective properties. These materials have high deactivation rates and can be used to create Personal Protective Equipment (PPE) used in aggressive environments. It was proposed a model for calculation of X-ray protection properties of the polymer-based nanocomposite materials with ultra-high molecular weight polyethylene (UHMWPE) matrix, filled with tungsten and boron carbide particles. X-ray protective properties were calculated in a wide range of filler content using the developed model. Results of calculations allow selecting most effective compounds of X-ray protective UHMWPE based composites.

  16. Catastrophic models of materials destruction

    OpenAIRE

    Kupchishin, A. I.; Taipova, B. G.; A. A. Kupchishin; Voronova, N. A.; Kirdyashkin, V. I.; Fursa, Tatyana Viktorovna

    2016-01-01

    The effect of concentration and type of fillers on mechanical properties of composite material based on polyimide were studied. Polyethylene terephthalate (PET, polyester), polycarbonate (PCAR) and montmorillonite (MM) were used as the fillers. The samples were prepared by mechanically blending the polyimide-based lacquer solutions with different concentrations of the second component. The concentration of filler and its class, especially their internal structure and technology of synthesis d...

  17. Ultrasound detection and identification of cosmetic fillers in the skin

    DEFF Research Database (Denmark)

    Wortsman, X.; Wortsman, J.; Orlandi, C.

    2012-01-01

    Background While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect...... cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. Objectives The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated...... with the presence of those agents. Methods We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Results Fillers...

  18. Surface Treated Natural Fibres as Filler in Biocomposites

    Science.gov (United States)

    Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.

    2015-11-01

    Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).

  19. Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction

    Directory of Open Access Journals (Sweden)

    Nebu George Thomas

    2011-01-01

    Full Text Available Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen. Materials and Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges. Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis. Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time.

  20. Changes in pulp web properties by addition of natural filler

    Science.gov (United States)

    Kamaludin, Nurul Hasanah; Ghazali, Arniza; Daud, Wan Rosli Wan; Ghazali, Salmi

    2012-09-01

    Development of the desired pulp-based products eco-properties are governed by factors like choice and suitability of raw material, the design and operation of pulping process and choice of additives. Fines recovered during refining discharge of an alkaline peroxide pulping system were collected based on their retention on varying mesh-sizes screens. Analysis shows that 12% of the 400-mesh fines added to the web enhances paper tensile strength by 100%. This defines the usefulness of fibrillar particles whose cell wall collapsibility increases the web density by increasing bonding ability and thus, strength of pulp-based products such as paper. The study acknowledges fines functioning as natural filler in pulp network and collection of fines from the refining discharge was found to reduce 70% turbidity and this improvement will help reduce the costs pertinent to generation of whitewater from the pulping system.

  1. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal; Kuritka, Ivo, E-mail: ivo@kuritka.net; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-08-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites.

  2. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  3. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  4. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    Science.gov (United States)

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  5. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  6. Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber.

    Science.gov (United States)

    Keerthika, B; Umayavalli, M; Jeyalalitha, T; Krishnaveni, N

    2016-08-01

    Filler is one of the major additives in rubber compounds to enhance the physical properties. Even though numerous benefits obtained from agricultural by products like coconut shell, rice husk etc., still they constitute a large source of environmental pollution. In this investigation, one of the agricultural bye product coconut shell powder (CSP) is used as filler in the compounding KNB rubber. It shows the positive and satisfied result was achieved only by the use of filler Fast Extrusion Furnace (FEF) and coconut shell powder (CSP) which was used 50% in each. The effect of these fillers on the mechanical properties of a rubber material at various loading raging from 0 to 60PHP was studied. Mercaptodibanzothiazole disulphide (MBTS) was used as an accelerator. The result shows that presence of 25% and 50% of the composites has better mechanical properties like Hardness, Tensile strength, Elongation at break and Specific gravity when compared with other two combinations. Even though both 25% and 50% of composites shows good mechanical properties, 50% of CSP have more efficient than 25% of CSP.

  7. Filler particles used in dental biomaterials induce production and release of inflammatory mediators in vitro.

    Science.gov (United States)

    Ansteinsson, Vibeke E; Samuelsen, Jan Tore; Dahl, Jon E

    2009-04-01

    Although dental composites are in extensive use today, little is known about the biological effects of the filler particles. As composite materials are gradually broken down in the aggressive environment of the oral cavity, the filler particles may leak and induce toxic effects on the surrounding tissue and cells. The aim of this study was to elucidate possible adverse biological effects of commonly used dental filler particles; bariumaluminiumsilica (BaAlSi) and bariumaluminiumfluorosilica (BaAlFSi) with mean size of 1 microm. BEAS-2B cells were used as a model system. Particle morphology, mean particle size in solution, and particle surface charge were determined by scanning electron microscopy and Malvern zetasizer technology, respectively. Enzyme-linked immunosorbent assay was used to detect secretion of cytokine and chemokine (IL-8 and IL-6) and quantitative PCR for detection of gene activity. Both types of particle increased the release of IL-6 and IL-8 in a dose-dependent manner. BaAlFSi particles induced a more marked IL-8 response compared to BaAlSi particles, whereas no significant difference was observed for the IL-6 response. Mechanistic studies using specific inhibitors and activators indicated that cyclic AMP-dependent protein kinase A is partly involved in the observed IL-8 response. In conclusion, we consider dental filler particles to have potential to induce adverse biological response in cell cultures.

  8. EPR spectroscopic studies of the process of interaction in a system of liquid phase of the plastic coal mass and thermally unstable carbon filler

    Energy Technology Data Exchange (ETDEWEB)

    Ikonomopulo, V.P.

    1983-01-01

    In conection with discovering the mechanism of coke formation, possible reactions of transient products of thermodestruction in liquid phase-thermally unstable carbon filler systems are studied. The investigations demonstrated that the liquid-phase transient products of one component of the mixture accelerated the process of plastification of solid transient products, and this in turn facilitated the development of the formation of ordered paramagnetic structures. The influence of non-plasticizing thermostable carbon fillers on the thermochemical conversions of liquid phase materials is similar to that of thermostable carbon fillers. A vapor-gas medium is the possible channel of reaction in a liquid phase-solid transient product system. (8 refs.)

  9. 46 CFR 56.70-5 - Material.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Material. 56.70-5 Section 56.70-5 Shipping COAST GUARD..., Assembly and Erection § 56.70-5 Material. (a) Filler metal. All filler metal, including consumable insert material, must comply with the requirements of section IX of the ASME Boiler and Pressure Vessel Code...

  10. Evaluation of the use of inorganic pigments and fillers in cure of epoxy resins by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Daniel, E-mail: daniel.kersting@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais; Centro Tecnologico da Marinha (CTMSP), SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2013-07-01

    The use of microwave in chemical processes began soon after the WW II. The mechanism of curing via microwave heating is independent of the thermal conductivity of the irradiated material and offers a good solution to operate with materials that do not have a good thermal conductivity, such as polymers. Despite these advantages, the use of multimode microwave ovens, the main source used today, indicates some challenges to overcome. Associated with the use of epoxy resins in various applications, the use of pigments and inorganic fillers has added more variables to be studied. Much of the inorganic fillers used commercially are good absorbers of microwave providing changes in the amount of radiation absorbed, and thus the amount of heat transferred to the epoxy resin curing process. After selecting the key fillers and pigments traditionally used in the production of parts with epoxy resins they were subjected to the same microwave irradiation for evaluation of their behavior alone. In order to observe the effect of mixtures 1, 2, and 5% by weight of filler were added to epoxy resin, and it was verified these effects in the curing process. The preliminary results are promising, because for the same cure cycle for different types of fillers added separately, gains in curing time were obtained, making the process of cure via microwave quick and efficient without substantial losses in thermal properties of the final products obtained. (author)

  11. SIFAT MEKANIK KOMPOSIT COKELAT BATANG DENGAN FILLER BIJI METE

    Directory of Open Access Journals (Sweden)

    P A Wiguna

    2015-07-01

    Full Text Available Bahan komposit yang banyak dijumpai di masyarakat umumnya terbuat dari material berat seperti, logam, keramik, atau polimer. Pada bahan pangan terdapat pula yang termasuk ke dalam kategori material komposit, diantaranya adalah cracker, cookie, kue pie, chasew chocolate, dan lain sebagianya. Diantara komposit bahan pangan tersebut yang paling banyak digemari sebagai makanan camilan adalah  cokelat. Hal menarik yang dikaji pada studi ini berkaitan dengan sifat mekanik komposit cokelat yaitu kekuatan tekan dari komposit tersebut. Komposit ini terbuat dari bahan makanan cokelat dengan variasi  fraksi massa mete sebagai filler yaitu 13 %, 17%, 20%, 23%, 26 %, dan 29%. Matriks yang digunakan adalah cokelat jenis dark chocolate. Sifat mekanik yang dikaji adalah kuat tekan pada komposit cokelat batang. Parameter ini diukur untuk mengetahui ukuran maksimum beban yang dapat diterima komposit tersebut. Komposit yang memiliki kekuatan tekan terbesar ada pada cokelat batang dengan fraksi massa mete 29 % yaitu sebesar 2,81 MPa. Hal ini menunjukkan  bahwa variasi fraksi massa mete berpengaruh pada sifat mekanik material komposit karena berkaitan dengan perilaku distribusi partikel. Kuat tekan komposit cokelat teramati meningkat dengan kenaikan jumlah biji mete pada cokelat batang.Generally, the composite materials found in the civilization are made from heavy materials, e.g. metals, ceramics, and polymers. In fact, the composite material also found in food, such as crackers, cookies, pies, and cashew chocolates. Cashew chocolates usually consumed as the most favourite snack. The most interesting object from this study is related with the mechanical composite characteristic of the chocolate, i.e. compressive strength. Chocolate composite is made from chocolate with variety of cashew mass fraction as the filler, i.e. 13 %, 17%, 20%, 23%, 26 %, and 29%. In this study, the composite matrix was a dark chocolate, whereas the mechanical characteristic determined

  12. SIFAT MEKANIK KOMPOSIT COKELAT BATANG DENGAN FILLER BIJI METE

    Directory of Open Access Journals (Sweden)

    P A Wiguna

    2015-07-01

    Full Text Available Bahan komposit yang banyak dijumpai di masyarakat umumnya terbuat dari material berat seperti, logam, keramik, atau polimer. Pada bahan pangan terdapat pula yang termasuk ke dalam kategori material komposit, diantaranya adalah cracker, cookie, kue pie, chasew chocolate, dan lain sebagianya. Diantara komposit bahan pangan tersebut yang paling banyak digemari sebagai makanan camilan adalah  cokelat. Hal menarik yang dikaji pada studi ini berkaitan dengan sifat mekanik komposit cokelat yaitu kekuatan tekan dari komposit tersebut. Komposit ini terbuat dari bahan makanan cokelat dengan variasi  fraksi massa mete sebagai filler yaitu 13 %, 17%, 20%, 23%, 26 %, dan 29%. Matriks yang digunakan adalah cokelat jenis dark chocolate. Sifat mekanik yang dikaji adalah kuat tekan pada komposit cokelat batang. Parameter ini diukur untuk mengetahui ukuran maksimum beban yang dapat diterima komposit tersebut. Komposit yang memiliki kekuatan tekan terbesar ada pada cokelat batang dengan fraksi massa mete 29 % yaitu sebesar 2,81 MPa. Hal ini menunjukkan  bahwa variasi fraksi massa mete berpengaruh pada sifat mekanik material komposit karena berkaitan dengan perilaku distribusi partikel. Kuat tekan komposit cokelat teramati meningkat dengan kenaikan jumlah biji mete pada cokelat batang.Generally, the composite materials found in the civilization are made from heavy materials, e.g. metals, ceramics, and polymers. In fact, the composite material also found in food, such as crackers, cookies, pies, and cashew chocolates. Cashew chocolates usually consumed as the most favourite snack. The most interesting object from this study is related with the mechanical composite characteristic of the chocolate, i.e. compressive strength. Chocolate composite is made from chocolate with variety of cashew mass fraction as the filler, i.e. 13 %, 17%, 20%, 23%, 26 %, and 29%. In this study, the composite matrix was a dark chocolate, whereas the mechanical characteristic determined

  13. Impact of thio-urethane additive and filler type on light-transmission and depth of polymerization of dental composites.

    Science.gov (United States)

    Faria-E-Silva, André Luis; Pfeifer, Carmem Silvia

    2017-08-11

    This study evaluated the effects of filler type and the addition of thio-urethane oligomers on light-transmission, polymerization kinetics and depth of cure of resin composites. BisGMA:UDMA:TEGMA (5:3:2wt%) were mixed with 0 (control) or 20wt% thio-urethane. Fillers with various sizes and refractive indices were included and refractive index (RI) measured. Unfilled resins were used as controls. The RIs of materials were measured before and after polymerization. The irradiance reaching the bottom of 3-mm thick specimens was measured during the polymerization. Degree of conversion to a depth of 5mm was mapped. An optical bench was used to simultaneously follow conversion and light transmission. The addition of thio-urethane increased the RI for all composites. As expected, RI also increased with conversion for all materials. The one exception was for the material filled with OX-50, in which the RI of the composite decreased with conversion. In this case, the irradiance at the bottom of the 3mm specimen was also the lowest among all groups. The addition of thio-urethanes had only minimal effect on light transmission within a filler type, but led to increased conversion in depth for all groups. The filler type itself had a greater effect on light transmission, and that correlated well with the degree of conversion. The effect of the thio-urethane addition on degree of conversion in depth was dependent on filler type. The additive can be tailored to improve the RI match with the filler to optimize light transmission in dental composites. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Interfacial structure and joint strengthening in arc brazed galvanized steels with copper based filler

    Institute of Scientific and Technical Information of China (English)

    LI Rui-feng; YU Zhi-shui; QI Kai

    2006-01-01

    Galvanized steel sheets were joined by tungsten inert gas(TIG) and metal inert gas(MIG) brazing process using copper based filler. The results show that the joint zone hardness is higher than that of the base material or copper filler from the microhardness tests of TIG brazing specimens, and the fracture spot is at the base materials zone from the tensile tests of MIG brazing specimens. Examination using energy dispersive X-ray analysis reveals the presence of intermetallic compound Fe5Si3(Cu) in the joint. The dispersal of fine Fe5Si3(Cu) particles is the main strengthening factor for the joint. The Fe5Si3(Cu) particles are determined to arise from three sources, namely, spot micro-melt, whisker-like fragmentation and dissolve-separation actions.

  15. Development of (fe–b–c-based filler for wear-resistant composite coatings

    Directory of Open Access Journals (Sweden)

    О. V. Sukhovа

    2014-12-01

    value. Owing to multiple alloying of the filler based on Fe–В–С peritectic alloy with chromium, vanadium, molybdenum and niobium the abrasive wear resistance of composite coatings can be compared with that of tungsten-containing coatings, which ensures saving of expensive and deficient materials.

  16. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    Science.gov (United States)

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-Ping

    2014-04-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications.

  17. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  18. 7 CFR 58.229 - Filler and packaging equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  19. Selecting fillers on emotional appearance improves lineup identification accuracy.

    Science.gov (United States)

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy.

  20. EFFECT OF RICE HUSKS AS FILLER IN POLYMER MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    K. Hardinnawirda

    2012-06-01

    Full Text Available In this study, rice husk-filled polyester composites were produced with rice husks (RH as the filler and unsaturated polyester resin (UPR as the matrix. Several percentages of filler loadings were used (10, 15, 20 and 25 wt % in order to gain insights into the effect of filler content on the mechanical properties and water intake of the composites. The tensile strength of the RH-filled UPR composites was found to decrease as the filler loading increased; however, as it reached 25 wt %, the strength showed a moderate increase. The Young’s modulus showed a remarkable increase for 15 wt % of RH but decreased as the RH percentage increased further to 25 wt %. A water absorption test was conducted and the results showed that the composites absorb more water as the percentage weight of RH increased, which is attributed to the ability of the RH filler to absorb water.

  1. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    Science.gov (United States)

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  2. Characterization of morphology and composition of inorganic fillers in dental alginates.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  3. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    Directory of Open Access Journals (Sweden)

    Ricardo Danil Guiraldo

    2014-01-01

    Full Text Available Energy dispersive X-ray spectroscopy microanalysis (EDX, scanning electron microscopy (SEM, and Archimedes’ Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C, Hydrogum 5 (H5, Hydrogum (H, Orthoprint (O, and Jeltrate Plus (JP. The different alginate powders (0.5 mg were fixed on plastic stubs (n=5 and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt. The filler fractions in volume (vt were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  4. Mechanical and electrical properties of a polyester resin reinforced with clay-based fillers

    Energy Technology Data Exchange (ETDEWEB)

    Buncianu, Dorel; Jadaneant, Mihai [UPT Timisoara, Timisoara (Romania); Tessier-Doyen, Nicolas; Absi, Joseph [Centre Européen de la Céramique, Limoges Cedex (France); Courreges, Fabien [Laboratoire XLIM, 123, Limoges Cedex (France)

    2017-03-15

    In this study, composite polymer-based materials were fabricated, in which a significant proportion of polyester resin was substituted by low-cost and environmentally-friendly clay-based raw materials. The main objective is to improve mechanical properties while maintaining a reasonable electrical insulating behavior. A homogenized distribution of fillers within the matrix compatible with the processing parameters was obtained up to a maximum added fraction of 20 vol%. Mechanical characterization using uniaxial traction tests and Charpy impact pendulum machine showed that stress-to-rupture can be enhanced of approximately 25 %. In addition, fracture energy was doubled for the best formulation. Dielectric constant was decreased and loss factor was slightly increased when electrical resistivity remained almost constant. In general, the composite materials with metakaolin fillers exhibited higher mechanical properties and greater electrical insulating behavior. Microstructural observation showed the presence of decohesive agglomerates of particles at the interface with the matrix. The mechanical properties were found to be more sensitive than electrical properties to the homogeneity of filler dispersion in the matrix.

  5. Effect of silicon powder the types of fillers on the properties of epoxy encapsulating materials%硅微粉填料的种类对环氧灌封材料性能的影响

    Institute of Scientific and Technical Information of China (English)

    崔向红

    2012-01-01

    以E-51为基体树脂,加入增韧剂、稀释剂、填料等制成环氧树脂灌封材料,考察了普通硅微粉与活性硅微粉对体系凝胶时间、力学性能、电性能等方面的影响,结果表明,表面活性硅微粉经表面处理后对体系的增韧增强效果更好.%The E-51 as matrix resin, join toughening agents, diluent, such as epoxy resin packing made potting material, inspected the common silicon micro powder and active silica powder on the system, mechanical properties, gel time performance effect, the results surface active silica powder on the surface treatment of the system after toughening and reinforcing the effect is better.

  6. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix

    Science.gov (United States)

    Zhong, Nan; Garcia, Santiago J.; van der Zwaag, Sybrand

    2016-08-01

    Thermal interface materials (TIMs) are widely used in all kinds of electronic devices to handle the heat dissipation and the mechanical anchoring of the heat producing component. The aging of TIMs may lead to delamination and internal crack formation causing a loss of heat transfer and mechanical integrity both leading to premature device failure. In the present work, a novel TIM system based on a self-healing organic-inorganic polymer matrix filled with spherical glass beads is presented which is capable of healing both the thermal conductivity and the mechanical properties upon thermal activation. The effect of particle volume concentration (PVC) and particle size on tensile strength and thermal conductivity healing behavior is investigated. The results show that a higher PVC increases the mechanical property but decreases mechanical healing. For the same PVC, bigger particles lead to lower mechanical properties but higher thermal conductivities and higher mechanical healing efficiencies.

  7. Research on Surface Treatment Process of Corundum Filler for Epoxy Resin Casting Material%环氧浇注用氧化铝填料表面处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The effects of surface treatment processes such as acid pickling, alkali neutralization, and high-temperature calcination on the fused corundum produced in electric arc furnace for abrasive industry were compared, the effect of different surface treatment methods on the physical and chemical properties such as conductivity and pH value of corundum solution, and the effect of different corundums on the rheological properties and mechanical properties of epoxy casting materials were analyzed. The results show that the corundum neutralized by alkali or treated by calcination after acid pickling could adjust the usable time of epoxy casting material and improve the mechanical properties of the cured epoxy resin.%通过比较酸洗、碱处理中和、高温煅烧处理等表面处理工艺对磨料工业电弧炉法熔炼制备电熔刚玉型氧化铝填料的影响,分析了不同表面处理方法对氧化铝填料粉体水洗电导率、pH值等性能的影响及对其环氧浇注料流变性能、固化物力学性能的影响.结果表明:酸洗后通过碱处理或煅烧处理均能有效调节环氧浇注的可使用时间及改善环氧浇注固化物的力学性能.

  8. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  9. A strategy of precipitated calcium carbonate (CaCO{sub 3}) fillers for enhancing the mechanical properties of polypropylene polymers

    Energy Technology Data Exchange (ETDEWEB)

    Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of); Ahn, Young Jun; Han, Choon [Kwangwoon University, Seoul (Korea, Republic of); Ramakrishna, Chilakala [Hanil Cement, Danyang (Korea, Republic of)

    2015-06-15

    A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the mos abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles.

  10. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers

    Science.gov (United States)

    Lorenz, H.; Klüppel, M.

    2012-11-01

    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  11. Laser Brazing of Aluminum with a New Filler Wire AlZn13Si10Cu4

    Science.gov (United States)

    Tang, Z.; Seefeld, T.; Vollertsen, F.

    Laser brazing processes of aluminum with both single beam and double beam techniques were developed using a new AlZn13Si10Cu4 filler wire which has a lower solidification range comparing to normal AlSi12 filler wire and the base material. Brazing experiments on both bead on plate and flange joints showed that the new wire has a very good wettability on the aluminum samples. Comparing to the AlSi12 wire one needs a lower heat input (in some cases 73% less heat input) for joining the same samples with the new filler wire and reaches a high hardness value in the joint. In addition, brazing with double beam technique showed its potential to increase the joint quality.

  12. Biocompatibility of polytetrafluoroethylene combined with type I collagen as a nose filler material%聚四氟乙烯联合Ⅰ型胶原作为隆鼻高分子材料的生物相容性

    Institute of Scientific and Technical Information of China (English)

    尹中普; 孙晓

    2015-01-01

    背景:高分子材料聚四氟乙烯膨体作为隆鼻填充材料具有耐腐蚀、化学性质稳定等优点,但其线膨胀系数较大,易引发感染及排异反应,故应用有一定局限性.目的:对比聚四氟乙烯和聚四氟乙烯联合Ⅰ型胶原作为隆鼻填充材料的细胞毒性、埋植后的炎性浸润及体内生物相容性.方法:采用MTT法检测聚四氟乙烯浸提液和聚四氟乙烯联合Ⅰ型胶原浸提液培养L929细胞的细胞增殖.采用电子显微镜观察聚四氟乙烯浸提液和聚四氟乙烯联合Ⅰ型胶原浸提液培养L929细胞后的细胞生长情况.将聚四氟乙烯和聚四氟乙烯联合Ⅰ型胶原材料分别埋置于新西兰白兔鼻背筋膜下7 d,苏木精-伊红染色观察鼻黏膜上皮组织炎性浸润情况.兔耳缘静脉分别注射聚四氟乙烯浸提液和聚四氟乙烯联合Ⅰ型胶原浸提液后,观察兔的全身毒性、过敏、热源反应及死亡情况.结果与结论:作为隆鼻填充材料,聚四氟乙烯联合Ⅰ型胶原材料在细胞毒性、埋植后的炎性浸润方面均优于单纯聚四氟乙烯材料(P < 0.05);兔耳缘静脉注射聚四氟乙烯联合Ⅰ型胶原材料后发生的过敏反应、热源反应少于注射单纯聚四氟乙烯材料(P < 0.05).表明聚四氟乙烯联合Ⅰ型胶原作为隆鼻填充材料具有良好的生物相容性.%BACKGROUND:Polytetrafluoroethylene (PTEE) as a nose filer material has advantages on the resistant to corrosion, chemical stability and so on. However, its linear expansion coefficient is large easily leading to infection and rejection, and its application has some limitations. OBJECTIVE:To compare the cel toxicity, inflammatory infiltrates and biocompatibility indexesin vivo between PTEE and PTEE combined with type Ⅰ colagen. METHODS: MTT method was used to detect the relative proliferation rate of L929 cels cultured with PTEE extract or PTEE combined with type Ⅰ colagen extract; an electron microscope was

  13. Filler effect of fine particle sand on the compressive strength of mortar

    Science.gov (United States)

    Jaturapitakkul, Chai; Tangpagasit, Jatuphon; Songmue, Sawang; Kiattikomol, Kraiwood

    2011-04-01

    The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.

  14. Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law

    Institute of Scientific and Technical Information of China (English)

    Sorin HOLOTESCU; Floriana D.STOIAN

    2009-01-01

    We present an empirical model for the effective thermal conductivity(ETC)of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution.The ETC is determined based on certain hypotheses that connect the behavior of a real composite matefial A.to that of a model composite material B,filled with mono-dimensional filler.The application of these hypotheses to the Maxwell model for ETC is presented.The validation of the new model and its characteristic equation was carried out using experimental data from the reference.The comparison showed that by using the size distribution law a very good fit between the equation of the new model(the size distribution model for the ETC)and the reference experimental results is obtained,even for high volume fractions,up to about 50%.

  15. Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers.

    Science.gov (United States)

    Shi, Pujiang; Abbah, Sunny A; Chuah, Yon Jin; Li, Jun; Zhang, Yong; He, Pengfei; Wong, Hee Kit; Goh, James C H

    2017-09-20

    The efficient delivery of bioactive molecules via rationally designed nanoparticles is an important focus in regenerative medicine. The yolk shell nanocomposite particles described herein are composed of silk fibroin movable cores formed within voided calcium carbonate shells to load and control the release of labile cytokines. These particles are excellent carrier vehicles of potent molecules as they sustained the release of bioactive Bone Morphogenetic Protein 2 (BMP-2) for more than 28 days in vitro. Implantation into bone defects in rabbits corroborates the in vitro results and also reveals that upon contact with phosphate containing body fluids, implanted yolk shell particles agglomerate and transform into a filler that adapts to defect contour to further act as an absorbable hemostatic agent. Taken together, the fabrication of these yolk shell particle-based "bone fillers" could expand the horizon for the development of newer generations of advanced bioactive materials in tissue regeneration applications.

  16. Arcjet Tests of Different Gap-Filler Options for the Orion PICA Heatshield

    Science.gov (United States)

    Skokova, Kristina; Ellerby, Donald; Blosser, Max; Venkatapathy, Ethiraj; Bouslog, Stan; Reuther, James

    2009-01-01

    PICA (Phenolic Infiltrated Carbon Ablator) is one of the candidate thermal protection materials for the Orion vehicle. Because PICA is fabricated in blocks, gaps exist between the blocks, similar to the individual ceramic tiles of the Shuttle thermal protection system. The results of this work focus on arcjet test results of different gap-filler options for PICA, performed as part of the Orion TPS Advanced Development Project. The arcjet tests were performed at NASA Ames Research Center on stagnation models 4 inches in diameter at conditions representative of Orion flight conditions for both Lunar and Low Earth Orbit return. Performance of gap-filler options was evaluated based on the extent of backface temperature change, as compared to PICA without gaps, and on the extent of flow penetration into the gap, evident from the gap opening and widening.

  17. Bismuth subcarbonate as filler particle for an Epoxy-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Eduardo Schwartzer

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the addition of bismuth subcarbonate with different concentrations regarding the rheological properties of an experimental epoxy-based root canal sealer. Materials and Methods: Endodontic sealers were prepared with epoxy resin-based sealer with bismuth subcarbonate additions of 20%, 40%, 60%, 80%, 100%, and 120%. Flow, film thickness, working time, setting time, dimensional change, sorption, solubility, and cytotoxicity were studied according to the ISO standards. Data were statistically analyzed by one-way ANOVA, and Tukey multiple comparisons were used, with a significance level of 5%. Results: The flow, working time, water sorption, and solubility significantly decreased and the film thickness and dimensional change increased with higher filler particle addition. There were no statistically significant differences for setting time and cytotoxicity between the filler particle proportions. Conclusion: Experimental resin-based sealer with bismuth subcarbonate addition up to 40% can be an alternative for root canal sealer.

  18. Structural dynamics and interfacial properties of filler-reinforced elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, J; Klueppel, M, E-mail: Manfred.Klueppel@DIKautschuk.de [Deutsches Institut fuer Kautschuktechnologie e V, Eupener Strasse 33, D-30519 Hannover (Germany)

    2011-01-26

    The combined effect of filler networking and reduced chain mobility close to the filler interface is analyzed based on investigations of the relaxation dynamics of a solution of styrene butadiene rubber filled with different loadings and types of nanostructured carbon blacks. Dynamic-mechanical and dielectric spectra are studied in a wide frequency and temperature range. By referring to a tunneling process of charge carriers over nanoscopic gaps between adjacent carbon black particles the gap distance is evaluated from the dielectric spectra. This distance corresponds to the length of glassy-like polymer bridges forming flexible bonds between adjacent filler particles of the filler network. It is found that the gap distance decreases with increasing filler loading and specific surface area which correlates with an increase of the apparent activation energy of the filler network evaluated from dynamic-mechanical data. Due to the thermal activation of glassy-like polymer bridges the time-temperature superposition principle is not fulfilled for filled elastomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. The change in the low frequency viscoelastic properties by the incorporation of fillers is shown to be related to the superimposed dynamics of the filler network governed by the viscoelastic response of the glassy-like polymer bridges. This effect is distinguished from the reduced chain mobility close to the filler surface which results in a broadening of the glass transition on the high temperature or low frequency side. The microstructure-based interpretation of viscoelastic data is supported by an analysis of the relaxation time spectra.

  19. Structural dynamics and interfacial properties of filler-reinforced elastomers

    Science.gov (United States)

    Fritzsche, J.; Klüppel, M.

    2011-01-01

    The combined effect of filler networking and reduced chain mobility close to the filler interface is analyzed based on investigations of the relaxation dynamics of a solution of styrene butadiene rubber filled with different loadings and types of nanostructured carbon blacks. Dynamic-mechanical and dielectric spectra are studied in a wide frequency and temperature range. By referring to a tunneling process of charge carriers over nanoscopic gaps between adjacent carbon black particles the gap distance is evaluated from the dielectric spectra. This distance corresponds to the length of glassy-like polymer bridges forming flexible bonds between adjacent filler particles of the filler network. It is found that the gap distance decreases with increasing filler loading and specific surface area which correlates with an increase of the apparent activation energy of the filler network evaluated from dynamic-mechanical data. Due to the thermal activation of glassy-like polymer bridges the time-temperature superposition principle is not fulfilled for filled elastomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. The change in the low frequency viscoelastic properties by the incorporation of fillers is shown to be related to the superimposed dynamics of the filler network governed by the viscoelastic response of the glassy-like polymer bridges. This effect is distinguished from the reduced chain mobility close to the filler surface which results in a broadening of the glass transition on the high temperature or low frequency side. The microstructure-based interpretation of viscoelastic data is supported by an analysis of the relaxation time spectra.

