WorldWideScience

Sample records for superhydrophobic cotton fabric

  1. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  2. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  4. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  5. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization

    Science.gov (United States)

    Xu, Lihui; Zhuang, Wei; Xu, Bi; Cai, Zaisheng

    2011-04-01

    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.

  6. Green fabrication of coloured superhydrophobic paper from native cotton cellulose.

    Science.gov (United States)

    Wen, Qiuying; Guo, Fei; Yang, Fuchao; Guo, Zhiguang

    2017-07-01

    Paper is kind of essential materials in our daily life. However, it can be easily destroyed by water owing to its superhydrophilic surface. Here, we reported a simple and green fabrication of coloured superhydrophobic paper via swelling and approximate dissolution of cotton followed by precipitation of cellulose and doping coloured stearates. The obtained paper exhibited uniform colour and superhydrophobicity, of which the colour was consistent with the doped stearates owing to the adhesion of stearate powders to the tiny floc fiber surface and we proved that the superhydrophobicity could not be damaged after abrasion resulting from the inner and outer superhydrophobicity and the increased surface roughness. This coloured superhydrophobic paper would be avoided from moisture damage and may be useful in different fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu; Wang, Shuliang; Li, Jian

    2013-08-14

    In the present study, we are so excited to report a simple drop-coating method for fabricating the superhydrophobic cotton textiles which can remove the water in oil (or the oil in water). It is confirmed that the superhydrophobic composite thin film containing modified-ZnO nanoparticles and polystyren (PS) has been successfully fabricated on the cotton textiles surface by a single-step procedure, and the superhydrophobic cotton textiles displays an excellent property in water-oil separation which is rarely put forward and studied. The static water contact angle on the superhydrophobic cotton sample surface arranges from 153° to 155°, and stays almost the same after exposure to ambient air or immersion in the corrosive liquids and oil, indicating the considerable range of potential applications for the superhydrophobic cotton textiles fabricated by this simple method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T., E-mail: aruna_reddy@nal.res.in; Basu, Bharathibai J.

    2013-07-15

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  9. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    International Nuclear Information System (INIS)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T.; Basu, Bharathibai J.

    2013-01-01

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  10. Thermoresponsive PNIPAAm-modified cotton fabric surfaces that switch between superhydrophilicity and superhydrophobicity

    International Nuclear Information System (INIS)

    Jiang Cheng; Wang Qihua; Wang Tingmei

    2012-01-01

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the cotton fabric by atom transfer radical polymerization (ATRP). Introducing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) onto the surface, the density of PNIPAAm chains can be adjusted because of the competitive reactions of (3-aminopropyl) triethoxysilane (APS) and PFDTS. With the appropriate ratio of APS and PFDTS, the cotton fabric can be switched from superhydrophilic to superhydrophobic by controlling temperature. The prepared cotton fabric may find application in functional textiles, soft and folding superhydrophobic materials.

  11. Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-04-01

    Full Text Available The surface treatment of fabrics in an atmospheric environment may pave the way for commercially viable plasma modifications of fibrous matters. In this paper, we demonstrate a durably superhydrophobic cotton cellulose fabric prepared in a single-step graft polymerization of hexamethyldisiloxane (HMDSO by N2 and O2 atmospheric pressure plasma. We systematically investigated effects on contact angle (CA and surface morphology of the cotton fabric under three operational parameters: precursor value; ionization gas flow rate; and plasma cycle time. Surface morphology, element composition, chemical structure and hydrophobic properties of the treated fabric were characterized by scanning electron microscope (SEM, EDS, FTIR and CA on the fabrics. The results indicated that a layer of thin film and nano-particles were evenly deposited on the cotton fibers, and graft polymerization occurred between cellulose and HMDSO. The fabric treated by O2 plasma exhibited a higher CA of 162° than that treated by N2 plasma which was about 149°. Furthermore, the CA of treated fabrics decreased only 0°~10° after storing at the ambient conditions for four months, and treated fabrics could also endure the standard textile laundering procedure in AATCC 61-2006 with minimum change. Therefore, this single-step plasma treatment method is shown to be a novel and environment-friendly way to make durable and superhydrophobic cotton fabrics.

  12. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.

    Science.gov (United States)

    Sasaki, Kaichi; Tenjimbayashi, Mizuki; Manabe, Kengo; Shiratori, Seimei

    2016-01-13

    Inspired by the special wettability of certain natural life forms, such as the high water repellency of lotus leaves, many researchers have attempted to impart superhydrophobic properties to fabrics in academic and industrial contexts. Recently, a new switching system of wettability has inspired a strong demand for advanced coatings, even though their fabrication remains complex and costly. Here, cotton fabrics with asymmetric wettability (one face with natural superhydrophilicity and one face with superhydrophobicity) were fabricated by one-step spraying of a mixture of biocompatible commercial materials, hydrophobic SiO2 nanoparticles and ethyl-α-cyanoacrylate superglue. Our approach involves controlling the permeation of the fabric coatings by changing the distance between the fabric and the sprayer, to make one side superhydrophobic and the other side naturally superhydrophilic. As a result, the superhydrophobic side, with its high mechanical durability, exhibited a water contact angle of 154° and sliding angle of 16°, which meets the requirement for self-cleaning ability of surfaces. The opposite side exhibited high water absorption ability owing to the natural superhydrophilic property of the fabric. In addition, the designed cotton fabrics had blood absorption and clotting abilities on the superhydrophilic side, while the superhydrophobic side prevented water and blood permeation without losing the natural breathability of the cotton. These functions may be useful in the design of multifunctional fabrics for medical applications.

  13. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    Science.gov (United States)

    Das, Indranee; De, Goutam

    2015-01-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754

  14. Robust and durable superhydrophobic cotton fabrics for oil/water separation.

    Science.gov (United States)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo

    2013-08-14

    By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  15. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials

    Energy Technology Data Exchange (ETDEWEB)

    Manatunga, Danushika Charyangi [Sri Lanka Institute of Nanotechnology, Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Silva, Rohini M. de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Nalin de Silva, K.M., E-mail: nalinds@slintec.lk [Sri Lanka Institute of Nanotechnology, Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka)

    2016-01-01

    Graphical abstract: - Highlights: • Superhydrophobicity using nonfluorinated agents on cotton roughened with nanosilica. • Sol–gel method to hydrophobize with HDTMS, SA, OTES, and HDTMS/SA HDTMS/OTES hybrids. • WCA of 150° or greater with the treatment. • Increased hydrophobicity and soil repellency obtained when a hybrid mixture is used. • Combinational treatment is effective when compared with the fluorosilane treatment. - Abstract: Creation of differential superhydrophobicity by applying different non-fluorinated hydrophobization agents on a cotton fabric roughened with silica nanoparticles was studied. Cotton fabric surface has been functionalized with silica nanoparticles and further hydrophobized with different hydrophobic agents such as hexadecyltrimethoxy silane (HDTMS), stearic acid (SA), triethoxyoctyl silane (OTES) and hybrid mixtures of HDTMS/SA and HDTMS/OTES. The cotton fabrics before and after the treatment were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The wetting behavior of cotton samples was investigated by water contact angle (WCA) measurement, water uptake, water repellency and soil repellency testing. The treated fabrics exhibited excellent water repellency and high water contact angles (WCA). When the mixture of two hydrophobization agents such as HDTMS/OTES and HDTMS/SA is used, the water contact angle has increased (145°–160°) compared to systems containing HDTMS, OTES, SA alone (130°–140°). It was also noted that this fabricated double layer (silica + hydrophobization agent) was robust even after applying harsh washing conditions and there is an excellent anti-soiling effect observed over different stains. Therefore superhydrophobic cotton surfaces with high WCA and soil repellency could be obtained with silica and mixture of hydrophobization agents which are cost effective and environmentally friendly when compared with the fluorosilane

  16. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica -based sols with nanoparticles of copper

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  17. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available the treatment with fluorinated or silicon compounds)1-4 and by enhancing the surface roughness with a fractal structure5-8. Cotton, a cellulose-based material, that is greatly hydrophilic, is more benefited when made hydrophobic. Modification of cotton...

  18. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  19. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability.

    Science.gov (United States)

    Zhu, Xiaotao; Zhang, Zhaozhu; Yang, Jin; Xu, Xianghui; Men, Xuehu; Zhou, Xiaoyan

    2012-08-15

    The poor mechanical stability of superhydrophobic fabrics severely hindered their use in practical applications. Herein, to address this problem, we fabricated a superhydrophobic fabric with both mechanical stability and easy-repairability by a simple method. The mechanical durability of the obtained superhydrophobic fabric was evaluated by finger touching and abrasion with sandpaper. The results show that rough surface textures of the fabric were retained, and the fabric surface still exhibited superhydrophobicity after tests. More importantly, when the fabric lost its superhydrophobicity after a long-time abrasion, it can be easily rendered with superhydrophobicity once more by a regeneration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Chemistry, Federal College of Education, Kano – Nigeria. 2Department of ... its versatility were examined taken into consideration, the molecular structure. ... hemicelluloses, pectin, coloring matter and ash ... temperature for a fixed period of time. These processes rendered the cotton 99% cellulose in nature.

  1. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

    Science.gov (United States)

    Kaplan, Jonah; Grinstaff, Mark

    2015-08-28

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

  2. Laser microstructuring for fabricating superhydrophobic polymeric surfaces

    Science.gov (United States)

    Cardoso, M. R.; Tribuzi, V.; Balogh, D. T.; Misoguti, L.; Mendonça, C. R.

    2011-02-01

    In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157°. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces.

  3. Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating

    Science.gov (United States)

    Qing, Yongquan; Zheng, Yansheng; Hu, Chuanbo; Wang, Yong; He, Yi; Gong, Yong; Mo, Qian

    2013-11-01

    In this paper, we report a simple and inexpensive method for fabricating modified-ZnO/polystyrene superhydrophobic surface on the cotton textiles. The surface wettability and topology of coating were characterized by contact angle measurement, Scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic CH3 and CF2 group was introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to polystyrene was 7:3, the ZnO/polystyrene composite coating contact angle was 158°, coating surface with hierarchical micro/nano structures. Furthermore, the superhydrophobic cotton texiles have a very extensive application prospect in water-oil separation.

  4. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  5. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    Science.gov (United States)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  6. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  7. Superamphiphobic cotton fabrics with enhanced stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bi, E-mail: xubi@dhu.edu.cn [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ding, Yinyan; Qu, Shaobo [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Cai, Zaisheng, E-mail: zshcai@dhu.edu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-11-30

    Highlights: • Superamphiphobic cotton fabrics were prepared. • Water and hexadecane contact angels reach to 164.4° and 156.3°, respectively. • Nanoporous organically modified silica alcogel particles were synthesized. • The superamphiphobic cotton fabrics exhibit enhanced stability against abrasion, laundering and acid. - Abstract: Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H{sub 2}SO{sub 4}. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  8. Fabrication of a superhydrophobic surface on a wood substrate

    Science.gov (United States)

    Wang, Shuliang; Shi, Junyou; Liu, Changyu; Xie, Cheng; Wang, Chengyu

    2011-09-01

    A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.

  9. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    Science.gov (United States)

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  10. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    Science.gov (United States)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  11. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    Science.gov (United States)

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  12. Electrochemical behaviour of superhydrophobic coating fabricated ...

    Indian Academy of Sciences (India)

    In this study, superhydrophobic films were prepared through a spraying process of carbon nanotube (CNT) suspension on aluminium alloy substrate and characterized by scanning electronic microscope (SEM) contact angles (CAs) and potentiodynamic polarization tests in 0.1 M NaCl solution. Results indicate the positive ...

  13. Facile Method for Fabricating Superhydrophobic Surface on Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mun Hee; Park, Yeon Hwa; Hyun, June Won; Ahn, Yong Hyun [Dankook Univ., Yongin (Korea, Republic of)

    2010-04-15

    In conclusion, we have developed a simple and inexpensive method for fabricating a superhydrophobic surface of magnesium by metal deposition and stearic acid coating. We fabricated a superhydrophobic surface on magnesium by nickel deposition and surface coating of stearic acid. The fabricated surfaces were stable against acidic and basic solutions. In recent times, technologies based on the imitation of nature have attracted considerable attention. Lotus leaves are known for their self-cleaning effect. The micrometer-scale papillae structure and the epicuticular wax on the lotus leaf contribute to this effect. In a manner similar to the self-cleaning property of lotus leaves, the wettability of solid surfaces is of great interest in daily life and industry.1-4 Wettability is controlled by both the geometrical structure of a surface and a low surface energy material coating. A superhydrophobic surface is satisfied with a water contact angle of more than 150 .deg. and a sliding angle of less than 10 .deg. On such a surface, a water drop has a perfectly spherical shape and it easily rolls off and removes deposited contaminants. A superhydrophobic surface thus protects a material from contamination, fogging, and snow deposition.

  14. Superhydrophobic nanocoatings: from materials to fabrications and to applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang

    2015-04-14

    Superhydrophobic nanocoatings, a combination of nanotechnology and superhydrophobic surfaces, have received extraordinary attention recently, focusing both on novel preparation strategies and on investigations of their unique properties. In the past few decades, inspired by the lotus leaf, the discovery of nano- and micro-hierarchical structures has brought about great change in the superhydrophobic nanocoatings field. In this paper we review the contributions to this field reported in recent literature, mainly including materials, fabrication and applications. In order to facilitate comparison, materials are divided into 3 categories as follows: inorganic materials, organic materials, and inorganic-organic materials. Each kind of materials has itself merits and demerits, as well as fabrication techniques. The process of each technique is illustrated simply through a few classical examples. There is, to some extent, an association between various fabrication techniques, but many are different. So, it is important to choose appropriate preparation strategies, according to conditions and purposes. The peculiar properties of superhydrophobic nanocoatings, such as self-cleaning, anti-bacteria, anti-icing, corrosion resistance and so on, are the most dramatic. Not only do we introduce application examples, but also try to briefly discuss the principle behind the phenomenon. Finally, some challenges and potential promising breakthroughs in this field are also succinctly highlighted.

  15. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  16. A Facile Way to Fabricate Transparent Superhydrophobic Surfaces.

    Science.gov (United States)

    Shi, Wentao; He, Ran; Yunus, Doruk E; Yang, Jie; Liu, Yaling

    2018-07-01

    A fast, easy, and low-cost way to fabricate transparent superhydrophobic (SHP) surfaces is developed. By simply mixing silica nanoparticles (SiNPs), polydimethylsiloxane (PDMS) and heptane to form a suspension, dip- or drop-coating the suspension onto different surfaces, transparent SHP surfaces can be obtained. By tuning the ratio of the three components above, transparency of the coating can reach more than 90% transmittance in the visible region, while static water contact angle of the coating can reach as high as 162°. Dynamic contact angle study shows the advancing contact angle and receding contact angle of water can be as high as 168° and 161°, and the resulting contact angle hysteresis can be as low as 7°. The reported facile way of fabricating transparent superhydrophobic (SHP) surfaces is potential for applications which need both optical transparency and self-cleaning capability, such as solar cells, optical equipment, and visible microfluidic chips.

  17. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  18. Superoleophobic cotton textiles

    NARCIS (Netherlands)

    Leng, B.; Shao, Z.; With, de G.; Ming, W.

    2009-01-01

    Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we

  19. Fabrication of superhydrophobic niobium pentoxide thin films by anodization

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bong-Yong [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Jung, Eun-Hye [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Department of Chemical Engineering, Inha University, Incheon 402-024 (Korea, Republic of); Kim, Jin-Ho, E-mail: jhkim@kicet.re.kr [Electronic and Optic Materials Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2014-07-01

    We report a simple method to fabricate a niobium oxide film with a lotus-like micro–nano surface structure. Self-assembled niobium pentoxide (Nb{sub 2}O{sub 5}) films with superhydrophobic property were fabricated by an anodization and a hydrophobic treatment. This process has several advantages such as low cost, simplicity and easy coverage of a large area. The surface of fabricated Nb{sub 2}O{sub 5} film was changed from hydrophilic to superhydrophobic surface by a treatment using fluoroaldyltrimethoxysilane (FAS) solution. This value is considered to be the lowest surface free energy of any solid, based on the alignment of -CF{sub 3} groups on the surface. In particular, among FAS coated surfaces, the micro–nano complex cone structured Nb{sub 2}O{sub 5} film showed the highest water-repellent property with a static contact angle of ca. 162°. This study gives promising routes from biomimetic superhydrophobic surfaces.

  20. One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water.

    Science.gov (United States)

    Li, Jian; Yan, Long; Zhao, Yuzhu; Zha, Fei; Wang, Qingtao; Lei, Ziqiang

    2015-03-07

    In this work, a facile and inexpensive one-step sonochemistry irradiation method was developed for the fabrication of SiO2 nanoparticles functionalized with octadecyltrimethoxysilane and their in situ incorporation into cotton fabrics. The double sides of as-prepared fabrics show both superhydrophobic and superoleophilic properties simultaneously with a high water contact angle of 159 ± 1° and an oil contact angle of 0°. Thus, it can be used to separate and capture a series of oils from water, like kerosene, toluene and chloroform, etc. In addition, the as-prepared fabrics still have superhydrophobicity with a water contact angle of above 150° after 40 separation cycles with the separation efficiency for the kerosene-water mixture always above 94.6%. More importantly, the as-prepared fabrics showed robust and stable superhydrophobic properties towards hot water, many corrosive solutions (acidic, basic, salt liquids) and mechanical abrasion. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  1. Electrodeposition fabrication of Co-based superhydrophobic powder coatings in non-aqueous electrolyte

    Science.gov (United States)

    Chen, Zhi; Hao, Limei; Duan, Mengmeng; Chen, Changle

    2013-05-01

    A rapid, facile, one-step process was developed to fabricate Co-based superhydrophobic powder coatings on the stainless steel surfaces with a nonaqueous electrolyte by the electrodeposition method. The structure and composition of the superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and contact angle measurement. The results show that the special hierarchical structures along with the low surface energy lead to the high superhydrophobicity of the substrate surface. The shortest process of constructing the superhydrophobic surface is only 30 seconds, the high contact angle is greater than 160°, and the rolling angle is less than 2°. The method can be used to fabricate the superhydrophobic powder coatings at any conductive cathodic surface, and the as-prepared superhydrophobic powder coatings have advantages of transferability, repairability, and durability. It is expected that this facile method will accelerate the large-scale production of superhydrophobic material.

  2. Fabrication and wear protection performance of superhydrophobic surface on zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Wang Zhongqian; Xu Zhen; Liu Changsong [School of Mechanical Engineering, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Zhang Junyan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China)

    2011-06-15

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 deg. and provide effective friction-reducing and wear protection for zinc substrate.

  3. Fabrication and wear protection performance of superhydrophobic surface on zinc

    International Nuclear Information System (INIS)

    Wan Yong; Wang Zhongqian; Xu Zhen; Liu Changsong; Zhang Junyan

    2011-01-01

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 deg. and provide effective friction-reducing and wear protection for zinc substrate.