  20. PENGEMBANGAN TEKNOLOGI PROSES PRODUKSI BIONANOKOMPOSIT FILLER BIOMASSA ROTAN

    Directory of Open Access Journals (Sweden)

    Siti Nikmatin

    2014-12-01

    Full Text Available Rattan biomass is a fiber waste from processing industry of rattan. Its abundant availability, as well as does not threaten the balance of food and feed, make it a potential source as raw material for composite filler of cellulose nanoparticles. To obtain a high cellulose content, it was inoculated with White rote fungi and Aspergillus niger. The experiments were conducted at inoculation time of 15, 21, and 30 days. The results showed that biomass of rattan extracted with White rote fungi and Aspergillus niger reached maximum cellulose content at the inoculation time of 21 days ie 76.47% cellulose, lignin 2.39%, and 20% moisture content. Cellulose has a monoclinic crystal structure, a =7.87; b=10.31; c=10.13 α= γ = 90, β=120. Nanoparticles were produced by disk mill-hummer mill method with variation milling time of 15, 30, and 45 minutes. Collision, friction, and heat for 30 minutes of milling could produce energy that was transferred to the particles and caused cavitation which resulted particles of 16.22-51.30 nm particle size. Production of test piece and prototype of nanocomposite using TSE and injection molding produced material which has 2 phases of crystal structure, namely monoclinic, and orthorhombic phases. The mechanical properties of impact strength was 67.769 J/m and hardness of 79.97 HRR. Thermal properties and density of bionanokomposit showed comparable values with synthetic composites.

  1. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  2. Peculiarities of Shape Recovery in Polymer Composites with Compacting Filler

    Directory of Open Access Journals (Sweden)

    V. A. Beloshenko

    2011-01-01

    Full Text Available Peculiarities of the shape memory effect development in composites based on the epoxy polymer and various fillers, such as thermoexpanded graphite, aerosils, metallized graphite, and basalt flakes, have been investigated. It has been determined that straining followed by the shape recovery of composites is accompanied by changes in their volume. Extent and character of the changes depend on the ability of fillers to compaction under pressure, deformation scheme, adsorption ability of the filler. It is shown that the combined deformation consisting of compression and stretching of specimens in different sequence gives structural states for which the longitudinal strain-transverse strain ratio can take zero, positive, or negative values.

  3. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  4. Cytotoxicity of resin composites containing bioactive glass fillers.

    Science.gov (United States)

    Salehi, Satin; Gwinner, Fernanda; Mitchell, John C; Pfeifer, Carmem; Ferracane, Jack L

    2015-02-01

    To determine the in vitro cytotoxicity of dental composites containing bioactive glass fillers. Dental composites (50:50 Bis-GMA/TEGDMA resin: 72.5wt% filler, 67.5%Sr-glass and 5% OX50) containing different concentrations (0, 5, 10 and 15wt%) of two sol-gel bioactive glasses, BAG65 (65mole% SiO2, 31mole% CaO, 4mole% P2O5) and BAG61 (3mole% F added) were evaluated for cytotoxicity using Alamar Blue assay. First, composite extracts were obtained from 7 day incubations of composites in cell culture medium at 37°C. Undifferentiated pulp cells (OD-21) were exposed to dilutions of the original extracts for 3, 5, and 7 days. Then freshly cured composite disks were incubated with OD-21 cells (n=5) for 2 days. Subsequently, fresh composite disks were incubated in culture medium at 37°C for 7 days, and then the extracted disks were incubated with OD-21 cells for 2 days. Finally, fresh composites disks were light cured for 3, 5, and 20s and incubated with OD-21 cells (n=5) for 1, 3, 5, and 7 days. To verify that the three different curing modes produced different levels of degree of conversion (DC), the DC of each composite was determined by FTIR. Groups (n=5) were compared with ANOVA/Tukey's (α≤0.05). Extracts from all composites significantly reduced cell viability until a dilution of 1:8 or lower, where the extract became equal to the control. All freshly-cured composites showed significantly reduced cell viability at two days. However, no reduction in cell viability was observed for any composite that had been previously soaked in media before exposure to the cells. Composites with reduced DC (3s vs. 20s cure), as verified by FTIR, showed significantly reduced cell viability. The results show that the composites, independent of composition, had equivalent potency in terms of reducing the viability of the cells in culture. Soaking the composites for 7 days before exposing them to the cells suggested that the "toxic" components had been extracted and the materials were

  5. Biological Evaluation of Flexible Polyurethane/Poly l-Lactic Acid Composite Scaffold as a Potential Filler for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Yuk Fai Lui

    2017-09-01

    Full Text Available Degradable bone graft substitute for large-volume bone defects is a continuously developing field in orthopedics. With the advance in biomaterial in past decades, a wide range of new materials has been investigated for their potential in this application. When compared to common biopolymers within the field such as PLA or PCL, elastomers such as polyurethane offer some unique advantages in terms of flexibility. In cases of bone defect treatments, a flexible soft filler can help to establish an intimate contact with surrounding bones to provide a stable bone-material interface for cell proliferation and ingrowth of tissue. In this study, a porous filler based on segmented polyurethane incorporated with poly l-lactic acid was synthesized by a phase inverse salt leaching method. The filler was put through in vitro and in vivo tests to evaluate its potential in acting as a bone graft substitute for critical-sized bone defects. In vitro results indicated there was a major improvement in biological response, including cell attachment, proliferation and alkaline phosphatase expression for osteoblast-like cells when seeded on the composite material compared to unmodified polyurethane. In vivo evaluation on a critical-sized defect model of New Zealand White (NZW rabbit indicated there was bone ingrowth along the defect area with the introduction of the new filler. A tight interface formed between bone and filler, with osteogenic cells proliferating on the surface. The result suggested polyurethane/poly l-lactic acid composite is a material with the potential to act as a bone graft substitute for orthopedics application.

  6. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    Science.gov (United States)

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  7. Microstructural and rheological analysis of fillers and asphalt mastics

    Science.gov (United States)

    Geber, R.; Simon, A.; Kocserha, I.; Buzimov, A.

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (ddolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics.

  8. Dielectric properties of inorganic fillers filled epoxy thin film

    Energy Technology Data Exchange (ETDEWEB)

    Norshamira, A., E-mail: myra.arshad@gmail.com; Mariatti, M., E-mail: mariatti@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  9. Modification of Composite Material Fillers by Atmospheric Plasma Discharge

    Directory of Open Access Journals (Sweden)

    David Tichy

    2013-01-01

    Full Text Available This work is focused on the observation of the influence of cold atmospheric dielectric barrier discharge (DBD on a modification of textile samples. The main objective of the experiment is to research wettability change of textiles modified by different exposure times and also the observation of the influence of a modification ageing effect. An ambient air was used as a working gas for DBD plasma. The wettability evaluation was carried out by a drop method, in which an imprint of the dropwas observed on the textile surface during various time intervals. An ageing effect of the modification was monitored within an interval of 28 days. Considerable increase of wettability of all modified samples has been proved. A fibre surface analysis was carried out by means of SEM.

  10. FOAM CONCRETE ON THE BASIS FILLERS FROM RECYCLED MATERIALS

    Directory of Open Access Journals (Sweden)

    S-A. Y. Murtazaev

    2014-01-01

    Full Text Available The paper is devoted to the actual problem recycling crushing screenings brick battle and workmanship bricks using it as a fine aggregate in cellular foam concrete products.The paper presents the analysis of the environmental situation of the region and the results of a study of waste crushing brick fight to improve the utilization of the product technology in cellular-concrete products. A comparative study of traditional cellular gas concretes and foam concretes and concretes based on recycled sand.

  11. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  12. Influence of silanization and filler fraction on aged dental composites.

    Science.gov (United States)

    Lin, C T; Lee, S Y; Keh, E S; Dong, D R; Huang, H M; Shih, Y H

    2000-11-01

    The effect of silanization and filler fraction on the mechanical properties of aged dental composites was investigated. Experimental composites (75/25 Bis-GMA/TEGDMA resin reinforced with 0, 12.6, 30.0, and 56.5 vol% 8 microm silanized/unsilanized BaSiO6) were fabricated into 4.7 mm diameter x 2.2 mm thick discs and 3.5 mm diameter x 7.3 mm thick discs for diametral tensile and compressive tests, respectively. The effect of immersion in 75% ethanol at 37 degrees C for 0-30 days on the diametral tensile strength (DTS) and compressive strength (CS) of the samples was evaluated and analysed by ANOVA and Tukey LSD test. The fracture interface between filler and resin matrix was then examined by scanning electron microscope. Results and subsequent statistical evidence from DTS (18.6+/-7.6 MPa, silanized versus 11.7+/-2.6 MPa, unsilanized) and CS (85.1+/-29.7 MPa, silanized versus 56.0+/-11.3 MPa, unsilanized) strongly implies that silanization may greatly enhance the mechanical properties of the resin composites. Furthermore, it also shows that both DTS and CS increased proportionally as the filler fraction of the composites increased. However, in the unsilanized groups, DTS decreased (up to 40%) as the filler fraction increased, and CS showed no relevance to the filler fraction at all. As for the influence of aging, it was found that both DTS and CS showed a significant decrease after immersion in 75% ethanol, and silanization heavily correlated with the filler fraction of aged-resin composites. Microscopic examination of the fractured samples showed that failure primarily occurred within the resin matrix per se for silanized composites and adjacent to the filler particles for unsilanized composites. All the evidence points to the conclusion that mechanical properties of aged-resin composites can be greatly influenced by silanization and the filler fraction.

  13. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    Science.gov (United States)

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways.

  14. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  15. The Effects of Biopolymers Composite Based Waste Cooking Oil and Titanium Dioxide Fillers as Superhydrophobic Coatings.

    Science.gov (United States)

    Marsi, N.; Rus, A. Z. M.

    2017-08-01

    This project presents the effect of biopolymer composite surface coating on TiO2 fillers by analysing the static water contact angle, SEM micrographs, porosity, density and refractive index of biopolymer doped with different loading of TiO2. The different ratio loading of 0.5, 1.0, 1.5, 2.0 and 2.5 (wt/wt%) TiO2 can be used to improve the material properties in practical use for outdoor application especially to enhance the stability of surface coating. It is found that the smooth surfaces with a low ratio loading of TiO2 fillers on biopolymer composite surface coating increases the static water contact angle up to 162.29°. It is interpreted with respect to nano- features existing on the surface of the water repellent creates a thin superhydrphobic layer. The relationship between porosity and density is indirectly proportional where the higher the loading of TiO2 filler produce the lower porosity up to 0.86% of the surface coating. The movement from shorter to longer of wavelength was observed before and after exposure indicates that there are optimization of absorption of UV-B radiation as the amount of delocalisation.

  16. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Science.gov (United States)

    Roes, A. L.; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K.

    2010-08-01

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the `functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  17. Esthetic Reconstruction of Diastema with Adhesive Tooth-Colored Restorations and Hyaluronic Acid Fillers

    Directory of Open Access Journals (Sweden)

    Supawadee Naorungroj

    2017-01-01

    Full Text Available Objective. This report presents a comprehensive esthetic treatment with adhesive tooth-colored restorations in a combination with hyaluronic acid (HA fillers of diastema in an orthodontic patient with relapse. Case Report. A 36-year-old female patient consulted about 1.5–2 mm midline diastema after an orthodontic relapse of replacing missing central incisors with lateral incisors and dark-colored gingival tissue as a result of a metal post and core with porcelain fused to a metal (PFM crown at the left lateral incisor. Restorative treatments included replacing the PFM with all-ceramic material and placing a ceramic veneer on the right lateral incisor. To close the space, crown forms of both lateral incisors were altered. A direct resin composite was then used to reform right and left canines to a more ideal lateral incisor shape. An HA fillers injection was used to fill the remaining open gingival embrasure. Eighteen months after treatment, the interdental papilla remained stable and the patient was satisfied with the result. Conclusion. Esthetic reconstruction of diastema and open gingival embrasure in this case can be accomplished without orthodontic retreatment. Tooth-colored restorations and HA filler injection appear as a promising modality to address this patient’s esthetic concern.

  18. Polyamide/silver antimicrobials: effect of filler types on the silver ion release.

    Science.gov (United States)

    Kumar, Radhesh; Howdle, Steve; Münstedt, Helmut

    2005-11-01

    The efficiency of various silver-based antimicrobial fillers (elementary silver and silver substituted materials) in polyamide (PA) toward their silver ion (Ag+) release characteristics in an aqueous medium was investigated and discussed. Anode stripping voltammetry (ASV) was used for the quantitative estimation of Ag+ release from these composites. The biocidal (Ag+) release from the composites was found to be dependent on the time of soaking in water and the nature of the filler. The long-term Ag+ release capability of the elementary silver-based PA/Ag composite is promising compared with the commercial counterparts. The silver ion release potential of polyamide composites where the silver filling was performed by using supercritical carbon dioxide (scCO2) is also discussed. The composites release Ag+ at a concentration level capable of rendering antimicrobial efficacy and proved to be active against the microbes. A good agreement exists between the Ag+ release experiments and antimicrobial test results. The observed results on the influence of the nature of the filler and crystallinity on the biocidal release and the varying long-term release properties could be helpful in the design of industrially relevant biomaterials.

  19. Mechanical and Morphological Properties of Nano Filler Polyester Composites

    Directory of Open Access Journals (Sweden)

    Bonnia Noor Najmi

    2016-01-01

    Full Text Available This research is focusing on mechanical and morphological properties of unsaturated polyester (UP reinforced with two different types of filler which is nano size clay Cloisite 30B (C30B and Carbon Black (CB. Samples were fabricated via hand lay-up and open molding technique. Percentages of Cloisite 30B & Carbon Black (CB used vary from 0, 2, 4, 6, 8 and 10 wt%. The mechanical properties were evaluated by impact, flexural and hardness testing. Result shows that the mechanical strength of C30B was better compare to CB filled composite. The combination of UP with C30B helps to improve the properties due to the high surface area of nanosize filler in the matrix. The result shows that increasing of filler content had increased mechanical properties of composites. Optimum percentage represent good mechanical properties are 4% for both fillers. SEM images showed that rough surface image indicate to agglomeration of filler in the matrix for CB sample and smooth surface image on C30B sample indicate to homogenous blending between filler and matrix polyester. SEM images proved that mechanical properties result indicate that C30B polyester composite is a good reinforcement compare to CB polyester composite.

  20. Influence of Surface Coatings of Filler Wires on Weld Seam Properties of Laser Beam Welded Copper Connections

    Science.gov (United States)

    Mann, Vincent; Holzer, Matthias; Hofmann, Konstantin; Özkaya, Esra; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    In laser beam welding of copper its material properties require high intensities of the laser beam for a stable process, which are often realized by small focal diameters. Thus conventional laser beam welding of copper is accompanied by small bridgeable gap widths. A way to increase tolerable gap widths is the use of filler wires, which leads to higher energy consumption per unit length of the process, as extra energy is necessary to melt the filler wire. As some surface coatings are known to reduce energy consumption in laser beam welding of copper, this paper investigates the influence of surface coated filler wires on weld seam properties of laser beam welded of copper alloys with the aim of improved usage of the energy provided for the process. For this reason different coating materials and thicknesses of the filler wires are used within the experiments. The resulting weld seams are evaluated by means of geometrical, electrical and mechanical properties of the joints, e.g. seam width, cross-sectional area, electrical resistance, tensile strength and strain.

  1. Comparative evaluation of dental resin composites based on micron- and submicron-sized monomodal glass filler particles.

    Science.gov (United States)

    Valente, Lisia L; Peralta, Sonia L; Ogliari, Fabrício A; Cavalcante, Larissa M; Moraes, Rafael R

    2013-11-01

    A model resin composite containing a novel monomodal inorganic filler system based on submicron-sized Ba-Si-Al glass particles (NanoFine NF180; Schott) was formulated and compared with an experimental composite containing micron-sized particles (UltraFine UF1.0; Schott). The filler particles were characterized using X-ray microanalysis and granulometry, while the composites were characterized in terms of filler-resin morphology, radiopacity, degree of CC conversion, hardness, flexural strength/modulus, work-of-fracture, surface roughness and gloss (before and after simulated toothbrushing abrasion), and bulk compressive creep. The composites were formulated from the same photoactivated dimethacrylate co-monomer, incorporating mass fractions of 75% micron- and 78% submicron-sized particles. Quantitative data were analyzed at a significance level of pcomposites were similar in radiopacity, flexural strength, work-of-fracture, and creep. The submicron composite was harder but had lower flexural modulus and CC conversion. No significant differences in roughness were observed before brushing, although the submicron composite had higher gloss. Brushing increased roughness and decreased gloss on both materials, but the submicron composite retained higher gloss after brushing. The monomodal submicron glass filler system demonstrated potential for use in restorative dental composites, particularly due to improved esthetic properties. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fama, Lucia [Physics Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Bittante, Ana Monica B.Q.; Sobral, Paulo J.A. [Food Engineering Department, FZEA, University of Sao Paulo, PO Box 23, 13635-900 Pirassununga (SP) (Brazil); Goyanes, Silvia [Physics Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Gerschenson, Lia N., E-mail: lia@di.fcen.uba.ar [Industry Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina)

    2010-07-20

    Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E') and hardening and a decrease in Tan {delta}, while the garlic composite showed a diminishing in the E' and hardening and did not produce significant changes in Tan {delta} values when compared with systems without fillers (matrix). In the range between -90 deg. C and 20 deg. C, all the materials studied presented two peaks in the Tan {delta} curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T{sub gelatinization}) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water.

  3. Bonding of ceramic insert to a laboratory particle filler composite.

    Science.gov (United States)

    Kienanen, Pietari; Alander, Pasi; Lassila, Lippo V J; Vallittu, Pekka K

    2005-10-01

    The push-out bond strength of cylindrical ceramic inserts (CI) to particulate filler resin composite (VC) was evaluated in this study. Various surface treatments to improve the adhesion of CI to resin composite were tested. Additionally, the effect of fiber-reinforced composite (FRC) laminate encapsulation around CI was tested. Feldspathic porcelain CI with a diameter of 3.1 mm was bonded to VC. Adhesive resin was used for bonding. In group 1, no surface treatment of CI was done. In group 2, CI was encapsulated with a thin layer of woven glass FRC. In group 3, the surface of the CI was tribochemically silica coated and silanized. In group 4, the surface of the CI was grit-blasted with 50 microm aluminum oxide and etched with hydrofluoric acid. In group 5, the grit-blasted CI was encapsulated with a layer of FRC. The specimens (n = 6/group) were either dry stored or thermocycled in water (6000 x 5-55 degrees C). The push-out test was carried out with a universal material testing machine. The highest push-out strength was achieved in group 5 (20.4 MPa) and the lowest in group 2 (11.5 MPa). ANOVA revealed that both surface treatment and storage condition had a significant effect on push-out strength (p < 0.05). We conclude that the additional glass FRC encapsulation can be used to increase the bond strength of insert to composite.

  4. Low temperature method for the production of calcium phosphate fillers

    Directory of Open Access Journals (Sweden)

    Nastro Alfonso

    2004-03-01

    Full Text Available Abstract Background Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. Methods Commercial hydroxyapatite (HAp and monetite (M powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD, Vickers hardness test (HV, scanning electron microscopy (SEM, and porosity evaluation. Results The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c or Hap 50%-M 50% (f, show cohesion of the powder grains. Conclusions The dissolution-reprecipitation process is more intesive in manufactured samples (c and (f, according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c (f manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues.

  5. Nanostructured Materials

    Science.gov (United States)

    2012-08-30

    with macroscopic reinforcements such as fiber, clay, glass mineral and other fillers. The nano-alloyed polymers are particularly useful for producing...applications, including space-sur- vivable materials and seals, gaskets, cosmetics , and personal care. 25 Claims, 10 Drawing Sheets B-3 U.S. Patent Mar...the incorporation of fluorinated nanostructured chemicals onto the surface of a secondary material (such as Ti02 , CaC03 , glass or mineral

  6. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  7. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Science.gov (United States)

    Goc, K.; Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L.; Rybak, A.; Kmita, G.; Kapusta, Cz.

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained.

  8. In Situ Synthesis of Ceramic Reinforcements for Carbon/CuCrZr Joints Brazed with Composite Fillers

    Science.gov (United States)

    Mao, Yangwu; Yu, Si; Deng, Quanrong; Zhao, Pei

    2016-12-01

    Brazing of two kinds of carbon materials including graphite and carbon fiber-reinforced carbon composites to copper alloys has been realized with CuTiH2 + BN composite fillers. The microstructure characterization reveals that the ceramic reinforcements containing TiN particles and TiB whiskers have been synthesized by in situ reaction of BN additives with Ti discomposed from TiH2 in the composite filler. The filler layer of the joints is mainly composed of Cu-based solid solutions [Cu (ss)] and Ti-Cu intermetallics along with ceramic reinforcements. Furthermore, a continuous thin reaction layer mainly containing TiC is developed at the interface close to the carbon substrates. The growth of TiC layer is mainly controlled by the diffusion of carbon from the substrates into the liquid filler through the TiC layer formed. The interface evolution of the graphite/CuCrZr joints has been discussed. The electrical resistivity of the joining area is relatively low, which highly meets the requirement for the carbon commutator applications.

  9. Influence of radiopaque fillers on physicochemical properties of a model epoxy resin-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Fabricio Mezzomo COLLARES

    2013-12-01

    Full Text Available Objective: To verify the influence of radiopaque fillers on an epoxy resin-based sealer. Material and Methods: Experimental sealers were formulated by adding 20%, 40%, 60%, 80%, 100% and 120% of calcium tungstate, ytterbium trifluoride or barium sulphate by weight to an epoxy-resin-base. Setting time, flow, film thickness, radiopacity, sorption, solubility, pH and push-out bond strength were evaluated. Results: The setting time ranged from 373 to 612.66 min, the flow varied from 13.81±0.49 to 22.49±0.37 mm, and the film thickness ranged from 16.67±5.77 to 33.33±11.54 µm. The lowest pH was 5.47±0.53, and the highest was 6.99±0.03. Radiopacity varied from 0.38±0.04 to 2.57±0.21 mmAl and increased with the amount of filler. Calcium tungstate sealers had a higher sorption and solubility than other sealers. There was no significant difference in the push-out bond strength among the fillers at the 120% concentration. CONCLUSION: The inorganic fillers evaluated and their concentrations affect the physicochemical properties of an epoxy resin-based root canal sealer.

  10. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  11. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    . Exfoliated graphite (EG) as a sole filler is more effective than carbon nanotube (SWCNT/MWCNT), halloysite nanotube (HNT) or nanoclay as sole fillers in enhancing the loss tangent, if the curing pressure is 2.0 (not 0.5) MPa. The MWCNT, SiC whisker and halloysite nanotube as sole fillers are effective for increasing the storage modulus. The combined use of a storage-modulus-enhancing filler (CNT, SiC whisker or HNT) and a loss-tangent-enhancing filler (EG or nanoclay) gives the best performance. With EG, HNT and 2.0-MPa curing, the loss modulus is increased by 110%, while the flexural strength is decreased by 14% and the flexural modulus is not affected. With nanoclay, HNT and 0.5-MPa curing, the loss modulus is increased by 96%, while the flexural strength and modulus are essentially not affected. The low through-thickness thermal conductivity limits heat dissipation from continuous carbon fiber polymer-matrix composites. This conductivity is increased by up to 60% by raising the curing pressure from 0.1 to 2.0 MPa and up to 33% by incorporation of a filler (61.5 vol.%) at the interlaminar interface. The thermal resistivity is dominated by the lamina resistivity (which is contributed substantially by the intralaminar fiber--fiber interfacial resistivity), with the interlaminar interface thermal resistivity being unexpectedly negligible. The lamina resistivity and intralaminar fiber-fiber interfacial resistivity are decreased by up to 56% by raising the curing pressure and up to 36% by filler incorporation. Thermoelectric structural materials are potentially attractive for large-scale energy harvesting. Through filler incorporation and unprecedented decoupling of the bulk (laminae) and interfacial (interlaminar interfaces) contributions to the Seebeck voltage (through-thickness Seebeck voltage of a crossply continuous carbon fiber/epoxy composite laminate), this work provides thermoelectric power magnitudes at ˜70°C up to 110, 1670 and 11000 microV/K for the laminate, a

  12. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler

    Science.gov (United States)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg

    2011-01-01

    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  13. Host Tissue Interaction, Fate, and Risks of Degradable and Nondegradable Gel Fillers

    DEFF Research Database (Denmark)

    Christensen, Lise

    2009-01-01

    -bindings to the polymer in order to obtain a more dense molecular structure, which will prolong degradation and filling effect of the gel. Other gel fillers contain particles of organic (poly-lactic acid) or inorganic (calcium hydroxylapatite) material, which have been used in human tissue for other purposes (degradable...... instead steroids or large doses of NSAIDs) the bacteria form a biofilm, which gives rise to a low-grade chronic infection that is resistant to antibiotics. Complications following particulated gels and silicone oil are not known, but bacteria in a biofilm and/or endotoxins released...

  14. Development of matching filler metals for welding CB2 and first experience

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, Herbert; Jochum, Claus; Kreuzer-Zagar, Dorothea [Boehler Schweisstechnik Deutschland GmbH, Hamm (Germany)

    2010-07-01

    This paper gives an overview about the properties of a new martensitic welding consumable which is matching to CB2, FB2, PB2. This material has been developed in the frame of COST 536 research program. Thermanit MTS 5 Co1 shows high strength properties with moderate toughness in the range about 40 J. The mechanical properties have been tested after different PWHT, the influence of Boron was evaluated with respect to weldability, creep strength and toughness. Creep tests are still running, up to now, the filler metal behaves as expected. (orig.)

  15. Effect of Wood Fillers on the Viscoelastic and Thermophysical Properties of HDPE-Wood Composite

    Directory of Open Access Journals (Sweden)

    M. Tazi

    2016-01-01

    Full Text Available Wood polymer composites (WPC have well proven their applicability in several fields of the plasturgy sector, due to their aesthetics and low maintenance costs. However, for plasturgy applications, the characterization of viscoelastic behavior and thermomechanical and thermophysical properties of WPC with the temperature and wood filler contents is essential. Therefore, the processability of polymer composites made up with different percentage of wood particles needs a better understanding of materials behaviors in accordance with temperature and wood particles contents. To this end, a numerical analysis of the viscoelastic, mechanical, and thermophysical properties of composite composed of high density polyethylene (HDPE reinforced with soft wood particles is evaluated.

  16. Efficacy and safety of porcine collagen filler for nasolabial fold correction in Asians: a prospective multicenter, 12 months follow-up study.

    Science.gov (United States)

    Lee, Jung Ho; Choi, Yong Sung; Kim, Sue Min; Kim, Young Jin; Rhie, Jong Won; Jun, Young Joon

    2014-11-01

    Recently, injectable dermal fillers have become important alternatives to surgical procedures for the correction of facial wrinkles. Bovine collagen is the first approved material for filler injection, and several studies have shown its efficacy. However, the risk of developing an allergic reaction and xenogenic transmission of bovine spongiform encephalopathy remain among its disadvantages. In this randomized, double-blinded, split-face study, we compared the efficacy and safety of a porcine collagen filler (TheraFill®) with that of a bovine collagen filler (KOKEN®) for nasolabial fold correction. A total of sixty one patients with mild to severe nasolabial fold were randomized to receive TheraFill® and KOKEN® on contralateral sides of the face. During the 12-month follow-up period, improvement in the Wrinkle-Severity Rating Scale score was slightly higher in TheraFill® group than KOKEN® group, although the difference was not statistically significant. No serious adverse reactions were observed and both materials were tolerable in most cases. In conclusion, the long-term effect of TheraFill® on nasolabial fold correction was comparable to that of KOKEN®, and it may be a good alternative to bovine collagen filler.

  17. Effect of Nano Filler Mixture on the Visual Aspect of Treeing Degradation in LDPE Based Composite%Effect of Nano Filler Mixture on the Visual Aspect of Treeing Degradation in LDPE Based Composite

    Institute of Scientific and Technical Information of China (English)

    Rudi Kurnianto; Z. Nawawi; H. Ahmad; N. Hozumi; M. Nagao

    2011-01-01

    tree channel will be eroded by internal flashover (IFO) and become thicker. MgO filler could still restrain the IFO at the small diameter; however there will be a maximum diameter above which the effect of MgO would be very small. Lastly, it is confirmed that the MgO filler itself excels to suppress the tree degradation instead of the voltage application changes. The polymer nanocomposite appears to be more resistive to treeing degradation than their base material.

  18. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  19. Comparative study of filler influence on polylactide photooxidation

    Directory of Open Access Journals (Sweden)

    S. Bocchini

    2013-05-01

    Full Text Available Polylactide (PLA based nanocomposites of organically modified montmorillonite and micro-talc based microcomposites were prepared with different compositions and were UV-light irradiated under artificial accelerated conditions representative of solar irradiation. The chemical modifications resulting from photo-oxidation were followed by infrared (IR and ultraviolet (UV-visible spectroscopies. The infrared analysis of PLA photooxidation shows the formation of a band at 1847 cm–1 due to the formation of anhydrides. The filler addition provokes an increase of anhydride formation rate dependent on filler nature, amount and dispersion degree on the matrix. The main factors that influence oxidation rate are the total extension of polymer/filler interfacial area and the presence of transition metal impurities of clays.

  20. Synthesis of ZnO core spike particles as composite fillers with a high throughput method

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Sebastian; Koschine, Toenjes; Chluba, Christoph; Freitag, Stefan; Mishra, Yogendra Kumar; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany)

    2011-07-01

    ZnO core spike particles are typically micro particles covered with nanoscopic spikes. They show advanced properties compared to conventional fillers like roundish particles and short fibers. An example is a very strong mechanical interlocking behaviors. This property together with its hardness makes this material very interesting for compounds with enhanced mechanical properties. In addition ZnO has very interesting electric and electronic properties, which make the range of possible applications for composites containing ZnO core spike particles very wide. In order to use ZnO core spike particles as filler for bulk materials, considerable amounts are necessary. A problem during the oxidation based synthesis of such particles using Zn-powder as source material is the separation of the single Zn-particles, which is necessary for oxygen supply, for avoiding sinter processes and allowing the nanoscopic spikes to grow. We introduce simple processing routes found as solution for this problem. Large amounts of microscopic Zn-powder can be converted to ZnO core spike particles with a total size from nanometers up to a couple of micrometers. Furthermore by changing the growth parameters it is also possible to modify the particle shape.

  1. FMR Study of the Porous Silicate Glasses with Fe3O4 Magnetic Nanoparticles Fillers

    Directory of Open Access Journals (Sweden)

    B. Zapotoczny

    2012-01-01

    Full Text Available The results of research on new magnetic materials for biomedical applications are discussed. These materials are porous silicate glasses with magnetic fillers. To ensure the smallest number of components for subsequent removal from the body, the magnetic fillers are bare magnetite nanoparticles (Fe3O4. The magnetic properties of these materials have been investigated using the ferromagnetic resonance method (FMR. The FMR analysis has been complemented by scanning electron microscope (SEM measurements. In order to examine the effect of time degradation on filling the porous glass with bare magnetite nanoparticles the FMR measurement was repeated five months later. For the samples with high degree of pore filling, in contrast to the samples with low degree of pore filling, the FMR signal was still strong. The influence of different pH values of magnetite nanoparticles aqueous suspension on the degree of filling the pores of glasses is also discussed. The experimental results are supported by computer simulations of FMR experiment for a cluster of N magnetic nanoparticles locked in a porous medium based on a stochastic version of the Landau-Lifshitz equation for nanoparticle magnetization.