  4. Fabrication of super-hydrophobic duo-structures

    Science.gov (United States)

    Zhang, X. Y.; Zhang, F.; Jiang, Y. J.; Wang, Y. Y.; Shi, Z. W.; Peng, C. S.

    2015-04-01

    Recently, super-hydrophobicity has attracted increasing attention due to its huge potential in the practical applications. In this paper, we have presented a duo-structure of the combination of micro-dot-matrix and nano-candle-soot. Polydimethylsiloxane (PDMS) was used as a combination layer between the dot-matrix and the soot particles. Firstly, a period of 9-μm dot-matrix was easily fabricated on the K9 glass using the most simple and mature photolithography process. Secondly, the dot-matrix surface was coated by a thin film of PDMS (elastomer: hardener=10:1) which was diluted by methylbenzene at the volume ratio of 1:8. Thirdly, we held the PDMS modified surface over a candle flame to deposit a soot layer and followed by a gentle water-risen to remove the non-adhered particles. At last, the samples were baked at 85°C for 2 hours and then the duo-structure surface with both micro-size dot-matrix and nano-size soot particles was obtained. The SEM indicated this novel surface morphology was quite like a lotus leaf of the well-know micro-nano-binary structures. As a result, the contact angle meter demonstrated such surface exhibited a perfect super-hydrophobicity with water contact angle of 153° and sliding angle of 3°. Besides, just listed as above, the fabrication process for our structure was quite more easy, smart and low-cost compared with the other production technique for super-hydrophobic surfaces such as the phase separation method, electrochemical deposition and chemical vapor deposition etc. Hence, this super-hydrophobic duo-structure reported in this letter was a great promising candidate for a wide and rapid commercialization in the future.

  5. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin, E-mail: songaixin@sdu.edu.cn; Hao, Jingcheng

    2017-03-31

    Highlights: • The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol. • The fabrication process of superhydrophobic metal surfaces greatly increases the safety in industrial manufacture in commercial scale. • The superhydrophobic copper surfaces show excellent corrosion resistance. - Abstract: A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  6. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  7. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  8. Fabrication of non-aging superhydrophobic surfaces by packing flower-like hematite particles

    Science.gov (United States)

    Cao, Anmin; Cao, Liangliang; Gao, Di

    2008-03-01

    We demonstrate the fabrication of non-aging superhydrophobic surfaces by packing flower-like micrometer-sized hematite particles. Although hematite is intrinsically hydrophilic, the nanometer-sized protrusions on the particles form textures with overhanging structures that prevent water from entering into the textures and induce a macroscopic superhydrophobic phenomenon. These superhydrophobic surfaces do not age even in extremely oxidative environments---they retain the superhydrophobicity after being stored in ambient laboratory air for 4 months, heated to 800 degree C in air for 10 hours, and exposed to ultraviolet ozone for 10 hours.

  9. Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites.

    Science.gov (United States)

    Mohamed, Amina L; El-Sheikh, Manal A; Waly, Ahmed I

    2014-02-15

    Environmental concerns related to fluorinated and organophosphorus compounds led to a consideration of the methods for imparting flame retardancy and water/oil repellency to textiles. A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. Complex coating with amino-functionalized silica nano-particles on epoxy-functionalized cotton accompanied with ZnO nano-particles coating are carried out. In This context, new preparation techniques were used to prepare both aminated silica and ZnO nano-particles. The particle size was investigated using Transition Electron Microscope (TEM) and the chemical structure was investigated using FT-IR analysis and other analytical techniques. Cotton was functionalized with epoxy and carboxyl via grafting cotton with nano-emulsion consisted of mixture of glycidyl methacrylate (GMA) and acrylic acid (AA), and then treated for functional finishing through conventional pad-dry-cure method. The treated fabrics showed good water repellency and excellent flame retardant properties as determined by the standard test methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der; Lin, Chao-Sung; Tikekar, Mukul; Chen, Ping-Hei

    2011-01-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  11. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der

    2011-07-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  12. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  13. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance

    Science.gov (United States)

    Li, Deke; Guo, Zhiguang

    2018-06-01

    Superhydrophobic layers are extremely essential for protecting material surface in various applications. In this study, a stable superhydrophobic mixed matrix surface with a 152.2° contact angle can be fabricated through the technology of layer-by-layer hot-pressing (HoP), and then modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) on the ZIF-8@Kevlar fabric surface. The morphology and chemical composition were analyzed by the means of SEM, XRD and FTIR. The obtained superhydrophobic coatings showed excellent antiwear performance and drag reduction under desired working conditions. Moreover, we successfully applied superhydrophobic F-ZIF-8@Kevlar fabric in the alcohol adsorbent with high removal capacity, and it can be reused for several times without serious efficiency loss.

  14. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.

    Science.gov (United States)

    Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji

    2017-08-18

    Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.

  15. Conductive Cotton Fabrics for Motion Sensing and Heating Applications

    Directory of Open Access Journals (Sweden)

    Mengyun Yang

    2018-05-01

    Full Text Available Conductive cotton fabric was prepared by coating single-wall carbon nanotubes (CNTs on a knitted cotton fabric surface through a “dip-and-dry” method. The combination of CNTs and cotton fabric was analyzed using scanning electron microscopy (SEM and Raman scattering spectroscopy. The CNTs coating improved the mechanical properties of the fabric and imparted conductivity to the fabric. The electromechanical performance of the CNT-cotton fabric (CCF was evaluated. Strain sensors made from the CCF exhibited a large workable strain range (0~100%, fast response and great stability. Furthermore, CCF-based strain sensors was used to monitor the real-time human motions, such as standing, walking, running, squatting and bending of finger and elbow. The CCF also exhibited strong electric heating effect. The flexible strain sensors and electric heaters made from CCF have potential applications in wearable electronic devices and cold weather conditions.

  16. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  17. Study on Bleaching Technology of Cotton Fabric with Sodium Percarbonate

    OpenAIRE

    Li Zhi; Wang Yanling; Wang Zhichao

    2016-01-01

    Bleach cotton fabric with sodium percarbonate solution. Analyse of the effect of the concentration of sodium percarbonate solution, bleaching time, bleaching temperature and the light radiation on the bleaching effect of fabric.The result shows that increasing concentrations of percarbonate,increasing the bleaching time , raising the bleaching temperature and the UV irradiation may whiten the cotton fabric.The most suitable conditions for the bleaching process is concentration of sodium perca...

  18. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qinghe [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical & Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Wei, Yan; Wei, Zhu [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-04-30

    Graphical abstract: - Highlights: • This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion without a bath. • It has a vital significance to the industrialization of the fabrication of superhydrophobic surface on hard metal due to the advantages such as low cost, high efficiency, can be prepared in a large area, easy to construct in the field. • The preparation approach is so facile and time-saving that it delivers an opportunity to construct a superhydrophobic surface on carbon steel substrate and provides the feasibility for industrial application of superhydrophobic surface. • The as-prepared surface has many excellent properties, like low adhesive property, anti-corrosion ability, mechanical durability and anti-icing performance. - Abstract: Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on

  20. Application of Super-Hydrophobic Coating for Enhanced Water Repellency of Ballistic Fabric

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott Robert [ORNL

    2014-10-01

    The objective of this work was to demonstrate that a superhydrophobic coating technology developed at Oak Ridge National Laboratory (ORNL) increases the water repellency of ballistic fabric beyond that provided by existing water repellency treatments. This increased water repellency has the potential to provide durable ballistic fabric for body armor without adding significant weight to the armor or significant manufacturing cost. Specimens of greige and scoured ballistic fabric were treated with a superhydrophobic coating and their weights and degree of water repellency were compared to specimens of untreated fabric. Treatment of both greige and scoured ballistic fabrics yielded highly water repellent fabrics. Our measurements of the water droplet contact angles gave values of approximately 150 , near the lower limit of 160 for superhydrophobic surfaces. The coatings increased the fabric weights by approximately 6%, an amount that is many times less than the estimated weight increase in a conventional treatment of ballistic fabric. The treated fabrics retained a significant amount of water repellency following a basic abrasion test, with water droplet contact angles decreasing by 14 to 23 . Microscopic analysis of the coating applied to woven fabrics indicated that the coating adhered equally well to fibers of greige and scoured yarns. Future evaluation of the superhydrophobic water repellent treatment will involve the manufacture of shoot packs of treated fabric for ballistic testing and provide an analysis of manufacturing scale-up and cost-to-benefit considerations.

  1. Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine

    Science.gov (United States)

    Xue, Chao-Hua; Bai, Xue; Jia, Shun-Tian

    2016-01-01

    A robust, self-healing superhydrophobic poly(ethylene terephthalate) (PET) fabric was fabricated by a convenient solution-dipping method using an easily available material system consisting of polydimethylsiloxane and octadecylamine (ODA). The surface roughness was formed by self-roughening of ODA coating on PET fibers without any lithography steps or adding any nanomaterials. The fabric coating was durable to withstand 120 cycles of laundry and 5000 cycles of abrasion without apparently changing the superhydrophobicity. More interestingly, the fabric can restore its super liquid-repellent property by 72 h at room temperature even after 20000 cycles of abrasion. Meanwhile, after being damaged chemically, the fabric can restore its superhydrophobicity automatically in 12 h at room temperature or by a short-time heating treatment. We envision that this simple but effective coating system may lead to the development of robust protective clothing for various applications. PMID:27264995

  2. Fabrication of functional superhydrophobic engineering materials via an extremely rapid and simple route.

    Science.gov (United States)

    Guo, Jie; Yu, Shen; Li, Jing; Guo, Zhiguang

    2015-04-18

    As important and irreplaceable engineering materials, metals are widely used in our daily life. Therefore, fabricating superhydrophobic surfaces on metal materials is of great significance, and applicable methods for industrial production are in urgent need. In this work, we provide a rapid and easy route for fabricating superhydrophobic films on metal materials through simple displacement deposition. This method includes two simple steps with each step being as short as one second. The obtained superhydrophobic surfaces are homogeneous and easy to repair. A miniature boat and a miniature box were used to test the buoyancy-increasing and oil absorption properties, respectively. This method is feasible for massive production of superhydrophobic metal materials applied to water transportation and oil spill clean-up areas.

  3. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  4. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method.

    Science.gov (United States)

    Xu, Qian Feng; Mondal, Bikash; Lyons, Alan M

    2011-09-01

    Fabricating robust superhydrophobic surfaces for commercial applications is challenging as the fine-scale surface features, necessary to achieve superhydrophobicity, are susceptible to mechanical damage. Herein, we report a simple and inexpensive lamination templating method to create superhydrophobic polymer surfaces with excellent abrasion resistance and water pressure stability. To fabricate the surfaces, polyethylene films were laminated against woven wire mesh templates. After cooling, the mesh was peeled from the polymer creating a 3D array of ordered polymer microposts on the polymer surface. The resulting texture is monolithic with the polymer film and requires no chemical modification to exhibit superhydrophobicity. By controlling lamination parameters and mesh dimensions, polyethylene surfaces were fabricated that exhibit static contact angles of 160° and slip angles of 5°. Chemical and mechanical stability was evaluated using an array of manual tests as well as a standard reciprocating abraser test. Surfaces remained superhydrophobic after more than 5500 abrasion cycles at a pressure of 32.0 kPa. In addition, the surface remains dry after immersing into water for 5 h at 55 kPa. This method is environmental friendly, as it employs no solvents or harsh chemicals and may provide an economically viable path to manufacture large areas of mechanically robust superhydrophobic surfaces from inexpensive polymers and reusable templates.

  5. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Science.gov (United States)

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    Science.gov (United States)

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bleaching of hydroentangled greige cotton nonwoven fabrics without scouring

    Science.gov (United States)

    This work investigated whether a hydroentangled greige cotton nonwoven fabric made at a relatively high hydroentangling water pressure, say, 135-bar, could be successfully bleached to attain the desired whiteness, absorbency and other properties without traditional scouring. Accordingly, the scoured...

  8. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

    Science.gov (United States)

    Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin

    2017-02-14

    A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

  9. Facile fabrication of superhydrophobic surface with nanowire structures on nickel foil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xia, E-mail: zx@henu.edu.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Guo, Yonggang [School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450007 (China); Liu, Yue; Yang, Xue; Pan, Jieqiong; Zhang, Pingyu [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China)

    2013-12-15

    A simple solution immersion method was developed for the preparation of superhydrophobic surface with nanowire structures on magnetic nickel substrate. The morphology feature, chemical composition and superhydrophobicity of the resultant surface were analyzed by means of scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectrum and water contact angle measurements, respectively. The surface wettability could be easily changed from superhydrophilic to superhydrophobic by a simple chemical modification with stearic acid. It is confirmed that the synergic effect of the surface microstructure and surface free energy contribute to the unique water repellence. Interestingly, the superhydrophobic nickel foil can be used to fabricate a miniature magnetic boat with a controlled movement on water surface.

  10. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.

    Science.gov (United States)

    Xu, Xianghui; Zhang, Zhaozhu; Yang, Jin

    2010-03-02

    We have reported an easy means in this paper to imitate the "lotus leaf" by constructing a superhydrophobic surface through a process combining both electroless galvanic deposition and self-assembly of n-octadecanethiol. Superhydrophobicity with a static water contact angle of about 169 +/- 2 degrees and a sliding angle of 0 +/- 2 degrees was achieved. Both the surface chemical compositions and morphological structures were analyzed. We have obtained a feather-like surface structure, and the thickness of the Ag film is about 10-30 microm. The stability of the superhydrophobic surface was tested under the following three conditions: (1) pH value from 1 to 13; (2) after freezing treatment at -20 degrees C; (3) at ambient temperature. It shows a notable stability in that the contact angle of the sample still remained higher than 150 degrees in different conditions. It can be concluded that our approach can provide an alternative way to fabricate stable superhydrophobic materials.

  11. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection

    International Nuclear Information System (INIS)

    Wang Peng; Qiu Ri; Zhang Dun; Lin Zhifeng; Hou Baorong

    2010-01-01

    A novel one-step potentiostatic electrolysis method was proposed to fabricate super-hydrophobic film on copper surface. The resulted film was characterized by contact angle tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FE-SEM) and electrochemical measurements. It could be inferred that the super-hydrophobic property resulted from the flower-like structure of copper tetradecanoate film. In the presence of super-hydrophobic film, the anodic and cathodic polarization current densities are reduced for more than five and four orders of magnitude, respectively. The air trapped in the film is the essential contributor of the anticorrosion property of film for its insulation, the copper tetradecanoate film itself acts as a 'frame' to trap air as well as a coating with inhibition effect. The super-hydrophobic film presents excellent inhibition effect to the copper corrosion and stability in water containing Cl - .

  12. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chi-wai Kan

    2018-01-01

    Full Text Available 100% grey cotton knitted fabric contains impurities and yellowness and needs to be prepared for processing to make it suitable for coloration and finishing. Therefore, conventionally 100% grey cotton knitted fabric undergoes a process of scouring and bleaching, which involves the use of large amounts of water and chemicals, in order to remove impurities and yellowness. Due to increased environmental awareness, pursuing a reduction of water and chemicals is a current trend in textile processing. In this study, we explore the possibility of using atmospheric pressure plasma as a dry process to treat 100% grey cotton knitted fabric (single jersey and interlock before processing. Experimental results reveal that atmospheric pressure plasma treatment can effectively remove impurities from 100% grey cotton knitted fabrics and significantly improve its water absorption property. On the other hand, if 100% grey cotton knitted fabrics are pretreated with plasma and then undergo a normal scouring process, the treatment time is reduced. In addition, the surface morphological and chemical changes in plasma-treated fabrics were studied and compared with the conventionally treated fabrics using scanning electron microscope (SEM, Fourier-transform infrared spectroscopy-attenuated total reflection (FTIR-ATR and X-ray photoelectron spectroscopy (XPS. The decrease in carbon content, as shown in XPS, reveal the removal of surface impurities. The oxygen-to-carbon (O/C ratios of the plasma treated knitted fabrics reveal enhanced hydrophilicity.

  13. Preparation of activated carbon fabrics from cotton fabric precursor

    Science.gov (United States)

    Salehi, R.; Dadashian, F.; Abedi, M.

    2017-10-01

    The preparation of activated carbon fabrics (ACFs) from cotton fabric was performed by chemical activation with phosphoric acid (H3PO4). The operation conditions for obtaining the ACFs with the highest the adsorption capacity and process yield, proposed. Optimized conditions were: impregnation ratio of 2, the rate of temperature rising of 7.5 °C min-1, the activation temperature of 500 °C and the activation time of 30 min. The ACFs produced under optimized conditions was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The surface area and pore volume of carbon nanostructures was characterized by BET nitrogen adsorption isotherm at 77 °K. The pore size distribution calculated from the desorption branch according to BJH method. The iodine number of the prepared ACFs was determined by titration at 30 °C based on the ASTM D4607-94. The results showed the improvement of porous structure, fabric shape, surface area (690 m2/g), total pore volume (0.3216 cm3/g), and well-preserved fibers integrity.

  14. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching

    Science.gov (United States)

    Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub

    2018-05-01

    Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.

  15. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Feng, Haitao [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Lin, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yabin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Wang, Liping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Li, Wu, E-mail: liwu2016@126.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China)

    2016-08-15

    Highlights: • Superhydrophobic surface was fabricated by black chromium electrodeposition and stearic acid modification. • The reaction process is simple, and of low cost, and no special instrument or environment is needed. • The obtained superhydrophobic surface presents good water repellency, and performs well at corrosion resistance. - Abstract: The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 10{sup 6} Ω cm{sup −2}) and excellent corrosion protection efficiency (99.94%).

  16. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  17. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    Science.gov (United States)

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO 2 nanoparticles (F-SiO 2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO 2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO 2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO 2 ratios were studied using 1 H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO 2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  19. Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces.

    Science.gov (United States)

    Chang, Yafang; Liu, Xuying; Yang, Huige; Zhang, Li; Cui, Zhe; Niu, Mingjun; Liu, Hongzhi; Chen, Jinzhou

    2016-03-14

    The solution-processing fabrication of superhydrophobic surfaces is currently intriguing, owing to high-efficiency, low cost, and energy-consuming. Here, a facile nonsolvent-assisted process was proposed for the fabrication of the multi-scaled surface roughness in polylactide (PLA) films, thereby resulting in a significant transformation in the surface wettability from intrinsic hydrophilicity to superhydrophobicity. Moreover, it was found that the surface topographical structure of PLA films can be manipulated by varying the compositions of the PLA solutions. And the samples showed superhydrophobic surfaces as well as high melting enthalpy and crystallinity. In particular, a high contact angle of 155.8° together with a high adhesive force of 184 μN was yielded with the assistance of a multi-nonsolvent system, which contributed to the co-existence of micro-/nano-scale hierarchical structures.