  2. Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties.

    Science.gov (United States)

    Young, Anne M; Man Ho, Sze; Abou Neel, Ensanya A; Ahmed, Ifty; Barralet, Jake E; Knowles, Jonathan C; Nazhat, Showan N

    2009-07-01

    An experimental, light-curable, degradable polyester-based bone adhesive reinforced with phosphate glass particles ((P(2)O(5))(0.45)(CaO)(x)(Na(2)O)(0.55-)(x), x=0.3 or 0.4mol) or calcium phosphate (monocalcium phosphate/beta-tricalcium phosphate (MCPM/beta-TCP)) has been characterized. Early water sorption (8wt.% at 1week) by the unfilled set adhesive catalysed subsequent bulk degradation (4wt.% at 2weeks) and substantial decline in both elastic and storage moduli. Addition of phosphate glass fillers substantially enhanced this water sorption, catalysed greater bulk mass loss (40-50 and 52-55wt.%, respectively) but enabled generation of a microporous scaffold within 2weeks. The high levels of acidic polymer degradation products (38-50wt.% of original polymer) were advantageously buffered by the filler, which initially released primarily sodium trimetaphosphate (P(3)O93-). Calcium phosphate addition raised polymer water sorption to a lesser extent (16wt.%) and promoted intermediate early bulk mass loss (12wt.%) but simultaneous anomalous increase in modulus. This was attributed to MCPM reacting with absorbed water and beta-TCP to form more homogeneously dispersed brushite (CaHPO(4)) throughout the polymer. Between 2 and 10weeks, linear erosion of both polymer (0.5wt.%week(-1)) and composites (0.7-1.2wt.%week(-1)) occurred, with all fillers providing long-term buffer action through calcium and orthophosphate (PO43-) release. In conclusion, both fillers can raise degradation of bone adhesives whilst simultaneously providing the buffering action and ions required for new bone formation. Through control of water sorption catalysed filler reactions, porous structures for cell support or substantially stiffer materials may be generated.

  3. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Goc, K., E-mail: Kamil.Goc@fis.agh.edu.pl [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Rybak, A.; Kmita, G. [ABB Corporate Research Center, 13A Starowislna Street, 31-038 Krakow (Poland); Kapusta, Cz. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland)

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained. - Highlights: • Influence of magnetic field on the particle chains in epoxy composites is analysed. • Strontium ferrite fillers with good thermal and low electrical conductivity. • Influence of interparticle interactions for agglomeration efficiency. • The impact of chains formed on the heat transfer by creating conductive paths. • Connection between structural anisotropy and transport properties anisotropy.

  4. Lower Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    Science.gov (United States)

    Braz, André; Humphrey, Shannon; Weinkle, Susan; Yee, G Jackie; Remington, B Kent; Lorenc, Z Paul; Yoelin, Steve; Waldorf, Heidi A; Azizzadeh, Babak; Butterwick, Kimberly J; de Maio, Mauricio; Sadick, Neil; Trevidic, Patrick; Criollo-Lamilla, Gisella; Garcia, Philippe

    2015-11-01

    The use of injectable fillers enables facial sculpting through treatment of volume depletion and modeling of facial contours. Injectable fillers are among the most frequently performed minimally invasive cosmetic procedures.However, treatment of the lower third of the face can be challenging and requires expertise in facial anatomy. In this article, the authors provide a comprehensive review of the anatomy of the lower third of the face, highlighting danger zones. In addition, the authors describe their preferred approach and detailed technique used in the treatment of each specific area, namely the jawline, prejowl sulcus, melomental folds, and lips.

  5. Properties of hybrid resin composite systems containing prepolymerized filler particles.

    Science.gov (United States)

    Blackham, Jason T; Vandewalle, Kraig S; Lien, Wen

    2009-01-01

    This study compared the properties of newer hybrid resin composites with prepolymerized-filler particles to traditional hybrids and a microfill composite. The following properties were examined per composite: diametral tensile strength, flexural strength/modulus, Knoop microhardness and polymerization shrinkage. Physical properties were determined for each Jason T Blackham, DMD, USAF, General Dentistry, Tyndall composite group (n = 8), showing significant differences between groups per property (p hybrid composites (Z250, Esthet-X) had higher strength, composites containing pre-polymerized fillers (Gradia Direct Posterior, Premise) performed more moderately and the microfill composite (Durafill VS) had lower strength. Premise and Durafill VS had the lowest polymerization shrinkage.

  6. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper.

  7. Effect of filler addition on porosity and strength of polysiloxane-derived porous silicon carbide ceramics

    National Research Council Canada - National Science Library

    KUMAR, B. V. Manoj; EOM, Jung-Hye; KIM, Young-Wook

    2011-01-01

    Polycarbosilane (PCS) or silicon carbide (SiC) fillers were used as fillers in fabricating partially interconnected, open-cell porous SiC ceramics by carbothermal reduction of polysiloxane-derived SiOC and subsequent sintering process...

  8. Impact of fillers on dissolution kinetic of fenofibrate dry foams.

    Science.gov (United States)

    Lenz, Elisabeth; Sprunk, Angela; Kleinebudde, Peter; Page, Susanne

    2015-01-01

    Dry foam technology reveals the opportunity to improve the dissolution behavior of poorly soluble drugs tending to agglomeration due to micronization. In this study, the impact of fillers on the manufacturability, the properties of dry foams and granules as well as the dissolution kinetics of dry foam tablets was investigated using fenofibrate as a model compound. Different maltodextrins and dried glucose syrups, a maltodextrin-phosphatidylcholine complex, isomalt and a 1:1 mixture of mannitol/glucose syrup were used as filler. Within the group of maltodextrins and glucose syrups, the influences of dextrose equivalent (DE), particle morphology and botanical source of starch were investigated. Comparable macroscopic foam structures were obtained with maltodextrins and glucose syrups whereas different foam morphologies were obtained for the other fillers tested. Regarding the maltodextrins and glucose syrups, different physicochemical and particle properties had a minor impact on granule characteristics and tablet dissolution. Using the maltodextrin-phosphatidylcholine complex resulted in a low specific surface area of the granules and a slow tablet dissolution caused by a slow disintegration. In contrast, a high specific surface area and a fast release were obtained with isomalt and glucose syrup/mannitol mixture indicating that high soluble low molecular weight fillers enable the development of fast dissolving dry foam tablets.

  9. Multipass Narrow Gap of Heavy Gauge Steel with Filler Wire

    Science.gov (United States)

    Markushov, Y.; Evtihiev, N.; Grezev, N.; Murzakov, M.

    This article describes method of heavy gauge welding using laser radiation as beam source of energy. The article contains the results of single-pass laser-arc welding and multipass laser welding with filler wire; highlight benefits and drawbacks of each welding method. The results obtained were compared with the traditional methods of welding of the same thickness.

  10. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  11. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  12. Boron nitride nanotubes as novel fillers for improving the properties of dental adhesives.

    Science.gov (United States)

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2017-07-01

    This study aimed to evaluate the physical-chemical properties of experimental dental adhesives containing boron nitride nanotubes (BNNTs) as inorganic fillers. An experimental adhesive resin was prepared using HEMA-BisGMA, 66/33wt% (control). Inorganic BNNT fillers were first analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and then incorporated into the adhesive at different concentration (0.05, 0.075, 0.1, 0.15wt%). Degree of conversion (DC), ultimate strength, contact angle, surface free energy (SFE) microhardness, softening in solvent and bioactivity were assessed. Scanning and transmission electron microscopy (SEM and TEM) showed BNNTs with diameter ranging from 5 to 10nm with close end tips. No changes in DC were observed after incorporating BNNTs up to 0.15wt%. The contact angles of water and α-bromonaphthalene increased (padhesive specimens after incorporation of BNNT. The incorporation of BNNTs up to 0.15wt% improved the chemical and mechanical properties of dental adhesives and promoted mineral deposition. Incorporation of boron nitride nanotubes into adhesive resin materials improved physical-chemical properties and increased mineral deposition on its surface allowing enhanced properties of the resin-dentin interface. Thus, the novel adhesive material is promising as a dental adhesive and may contribute to the stability of the dentin-resin bonding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influence of physical and chemical polymer-filler bonds on wet skid resistance and related properties of passenger car tire treads

    NARCIS (Netherlands)

    Cichomski, E.M.; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Tolpekina, T.V.; Schultz, S.M.

    2012-01-01

    Knowledge about the influence of rubber – filler interactions on the wet skid behavior of tire treads is insufficient, in order to quickly develop new compounds with improved wet skid performance. The rubber compound used for a tire tread is in fact a composite material of which the dynamic

  14. Influence of filler existence on microleakage of a self-etch adhesive system

    Directory of Open Access Journals (Sweden)

    H Mirmohammadi

    2014-01-01

    Full Text Available Aim: This study evaluated the effect of filler existence in self-etch adhesive resin on the marginal leakage of a class V restoration. Materials and Methods: Class V cavities were prepared and restored with a resin composite on the buccal surfaces of 48 premolars lined with unfilled or filled adhesives (n = 24. After thermo cycling, teeth in each group were divided to two subgroups (n = 12, specimens of the first subgroup were incubated for 24 h in distilled water at 37°C, and for the second group three months in the same condition. Specimens were placed in 50% silver nitrate for 24 h at 37°C, and then were cut buccolingually 1 mm thick. Dye penetration was measured using a stereomicroscope and scaled from 0 to 5 in a blind method. SEM images were made to evaluate the dentin-adhesive interfaces. Collected data were analyzed using the nonparametric Kruskal-Wallis and Mann-Whitney U-tests at a significant level of P<0.05. Results: There was no significant difference between microleakage of filled and unfilled adhesive at 24 h and 3 months (P<0.05. There was a significant difference in cervical microleakage between 24 h and 3 months, which was independ on filler load of the adhesive (P<0.001. In contrast, there was no significant difference in occlusal microleakage between 24 h and 3 months and the cervical microleakage was significantly higher than occlusal microleakage after 3 months. SEM images reveald that unfilled adhesive infiltrate slightly better than filled adhesive. Conclusion: The application of filler particles in a self etch adhesive system had no influence on marginal leakage at both the enamel and dentin margins. While the unfilled adhesive infiltrate better than the filled adhesive, its long term performance is not promising.

  15. Polymer surface modification and characterization of particulate calcium carbonate fillers

    Energy Technology Data Exchange (ETDEWEB)

    Shui Miao

    2003-12-30

    The efficacy of the surface treatment of particulate fillers depends on the chemical character of the components, on the method and conditions of the treatment, and on the amount of the treating agent. Here, the ultra-fine calcium carbonate is surface treated with 1, 2, 3 and 4 wt.% polyacrylic acid (PAA) synthesized by ourselves, which has strong ionic interaction and is an efficient surface modifier. The PAA coated filler is submitted to the measurement of the surface bonded amount, bonding efficacy, X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography. Maximum efficacy is expected at the monolayer coverage of the surface, which is about 0.6 wt.% according to the calculation based on the way they are aligned and is basically in agreement with the 'substrate overlayer' model based on the mole ratio of C{sup 286} and C{sup 290} taking no account of the possible underestimation because of the inaccuracy or because of the CH{sub x} contamination present originally on the CaCO{sub 3}. The initial decrease of the mole ratio of C{sup 290}/O and C{sup 290}/Ca with the surface bonded PAA may indicate that the bonding interaction between the polymer and the filler surface is the leaving of one molecular carbon dioxide. The IGC measurement shows that there is a considerable surface tension falling in the case of the PAA modified filler compared with the reference. An abnormal high surface energy in the case of filler treated with 4% PAA is observed.

  16. An international perspective on fillers in dermatology-from an American perspective.

    Science.gov (United States)

    Gold, Michael H

    2012-09-01

    This manuscript is intended to give one an international perspective on the use of fillers around the world-what makes some of them special and what is the need and what is the purpose of having so many fillers in this global dermatologic community we live in. In the US, we have a finite number of fillers and only a handful more currently going through FDA testing. We demand much from our fillers in terms of safety and efficacy, and for all of us in the US, this is a very good reason to keep the numbers of fillers available to a reasonable number.

  17. The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites

    Science.gov (United States)

    Rajesh, S.; Murali, K. P.; Jantunen, H.; Ratheesh, R.

    2011-11-01

    High permittivity and low-loss ceramic fillers have been prepared by means of the solid state ceramic route. Ceramic-filled composites were prepared by the Sigma Mixing, Extrusion, Calendering, which was followed by the Hot pressing (SMECH) process. The microwave dielectric properties of the composites were studied using X-band waveguide cavity perturbation technique. The temperature coefficient of the relative permittivity of the composites was investigated in the 0-100 °C temperature range using a hot and cold chamber coupled with an impedance analyzer. The temperature coefficient of the relative permittivity of the composites showed strong dependence on the temperature coefficient of the relative permittivity of the filler material. In the present study, a high-permittivity polymer/ceramic composite, having τεr ∼63 ppm/K, has been realized. This composite is suitable for outdoor wireless applications.

  18. Barrier properties of PE, PP and EVA (nano)composites - The influence of filler type and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Merinska, D.; Kalendova, A. [Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 275, 762 72 Zlin, Czech Republic and Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 0 (Czech Republic); Tesarikova, A. [Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 275, 762 72 Zlin (Czech Republic)

    2014-05-15

    Nanocomposite materials with layered clay used as nanofiller and polyethylene (PE), polypropylene (PP) and copolymer ethylene and vinyl acetate matrix (EVA, the content of VA component 19 wt. %) were prepared by compounding the individual components in Brabender kneader. The MMT Na+ and four types of commercial products such as Nanofil N 5 and N3000, Cloisite 93A and 30B were used as nanofillers. Next to the clays microprecipitated CaHCO{sub 3}, nanosilica and Halloysite tubes were used. The quantity of all the above-mentioned (nano)fillers was 1, 3 and 5 wt. % in relation to the content of montmorillonite. The aim was to evaluate the influence of (nano)filler type and concentration on nanocomposite barrier properties. The morphology of nanocomposite samples was examined by means of XRD analysis illustrated by transmission electronic microscopy TEM. Furthermore, permeability for O{sub 2} and CO{sub 2} were observed.

  19. Packing by random sequential addition of small blocks: pressure effects, orientational correlations and application to graphitic fillers in polymer matrices

    CERN Document Server

    Sergi, Danilo; Scocchi, Giulio; Ortona, Alberto

    2011-01-01

    Packing is a complex phenomenon of prominence in many natural and industrial processes (liquid crystals, granular materials, infiltration, melting, flow, sintering, segregation, sedimentation, compaction, etc.). A variety of computational methods is available in particular for spheroid particles. Our aim is to develop strategies devised to fill free space in 3D by random hard blocks of varying size and orientation in order to reproduce the observed arrangement of graphitic assemblies into polymeric matrices. Random packing is improved by applying an external pressure implemented with a drifted diffusive motion of the fillers. Attention is also paid to the emergence of structural and orientational order. Interestingly, mixtures of fillers of irregular shapes can be dealt with efficiently using the proposed algorithm.

  20. Barrier properties of PE, PP and EVA (nano)composites - The influence of filler type and concentration

    Science.gov (United States)

    Merinska, D.; Kalendova, A.; Tesarikova, A.

    2014-05-01

    Nanocomposite materials with layered clay used as nanofiller and polyethylene (PE), polypropylene (PP) and copolymer ethylene and vinyl acetate matrix (EVA, the content of VA component 19 wt. %) were prepared by compounding the individual components in Brabender kneader. The MMT Na+ and four types of commercial products such as Nanofil N 5 and N3000, Cloisite 93A and 30B were used as nanofillers. Next to the clays microprecipitated CaHCO3, nanosilica and Halloysite tubes were used. The quantity of all the above-mentioned (nano)fillers was 1, 3 and 5 wt. % in relation to the content of montmorillonite. The aim was to evaluate the influence of (nano)filler type and concentration on nanocomposite barrier properties. The morphology of nanocomposite samples was examined by means of XRD analysis illustrated by transmission electronic microscopy TEM. Furthermore, permeability for O2 and CO2 were observed.

  1. Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties

    Science.gov (United States)

    Kuzhir, P.; Paddubskaya, A.; Plyushch, A.; Volynets, N.; Maksimenko, S.; Macutkevic, J.; Kranauskaite, I.; Banys, J.; Ivanov, E.; Kotsilkova, R.; Celzard, A.; Fierro, V.; Zicans, J.; Ivanova, T.; Merijs Meri, R.; Bochkov, I.; Cataldo, A.; Micciulla, F.; Bellucci, S.; Lambin, Ph.

    2013-10-01

    A comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25-2.0 wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, good correlation between properties and filler amount was observed for concentrations below 1.5 wt. %. We conclude that CBH and, to a lower extent, EG could replace expensive CNTs for producing effective EM materials in microwave and low-frequency ranges, which are, in addition, mechanically and thermally stable.

  2. In vitro investigation of coupling-agent-free dental restorative composite based on nano-porous alumina fillers.

    Science.gov (United States)

    Thorat, Sanjay B; Diaspro, Alberto; Salerno, Marco

    2014-03-01

    The study aims at demonstrating the feasibility of a novel type of coupling-agent-free resin composite based on nano-porous fillers. The fillers were obtained by ball-milling anodic alumina membranes. Composites were prepared with standard resin at maximum loading of 50% by weight. The resin matrix penetration into the pores was verified visually by scanning electron microscopy and mechanically by atomic force microscopy in force modulation mode. The dynamic flexural modulus at 1Hz was measured by dynamic mechanical analysis. Silver nanoparticles were also synthesized in the pores and their release was investigated with inductive coupled plasma optical emission spectrometry. A storage modulus of 5GPa was measured, similar to the ∼6GPa ones of two coupling-agent-based dental restorative composites used for comparison, which is a promising starting point, additionally showing better one-year equivalent ageing as compared to both commercial materials. Loading the pores with silver nanoparticles was demonstrated as well as their subsequent release in a model system. The alumina micro-particles with interconnected nano-pores allow mechanical interlocking between fillers and matrix without the need for chemical bonding. This material is also promising for being made bio-active, after pore filling with different agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effects of Different Filler Metals on the Mechanical Behaviors of GTA Welded AA7A52(T6)

    Science.gov (United States)

    Shu, Fengyuan; Lv, Yaohui; Liu, Yuxin; Lin, Jianjun; Sun, Zhe; Xu, Binshi; He, Peng

    2014-06-01

    ER4043, ER5356, and AA7A52 on behalf of the Al-Si, Al-Mg, and Al-Zn-Mg-based welding material, respectively, were chosen as the filler metal to weld AA7A52(T6) plates by GTAW. The variance in mechanical performances of the joints caused by the various filler materials was investigated with reference to the SEM and EDS test results for the weld seam and the fracture surface. Failure was found in the seam for all the welded joints. With regard to the joint obtained with ER4043 welding wire, the total elongation was limited by the brittle intergranular compound Mg2Si of which Mg was introduced by convection mass transfer. As for the other two welds, the content ratio of Zn and Mg was found to play the dominant role in deciding the mechanical properties of the intergranular Mg-Zn compounds which were responsible for the tensile behavior of the joints. The content ratio (wt.%) of beyond 2:1 gave birth to the strengthening phase MgZn2 leading to a ductile fracture. Cr in the seam obtained with AA7A52 filler metal was found to enhance the strength of the joint through isolated particles.

  4. Optical coherence tomography for image-guided dermal filler injection and biomechanical evaluation

    Science.gov (United States)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Dermal fillers are a very popular anti-ag ing treatment with estimated sales in the billions of dollars and millions of procedures performed. As the aging population continues to grow, these figures are only e xpected to increase. Dermal fillers have various compositions depending on their intended applicati on. Reactions to dermal fillers can be severe, such as ischemic events and filler migration to the eyes. Howe ver, these adverse reactions are rare. Nevertheless, the capability to perform imag e-guided filler injections would minimize th e risk of such reacti ons. In addition, the biomechanical properties of various fillers have been evalua ted, but there has been no investigation on the effects of filler on the biomechanical properties of skin. In this work, we utilize optical cohe rence tomography (OCT) for visualizing dermal filler injections with micrometer-scale sp atial resolution. In addition, we utilize noncontact optical coherence elastography (OCE) to quantify the changes in the biomechan ical properties of pig skin after the dermal filler injections. OCT was successfully able to visualize the dermal filler injecti on process, and OCE showed that the viscoelasticity of the pig skin was increased locally at the filler injection sites. OCT may be able to provide real-time image guidance in 3D, and when combined with functional OCT techniques such as optical microangiography, could be used to avoid blood vessels during the injection.

  5. Pengaruh Penggunaan Aspal Buton sebagai Filler Campuran Split Mastic Asphalt terhadap Karakteristik Marshall

    Directory of Open Access Journals (Sweden)

    Nuryadin Eko Raharjo

    2008-05-01

    Full Text Available Penelitian ini bertujuan untuk menguji penggunaan asbuton sebagai filler dalam campuran SMA beserta pengaruhnya terhadap karakteristik marshal yang meliputi: VITM, VFWA, Stabilitas, flow dan MQ. Penelitian ini menggunakan metode eksperimen dengan menguji penggunaan asbuton sebagai filler dalam campuran SMA. Variasi kadar asbuton sebagai filler dibuat 4%, 4,5%, 5%, 5,5% dan 6%. Setiap varian dalam penelitian ini menggunakan 3 benda uji sehingga jumlah sampel adalah 15 buah. Uji menggunakan Aspal yang digunakan Aspalt AC 80/100. Filler yang digunakan Asbuton mikro B30. Kadar aspal yang digunakan ditetapkan sebesar  7%. Analisis data dilakukan dengan menggunakan statistik deskriptif Penelitian ini menyimpulkan bahwa: (1 nilai VITM akan mengalami penurunan seiring bertambahnya kadar filler asbuton mikro, (2 penambahan filler asbuton kadar 4 – 5% akan meningkatkan nilai VFWA , namun pada kadar filler 5,5% dan 6% akan menurunkan nilai VFWA karena filler yang digunakan terlalu banyak sehingga persentase bitumen terhadap total aspal dalam campuran juga semakin besar, (3 penggunaan asbuton mikro filler pada campuran SMA memberi pengaruh menurunnya nilai stabilitas (4 penambahan filler asbuton mikro akan menaikkan nilai flow, hal ini terjadi karena dengan penambahan asbuton mikro kandungan aspal pada campuran akan bertambah, dan (5 nilai MQ mengalami penurunan seiring dengan bertambahnya kadar filler.

  6. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Yue, Qinyan, E-mail: qyyue58@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Li, Jinze [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. Black-Right-Pointing-Pointer The new media ceramics used as fillers in electrobath of micro-electrolysis. Black-Right-Pointing-Pointer Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. Black-Right-Pointing-Pointer This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 Degree-Sign C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD{sub Cr} and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m{sup -3} and 936.3 kg m{sup -3}, 1245.0 kg m{sup -3} and 1420.0 kg m{sup -3}, respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD{sub cr} and cyclohexanone were removed.

  7. Study on a novel Sn-electroplated silver brazing filler metal

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2017-08-01

    Novel Sn-electroplated Ag brazing filler metal with a high tin content was prepared by combining the plating and thermal diffusion method. The BAg45CuZn alloy was used as a base filler metal, and a Sn layer was electroplated on it. Then the H62 brass was brazed with the Sn-plated brazing filler metal containing 6.2 wt% of Sn. The results showed that the microstructure of the brazed joints with the Sn-plated filler mainly consisted of the Ag phase, Cu phase, CuZn phase and Cu5Zn8 phase. The tensile strength of the joints brazed with the Sn-plated filler metal was 326 MPa, which was higher than that of the joints with the base filler metal. Fracture analysis showed that the fractures of the joints brazed by the Sn-plated filler metal was mainly ductile fracture mixed with a small quantity of brittle fracture.

  8. Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance

    Science.gov (United States)

    Asakuma, Yusuke; Yamamoto, Tsuyoshi

    2016-10-01

    The effective thermal conductivity of composites with ellipsoidal fillers is analyzed by using a homogenization method that is able to represent the microstructure precisely. In this study, various parameters such as the volume fraction, shape, and distribution of the filler are quantitatively estimated to understand the mechanisms of heat transfer in the composite. First, thermal boundary resistance between resin and filler is important for obtaining composites with higher thermal conductivity. Second, the anisotropy of the effective thermal conductivity arises from contact between filler in the case of ellipsoidal filler and produces lower thermal resistance. Finally, the filler network and thermal resistance are essential for the heat transfer in composites because the path of thermal conduction is improved by contact between neighboring filler particles.

  9. Influence of limestone fillers on combustion characteristics of asphalt mortar for pavements

    DEFF Research Database (Denmark)

    Ke, Wu; Kai, Zhu; Wu, Hao;

    2014-01-01

    Asphalt materials will be ignited and release significant toxic fumes within tunnel fires. Thus, combustion characteristics of asphalt materials used in road tunnel should be studied in order to limit such an adverse effect. In the present work we study the influence of limestone fillers...... on combustion characteristics of asphalt mortar by thermogravimetric and kinetic analysis. It is shown that the combustion of asphalt mortar is not just a linear superposition of asphalt and limestone. The limestone will increase the ignition point and the activation energy of the primary volatile release......, and will catalyze the char formation from the primary volatile release. Kinetic analysis shows that the primary volatile release stage of asphalt mortar combustion can be explained by a three-dimensional diffusion model, the secondary volatile release and char combustion stage can be explained by a model under...

  10. Sintering behavior of alumina-niobium carbide ceramics from polymer-filler mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Acchar, W.; Wolff, D.M.B. [Programa de Doutorado em Engenharia e Ciencia dos Materiais-UFRN, Univ. Federal do Rio Grande do Norte, Natal, RN (Brazil); S. Dantas, A.C. da [Programa de Pos-graduacao em Engenharia Mecanica-UFRN, Univ. Federal do Rio Grande do Norte - Natal, RN (Brazil)

    2003-07-01

    Studies have been developed in the literature to obtain alternative ceramic cutting tools with better properties as tungsten carbide and silicon nitride. Results have showed that the addition of titanium carbide, tungsten carbide or niobium carbide has improved the wear resistance and hardness of alumina. This work presents a study about preparation and characterization of an alumina reinforced with niobium carbide. The composite material is produced using polymer-filler mixtures. Samples with 60 wt.% polysiloxane and a mixture of 40 wt.% of niobium and alumina powder were mixed, uniaxially pressed at 200 C and sintered in flowing argon at 1200 C, 1400 C and 1600 C. The composite materials were characterized by X-ray diffraction (XRD), density measurements, fracture strength and microstructural analysis. The 60 wt% polymer+40 wt% Nb showed the presence of new crystalline phases such as NbC, Nb{sub 5}Si{sub 3} and Nb{sub 3}Si. (orig.)

  11. Provision of micro-nano bacterial cellulose as bio plastic filler by sonication method

    Science.gov (United States)

    Maryam; Rahmad, D.; Yunizurwan; Kasim, A.; Novelina; Emriadi

    2017-07-01

    Research and development of bioplastic has increased recently as a solution for substitution of conventional plastic which have many negative impacts to environment. However, physical properties and mechanical properties of its still lower than conventional plastic. An alternative solution for that problem is by using fillers that can increase the strength. Bacterial cellulose is considered as potential source for filler, but still need to be explored more. The privileges of bacterial cellulose are easy to get and does not have lignin, pectin, and hemicelluloses which are impurities in other celluloses. This research focused on gaining bacterial cellulose in micro-nano particle form and its impact on increasing the strength of bio plastic. Ultrasonication has been used as method to form micro-nano particle from bacterial cellulose. The result showed this method may form the particle size of bacterial cellulose approximately ± 3μm. Next step, after getting ± 3μm particle of bacterial cellulose, is making bio plastic with casting method by adding 1% of bacterial cellulose, from the total material in making bio plastic. Physical characteristic of the bio plastic which are tensile strength 11.85 MPa, modulus young 3.13 MPa, elongation 4.11% and density 0.42 g/cm3. The numbers of physical properties showwthat, by adding 1% of bacterial cellulose, the strength of bio plastic was significantly increase, even value of tensile strength has complied the international standard for bio plastic.

  12. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    Science.gov (United States)

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors. J Drugs Dermatol. 2016;15(9):1076-1082.

  13. Effect of Conductive Inorganic Fillers on Space Charge Accumulation Characteristics in Cross-linked Polyethylene

    Science.gov (United States)

    Harada, Hiroshi; Hayashi, Nobuya; Tanaka, Yasuhiro; Maeno, Takashi; Mizuno, Takehiko; Takahashi, Tohru

    We have observed space charge profiles in cross-linked polyethylene (XLPE) under dc high electric field using the PEA (pulsed electro-acoustic) system to study the relationship between space charge behavior and dielectric breakdown. In our previous research work, we have found that a large amount of, so called, packet-like charge generates in low density polyethylene (LDPE) under high dc electric field of more than 100 kV/mm. The packet-like charge enhances the electric field locally in bulk of the sample, and then finally it leads a breakdown. On the other hand, a new type of XLPE which was made through adding conductive inorganic fillers, shows a good dc dielectric breakdown characteristic and high volume resistivity under dc stress. In this report, we tried to observe the space charge behavior under high dc electric field in this material. From the results, it is found that the charge injection is effectively suppressed by adding only a small amount of conductive inorganic fillers to XLPE.

  14. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    Science.gov (United States)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  15. Ajout de phosphogypse à des mortiers à base de cendres volantes et filler calcaire Addition of phosphogypsum to blended mortars based on fly ash and limestone filler

    Directory of Open Access Journals (Sweden)

    Alami Talbi M.

    2012-09-01

    Full Text Available L’objectif de ce travail est d’étudier la possibilité de la valorisation du phosphogypse dans les matériaux de construction vue sa grande disponibilité comme sous-produit de l’industrie des phosphates. Nous étudions l’effet de l’ajout du phosphogypse sur un mélange de clinker, cendres volantes et filler calcaire. Les échantillons sont préparés par l’ajout de 10% de phosphogypse et de 30% de cendres volantes aux mélanges constitués du clinker et du filler calcaire. Les mélanges sont hydratés et caractérisés par diffraction des rayons X et spectroscopie infrarouge. Des phases cristallines se développent dès le 3ème jour, et on remarque que les phases les plus fréquentes sont : la Portlandite Ca(OH2, la Calcite CaCO3, l’ettringite Ca6Al2(SO43(OH12 26H2O, Ca5(SiO42(OH2 et le gypse CaSO4, 2H2O mais leur pourcentages varient selon les mélanges. La mesure de la durée de prise des mortiers montre que le début et la fin de la prise sont généralement retardés proportionnellement à l’ajout des cendres volantes et du phosphogypse. La microstructure des matériaux a également été étudiée par la mesure de la perméabilité apparente, les résultats montrent que l’ajout du phosphogypse a contribué à une diminution de la perméabilité des échantillons par contre les cendres volantes ont un effet contraire. La résistance à la compression des mortiers montre des résultats concordants, les résistances augmentent avec la diminution de la perméabilité. The objective of this paper is to study the possibility of valorization of phosphogypsum in building materials because his large availability as a by-product of the phosphate industry. We study the effect of adding phosphogypsum on a mixture of clinker, fly ash and limestone filler. The samples were prepared by adding 10% of phosphogypsum and 30% of fly ash to mixtures consisting of clinker and limestone filler. The mixtures are hydrated and characterized by X

  16. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  17. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  18. Laser brazing with filler wire for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaosong; Li Liqun; Chen Yanbin; Zhou Shanbao

    2005-01-01

    The process properties and interface behavior of CO2 laser brazing with automatic wire feed for galvanized steel sheets were investigated , in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicalar α solid solution was found on the filler metal side.

  19. Mechanical properties of 5083 aluminium welds after manual and automatic pulsed gas metal arc welding using E5356 filler

    CSIR Research Space (South Africa)

    Mutombo, K

    2010-01-01

    Full Text Available .T. 2010, "Strengthening mechanisms in an Al–Mg alloy", Materials Science and Engineering: A, vol. 527, no. 6, pp. 1292-1298. Dutta, I. & Allen, S.M. 1990, "A calorimetric study of precipitation in commercial aluminium alloy 6061", Journal of Materials...-magnesium alloyed ER5356 filler wire appeared similar to those of the base metal. This joint failed in the weld metal as a result of a slight reduction in hardness in the vicinity of the fusion line. However, the joints of Al6061-T651 similar and the dissimilar...

  20. Mycobacterium chelonae Facial Infections Following Injection of Dermal Filler

    OpenAIRE

    Rodriguez, Jan M.; Xie, Yingda L.; Winthrop, Kevin L; Schafer, Sean; Sehdev, Paul; Solomon, Joel; Jensen, Bette; Toney, Nadege C.; Lewis, Paul F.

    2013-01-01

    A cluster of 3 facial Mycobacterium chelonae infections occurred after cosmetic dermal filler injections at a plastic surgery clinic. Pulsed-field gel electrophoresis showed that M chelonae isolated from the clinic tap water were identical to the patient wound isolates. Review of injection procedures identified application of nonsterile ice to the skin prior to injection as a possible source of M chelonae. Surveys of regional laboratories and a national plastic surgery listserv identified no ...

  1. The influence of filler particles on space charge measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hole, Stephane [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie - 10, rue Vauquelin, 75005 Paris, France (France); Sylvestre, Alain [Laboratoire d' lectrostatique et des Materiaux Dielectriques, CNRS UMR5517 - 25, avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France); Rowe, Stephen [Direction des Recherches Materiaux, Schneider Electric SA - 20, rue Henri Tarze, 38050 Grenoble Cedex (France)

    2004-07-07

    The effects of filler particles on the signal measured using the pressure-wave-propagation method to determine the space charge distribution are analysed. A special test sample geometry is used to classify the influence of particles, and in particular, the role of piezoelectricity is discussed. Applications with Epoxy resin samples loaded either by silica or alumina particles are presented. Silica particles are shown to exhibit piezoelectricity which strongly modifies the measured signals.

  2. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2003-06-26

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  3. Comparing Various Type of Natural Fibers as Filler in TPU: Mechanical Properties, Morphological and Oil Absorption Behavior

    Directory of Open Access Journals (Sweden)

    Ahad Nor Azwin

    2017-01-01

    Full Text Available The idea of using natural fibers as filler in various polymers has been extensively studied. Various types of natural fibers and polymers have been identified and it can be varied according to the particular application and the two main composite materials will have advantages and disadvantages of each. However, natural fibers are usually selected as filler because it is readily available and environmentally friendly, inexpensive, non-toxic, biodegradable and still have good characteristics for a variety of uses. In this study, four types of natural fiber have been used which; coconut shell, coconut fiber, corn cob, and pineapple skin, as fillers in thermoplastic polyurethane (TPU. The mixing process conducted through melt mixing techniques. The percentage of TPU and natural fibers are 100/0, 95/5, 90/10 and 85/15. Different type of fiber will affect the mechanical properties of the composites and have been studied through tensile testing. It showed that the result for pineapple fiber at 5% was the highest and can also be related to the characterizations of this composite that have been studied via the SEM morphology. Swelling testing is also having been done to prove the absorbency ability by natural fiber composites in cooking oil and engine oil. Then it concluded that the pineapple fiber absorbed large amount of both oil compared to others.

  4. Waste oyster shell as a kind of active filler to treat the combined wastewater at an estuary.

    Science.gov (United States)

    Luo, Hongbing; Huang, Gu; Fu, Xiaoying; Liu, Xiaoling; Zheng, Daocai; Peng, Jian; Zhang, Ke; Huang, Bo; Fan, Liangqian; Chen, Fenghui; Sun, Xiubo

    2013-10-01

    Estuaries have been described as one of the most difficult environments on Earth. It is difficult to know how to treat the combined wastewater in tidal rivers at the estuary, where the situation is very different from ordinary fresh water rivers. Waste oyster shell was used as the active filler in this study in a bio-contact oxidation tank to treat the combined wastewater at the Fengtang Tidal River. With a middle-experimental scale of 360 m3/day, the average removal efficiency of COD, BOD, NH3-N, TP and TSS was 80.05%, 85.02%, 86.59%, 50.58% and 85.32%, respectively, in this bio-contact oxidation process. The living microbes in the biofilms on the waste oyster shell in this bio-contact oxidation tank, which were mainly composed of zoogloea, protozoa and micro-metazoa species, revealed that waste oyster shell as the filler was suitable material for combined wastewater degradation. This treatment method using waste oyster shell as active filler was then applied in a mangrove demonstration area for water quality improvement near the experiment area, with a treatment volume of 5 x 10(3) m3/day. Another project was also successfully applied in a constructed wetland, with a wastewater treatment volume of 1 x 10(3) m3/day. This technology is therefore feasible and can easily be applied on a larger scale.

  5. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-11-30

    As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400°C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD(Cr) and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m(-3) and 936.3 kg m(-3), 1245.0 kg m(-3) and 1420.0 kg m(-3), respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6h and the media height of 60 cm were applied, about 90% of COD(cr) and cyclohexanone were removed.

  6. Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes

    Directory of Open Access Journals (Sweden)

    Valentina Allodi

    2016-03-01

    Full Text Available A large number of nano-sized oxides have been studied in the literature as fillers for polymeric membranes, such as Nafion®. Superacidic sulfated oxides have been proposed and characterized. Once incorporated into polymer matrices, their beneficial effect on peculiar membrane properties has been demonstrated. The alteration of physical-chemical properties of composite membranes has roots in the intermolecular interaction between the inorganic filler surface groups and the polymer chains. In the attempt to tackle this fundamental issue, here we discuss, by a multi-technique approach, the properties of a nanosized sulfated titania material as a candidate filler for Nafion membranes. The results of a systematic study carried out by synchrotron X-ray diffraction, transmission electron microscopy, thermogravimetry, Raman and infrared spectroscopies are presented and discussed to get novel insights about the structural features, molecular properties, and morphological characteristics of sulphated TiO2 nanopowders and composite Nafion membranes containing different amount of sulfated TiO2 nanoparticles (2%, 5%, 7% w/w.

  7. Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration.

    Science.gov (United States)

    Aydemir Sezer, Umran; Ozturk, Kevser; Aru, Basak; Yanıkkaya Demirel, Gulderen; Sezer, Serdar; Bozkurt, Mehmet Recep

    2017-01-01

    Regeneration of nerve, which has limited ability to undergo self-healing, is one of the most challenging areas in the field of tissue engineering. Regarding materials used in neuroregeneration, there is a recent trend toward electrically conductive materials. It has been emphasized that the capacity of conductive materials to regenerate such tissue having limited self-healing ability improves their clinical utility. However, there have been concerns about the safety of materials or fillers used for conductance due to their lack of degradability. Here, we attempt to use poly(Ɛ-caprolactone) (PCL) matrix consisting of varying proportions of zero valent zinc nanoparticles (Zn NPs) via electrospinning. These conductive, biodegradable, and bioactive materials efficiently promoted neuroglial cell proliferation depending on the amount of Zn NPs present in the PCL matrix. Chemical characterizations indicated that the incorporated Zn NPs do not interact with the PCL matrix chemically and that the Zn NPs improved the tensile properties of the PCL matrix. All composites exhibited linear conductivity under in vitro conditions. In vitro cell culture studies were performed to determine the cytotoxicity and proliferative efficiency of materials containing different proportions of Zn NPs. The results were obtained to explore new conductive fillers that can promote tissue regeneration.

  8. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  9. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30-35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to

  10. Hyaluronic acid fillers with cohesive polydensified matrix for soft-tissue augmentation and rejuvenation: a literature review

    Science.gov (United States)

    Prasetyo, Adri D; Prager, Welf; Rubin, Mark G; Moretti, Ernesto A; Nikolis, Andreas

    2016-01-01

    Background Cohesive monophasic polydensified fillers show unique viscoelastic properties and variable density of hyaluronic acid, allowing for a homogeneous tissue integration and distribution of the material. Objective The aim of this paper was to review the clinical data regarding the performance, tolerability, and safety of the Belotero® fillers for soft-tissue augmentation and rejuvenation. Methods A literature search was performed up until May 31, 2015 to identify all relevant articles on Belotero® fillers (Basic/Balance, Hydro, Soft, Intense, Volume) and equivalent products (Esthélis®, Mesolis®, Fortélis®, Modélis®). Results This comprehensive review included 26 papers. Findings from three randomized controlled trials showed a greater reduction in nasolabial fold severity with Belotero® Basic/Balance than with collagen (at 8, 12, 16, and 24 weeks, n=118) and Restylane® (at 4 weeks, n=40), and higher patient satisfaction with Belotero® Intense than with Perlane® (at 2 weeks, n=20). With Belotero® Basic/Balance, an improvement of at least 1 point on the severity scale can be expected in ~80% of patients 1–6 months after injection, with an effect still visible at 8–12 months. Positive findings were also reported with Belotero® Volume (no reduction in hyaluronic acid volume at 12 months, as demonstrated by magnetic resonance imaging), Soft (improvement in the esthetic outcomes when used in a sequential approach), and Hydro (improvement in skin appearance in all patients). The most common adverse effects were mild-to-moderate erythema, edema, and hematoma, most of which were temporary. There were no reports of Tyndall effect, nodules, granulomas, or tissue necrosis. Conclusion Clinical evidence indicates sustainable esthetic effects, good safety profile, and long-term tolerability of the Belotero® fillers, particularly Belotero® Basic/Balance and Intense. PMID:27660479

  11. Tobacco use, Body Mass Index, and Potentially Malignant Disorders Among petrol fillers in Pimpri-Pune (India: A descriptive study

    Directory of Open Access Journals (Sweden)

    Mamatha G. S. Reddy

    2014-01-01

    Full Text Available Background: Since petrol is combustible and smoking is banned at the petrol pumps, it may be predicted that use of smokeless tobacco is more prevalent among the petrol fillers. Also, smokeless tobacco is a major risk factor for developing oral potentially malignant disorders. The present study was conducted to determine the tobacco use, body mass index (BMI, and potentially malignant disorders among a cohort of petrol fillers and also to evaluate the interaction of tobacco use and BMI with the presence of potentially malignant disorders. Settings and Design: The study was conducted at 45 petrol stations located at Pimpri-Pune, India. A descriptive study design was used. Materials and Method: Four hundred and ten petrol fillers aged 17-64 years participated in the study. General information and tobacco history was obtained by interview. Height and weight were recorded to obtain BMI. Oral examination was conducted to identify the potentially malignant disorders. Statistical analysis: Chi-square test, Z test, and logistic regression were used. The level of significance was fixed at 5%. Results and Conclusions: It was found that 242 (59.02% used tobacco in different forms. 77.68% were tobacco chewers, and 8.26% were smokers. Leukoplakia was prevalent among 68.47%, oral submucous fibrosis among 27.45%, and 5.08% had erythroplakia. Age (χ2 = 11.46, P < 0.05, duration (χ2 = 17.46, P < 0.05, and frequency of tobacco chewing (χ2 = 14.16, P < 0.05 were significantly associated with potentially malignant disorders. Tobacco chewing was more prevalent as compared to smoking. It can be concluded that the petrol fillers are at a high risk for developing oral potentially malignant disorders.

  12. Injectable facial fillers: imaging features, complications, and diagnostic pitfalls at MRI and PET CT.

    Science.gov (United States)

    Mundada, Pravin; Kohler, Romain; Boudabbous, Sana; Toutous Trellu, Laurence; Platon, Alexandra; Becker, Minerva

    2017-10-04

    Injectable fillers are widely used for facial rejuvenation, correction of disabling volumetric fat loss in HIV-associated facial lipoatrophy, Romberg disease, and post-traumatic facial disfiguring. The purpose of this article is to acquaint the reader with the anatomy of facial fat compartments, as well as with the properties and key imaging features of commonly used facial fillers, filler-related complications, interpretation pitfalls, and dermatologic conditions mimicking filler-related complications. The distribution of facial fillers is characteristic and depends on the anatomy of the superficial fat compartments. Silicone has signature MRI features, calcium hydroxyapatite has characteristic calcifications, whereas other injectable fillers have overlapping imaging features. Most fillers (hyaluronic acid, collagen, and polyalkylimide-polyacrylamide hydrogels) have signal intensity patterns compatible with high water content. On PET-CT, most fillers show physiologic high FDG uptake, which should not be confounded with pathology. Abscess, cellulitis, non-inflammatory nodules, and foreign body granulomas are the most common filler-related complications, and imaging can help in the differential diagnosis. Diffusion weighted imaging helps in detecting a malignant lesion masked by injected facial fillers. Awareness of imaging features of facial fillers and their complications helps to avoid misinterpretation of MRI, and PET-CT scans and facilitates therapeutic decisions in unclear clinical cases. • Facial fillers are common incidental findings on MRI and PET-CT scans. • They have a characteristic appearance and typical anatomic distribution • Although considered as safe, facial filler injections are associated with several complications • As they may mask malignancy, knowledge of typical imaging features is mandatory. • MRI is a problem-solving tool for unclear cases.

  13. Preparation and properties of the fast-curing γ-ray-shielding materials based on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Minxuan; Tang, Xiao Bin; Chai, Hao; Zhang, Yun; Chen, Tuo; Chen, Da [Dept. of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2016-12-15

    In this study, fast-curing shielding materials were prepared with a two-component polyurethane matrix and a filler material of PbO through a one-step, laboratory-scale method. With an increase in the filler content, viscosity increased. However, the two components showed a small difference. Curing time decreased as the filler content increased. The minimum tack-free time of 27 s was obtained at a filler content of 70 wt%. Tensile strength and compressive strength initially increased and then decreased as the filler content increased. Even when the filler content reached 60 wt%, mechanical properties were still greater than those of the matrix. Cohesional strength decreased as the filler content increased. However, cohesional strength was still greater than 100 kPa at a filler content of 60 wt%. The γ-ray-shielding properties increased with the increase in the filler content, and composite thickness could be increased to improve the shielding performance when the energy of γ-rays was high. When the filler content was 60 wt%, the composite showed excellent comprehensive properties.

  14. New fillers under consideration: what is the future of injectable aesthetics?

    Science.gov (United States)

    Rivkin, Alexander

    2009-05-01

    The past 5 years in the United States have seen an explosion in the popularity of noninvasive aesthetic procedures. Not only have fillers and Botox turned out to be fantastically reliable and effective aesthetic tools, but also they have vastly expanded the accessibility of cosmetic procedures. Our cosmetic filler options are growing quickly as more and more fillers are coming before the U.S. Food and Drug Administration (FDA), seeking entry into the lucrative U.S. market. This article outlines the approval process that foreign fillers go through in their home countries and gives an idea of the fillers that are currently under consideration by the FDA. As our armamentarium of injectable fillers grows, it will be essential to know each product's strengths and weaknesses so that we can provide our patients with the best possible aesthetic results.

  15. Effect of presilanization filler decontamination on aesthetics and degradation resistance of resin composites.

    Science.gov (United States)

    Yoshida, Yasuhiro; Shirai, Kenichi; Shintani, Hideaki; Okazaki, Masayuki; Suzuki, Kazuomi; Van Meerbeek, Bart

    2002-12-01

    Filler-matrix coupling determines, to a large extent, the mechanical strength and clinical longevity of dental composites. The aim of this study was to examine how far a methodology to decontaminate filler prior to silanization may improve aesthetic performance in addition to physico-mechanical properties such as degradation resistance. It was reported that filler particles are surrounded and wrapped by a film that consists of multiple layers of silane molecules. X-ray photoelectron spectroscopy, however, revealed that silanization of filler particles largely depended upon siloxane bridge (Si-O-Si) formation between the silica surface and the silane molecule rather than on intermolecular bonding between adjacent silane molecules. In this study, we showed that filler decontamination resulted in a higher translucency, thereby providing a better aesthetic potential. In addition, experimental composites produced following presilanization decontamination of filler revealed a higher Vickers hardness value and a diametral tensile strength that was resistant to degradation by thermo-cycling.

  16. Influence of Erosion Phenomenon on Flow Behavior of Liquid Al-Si Filler Between Brazed Components

    Science.gov (United States)

    Izumi, Takahiro; Ueda, Toshiki

    Automotive heat exchangers are predominantly composed of plates, tubes and fins. Each component is brazed by using Al-Si filler. In the plate/tube/fin brazed-structures, the flow of the liquid filler between the components affects the fillet size at each joint. In this study, the influence of the erosion phenomenon, i.e., silicon diffusion from the braze cladding into the core alloy, in the tube on the flow behavior of the liquid filler flowing on the tube from the plate to the fin has been investigated. As a result, the area of the liquid filler not flowing but existing around α phases on the tube during brazing, which is defined as filler flow channel, can change depending on the erosion degree. The flow ability of the liquid filler flowing from the plate to the fin increases as the area increases.

  17. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    Science.gov (United States)

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  18. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  19. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    Science.gov (United States)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  20. Skin Necrosis with Oculomotor Nerve Palsy Due to a Hyaluronic Acid Filler Injection

    Directory of Open Access Journals (Sweden)

    Jae Il Lee

    2017-07-01

    Full Text Available Performing rhinoplasty using filler injections, which improve facial wrinkles or soft tissues, is relatively inexpensive. However, intravascular filler injections can cause severe complications, such as skin necrosis and visual loss. We describe a case of blepharoptosis and skin necrosis caused by augmentation rhinoplasty and we discuss the patient’s clinical progress. We describe the case of a 25-year-old female patient who experienced severe pain, blepharoptosis, and decreased visual acuity immediately after receiving a filler injection. Our case suggests that surgeons should be aware of nasal vascularity before performing an operation, and that they should avoid injecting fillers at a high pressure and/or in excessive amounts. Additionally, filler injections should be stopped if the patient complains of severe pain, and appropriate measures should be taken to prevent complications caused by intravascular filler injections.

  1. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    Science.gov (United States)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  2. Physical-mechanical properties of Bis-EMA based root canal sealer with different fillers addition

    Directory of Open Access Journals (Sweden)

    Marcela Oliveira de Souza

    2015-01-01

    Full Text Available Aim: To evaluate influence of three different filler particles on an experimental Bisphenol A ethoxylated dimethacrylate (Bis-EMA based root filling material. Materials and Methods: Resin-based endodontic sealers were produced using Bis-EMA, camphorquinone, ethyl 4-dimethylaminobenzoate (EDAB, N, N-dihydroxyethyl-p-toluidine (DHEPT, butylated hydroxytoluene (BHT, and benzoyl peroxide. The experimental groups were formulated adding 10, 20, 30, 40, and 50% of calcium tungstate (CaWO 4 , ytterbium trifluoride(YbF 3 , and tantalum oxide(Ta 2 O 5 . Flow, thickness, and radiopacity tests were conducted in accordance with ISO 6876. Sorption and solubility (SL tests were conducted in accordance with ISO 4049, pH was measured with a pH meter, and degree of conversion (DC was evaluated with Fourier transform infrared spectroscopy (FTIR. For radiopacity, two-way analysis of variance (ANOVA and Tukey′s multiple comparison test was performed. For DC analysis, one-way ANOVA and Tukey′s multiple comparison test was performed. All statistical analyses were performed with a significance level of 5%. Results: All groups showed lower flow with increased filler concentration. All groups showed film thickness values lower than 50μm, as ISO recommends, except CaWO 4 50% group (76.7μm. pH values varied from 5.95 (± 0.07 in YbF 3 40% group to 6.90 (± 0.07 in Ta 2 O 5 40% group. In the radiopacity test, YbF 3 30%, Ta 2 O 5 40%, and Ta 2 O 5 50% groups showed no statistical significant difference to 3mmAl. Ta 2 O 5 and YbF 3 groups in 10, 20, and 30% concentrations presented sorption and SL values as ISOrecommendation. Addition ofTa 2 O 5 and CaWO 4 decreased DC after 14 days. YbF 3 addition showed no difference in DC from control group. Conclusion: YbF 3 filler addition promoted higher properties compared to CaWO 4 and Ta 2 O 5 on Bis-EMA based root canal sealer.

  3. Using theory and simulation to link molecular features of nanoscale fillers to morphology in polymer nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi; Martin, Tyler

    2014-03-01

    Polymer nanocomposites are a class of materials that consist of a polymer matrix embedded with nanoscale fillers or additives that enhance the inherent properties of the matrix polymer. To engineer polymer nanocomposites for specific applications with target macroscopic properties (e.g. photovoltaics, photonics, automobile parts) it is important to have design rules that relate molecular features to equilibrium morphology of the composite. In the first part of the talk I will present our recent theory and simulation work on composites containing polymer grafted nanoparticles, showing how polydispersity in graft and matrix polymers (physical heterogeneity) can be used to stabilize dispersion of the nanoparticles within a polymer matrix. In the second part of the talk I will present our recent work linking block-copolymer functionalization to the nanoparticle location in a polymer matrix consisting of homopolymer blends.

  4. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Chunyi; Bando, Yoshio; Terao, Takeshi; Tang, Chengchun; Golberg, Dimitri [World Premier International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kuwahara, Hiroaki [Innovation Research Institute, Teijin Ltd. 2-1, Hinode-cho, Iwakuni, Yamaguchi 740-8511 (Japan)

    2009-06-23

    Utilizing boron nitride nanotubes (BNNTs) as fillers, composites are fabricated with poly(methyl methacrylate), polystyrene, poly(vinyl butyral), or poly(ethylene vinyl alcohol) as the matrix and their thermal, electrical, and mechanical properties are evaluated. More than 20-fold thermal conductivity improvement in BNNT-containing polymers is obtained, and such composites maintain good electrical insulation. The coefficient of thermal expansion (CTE) of the BNNT-loaded polymers is dramatically reduced because of interactions between the polymer chains and the nanotubes. Moreover, the composites possess good mechanical properties, as revealed by Vickers microhardness tests. This detailed study indicates that BNNTs are very promising nanofillers for polymeric composites, allowing the simultaneous achievement of high thermal conductivity, low CTE, and high electrical resistance, as required for novel and efficient heat-releasing materials. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Gluteal silicone injections leading to extensive filler migration with induration and arthralgia.

    Science.gov (United States)

    Gold, Heidi L; Wang, Iris; Meehan, Shane; Sanchez, Miguel; Smith, Gideon P

    2014-12-13

    Silicone injections have been used for cosmetic soft tissue augmentation for over five decades with documented consequences both systemic and dermatologic. We present a case of extensive filler migration causing bilateral lower extremity woody induration in a 53 year old Hispanic woman. She presented with a multi-year history of progressive joint stiffening at the knees, accompanied by induration and pain of the bilateral lower extremities. The patient had received two injections of an unknown substance placed into her bilateral gluteals 11 years prior. MRI indicated an infiltrative process of both lower extremities and pathology was consistent with migration of injected tissue augmentation material, most likely silicone. Due to the extent of involvement the patient was started on a trial of doxycycline 100 mg PO BID.

  6. Effect of filler on the self-lubrication performance of graphite antimony composites

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-li; HU Ya-fei; HE Min

    2008-01-01

    Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.

  7. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    Science.gov (United States)

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties.

  8. Use of hyaluronic acid fillers for the treatment of the aging face

    OpenAIRE

    Michael H Gold

    2007-01-01

    Michael H GoldGold Skin Care Center, Tennessee Clinical Research Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical School,Vanderbilt University Nursing School, Nashville, TN, USA; Huashan Hospital, Fudan University, Shanghai, ChinaAbstract: Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. They have helped revolutionize the filler market with a number of new products available for use for our patient...

  9. Novel high chromium containing braze filler metals for heat exchanger applications

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, S.; Fortuna, D. [Sulzer Metco, Troy (United States)

    2007-07-01

    A new family of boron-free, high chromium containing braze filler metal compositions were developed (Amdry 105, Amdry 108, Amdry 805). Filler metal properties including metallurgical phases, melting range, flow, corrosion resistance and high temperature oxidation resistance are reported. Additionally, the technical and economical advantages of using these new filler metals in fabricating flat plate type of heat exchangers and metallic catalytic converters is discussed. (orig.)

  10. Characteristics of The Fillers Used for Realizing the Asphalt Mixtures in Romania

    Directory of Open Access Journals (Sweden)

    Irina-Mihaela Dămiean

    2005-01-01

    Full Text Available This paper presents the lab results for four types of filler used in producing the asphalt mixture in Romania, as well as other physical-chemical characteristics of a new type of filler, derivate of the grinding of the bituminous shists through a ball mill/crusher. Knowing these physical-chemical characteristics is crucial for asphalt mixtures due to the complex purpose of the filler.

  11. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  12. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  13. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2016-06-01

    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  14. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    fillers. In this study commercially available fillers, such as fumed silica (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), copper calcium titanate (CaCu3Ti4O12, CCTO), multi-walled carbon nanotubes (MWCNTs) were added into the LSRs and we examined how the properties of the networks were...... these additives, the use of multiple titanium dioxides as filler potentially suits to special applications. In the present study, a series of TiO2 fillers were blended into LSRs, such as hydrophilic/ hydrophobic, micro/ nano scale, anatase/ rutile crystal, sphere/ core-shell structure. The results indicate...

  15. Suspect filler similarity in eyewitness lineups: a literature review and a novel methodology.

    Science.gov (United States)

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2015-02-01

    Eyewitness lineups typically contain a suspect (guilty or innocent) and fillers (known innocents). The degree to which fillers should resemble the suspect is a complex issue that has yet to be resolved. Previously, researchers have voiced concern that eyewitnesses would be unable to identify their target from a lineup containing highly similar fillers; however, our literature review suggests highly similar fillers have only rarely been shown to have this effect. To further examine the effect of highly similar fillers on lineup responses, we used morphing software to create fillers of moderately high and very high similarity to the suspect. When the culprit was in the lineup, a higher correct identification rate was observed in moderately high similarity lineups than in very high similarity lineups. When the culprit was absent, similarity did not yield a significant effect on innocent suspect misidentification rates. However, the correct rejection rate in the moderately high similarity lineup was 20% higher than in the very high similarity lineup. When choosing rates were controlled by calculating identification probabilities for only those who made a selection from the lineup, culprit identification rates as well as innocent suspect misidentification rates were significantly higher in the moderately high similarity lineup than in the very high similarity lineup. Thus, very high similarity fillers yielded costs and benefits. Although our research suggests that selecting the most similar fillers available may adversely affect correct identification rates, we recommend additional research using fillers obtained from police databases to corroborate our findings.

  16. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  17. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  18. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers.

    Science.gov (United States)

    Brostow, Witold; Lobland, Haley E Hagg; Hnatchuk, Nathalie; Perez, Jose M

    2017-03-16

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic-with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  19. Design and fabrication of polymeric nanocomposites with conducting fillers as electronic nanomaterials

    Science.gov (United States)

    Mushibe, Eliud Kizito

    The growing demand for small, portable and high performance electronic devices has resulted in research activity for embedded electronic components. This offers prospects for the development of flexible electronic components that combines the use of organic and inorganic materials and can be produced on a roll-to-roll process. This dissertation presents advances in the fabrication and characterization of flexible polymeric nanocomposite thin films. Inorganic and synthetic metal nanostructures with high electrical and dielectric properties were employed as filler materials. The processability of these functional filler materials was achieved by dispersion in conventional polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA) and poly(vinylidene fluoride) to afford electroactive polymeric composite materials. In the fabrication of inorganic nanostructures, a Tubes by Fiber Template technique was employed to afford submicron metal and metal oxide tubes. Silver and copper nanostructures were fabricated by electroless deposition on electrospun fiber templates. To obtain hollow, submicron tubes, the sacrificial polymer template materials were removed by a combination of solvent dissolution and thermal degradation under an inert atmosphere. Polyaniline thin film deposited on the fiber template was used as a binding interface to enhance uniform and continuous deposition of the metal. This was instrumental in fabricating tubes with varied wall thicknesses ranging from 50 to 300 nm obtained as a function of plating time. By doping electrically conducting polymers such as polyaniline, the conductivity can be modified. We describe the fabrication of highly conducting polyaniline nanostructures via template free synthesis. A novel approach that involves a combination of hydrochloric acid and camphorsulfonic acid dopant at low concentrations was adopted. This approach afforded nanofibers with diameters of 150 ± 50 nm and high electrical conductivity of 4.2

  20. Hyaluronic acid fillers with cohesive polydensified matrix for soft-tissue augmentation and rejuvenation: a literature review

    Directory of Open Access Journals (Sweden)

    Prasetyo AD

    2016-09-01

    Full Text Available Adri D Prasetyo,1 Welf Prager,2 Mark G Rubin,3 Ernesto A Moretti,4 Andreas Nikolis5 1Rejuva Skin & Beauty, Surabaya, Indonesia; 2Prager & Partner, Hamburg, Germany; 3University of California, San Diego, CA, USA; 4Gamma Health Group, Sanatorio Los Arroyos, Santa Fe, Republic of Argentina; 5Victoria Park Clinical Research Centre, Westmount, QC, Canada Background: Cohesive monophasic polydensified fillers show unique viscoelastic properties and variable density of hyaluronic acid, allowing for a homogeneous tissue integration and distribution of the material.Objective: The aim of this paper was to review the clinical data regarding the performance, tolerability, and safety of the Belotero® fillers for soft-tissue augmentation and rejuvenation.Methods: A literature search was performed up until May 31, 2015 to identify all relevant articles on Belotero® fillers (Basic/Balance, Hydro, Soft, Intense, Volume and equivalent products (Esthélis®, Mesolis®, Fortélis®, Modélis®.Results: This comprehensive review included 26 papers. Findings from three randomized controlled trials showed a greater reduction in nasolabial fold severity with Belotero® Basic/Balance than with collagen (at 8, 12, 16, and 24 weeks, n=118 and Restylane® (at 4 weeks, n=40, and higher patient satisfaction with Belotero® Intense than with Perlane® (at 2 weeks, n=20. With Belotero® Basic/Balance, an improvement of at least 1 point on the severity scale can be expected in ~80% of patients 1–6 months after injection, with an effect still visible at 8–12 months. Positive findings were also reported with Belotero® Volume (no reduction in hyaluronic acid volume at 12 months, as demonstrated by magnetic resonance imaging, Soft (improvement in the esthetic outcomes when used in a sequential approach, and Hydro (improvement in skin appearance in all patients. The most common adverse effects were mild-to-moderate erythema, edema, and hematoma, most of which were

  1. Mechanical and Morphological Properties of Nano Filler Polyester Composites

    OpenAIRE

    Bonnia Noor Najmi; Redzuan Aein Afina; Shuhaimeen Nurul Shakirah

    2016-01-01

    This research is focusing on mechanical and morphological properties of unsaturated polyester (UP) reinforced with two different types of filler which is nano size clay Cloisite 30B (C30B) and Carbon Black (CB). Samples were fabricated via hand lay-up and open molding technique. Percentages of Cloisite 30B & Carbon Black (CB) used vary from 0, 2, 4, 6, 8 and 10 wt%. The mechanical properties were evaluated by impact, flexural and hardness testing. Result shows that the mechanical strength of ...