  20. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    Science.gov (United States)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  1. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  2. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    International Nuclear Information System (INIS)

    Liu Wenyong; Luo Yuting; Sun Linyu; Wu Ruomei; Jiang Haiyun; Liu Yuejun

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: ► Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. ► Superhydrophobic surfaces with a high water contact angle of 162° and a low rolling angle of 2° were obtained. ► The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low

  3. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  4. Fabrication of superhydrophobic surface on zinc substrate by 3-trifluoromethylbenzene diazonium tetrafluoroborate salts

    International Nuclear Information System (INIS)

    Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu

    2014-01-01

    Graphical abstract: - Highlights: • Fabrication of stable superhydrophobic Zn surfaces by a reaction with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts. • The highest water contact angle was 160°, and a low sliding angle of about 1°. • The superhydrophobicity was related with the special hierarchical porous microstructure and the low surface energy. • This procedure is facile and effective. - Abstract: In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF 3 BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc

  5. Fabrication of superhydrophobic surface on zinc substrate by 3-trifluoromethylbenzene diazonium tetrafluoroborate salts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong, E-mail: lihong@gdut.edu.cn [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510090 (China); Huang, Chengya; Zhang, Long; Lou, Wanqiu [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2014-09-30

    Graphical abstract: - Highlights: • Fabrication of stable superhydrophobic Zn surfaces by a reaction with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts. • The highest water contact angle was 160°, and a low sliding angle of about 1°. • The superhydrophobicity was related with the special hierarchical porous microstructure and the low surface energy. • This procedure is facile and effective. - Abstract: In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF{sub 3}BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.

  6. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  7. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  8. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  9. Ultrasonic-assisted fabrication of superhydrophobic ZnO nanowall ...

    Indian Academy of Sciences (India)

    The results suggested that the synergistic effect of the aluminium oxide seed layer and sonochemical process can enable the formation of ZnO nanowall structures favourable for superhydrophobic property. A possible growth mechanism of ZnO nanowalls formation during sonication process has been discussed in detail.

  10. Superhydrophobic Properties of Nanotextured Polypropylene Foils Fabricated by Roll-to-Roll Extrusion Coating

    DEFF Research Database (Denmark)

    Telecka, Agnieszka; Murthy, Swathi; Sun, Ling

    2016-01-01

    etching with different processing gas flow rates. We provide a systematic study of the wetting properties for the fabricated surfaces and show that a controlled texture stretching effect in the R2R-EC process is instrumental to yield the superhydrophobic surfaces with water contact angles approaching 160......° and droplet roll-off angles below 10°....

  11. Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field.

    Science.gov (United States)

    Wang, Jian; Li, Hao; Zou, Haoyang; Wang, Chenmiao; Zhang, Hao; Mano, João F; Song, Wenlong

    2017-02-28

    Inspired by the rolling of water droplets on lotus leaves, we developed a novel, magnetic field-controlled patterning method for water-soluble proteins and other functional materials on superhydrophobic platforms. This simple method can be used to fabricate biochips and open micro-fluidic devices in a simple way.

  12. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  13. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  14. Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation

    International Nuclear Information System (INIS)

    Xue, Chao-Hua; Ji, Peng-Ting; Zhang, Ping; Li, Ya-Ru; Jia, Shun-Tian

    2013-01-01

    Superhydrophobic and superoleophilic textiles were fabricated by a simple sol–gel coating using tetraethoxysilane and 1,1,1,3,3,3-hexamethyl disilazane as precursors. After coating, the fibers were decorated with -Si(CH 3 ) 3 functionalized SiO 2 nanoparticles, complimenting the microscale roughness inherent in the textile weave and lowering the surface energy. The textiles indicated superhydrophobic and superoleophilic property simultaneously. Utilizing these properties, a setup was designed using the textile as a screen mesh to filter oil through down to a collector and leave water drops rolling over, realizing continuous oil–water mixture separation.

  15. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide.

    Science.gov (United States)

    Lakshmi, R V; Basu, Bharathibai J

    2009-11-15

    A superhydrophobic sol-gel composite film was fabricated by incorporating hydrophobically modified colloidal zinc hydroxide (CZH) in sol-gel matrix. CZH was prepared by controlled precipitation and modified by treatment with stearic acid. The concentration of stearic acid and stirring time were optimized to obtain modified CZH with very high water contact angle (WCA) of 165 degrees and sliding angle (SA)superhydrophobic surfaces. FTIR spectrum also confirmed the presence of zinc stearate in the composite film. The method is simple and cost-effective and does not involve any expensive chemicals or equipments.

  16. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  17. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing.

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin

    2015-10-22

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  18. Fabrication of superhydrophobic surface on zinc substrate by 3-trifluoromethylbenzene diazonium tetrafluoroborate salts

    Science.gov (United States)

    Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu

    2014-09-01

    In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF3BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.

  19. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    Science.gov (United States)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  20. Fabrication of superhydrophobic wood surfaces via a solution-immersion process

    Science.gov (United States)

    Liu, Changyu; Wang, Shuliang; Shi, Junyou; Wang, Chengyu

    2011-11-01

    Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.

  1. Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces via Electrodeposition.

    Science.gov (United States)

    Jain, R; Pitchumani, R

    2018-03-13

    Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been limited by their poor mechanical durability and longevity. We present a low-cost, facile process to develop superhydrophobic copper-based coatings via an electrodeposition route, that addresses this limitation. Through electrodeposition, a stable, multiscale, cauliflower shaped fractal morphology was obtained and upon modification by stearic acid, the prepared coatings show extreme water repellency with contact angle of 162 ± 2° and roll-off angle of about 3°. Systematic studies are presented on coatings fabricated under different processing conditions to demonstrate good durability, mechanical and underwater stability, corrosion resistance, and self-cleaning effect. The study also presents an approach for rejuvenation of slippery superhydrophobic nature (roll-off angle <10°) on the surfaces after long-term water immersion. The presented process can be scaled to larger, durable coatings with controllable wettability for diverse applications.

  2. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Yun-Yun; Zhang, Li-Zhi, E-mail: lzzhang@scut.edu.cn

    2014-02-15

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  3. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    Science.gov (United States)

    Quan, Yun-Yun; Zhang, Li-Zhi

    2014-02-01

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  4. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  5. Feedback System Control Optimized Electrospinning for Fabrication of an Excellent Superhydrophobic Surface.

    Science.gov (United States)

    Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting

    2017-10-13

    Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.

  6. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability.

    Science.gov (United States)

    Kang, Sung-Min; Hwang, Sora; Jin, Si-Hyung; Choi, Chang-Hyung; Kim, Jongmin; Park, Bum Jun; Lee, Daeyeon; Lee, Chang-Soo

    2014-03-18

    We present a facile and inexpensive approach without any fluorinated chemistry to create superhydrophobic surface with exceptional liquid repellency, transportation of oil, selective capture of oil, optical bar code, and self-cleaning. Here we show experimentally that the control of evaporation is important and can be used to form superhydrophobic surface driven by Marangoni instability: the method involves in-situ photopolymerization in the presence of a volatile solvent and porous PDMS cover to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The porous PDMS cover significantly affects Marangoni convection of coating fluid, inducing composition gradients at the same time. In addition, the change of concentration of ethanol is able to produce versatile surfaces from hydrophilic to superhydrophobic and as a consequence to determine contact angles as well as roughness factors. In conclusion, the control of evaporation under the polymerization provides a convenient parameter to fabricate the superhydrophobic surface, without application of fluorinated chemistry and the elegant nanofabrication technique.

  7. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.

    Science.gov (United States)

    Wang, Ding; Zhang, Zongbo; Li, Yongming; Xu, Caihong

    2014-07-09

    Highly transparent and durable superhydrophobic hybrid nanoporous coatings with different surface roughnesses were fabricated via a simple solidification-induced phase-separation method using a liquid polysiloxane (PSO) containing SiH and SiCH═CH2 groups as precursors and methyl-terminated poly(dimethylsiloxane)s (PDMS) as porogens. Owing to the existence of SiCHn units, the hybrid material is intrinsically hydrophobic without modification with expensive fluorinated reagents. The roughness of the coating can be easily controlled at the nanometer scale by changing the viscosity of PDMS to achieve both superhydrophobicity and high transparency. The influence of surface roughness on the transparency and hydrophobicity of the coatings was investigated. The enhancement from hydrophobic to superhydrophobic with increasing surface roughness can be explained by the transition from the Wenzel state to the Cassie state. The optimum performance coating has an average transmittance higher than 85% in the visible-light range (400-780 nm), a water contact angle of 155°, and a slide angle lower than 1°. The coatings also exhibit good thermal and mechanical stability and durable superhydrophobicity, which paves the way for real applications of highly transparent superhydrophobic coatings.

  8. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Science.gov (United States)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  9. Fabrication of transparent superhydrophobic glass with fibered-silica network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Shi, Zhenwu, E-mail: zwshi@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Jiang, Yingjie; Xu, Chengyun; Wu, Zhuhui; Wang, Yanyan [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Peng, Changsi, E-mail: changsipeng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2017-06-15

    Highlights: • Superhydrophobic fibred-silica film with water contact angle of 166° and sliding angle of 1° was efficiently prepared using soot as template by CVD. • The film showed transmittance of 88% in visible range. • The superhydrophobic film possesses excellent mechanical robustness, chemical corrosion resistance, and thermal stability. • The superhydrophobic film showed outstanding self-cleaning behavior. - Abstract: In this paper, silica was deposited on the soot film pre-coated glass via chemical vapor deposition. Through calcination at 500 °C with the assistance of O{sub 2} airflow, the soot film was removed and a novel robust fibered-silica network film was then decorated onto the glass substrate. After modification with fluorosilane, the surface water contact angle (WCA) was 166° and sliding angle (SA) was 1° which behaves a good self-cleaning for the as-prepared glass. And its average transmittance was still over 88% in visible wavelength. Moreover, this fibered-silica coating showed a strong tolerance for heavy water droplets, acid/alkali corrosion, salt solution immersion and thermal treatment.

  10. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  11. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    International Nuclear Information System (INIS)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-01-01

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  12. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mengnan, E-mail: mnanqu@gmail.com; Liu, Shanshan; He, Jinmei, E-mail: jinmhe@gmail.com; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-15

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  13. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  14. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    International Nuclear Information System (INIS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-01-01

    Graphical abstract: - Highlights: • The superhydrophobic PFA/SiO 2 coating was successfully fabricated by spraying. • The synthesized PFA latex showed core–shell structure and good dispersion. • The PFA/SiO 2 coating showed good resistance to acid and base, weather and heat. • The superhydrophobic coating could be fabricated on various substrates. - Abstract: The core–shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO 2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO 2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO 2 content on the wetting behavior and surface morphology of PFA/SiO 2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core–shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO 2 particles, the surface morphology and wetting behavior of the PFA/SiO 2 hybrid coatings could be controlled. When the mass ratio of SiO 2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA

  15. Wash fastness improvement of malachite green-dyed cotton fabrics ...

    Indian Academy of Sciences (India)

    Administrator

    Nano-size features of both silica and titania nanosols are predicted to enhance the wash fastness of ... The cotton fabric was obtained from traditional market and was previously tested to contain fully cellulose ..... The authors acknowledge financial support of DP2M,. Directorate General of Higher Education, Indonesia,.

  16. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  17. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Science.gov (United States)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  18. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  19. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    Science.gov (United States)

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  20. Fabrication of bismuth superhydrophobic surface on zinc substrate

    Science.gov (United States)

    Yu, Tianlong; Lu, Shixiang; Xu, Wenguo; He, Ge

    2018-06-01

    The dendritic Bi/Bi2O3/ZnO superhydrophobic surface (SHPS) was facilely obtained on zinc substrate via etching in 0.5 mol L-1 HCl solution for 2 min, immersing in 2 mmol L-1 Bi(NO3)3/0.1 mol L-1 HNO3 solution for 2.5 min and annealing treatment at 180 °C for 2 h. The wetting property results demonstrated that the superhydrophobic sample had excellent water-repellency with a static water contact angle of 160° and sliding angle of 0° under the optimum condition, which can be visually confirmed by the impacting droplet could rebound back immediately and roll off the horizontally placed sample. Moreover, it exhibited remarkable self-cleaning ability, buoyancy, desired stability in long-term storage in air, corrosion resistance in 3.5 wt% NaCl solution, ice-over delay at - 16 °C and durability in lab-simulated abrasion test.

  1. Facile Fabrication of Superhydrophobic Paper with Excellent Water Repellency and Moisture Resistance by Phase Separation

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-06-01

    Full Text Available A simple but effective method of fabricating superhydrophobic paper with excellent moisture resistance was developed by precipitating carnauba wax onto the surface of cellulose fibers using a phase separation method. Response surface methodology (RSM was used to optimize the effects of the preparation variables on the water contact angle (WCA of the paper surface. The four independent variables were carnauba wax concentration, immersion time, coagulation bath ratio (water/ethanol, and coagulation bath time. The optimal treatment conditions were as follows: wax concentration, 3.78% (wax/chloroform, w/v; immersion time, 1.46 h; coagulation bath ratio, 13/87 (water/ethanol, v/v; and coagulation bath time, 2.63 h. Under these conditions, the experimental WCA reached 152.7°, which agreed closely with the predicted value of 154.1°. The surface morphology of the superhydrophobic paper was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM, and the images showed that cluster-like carnauba wax aggregation completely covered the fiber surface, resulting in increased roughness. Moreover, the moisture resistance of the obtained superhydrophobic paper was evaluated. The results demonstrated that under high relative humidity conditions, the moisture resistance of the superhydrophobic paper significantly improved, and its tensile strength remained high.

  2. Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation.

    Science.gov (United States)

    Wang, Fajun; Lei, Sheng; Xu, Yao; Ou, Junfei

    2015-07-20

    We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low-surface-energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    OpenAIRE

    Hui Li; Mengnan Qu; Zhe Sun; Jinmei He; Anning Zhou

    2013-01-01

    A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modi...

  4. Fabrication of a superhydrophobic surface with fungus-cleaning properties on brazed aluminum for industrial application in heat exchangers

    Science.gov (United States)

    Lee, Jeong-Won; Hwang, Woonbong

    2018-06-01

    Extensive research has been carried out concerning the application of superhydrophobic coating in heat exchangers, but little is known about the application of this technique to brazed aluminum heat exchangers (BAHEs). In this work, we describe a new superhydrophobic coating method, which is suitable for BAHE use on an industrial scale. We first render the BAHE superhydrophobic by fabricating micro/nanostructures using solution dipping followed by fluorination. After the complete removal of the silicon residue, we verify using surface analysis that the BAHE surface is perfectly superhydrophobic. We also studied the fungus-cleaning properties of the superhydrophobic surface by growing fungus for 4 weeks in a moist environment on BAHE fins with and without superhydrophobic coating. We observed that, whereas the fungus grown on the untreated fins is extremely difficult to remove, the fungus on the fins with the superhydrophobic coating can be removed easily with only a modest amount of water. We also found that the coated BAHE fins exhibit excellent resistance to moisture. The superhydrophobic coating method that we propose is therefore expected to have a major impact in the heating, ventilating and air conditioning industry market.

  5. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.

    Science.gov (United States)

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-09-01

    Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    Science.gov (United States)

    Xiu, Yonghao

    our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc. were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. However, most polymer surfaces we prepared failed the purpose. Silica surfaces with excellent UV stability were prepared. This method consists of preparation of rough silica surfaces, thermal treatment and the following surface hydrophobization by fluoroalkyl silane treatment. Fluoroalkyl groups are UV stable and the underlying species are silica which is also UV stable (UV transparent). UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Metal (Au) assisted etching was employed to fabricate nanostructures on micrometer pyramid surfaces. The light reflection on the prepared surfaces was investigated. After surface texturing using KOH etching for micrometer pyramids and the following nanostructure using metal assisted etching, surface light reflection reduced to a minimum value which shows that this surface texturing technique is highly promising for improving the photovoltaic efficiency while imparting photovoltaics the self-cleaning feature. This surface is also expected to be UV stable due to the same fluoroalkyl silane used

  7. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O 2 - and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  8. Fabrication of CdS films with superhydrophobicity by the microwave assisted chemical bath deposition.

    Science.gov (United States)

    Liu, Y; Tan, T; Wang, B; Zhai, R; Song, X; Li, E; Wang, H; Yan, H

    2008-04-15

    A simple method of microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate cadmium sulfide (CdS) thin films. The superhydrophobic surface with a water contact angle (CA) of 151 degrees was obtained. Via a scanning electron microscopy (SEM) observation, the film was proved having a porous micro/nano-binary structure which can change the property of the surface and highly enhance the hydrophobicity of the film. A possible mechanism was suggested to describe the growth of the porous structure, in which the microwave heating takes an important role in the formation of two distinct characteristic dimensions of CdS precipitates, the growth of CdS sheets in micro-scale and sphere particles in nano-scale. The superhydrophobic films may provide novel platforms for photovoltaic, sensor, microfluidic and other device applications.

  9. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces.

    Science.gov (United States)

    Tsai, Hui-Jung; Lee, Yuh-Lang

    2007-12-04

    A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.

  10. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modification by aluminate coupling agent which reduced the surface energy greatly, was found to be responsible for the superhydrophobicity. The method adopted is relatively simple, facile, and cost-effective and can potentially be applied to large water-repellent surface coatings.

  11. Synthesis of polymeric fluorinated sol–gel precursor for fabrication of superhydrophobic coating

    International Nuclear Information System (INIS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Graphical abstract: - Highlights: • A polymeric fluorinated sol–gel precursor PFT is designed to fabricate superhydrophobic coatings. • The superhydrophobicity could be governed by the concentration of PFT. • Bio-mimicking self-cleaning property similar to lotus leaves could also be achieved. - Abstract: A fluorinated polymeric sol–gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol–gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  12. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers.

    Science.gov (United States)

    Kostal, Elisabeth; Stroj, Sandra; Kasemann, Stephan; Matylitsky, Victor; Domke, Matthias

    2018-03-06

    The exciting functionalities of natural superhydrophilic and superhydrophobic surfaces served as inspiration for a variety of biomimetic designs. In particular, the combination of both extreme wetting states to micropatterns opens up interesting applications, as the example of the fog-collecting Namib Desert beetle shows. In this paper, the beetle's elytra were mimicked by a novel three-step fabrication method to increase the fog-collection efficiency of glasses. In the first step, a double-hierarchical surface structure was generated on Pyrex wafers using femtosecond laser structuring, which amplified the intrinsic wetting property of the surface and made it superhydrophilic (water contact angle 150°). In the last step, the Teflon-like coating was selectively removed by fs-laser ablation to uncover superhydrophilic spots below the superhydrophobic surface, following the example of the Namib Desert beetle's fog-collecting elytra. To investigate the influence on the fog-collection behavior, (super)hydrophilic, (super)hydrophobic, and low and high contrast wetting patterns were fabricated on glass wafers using selected combinations of these three processing steps and were exposed to fog in an artificial nebulizer setup. This experiment revealed that high-contrast wetting patterns collected the highest amount of fog and enhanced the fog-collection efficiency by nearly 60% compared to pristine Pyrex glass. The comparison of the fog-collection behavior of the six samples showed that the superior fog-collection efficiency of surface patterns with extreme wetting contrast is due to the combination of water attraction and water repellency: the superhydrophilic spots act as drop accumulation areas, whereas the surrounding superhydrophobic areas allow a fast water transportation caused by gravity. The presented method enables a fast and flexible surface functionalization of a broad range of materials including transparent substrates, which offers exciting possibilities for

  13. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Science.gov (United States)

    2010-04-01

    ... used in dry food packaging. 182.70 Section 182.70 Food and Drugs FOOD AND DRUG ADMINISTRATION... used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry food packaging that are generally recognized as safe for their intended use, within the meaning of...

  14. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  15. Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance

    Directory of Open Access Journals (Sweden)

    ZHENG Shun-li

    2017-10-01

    Full Text Available Aluminum (Al can be easily contaminated or damaged after exposure in damp environments, which can adversely affect its aesthetic appearance and desired functionalities. To improve its corrosion resistance, a superhydrophobic coating was fabricated on Al by electrochemical anodization followed by modification with myristic acid. The surface morphology and chemical composition were characterized by using a field emission scanning electron microscope (FESEM with attached energy dispersive X-ray spectrum (EDS. The surface wettability, mechanical stability as well as corrosion resistance were also investigated by contact angle measuring system, sandblasting test and electrochemical measurements. The results show that the optimal Al-based superhydrophobic coating with a static water contact angle of (155.2±0.5° and a sliding angle of (3.5±1.3° is obtained at the anodization voltage of 20V. The corresponding corrosion current density (Icorr is reduced by 2 orders of magnitude and the corrosion potential (Ecorr shifts from -0.629V to -0.570V compared to the bare Al substrate, indicating excellent corrosion resistance. Besides, the as-prepared optimal Al-based superhydrophobic coating also suggests good mechanical stability.

  16. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  17. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property.

    Science.gov (United States)

    Ren, Guina; Song, Yuanming; Li, Xiangming; Wang, Bo; Zhou, Yanli; Wang, Yuyan; Ge, Bo; Zhu, Xiaotao

    2018-07-15

    Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address. Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min. Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface. The stable binding of ZnO-PDMS layer onto the fibers allows for the fabric coating with robust superhydrophobicity, and the coated fabric still displays superhydrophobicity after hand twisting, knife scratching, finger touching, and even cycles of sandpaper abrasion. The ZnO-PDMS coated fabric can also keep its superhydrophobic property when exposed to long term UV illumination, demonstrating its UV resistance. Moreover, the uniformly distribution of ZnO nanoparticles on fibers allows the ZnO-PDMS coated fabric to display UV shielding property. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  19. Fabricating Superhydrophobic and Superoleophobic Surfaces with Multiscale Roughness Using Airbrush and Electrospray

    Science.gov (United States)

    AL-Milaji, Karam N.

    Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag reduction, anti-icing, anti-fogging, energy conservation, noise reduction, and self-cleaning. In fact, the same concept could be applied in designing and producing surfaces that repel organic contaminations (e.g. low surface tension liquids). However, superoleophobic surfaces are more challenging to fabricate than superhydrophobic surfaces since the combination of multiscale roughness with re-entrant or overhang structure and surface chemistry must be provided. In this study, simple, cost-effective and potentially scalable techniques, i.e., airbrush and electrospray, were employed for the sake of making superhydrophobic and superoleophobic coatings with random and patterned multiscale surface roughness. Different types of silicon dioxide were utilized in this work to in order to study and to characterize the effect of surface morphology and surface roughness on surface wettability. The experimental findings indicated that super liquid repellent surfaces with high apparent contact angles and extremely low sliding angles were successfully fabricated by combining re-entrant structure, multiscale surface roughness, and low surface energy obtained from chemically treating the fabricated surfaces. In addition to that, the experimental observations regarding producing textured surfaces in mask-assisted electrospray were further validated by simulating the actual working

  20. Simple and Environmentally Friendly Fabrication of Superhydrophobic Alkyl Ketene Dimer Coated MALDI Concentration Plates.

    Science.gov (United States)

    Romson, Joakim; Jacksén, Johan; Emmer, Åsa

    2017-08-01

    Here we present a method to manufacture peptide-concentrating MALDI-plates with alkyl ketene dimer (AKD) as a new superhydrophobic coating. The fabrication of the hydrophobic plates included application of AKD by airbrush, and negative contact printing to generate the concentration sites. Deposited sample droplets were contained within the prestructured sites, and self-adjusted onto the site if slightly misplaced. No AKD contamination was observed, and the plates could easily be cleaned and regenerated. The S/N values for four model peptides was about twice as high compared with a standard steel plate and a commercial concentration plate. Graphical Abstract ᅟ.

  1. Simple and Environmentally Friendly Fabrication of Superhydrophobic Alkyl Ketene Dimer Coated MALDI Concentration Plates

    Science.gov (United States)

    Romson, Joakim; Jacksén, Johan; Emmer, Åsa

    2017-08-01

    Here we present a method to manufacture peptide-concentrating MALDI-plates with alkyl ketene dimer (AKD) as a new superhydrophobic coating. The fabrication of the hydrophobic plates included application of AKD by airbrush, and negative contact printing to generate the concentration sites. Deposited sample droplets were contained within the prestructured sites, and self-adjusted onto the site if slightly misplaced. No AKD contamination was observed, and the plates could easily be cleaned and regenerated. The S/N values for four model peptides was about twice as high compared with a standard steel plate and a commercial concentration plate.

  2. Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating

    Directory of Open Access Journals (Sweden)

    Kyong-Min Lee

    2017-11-01

    Full Text Available Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.

  3. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.

    Science.gov (United States)

    Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad

    2018-03-16

    Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Facile fabrication of superhydrophobic surfaces with low roughness on Ti–6Al–4V substrates via anodization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuze; Sun, Yuwen, E-mail: ywsun@dlut.edu.cn; Guo, Dongming

    2014-09-30

    Highlights: • A facile and efficient method for fabricating low-roughness superhydrophobic titanium alloy surfaces is successfully developed. • Formation mechanism of micro-scale pore structures built by a novel anodic oxidation is carefully analyzed. • The prepared superhydrophobic surface possesses good durability and abrasion resistance. - Abstract: The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H{sub 2}O{sub 2} mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 μm and good superhydrophobicity with a water contact angle of 158.5° ± 1.9° as well as a water tilting angle of 5.3° ± 1.1°, but also possess good long-term stability and abrasion resistance.

  5. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates

    Science.gov (United States)

    Liu, Hui; Gao, Shou-Wei; Cai, Jing-Sheng; He, Cheng-Lin; Mao, Jia-Jun; Zhu, Tian-Xue; Chen, Zhong; Huang, Jian-Ying; Meng, Kai; Zhang, Ke-Qin; Al-Deyab, Salem S.; Lai, Yue-Kun

    2016-01-01

    Multifuntional fabrics with special wettability have attracted a lot of interest in both fundamental research and industry applications over the last two decades. In this review, recent progress of various kinds of approaches and strategies to construct super-antiwetting coating on cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant applications related to artificial superhydrophobic fabrics with special wettability and controllable adhesion, e.g., oil-water separation, self-cleaning, asymmetric/anisotropic wetting for microfluidic manipulation, air/liquid directional gating, and micro-template for patterning. In addition to the anti-wetting properties and promising applications, particular attention is paid to coating durability and other incorporated functionalities, e.g., air permeability, UV-shielding, photocatalytic self-cleaning, self-healing and patterned antiwetting properties. Finally, the existing difficulties and future prospects of this traditional and developing field are briefly proposed and discussed. PMID:28773253

  6. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy.

    Science.gov (United States)

    She, Zuxin; Li, Qing; Wang, Zhongwei; Li, Longqin; Chen, Funan; Zhou, Juncen

    2012-08-01

    A novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy is reported in this paper. Hierarchical structure composed of micro/nano-featherlike CuO was obtained by electrodeposition of Cu-Zn alloy coating and subsequently an electrochemical anodic treatment in alkaline solution. After modification with lauric acid, the surface became hydrophobicity/superhydrophobicity. The formation of featherlike CuO structures was controllable by varying the coating composition. By applying SEM, ICP-AES, and water contact angle analysis, the effects of coating composition on the surface morphology and hydrophobicity of the as-prepared surfaces were detailedly studied. The results indicated that at the optimal condition, the surface showed a good superhydrophobicity with a water contact angle as high as 155.5 ± 1.3° and a sliding angle as low as about 3°. Possible growth mechanism of featherlike CuO hierarchical structure was discussed. Additionally, the anticorrosion effect of the superhydrophobic surface was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The interface model for anticorrosion mechanism of superhydrophobic surface in corrosive medium was proposed. Besides, the mechanical stability test indicated that the resulting superhydrophobic surfaces have good mechanical stability.

  7. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance

    International Nuclear Information System (INIS)

    Zhao, Lin; Liu, Qi; Gao, Rui; Wang, Jun; Yang, Wanlu; Liu, Lianhe

    2014-01-01

    Highlights: •The myristic acid iron superhydrophobic surface was formatted on AZ31. •Two procedures to build a super-hydrophobic were simplified to one step. •The superhydrophobic surface shows good anticorrosion, antifouling properties. •We report a new approach for the superhydrophobic surface protection on AZ31. -- Abstract: Inspired by the lotus leaf, various methods to fabricate artificial superhydrophobic surfaces have been developed. Our purpose is to create a simple, one-step and environment-friendly method to construct a superhydrophobic surface on a magnesium alloy substrate. The substrate was immersed in a solution containing ferric chloride (FeCl 3 ·6H 2 O), deionized water, tetradecanoic acid (CH 3 (CH 2 ) 12 COOH) and ethanol. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FT-IR) were employed to characterize the substrate surface. The obtained surface showed a micron rough structure, a high contact angle (CA) of 165° ± 2° and desirable corrosion protection and antifouling properties

  8. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    Science.gov (United States)

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  10. Enhancing Dark Shade Pigment Dyeing of Cotton Fabric Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2017-07-01

    Full Text Available This study is intended to investigate the effect of atmospheric pressure plasma treatment on dark shade pigment dyeing of cotton fabric. Experimental results reveal that plasma-treated cotton fabric can attain better color yield, levelness, and crocking fastness in dark shade pigment dyeing, compared with normal cotton fabric (not plasma treated. SEM analysis indicates that cracks and grooves were formed on the cotton fiber surface where the pigment and the binder can get deposited and improve the color yield, levelness, and crocking fastness. It was also noticed that pigment was aggregated when deposited on the fiber surface which could affect the final color properties.

  11. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    Science.gov (United States)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  12. Effect of chitosan on resist printing of cotton fabrics with reactive dyes

    African Journals Online (AJOL)

    The concentration of chitosan, types of resist agent, curing temperature and curing time were varied to determine their effects on resist-printed cotton fabrics. An optimal chitosan concentration of 1.6% resulted in the greatest resist effect on printed cotton fabrics. For mixtures, a 6:4 ratio of citric acid : chitosan and an 8:2 ...

  13. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  14. Fabrication of a Superhydrophobic Surface with Flower-Like Microstructures with a One-Step Immersion Process

    International Nuclear Information System (INIS)

    Kim, Younga; Go, Seungcheol; Ahn, Yonghyun

    2013-01-01

    It has been demonstrated that flower-like microstructures can be fabricated on a Mg plate using a solution of propylphosphonic acid and HFTHTMS in ethanol. In the presence of propylphosphonic acid, the HFTHTMS is polymerized and then deposited on the surface of the Mg plates during the immersion period. Many flower-like structures were formed on the surface after at least 6 h of immersion, at which point the modified plate became superhydro-phobic. The nano-/micro scale flower-like structure is composed of fluorinated polysiloxane, which acts as a low-surface-energy material. SEM images reveal that the flower-like structure is composed of many thin flakes. It is confirmed that these structures on the surface contain air and result in an ideal structure for obtaining the superhydrophobic surface. This proposed coating method is simple and can be applied to a large sample to fabricate a superhydrophobic surface without expensive instruments. Superhydrophobicity of solid materials has attracted significant attention because it provides strong water repellency and self-cleaning properties. The chemical composition and nano-/microscale structures of the surface are key factors determining the surface properties. Recently, superhydro-phobic surfaces showing high water contact angles (CA) > 150 .deg. and low sliding angles (SA) < 10 .deg. have been the focus of much research because they have many applications in both academic fields and industrial processes

  15. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  16. Facile fabrication of nano-structured silica hybrid film with superhydrophobicity by one-step VAFS approach

    Science.gov (United States)

    Jia, Yi; Yue, Renliang; Liu, Gang; Yang, Jie; Ni, Yong; Wu, Xiaofeng; Chen, Yunfa

    2013-01-01

    Here we report a novel one-step vapor-fed aerosol flame synthesis (VAFS) method to attain silica hybrid film with superhydrophobicity on normal glass and other engineering material substrates using hexamethyldisiloxane (HMDSO) as precursor. The deposited nano-structured silica films represent excellent superhydrophobicity with contact angle larger than 150° and sliding angle below 5°, without any surface modification or other post treatments. SEM photographs proved that flame-made SiO2 nanoparticles formed dual-scale surface roughness on the substrates. It was confirmed by FTIR and XPS that the in situ formed organic fragments on the particle surface as species like (CH3)xSiO2-x/2 (x = 1, 2, 3) which progressively lowered the surface energy of fabricated films. Thus, these combined dual-scale roughness and lowered surface energy cooperatively produced superhydrophobic films. IR camera had been used to monitor the real-time flame temperature. It is found that the inert dilution gas inflow played a critical role in attaining superhydrophobicity due to its cooling and anti-oxidation effect. This method is facile and scalable for diverse substrates, without any requirement of complex equipments and multiple processing steps. It may contribute to the industrial fabrication of superhydrophobic films.

  17. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  18. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces

    International Nuclear Information System (INIS)

    Wang, Haibin; Chen, Eryu; Jia, Xianbu; Liang, Lijun; Wang, Qi

    2015-01-01

    Graphical abstract: - Highlights: • The SiO 2 and PTFE NP-filled coatings exhibit excellent superhydrophobicity. • PTFE-filled coatings show denser structures and better liquid resistance than SiO 2 . • Air pocket of Wentzel model explains the difference in the superhydrophobicity. - Abstract: Superhydrophobicity is extensively investigated because of the numerous methods developed for water-repellant interface fabrication. Many suitable functional materials for the production of superhydrophobic surfaces on various substrates are still being explored. In this study, inorganic SiO 2 and organic polytetrafluoroethylene (PTFE) nanoparticles (NPs) are used for a comparative study on the performance of superhydrophobic coating on carbon steel surfaces. The NPs are added to PTFE coating emulsions by physical blending to form coating mixtures. Raw SiO 2 NPs are then hydrophobized using KH-570 and validated by Fourier transform-infrared spectroscopy (FT-IR) and Dynamic Laser Scattering (DLS) grain size analyses. The microstructures of the surfaces are characterized by contact angle (CA) measurements and field emission-scanning electron microscope (FE-SEM) images. The prepared surfaces are subjected to adhesion, hardness, water resistance, and acid/alkali erosion tests. Hydrophobized SiO 2 -filled coating surfaces are found to have better uniformity than raw SiO 2 regardless of their similar maximum static contact angles (SCAs) about 150°. A SCA of 163.1° is obtained on the PTFE NP-filled coating surfaces that have a considerably denser structure than SiO 2 . Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses reveal that all fabricated surfaces have good thermal stability and tolerate temperatures up to 550 °C. The PTFE NP-filled coating surfaces also exhibit excellent water and acid resistance. A possible mechanism concerning the amount of trapped air is proposed in relation to practical superhydrophobic surface fabrication

  19. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  20. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay.

    Science.gov (United States)

    Guo, Jie; Yang, Fuchao; Guo, Zhiguang

    2016-03-15

    We report a simple and rapid method to fabricate superhydrophobic films on copper substrates via Fe(3+) etching and octadecanethiol (ODT) modification. The etching process can be as short as 5 min and the ODT treatment only takes several seconds. In addition, the whole process is quite flexible in reaction time. The superhydrophobicity of as-prepared surfaces is mechanically durable and chemically stable, which have great performance in oil-water separation and ice-over resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Fabrication and tribological properties of super-hydrophobic surfaces based on porous silicon

    International Nuclear Information System (INIS)

    Liu, Y.H.; Wang, X.K.; Luo, J.B.; Lu, X.C.

    2009-01-01

    In the present work, super-hydrophobic surfaces based on porous silicon (PS) were constructed by the self-assembled molecular films and their tribological properties were investigated. A simple chemical etching approach was developed to fabricate PS with the certain rough microstructure surface, which can be observed by the environmental scanning electron microscopy (ESEM). The hydrocarbon and fluorocarbon alkylsilane molecular films were self-assembled on PS, which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. In contrast to PS, the alkylsilane molecular films modified PS (mPS) were super-hydrophobic since the apparent water contact angle (CA) exceeded 160 deg. The tribological properties of PS and the mPS were investigated by a ball-on-disk tribometer during the processes of different sliding velocities and normal loads. The experimental results showed that the alkylsilane molecular films could decrease the friction coefficient. Due to the difference of chain structure and functional groups, the fluorinated alkylsilane films are better candidates for improving the hydrophobicity and lubricating characteristics of PS comparing to the non-fluorinated ones. The carbon chain length of alkylsilane molecules self-assembling on the Si or PS substrates could have little effects on the hydrophobic properties and the tribology performances.

  2. Geometrical effect, optimal design and controlled fabrication of bio-inspired micro/nanotextures for superhydrophobic surfaces

    Science.gov (United States)

    Ma, F. M.; Li, W.; Liu, A. H.; Yu, Z. L.; Ruan, M.; Feng, W.; Chen, H. X.; Chen, Y.

    2017-09-01

    Superhydrophobic surfaces with high water contact angles and low contact angle hysteresis or sliding angles have received tremendous attention for both academic research and industrial applications in recent years. In general, such surfaces possess rough microtextures, particularly, show micro/nano hierarchical structures like lotus leaves. Now it has been recognized that to achieve the artificial superhydrophobic surfaces, the simple and effective strategy is to mimic such hierarchical structures. However, fabrications of such structures for these artificial surfaces involve generally expensive and complex processes. On the other hand, the relationships between structural parameters of various surface topography and wetting properties have not been fully understood yet. In order to provide guidance for the simple fabrication and particularly, to promote practical applications of superhydrophobic surfaces, the geometrical designs of optimal microtextures or patterns have been proposed. In this work, the recent developments on geometrical effect, optimal design and controlled fabrication of various superhydrophobic structures, such as unitary, anisotropic, dual-scale hierarchical, and some other surface geometries, are reviewed. The effects of surface topography and structural parameters on wetting states (composite and noncomposite) and wetting properties (contact angle, contact angle hysteresis and sliding angle) as well as adhesive forces are discussed in detail. Finally, the research prospects in this field are briefly addressed.