  2. Numerical simulation of filler metal droplets spreading in laser brazing

    Science.gov (United States)

    Chen, Yanbin; Feng, Xiaosong; Li, Liqun

    2007-11-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry, and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot. The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  3. Numerical simulation of filler metal droplets spreading in laser brazing

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Xiaosong Feng; Liqun Li

    2007-01-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry,and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot.The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  4. EXPANDED PERLITE, EXPANDED VERMICULITE AND MICROSPHERES AS FILLERS IN NEW GENERATION PAPER PULP MIXTURES USED FOR CONTACT WITH LIQUID METAL

    OpenAIRE

    Zbigniew Zawieja; Jacek Sawicki

    2015-01-01

    Liquid metal when filling sand casting mould while pouring it out from ladle at the first moment comes across the sprue/gate system of the mould the purpose of which is to transfer liquid metal and feed the mould recess. The materials presently used for the elements of the sprue/gate systems are based on ceramics or the mixtures based on paper pulp. In this study the use of alternative mineral additions such as expanded perlite, expanded vermiculite, and microspheres as the fillers to paper p...

  5. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  6. Thermal Conductivity of Polymer/Nano-filler Blends

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.

  7. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    Science.gov (United States)

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-08

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

  8. Impedance characterization of epoxy composite containing conductive hybrid carbon fillers

    Science.gov (United States)

    Othman, Raja Nor; Tawil, Siti Nooraya; Zailan, Suhaila

    2017-08-01

    Epoxy composites containg carbon fillers are prepared in this work with an intention to characterise their electrical properties. The performance of electrical conductivity of epoxy composites is assessed by adding various loadings of conductive carbon fillers into the neat epoxy. First, Carbon Black (CB) was incorporated within epoxy matrix at several loadings. The increase in the specific conductivity of more than five orders of magnitude was observed between 3 wt. % and 4 wt.% CB loading, recorded at 10 kHz frequency. As such, the critical percolation loading, pc was recorded in between 3 wt.% and 4 wt.%. For the samples containing CB at loading 4 wt.% and above, the conductivity remains independent of the frequency, indicating a purely ohmic behaviour. It is also observed that the specific conductivity values can be altered by increasing the hardener stirring time up to 15 minutes, where the pc was successfully lowered down to < 3 wt. % It was further intended to study the hybrid effects by adding CNT to the composites. The conductivity data showed that the composite becomes frequency independent, even at 2 wt. % carbon loading (1 wt. % CB + 1 wt. % CNT), demonstrating the roles contributed by high aspect ratio conductive CNT in enhancing the formation of percolated path at much lower loading.

  9. Polymethylmethacrylate dermal fillers: evaluation of the systemic toxicity in rats.

    Science.gov (United States)

    Medeiros, C C G; Borghetti, R L; Nicoletti, N; da Silva, V D; Cherubini, K; Salum, F G; de Figueiredo, M A Z

    2014-01-01

    This study evaluated local and systemic reactions after an intravascular injection of polymethylmethacrylate (PMMA) at two concentrations in a murine model. Thirty rats were divided equally into three groups: 2% PMMA, 30% PMMA, and a control group (normal saline only injection). The filler was injected into the ranine vein. The rats were sedated at 7 and 90 days and a clinical evaluation performed. After euthanasia, the right lung, liver, and right kidney were removed, weighed, and microscopically analyzed. The submandibular lymph nodes and tongue were removed and examined microscopically. Serum was subjected to liver and kidney function tests. No groups showed clinical alterations. Microspheres were not observed at any distant organ. Two samples from the 2% PMMA group showed a local inflammatory response at day 7 and another two samples from the 30% PMMA group at day 90. The group injected with 30% PMMA presented higher levels of alanine aminotransferase (P = 0.047) after 90 days when compared with the other groups. The data obtained in this study demonstrate that intravascular injections of PMMA fillers show potential health risks such as chronic inflammation at the implantation site.

  10. Hardness evaluation of PMMA reinforced with two different calcinations temperatures of ZrO2-Al2O3-SiO2 filler system

    Science.gov (United States)

    Hasratiningsih, Z.; Takarini, V.; Cahyanto, A.; Faza, Y.; Asri, L. A. T. W.; Purwasasmita, B. S.

    2017-02-01

    Polymethyl methacrylate (PMMA) is one of the materials used for the temporary crown while making fixed partial dentures. Unfortunately, it has low mechanical properties. This study aim’s to improve PMMA hardness by adding ZrO2-Al2O3-SiO2 filler system in two different calcination temperatures. Thirty-two disc form samples with 8mm diameter x 3mm thickness were made from two category-filler based that had been previously evaluated using Scanning Electron Microscope (SEM). Each category was divided into six groups of three respectively from a controlled and different concentrations of 7(A), 9(B), 11(C), 13(D), and 15(E) weight % of reinforced filler system, then tested with Vickers Hardness Tester. Filler particles that calcined at 550° can increase to 700° consist of fine crystalline and amorphous phases; however, the sample shows the highest hardness about 20,19 VHN even though the increase is only 7,5% compared to control. Meanwhile, the sample that calcined at 700°C exhibiting the highest hardness about 15,66 VHN corresponds to sample D, it has increased 25% compared to the control. This is correlated with microstructure result that has more growth crystalline particles. The results were analyzed by ANOVA which determined were not statistically significantly different (p<0.05). Therefore, it can be concluded that the 13% reinforced ZrO2-Al2O3-SiO2 filler system calcined at 700°C shows the highest hardness increase compare to calcination temperature 550-700°C. Although it is not significantly different.

  11. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  12. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  13. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    low viscosities, which is favorable for loading of inorganic fillers [5]. In this study, commercially available fillers, such as fumed silica (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), copper calcium titanate (CaCu3Ti4O12, CCTO), multi-walled carbon nanotubes (MWCNTs) were added...

  14. Influence of Sn on Microstructure and Performance of Electric Vacuum Ag-Cu Filler Metal

    Directory of Open Access Journals (Sweden)

    SHI Lei

    2016-10-01

    Full Text Available Influence of Sn on microstructure, melting characteristic and brazing performance of electric vacuum Ag-Cu filler metal was studied by using scanning electronic microscope (SEM with energy disperse spectroscopy (EDS, differential scanning calorimetry (DSC and contrast tests. The results show that, while the addition of Sn is 4% (mass fraction,the same below, there is no brittle β-Cu phase in Ag60Cu filler metal,the effect on the processing performance is not obvious; with the increase of Sn content, the liquidus temperature of Ag60Cu filler metal decreases gradually, but the solidus temperature drops drastically,resulting in wider melting temperature range, and worse gap filling ability of filler metal. The Ag60Cu filler metal with Sn content of 4% has good spreading and metallurgical bonding abilities on copper plates, which are closer to that of BAg72Cu filler metal, and it can be processed into flake filler metal to replace the BAg72Cu flake filler metal to be used.

  15. Effect of Filler Composition on the Brazing of Alumina to Copper Using Ultrasonic Wave

    Institute of Scientific and Technical Information of China (English)

    Khalid M. HAFEZ; Masaaki NAKA

    2003-01-01

    An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The filler used wereZn-Al alloys and Zn-Sn A

  16. Polylactide nanocomposites for packaging materials: A review

    Science.gov (United States)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  17. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  18. Fracture resistance of rubbers with MWCNT, organoclay, silica and carbon black fillers as assessed by the J-integral: Effects of rubber type and filler concentration

    Directory of Open Access Journals (Sweden)

    T. Ricco

    2012-07-01

    Full Text Available The fracture resistance of different rubbers containing various nanofillers, such as multiwall carbon nanotube (MWCNT, organoclay, silica and carbon black (CB, was determined by the J-integral making use of the single edge notched tensile loaded (SEN-T single specimen approach. The elastomeric matrices were natural (NR, ethylene propylene diene (EPDM and hydrogenated nitrile rubbers (HNBR. Moreover, the strain softening (Payne effect of selected rubbers with 30 part per hundred rubber (phr filler content was also investigated by dynamic mechanical thermal analysis (DMTA in shear mode. DMTA results indicated that the Payne effect follows the ranking: MWCNT(fibrous > organoclay(platy > silica(spherical. J-resistance (JR curves were constructed by plotting the J value as a function of the crack tip opening displacement (CTOD*, monitored during loading. CTOD* = 0.1 mm was considered as crack initiation threshold and thus assigned to the critical value JIc. JIc increased with increasing filler loading, whereby MWCNT outperformed both silica and CB. On the other hand, JIc did not change with filler loading for the NR/organoclay systems that was traced to straininduced crystallization effect in NR. The tearing modulus (TJ also increased with increasing filler loading. The related increase strongly depended on both rubber and filler types. Nonetheless, the most prominent improvement in TJ among the fillers studied was noticed for the fibrous MWCNT.

  19. The Hyaluronic Acid Fillers: Current Understanding of the Tissue Device Interface.

    Science.gov (United States)

    Greene, Jacqueline J; Sidle, Douglas M

    2015-11-01

    The article is a detailed update regarding cosmetic injectable fillers, specifically focusing on hyaluronic acid fillers. Hyaluronic acid-injectable fillers are used extensively for soft tissue volumizing and contouring. Many different hyaluronic acid-injectable fillers are available on the market and differ in terms of hyaluronic acid concentration, particle size, cross-linking density, requisite needle size, duration, stiffness, hydration, presence of lidocaine, type of cross-linking technology, and cost. Hyaluronic acid is a natural component of many soft tissues, is identical across species minimizing immunogenicity has been linked to wound healing and skin regeneration, and is currently actively being studied for tissue engineering purposes. The biomechanical and biochemical effects of HA on the local microenvironment of the injected site are key to its success as a soft tissue filler. Knowledge of the tissue-device interface will help guide the facial practitioner and lead to optimal outcomes for patients.

  20. Effect of fillers and fire retardant compounds on hydroxy terminated polybutadiene based insulators

    Directory of Open Access Journals (Sweden)

    S. D. Kakade

    2001-04-01

    Full Text Available A series of polyurethane compositions have been formulated using hydroxy-terminated polybutadiene as polymeric binder and carbon black as a major filler. Various binder-to-filler ratios of the formulations were evaluated to get calendered sheets. The formulations have been characterised for pot-life and rollability and the calendered sheets for mechanical and thermal properties, bUm rate, glass transition temperature, shore hardness and density . The different fillers tried were varieties of carbon black as a major filler; metal oxides, silicates and organic compounds; and fire retardants, such as zinc borate, sodium metaborate, ammonium dihydrogen phosphate and antimony trioxide. The structure and morphology of the fillers have been correlated with the properties. The optimised composition has been evaluated in an end-burning motor, as an insulator for case-bonded application, using a typical composite propellant. The results of interface bonding between the propellant and the insulator have also been presented.

  1. Effect of Additional Elements of Al-Si Filler Alloy on Flowability and Clearance Fillability

    Science.gov (United States)

    Edo, Masakazu; Yoshino, Michihide; Kuroda, Shuu

    Aluminum alloys are widely used for automotive heat exchangers manufactured by brazing processes. All joint gaps must be filled with Al-Si filler metal to prevent the leak of refrigerant. Recently, brazing of heat exchanger components has become difficult due to the decrease in the thickness of the brazing sheets. Since the fluidity of Al-Si molten metal is very high, the flow of molten filler metal sometimes causes dissolution of the base metal or defect of joints. In this study, we investigated the effect of additional elements (such as Mn, Fe, Ti and Zr) of Al-Si filler metal on the flowability and clearance fillability using our original evaluation model. The results indicated that the addition of Mn or Ti improved the clearance fillability significantly. We clarified the mechanism that additional elements change the properties of molten filler metal, by measuring the viscosity of each filler metal and observing the solidified microstructure.

  2. Silica-filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    Energy Technology Data Exchange (ETDEWEB)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D. [IFF-Forschungszentrum Juelich, 52425 Juelich (Germany); Urban, V. [ESRF, BP220, 38043 Grenoble Cedex (France); IPNS, Argonne 60439-4814 (United States); Kohlbrecher, J. [PSI, 5232 Villigen (Switzerland); Straube, E. [University of Halle, FB Physik, 06099 Halle (Germany)

    2002-07-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  3. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    Science.gov (United States)

    Smith, Lynnelle; Cockerham, Kimberly

    2011-03-14

    Hyaluronic acid (HA) dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal is to review the current literature on HA fillers and compare outcomes with and without lidocaine. We found adjunctive lidocaine significantly decreases pain during injection and postinjection with corresponding increased patient satisfaction. The efficacy and safety profile appears unchanged. Rare complications with HA fillers and those associated with constituents of the product, contaminants, and lidocaine are reviewed. The corrective effects of HA fillers are temporary; repeat treatment is required to maintain results. Minimizing pain is crucial to optimize patient satisfaction.

  4. The effects of rattan filler loadings on properties of rattan powder-filled polypropylene composites

    Directory of Open Access Journals (Sweden)

    Nurshamila Shaari Balakrishna

    2012-11-01

    Full Text Available This study investigates the effects of filler loading on the properties of rattan powder-filled polypropylene composites. The composites were prepared by incorporating rattan powder of average size 180 µm into polypropylene matrix using a Polydrive Thermo Haake internal mixer. Filler loadings of the rattan powders ranged between 0 and 40 parts per hundred parts of resin (phr. Mechanical, morphological, and thermal properties were studied. The tensile strength, elongation at tensile failure, and impact strength decreased, while stabilization torque, thermal stability, and water absorption increased with increasing filler loading. Tensile modulus increased with addition of rattan powder and eventually decreased at 40 phr filler loading due to the weakening adhesion between the filler and the matrix. The morphological studies of fractured surfaces using SEM confirmed the deterioration in tensile properties.

  5. Silica-filled elastomers polymer chain and filler characterization by a SANS-SAXS approach

    CERN Document Server

    Botti, A; Richter, D; Urban, V; Ipns, A 6 4; Kohlbrecher, J; Straube, E

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  6. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    Science.gov (United States)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  7. Shear bond strength between porcelain and nano filler composite resin with or without 9% hydrofluoric acid etching

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2009-06-01

    Full Text Available Background: Reparation technique on restorations with broken or damaged porcelain which are still attached with the teeth are difficult, because it is very hard to remove the porcelain restoration without damaging it, and it needs a long time. Various ways have been developed to repair the broken porcelain, one of them is the use of composite resin as the material for the restoration of fractured porcelain. Repairing porcelain inside the mouth without removing the restoration of the damaged porcelain using light cured composite resins material seems to be an advantageous option because it is relatively simple, has low risks, good esthetically and cheap. Purpose: The objective of this study was to find out the difference of shear bond strength in porcelain reparation using nano filler composite resin with or without 9% hydrofluoric acid etching by using Autograph measuring device. Methods: Twenty pieces of the porcelain samples devided into 2 groups. Group I: etching process using 9% hydrofluoric acid, and group II : without etching process. Result: The data was analyzed using t test in a p value of 0.0001 (p≤0.05, which means there is a significant different of shear bond strength between treated group I and II. The biggest shear bond strength was in treatment group I. Conclusion: The use of 9% hydrofluoric acid on the surface of porcelain can increase the shear bond strength between porcelain and nano filler composite resin.

  8. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage

    Directory of Open Access Journals (Sweden)

    Hans-Conrad zur Loye

    2009-10-01

    Full Text Available This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of metal oxide fillers to improve compatibility with polymers. We review the recent literature focused on the dielectric characterization of composites, specifically the measurement of dielectric permittivity and breakdown field strength. Special attention is given to the analysis of the energy density of polymer composite materials and how the functionalization of the inorganic filler affects the energy density of polymer composite dielectric materials.

  9. Bacterial biofilm formation and treatment in soft tissue fillers

    DEFF Research Database (Denmark)

    Alhede, Morten; Er, Ozge; Eickhardt, Steffen

    2014-01-01

    fraction these. We developed a novel mouse model and evaluated hyaluronic acid gel, calcium hydroxyl apatite microspheres and polyacrylamide hydrogel for their potential for sustaining bacterial infections and their possible treatments. We were able to culture Pseudomonas aeruginosa, Staphylococcus...... epidermidis and Probionibacterium acnes in all three gels. When contaminated gels were left for 7 days in a mouse model, we found sustainment of bacterial infection with the permanent gel, less with the semi-permanent gel and no growth within the temporary gel. Evaluation of treatment strategies showed...... that once the bacteria had settled (into biofilms) within the gels, even succesive treatments with high concentrations of relevant antibiotics were not effective. Our data substantiate bacteria as a cause of adverse reactions reported when using tissue fillers, and the sustainability of these infections...

  10. Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions.

    Science.gov (United States)

    McIntyre, Ernest C; Yang, Hengxi; Green, Peter F

    2012-04-01

    An important challenge in the field of electrorheology is identifying low-viscosity fluids that would exhibit significant changes in viscosity, or a yield stress, upon the application of an external electric field. Our recent research showed that optimal compositions of mixtures, 10 wt % sulfonated polyhedral oligomeric silsesquioxanes (s-POSS) mixed with polydimethyl siloxane (PDMS), exhibited significant electrorheological activity. Here we show that s-POSS/PDMS mixtures containing polystyrene (PS) fillers, of micrometer-sized dimensions, containing as little as ~1 wt % s-POSS, exhibited an increase in ER activity by an order of magnitude, beyond that of s-POSS/PDMS mixtures. The dynamic yield stress was found to scale with the particle diameter, a, as τ(y) is proportional to a(0.5) and with the electric field as τ(y) is proportional to E(1.5-2.5); this behavior is reasonably well understood within the context of dielectric electrorheological theory.

  11. United States based agricultural {open_quotes}waste products{close_quotes} as fillers in a polypropylene homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, R.E.; Rowell, R.M.; Caulfield, D.F. [Forest Products Lab., Madison, WI (United States)] [and others

    1995-11-01

    With the advent of modern coupling agents (MAPP or maleic anhydride grafted polypropylene), the potential use of various types of renewable, sustainable agricultural byproducts as fillers in thermoplastics is explored. Over 7.7 billion pounds of fillers were used in the plastics industry in 1993. With sharp price increases in commodity thermoplastics (i.e. approximately 25% in 94`), the amount of fillers in thermoplastic materials will increase throughout the 90`s. Various types of agricultural fibers are evaluated for mechanical properties vs. 50% wood flour and 40% talc filled polypropylene (PP). The fibers included in this study are: kenaf core, oat straw, wheat straw, oat hulls, wood flour (pine), corncob, hard corncob, rice hulls, peanut hulls, corn fiber, soybean hull, residue, and jojoba seed meal. Composite interfaces were modified with MAPP to improve the mechanical properties through increased adhesion between the hydrophilic and polar fibers with the hydrophobic and non-polar matrix. The agro-waste composites had compositions of 50% agro-waste/48% PP/2% MAPP. All of the agricultural waste by-products were granulated through a Wiley mill with a 30 mesh screen and compounded in a high intensity shear-thermo kinetic mixer. The resultant blends were injection molded into ASTM standard samples and tested for tensile, flexural, and impact properties. This paper reports on the mechanical properties of the twelve resultant composites and compares them to wood flour and talc-filled polypropylene composites. The mechanical properties of kenaf core, oat straw, wheat straw, and oat hulls compare favorably to the wood flour and talc-filled PP, which are both commercially available and used in the automotive and furniture markets.

  12. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: synthesis, characterization and properties of the adhesive.

    Science.gov (United States)

    Solhi, Laleh; Atai, Mohammad; Nodehi, Azizollah; Imani, Mohammad; Ghaemi, Azadeh; Khosravi, Kazem

    2012-04-01

    This work investigates the graft polymerization of acrylic acid onto nanoclay platelets to be utilized as reinforcing fillers in an experimental dental adhesive. Physical and mechanical properties of the adhesive and its shear bond strength to dentin are studied. The effect of the modification on the stability of the nanoparticle dispersion in the dilute adhesive is also investigated. Poly(acrylic acid) (PAA) was grafted onto the pristine Na-MMT nanoclay (Cloisite(®) Na(+)) through the free radical polymerization of acylic acid in an aqueous media. The resulting PAA-g-nanoclay was characterized using FTIR, TGA and X-ray diffraction (XRD). The modified nanoclays were added to an experimental dental adhesive in different concentrations and the morphology of the nanoclay layers in the photocured adhesive matrix was studied using TEM and XRD. Shear bond strength of the adhesives containing different filler contents was tested on the human premolar teeth. The stability of nanoclay dispersion in the dilute adhesive was also studied using a separation analyzer. The results were then statistically analyzed and compared. The results confirmed the grafting reaction and revealed a partially exfoliated structure for the PAA-g-nanoclay. Incorporation of 0.2 wt.% of the modified nanoclay into the experimental adhesive provided higher shear bond strength. The dispersion stability of the modified nanoparticles in the dilute adhesive was also enhanced more than 25 times. Incorporation of the modified particles as reinforcing fillers into the adhesive resulted in higher mechanical properties. The nanofiller containing bonding agent also showed higher shear bond strength due to the probable interaction of the carboxylic acid functional groups on the surface of the modified particles with hydroxyapatite of dentin. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Influence of filler selection on twin screw foam granulation.

    Science.gov (United States)

    Rocca, K E; Weatherley, S; Sheskey, P J; Thompson, M R

    2015-01-01

    The influence of filler selection in wet granulation was studied for the novel case where the binder is delivered as an unstable, semi-rigid aqueous foam to an extrusion process. The work primarily examined the impact of differing concentrations of microcrystalline cellulose (Avicel PH® 101) in a formulation with spray-dried α-lactose monohydrate (Flowlac® 100) in regards to wetting and granule nucleation for this relatively new technique known as continuous foam granulation. Foam stability was varied within the work to change its drainage and coarsening behavior atop these powder excipients, by use of different foamable binding agents (METHOCEL™ F4 PLV and METHOCEL™ Premium VLV) as well as by adjusting the foam quality. A static bed penetration test was first used to study the foam behavior in wetting these powders without the processing constraints of an extruder which limit possible liquid-to-solids ratios as well as introduce shear which may complicate interpretation of the mechanism. The test found that the penetration time to saturate these powders decreased as their water absorption capacity increased which in turn decreased the size of the formed nuclei. Differences in the stability of the foamed binder had minimal influence on these attributes of wetting despite its high spread-to-soak behavior. The size of granules produced by extrusion similarly demonstrated sensitivity to the increasing water absorption capacity of the filler and little dependency on foam properties. The different liquid-to-solids ratios required to granulate these different formulations inside the extruder highlighted an evolving concept of powder lubricity for continuous foam granulation.

  15. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  16. An Al@Al2O3@SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores

    Science.gov (United States)

    Zhou, Yongcun; Wang, Hong

    2013-04-01

    We demonstrate a capability in combining two kinds of nanosize and microsize particles of core-shell Al@Al2O3@SiO2 with aluminum cores to form multilayer coating structures as fillers in polyimide matrix for electronic applications. The core-shell Al@Al2O3@SiO2 structure can effectively adjust the relative permittivity (about 12 @1 MHz) of the composite while keeping lower dielectric loss (0.015 @1 MHz) compared to that uncoated aluminum particles. The combination of "macro" and "micro" coating can significantly improve the dielectric properties of the composites. This work provides a useful method to modify the fillers for polymer matrix nanocomposite materials.

  17. 复合填料导电聚合物研究新进展%Recent research new progress of electrically conductive polymers containing using composite fillers

    Institute of Scientific and Technical Information of China (English)

    卢龙飞; 王劲; 马缓; 曹先觉; 齐暑华

    2016-01-01

    In this paper, the classification of conductive fillers was introduced, the situation both at home and abroad of composite conductive filler composites was also summarized, which provided the valuable information for developing the new multi-functional conductive composite materials with lightweight and excellent conductive properties.%介绍了导电填料的分类及近年来国内外复合型导电填料的研究现状,为研发性价比高、质轻、导电性能优异、多功能新型导电复合材料提供有价值的信息。

  18. Monitorization of technosols in old mining sites treated with calcareous fillers

    Science.gov (United States)

    Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Garcia-Lorenzo, MariLuz; Gonzalez, Eva; Perez-Espinosa, Victor; Martínez-Lopez, Salvadora; Hernandez, Carmen; Molina, Jose; Martínez, Lucia B.

    2014-05-01

    A large number of soils around the world are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies to remediate soils affected by heavy metals have been developed. Among them, in situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative, that transforms the highly mobile toxic heavy metals to physico-chemically stable forms, reducing their mobility and environmental risks. Limestone filler is a good selection for such a purpose, because of its low permeability and low solubility, due to its high degree of physical-chemical stability and because is a non-toxic material with a high finely divided calcium carbonate content. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of a immobilization technique in sediments contaminated by heavy metals as a results of mining activities. The study area was Portman bay, located close to the mining region of La Unión and subjected to mining from the time of the Roman Empire to 1991. Wastes from mining activities mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and, as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. Two experimental areas, approximately 1 Ha each one, were selected and technosols were developed as follows: original sediments from the bay, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitorization of

  19. Poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering.

    Science.gov (United States)

    Russo, Teresa; Gloria, Antonio; D-Antò, Vincenzo; D'Amora, Ugo; Ametrano, Gianluca; Bollino, Flavia; De Santis, Roberto; Ausanio, Giovanni; Catauro, Michelina; Rengo, Sandro; Ambrosio, Luigi

    2010-01-01

    The importance of polymer-based composite materials to make multifunctional substrates for tissue engineering and the strategies to improve their performances have been stressed in the literature. Bioactive features of sol-gel synthesized poly(ε-caprolactone)/TiO₂ or poly(ε-caprolactone)/ZrO₂ organic-inorganic hybrid materials are widely documented. Accordingly, the aim of this preliminary research was to develop advanced composite substrates consisting of a poly(ε-caprolactone) matrix reinforced with sol-gel synthesized PCL/TiO₂ or PCL/ZrO₂ hybrid fillers. Micro-computed tomography and atomic force microscopy analyses allowed to study surface topography and roughness. On the other hand, mechanical and biological performances were evaluated by small punch tests and Alamar Blue™ assay, respectively. Micro-computed tomography and atomic force microscopy analyses highlighted the effect of the preparation technique. Results from small punch tests and Alamar Blue™ assay evidenced that PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers provided better mechanical and biological performances. PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers could be considered as advanced composite substrates for hard tissue engineering.

  20. Whisker-reinforced dental core buildup composites: effect of filler level on mechanical properties.

    Science.gov (United States)

    Xu, H H; Smith, D T; Schumacher, G E; Eichmiller, F C

    2000-12-15

    The strength and toughness of dental core buildup composites in large stress-bearing restorations need to be improved to reduce the incidence of fracture due to stresses from chewing and clenching. The aims of the present study were to develop novel core buildup composites reinforced with ceramic whiskers, to examine the effect of filler level, and to investigate the reinforcement mechanisms. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whisker surface for improved retention in the matrix. Filler level was varied from 0 to 70%. Flexural strength, compressive strength, and fracture toughness of the composites were measured. A nano-indentation system was used to measure elastic modulus and hardness. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of specimens. Whisker filler level had significant effects on composite properties. The flexural strength in MPa (mean +/- SD; n = 6) increased from (95+/-15) for the unfilled resin to (193+/- 8) for the composite with 50% filler level, then slightly decreased to (176+/-12) at 70% filler level. The compressive strength increased from (149+/-33) for the unfilled resin to (282+/-48) at 10% filler level, and remained equivalent from 10 to 70% filler level. Both the modulus and hardness increased monotonically with filler level. In conclusion, silica particle-fused ceramic single-crystalline whiskers significantly reinforced dental core buildup composites. The reinforcement mechanisms appeared to be crack deflection and bridging by the whiskers. Whisker filler level had significant effects on the flexural strength, compressive strength, elastic modulus, and hardness of composites.

  1. Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels.

    Science.gov (United States)

    Xu, H H

    1999-07-01

    Currently available direct-filling composite resins are susceptible to fracture and hence are not recommended for use in large stress-bearing posterior restorations involving cusps. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to use ceramic single-crystalline whiskers as fillers to reinforce composites, and to investigate the effect of whisker filler level on composite properties. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whiskers, thereby improving retention in the matrix. The composite flexural strength, elastic modulus, hardness, and degree of polymerization conversion were measured as a function of whisker filler mass fraction, which ranged from 0% to 70%. Selected composites were polished simulating clinical procedures, and the surface roughness was measured with profilometry. The whisker composite with a filler mass fraction of 55% had a flexural strength (mean +/- SD; n = 6) of 196+/-10 MPa, significantly higher than 83+/-14 MPa of a microfill and 120+/-16 MPa of a hybrid composite control (family confidence coefficient = 0.95; Tukey's multiple comparison). The composite modulus and hardness increased monotonically with filler level. The flexural strength first increased, then plateaued with increasing filler level. The degree of conversion decreased with increasing filler level. The whisker composite had a polished surface roughness similar to that of a conventional hybrid composite (p>0.1; Student's t). To conclude, ceramic whisker reinforcement can significantly improve the mechanical properties of composite resins; the whisker filler level plays a key role in determining composite properties; and the reinforcement mechanisms appear to be crack pinning by whiskers and friction from whisker pullout resisting crack propagation.

  2. Effect of Filler Loading on Mechanical and Tribological Properties of Wood Apple Shell Reinforced Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ojha Shakuntala

    2014-01-01

    Full Text Available During the last century, natural fibers and particulates are used as reinforcement in polymer composite that has been continuously growing in the composite industry. This polymer matrix composite has wide range of applications in hostile environment where they are exposed to external attacks such as solid particle erosion. Also, the mechanical properties of different polymer composites show the best alternate to replace the metal material. In the present investigation, an attempt has been made to improve the mechanical and tribological behaviour of polymer matrix composite using wood apple shell particles as a filler material in polymer matrix. Also the temperature variation of the dynamic-mechanical parameters of epoxy matrix composites incorporated with 5, 10, 15, and 20 wt% of wood apple shell particles was investigated by DMA test. It is clearly observed that the incorporation of wood apple shell particles tends to increase the tensile strength, flexural strength, erosive wear resistance, and viscoelastic stiffness of the polymer composite. To validate the results, SEM of the polymer matrix composite has been studied.