  3. Durable Superomniphobic Surface on Cotton Fabrics via Coating of Silicone Rubber and Fluoropolymers

    Directory of Open Access Journals (Sweden)

    Arsheen Moiz

    2018-03-01

    Full Text Available Performance textiles that protect human from different threats and dangers from environment are in high demand, and the advancement in functionalization technology together with employing advanced materials have made this an area of research focus. In this work, silicone rubber and environmentally friendly fluoropolymers have been employed to explore superomniphobic surface on cotton fabrics without compromising comfort much. It has been found that a cross-linked network between the rubber membrane and the fluoropolymers has been formed. The surface appearance, morphology, handle, thickness and chemical components of the surface of cotton fabrics have been changed. The coated fabrics showed resistance to water, aqueous liquid, oil, chemicals and soil. The comfort of the coated fabrics is different to uncoated cotton fabrics due to the existence of coated layers on the surface of cotton fabrics. This work would benefit the development and design of the next generation of performance textiles with balanced performance and comfort.

  4. Tensile Properties of Single Jersey and 1×1 Rib Knitted Fabrics Made from 100% Cotton and Cotton/Lycra Yarns

    Directory of Open Access Journals (Sweden)

    Dereje Berihun Sitotaw

    2017-01-01

    Full Text Available The tensile properties such as tensile strength which is measured as breaking force in Newton (N and elongation percent (% at break of single jersey and 1×1 rib (knitted with full needles knitted fabrics made from 100% cotton and cotton/Lycra yarns (5% Lycra yarn content in 95% combed cotton yarn are investigated in this research. The sample fabrics are conditioned for 24 hours at 20±1°C temperature and 65±2% relative humidity before testing. Ten specimens (five for lengthwise and five for widthwise have been taken from each of the two knitted structures, those made from 100% cotton and cotton/Lycra (at 95/5 percent ratio blend yarns. According to the discussion and as found from the investigations, the tensile properties of single jersey and 1×1 rib knitted fabrics made from 100% cotton and cotton/Lycra yarns are significantly different from each other and both of the knitted fabrics have high elongation percent at break with cotton/Lycra blend yarns as compared to 100% cotton yarn. Knitted fabrics made from cotton/Lycra blended yarn have low breaking force and high elongation percent at break relative to knitted fabrics made from 100% cotton yarns.

  5. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  6. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.

    Science.gov (United States)

    Lee, Jung-Pil; Choi, Sinho; Park, Soojin

    2011-01-18

    We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°.

  7. Facile Selective and Diverse Fabrication of Superhydrophobic, Superoleophobic-Superhydrophilic and Superamphiphobic Materials from Kaolin.

    Science.gov (United States)

    Qu, Mengnan; Ma, Xuerui; He, Jinmei; Feng, Juan; Liu, Shanshan; Yao, Yali; Hou, Lingang; Liu, Xiangrong

    2017-01-11

    As the starting material, kaolin is selectively and diversely fabricated to the superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic materials, respectively. The wettability of the kaolin surface can be selectively controlled and regulated to different superwetting states by choosing the corresponding modification reagent. The procedure is facile to operate, and no special technique or equipment is required. In addition, the procedure is cost-effective and time-saving and the obtained super-repellent properties are very stable. The X-ray photoelectron spectroscopy analysis demonstrates different changes of kaolin particles surfaces which are responsible for the different super-repellency. The scanning electron microscopy displays geometric micro- and nanometer structures of the obtained three kinds of super-repellent materials. The results show that kaolin has good applications in many kinds of superwetting materials. The method demonstrated in this paper provides a new strategy for regulating and controlling the wettability of solid surfaces selectively, diversely, and comprehensively.

  8. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    Science.gov (United States)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  9. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel

    Science.gov (United States)

    Sun, Ke; Yang, Huan; Xue, Wei; He, An; Zhu, Dehua; Liu, Wenwen; Adeyemi, Kenneth; Cao, Yu

    2018-04-01

    Anti-biofouling technology is based on specifically designed materials and coatings. This is an enduring goal in the maritime industries, such as shipping, offshore oil exploration, and aquaculture. Recently, research of the relationship between wettability and antifouling effectiveness has attracted considerable attention, due to the anti-biofouling properties of the lotus leaf and shark skin. In this study, super-hydrophobic surfaces (SHSs) with controllable periodic structures were fabricated on AISI304 stainless steel by a picosecond laser, and their anti-biofouling performance were investigated by seawater immersion for five weeks in summertime. The results showed that the specimens with SHS demonstrate significant anti-biofouling effect as compared with the bare stainless steel plate. We observed that nearly 50% decrease of the average microbe attachment area ratio (Avg. MAAR) could be obtained. The micro-groove SHS with more abundant hierarchical micro-nano structures showed better anti-biofouling performance than the micro-pit SHS.

  10. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    International Nuclear Information System (INIS)

    Hoai, Nguyen To; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-01-01

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  11. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    Energy Technology Data Exchange (ETDEWEB)

    Hoai, Nguyen To, E-mail: hoaito@pvu.edu.vn; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-02-15

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  12. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid

    International Nuclear Information System (INIS)

    Ngo Vo Ke Thanh; Nguyen Thi Phuong Phong

    2009-01-01

    In this work, silver nanoparticles were prepared by polyol process with microwave heating and incorporated on cotton fabric surfaces. The antibacterial performance of the antibacterial cotton fabric was tested for different concentration of nano-sized silver colloid, contact time germs, and washing times. It was found that antibacterial activity increased with the increasing concentration of nano-sized silver colloid. The antibacterial fabric with 758 mg/kg of silver nanoparticles on surface cotton was highly effective in killing test bacteria and had excellent water resisting property.

  13. INFLUENCE OF FABRIC TIGHTNESS ON SPIRALITY OF WEFTKNITTED PLAIN COTTON FABRIC

    Directory of Open Access Journals (Sweden)

    A.K.M. Mobarok Hossain

    2011-01-01

    Full Text Available Global demand for knitted garments is growing at a faster rate than that of woven items.Currently around 50% of clothing needs in the developed countries is met by knit goods. So ensuring the required quality in a knitted fabric is a vital issue for the manufacturer. One of the major problems encountered in knitted fabric is spirality. It affects particularly single jersey fabric and presents a serious problem during garment confection and use. So controlling spirality is a basic requirement for producing quality knitted fabric. Though there are several factors that contribute to knitted fabric spirality, yarn twist and relative tightness of the fabric are said tobe the most significant ones. In this work the basic single jersey fabric, i.e. plain jersey cotton fabrics were produced by a Hosiery knitting machine and spirality values were observed for different yarn T.P.I. and tightness factor at relaxed state. It was found that tightness factor has a direct influence on knitted fabric spirality with a high degree of correlation. The work thus gives an idea to deal this problem by controlling the knitting parameters.

  14. Rational design and fabrication of highly transparent, flexible, and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles

    Science.gov (United States)

    Zou, Xinshu; Tao, Chaoyou; Yang, Ke; Yang, Fan; Lv, Haibing; Yan, Lianghong; Yan, Hongwei; Li, Yuan; Xie, Yongyong; Yuan, Xiaodong; Zhang, Lin

    2018-05-01

    Multifunctional coatings with superhydrophobicity, high transparency, thermal stability, flexibility, and ultralow refractive index have been investigated for many years. They have promising applications in industries such as in electronic and optical devices, photonic materials, and templates for fabricating biological and chemical sensors. However, the relatively complex preparation technology of these coatings or difficult to possess these properties simultaneously are still the main factors that limit their wide application. In this paper, we report a facile atmospheric approach to create transparent multifunctional raspberry-like particulate coatings with a low refractive index, which were obtained via one-pot base-catalyzed sol-gel process using tetraethyl orthosilicate (TEOS) and 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (POTS) as co-precursors. The excellent superhydrophobicity, mechanical flexibility, self-cleaning property, thermal and chemical stability of the as-fabricated coatings were demonstrated. The refractive indices of coatings can be easily tuned at a range of 1.07-1.16. Particularly, the resulted samples on the K9 glasses exhibited superhydrophobicity with a water contact angle (WCA) of 162° when the scale ratio of the POTS and TEOS was 1.0. The superhydrophobicity of the as-prepared coatings could last for more than half a year under indoor condition, demonstrating the long stability of the superhydrophobicity. Furthermore, we demonstrated that this simple efficient method could be extended to different substrates, including K9 glass, Polyvinyl chloride (PVC), stainless steel, aluminum alloy, and gingko leaf, to achieve superhydrophobicity. Interestingly, the superhydrophobicty of the coatings transferred to superhydrophilicity (WCA < 5°) by calcination at 500 °C, which resulted in a good antifogging property. Moreover, the coatings were not sensitive to the strong acid (pH = 1) and kept their superhydrophobic state for a long time

  15. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  16. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Sarıışık Merih

    2010-01-01

    Full Text Available Abstract ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL process on cotton fabrics properties.

  17. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation

    Science.gov (United States)

    Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian

    2017-10-01

    During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.

  18. Rinse-resistant superhydrophobic block copolymer fabrics by electrospinning, electrospraying and thermally-induced self-assembly

    Science.gov (United States)

    Wu, Jie; Li, Xin; Wu, Yang; Liao, Guoxing; Johnston, Priscilla; Topham, Paul D.; Wang, Linge

    2017-11-01

    An inherent problem that restricts the practical application of superhydrophobic materials is that the superhydrophobic property is not sustainable; it can be diminished, or even lost, when the surface is physically damaged. In this work, we present an efficient approach for the fabrication of superhydrophobic fibrous fabrics with great rinse-resistance where a block copolymer has been electrospun into a nanofibrous mesh while micro-sized beads have been subsequently electrosprayed to give a morphologically composite material. The intricate nano- and microstructure of the composite was then fixed by thermally annealing the block copolymer to induce self-assembly and interdigitation of the microphase separated domains. To demonstrate this approach, a polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) nanofibrous scaffold was produced by electrospinning before SEBS beads were electrosprayed into this mesh to form a hierarchical micro/nanostructure of beads and fibers. The effects of type and density of SEBS beads on the surface morphology and wetting properties of composite membranes were studied extensively. Compared with a neat SEBS fibrous mesh, the composite membrane had enhanced hydrophobic properties. The static water contact angle increased from 139° (±3°) to 156° (±1°), while the sliding angle decreased to 8° (±1°) from nearly 90°. In order to increase the rinse-resistance of the composite membrane, a thermal annealing step was applied to physically bind the fibers and beads. Importantly, after 200 h of water flushing, the hierarchical surface structure and superhydrophobicity of the composite membrane were well retained. This work provides a new route for the creation of superhydrophobic fabrics with potential in self-cleaning applications.

  19. Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons

    Science.gov (United States)

    A comparative study was conducted to identify the effects of processing parameters on physical and combustion properties of needlepunched (NP) and hydroentangled (H-E) nonwoven fabrics produced from fibers of a standard Mid-South white fiber cotton and a naturally colored brown fiber cotton. The fl...

  20. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    OpenAIRE

    Yavuz, Gonul; Zille, Andrea; Seventekin, N.; Souto, A. Pedro

    2017-01-01

    Abstract. In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fab...

  1. Influence of bleach activators on the fabric made from cotton (gossypium hamster l.)

    International Nuclear Information System (INIS)

    Asif, H.M.; Iftikhar, M.; Shahbaz, B.

    2013-01-01

    Raw cotton contains various type of trash and most of the impurities are removed during the spinning process but still the cotton fabric coming from the weaving or knitting process always contains some impurities. Some time cotton fabric gets the oil, stains and coloured materials which affect the quality of dyed fabric. Bleaching is a process that eliminates unwanted coloured matters from the fibres, yarn and fabrics. A bleaching agent is a material that lightens or whitens a substrate through chemical action. Hydrogen peroxide is by far the most commonly used oxidative bleaching agent for cotton and its blends, accounting for more than 90 percent of all the bleaching agents. The use of activators to enhance the bleaching performance of hydrogen peroxide for cellulosic materials has gained popularity now a day. In this context the main objectives of this paper are to study the influence of different bleaching activators on cotton fabric and to give implications for textile extension.The results indicate that the activators with different concentrations, along with different concentrations of hydrogen peroxide (H/sub 2/O/sub 2) have significant influence on the bleaching performance of cotton fabric. (author)

  2. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    Science.gov (United States)

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  4. Superhydrophobic surfaces

    Science.gov (United States)

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  5. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.

    Science.gov (United States)

    Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi

    2014-12-28

    An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 μL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.

  6. Influence of Laundering on the Quality of Sewn Cotton and Bamboo Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2013-03-01

    Full Text Available In the presented study the effect of laundering on the quality of sewn cotton and bamboo plain woven fabrics was investigated considering both the textile parameters and the type of chemical treatment. Quality parameters of sewn cotton and bamboo woven fabrics such as: fabric strength, seam strength and seam slippage at the moment of 4 mm seam opening were evaluated before and after washing with “Tide” washing powder without softeners or with softeners: “Surcare” and “Pflege Weicspuler”. There was also determined surface density, warp and weft densities as well as thicknesses under the pressures 0.625 kPa and 3.125 kPa, and calculated the comparative thickness that was considered as softness or porosity of fabrics. Notwithstanding that both the investigated fabrics were cellulosic their behavior after laundering was different. Under the tested conditions, unwashed and laundered with or without chemical softeners cotton fabric didn’t demonstrate seam slippage. The seam slippage resistance of laundered without or with softener specimens of bamboo fabric was increased in respect to control fabric. The larger changes in seam efficiency and seam strength because of laundering were determined for bamboo woven fabric then for cotton fabric. They could be influenced by the higher changes in bamboo fabric’s structure. The highest difference between the structure parameters of both fabrics was determined for comparative thickness. It was significantly increased for cotton fabric and decreased for bamboo fabric after chemical softening comparing to untreated fabrics.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3831

  7. Structure and properties of cotton fabrics treated with functionalized dialdehyde chitosan.

    Science.gov (United States)

    He, Xuemei; Tao, Ran; Zhou, Tianchi; Wang, Chunxia; Xie, Kongliang

    2014-03-15

    In this research, modified cotton fabrics were prepared by pad-dry-cure technique from the aldehyde chitosan solution containing 3-aminopropyltriethoxysilane (APTES) and 1,2-ethanediamine (EDA) respectively. The structural characterization of the modified cotton fabrics was performed by attenuated total reflection ATR, scanning electron microscopy (SEM) and thermogravimetry (TG) analysis and physical mechanical properties were measured. The adsorption kinetics of modified cotton fabrics were also investigated by using the pseudo first-order and pseudo second-order kinetic model. The dyeing rate constant k1, k2 and half adsorption time t1/2 were calculated, respectively. The results show that the mechanical properties of different modified cotton fabrics were improved, and the surface color depth values (K/S), UV index UPF and anti-wrinkle properties were better than those of untreated cotton. Dyeing kinetics data at different temperatures indicate that Direct Pink 12B up-take on the modified cotton fabrics fitted to pseudo second-order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    Science.gov (United States)

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-05

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane

    Science.gov (United States)

    Yang, Jinxin; Pi, Pihui; Wen, Xiufang; Zheng, Dafeng; Xu, Mengyi; Cheng, Jiang; Yang, Zhuoru

    2009-01-01

    A superhydrophobic surface was obtained by combining application of CaCO 3/SiO 2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  10. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties.

    Science.gov (United States)

    El-Shafei, A; ElShemy, M; Abou-Okeil, A

    2015-03-15

    This research work deals with flame retardant and antibacterial finishing agent for cellulosic fabrics using TiO2 nanoparticles and chitosan phosphate. TiO2 nanoparticles were prepared by sol-gel method using titanium tetraisopropoxide. The size of TiO2 nanoparticles was characterized using transmission electron microscope (TEM). The application of nano TiO2 onto cellulosic fabrics (cotton 100%) was achieved in presence of polycarboxylic acid [1,2,3,4-butane tetracarboxylic acid (BTCA)] with sodium hypophosphite (SHP) as catalyst and chitosan phosphate through conventional pad-dry-cure method. The effect of the finishing on the physical properties, flammability and antibacterial properties of cross-linked fabrics are investigated. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behaviour of the treated samples. Limited oxygen indexes (LOI) of the treated cotton fabrics were investigated. The treated cotton fabric also reveals excellent antibacterial properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal

    Science.gov (United States)

    Liu, Hai-Dong; Gu, Bin; Yuan, Wei-Feng; He, Qi

    2018-02-01

    A new polyurethane foam with superhydrophobicity and excellent lipophilicity is presented and demonstrated experimentally in this work. The superhydrophobic foam is synthesized by dip coating the polyurethane foam with a mixture solution of silicone resine and silicon dioxide nanoparticles. Its superhydrophobic and oleophilic capacity is characterized and verified via the SEM images, the water contact angle measurement, the adsorption tests and recyclability tests for water and some typical oils. Combining with the vacuum assisted oil-water separation technology (VAST), continuous recovery of oil spill at the lab scale is realized on the new superhydrophobic foam. Moreover, the break through pressure for water penetrating through the superhydrophobic foam is determined experimentally and referred as the maximum operation pressure in the VAST.

  12. The study of antibacterial activity and stability of dyed cotton fabrics modified with different forms of silver

    Directory of Open Access Journals (Sweden)

    Lazić Vesna

    2012-01-01

    Full Text Available This study compares the effect of colloidal silver nanoparticles and commercial RUCO-BAC AGP agent with silver chloride as an active component on antibacterial activity of dyed cotton fabrics. Cotton fabrics were dyed with vat dyes Bezanthren olive T and Bezanthren grey FFB. Antibacterial activity of silver loaded dyed cotton fabrics was tested against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli. Unlike RUCO-BAC AGP synthesized silver nanoparticles deposited onto dyed cotton fabrics provided maximum bacteria reduction independently of applied dye. The stability of modified cotton fabrics was analyzed in artificial sweat at pH 5.5 and 8.0. Approximately the same amount of silver was released from differently modified cotton fabrics in artificial sweat. Larger amount of silver was released in the sweat at pH 8.0.

  13. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  14. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations

    OpenAIRE

    Tran, Viet-Ha Thi; Lee, Byeong-Kyu

    2017-01-01

    We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature’s designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe3O4) via a facile and environmentally friendly method. After each treatment, the properti...

  15. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  16. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Superhydrophobic titania nanoparticles for fabrication of paper-based analytical devices: An example of heavy metals assays.

    Science.gov (United States)

    Xu, Wenjian; Chen, Xi; Cai, Songcai; Chen, Jin; Xu, Zhen; Jia, Hongpeng; Chen, Jing

    2018-05-01

    A new strategy has been introduced to successfully fabricate the hydrophobic barriers of PADs by using organofluorine-modified superhydrophobic TiO 2 NPs. Superhydrophobic TiO 2 -140 NPs with high-photoactivity can be converted to hydrophilicity by self-degradation of surface organic moieties under full spectrum light irradiation. Superhydrophobic TiO 2 -RT NPs with low-photoactivity exhibits good hydrophobic stability under light irradiation. Thus, combining these features, the PADs have been designed and constructed by photo-induced fabrication of hydrophobic barriers on the surface of the paper. To demonstrate the effectiveness of the constructed PADs, colorimetric detections have been displayed for Fe 3+ and Ni 2+ ions. The synchronous multi-component detections based on the "multi-channel" PADs and the intuitive detections based on the "chemical-symbol-style" PADs are rapid and feasible. A detection range of Fe 3+ and Ni 2+ ions based on the "circle-array" PAD is applicable and reliable in 0.2-6.0 mM and 0.4-4.0 mM, respectively. Thus, these results make it to be believed that this new strategy provides an alternative way to effectively construct the PADs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    International Nuclear Information System (INIS)

    Bayer, I.S.; Steele, A.; Martorana, P.J.; Loth, E.

    2010-01-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155 o and low contact angle hysteresis ( o ). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  19. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  20. Parametric Study of Effects of Atmospheric Pressure Plasma Treatment on the Wettability of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2018-02-01

    Full Text Available In textiles processing, wettability of fabric plays a very important role in enhancing processes such as dyeing and printing. Although well-prepared cotton fabric has very good wettability, further enhancement of its wettability can effectively improve the subsequent dyeing and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT, a continuous process, is now drawing attention of the industry. In this study, we investigated the effect of APPT under four operational parameters: (1 discharge power; (2 flow rate of oxygen; (3 jet travelling speed; and (4 jet-to-substrate distance on wettability (in terms of wickability and wetting area of cotton fabric. Experimental results revealed that the four parameters interact with each other in affecting the wettability of the cotton fabric. The results are discussed comprehensively.

  1. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations.

    Science.gov (United States)

    Tran, Viet-Ha Thi; Lee, Byeong-Kyu

    2017-12-13

    We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature's designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe 3 O 4 ) via a facile and environmentally friendly method. After each treatment, the properties of the modified sponge were characterized, and the changes in wettability were examined. Water contact angle (WCA) measurements confirmed the excellent superhydrophobicity of the material withhigh static WCA of 161° andlow dynamic WCA (sliding WCA of 7° and shedding WCA of 8°). The fabricated sponge showed high efficiency in separation (over 99%) of different oils from water. Additionally, the fabricated PU@ZnO@Fe 3 O 4 @SA sponge could be magnetically guided to quickly absorb oil floating on the water surface. Moreover, the fabricated sponge showed excellent stability and reusability in terms of superhydrophobicity and oil absorption capacity. The durable, magnetic and superhydrophobic properties of the fabricated sponge render it applicable to the cleanup of marine oil spills and other oil-water separation issues, with eco-friendly recovery of the oil by simple squeezing process.

  2. Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.

    Science.gov (United States)

    Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W

    2017-10-15

    A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thermogravimetric Studies of Deposited Potash Impregnated for Flame-Retardancy into a Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    MOSTASHARI, S.M.; NIA, Y.K.; BAIE, S.

    2007-01-01

    The effect of potash as a nondurable finish on the flammability of 100% cotton fabric (plain 180 g/m2) was investigated. The bone-dried weighed fabrics were dipped into suitable concentrations of potash, with a volume of 100 mL at 20-2 ℃. The impregnation was followed by means of squeeze rolls and drying at 110 C. The samples were then reweighed with analytical precision. After conditioning overnight by using our "vertical flame tester" the optimum add-on values to impart flame-retardancy to cotton fabric was determined and expressed by 0.80 g of potash per 100 g fabric to be an efficient addition. Thermogravimetric analysis of pure cotton, treated cotton with potash at its optimum efficiency for donation of flame-retardancy into cotton fabric was fulfilled and the thermograms were compared and commented. The effectiveness of this hydroxide was attributed to the heat dissipation by the remaining consumed material during the combustion. The results obtained are in favor of "Dust or Wall Effect Theory".

  4. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer.

    Science.gov (United States)

    Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret

    2017-10-15

    A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  6. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  7. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties.

    Science.gov (United States)

    Montazer, M; Keshvari, A; Kahali, P

    2016-12-10

    This paper is mainly focused on introducing cotton fabric with hydrogel and antimicrobial properties using Tragacanth gum as a natural polymer with hydrogel properties, silver nitrate as silver precursor, citric acid as a cross-linking agent and sodium hypophosphite as catalyst. The water absorption behavior of the treated fabrics was investigated with moisture regain, water retention, drying time of wetted fabric at room condition and vertical wicking tests. Antibacterial properties of the samples were evaluated against Escherichia coli and Staphylococcous aureus. The SEM pictures confirmed formation of nano silver and hydrogel layer on the fabric surface and XRD performed the crystal and particle size of the nano silver. The chemical structure of the fabric samples was identified with FTIR spectra. The central composite design (CCD) was used for statistical modelling, evaluated effective parameters and created optimum conditions. The treated cotton fabrics showed good water absorption properties along with reasonable antibacterial effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fabrication of a novel superhydrophobic and superoleophilic surface by one-step electrodeposition method for continuous oil/water separation

    Science.gov (United States)

    Xiang, Meisu; Jiang, Meihuizi; Zhang, Yanzong; Liu, Yan; Shen, Fei; Yang, Gang; He, Yan; Wang, Lilin; Zhang, Xiaohong; Deng, Shihuai

    2018-03-01

    A novel superhydrophobic and superoleophilic surface was fabricated by one-step electrodeposition on stainless steel meshes, and the durability and oil/water separation properties were assessed. Field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and optical contact angle measurements were used to characterize surface morphologies, chemical compositions, and wettabilities, respectively. The results indicated that the as-prepared mesh preformed excellent superhydrophobicity and superoleophilicity with a high water contact angle (WCA) of 162 ± 1° and oil contact angle of (OCA) 0°. Meanwhile, the as-prepared mesh also exhibited continuous separation capacity of many kinds of oil/water mixtures, and the separation efficiency for lubrication oil/water mixture was about 98.6%. In addition, after 10 separation cycles, the as-prepared mesh possessed the WCAs of 155 ± 2°, the OCAs of 0° and the separation efficiency of 97.8% for lubrication oil/water mixtures. The as-prepared mesh also retained superhydrophobic and superoleophilic properties after abrading, immersing in salt solutions and different pH solutions.

  9. Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization

    Science.gov (United States)

    Sun, Jun; Bi, Hong

    2012-03-01

    A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.

  10. Simple and Green Fabrication of a Superhydrophobic Surface by One-Step Immersion for Continuous Oil/Water Separation.

    Science.gov (United States)

    Zhu, Jingfang; Liu, Bin; Li, Longyang; Zeng, Zhixiang; Zhao, Wenjie; Wang, Gang; Guan, Xiaoyan

    2016-07-21

    In this paper, stainless steel meshes with superhydrophobic and superoleophilic surfaces were fabricated by rapid and simple one-step immersion in a solution containing hydrochloric acid and stearic acid. The apparent contact angles were tested by a video contact angle measurement system (CA). Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the surface topographies and chemical compositions. The SEM results showed that mesh surfaces were covered by ferric stearate (Fe[CH3(CH2)16COO]2) with low surface energy. The CA test results showed that the mesh had a maximum apparent contact angle of 160 ± 1.0° and a sliding angle of less than 5.0° for the water droplet, whereas the apparent contact angle for the oil droplet was zero. Ultrasound oscillation and exposure tests at atmospheric conditions and immersion tests in 3.5 wt % NaCl aqueous solution were conducted to confirm the mesh with excellent superhydrophobic and superoleophilic properties. On the basis of the superhydrophobic mesh, a miniature separation device pump was designed to collect pure oil from the oil/water mixture. It showed that the device was easier and convenient. The techniques and materials presented in this work are promising for application to wastewater and oil spill treatment.

  11. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  13. Flame retardant cotton fabrics by electron beam-induced polymerization of vinyl phosphonate oligomer

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ametani, Kazuo; Enomoto, Ichiro

    1988-01-01

    Vinyl phosphonate oligomer is presently used commercially as a cellulosic flame retardant in conjugation with N-methylol acrylamide, using a persulfate catalyst and a thermal cure. This combination can also be cured at room temperature with electron beams, as can the vinyl phosphonate alone. For the textile application, fixation of flame retardants by electron beams with low energy is one of the most promising applications. For the purpose of preparing flame resistant cotton fabrics such as bed sheets and pajamas, flame retardant curing of vinyl phosphonate oligomer on cotton fabrics was examined using electron beams from a self-sealed electron beam processor and gamma rays from a 60 Co source. A joint investigation was undertaken by the Tokyo Metropolitan Textile Research Institute and Tokyo Metropolitan Isotope Research Center to determine the feasibility of curing vinyl phosphonate oligomer on the cotton fabrics for textile finishing. (author)

  14. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan.

    Science.gov (United States)

    Xu, QingBo; Xie, LiJing; Diao, Helena; Li, Fang; Zhang, YanYan; Fu, FeiYa; Liu, XiangDong

    2017-12-01

    Carboxymethyl chitosan (CMCTS) and silver nanoparticles (Ag NPs) were successfully linked onto a cotton fabric surface through a simple mist modification process. The CMCTS binder was covalently linked to the cotton fabric via esterification and the Ag NPs were tightly adhered to the fiber surface by coordination bonds with the amine groups of CMCTS. As a result, the coating of Ag NPs on the cotton fabric showed excellent antibacterial properties and laundering durability. After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against both S. aureus and E. coli remained over 95%. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  16. The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics

    Science.gov (United States)

    Chirila, Laura; Popescu, Alina; Cutrubinis, Mihalis; Stanculescu, Ioana; Moise, Valentin Ioan

    2018-04-01

    Fabrics made of 100% cotton and 100% flax respectively were exposed at ambient temperature to gamma radiation doses, from 5 to 40 kGy, using a Co-60 research irradiator. After the irradiation treatment the fabrics were subjected to dyeing process with Itodye Nat Pomegranate commercial natural dye. The influence of gamma irradiation treatment on the physical-mechanical properties, dyeing and surface morphology of natural fibres were investigated. Gamma ray treatment of 40 kGy was the most effective in the case of fabrics made from 100% cotton, enhancing the colour strength as evidenced by K/S value. The results obtained from the mechanical properties of fabrics made of 100% flax indicated that the dose of 40 kGy leads to a decrease of tensile strength up of to 41.5%. Infrared spectroscopy was used to monitor chemical and structural changes in cellulosic fibres induced during processing. Crystallinity indices calculated from various bands ratio showed insignificant variations for cotton and small variations in the case of flax. The surface morphology of irradiated cotton fabrics did not show significant changes even at the highest dose of 40 kGy, while the low doses applied on flax fabrics led to an appearance of small changes of surface morphology. The gamma irradiation increased the uptake of natural dyes on natural cellulosic fibres.

  17. Laser fluorescence determination of radioactive waste cotton fabric in the exploration of uranium content

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    In order to meet the dosage test the operational needs of the laser fluorescence determination of trace radioactive waste cotton fabric uranium research and exploration, to determine the sample ashing time, measured dosage of acidity and digestion and other technical parameters, gives the laser fluorescence determination of radioactive abandoned cotton fabric of trace uranium method. Method of high sensitivity, strong anti-interference, the detection limit of 0.025μg/g(Burning down dregs), relative standard deviation was 3.96%, the mean recovery 93.3%-103% for masks, gloves and other radioactive waste to the determination of trace uranium. (authors)

  18. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System

    Directory of Open Access Journals (Sweden)

    Charles Q. Yang

    2016-09-01

    Full Text Available Blending Nomex® with cotton improves its affordability and serviceability. Because cotton is a highly flammable fiber, Nomex®/cotton blend fabrics containing more than 20% cotton require flame-retardant treatment. In this research, combination of a hydroxyl functional organophosphorus oligmer (HFPO and 1,2,3,4-butanetetracarboxylic acid (BTCA was used for flame retardant finishing of the 65/35 Nomex®/cotton blend woven fabric. The system contains HFPO as a flame retardant, BTCA as a bonding agent, and triethenolamine (TEA as a reactive additive used to enhance the performance of HFPO/BTCA. Addition of TEA improves the hydrolysis resistance of the HFPO/BTCA crosslinked polymeric network on the blend fabric. Additionally, TEA enhances HFPO’s flame retardant performance by reducing formation of calcium salts and also by providing synergistic nitrogen to the treated blend fabric. The Nomex®/cotton blend fabric treated with the HFPO/BTCA/TEA system shows high flame resistance and high laundering durability at a relatively low HFPO concentration of 8% (w/w. The heat release properties of the treated Nomex®/cotton blend fabric were measured using microscale combustion calorimetry. The functions of BTCA; HFPO and TEA on the Nomex®/cotton blend fabric were elucidated based on the heat release properties, char formation, and fire performance of the treated blend fabric.

  19. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  20. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  1. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    Science.gov (United States)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  2. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Gu Guotuan; Tian Yuping; Li Zhantie; Lu Dongfang

    2011-01-01

    Nano-sized Al 2 O 3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al 2 O 3 particles in the coating. As the Al 2 O 3 concentration in the coating was increased from 0% to 8%, WCA increased from 68 o to 165 o . Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  3. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  4. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  5. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric.

    Science.gov (United States)

    Li, Yu-Chin; Schulz, Jessica; Mannen, Sarah; Delhom, Chris; Condon, Brian; Chang, Sechin; Zammarano, Mauro; Grunlan, Jaime C

    2010-06-22

    Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 degrees C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.

  6. Dose determination by ESR in an accident, using cotton fabric

    International Nuclear Information System (INIS)

    Venkataramani, R.; Mehta, S.K.; Iyer, M.R.; Natarajan, V.; Sastry, M.D.

    1993-01-01

    Accidental exposure dose assessment by electron spin resonance (ESR) technique from the free radicals generated in a cotton handkerchief has been attempted in this investigation. The cotton handkerchief, a common material carried by individuals, was taken as the medium for free radical estimation. About 55 mg of the irradiated piece of cloth was loaded into a quartz tube and the dose dependence of the ESR signal at g = 2.0026 was measured at room temperature, using a Bruker ESP-300 ESR spectrometer in X-band (9.74 GHz). The intensity of this signal was found to be proportional to the dose in the range of 1-1000 Gy. The stability of the free radicals with time of storage was followed. Dependence of dose rate as well as the presence of water on the yield of free radicals were also investigated. (author) 5 refs.; 4 figs.; 2 tabs

  7. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  8. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-09

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large

  9. Cooperative action of cellulase enzyme and carboxymethyl cellulose on cotton fabric cleanability from a topographical standpoint

    NARCIS (Netherlands)

    Calvimontes, A.; Lant, N.J.; Dutschk, Victoria

    2011-01-01

    In this study, the effect of cotton treatment with cellulose and carboxymethyl cellulose on soil release of three different types of fabric: woven plain, woven twill and knitted were systematically studied. A recent study of the effect of a cleaning cellulase enzyme on cellulose films has proven

  10. Cleanability Improvement of Cotton Fabrics Through Their Topographical Changes Due to the Conditioning with Cellulase Enzyme

    NARCIS (Netherlands)

    Calvimontes, A.; Lant, N.J.; Dutschk, Victoria

    2012-01-01

    In this study, topographical changes of woven cotton fabrics conditioned with a cellulase enzyme during several wash–dry cycles are systematically studied. A recent study of cellulase enzyme effect on cellulose films has proven that this substance selectively attacks amorphous regions of cellulose,

  11. Effect of water pressure on absorbency of hydroentangled greige cotton nonwoven fabrics

    Science.gov (United States)

    A studied has been conducted to determine the effect of water pressure in a commercial-grade Fleissner MiniJet hydroentanglement system on the absorbency of greige (non-bleached) cotton lint-based nonwoven fabric. The study has shown that a water pressure of 125 Bar or higher on only two high-pressu...

  12. Preparation of durable insecticide cotton fabrics through sol–gel treatment with permethrin

    OpenAIRE

    Ardanuy Raso, Mònica; Faccini, Mirko; Amantia, David; Aubouy, Laurent; Borja, Guadalupe

    2014-01-01

    This paper presents the development of an industrially viable procedure for the fabrication of durable insecticide textiles based on the sol–gel technique. Permethrin was incorporated on cotton fabrics by a silicon oxide nanocoating applied by conventional padding followed by curing. The effect of the sol–gel process parameters, such as silica solid content and the permethrin/tetraethyl orthosilicate (TEOS) ratio on the insecticide activity and on the textile properties of the resulting fabri...

  13. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    International Nuclear Information System (INIS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-01-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash –SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties. - Highlights: ► The optimum absorbed dose obtained for surface modification of cotton (RC) is 8 kGy. ► Irradiation has enhanced antioxidant, anti bacterial and hemolytic activities. ► Optimum dyeing conditions are 60 min dyeing time and 8 g/L salt concentration. ► At optimum conditions, color strength and fastness properties are enhanced.

  14. Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver.

    Science.gov (United States)

    Ranjbar-Mohammadi, Marziyeh

    2018-04-01

    A simple and inexpensive procedure has been devised to prepare antibacterial cotton fabric using silver nanoparticles (AgNPs) and bio degradable gum tragacanth (GT). For this, different concentrations of GT (2, 4 and 6 g/L) along with a constant amount of Ag (5%; according to weight of dry GT used in the solutions) were applied to investigate the efficacy of antibacterial potency against Escherichia coli and Staphylococcus aureus and their effect on physical, mechanical and biological characteristics of cotton fabric. Our study exhibited the presence of small amount of AgNPs in the composite structure was enough to increase the antibacterial activity of fabrics compared to fabric that were treated by only GT. Moreover, the treated cotton with GT-4%/Ag indicated proper tensile strength and stiffness compared to treated fabric with GT-6%/Ag composite. The biocompatibility of the GT and GT/Ag treated fabrics was verified through MTT assay on fibroblast cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    Science.gov (United States)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF pressure is higher than 0.3 Torr. The water contact angle ( 149°) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  16. Mechanical strength and hydrophobicity of cotton fabric after SF{sub 6} plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kamlangkla, K. [Nanoscience and Nanotechnology Program, Center of Innovative Nanotechnology, Chulalongkorn University, Bangkok 10330 (Thailand); Paosawatyanyong, B. [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand); Pavarajarn, V. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Hodak, Jose H. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Hodak, Satreerat K., E-mail: Satreerat.H@Chula.ac.th [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand)

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF{sub 6} plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF{sub 6} pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF{sub 6} pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  17. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    International Nuclear Information System (INIS)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-01-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF 6 plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF 6 pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF 6 pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  18. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  19. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua, E-mail: xuc0374@hotmail.com [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-05-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  20. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    International Nuclear Information System (INIS)

    Li, Peipei; Chen, Xinhua; Yang, Guangbin; Yu, Laigui; Zhang, Pingyu

    2014-01-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  1. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles

    International Nuclear Information System (INIS)

    Xue Chaohua; Chen Jia; Yin Wei; Jia Shuntian; Ma Jianzhong

    2012-01-01

    Silver nanoparticles (Ag NPs) were produced on cotton fibers by reduction of [Ag(NH 3 ) 2 ] + complex with glucose. Further modification of the fibers coated by Ag NPs with hexadecyltrimethoxysilane led to superhydrophobic cotton textiles. Scanning electron microscopy images of the textiles showed that the treated fibers were covered with uniform Ag NPs, which generate a dual-size roughness on the textiles favouring the formation of superhydrophobic surfaces, and the Ag NPs formed dense coating around the fibers rendering the intrinsic insulating cotton textiles conductive. Antibacterial test showed that the as-fabricated textiles had high antibacterial activity against the gram-negative bacteria, Escherichia coli. These multifunctional textiles might find applications in biomedical electronic devices.