  3. Micro Filler Effects of Silica-Fume on the Setting and Hardened Properties of Concrete

    Directory of Open Access Journals (Sweden)

    V.M. Sounthararajan

    2013-08-01

    Full Text Available The use of supplementary cementitious material is gaining much attention owing to its high pozzolanic property and further improvement in strength properties. Silica-fume is one among the widely used pozzolanic material which exhibits high cementing efficiency due to high silica content. This study presents comprehends a detailed insight on the hydration properties of silica fume with cement. Silica fume consists of very fine particle size and contains silica content more than 90%. The cement hydration results in the formation of calcium hydroxide and this is consumed with the addition of silica fume and results in additional calcium silicate hydrate. This compound primarily envisages the strength and improved microstructure of concrete. Addition of silica-fume fills in the spaces between cement grains. The test results showed that higher compressive strength of concrete is obtained by using 8.0% of silica-fume at 7 and 28 days was 48.25 and 55.83 MPa, respectively. This phenomenon is frequently referred to as particle packing or micro-filling. Even if silica fume did not react chemically, the micro-filler effect would lead to significant improvements in the microstructure of concrete. A comprehensive review has been carried out in this study to give a good understanding on the advantages of pozzolanic properties of silica fume in cement concrete.

  4. Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    Science.gov (United States)

    AL-Qrimli, Haidar F.; Mahdi, Fadhil A.; Ismail, Firas B.; Alzorqi, Ibrahim S.

    2015-04-01

    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens.

  5. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    Science.gov (United States)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  6. Filler content influence on the positron annihilation response in an epoxy resin composite

    Energy Technology Data Exchange (ETDEWEB)

    Salgueiro, W. [IFIMAT-UNCentro, Tandil (Argentina); Somoza, A. [Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Tandil (Argentina); Goyanes, S. [Buenos Aires Univ. (Argentina). Dept. de Fisica; Dept. de Materiales, CNEA, Buenos Aires (Argentina); Rubiolo, G. [Buenos Aires Univ. (Argentina). Dept. de Fisica; Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Marzocca, A. [Buenos Aires Univ. (Argentina). Dept. de Fisica; Consolati, G. [Politecnico di Milano, Milan (Italy). Dipt. di Chimica Fisica Applicata

    2001-07-01

    Positron annihilation lifetime spectroscopy and mechanical properties tests were used to study the influence of the filler content on the epoxy resin DGEBA. Using a mechanical model recently developed by the authors of the present work, and the values of the long lifetime component it is possible to evaluate correctly the internal stresses introduced in the epoxy lattice for the filler. Additional information obtained from the analysis of the short-lived lifetime component is also presented. Specifically, in the case of the matrix charged with metallic particles, an interesting correlation between the associated intensity to this component and the filler volume fraction is shown. (orig.)

  7. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  8. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Kevin C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-06

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in its composite form.

  9. Effect of stainless steel chemical composition on brazing ability of filler metal

    Science.gov (United States)

    Miyazawa, Yasuyuki; Ohta, Kei; Nishiyama, Akira

    2014-08-01

    Many kinds of stainless steel have been used in the engineering field. So it is necessary to investigate the effect of SUS chemical compositions on the brazing ability of filler metal. In this study, SUS315J containing Cr, Ni, Si, Cu, and Mo was employed as a base metal. Excellent spreading ability of the molten nickel-based brazing filler on SUS315J was obtained as compared with that on SUS316. Copper and silicon influenced the significant spreading ability of the filler.

  10. Optimization of Filler Metals Consumption in the Production of Welded Steel Structures

    Directory of Open Access Journals (Sweden)

    Pańcikiewicz K.

    2016-03-01

    Full Text Available The paper presents the some aspects of the optimization of filler metals consumption in the production of welded steel structures. Correct choice of beveling method can allow to decrease cost of production and increase quality. The review of calculation methods of filler metal consumption at the design stage was carried out. Moreover, the practical examples of amount of filler metals calculation were presented and analyzed. The article also contain examples of mobile apps which are makes it easy to see welding costs in just a few seconds. Apps as well as simple excel spreadsheets with correct mathematic equations allows to optimize welding process.

  11. Efficacy and durability of hyaluronic acid fillers for malar enhancement: a prospective, randomized, spilt-face clinical controlled trial.

    Science.gov (United States)

    Jeong, Ki Heon; Gwak, Min Jae; Moon, Sung Kyung; Lee, Sang Jun; Shin, Min Kyung

    2017-01-31

    Various hyaluronic acid fillers can be used for facial attenuation and rejuvenation. The efficacy and durability of hyaluronic acid fillers are of major concern to dermatologists and patients. This study aimed to evaluate three dimensional morphology, tissue distribution, and changes in volume after injection of two different hyaluronic acid fillers. Ten Korean women were enrolled in this study. Each subject was injected with monophasic hyaluronic acid filler in one malar area and biphasic filler in the other. Clinical outcome was measured before and after injection, and after 2, 4, 6, 8, 12, and 24 weeks, using the Global Aesthetic Improvement Scale, photographs and Moire's topography. Facial magnetic resonance imaging (MRI) was performed twice over six months. Both products showed good results after injection and demonstrated good durability over time. MRI was a useful modality for assessing tissue distribution and volume changes. The effects and durability after injection of monophasic hyaluronic acid filler and biphasic hyaluronic acid filler are generally comparable.

  12. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application.

    Science.gov (United States)

    Sadat-Shojai, Mehdi; Atai, Mohammad; Nodehi, Azizollah; Khanlar, Leila Nasiri

    2010-05-01

    This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into an experimental ethanol-based one-bottle dentin adhesive, improves the mechanical properties of the adhesive layer, and accordingly increases the bond strength to dentin. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO(4)(2)-containing solution was added drop-wise into the Ca(2+)-containing solution while the molar ratio of Ca/P was adjusted at 1.67. The HAp precursor was then treated hydrothermally at 200 degrees C for 60h. The resulting powder was characterized using XRD, FTIR, SEM, TEM, and EDXA. The synthesized HAp nanorods were added to an experimental one-bottle dentin adhesive followed by the characterization of the filled adhesive. The diametral tensile strength, flexural strength, flexural modulus, and the microshear bond strength to the dentin of human premolars of seven adhesive systems containing different nanorod contents were evaluated. The distribution of the filler was determined using EDX-mapping. The depth of cure was also evaluated using scraping technique. Moreover, after microshear testing, the fracture cross-section was observed using SEM to determine the mode of failure involved. The colloidal stability was studied using a separation analyzer and also zeta potential measurement. Data were analyzed using one-way analysis of variance followed by the Tukey test. The results confirmed the high purity, high crystallinity, and high aspect ratio of synthesized HAp nanorods. The diametral tensile strength of nanorod containing adhesive system appeared to increase when 0.2-0.5wt.% HAp nanorods were incorporated (pbond strength was also obtained at 0.2wt.% filler content (pnew adhesive system might be due to the high crystallinity and high aspect ratio of the nanorods. SEM observation of debonded surfaces revealed that

  13. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    Science.gov (United States)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  14. Joining of aluminum and stainless steel using AlSi10 brazing filler: Microstructure and mechanical properties

    Science.gov (United States)

    Fedorov, Vasilii; Uhlig, Thomas; Wagner, Guntram

    2017-07-01

    Joining of dissimilar materials like stainless steel and aluminum is of special interest for automotive applications. Due to the different properties of these materials, suitable joining techniques are required. Brazing offers the possibilities to manufacture high performance joints in one step and at low joining temperatures. However, these joints often need to withstand a high number of high cyclic loads during application. Therefore, in addition to the monotonic properties, the fatigue behavior of the produced joints must be considered and evaluated. In the present work, specimens are manufactured by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as in fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  15. Evaluation of the influence of the polymer-filler interaction on compounds based on epoxidized elastomeric matrix and precipitated silica

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2006-06-01

    Full Text Available The introduction of epoxy groups into the main chain of elastomers has emerged as a promising alternative, considering the monitoring of polymer-filler interaction leading to changes in the properties of vulcanizates. The epoxidation reaction (in situ was chosen to modify elastomers, such as polybutadiene (BR and copolymer of styrene-butadiene-rubber (SBR, because it is a simple, easily controlled reaction, even considering the small epoxidation degree. The modification degree of the polymeric chain was studied with FT-IR and ¹H-NMR. The shift of the Tg to high temperatures with the increase of the epoxy group in the polymer chain was monitored through differential scanning calorimetry (DSC. An analysis of the dynamic modulus of the material in relation to its dependence on the amplitude and temperature was carried out. The interaction between epoxidized elastomeric matrix and silica as filler was extremely improved, even in the presence of very low content of epoxy groups into the polymer chain.

  16. Analysis-Driven Design Optimization of a SMA-Based Slat-Cove Filler for Aeroacoustic Noise Reduction

    Science.gov (United States)

    Scholten, William; Hartl, Darren; Turner, Travis

    2013-01-01

    Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF which incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Designs of experiment (DOE) are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints.

  17. Reinforcement of Aluminum Oxide Filler on the Flexural Strength of Different Types of Denture Base Resins: An In vitro Study.

    Science.gov (United States)

    Dhole, Rohit I; Srivatsa, G; Shetty, Rohit; Huddar, Dayanand; Sankeshwari, Banashree; Chopade, Swapnil

    2017-04-01

    Acrylic resins have been used extensively for the fabrication of denture bases because of their aesthetic qualities, ease of manipulation and repairability. Flexural fatigue of the denture base has been shown to be a factor in the clinical failure of polymethyl methacrylate resin dentures. Also, the fracture can result from impact, fatigue or degradation of the base material. Hence, there is a need to increase the strength of denture base resins. To evaluate the effect of reinforcing alumina oxide filler on the flexural strength of different acrylic resins. A total of 180 acrylic specimens were fabricated, which were divided into three groups self cure acrylic resin (SC), conventional heat cure resin (HC) and high strength heat cure resin (HI). Each group was divided into four subgroups i.e., control group and the specimens of the remaining three groups were reinforced with aluminum oxide (Al2O3) powder by 5%, 10% and 15% by weight. Specimens were stored in distilled water for one week; flexural strength was tested by universal testing machine. Results were analysed by one-way analysis of variance and post-hoc Tukey paired group comparison tests. Flexural strength of SC increased by 9%, 13% and 19%, Flexural strength of HC increased by 8%, 15% and 19% and that of HI increased by 21%, 26% and 29% compared to control group by adding 5%,10% and 15% of alumina filler (p-value lead to more clinical success.

  18. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    Science.gov (United States)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  19. Heat dissipation performance of a high-brightness LED package assembly using high-thermal conductivity filler.

    Science.gov (United States)

    Yung, K C; Liem, H; Choy, H S

    2013-12-10

    This paper presents a thermal analysis and experimental validation of natural convective heat transfer of a high-brightness light-emitting diode (LED) package assembly. The substrate materials used in the LED package assembly were filled and doped using boron nitride (BN) filler. The thermal conductivity of the BN-filled substrate was measured. The temperature distribution and heat flow of the LED package were assessed by thermal profile measurement using an infrared (IR) camera and thermocouples. In addition, the heat transfer process of the LED package assembly in natural convection was also simulated using the computational fluid dynamics method. The optical performance of the LED package was monitored and investigated with various filler contents. The heat conduction mechanism in the substrate was analyzed. IR thermogram showed that the BN-doped substrate could effectively lower the surface temperature of the LED package by 21.5°C compared with the traditional FR4 substrate. According to the IESNA LM 80 lifetime testing method, reduction in LED temperature can prolong the LED's lifetime by 19,000 h. The optical performance of the LED package assembly was also found to be improved significantly in lighting power by 10%. As a result, the overall heat dissipation capability of the LED package to the surrounding is enhanced, which improves the LED's efficacy.

  20. 填料对车用阻尼涂料阻尼隔声性能的影响%Influence of Fillers on Damping and Sound Insulation Performance of Train Damping Coating

    Institute of Scientific and Technical Information of China (English)

    罗娟; 楚珑晟; 袁琪; 杨建奎

    2013-01-01

    采用聚丙烯酸酯乳液为基体材料,片状绢云母和碳酸钙为主要填料制得高性能车用阻尼复合涂料,测得其阻尼损耗因子和在不同频率下的隔声量。结果表示:加入不同粒径的片状云母,能在一定范围内有效地提高材料的隔声性能和阻尼性能,但却使乳液中大分子链与填料之间的表面结合相对困难。通过使用硅烷偶联剂对云母进行表面改性处理,不仅能够有效地改善大分子链与填料之间的相容性情况,同时还能明显提高材料的阻尼性能及隔声性能。%The high damping composite coatings were prepared with the basic materials polyacrylate emulsion, the main fillers flaky mica and calcium carbonate. The damping loss factor and the sound insulation performance in different frequency of materials were tested. The results showed that the sound insulation performance and the damping properties of materials was effectively improved within a certain range through adding the different particle size of the mica as the fillers, but there was bad effect on the combination of interface between macromolecular chains and fillers. By surface modification treatment on the fillers, there was not only enhanced the combination of interface between polyacrylate emulsions and fillers, but also significantly improved the sound insulation performance and the damping properties of materials.

  1. Provskite Structure Based Filler Impregnated Pvdf—Hfp Micro Composites For Lithium Ion Batteries

    Science.gov (United States)

    Vickraman, P.; Pandiraj, A.

    2011-07-01

    Lithium BETI (Lithium bis (perfluoroethanesulfonyl) imide) (guest species) based PVDF-HFP(host matrix) Polymer NanoComposites (PNC) films by loading barium titanate (BaTiO3) as a filler, in ascending proportions with the plasticizer (mixture of EC+DMC) while keeping host and guest content as constants, has been investigated by employing AC impedance, Thermal, and XRD. The ionic conductivity measurements on these PNC show that 2.5% BaTiO3 loaded PNC showed mitigation in magnitude of the conductivity compared to that of 0 wt% loaded PNC but thereafter increase in conductivity is noted with increase in filler content upto 7.5 wt%. The higher conductivity is observed for 7.5 % filler loaded membrane. The XRD study identifies suppression of polymer phase associated with (200) plane. The thermal profile registers the endothermic changes associated with polymer host indicating varying heat of fusion ΔHm with filler increase.

  2. Characterization of Nanocomposite filler Morphology using Ultra Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Justice, Ryan S.; Schaefer, Dale W. (UCIN); (AFRL)

    2010-10-22

    Loading polymer matrices with nanoscale fillers is widely believed to have the potential to push polymer properties to extreme values. Realization of anticipated properties, however, has proven elusive. Recent nanocomposite research suggests better characterization of the large-scale morphology will provide insight explaining these shortfalls. This work will present ultra-small angle X-ray scattering as a viable tool for elucidating the hierarchical filler morphology that exists within polymer nanocomposites. Scattering analysis tools developed by our group will be applied to scattering data from nanocomposites filled with carbon nanotubes, layered silicates, and colloidal silica. The relationship between imaging data and scattering data will be discussed in the context of filler dispersion. Finally, the impact of large-scale filler morphology on mechanical and electrical properties will be discussed.

  3. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    Science.gov (United States)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  4. A simple method for fabrication of filler-free stretchable polydimethylsiloxane surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bacharouche, Jalal; Kunemann, Philippe; Fioux, Philippe; Vallat, Marie-France; Lalevée, Jacques [Institut de Sciences des Materiaux de Mulhouse, IS2M – C.N.R.S., LRC 7228 – UHA, 15, Rue Jean Starcky, 68057 Mulhouse Cedex (France); Hemmerlé, Joseph [Institut National de la Sante et de la Recherche Medicale, I.N.S.E.R.M. – Unite 595, 11, Rue Humann, 67085 Strasbourg Cedex (France); Roucoules, Vincent, E-mail: Vincent.Roucoules@uha.fr [Institut de Sciences des Materiaux de Mulhouse, IS2M – C.N.R.S., LRC 7228 – UHA, 15, Rue Jean Starcky, 68057 Mulhouse Cedex (France)

    2013-04-01

    We propose a simple method to elaborate a filler-free stretchable PDMS surface strong enough to resist to successive elongation/retraction cycles even at high degree of stretching. It consists in creating free radicals on a filler-containing PDMS surface by argon plasma exposure and reacting them with a filler-free PDMS resin during the crosslinking step. Changes of physical and chemical properties upon plasma modification are monitored by FTIR and XPS spectroscopies, contact angle measurements and atomic force microscopy. Electron spin resonance (ESR) is used to identify the nature of radicals involved in interfacial bonding. Although a brittle silica-like layer is created on the filler-containing PDMS surface after plasma treatment, an increase in the PDMS/PDMS interfacial strength is observed and a high interfacial resistance has been found under elongation/retraction (stretching/relaxation) cycles.

  5. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  6. Correction of tear trough deformity with novel porcine collagen dermal filler (Dermicol-P35).

    Science.gov (United States)

    Goldberg, David J

    2009-01-01

    Deformity of the tear trough region, which can occur during the aging process, can result in dark shadows under the eyes and a fatigued appearance. Augmentation of the tear trough is challenging because of the thin skin and lack of fat in the region. Adding volume to the tear trough region with a dermal filler is a nonsurgical procedure with minimal discomfort to the patient. Dermicol-P35 (Evolence; Ortho Dermatologics, Skillman, NJ) is a new, ribose crosslinked, highly purified, porcine-based collagen filler that does not require prior skin testing and has shown improved persistence compared with bovine collagen-based dermal fillers. In this article, we present the clinical outcomes of patients who have received treatment with a novel ribose crosslinked porcine collagen dermal filler for the correction of tear trough deformity.

  7. Fracture and Tribological Evaluation of Dental Composite Resins Containing Pre-polymerized Particle Fillers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The fracture and tribological evaluation of dental composite resin containing pre-polymerized particle fillers wereinvestigated. Composite resins, e.g. metafil, silux plus, heliomolar and palfique estelite were selected as specimensin order to evaluate the effects of pre-polymerized particle filler on the fracture and wear characteristics of compositeresins. In the wear tests, a ball-on-flat wear test method was used. The friction coefficient of metafil was quite high.The wear resistance of silux plus and palfique estelite was better than that of metafil and heliomolar underthe sameexperimental condition. The main wear mechanism of composite resins containing pre-polymerized particle fillers wasan abrasive wear by brittle fracture of pre-polymerized particles and by debonding of fillers and matrix.

  8. Use of Fillers, Pigments and Additives in Fouling-Release Coatings: a Literature Review

    OpenAIRE

    Tamaev, Nail; Kiil, Søren; Noguer, Albert Camós; Olsen, Stefan Møller

    2015-01-01

    Polydimethylsiloxane (PDMS)-based fouling-release coatings represent a non-toxic alternative in the area of marine protection. Many researches and testing procedures are dedicated to the challenge of exploring of effective, reliable and high-performance constituents of the coatings ‒ fillers, pigments and additives ‒ in order to achieve the desired and long-lasting fouling-release properties.Primarily, coating formulations are prepared on the basis of PDMS with inorganic fillers such as fumed...

  9. A preliminary study on filler metals for vacuum brazing of Al/Ti

    Institute of Scientific and Technical Information of China (English)

    朱颖; 赵鹏飞; 康慧; 胡刚; 曲平

    2002-01-01

    In this paper, nine new filler metals contained Sn and Ga based on Al-11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.

  10. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    OpenAIRE

    Vučinić Dušica R.; Jovanović Vladimir D.; Kolonja Božo M.; Sekulić Živko T.; Mihajlović Slavica R.

    2012-01-01

    In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler) such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaki...

  11. Mechanical properties of polyvinyl chloride mixtures with the addition of modified calcite as filler

    OpenAIRE

    Mihajlović, Slavica R.; Sekulić, Živko T.; Vučinić, Dušica R.; Jovanović, Vladimir D.; Kolonja, Božo M.

    2012-01-01

    In this study, mechanical properties of PVC mixtures (PVC, stabilizer, lubricant and filler) such as tensile strength, tensile elongation, breaking strength and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure had better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking s...

  12. Influence of filler wire composition on weld microstructures of a 444 ferritic stainless steel grade

    OpenAIRE

    Villaret, Vincent; Deschaux-Beaume, Frédéric; Bordreuil, Cyril; Rouquette, Sébastien; Chovet, Corinne

    2013-01-01

    International audience; Seven compositions of metal cored filler wires for Gas Metal Arc Welding (GMAW), containing the same weight percent of chromium (Cr) and molybdenum (Mo) as 444 steel, but with different titanium (Ti) and niobium (Nb) contents were investigated. Experimental results pointed out that the filler wire Ti content required to be twice time more than the amount expected in the deposited metal. This was due to the low Ti transfer ratio during arc welding. Moreover, Ti increase...

  13. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    OpenAIRE

    Lynnelle Smith; Kimberly Cockerham

    2011-01-01

    Lynnelle Smith1, Kimberly Cockerham21Ophthalmology Department, Loma Linda University, Loma Linda, CA, USA; 2Ophthalmology Department, Stanford University, Palo Alto, CA, USAAbstract: Hyaluronic acid (HA) dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal ...

  14. Severe Acute Local Reactions to a Hyaluronic Acid-derived Dermal Filler

    OpenAIRE

    Van Dyke, Susan; Hays, Geoffrey P.; Caglia, Anthony E.; Caglia, Michael

    2010-01-01

    Injectable fillers are normally well tolerated by patients with little or no adverse effects. The most common side effects include swelling, redness, bruising, and pain at the injection site. This report describes three cases in which patients injected with a hyaluronic acid-derived injectable filler that is premixed with lidocaine developed adverse reactions including persistent swelling, pain, and nodule formation. Two of the three patients' abscesses were cultured for aerobic and anaerobic...

  15. [Determination of Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES].

    Science.gov (United States)

    Yang, X

    1997-06-01

    A method of simultaneous and direct determination for Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES is reported. The spectral interferences and effect of acidity have been investigated. Working conditions were optimized. The method has been applied to the analysis of silver brazing filler metals with RSD of 4-7% and recovery of 94-105%. This method was accurate, simple and rapid.

  16. Development of a SMA-Based Slat-Cove Filler for Reduction of Aeroacoustic Noise Associated With Transport-Class Aircraft Wings

    Science.gov (United States)

    Turner, Travis L.; Kidd, Reggie T.; Hartl, Darren J.; Scholten, William D.

    2013-01-01

    Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were deployed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design.

  17. Reheat cracking susceptibility of P23 (7CrWVMoNb9-6) steel welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, Pekka; Salonen, Jorma; Auerkari, Pertti; Rantala, Juhani; Holmstroem, Stefan [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Reheat cracking sensitivity of 7CrWVMoNb9-6 (P23) thick-section multipass welds has been investigated by Gleeble simulation, mechanical testing, fractography and metallography. The results demonstrate that the experimental weld metal made using a high-Nb-W-Ti-B type filler metal was sensitive to reheat cracking, with a reduction of area no more than 2-3% in the BWI reheat cracking (RC) test. Welds made using a high-W -low-Ti type filler metal with Nb content similar to the parent steel, as well as welds make using a Ni-Nb-Ti-free-(W-free) type filler metal with the chemical composition closer to P24 grade material, were more ductile and crack-resistant, though with reduced cross-weld creep strength. Fractography of RC test specimens showed evidence of pronounced localisation of damage at the prior austenite grain boundaries of the thermally reheated, experimental P23 weld metal. The reheat cracking susceptibility of the less ductile weld metal was apparently related both to the chemical composition (higher B, Nb and Ti content) and sub-structural features of the coarse-grained reheated weld metal microstructure. Appropriate single- and multi-cycle thermal Gleeble simulations to produce representative HAY and reheated weld metal microstructures (as function of peak temperature), in conjunction with the BWI RC test were successfully applied to characterise the reheat cracking sensitivity of the candidate weld metals and parent steel HAZ. (orig.)

  18. Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal

    Science.gov (United States)

    Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush

    2016-10-01

    Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.

  19. Computational study of filler microstructure and effective property relations in dielectric composites

    Science.gov (United States)

    Wang, Yu U.; Tan, Daniel Q.

    2011-05-01

    Phase field modeling and computer simulation is employed to study the relations between filler microstructures and effective properties of dielectric composites. The model solves electrostatic equations in terms of polarization vector field in reciprocal space using a fast Fourier transform technique and parallel computing algorithm. Composites composed of linear constituent phases of different dielectric constants are considered. Interphase boundary conditions are automatically taken into account without explicitly tracking interphase interfaces in the composites. Various factors associated with filler microstructures are systematically investigated, including dielectric constant mismatch between fillers and matrix, particle size, shape, orientation, volume fraction, and spatial arrangement as well as directional alignment. Heterogeneous distributions of polarization, charge density, and local electric field are calculated for each composite microstructure, based on which effective dielectric constant and dielectric anisotropy of the composites are determined. It is found that electrostatic interactions among high-dielectric-constant fillers embedded in low-dielectric-constant matrix play critical roles in determining the composite properties, which sensitively depend on filler arrangement and, especially, directional alignment into fibrous microstructures (chains). Such microstructurally engineered composites, whose fillers are not randomly dispersed, exhibit strong dielectric anisotropy despite all constituent components being isotropic.

  20. Hybrid filler composition optimization for tensile strength of jute fibre-reinforced polymer composite

    Indian Academy of Sciences (India)

    ANURAG GUPTA; HARI SINGH; R SWALIA

    2016-09-01

    In present research work, pultrusion process is used to develop jute fibre-reinforced polyester (GFRP) composite and experiments have been performed on an indigenously developed pultrusion experimental setup. The developed composite consists of natural jute fibre as reinforcement and unsaturated polyester resin as matrix with hybrid filler containing bagasse fibre, carbon black and calcium carbonate (CaCO$_3$). The effect of weight content of bagasse fibre, carbon black and calcium carbonate on tensile strength of pultruded GFRP composite is evaluated and the optimum hybrid filler composition for maximizing the tensile strength is determined. Different compositions of hybrid filler are prepared by mixing three fillers using Taguchi L$_9$ orthogonal array. Fifteen percent of hybrid filler of different composition by weight was mixed in the unsaturated polyester resin matrix. Taguchi L$_9$ orthogonal array (OA) has been used to plan the experiments and ANOVA is used for analysing tensile strength. A regression model has also been proposed to evaluate the tensile strength of the composite within 7% error by varying the abovefillers weight. A confirmation experiment was performed which gives 73.14 MPa tensile strength of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  1. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  2. Study on the Functionality of Nano-Precipitated Calcium Carbonate as Filler in Thermoplastics

    Science.gov (United States)

    Basilia, Blessie A.; Panganiban, Marian Elaine G.; Collado, Archilles Allen V. C.; Pesigan, Michael Oliver D.; de Yro, Persia Ada

    This research aims to investigate the functionality of nano-precipitated calcium carbonate (NPCC) as filler in thermoplastic resins based on property enhancement. Three types of thermoplastics were used: polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC). The resins were evaluated by determining the effect of different NPCC loading on the chemical structure, thermal and mechanical properties of thermoplastics. Results showed that there was an interfacial bonding with the NPCC surface and the thermoplastics. Change in absorption peak and area were predominant in the PVC filled composite. There was a decreased in crystallinity of the PE and PP with the addition of filler. Tremendous increase on the tensile and impact strength was exhibited by the NPCC filled PVC composites while PE and PP composites maintained a slight increase in their mechanical properties. Nano-sized filler was proven to improve the mechanical properties of thermoplastics compared with micron-sized filler because nano-sized filler has larger interfacial area between the filler and the polymer matrix.

  3. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  4. Laser brazing of inconel 718 alloy with a silver based filler metal

    Science.gov (United States)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  5. Influence of Temperature on Sulfate Attack of Limestone Filler Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5 ℃, 20 ℃ and alternate temperature between 5 ℃ and 20 ℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5 ℃ and 20 ℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15 ℃).

  6. Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler

    Science.gov (United States)

    Suryani; Agusnar, Harry; Wirjosentono, Basuki; Rihayat, Teuku; Nurhanifa

    2017-07-01

    PLA (Poly Lactid Acid) - Bentonite polymer nanocomposite which is a combination of natural and nanometer-scale inorganic substances created through three processes, mixing using a melt blending, molding with a hot press using specimens Standard ASTM D 638 Type IV and drying. In this study, PLA combined with two types of natural bentonite obtained from different areas to find differences in the quality of the results of characterization. To optimize the performance of filler, before mixing, bentonite have to furificate first with (NaPO3)6 and also open the interlayer space with CTAB. D-spacing of bentonite imterlayer were analyze by X-Ray difraction (XRD). Characterization bionanocomposite resulting morphologic structure was tested using a Transmission Electron Microscope (TEM). Mechanical analysis of PLA-bentonite nanocomposite in the form of tensile strength was tested using a tensile test specimens of standard American Standard for Testing Materials (ASTM) D 638 Type 4, and thermal resistance using Thermo Gravimetric Analysis (TGA).

  7. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  8. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  9. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers

    Directory of Open Access Journals (Sweden)

    Laura Fiocco

    2015-05-01

    Full Text Available Wollastonite (CaSiO3 and diopside (CaMgSi2O6 silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.

  10. Self-monitoring electrically conductive asphalt-based composite containing carbon fillers

    Institute of Scientific and Technical Information of China (English)

    WU Shao-peng; LIU Xiao-ming; YE Qun-shan; LI Ning

    2006-01-01

    A new novel function materials,structure self-monitoring asphalt-based composite was introduced. The results show that the output resistance of electrically conductive asphalt-based composites would change under cyclic loading and vehicle loading action. The resistance change of conductive asphalt-based composites was aroused by the variation of its interior structure. When the fatigue failure was studied,the larger cracks cut the continuous electrically conductive path and the electron is difficult to overcome the potential barrier of gap. In the early period,the slight deformation and microcrack may be recovered due to the viscoelasticity character of asphalt,which leads to some cracks close again,the output resistance changes a little. But with the shear process performs continuously,the cracks become larger and larger,which would cut the conductive path and block off the transition of electrons,and if the cracks are large enough,the pitch-matrix composites containing carbon fillers will lose electrically conductive function. When the rutting failure was studied,the flowage of conductive substance results in the decrease of substance due to electrically conducting and conductive path decreasing. The decrease of electron volume contribute to electrically conducting and large stone aggregate prevent the electron from transiting. In a word,the variation of output resistance is aroused by the variation of interior structure completely.

  11. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers

    Science.gov (United States)

    Fiocco, Laura; Elsayed, Hamada; Ferroni, Letizia; Gardin, Chiara; Zavan, Barbara; Bernardo, Enrico

    2015-01-01

    Wollastonite (CaSiO3) and diopside (CaMgSi2O6) silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.