  2. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  3. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property.

    Science.gov (United States)

    Firoz Babu, K; Dhandapani, P; Maruthamuthu, S; Anbu Kulandainathan, M

    2012-11-06

    Polymer-silver nanocomposites modified cotton fabrics were prepared by in situ chemical oxidative polymerization using pyrrole and silver nitrate. In a redox reaction between pyrrole and silver nitrate, silver ions oxidize the pyrrole monomer and get reduced. This reduced silver as nanoparticles deposited on/into the polypyrrole/cotton matrix layer and the interaction between silver and polypyrrole was by adsorption or electrostatic interaction. The structure and composite formation on cotton fiber was investigated using SEM, FT-IR, XPS and XRD. The results showed that a strong interaction existing between silver nanoparticles with polypyrrole/cotton matrix. FT-IR studies clearly indicated that the interaction between polypyrrole (-N-H) and cellulose (>C-OH) was by hydrogen bonding. It is observed that the conductivity of the composite coated fabrics has been increased by the incorporation of silver nanoparticles. In the synthesized composites, silver content plays an important role in the conductivity and antimicrobial activity rate of the fabrics against gram positive Staphylococcus aureus and gram negative Escherichia coli bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  5. Effect of fire retardants on cotton fabric grafted with acrylic acid by EB radiation: a thermal analysis study

    International Nuclear Information System (INIS)

    Mitra, D.; Sabharwal, S.; Majali, A.B.

    1998-01-01

    Electron beam irradiation technique has been utilized to graft acrylic acid to cotton fabric in order to provide suitable functional groups that can subsequently react with urea or borax for making the fabric fire resistant. Thermal analytical technique such as, DSC and TG have been utilized to investigate the flame retardency characteristic of the grafted and treated fabric. The result shows that decay curve of exothermic peak due to combustion of cotton fabric in case of urea treated fabric at 330 degC becomes broad and shifts to higher temperature in DSC analysis as compared to pure cotton fabric and char residue in TG analysis is 20% in both the case. In borax treated fabric, char residue is found to be 40% in TG analysis and DSC profile is similar to that of urea treated fabric. (author)

  6. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  7. Rapid fabrication of superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film with excellent energy-release characteristics and long-term storage stability

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Xiang; Zhou, Xiang, E-mail: zhouxiang@njust.edu.cn; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei, E-mail: superfine_jw@126.com

    2017-06-15

    Highlights: • Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film is prepared by combining electrophoretic deposition and surface modification technologies. • The deposition system and kinetics of electrophoretic deposition process are investigated to optimize parameters to obtain smooth films. • Energy-release characteristics of superhydrophobic films are significantly improved for both fresh and aged samples. • Superhydrophobic films exhibit excellent long-time storage stability both in natural and accelerated aging test. • A preignition reaction is found to enhance the energy-release characteristics of superhydrophobic nanothermite film. - Abstract: One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al{sub 2}O{sub 3} shell and FAS-17. Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in

  8. Study of chemical and physical behavior cotton fabrics treated by ...

    African Journals Online (AJOL)

    After four times laundering, shrinkage behavior of corona discharge treated fabric as compared with un-treated fabric decrease. After 10 passages of corona discharge treatment, water, dye absorption and shrinkage are modified but after 14 passages, despite of shrinkage improvement, dyeing properties decrease.

  9. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    Science.gov (United States)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  10. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

    Science.gov (United States)

    Jang, Wonjun; Chung, Il Jun; Kim, Junwoo; Seo, Seongmin; Park, Yong Tae; Choi, Kyungwho

    2018-05-01

    In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These antiflammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

  11. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric

    International Nuclear Information System (INIS)

    Karimi, Loghman; Yazdanshenas, Mohammad Esmail; Khajavi, Ramin; Rashidi, Abosaeed; Mirjalili, Mohammad

    2015-01-01

    Graphical abstract: - Highlights: • Producing superior photo-active cotton fabric using graphene/titanium dioxide nanocomposite. • Optimizing processing conditions using response surface methodology. • Obtaining significant photo-activity properties on cotton fabric by this method under sun irradiation. • Possessing excellent antimicrobial activity with low cytotoxicity on human fibroblasts. - Abstract: A new facile route based on cotton fabric coated with graphene/titanium dioxide nanocomposite is reported to produce photo-active cellulose textiles. A thin layer of graphene oxide has been produced on cotton fabrics by a dip-dry process. The graphene oxide-coated cotton fabrics were then immersed in titanium trichloride aqueous solution to yield a fabric coated with graphene/titanium dioxide nanocomposite. The photo-activity efficiency of the coated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. To obtain the optimum condition, the response surface methodology (RSM) through the central composite design was applied and the role of both graphene oxide and titanium trichloride concentrations on photo-activity efficiency was investigated. The physicochemical properties of the prepared samples has been characterized by a series of techniques, including Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of the application of graphene/titanium dioxide nanocomposite on the physical properties of the cotton fabric, such as tensile strength, bending rigidity and crease recovery angle has been analyzed. Other characteristics of treated fabrics such as antibacterial, antifungal and cytotoxicity were also investigated. Cotton fabric coated with optimum concentrations of graphene oxide and titanium trichloride obtained significant photo-activity efficiency under UV and sunlight irradiations. Moreover, the graphene

  12. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    Science.gov (United States)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  13. The radiation grafting of vinyl monomers to cotton fabrics

    International Nuclear Information System (INIS)

    Shiraishi, N.; Williams, J.L.; Stannett, V.

    1982-01-01

    Cobalt 60 γ and electron beam radiation were used to graft diethylphosphatoethyl methacrylate, pure and in 90:10 methanol solution, to cotton cloth. This monomer, with an 11.64% phosphorus content, was especially developed by the Scott Paper Co. to develop fire retardancy. A simple pad and squeeze application followed by direct irradiation under a nitrogen atmosphere was used. Although excess monomer could be removed by washing with water, no solvent for the polymer was found so only the total 'add-ons' could be measured. With 60 Co irradiation, total polymerization was obtained with more than 1 Mrad but with electron beam irradiation only about 50% conversion was obtained even with 10 Mrad. No acceleration in the rates could be achieved with the viscous pure monomer as opposed to in solution. Yields adequate to impart reasonable fire retardancy could, however, be obtained with about 3 Mrad with electrons. No noticeable degradation of the polymer occurred at the doses used. (author)

  14. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    International Nuclear Information System (INIS)

    Rukosuyev, Maxym V.; Lee, Jason; Cho, Seong Jin; Lim, Geunbae; Jun, Martin B.G.

    2014-01-01

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment

  15. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Rukosuyev, Maxym V.; Lee, Jason [Mechanical Engineering, University of Victoria (Canada); Cho, Seong Jin; Lim, Geunbae [Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Jun, Martin B.G., E-mail: mbgjun@uvic.ca [Mechanical Engineering, University of Victoria (Canada)

    2014-09-15

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment.

  16. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design

    International Nuclear Information System (INIS)

    Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R.

    2016-01-01

    N-methylol dimethyl phosphono propionamide (MDPA) is one of the most utilized fire resistant (FR) finishes for cotton fabrics, utilized as part of a formulation with trimethylol melamine (TMM) to acquire better crosslinking and enhanced FR properties. The system parameters of the finishing treatment were upgraded for better FR properties and low mechanical loss to the fabric by the response surface methodology utilizing Box-Behnken statistical designed experimental strategy. The impacts of concentration on the cotton fabric’s properties (fire resistance and mechanical properties) were assessed with the regression equations. The optimum conditions by predicting the FR reagents focusing intact mechanical properties of the fabric were additionally studied. It was found that the parameters of crosslinking agents in the FR formulation have a prime role in the general FR properties of the cotton fabrics. The R-squared estimations of the considerable number of responses were above 92%, demonstrating the level of relationship between the predicted values by the Box-Behnken frameworks and the real test results.

  17. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  18. Improvement of the process for immobilization of silver nanoparticles onto cotton and peco fabrics to prepare antibacterial fabrics

    International Nuclear Information System (INIS)

    Truong Thi Hanh; Nguyen Thi Thu; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2015-01-01

    Silver nanoparticles (AgNPs) with diameter about 11.6 ± 0.7 nm in chitosan solution were synthesized by γ-irradiation at the dose of 17.6 kGy, and then immobilized onto fabrics. The Ag-NPs contents onto cotton and peco fabrics were about 1700 and 140 mg/kg for the initial AgNPs concentrations of 1000 and 100 ppm, respectively. The AgNPs colloidal solution was characterized by UV-Vis spectroscopy and TEM image. The AgNPs size has been estimated by using Debye-Scherrer formula from X ray diffraction pattern. The presence of AgNPs on fabrics was confirmed from scanning electron microscopy (SEM) images. The antibacterial activity of AgNPs cotton and peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumonia was found to be > 99.40%. Effects of AgNPs on multidrug-resistant pathogens from the clinical specimens were also tested. In addition, the AgNPs fabrics were innoxious to the skin (k=0) by skin-irritation testing to animal (rabbit). (author)

  19. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    Science.gov (United States)

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  20. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  1. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Tao; Hu, Ruimin; Zhao, Zhenyun [College of Textile & Garment, Southwest University, 400716, Chongqing (China); Liu, Yiping [College of Textile & Garment, Southwest University, 400716, Chongqing (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716, Chongqing (China); Lu, Ming, E-mail: lumingswu@163.com [College of Textile & Garment, Southwest University, 400716, Chongqing (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716, Chongqing (China)

    2017-04-01

    Highlights: • A novel micro-dissolved process was carried out to embedding commercial titanium dioxide nanoparticles into cotton fabric with NaOH/urea aqueous solution. • X-ray diffraction pattern of modified fabrics shown that the cellulose structure of modified fabrics had not changed. • Modified cotton fabrics demonstrated favourable photocatalytic self-cleaning performance while tensile strength and whiteness of treated fabrics also expressed an increasement slightly. - Abstract: A simple and economical micro-dissolved process of embedding titanium dioxide (TiO{sub 2}) nanoparticles into surface zone of cotton fabrics was developed. TiO{sub 2} was coated on cotton fabrics in 7% wt NaOH/12% wt urea aqueous solution at low temperature. Photocatalytic efficiency of cotton fabrics treated with TiO{sub 2} nanoparticles was studied upon measuring the photocatalytic decoloration of Rhodamine B (RhB) under ultraviolet irradiation. Self-cleaning property of cotton fabric coated with TiO{sub 2} was evaluated with color depth of samples (K/S value). The treated fabrics were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FITR), tensile strength, stiffness and whiteness. The results indicated, TiO{sub 2} nanoparticles could be embedded on the surface layer of cotton fabrics throuth surface micro-dissolve method. Treated cotton fabrics possessed distinct photocatalytic efficiency and self-cleaning properties. Tensile strength and whiteness of modified cotton fabrics appeared moderately increasement.

  2. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Lv, J.C.; Zhou, Q.Q.; Ma, Z.P.; Qi, Z.M.; Chen, J.Y.; Liu, G.L.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Lu, Z.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); Zhang, W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 (China)

    2017-02-28

    Highlights: • A new means for multifunctional cotton fabrics by PIVPGP of AA and AgNPs synthesis. • Surface modification by PIVPGP of AA had a positive effect on AgNPs loading. • Antibacterial, self-cleaning and thermal stability were greatly improved. • AgNP loaded cotton fabric exhibited excellent laundering durability. • Mechanism of AgNPs in situ synthesis on cotton fabrics by PIVPGP of AA was proposed. - Abstract: A practical and ecological method for preparing the multifunctional cotton fabrics with excellent laundering durability was explored. Cotton fabrics were modified by plasma induced vapor phase graft polymerization (PIVPGP) of acrylic acid (AA) and subsequently silver nanoparticles (AgNPs) were in situ synthesized on the treated cotton fabrics. The AgNP loaded cotton fabrics were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), antibacterial activity, self-cleaning activity, thermal stability and laundering durability, respectively. SEM observation and EDX, XPS and XRD analysis demonstrated the much more AgNPs deposition on the cotton fabrics modified by PIVPGP of AA. The AgNP loaded cotton fabrics also exhibited better antibacterial activity, self-cleaning activity, thermal stability and laundering durability. It was concluded that the surface modification of the cotton fabrics by PIVPGP of AA could increase the loading efficiency and binding fastness of AgNPs on the treated cotton fabrics, which could fabricate the cotton fabrics with durable multifunction. In addition, the mechanism of in situ synthesis of AgNPs on the cotton fabrics modified by PIVPGP of AA was proposed.

  4. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks.

    Science.gov (United States)

    Baidya, Avijit; Ganayee, Mohd Azhardin; Jakka Ravindran, Swathy; Tam, Kam Chiu; Das, Sarit Kumar; Ras, Robin H A; Pradeep, Thalappil

    2017-11-28

    In view of a great demand for paper-based technologies, nonwettable fibrous substrates with excellent durability have drawn much attention in recent years. In this context, the use of cellulose nanofibers (CNFs), the smallest unit of cellulosic substrates (5-20 nm wide and 500 nm to several microns in length), to design waterproof paper can be an economical and smart approach. In this study, an eco-friendly and facile methodology to develop a multifunctional waterproof paper via the fabrication of fluoroalkyl functionalized CNFs in the aqueous medium is presented. This strategy avoids the need for organic solvents, thereby minimizing cost as well as reducing safety and environmental concerns. Besides, it widens the applicability of such materials as nanocellulose-based aqueous coatings on hard and soft substrates including paper, in large areas. Water droplets showed a contact angle of 160° (±2°) over these surfaces and rolled off easily. While native CNFs are extremely hydrophilic and can be dispersed in water easily, these waterborne fluorinated CNFs allow the fabrication of a superhydrophobic film that does not redisperse upon submersion in water. Incorporated chemical functionalities provide excellent durability toward mechanochemical damages of relevance to daily use such as knife scratch, sand abrasion, spillage of organic solvents, etc. Mechanical flexibility of the chemically modified CNF composed paper remains intact despite its enhanced mechanical strength, without additives. Superhydrophobicity induced excellent microbial resistance of the waterproof paper which expands its utility in various paper-based technologies. This includes waterproof electronics, currency, books, etc., where the integrity of the fibers, as demonstrated here, is a much-needed criterion.

  5. Is the lotus leaf superhydrophobic?

    Science.gov (United States)

    Cheng, Yang-Tse; Rodak, Daniel E.

    2005-04-01

    Superhydrophobic surfaces have important technical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. The archetype superhydrophobic surface is that of the lotus leaf. When rain falls on lotus leaves, water beads up with a contact angle in the superhydrophobic range of about 160°. The water drops promptly roll off the leaves collecting dirt along the way. This lotus effect has, in recent years, stimulated much research effort worldwide in the fabrication of surfaces with superhydrophobicity. But, is the lotus surface truly superhydrophobic? This work shows that the lotus leaves can be either hydrophobic or hydrophilic, depending on how the water gets on to their surfaces. This finding has significant ramifications on how to make and use superhydrophobic surfaces.

  6. Facile way in fabricating a cotton fabric membrane for switchable oil/water separation and water purification

    Science.gov (United States)

    Li, Yubin; Feng, Ziliang; He, Yi; Fan, Yi; Ma, Jing; Yin, Xiangying

    2018-05-01

    With dopamine and NiFe2O4 particles, a novel modified cotton fabric (PDA-NiFe2O4@CF) was prepared by one-pot method. Surface morphology, composition of the PDA-NiFe2O4@CF were investigated with SEM, EDX, XRD and FT-IR, respectively. According to the results, the cotton fiber surface was well coated with NiFe2O4 particles. Subsequently, wetting behavior of the modified cotton fabric was determined. The PDA-NiFe2O4@CF is superamphiphilic in air, and a dual lyophobic behavior was indicated with an oil contact angle (OCA) of 153° under water and a water contact angle (WCA) of 145° under oil. The rough micro-nano scale surface structure and high-surface-energy compositions of the PDA-NiFe2O4@CF makes the surface to be easily covered by one medium and enables it to repel other unmixable medium simultaneously. Therefore, water-oil mixtures can be separated on demand. Besides, with the unusual dual lyophobic surface of PDA-NiFe2O4@CF, both two types of emulsions were separated by gravity driven. On the other hand, it was also found that the as-prepared PDA-NiFe2O4@CF had good adsorption performance for methylene blue.

  7. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  8. Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT Nanospheres

    Directory of Open Access Journals (Sweden)

    Kuanjun Fang

    2018-05-01

    Full Text Available The Poly[Styrene-Butyl acrylate-(P-vinylbenzyl trimethyl ammonium chloride] P(St-BA-VBT nanospheres with N+(CH33 functional groups were successfully prepared and applied to modify cotton fabrics using a pad-dry process. The obtained cationic cotton fabrics were dyed with pad-steam dyeing with reactive dye. The results show that the appropriate concentration of nanospheres was 4 g/L. The sodium carbonate of 25 g/L and steaming time of 3 min were suitable for dyeing cationic cotton with 25 g/L of C.I. Reactive Blue 222. The color strength and dye fixation rates of dyed cationic cotton fabrics increased by 39.4% and 14.3% compared with untreated fabrics. Moreover, sodium carbonate and steaming time were reduced by 37.5% and 40%, respectively. The rubbing and washing fastness of dyed fabrics were equal or higher 3 and 4–5 grades, respectively. Scanning electron microscopy (SEM images revealed that the P(St-BA-VBT nanospheres randomly distributed and did not form a continuous film on the cationic cotton fiber surfaces. The X-ray photoelectron spectroscopy (XPS analysis further demonstrated the presence of cationic nanospheres on the fiber surfaces. The cationic modification did not affect the breaking strength of cotton fabrics.