  12. Influence of Nanosilica Filler Content in LDPE Composites on Partial Discharge Characteristics

    Institute of Scientific and Technical Information of China (English)

    Z. Abdul-Malek; A.M. Azzin; Y.Z. Ariel; Aulia; K.Y. Lau; M. Jaafar

    2011-01-01

    Partial discharges (PDs) due to artificial void in samples of LDPE nanocomposite sheet have been investiga- ted in this work. PDs may cause the degradation of insulating materials and may affect the lifetime of high-voltage ap- paratus. An experimental work using sphere ball-plane electrode system (CIGRE Method II) and a 1.0 mm LDPE composite sheet was carried out. Different weight percentages of nanosilica (0%, 2%, 4%, 6% and 8%) were used. PD experimental results, such as PD magnitude and PD number (both PD pulse polarities), as functions of the ap- plied stress duration at a specified applied voltage were compared. The surface morphology of specimens was also presented and this conforms to the PD findings. The experimental results show that the PD characteristics of the LDPE generally improve with the introduction of nanosilica, the composite with the highest content of filler, namely the 8% (wt) nanosilica sample has the least partial discharge activities.

  13. Effect of polymer additives on characteristics of direct-current motor with liquid dielectric filler

    Science.gov (United States)

    Ivanov, V. I.; Bashkatova, S. T.; Lubsanova, A. A.; Tokarev, S. B.; Zadaroshnaya, G. N.; Pastukhova, I. N.

    1984-11-01

    In d.c. motors filled with dielectric of the hydrocarbon kind hydrodynamic losses can constitute up to 40% of the total losses. Consequently, a study was made to determine the proper additive and amount to reduce the hydraulic drag without dehomogenizing the liquid filler over long operating periods. Two polymethacrylates, never before used for this application were selected. Two motors of different size, a 0.8 kW DPK and a 6 kW DPK, were tested in kerosene with 0.005-1.0 wt% of these additives. An evaluation of the data, including the hydraulic drag coefficient as a function of the Reynolds number and the temperature rise at critical motor components (armature winding in slots, armature endturns on drive side, armature teeth, liquid in interpolar space, field winding, pole pieces) with or without additive, has yielded the optimum range of additive concentration for each motor size. An evaluation of the heat transfer at critical surfaces, with the aid of dimensional analysis, has yielded the semiempirical relation Nu=CRe0.65Pr0.4Km (C- constant factor different for each surface, Km- constant factor with exponent different for each additive polymer materials). The results can be extended to transformer oil and diesel oil as liquid motor-filling medium.

  14. A PRELIMINARY INVESTIGATION INTO THE USE OF ACID-TOLERANT PRECIPITATED CALCIUM CARBONATE FILLERS IN PAPERMAKING OF DEINKED PULP DERIVED FROM RECYCLED NEWSPAPER

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-08-01

    Full Text Available The use of acid-tolerant precipitated calcium carbonate fillers, including phosphoric acid/sodium hexametaphosphate modified precipitated CaCO3 filler, and sodium silicate/phosphoric acid/sodium hexametaphos-phate modified precipitated CaCO3 filler in papermaking of deinked pulp derived from recycled newspaper was explored. These two acid-tolerant fillers provided considerably more brightness improvement in papers in comparison the unmodified filler, presumably indicating alleviated pulp darkening achieved as a result of better acid-resistant properties. The addition of acid-tolerant fillers into the furnish slurries gave lower system pH as compared with unmodified filler. Among the three fillers used in this work, the effect on retention of modification of the filler with sodium silicate/phosphoric acid/sodium hexametaphosphate was probably the best, as evaluated from ash content measurements. For air permeability of the paper, the use of acid-tolerant fillers provided slightly more improvement in comparison to the unmodified filler. For tensile and burst strength of the paper, the use of sodium silicate/phosphoric acid/sodium hexameta-phosphate modified precipitated calcium carbonate filler gave better results as compared with the other two fillers. Additionally, the improving effect of acid-tolerant fillers on furnish static drainage was found to be slightly weaker than that of unmodified filler.

  15. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Merolli, Antonio [Department of Orthopaedic Surgery, The Catholic University in Rome, Complesso Columbus, via Moscati 31, 00168 Rome (Italy); Nicolais, Luigi; Ambrosio, Luigi [Institute of Composite and Biomedical Materials, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80130 Napoli (Italy); Santin, Matteo [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4 GJ (United Kingdom)

    2010-02-15

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  16. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  17. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing

    Directory of Open Access Journals (Sweden)

    Gabriela Ulian de Oliveira

    2012-10-01

    Full Text Available OBJECTIVES: Nanofilled composite resins are claimed to provide superior mechanical properties compared with microhybrid resins. Thus, the aim of this study was to compare nanofilled with microhybrid composite resins. The null hypothesis was that the size and the distribution of fillers do not influence the mechanical properties of surface roughness and wear after simulated toothbrushing test. MATERIAL AND METHODS: Ten rectangular specimens (15 mm x 5 mm x 4 mm of Filtek Z250 (FZ2, Admira (A, TPH3 (T,Esthet-X (EX, Estelite Sigma (ES, Concept Advanced (C, Grandio (G and Filtek Z350 (F were prepared according to manufacturer's instructions. Half of each top surface was protected with nail polish as control surface (not brushed while the other half was assessed with five random readings using a roughness tester (Ra. Following, the specimens were abraded by simulated toothbrushing with soft toothbrushes and slurry comprised of 2:1 water and dentifrice (w/w. 100,000 strokes were performed and the brushed surfaces were reanalyzed. Nail polish layers were removed from the specimens so that the roughness (Ra and the wear could be assessed with three random readings (µm. Data were analyzed by ANOVA and Tukey's multiple-comparison test (α=0.05. RESULTS: Overall outcomes indicated that composite resins showed a significant increase in roughness after simulated toothbrushing, except for Grandio, which presented a smoother surface. Generally, wear ofnanofilled resins was significantly lower compared with microhybrid resins. CONCLUSIONS: As restorative materials suffer alterations under mechanical challenges, such as toothbrushing, the use of nanofilled materials seem to be more resistant than microhybrid composite resins, being less prone to be rougher and worn.

  18. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  19. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  20. A novel 3D sandwich structure of hybrid graphite nanosheets and silver nanowires as fillers for improved thermal conductivity

    Science.gov (United States)

    Zhuang, Xiao; Zhou, Yongcun; Liu, Feng

    2017-01-01

    We explored a novel 3D sandwich structure of fillers in the polymer matrix to enhance thermal conductivity. A variety of fillers in the polymer matrix play a significant role in the physical properties of the composite. Fillers containing particle and line structures are popular, and enhance the thermal and electrical conductivities. Therefore, filler-based matrix network improves conductivity. We propose a sandwich structure consisting of hybrid graphite nanosheets (two dimensions), and silver nanowires (AgNWs) (one dimension), to create a 3D sandwich structure of polyimide matrix with improved thermal conductivity. Surface treatment of graphite and silver nanowires were conducted to reduce the dielectric constant of the composite. We designed the filler of 20 wt% resulting in a high thermal conductivity of 3.21 W m‑1 K‑1 with 15% C@SiO2 and 5% AgNWs@SiO2 filler loading. The novel combination and structure markedly enhanced the thermal conductivity of the composite.

  1. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    Science.gov (United States)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  2. Effects of silane-modified fillers on properties of dental composite resin.

    Science.gov (United States)

    Aydınoğlu, Aysu; Yoruç, Afife Binnaz Hazar

    2017-10-01

    The effect of silanization on the mechanical, chemical, and physical properties of dental composites was investigated. Silica fillers were obtained from colloidal silica solution, Ludox® HS-40 and they were silanized by using 3-methacryloxypropyl trimethoxysilane (MPTMS) in an acidic media. Mineralogical and chemical structures of unsilanized and silanized fillers were determined by using XRD and FT-IR analyses. The modification of unsilanized/silanized fillers were investigated by performing XPS and TGA analyses. The morphological evaluations, surface area, and particle size measurements were performed by using SEM, BET, and Zeta-Sizer, respectively. Eventually, pure and amorphous silica fillers were obtained. Furthermore, the weight percentage of the silane in silica/silane structure was compatible with theoretical values. SEM images, surface area, and particle size measurements showed that agglomeration tendencies of silanized fillers were lower compared to silanized fillers because of the MPTMS addition. Experimental composites (5/10/10/5BisGMA/HEMA/UDMA/TEGDMA resin reinforced with 70wt% silanized/unsilanized SiO2) were fabricated into 4mm diameter×6mm thick discs for compressive strength (CS), angular flexural strength (AFS), curing depth (CD), and polymerization shrinkage (PS) on a 25×2×2mm rectangular Teflon mold for flexural strength (FS) and modulus of elasticity (E) tests. The curing depth (CD) and degree of polymerization percentage (DP) of composites were determined. Consequently, results showed that mechanical properties and DP of composite resins can be greatly influenced by silanization as a result of the organic matrix-inorganic filler interface bonding formed by silane structures. Despite of these findings, silanization of the SiO2 was not effected DC and PS values. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler.

    Science.gov (United States)

    You, Hi-Jin; Namgoong, Sik; Rhee, Sung-Mi; Han, Seung-Kyu

    2016-03-01

    A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts.

  4. Influence of different fillers on the properties of an experimental vinyl polysiloxane

    Directory of Open Access Journals (Sweden)

    Débora Könzgen MEINCKE

    2016-01-01

    Full Text Available Abstract The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i incorporation of fillers in different concentrations: (a 20 wt% fillers, and (b 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE, and pure aluminum hydroxide 40% (PAH groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength were observed when it was added to the composition of acrylic polymer (AP and fiberglass (FG in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  5. Characterization and the Pattern of Surfaces of Sealant with nano size Composite Materials

    Science.gov (United States)

    Quddos, A.; Samtio, N. H.; Syed, A. M.

    2013-06-01

    Nano composite sealant is low viscosity, room temperature cured, opaque and flowable nature. They have variety of uses such as potting, pressure sealant and shock resistant. Most important factor influencing use of fillers in polymer composites is their ability to effectively transfer the applied load in the matrix. The effective utilization of fillers in composites for structural applications depends strongly on the ability to disperse the nano fillers homogeneously in the matrix without damaging them. R-Belite supper epoxy adhesive (RBSEA) were formulated with different nano fillers (KCl, Al2O3, ZrO2, SiO2, ZrO2) at room temperature. The composite were prepared with the 0.02 to 0.10 weight ratios to promote the nucleation of the nanoparticles in the applied sealant. Two main problems which arise in improving the properties are poor dispersion of the fillers in the composite and weak bonding between nano fillers and the matrix. These problems are solved by mechanical and chemical means. It was observed that mechanical properties like tensile strength, elongation hardness etc and thermal properties were also improved with incorporation of nanofillers in the working applied polymer matrix. The dispersion of nano fillers in polymer matrix is studied by Scanning electron microscopy (SEM). The results confirm the presence of nanomaterial in RBSEA/fillers nanocomposites. SEM is also used to characterize the pattern of surfaces with nano size composite materials.

  6. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites.

    Science.gov (United States)

    Ozcan, M; Alander, P; Vallittu, P K; Huysmans, M-C; Kalk, W

    2005-01-01

    The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 microm Al2O3), (3) Silica coating (30 microm SiOx, CoJet-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p < 0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa).

  7. Microstructures and properties of low-melting-point Al-Cu-Si filler metals prepared by different technologies

    Institute of Scientific and Technical Information of China (English)

    Wang Zehua; Feng Hua; Jiang Shaoqun; Zhou Zehua

    2010-01-01

    The Al25Cu6. 5Si0. 09RE (RE = La and Ce) and Al25Cu10.5Si2Ni filler metals were prepared by common metal mold casting, copper plate chilling and rapid solidification, respectively. The microstructures and properties of these filler metals were studied. The results show that the as-casting and the corresponding rapid solidification filler metals have the same phases but their microstructures are different. The microstructure of rapid solidification filler metals consults of an a-Al solid solution, the 6 (Al2Cu) intermetallic compound and an Al-Cu-Si eutectk phase. Compared with the as-casting filler metal, the melting temperature ranges (△T) of the corresponding copper plate chilling and rapid solidification filler metals decrease and their wettabilities are improved because of the grain refinement and the improvement of composition uniformity. The wetting area of Al25Cu6.5Si0.09RE rapid solidification filler metal doubles that of the corresponding as-casting filler metal. It is hopeful that the properties of Al-Cu-Si filler metals will be improved by changing preparation technology.

  8. Electrical conductivity modeling of multiple carbon fillers in liquid crystal polymer composites for fuel cell bipolar plate applications

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.L.; Keith, J.M.; King, J.A. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering

    2008-08-15

    This study modelled the electrical conductivity of a single filler composite system using a general effective media (GEM) equation. The aim of the study was to investigate the use of synthetic graphite and carbon fiber in liquid crystal polymers for fuel cell bipolar plate applications. The polymer consisted of 73 mole per cent hydroxybenzoic acid and 27 mole per cent hydroxynaphthoic acid. Composites of various concentrations of single and multiple filler combinations were tested. A volumetric in-plane electrical conductivity test was conducted on all samples in order to measure voltage drop. A through-plane conductivity test was conducted to measure resistivity. The GEM equation was then used to model the conductivity data obtained during the tests. Results of the study showed that at 45 vol per cent, the electrical conductivity of the multiple filler composite was comparable to data obtained from single filler electrical conductivities. The electrical conductivity of the multiple filler composite at 60 per cent graphite and 10 per cent carbon fiber was comparable to the single filler carbon fiber composite, but lower than the single filler synthetic graphite composite. Results also showed that the GEM equation provided excellent agreement with results obtained during the experiments. It was concluded that the percolation threshold of the multiple filler composite was almost identical to the single carbon fiber filler, but lower than the single synthetic graphite composite. 35 refs., 3 tabs., 2 figs.

  9. Dielectric elastomer actuators of silicone rubber-titanium dioxide composites obtained by dielectrophoretic assembly of filler particles

    Science.gov (United States)

    Javadi, S.; Razzaghi-Kashani, M.

    2010-04-01

    Formation of controlled morphology of fillers in polymeric composites may be difficult to achieve by conventional methods such as mechanical shear or chemical methods. Tunable structure of filler and anisotropic properties in composites can be obtained by exploiting dielectrophoretic assembly of fillers in a polymer composite by using electric fields. In this study, different concentrations of Titanium Dioxide (TiO2) particles in silicone rubber matrix were assembled in a chain-like structure by using an alternating electric field. Silicone rubber matrix was vulcanized to transform the liquid to solid and maintain the filler structure in the desired direction. Generation of chain structure of filler was verified by Scanning Electron Microscopy (SEM) and equilibrium swelling. It was shown that dielectric permittivity of the oriented composite is higher whereas its dielectric loss factor is lower in the orientation (thickness) direction than those for the composites with random distribution of filler. This phenomenon was in agreement with results of dynamic-mechanical loss factor for these composites, and can be utilized in more efficient dielectric elastomer actuators. Elastic modulus is higher for the structured samples, but presence of titania filler induced a softening effect at higher strains where the actuators are practically being pre-stretched. A critical concentration of filler was distinguished as the percolation point at which the change in dielectric behavior is amplified. Using a simple blocking-force measurement, potential advantages of structured composites over the ones with randomly-distributed filler was explained for potential dielectric elastomer actuator applications.

  10. Electromagnetic shielding behavior of polyaniline using Red Mud (industrial waste) as filler in the X – band (8.2–12.4 GHz) frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Pande, Anu; Gairola, Preeti [Uttaranchal University, Prem Nagar, Dehradun (India); Sambyal, Pradeep [National Physical Laboratory (CSIR), K, S. Krishnan Marg, New Delhi (India); Gairola, S.P., E-mail: spgairola10@gmail.com [Uttaranchal University, Prem Nagar, Dehradun (India); Kumar, Vinod [Centre for Energy Studies, Indian Institute of Technology, New Delhi (India); Singh, Kuldeep [Central Electrochemical Research Institute (CSIR), Karaikudi, Tamilnadu (India); Dhawan, S.K. [National Physical Laboratory (CSIR), K, S. Krishnan Marg, New Delhi (India)

    2017-03-01

    In today’s times where pollution of all kinds is at its peak, numerous efforts are being made to find proper waste disposal methods. Moving on the same lines, this paper presents an economical and environmentally safe method of disposal of red mud to control electromagnetic pollution by using it as an electromagnetic shielding material. Composites of PANI/RM have been prepared by in-situ chemical oxidative polymerization and have been tested for structural analysis, thermal stability and magnetization by XRD, TGA and VSM techniques respectively. Further, the composites have shown shielding effectiveness of 33–41 dB (>99.99% attenuation) in 8.2–12.4 GHz frequency range (X-band) at a thickness of 3 mm which is absorption dominated. Thus, the results conclude that the incorporation of red mud into polymer matrix can serve two purposes – firstly, it can provide a good alternative as a shielding material and secondly, it can prove to be a feasible way of waste disposal. - Highlights: • An attempt to find out application of red mud in controlling electromagnetic pollution. • Waste utilization for technology: Red mud is an insoluble industrial waste used for EMI Shielding application. • Using and testing of Red Mud as filler instead of the other widely used fillers. • Characterization of materials (Red Mud/Polyaniline composite) for EMI shielding Application. • EMI Shielding results discussions of new material (Red Mud/Polyaniline).

  11. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.

    Science.gov (United States)

    Wu, Chang-Chin; Yang, Kai-Chiang; Yang, Shu-Hua; Lin, Min-Huei; Kuo, Tzong-Fu; Lin, Feng-Huei

    2012-04-01

    While many different filler materials have been applied in vertebral augmentation procedures, none is perfect in all biomechanical and biological characteristics. To minimize possible shortages, we synthesized a new biodegradable, injectable, and premixed composite made from poly(propylene fumarate) (PPF) and biphasic α-tricalcium phosphate (α-TCP)/hydroxyapatite (HAP) ceramics powder and evaluated the material properties of the compound in vitro. We mixed the PPF cross-linked by N-vinyl pyrrolidinone and biphasic α-TCP/HAP powder in different ratios with benzoyl peroxide as an initiator. The setting time and temperature were recorded, although they could be manipulated by modulating the concentrations of hydroquinone and N,N-dimethyl-p-toluidine. Degradation, cytocompatibility, mechanical properties, and radiopacity were analyzed after the composites were cured by a cylindrical shape. We also compared the study materials with poly(methyl methacrylate) (PMMA) and PPF with pure HAP particles. Results showed that lower temperature during curing process (38-44°C), sufficient initial mechanical compressive fracture strength (61.1±3.7MPa), and gradual degradation were observed in the newly developed bone filler. Radiopacity in Hounsfield units was similar to PMMA as determined by computed tomography scan. Both pH value variation and cytotoxicity were within biological tolerable limits based on the biocompatibility tests. Mixtures with 70% α-TCP/HAP powder were superior to other groups. This study indicated that a composite of PPF and biphasic α-TCP/HAP powder is a promising, premixed, injectable biodegradable filler and that a mixture containing 70% α-TCP/HAP exhibits the best properties.

  12. 设施园艺基质填料机设计与性能研究%Design and performance investigation for substrate filler in protected horticulture

    Institute of Scientific and Technical Information of China (English)

    魏俞涌; 陆军; 盛奎川; 钱湘群; 沈俊峰

    2013-01-01

    Substrate filler is one of the important equipments for mechanization growing seedlings . Mechanized breeding has been developed as a new horticulture technology in recent ten years worldwide . It has become a professional commercial seedling production way in many countries , particularly in Europe and America . Development of substrate filler machine and seedling production line can promote the seedling production in protected horticulture . With the rapid development of modern horticultural production , the demand for substrate filler is increasing dramatically . However , the composition of substrate filler is very complicated in structure . It is difficult to develop a single type of substrate filler to meet the demand of all crop growth . Furthermore , automatic feeding device is complex and expensive in the fierce competition in the growing market . Therefore , people are looking for more convenient and effective seedling medium automatic feeding devices , which can not only fill substrate in plugs , but also mix matrix uniformity according to various specifications . Now , the design , performance testing and filled result of TLZ‐400 type substrate filler were reported . This filler was composed of material tank , lifting device , matrix tray conveying agency , vibration , rotating scraper , bodies brush , and electrical control components . The working principle is that the mixing substrate is transported to plug over and fall into the tray on a conveyor belt after promotion agencies raise , followed by scraper shaving , vibration shaking , and brush cleaning , so as to achieve the purpose of smooth and uniform mixing of substrate in plugs . The purpose was to investigate and confirm the main technical parameters of TLZ‐400 type substrate filler . The technical characteristic parameters ,productivity , and power consumption of TLZ‐400 type substrate filler were measured by using selected perlite ( 50% ) , organic fertilizer and black earth ( 30

  13. MRI in the evaluation of facial dermal fillers in normal and complicated cases

    Energy Technology Data Exchange (ETDEWEB)

    Di Girolamo, Marco [Rome Univ. (Italy). Radiology Unit; Rome Univ. (Italy). Dept. of Radiology - Sant' Andrea Hospital; Mattei, Mauro [Rome Univ. (Italy). Radiology Unit; Signore, Alberto [Rome Univ. (Italy). Nuclear Medicine Unit; University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Grippaudo, Francesca Romana [Rome Univ. (Italy). Plastic Surgery Unit

    2015-05-01

    To ascertain by MRI the presence of filler injected into facial soft tissue and characterize complications by contrast enhancement. Nineteen volunteers without complications were initially investigated to study the MRI features of facial fillers. We then studied another 26 patients with clinically diagnosed filler-related complications using contrast-enhanced MRI. TSE-T1-weighted, TSE-T2-weighted, fat-saturated TSE-T2-weighted, and TIRM axial and coronal scans were performed in all patients, and contrast-enhanced fat-suppressed TSE-T1-weighted scans were performed in complicated patients, who were then treated with antibiotics. Patients with soft-tissue enhancement and those without enhancement but who did not respond to therapy underwent skin biopsy. Fisher's exact test was used for statistical analysis. MRI identified and quantified the extent of fillers. Contrast enhancement was detected in 9/26 patients, and skin biopsy consistently showed inflammatory granulomatous reaction, whereas in 5/17 patients without contrast enhancement, biopsy showed no granulomas. Fisher's exact test showed significant correlation (p < 0.001) between subcutaneous contrast enhancement and granulomatous reaction. Cervical lymph node enlargement (longitudinal axis >10 mm) was found in 16 complicated patients (65 %; levels IA/IB/IIA/IIB). MRI is a useful non-invasive tool for anatomical localization of facial dermal filler; IV gadolinium administration is advised in complicated cases for characterization of granulomatous reaction. (orig.)

  14. Phenolic rigid organic filler/isotactic polypropylene composites. Ⅲ. Impact resistance property

    Institute of Scientific and Technical Information of China (English)

    Heming LIN; Dongming QI; Jian HAN; Zhiqi CAI; Minghua WU

    2009-01-01

    A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the impact resistance property of PP/KT specimens (with similar interparticles distance, 1.8 μm) was studied by notched izod impact tests. It was found that the brittle-ductile transition (BDT) of the PP/KT microcomposites took place at the filler content of about 4%, and the impact strength attains the maximum at 5% (with filler particles size of 1.5 μm), which is about 2.5 times that of unfilled iPP specimens. The impact fracture morphology was investigated by scanning electron microscopy (SEM). For the PP/KT specimens and the high-density polyethylene/KT (HDPE/KT) specimens in ductile fracture mode, many microfibers could be found on the whole impact fracture surface. It was the filler particles that induced the plastic deformation of interparticles ligament and hence improved the capability of iPP matrix on absorbing impact energy dramatically. The determinants on the BDT were further discussed on the basis of stress concentration and debonding resistance. It can be concluded that aside from the interparticle distance, the filler particles size also plays an important role in semicrystal-line polymer toughening.

  15. EFFECT OF INCORPORATING STARCH/SILICA COMPOUND FILLERS INTO UNCURED SSBR ON ITS DYNAMIC RHEOLOGICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Yihu Song; Qiang Zheng

    2008-01-01

    The dynamic rheological properties of a composite composed of solution-polymerized styrene butadiene rubber (SSBR) filled with starch/silica (SiO2) compound fillers were studied by means of temperature,frequency and strain sweeps,respectively,and the influence of the starch content in the compound fillers (SCCF) on the rheological behaviors was discussed.It is found from frequency sweeps that a maximum of loss tangent (tanδ) appears at 20 rad/s,which is independent of SCCF.G' of the composites decreases whereas tanδ and critical strain (γc) of Payne effect increase with increasing SCCF.The reasons for these are believed to be that both SiO2 and starch could form filler networks due to interaction of hydrogen bounding between them,and the interactions between SiO2 and SSBR are stronger than those between starch and SSBR.Moreover,increasing SCCF in the compound fillers is in favor of improving the stability of the filler networks.Furthermore,tanδ values at 0℃ and 60℃ representing the properties for the wet traction and the rolling resistance of SSBR composites respectively can be improved by partial replacing SiO2 with starch.However,the reinforcement effect of starch to SSBR is weaker than that of SiO2 due to starch agglomeration.

  16. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    Directory of Open Access Journals (Sweden)

    Lynnelle Smith

    2011-03-01

    Full Text Available Lynnelle Smith1, Kimberly Cockerham21Ophthalmology Department, Loma Linda University, Loma Linda, CA, USA; 2Ophthalmology Department, Stanford University, Palo Alto, CA, USAAbstract: Hyaluronic acid (HA dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal is to review the current literature on HA fillers and compare outcomes with and without lidocaine. We found adjunctive lidocaine significantly decreases pain during injection and postinjection with corresponding increased patient satisfaction. The efficacy and safety profile appears unchanged. Rare complications with HA fillers and those associated with constituents of the product, contaminants, and lidocaine are reviewed. The corrective effects of HA fillers are temporary; repeat treatment is required to maintain results. Minimizing pain is crucial to optimize patient satisfaction.Keywords: hyaluronic acid, lidocaine, drug toxicity, hypersensitivity, collagen, herpes simplex

  17. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  18. Effect of Filler and Heat Treatment on the Physical and Mechanical Properties of the Brazed Joint between Carbide Tip and Steel

    Science.gov (United States)

    Winardi, Y.; Triyono; Wijayanta, A. T.

    2017-02-01

    In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.

  19. Numerical evaluation of bulk material properties of dental composites using two-phase finite element models.

    Science.gov (United States)

    Li, Jianying; Li, Haiyan; Fok, Alex S L; Watts, David C

    2012-09-01

    The aim of this study was to numerically evaluate the effects of filler contents and resin properties on the material properties of dental composites utilizing realistic 3D micromechanical finite element models. 3D micromechanical finite element models of dental composites containing irregular fillers with non-uniform sizes were created based on a large-scale, surrogate mixture fabricated from irregularly shaped stones and casting resin. The surrogate mixture was first scanned with a micro-CT scanner, and the images reassembled to produce a 3D finite element model. Different filler fractions were achieved by adjusting the matrix volume while keeping the fillers unchanged. Polymerization shrinkage, Young's modulus, Poisson's ratio and viscosity of the model composites were predicted using the finite element models, and their dependence on the filler fraction and material properties of the resin matrix were considered. Comparison of the numerical predictions with available experimental data and analytical models from the literature was performed. Increased filler fraction resulted in lower material shrinkage, higher Young's modulus, lower Poisson's ratio and higher viscosity in the composite. Predicted shrinkage and Young's modulus agreed well with the experimental data and analytical predictions. The McGee-McCullough model best fit the shrinkage and Young's modulus predicted by the finite element method. However, a new parameter, used as the exponent of the filler fraction, had to be introduced to the McGee-McCullough model to better match the predicted viscosity and Poisson's ratio with those from the finite element analysis. Realistic micro-structural finite element models were successfully applied to study the effects of filler fraction and matrix properties on a wide range of mechanical properties of dental composites with irregular fillers. The results can be used to direct the design of such materials to achieve the desired mechanical properties. Published by

  20. Polymer composites filled with powders as polymer graded materials

    Directory of Open Access Journals (Sweden)

    J. Stabik

    2010-11-01

    Full Text Available Purpose: The goal of this paper is to present general overview of research results on Polymeric Gradient Materials (PGMs performed in Division of Metallic and Polymeric Materials Processing of Silesian University of Technology. Achievements in research on production technologies, compositions and properties are presented.Design/methodology/approach: Two basic technologies that were used for preparing polymeric gradient composites filled with powders are presented (centrifugal and gravity casting. Composites based on epoxy resin and filled with iron, ferrite, graphite, coal powders are characterized. Among other, the following properties were tested: surface resistivity, coefficient of friction, magnetic induction, filler particles distribution in polymeric matrix and others.Findings: Casting methods presented in this article can successfully be used to produce polymer composites characterized by gradual distribution of powder content and by this way by gradual distribution of properties. Results show that it is possible not only to achieve but also in some extend to control gradient of filler concentration. Especially in centrifugal casting is possible to influence gradient of filler concentration and in this way gradient of many properties.Research limitations/implications: The main problem in presented researches was to introduce higher quantities of filler. The side effect of high filler content was high viscosity. Filler particles were added to the epoxy matrix in range from 3vol.% to 50vol.% depending on filler properties, method of casting etc.Practical implications: Elaborated PGMs may be applied in many fields such as medicine, electronics, mining industry, machine building industry and many others.Originality/value: New type of polymeric gradient composites were achieved using centrifugal and gravity casting technique. Influence of casting parameters, concentration and type of filler on composites properties was researched.

  1. Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler

    Energy Technology Data Exchange (ETDEWEB)

    Stolarska, M.; Niedzicki, L.; Borkowska, R.; Zalewska, A.; Wieczorek, W. [Department of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2007-12-31

    Gel polymer electrolyte membranes composed of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) and surface modified aluminum or titanium oxide were prepared according to the so-called Bellcore process. Modifications were done by impregnating ceramic powder with 1-8% sulphuric acid aqueous solutions. Filler grain size varied from 10 to 12 {mu}m. The membranes were conditioned in liquid electrode - 1 mol/l LiClO{sub 4} in PC. The ionic conductivity of polymer membrane increased by more than one order of magnitude upon the addition of filler into polymer host. For electrolyte membrane containing modified aluminum or titanium oxide, the interfacial resistance is stable in time as opposed to unmodified gel electrolytes. An increase in lithium transference number is observed upon the addition of filler. Lithium transference number also increases with the fraction of acidic surface groups. (author)

  2. Aminoalcohol functionalized zirconium phosphate as versatile filler for starch-based composite membranes.

    Science.gov (United States)

    Pica, Monica; Donnadio, Anna; Bianchi, Valentina; Fop, Sacha; Casciola, Mario

    2013-08-14

    Microcrystalline zirconium phosphate was exfoliated by treatment with aqueous solutions of α,ω-alkylaminoalcohols and employed for the fabrication of potato starch composite membranes. Glycerol-based and glycerol-free composite membranes, containing 5 wt% of filler, were prepared from gelatinized starch and characterized for their physico-chemical properties. Despite of a partial filler reaggregation, as revealed by XRD and SEM analysis, all the composites exhibited a significant increase in the Young's modulus with respect to the glycerol-starch membrane, up to 80% and 190% for the glycerol-based and the glycerol-free composites, respectively. For both kinds of membranes the filler delays to a large extent the starch decomposition above about 300°C. A significant reduction in the water uptake of the composites was also observed with respect to the neat glycerol-based membrane, up to about 70% for the glycerol-free composites.

  3. Kenaf Powder Filled Recycled High Density Polyethylene/Natural Rubber Biocomposites: The Effect of Filler Content

    Directory of Open Access Journals (Sweden)

    Xuan Viet Cao

    2012-09-01

    Full Text Available The performance of kenaf powder (KP as filler for recycled high density polyethylene (rHDPE/natural rubber (NR thermoplastic elastomer (TPE composites was investigated. The composites with different filler loading were prepared in a Haake internal mixer. Increasing KP loading in rHDPE/NR/KP biocomposites reduced the tensile strength, elongation at break but increased the stabilization torque and the tensile modulus. SEM study of fracture surface indicated that fibrillation of rHDPE was reduced and detachment of kenaf powder from polymer matrix was present particularly at high filler loading. These observations were responsible for the deterioration of tensile strength and elongation at break of rHDPE/NR/KP biocomposites. Water absorption study also showed that the water absorption of these biocomposites increased with increasing KP content.

  4. Influence of NdFeB Fillers on Tensile and Electromagnetic Properties of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Puripat LERTSURAWAT

    2009-06-01

    Full Text Available Tensile and electromagnetic properties of hard magnetic natural rubber composites were studied. In a fabrication stage, neodymium-iron-boron (NdFeB magnets were recycled from electronic wastes, broken and then ball-milled for 1 - 3 h. The NdFeB powder was then incorporated into natural rubber (NR by a 2-roll mill technique. Since the NdFeB powder behaved as a non-reinforced filler, thus, it inhibited cross-linking and stress-induced recrystallization. Therefore, the cure time and the tensile strength of the NdFeB-NR composites were reduced compared to the control sample without magnetic fillers. The addition of NdFeB fillers improved the electrical permittivity of NR and the magnetic moment in NdFeB-NR composites could be measured by a fluxmeter.

  5. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    Science.gov (United States)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  6. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  7. INFLUENCE OF SURFACE-MODIFICATION FOR CALCIUM CARBONATE ON THE INTERACTION BETWEEN THE FILLERS AND POLYDIMETHYLSILOXANE

    Institute of Scientific and Technical Information of China (English)

    Xiao-ming Xu; Xiao-le Tao; Qiang Zheng

    2008-01-01

    The surface of calcium carbonate (CaCO3) particles was modified with stearic acid (SA) and the chemicalstructures of the product were characterized by FT-IR analysis. The interaction between polydimethylsiloxane (PDMS) andCaCO3 fillers with different surface character was investigated by means of dynamic rheologicai and bound rubber tests foruncured compounds and mechanical properties measurements for the corresponding vulcanites. The results of dynamic testsindicate that with the increase of SA mass fraction, the span of the linear viscoelastic region broadens and the height of themodulus plateau decreases. The reasons for these are ascribed to that the SA decreases the surface energy of filler particlesand weakens their tendency to agglomerate. Moreover, the results of mechanical measurements reveal that the vulcanizedcompound filled with modified filler has a relative high tensile strength induced by a reinforced interaction between fillerand polymer matrix, which is confirmed by the bound rubber tests and transmission electron microscopy (TEM) observations.

  8. Optical characterization of one dental composite resin using bovine enamel as reinforcing filler

    Science.gov (United States)

    Tribioli, J. T.; Jacomassi, D.; Rastelli, A. N. S.; Pratavieira, S.; Bagnato, V. S.; Kurachi, C.

    2012-01-01

    The use of composite resins for restorative procedure in anterior and posterior cavities is highly common in Dentistry due to its mechanical and aesthetic properties that are compatible with the remaining dental structure. Thus, the aim of this study was to evaluate the optical characterization of one dental composite resin using bovine enamel as reinforcing filler. The same organic matrix of the commercially available resins was used for this experimental resin. The reinforcing filler was obtained after the gridding of bovine enamel fragments and a superficial treatment was performed to allow the adhesion of the filler particles with the organic matrix. Different optical images as fluorescence and reflectance were performed to compare the experimental composite with the human teeth. The present experimental resin shows similar optical properties compared with human teeth.

  9. Effects of pyrolysis temperature and fillers on joining of ceramics via silicone resin

    Institute of Scientific and Technical Information of China (English)

    SUO Jun; CHEN Zhao-hui; ZHENG Wen-wei; HAN Wei-min

    2005-01-01

    The joining of graphite, ceramic SiC and Cf/SiC composites via preceramic silicone resin(SR) at high temperature (800-1400℃) was studied. The curing and pyrolysis process of SR, pyrolysis temperature, inert and active fillers were especially discussed. The results show that the curing process of SR was accomplished by consuming Si-OH. The temperature of 1200℃ is the appropriate treating temperature for graphite and SiC ceramic, and the temperature of 1400℃ is suitable for Cf/SiC composites. Inert filler SiC powder(5%, mass fraction) has much positive influence on the shear strength of the joints. Active filler nano Ai, Si powder can greatly improve the properties of the joints treated at high temperature. The improvement is over 700%.

  10. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... classification, and had length/thickness (L/T) aspect ratios of 2.00 and 1.82, respectively. The particles were characterized with X-ray micro-computed tomography, coupled with spherical harmonic analysis to mathematically describe the full 3-D shape of the particles, while the rheological performance...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  11. Mechanical evaluation of asphalt-aggregate mixtures prepared with fly ash as a filler replacement

    Energy Technology Data Exchange (ETDEWEB)

    Tapkin, T. [Anadolu Univ., Eskisehir (Turkey). Dept. of Civil Engineering

    2008-01-15

    This paper examined methods of introducing fly ash waste products as a filler in asphalt concrete mixtures. A literature review of studies involving fly ash and asphalts was conducted. The effect of fly ash filler replacements on the mechanical properties of asphalt-aggregate mixtures was investigated. A dense bituminous calcareous aggregate was used as a reference mixture for a series of tests. Three types of fly ash were investigated, notably (1) portland cement; (2) lime; and (3) control specimens. Changes in elastic strain, elastic modulus, and permanent strain properties of the asphalt mixtures were determined through a series of fatigue tests. The behaviour of the asphalt concrete pavements were analyzed under applied loads. Results of the tests showed that the fatigue life of the fly ash specimens was higher than the calcareous aggregate specimens. It was concluded that fly ash can used as a filler replacement for dense-graded wearing courses. 35 refs., 17 tabs., 8 figs.

  12. Severe Acute Local Reactions to a Hyaluronic Acid-derived Dermal Filler.

    Science.gov (United States)

    Van Dyke, Susan; Hays, Geoffrey P; Caglia, Anthony E; Caglia, Michael

    2010-05-01

    Injectable fillers are normally well tolerated by patients with little or no adverse effects. The most common side effects include swelling, redness, bruising, and pain at the injection site. This report describes three cases in which patients injected with a hyaluronic acid-derived injectable filler that is premixed with lidocaine developed adverse reactions including persistent swelling, pain, and nodule formation. Two of the three patients' abscesses were cultured for aerobic and anaerobic bacteria and mycobacterium. All three cultures were negative. Abscess persistence in all cases necessitated physical removal and/or enzymatic degradation with hyaluronidase. The effects subsided only after the product had been removed. Two of these patients were subsequently treated with other hyaluronic acid-derived dermal fillers without adverse events.

  13. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2012-01-01

    Results: For groups with the same concentration of nanoparticles, PMMA-grafted filler-loaded group showed significantly higher flexural strength, except for 0.2% wt. For groups that contain PMMA-grafted nanoclay fillers, the 2% wt had the highest flexural strength value with significant difference to other subgroups. 1% wt and 2% wt showed significantly higher values compared to control (P 0.05. Flexural modulus of 2%, 5% wt PMMA-grafted and 0.5%, 1%, 2%, 5% wt unmodified nanoclay particles-loaded subgroups decreased significantly compared to control group (P < 0.05. Conclusions: PMMA-grafted nanoclay filler loading may enhance the flexural strength of FRCs. Addition of unmodified nanoparticles cannot significantly improve the flexural strength of FRCs. Addition of both unmodified and PMMA-grafted nanoclay particles in some concentrations decreased the flexural modulus.

  14. Performance of ferrite fillers on electrical behavior of polymer nanocomposite electrolyte

    Science.gov (United States)

    Pandey, Kamlesh; Mauli Dwivedi, Mrigank; Singh, Markandey; Agrawal, S. L.

    2011-04-01

    Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al-Zn ferrite, Mg-Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO-7NH4SCN]: X ferrite (where X = 2% in Al-Zn ferrite, 1% Mg-Zn ferrite, and 1% Zn ferrite) system.

  15. Synthesis of Superabsorbent Polymer via Inverse Suspension Method: Effect of Carbon Filler

    Science.gov (United States)

    Zakaria, Munirah Ezzah Tuan; Shima Jamari, Saidatul; Ling, Yeong Yi; Ghazali, Suriati

    2017-05-01

    This paper studies on the effect of the addition of carbon filler towards the performance of superabsorbent polymer composite (SAPc). In this work, the SAPc was synthesized using inverse suspension polymerization method. The process involved two different solutions; dispersed phase which contains partially neutralized acrylic acid, acrylamide, APS and NN-Methylenebisacrylamide, and continuous phase which contains cyclohexane, span-80 and carbon filler (at different weight percent). The optimum SAPs and filler ratio was measured in terms of water retention in soil and characterized by Mastersizer, FTIR and SEM. Biodegradability of the polymer was determined by soil burial test and SAPc with 0.02% carbon has highest biodegradability rate. SAPc with 0.04wt% carbon showed the optimal water retention percentage among all the samples. The synthesized SAPc producing spherical shapes with parallel alignment due to the addition of carbon fiber. It can be concluded that the addition of carbon fiber able to enhance the performance of the SAP composite (SAPc).

  16. Influencia del filler calizo en las propiedades de los morteros a resistencia constante

    Directory of Open Access Journals (Sweden)

    Hernández, Francisco

    1994-03-01

    Full Text Available This article studies the effects produced by the lime filler on the Portugal cement used with additions in the production of mortars. The starting point is a Portland cement to which different ratios of lime filler, ranging from 0-50%, are added. The next step consists of preparing mortar specimens using standardized sand as aggregate, curing them up to the age of 28 days when they are put to flexo-tensile and compression tests. The mortar strength is fixed at the age of 28 days, making it coincide with the strength of a pattern cement mortar (cement without additions of the same age. Then the effects of the filler on the slump and the water cement relation are observed for fixed strength.

    En este artículo se estudian los efectos producidos por el "filler" calizo en el cemento portland al utilizar este cemento con adiciones, en la fabricación de morteros. Se parte de un cemento portland al que se le añaden proporciones de "filler" calizo desde O hasta el 50%, y se preparan probetas de mortero utilizando como árido arena normalizada, curándose a continuación hasta la edad de 28 días, fecha en la que se someten a rotura por flexotracción y compresión. La resistencia de los morteros se fija a la edad de 28 días, haciéndola coincidir con la de un mortero de cemento patrón (cemento sin adiciones a la misma edad, y se observan, a resistencia fija, los efectos del "filler" sobre el escurrimiento y relación agua/cemento.

  17. Pembuatan Papan Komposit dari Plastik Daur Ulang dan Serbuk Kayu serta Jerami Sebagai Filler

    Directory of Open Access Journals (Sweden)

    Farid Mulana

    2011-06-01

    Full Text Available Production of composites was done by mixing the filler and matrix. The common matrix used to produce composite is plastic ore with types of poly propylene, poly ethylene and others. To know the characteristics of composite boards made from recycled plastic type poly ethylene so this research was conducted. This research aims to create a composite board made of solid waste sawdust and straw as a filler and recycled plastics as the matrix and to find out more details of the influence of variable solid waste types and ratio of solid waste weight and plastic toward the quality of the composite board product. Composite board manufacturing process was carried out by hot press method at a temperature of 145 oC for 20 minutes. The composite board products are tested on value of hardness, tensile strength, and thermal value. The results showed that the use of sawdust as a filler resulted the composite hardness value that is better (R79,5 compared with straw (R67 at a ratio of filler composition: matrix of 80:20 respectively. The use of sawdust also gives the value of tensile strength of 6.86 MPa that is better than the using a straw that valued of 3.62 MPa at composition ratio of filler: to matrix (60:40. Largest amount of heat needed to melt the composite boards are 31.19 J/g and 14.02 J/g at composition ratio sawdust: recycled plastics of 80:20 and at composition ratio straw: recycled plastics of 80:20, respectively. Visually composite board with a composition of sawdust:plastic HDPE 50:50 looks better with bright colors and shiny. Keywords: Composite, Solid waste, Plastic, Matrix, Filler,  Poly ethylene

  18. Safety and persistence of non-animal stabilized hyaluronic acid fillers for nasolabial folds correction in 30 Indian patients

    Directory of Open Access Journals (Sweden)

    Shehnaz Z Arsiwala

    2010-01-01

    Full Text Available Background: Correction of nasolabial creases through minimally invasive procedures is increasingly being sought by patients. Injecting non-animal stabilized hyaluronic acid filler is a highly effective method to achieve an optimal and persistent cosmetic result. Aims: To evaluate the efficacy, persistence and safety of Restylane and Perlane (Q-Med, Sweden for correction of nasolabial folds in Indian patients. Materials and Methods: Thirty Indian patients with mild, moderate and severe nasolabial folds (based on Wrinkle Assessment Scale were recruited in the study after informed consent for correction of their folds with Restylane or Perlane or both. Injections were administered in a single sitting after global assessment of the patient′s face using Wrinkle assessment scale (WAS.Optimal filling was performed by using appropriate techniques and its safety and efficacy assessed independently by the investigator as well as by patients at immediately, 3, 6 and 9 months post-procedure. Any adverse reactions were noted. Results: Twenty two females and 8 males (age range 45-55 years, mean age 52 years were recruited in the study. An optimum cosmetic correction was obtained in all patients. The efficacy increased with time and was greatest at 3 months after the treatment. Grade 2 improvement was maintained at 9 months in mild and moderate folds, and grade 3 improvement for severe folds. Minor post injection side effects like erythema at puncture site, needle marks and bruising were seen. Conclusion: Restylane and Perlane are safe and effective dermal fillers for correction of nasolabial creases and offer immediate effect.

  19. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  20. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    Science.gov (United States)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  1. Pembuatan Papan Komposit dari Plastik Daur Ulang dan Serbuk Kayu serta Jerami Sebagai Filler

    OpenAIRE

    Farid Mulana; Hisbullah Hisbullah; Iskandar Iskandar

    2011-01-01

    Production of composites was done by mixing the filler and matrix. The common matrix used to produce composite is plastic ore with types of poly propylene, poly ethylene and others. To know the characteristics of composite boards made from recycled plastic type poly ethylene so this research was conducted. This research aims to create a composite board made of solid waste sawdust and straw as a filler and recycled plastics as the matrix and to find out more details of the influence of variabl...

  2. Bacterial infection as a likely cause of adverse reactions to polyacrylamide hydrogel fillers in cosmetic surgery

    DEFF Research Database (Denmark)

    Christensen, Lise; Breiting, Vibeke; Bjarnsholt, Thomas

    2013-01-01

    Background. The etiology of long-lasting adverse reactions to gel fillers used in cosmetic surgery is not known. Bacterial infection and immunological reaction to the product have been suggested. Methods. We performed a case-control study, with 77 biopsies and 30 cytology specimens originating from...... in the presence of polyacrylamide filler in cosmetic surgery, possibly due to a biofilm mode of growth. Adequate skin preparation and use of sterile technique in these procedures are mandatory, but antibiotic prophylaxis prior to injection of nondegradable gels like polyacrylamide should be explored as well....

  3. The studies of high-frequency magnetic properties and absorption characteristics for amorphous-filler composites

    Science.gov (United States)

    Li, Z. W.; Yang, Z. H.

    2015-10-01

    Pure amorphous flake fillers and amorphous flakes coated by ferrite nanoparticles with core-shell-like structure were fabricated using mechanical ball-milling. The later with core-shell-like structure can greatly decrease permittivity and improve the absorption properties, as compared to the former. The absorption of all amorphous-filler composites has its origin in a quarter-wavelength resonator. Based on the resonator model, absorption frequency fA and the corresponding return loss RL are calculated, which are well consistent with observed values. It is also found that the resonance frequency is proportional to effective resistivity, based on William-Shockley-Kittel's eddy model.

  4. Development of brazing process for W-EUROFER joints using Cu-based fillers

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  5. Ajout de phosphogypse à des mortiers à base de cendres volantes et filler calcaire Addition of phosphogypsum to blended mortars based on fly ash and limestone filler

    OpenAIRE

    Alami Talbi M.; Raoui A.; Diouri A.; Kamali-Bernard S.

    2012-01-01

    L’objectif de ce travail est d’étudier la possibilité de la valorisation du phosphogypse dans les matériaux de construction vue sa grande disponibilité comme sous-produit de l’industrie des phosphates. Nous étudions l’effet de l’ajout du phosphogypse sur un mélange de clinker, cendres volantes et filler calcaire. Les échantillons sont préparés par l’ajout de 10% de phosphogypse et de 30% de cendres volantes aux mélanges constitués du clinker et du filler calcaire. Les mélanges sont hydratés e...

  6. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite.

    Science.gov (United States)

    Lung, Christie Ying Kei; Sarfraz, Zenab; Habib, Amir; Khan, Abdul Samad; Matinlinna, Jukka Pekka

    2016-02-01

    To evaluate the physical and mechanical properties of an experimental bis-GMA-based resin composite incorporated with non-silanized and silanized nano-hydroxyapatite (nHAP) fillers. Experimental bis-GMA based resin composites samples which were reinforced with nHAP fillers were prepared. Filler particles were surface treated with a silane coupling agent. Five test groups were prepared: 1. Unfilled, 2. Reinforced with 10wt% and 30wt% non-silanized nHAP fillers, and 3. Reinforced with 10wt% and 30wt% silanized nHAP fillers. The samples were subjected to tests in dry condition and in deionized water, aged at 37°C for 30 days. Prepared silanized and non-silanized nHAP were analyzed with Fourier Transform Infrared (FTIR) Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The micro-hardness and water sorption were evaluated. Data were analyzed by one-way ANOVA (psilane treated fillers was superior to unfilled and untreated fillers resins. The resin matrix loaded with 30wt% silanized-nHAP fillers would improve the physical and mechanical properties of a bis-GMA based resin.

  7. Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties.

    Science.gov (United States)

    Jose, Josmin P; Thomas, Sabu

    2014-07-28

    Herein, investigation on XLPE-Al2O3-clay ternary hybrid systems of Al2O3 and clay in 1 : 1 and 2 : 1 ratios, binary systems of XLPE-clay and XLPE-Al2O3 nanocomposites, with special reference to the hybrid filler effect and the superior microstructural development in ternary systems is conducted. The ternary hybrid composite of Al2O3 and clay in a 1 : 1 ratio exhibits the highest tensile strength (100% increase) and Young's modulus (208% increase), followed by the Al2O3 : clay = 2 : 1 system. The interaction between alumina and clay altered the composite morphology, filler dispersion and gave rise to a unique filler architecture leading to a substantial boost up in mechanics compared to predictions based on the idealized filler morphology. Experimentally observed much higher mechanics compared to theoretical predictions confirmed that the dramatic improvement in mechanics is the outcome of the positive hybrid effect and a second factor of synergism, i.e. filler-filler networks. Morphological control of the hybrid filler network is realized by adjusting the ratio between different fillers. For the Al2O3 : clay = 2 : 1 system, the microstructural limitation of dispersion due to the steric effect of alumina clusters shifts the properties to the negative hybrid effect region.

  8. Investigation of the corrosion performance of different braze fillers fused onto stainless steel type 1.4401 (UNS S31600)

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.; Eklund, T.; Persson, O. [Alfa Laval Corporate AB, Tumba (Sweden)

    2004-07-01

    Corrosion measurements were performed on a new iron based braze filler, AlfaNova{sup 1} developed by Alfa Laval. The braze filler was fused onto stainless steel type EN 1.4401 (UNS S31600). The susceptibility to general corrosion, intergranular corrosion and pitting corrosion was evaluated by gravimetrical and electrochemical methods as well as metallographical examination of the samples. Different sample configurations were utilised, which simulate the geometry of a braze joint in a plate heat exchange. The results were compared with a selection of commercial nickel-based braze fillers. It was shown that the newly developed iron-based braze filler had similar corrosion resistance as the commercially available nickel-based fillers. It was seen that the precipitation of intermetallic phases due to melting point depressants had a governing effect on the corrosion resistance of the braze joint. (orig.)

  9. 浸没式水处理填料制备技术研究进展%Research Progress on Preparation Technology of Submerged Water Treatment Fillers

    Institute of Scientific and Technical Information of China (English)

    范茜; 田青; 陈爱因

    2016-01-01

    Preparation technology of two types of immersion packings used in biological aerated filters,including ceram-site and volcanic rocks,were reviewed in this paper.Physical-chemical properties and biological treatment effect of ceram-site fillers,in the preparation of the best ratio of different raw materials and the best preparation conditions were compared by literature.The improvement of the performance of modified volcanic rock fillers and the lack of research in this field were also discussed.It is pointed out that the use of modification treatment by traditional fillers and the new development of pack-ing materials with industrial waste could achieve the goal of low cost and good performance.It would be the development direction of the field of immersion water treatment fillers.%综述了污水处理领域曝气生物滤池中常用浸没式填料——新型陶粒填料和改性火山岩填料的制备技术,利用文献比较了不同制备原料在最佳配比及最佳制备条件下得到的多种新型陶粒填料的理化性能指标和生物处理效果,关注了经改性处理的火山岩填料的性能提升以及该领域的研究缺失,指出利用传统填料进行改性处理以及有效利用工业生产废弃物开发新型填料,可以达成制备成本低廉且性能优良的目的,将是浸没式水处理填料领域的未来发展方向。

  10. Effects of dehydration on the apolar surface energetics of inorganic paper fillers.

    Science.gov (United States)

    Burry, William M; Keller, D Steven

    2002-10-04

    The surface energies of various inorganic fillers including kaolin clay, titanium dioxide, and talc were examined using inverse gas chromatography (IGC). In an earlier investigation that examined calcium carbonate fillers, dehydration by heating under a dry nitrogen purge had a substantial influence on the apolar (gammaS(LW)) and polar (gammaS(AB)) components of surface energy as measured using IGC. Using the same approach, the influence of such conditioning on several inorganic fillers used in papermaking were determined using preconditioning IGC from 100 to 300 degrees C, and sequential isothermal analysis at 100 degrees C. Results from IGC analysis of titanium dioxides (rutile and anatase) were similar to precipitated calcium carbonate (PCC) for temperatures up to 200 degrees C. PCC was significantly more energetic after preconditioning at 300 degrees C, which may indicate the onset of significant thermal decomposition that titanium dioxides will not exhibit. Kaolin clay samples had relatively high apolar surface energy similar to that of the chalk samples. Calcination gave lower gammaS(LW) values that could not be accounted for by changes in the microporous structure. More likely the differences resulted from contamination of highly energetic surface sites with adsorbates other than water. Talc samples exhibited relatively high apolar surface energies that increased with preconditioning temperature. The results provided insight into the significance of water on the final adhesion properties of fillers in the sheet structure or coating layer.

  11. Using Raman spectroscopic imaging for non-destructive analysis of filler distribution in chalk filled polypropylene

    DEFF Research Database (Denmark)

    Boros, Evelin; Porse, Peter Bak; Nielsen, Inga

    2016-01-01

    A feasibility study on using Raman spectral imaging for visualization and analysis of filler distribution in chalk filled poly-propylene samples has been carried out. The spectral images were acquired using a Raman spectrometer with 785 nm light source.Eight injection-molded samples...

  12. Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ross Pablo

    2017-03-01

    Full Text Available Micro and nanocomposites of hydroxyl terminated polybutadiene (HTPB-based polyurethanes (NPU were obtained using five mineral fillers and Cloisite 20A nanoclay, respectively. Samples were prepared by the reaction of HTPB polyol and toluene diisocyanate (TDI, and the chain was further extended with glyceryl monoricinoleate to produce the final elastomeric polyurethanes. Mechanical and thermal properties were studied, showing that mineral fillers (20%w/w significantly increased tensile strength, in particular nanoclay (at 5% w/w. When nanoclay-polymer dispersion was modified with a silane and hydantoin-bond promoter, elongation at break was significantly increased with respect to NPU with C20A. Thermal properties measured by differential scanning calorimetry (DSC were not significantly affected in any case. The molecular structure of prepared micro and nanocomposites was confirmed by Fourier transform infrared (FTIR spectroscopy and Raman spectroscopy. Interaction of fillers with polymer chains is discussed, considering the role of silanes in compatibilization of hydrophilic mineral fillers and hydrophobic polymer. The functionalization of nanoclay with HMDS silane was confirmed using FTIR. Microstructure of NPU with C20A nanoclay was confirmed by Atomic Force Microscopy (AFM.

  13. Polyols as filler-binders for disintegrating tablets prepared by direct compaction

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Rexwinkel, Erik G.; Zuurman, Klaas

    2009-01-01

    Background: Although polyols are frequently used as tablet excipients in lozenges, chewing tablets, and orodisperse tablets, special directly compressible (DC) forms are recommended as filler-binder in common disintegrating tablets. Aim: In this article, DC types of isomalt, lactitol, mannitol, sorb

  14. Fabrications of electrospun nanofibers containing inorganic fillers for dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Young-Keun; Hwang, Won-Pill; Seo, Min-Hye; Lee, Jin-Kook; Kim, Mi-Ra

    2014-08-01

    Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers containing inorganic fillers were fabricated by electrospinning. Dye-sensitized solar cells (DSSCs) using these nanofibers showed improved short circuit currents without degraded fill factors or open circuit voltages. The long-term stabilities of cells using electrospun PVDF-HFP/titanium isopropoxide (TIP) nanofibers were significantly improved.

  15. Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Università di Cagliari, s.p. n 8 Km 0.700, 09042 Monserrato, Cagliari (Italy); Casula, Riccardo [Dipartimento di Fisica, Università di Cagliari, s.p. n 8 Km 0.700, 09042 Monserrato, Cagliari (Italy); Gulleri, Gianluca; Fumagalli, Francesco [Micron Semiconductor Italia, s.r.l. via Camillo Olivetti, 2 20864 Agrate Brianza, MB (Italy); Carbonaro, Carlo Maria; Corpino, Riccardo [Dipartimento di Fisica, Università di Cagliari, s.p. n 8 Km 0.700, 09042 Monserrato, Cagliari (Italy)

    2014-07-25

    Highlights: • Structural and optical properties of silica filled STI architectures. • The silica filler induces a compressive stress. • PL spectra show a large distribution of emitting defects in the UV–blue. • The defects were identified and located at the silica–liner interface. - Abstract: The mechanical stress in nanosized silicon architectures is studied in shallow trench isolation systems with different liners and spin on dielectrics processed silica filler by means of Raman spectroscopy. The nanopatterning of silicon wafers causes a tensile stress of the system whereas the presence of the filler induces a compressive stress which depends on the interaction between silica filler and liner: by changing the liner from silicon dioxide to silicon nitride one can induce a larger compressive stress. The analysis of the ultraviolet excited emission properties in the visible range (nanosecond lasting bands at 2.5, 3.0 and 3.3 eV) allowed us to individuate and locate silica related defects and to correlate their presence to the induced compressive stress.

  16. Cross-linguistic evidence for storage costs in filler-gap dependencies with wh-adjuncts

    Directory of Open Access Journals (Sweden)

    Artur eStepanov

    2015-09-01

    Full Text Available This study investigates processing of interrogative filler-gap dependencies in which the filler integration site or gap is not directly subcategorized by the verb. This is the case when the wh-filler is a structural adjunct such as how or when rather than subject or object. Two self-paced reading experiments in English and Slovenian provide converging cross-linguistic evidence that wh-adjuncts elicit a kind of memory storage cost similar to that previously shown in the literature for wh-arguments. Experiment 1 investigates the storage costs elicited by the adjunct when in Slovenian, and Experiment 2 the storage costs elicited by how quickly and why in English. The results support the class of theories of storage costs based on the metric in terms of incomplete phrase structure rules or incomplete syntactic head predictions. We also demonstrate that the endpoint of the storage cost for a wh-adjunct filler provides valuable processing evidence for its base structural position, the identification of which remains a murky issue in current grammatical research.

  17. Effect of filler loading of nickel zinc ferrite on the tensile properties of PLA nanocomposites

    Science.gov (United States)

    Shahdan, Dalila; Ahmad, Sahrim Hj

    2013-05-01

    The mechanical strength of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90:10. The MPNC were prepared at constant mixing temperature at 180°C, mixing time of 15 min. and mixing speed of 100 rpm. In order to achieve a good dispersion of NiZn ferrite in the matrix, firstly an ultrasonic treatment had been employed to mix the LNR and NiZn ferrite for 1 hour. The MPNC of PLA/LNR/NiZn ferrite then were prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1-5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases the tensile strength also increases until an optimum value of filler loading was reached. The Young's modulus, tensile strength and elongation at break have also increased. The study proves that NiZn ferrite is excellent reinforcement filler in PLA matrix. Scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDX) were meant to show the homogeneity dispersion of nanoparticles within the matrix and to confirm the elemental composition of NiZn ferrites-PLA/LNR nanocomposites respectively.

  18. Gas permeability of ENR/PVC membrane with the addition of inorganic fillers

    Science.gov (United States)

    Nor, Farhan Mohd; Abdullah, Ibrahim; Othaman, Rizafizah

    2013-11-01

    Epoxidized natural rubber (ENR) was blended with polyvinyl chloride to form a flexible and porous membrane. SiO2 and MgO were added into the membrane for pore formation and the effects of the addition was investigated by means of FTIR, TGA, SEM, EDX and gas permeability towards CO2 and N2 gases. FTIR result showed the presence of Si-O-Si asymmetric stretching at the absorption peak of 467 cm-1 for ENR/PVC/SiO2 membrane and MgO signature peak at 3700 cm-1 for ENR/PVC/MgO membrane. Thermal analysis showed that the thermal stability of ENR/PVC membrane increased with the addition of fillers. Morphological studies prove that subsequently, the pores in the membranes increased showing that some of the added fillers were drawn towards the water leaving empty spaces and tracks. The remaining fillers are homogenously distributed on the surface of the membranes. CO2 and N2 gas permeability increased with increasing filler content and the permeability of ENR/PVC/SiO2 membranes towards CO2 and N2 gasses was higher than ENR/PVC/MgO membranes.

  19. Influence of nanoclay-carbon black hybrid fillers on cure and properties of natural rubber compounds

    NARCIS (Netherlands)

    Sapkota, J.; Poikelispää, M.; Das, A.; Dierkes, W.K.; Vuorinen, J.

    2013-01-01

    The influence of organically modified nanoclay-carbon black (CB) hybrid filler on the curing behavior of natural rubber (NR) was explored in this investigation. Here an effort was paid to understand the curing kinetics of organomodified nanoclay filled rubber compounds. On the basis of two different

  20. Use of Fillers, Pigments and Additives in Fouling-Release Coatings: a Literature Review

    DEFF Research Database (Denmark)

    Tamaev, Nail; Kiil, Søren; Noguer, Albert Camós

    an opportunity of potential enhancement of the mechanical strength without negative influence on the fouling-release properties. Another benefit of the nanoparticles is in altering of wetting abilities with forming self-cleaning or superhydrophobic surfaces [5]. Effect of the filler presence was tested...