  9. Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation

    Science.gov (United States)

    Wang, Qian; Wu, Jianning; Meng, Guihua; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-06-01

    The wetting materials with the ability of controllable oil/water separation have drawn more and more public attention. In this article, the novel cotton fabric (CF) with pH controlled wettability transition was designed by a simple, environmentally friendly coating copolymer/SiO2 nanoparticles, poly(heptadecafluorodecyl methacrylate- co-3-trimethoxysilylpropyl methacrylate- co-2-vinilpiridine) (PHDFDMA- co-PTMSPMA- co-P2VP). Furthermore, the structures and morphologies of coated CF were confirmed by Fourier transform infrared spectroscopy (FTIR), NMR, GPC, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The coated CF exhibits switchable wettability between superhydrophobicity and superhydrophilicity via adjusting pH value. When the coated CF is placed in the neutral aqueous (pH = 7.0), it is superhydrophobic in the air and superoleophilic. It allows oil to go through but blocking water. However, in acidic aqueous environment (pH = 3.0), it turns superhydrophilic and underwater superoleophobic, which allows water to penetrate but blocking oil. Therefore, the coated CF could be applied to separate oil/water mixtures, ternary oil/water/water mixtures continuously and different surfactant stabilized emulsions (oil-in-water, water-in-oil) and displays the superior separation capacity for oil-water mixtures with a high efficiency of 99.8%. Moreover, the cycling tests demonstrate that the coated CF possesses excellent recyclability and durability. Such an eminent, controllable water/oil permeation feature makes coated CF could be selected as an ideal candidate for oil/water separation.

  10. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces

    Science.gov (United States)

    Bhushan, Bharat; Jung, Yong Chae

    2008-06-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. When two hydrophilic bodies are brought into contact, any liquid present at the interface forms menisci, which increases adhesion/friction and the magnitude is dependent upon the contact angle. Certain plant leaves are known to be superhydrophobic in nature due to their roughness and the presence of a thin wax film on the leaf surface. Various leaf surfaces on the microscale and nanoscale have been characterized in order to separate out the effects of the microbumps and nanobumps and the wax on the hydrophobicity. The next logical step in realizing superhydrophobic surfaces that can be produced is to design surfaces based on understanding of the leaves. The effect of micropatterning and nanopatterning on the hydrophobicity was investigated for two different polymers with micropatterns and nanopatterns. Scale dependence on adhesion was also studied using atomic force microscope tips of various radii. Studies on silicon surfaces patterned with pillars of varying diameter, height and pitch values and deposited with a hydrophobic coating were performed to demonstrate how the contact angles vary with the pitch. The effect of droplet size on contact angle was studied by droplet evaporation and a transition criterion was developed to predict when air pockets cease to exist. Finally, an environmental scanning electron microscope study on the effect of droplet size of about 20 µm radius on the contact angle of patterned surfaces is presented. The importance of hierarchical roughness structure on destabilization of air pockets is discussed.

  11. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.

    Science.gov (United States)

    Li, Jian; Jing, Zhijiao; Zha, Fei; Yang, Yaoxia; Wang, Qingtao; Lei, Ziqiang

    2014-06-11

    In this paper, tunable adhesive superhydrophobic ZnO surfaces have been fabricated successfully by spraying ZnO nanoparticle (NP) suspensions onto desired substrates. We regulate the spray-coating process by changing the mass percentage of hydrophobic ZnO NPs (which were achieved by modifying hydrophilic ZnO NPs with stearic acid) in the hydrophobic/hydrophilic ZnO NP mixtures to control heterogeneous chemical composition of the ZnO surfaces. Thus, the water adhesion on the same superhydrophobic ZnO surface could be effectively tuned by controlling the surface chemical composition without altering the surface morphology. Compared with the conventional tunable adhesive superhydrophobic surfaces, on which there were only three different water sliding angle values: lower than 10°, 90° (the water droplet is firmly pinned on the surface at any tilted angles), and the value between the two ones, the water adhesion on the superhydrophobic ZnO surfaces has been tuned effectively, on which the sliding angle is controlled from 2 ± 1° to 9 ± 1°, 21 ± 2°, 39 ± 3°, and 90°. Accordingly, the adhesive force can be adjusted from extremely low (∼2.5 μN) to very high (∼111.6 μN). On the basis of the different adhesive forces of the tunable adhesive superhydrophobic surfaces, the selective transportation of microdroplets with different volumes was achieved, which has never been reported before. In addition, we demonstrated a proof of selective transportation of microdroplets with different volumes for application in the droplet-based microreactors via our tunable adhesive superhydrophobic surfaces for the quantitative detection of AgNO3 and NaOH. The results reported herein realize the selective transportation of microdroplets with different volumes and we believe that this method would potentially be used in many important applications, such as selective water droplet transportation, biomolecular quantitative detection and droplet-based biodetection.

  12. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study.

    Science.gov (United States)

    Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego

    2016-08-20

    Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis

    Science.gov (United States)

    Chen, Yanmin; Ge, Fengyan; Guang, Shanyi; Cai, Zaisheng

    2018-04-01

    The large-scale surface enhanced Raman scattering (SERS) cotton fabrics were fabricated based on traditional woven ones using a dyeing-like method of vat dyes, where silver nanoparticles (Ag NPs) were in-situ synthesized by 'dipping-reducing-drying' process. By controlling the concentration of AgNO3 solution, the optimal SERS cotton fabric was obtained, which had a homogeneous close packing of Ag NPs. The SERS cotton fabric was employed to detect p-Aminothiophenol (PATP). It was found that the new fabric possessed excellent reproducibility (about 20%), long-term stability (about 57 days) and high SERS sensitivity with a detected concentration as low as 10-12 M. Furthermore, owing to the excellent mechanical flexibility and good absorption ability, the SERS cotton fabric was employed to detect carbaryl on the surface of an apple by simply swabbing, which showed great potential in fast trace analysis. More importantly, this study may realize large-scale production with low cost by a traditional cotton fabric.

  14. One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water

    Science.gov (United States)

    Xiang, Yuqian; Pang, Youyou; Jiang, Xiaomei; Huang, Jie; Xi, Fengna; Liu, Jiyang

    2018-01-01

    Absorbent materials integrated with superhydrophobicity, superoleophilicity and flame-retardancy are highly desired in the adsorption/removal of flammable oils/organic compounds as well as reducing the risk of fire and explosion. Here, one-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy was presented. Using raw melamine (ME) sponge as the supporting matrix, the formation of polydopamine (PDA) nanoaggregates via in-situ self-polymerization of high-concentrated dopamine and the covalent grafting of hydrophobic n-dodecylthiol (DT) onto PDA were combined in a feasible alkaline water/ethanol medium. As investigated by scanning electron microscopy (SEM) and X-ray energy-dispersive spectroscopy (EDS), the as-prepared ME/PDA/DT sponge possessed hierarchical structure with submicron PDA nanoaggregates containing DT motif (low surface energy) on 3D interconnected porous network. It exhibited superhydrophobic (water contact angle 157.7°) and superoleophilic (oily/organic solvent contact angle 0° properties. Owing to the highly porous structure, superhydrophobic property, chemical and mechanical stability, the ME/PDA/DT sponge exhibited outstanding absorbency properties of oily organic solvents including fast absorption kinetics, high absorption capacity, and easy reusability. Also, the ME/PDA/DT sponge could be used for one-line continuous organic solvent/water separation. More interestingly, the ME/PDA/DT sponge demonstrated improved flame-retardant property as compared to the intrinsic flame-retardant nature of the raw melamine sponge. Consequently, the risk of fire and explosion was expected to reduce when the fabricated sponge was used as an absorbent for flammable oils and organic compounds. The ease of the one-step superhydrophobic/superoleophilic modification and the promising feature of the obtained materials exhibit great potential for application in oils/organic solvents clean-up.

  15. ANTIMICROBIAL TEXTILE PREPARED BY SILVER DEPOSITION ON DIELECTRIC BARRIER DISCHARGE TREATED COTTON/POLYESTER FABRIC

    Directory of Open Access Journals (Sweden)

    Mirjana Kostić

    2008-11-01

    Full Text Available The objective of this research was to impart the additional value on cotton//polyester (Co/PES fabrics (i.e. antimicrobial properties to improve the quality of life and thus to tap new markets with the product. In this paper, silver ions were incorporated in Co/PES fabrics by chemisorptions into the fabric previously treated in a dielectric barrier discharge (DBD. A series of the DBD fabric treatments were done in order to determine the most suitable experimental conditions for the DBD activation of the fabric surface, while the optimal conditions for silver ions sorption by Co/PES fabrics were determined by changing sorption conditions. The antimicrobial Co/PES fabrics prepared by dielectric barrier discharge mediated silver deposition show an antimicrobial activity against tested pathogens: S. aureus, E. coli, and C. albicans under in vitro conditions. The obtained results confirm the practicability of the plasma modification process and furthermore show that with some delays in the next step, i.e. silver ion sorption, we can get the increase in the amount of the sorbed silver ions; the maximum sorption capacity of modified Co/PES fabrics was 0.135 mmol of Ag+ ions per gram of a fabric.

  16. Preparation of crosslinked polysiloxane/SiO{sub 2} nanocomposite via in-situ condensation and its surface modification on cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Lifen, E-mail: haolifen@sust.edu.cn [College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Zibo Dahuanjiu Polygrace Tannery Group Co. Ltd., Zibo, Shandong 256400 (China); Gao, Tingting [College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Xu, Wei [College of Resource and Environment, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Zibo Dahuanjiu Polygrace Tannery Group Co. Ltd., Zibo, Shandong 256400 (China); Wang, Xuechuan [College of Resource and Environment, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Yang, Shuqin; Liu, Xiangguo [Zibo Dahuanjiu Polygrace Tannery Group Co. Ltd., Zibo, Shandong 256400 (China)

    2016-05-15

    Highlights: • We used a two-step method to fabricate novel crosslinked polysiloxane/SiO{sub 2} nanocomposite (CLPS-SiO{sub 2}). • Superhydrophobic surface on cotton fiber can be conveniently constructed by CLPS-SiO{sub 2}. • Color and softness of the CLPS-SiO{sub 2} treated fabric would not be influenced at all. • The CLPS-SiO{sub 2} treated fabric possessed good washing durability. - Abstract: Novel crosslinked polysiloxane/SiO{sub 2} nanocomposite (CLPS-SiO{sub 2}) was successfully prepared via the in-situ condensation reaction of silica sols and crosslinked polysiloxane with end-capped triethoxysilane in solvent, which was firstly fabricated through the modification of our previously developed crosslinked polysiloxane with end-capped epoxy groups using aminopropyltriethoxysilane (APTES) and noted as APTES-CLPS. Chemical structures and thermal properties of the as-prepared resultants were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectra ({sup 1}H/{sup 13}C NMR) and thermogravimetric analysis (TGA). CLPS-SiO{sub 2} was applied as surface modification agent to treat cotton fabrics. Film morphologies and surface properties were examined with scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and other instruments. FTIR and NMR confirmed structure of the products. CLPS-SiO{sub 2} showed better thermal stability than APTES-CLPS due to anchor of the nanosilica. APTES-CLPS could deposit a smooth film on cotton fiber surface. Besides, CLPS-SiO{sub 2} also coated the fibers with many nano-scaled tubercles beneath this smooth film by SEM. However, the APTES-CLPS film and the CLPS-SiO{sub 2} film on silicon-wafer were never homogeneous and had a few low or high peaks. The root mean square roughness (Rq) of APTES-CLPS film reached to 0.441 nm in 2 × 2 μm{sup 2} scanning field and at 5 nm data scale. Owing to the incorporation of

  17. Eucalyptus oil-loaded microcapsules grafted to cotton fabrics for acaricidal effect against Dermatophagoides farinae.

    Science.gov (United States)

    Kim, Joo Ran

    2017-05-01

    The purpose of this study was to develop acaricidal cotton fabrics grafted with eucalyptus oil-loaded microcapsules (EOMCs) produced from green resources. EOMCs showed a broad size distribution between 0.5 and 6.5 μm, and had the average diameter 1.8 μm. EOMCs exhibited nonporous spherical shapes and individually remained on cotton fibres. Through AATCC mortality tests against house dust mites (HDMs) (Dermatophagoides farinae), the treated cotton fabric containing EOMCs resulted in 98.7% mortality. Acaricidal efficiency was due to the large amount of oxygenated monoterpene, 1,8-eucalyptol (75.8%) and hydroxylated monoterpenes such as α-terpineol (3.6%), terpinen-4-ol (0.4%) and linalool (0.3%) found in eucalyptus oil. These compounds are effective in enhancing penetration into HDMs. EOMCs produced from safe and natural sources can serve as a replacement for synthetic acaricides in controlling the population of HDM, leading to positive impacts on the human health and environment.

  18. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fast and low-cost method to fabricate large-area superhydrophobic surface on steel substrate with anticorrosion and anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe; Zhu, Wei [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-07-15

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property compared to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.

  20. Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics

    Science.gov (United States)

    Guruprasad, R.; Behera, B. K.

    2015-10-01

    Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.

  1. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  2. Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films.

    Science.gov (United States)

    Wang, Zefeng; Ye, Weiwei; Luo, Xinran; Wang, Zhonggang

    2016-04-18

    The motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface. The coordination reaction between carboxylic groups and rare earth ions (Eu(3+) and Tb(3+)) generates uniform spherical rare earth/polymer nanoparticles, which are subsequently complexed with PTFE microparticles to obtain micro-/nano-scaled PTFE/rare earth films with hierarchical rough morphology. The films exhibit large water contact angle up to 161° and sliding angle of about 6°, and can emit strong red and green fluorescence under UV excitation. More surprisingly, it is found that the films maintain high fluorescence intensity after submersed in water and even in aqueous salt solution for two days because of the excellent water repellent ability of surfaces.

  3. Protease Enzyme Used for Artificial Ageing on Modern Cotton Fabric for Historic Textile Preservation and Restoration

    Directory of Open Access Journals (Sweden)

    Harby E. AHMED

    2013-06-01

    Full Text Available Some of Historical textiles objects in Egyptian museums are containing different types of adhesives from previous restoration processes. Furthermore, they may contain some protein stains such as blood stains, which could involve more damage for the historical textiles. In the context of removing the adhesives by various methods, one may cause damage in the textiles, therefore the biotechnological application of enzymes seems to be a very promising approach in the restoration of historical objects. Our results show that enzyme removing is the most effective method, among all tested methods, in the removing of resistant old adhesives and stains. The tested enzymes for the removing technique solved the problems caused by other traditional removing techniques of resistant old adhesives from museum textiles. The main fibers of the tested objects were cotton fibers dyed with some natural dyes. Thus, the fibers that were used in this study were cotton, dyed with Turmeric dye, madder dye mordanted with alum, CuSO4 or Ferric Citrate, as well as without mordant. Additionally,we studied the effect of the enzyme on the mechanical parameters of fibers (Tensile strength, Elongation, Crystallinity index, by FTIR, XRD and ASTM. Furthermore, the effect of enzymes on the morphology of the surface of the untreated and enzymatically treated dyed fabric was investigated by using SEM and Stereoscopy. The effect of enzymes as a function of enzyme concentration and time of treatment on the fabrics color parameters was extensively studied. There was no impact-destructive effect on cotton fibers after the enzyme treatment. Thus, we could conclude that the enzyme have a very slight effect on cotton fibers dyed with natural dyes.

  4. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    International Nuclear Information System (INIS)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-01-01

    Graphical abstract: - Highlights: • Both O_2 and N_2 plasma increased cotton surface wettability and higher K/S. • SF6 plasma gave hydrophobicity on cotton surface and increased contact angle to 138°. • Plasma treatment on cotton fabric produced surface roughness. • XPS confirmed the generation of new functional groups on cotton fabric. • Wettability and surface roughness controlled K/S and good ink adhesion. - Abstract: Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O_2), nitrogen (N_2) and sulfur hexafluoride (SF_6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O_2 plasma treatments produced new functional groups, −O−C−O/C=O and O−C=O while N_2 plasma treatments produced additionally new functional groups, C−N and O=C−NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF_6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF_6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher

  5. A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method

    Science.gov (United States)

    Chakraborty, Shankar; Chatterjee, Prasenjit

    2017-12-01

    Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.

  6. 77 FR 31182 - Final Withdrawal of Regulations Pertaining to Imports of Cotton Woven Fabric and Short Supply...

    Science.gov (United States)

    2012-05-25

    ... Woven Fabric and Short Supply Procedures AGENCY: Import Administration, International Trade... final rule withdrawing regulations pertaining to imports of cotton woven fabric and short supply..., and the short supply voluntary restraints have not affected U.S. trade for over 19 years. The removal...

  7. Study of radiation induced grafting of [(methacryloylamino)-propyl] trimethyl ammonium chlorite (MPTAC) on to cotton fabrics and its application

    International Nuclear Information System (INIS)

    Selambakkannu, S.

    2014-01-01

    Quaternary ammonium salt, [(methacryloylamino)-propyl] trimethyl ammonium chlorite (MPTAC) had been used as monomer in mutual radiation grafting process on cotton fabrics with the aid of high energy gamma radiation source. The polymer chains of MPTAC were successfully grafted covalently onto cotton fabrics. Effect of selected experimental variables such as irradiation dose, monomer concentration, and ambient conditions and effect of inhibitors on extent of grafting had been analyzed. Grafting yield increases steadily with monomer concentration. The highest grafting yield obtained at 2 kGy and reduces thereafter then become almost constant at higher dose range. The grafted samples characterized for its surface morphology. Finally the grafted cotton subjected to its dye uptake capacity and antibacterial efficacy. The grafted cotton fiber was used in absorption studies of aqueous basic dye solution, namely AB74. The grafted cotton posses very good dye uptake capacity. The maximum dye uptake capacity of the grafted cotton sample was 150 mg/g. Antibacterial efficacy has been tested by qualitative and quantitative methods against model bacteria S. aureus and E. coli from gram positive and gram negative respectively. 20 % grafted cotton was found to be responsible of 2 log cycle reductions for the E.coli and S.aureus colonies. (author)

  8. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    Science.gov (United States)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  9. Processing and Characterisation of the Copper Treated Polylactic Acid and Cotton Fabrics: Thermophysiological Comfort Properties

    Directory of Open Access Journals (Sweden)

    Muhammet UZUN

    2014-04-01

    Full Text Available The main objective of this study is to develop a novel copper treatment method and characterise the effect of treatment on the thermophysiological comfort properties of the treated fabrics. It is also aimed to analyse and evaluate the thermophysiological properties of the PLA fabrics. The study was conducted by using polylactic acid (PLA, cotton and their blend yarns. The knitted fabrics, single pique, were made from these yarns by using weft knitting machine. The fabrics were treated with two copper solution concentrations (5 % and 10 % at 20 minutes ultrasonic energy. The results show that the treatment has a critical effect on the tested fabrics in terms of thermal conductivity, thermal resistance, thermal absorbtivity, water vapour permeability, and heat loss. The results also clearly demonstrated that the PLA fabric was successfully treated with the copper solution, and the coated fabrics showed significant change as compared to their untreated counterparts in terms of tested parameters.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.1853

  10. A novel chitosan 3-amino-1,2,4-triazole hybrid: Preparation and its effects on cotton fabric properties

    Directory of Open Access Journals (Sweden)

    Asmaa Aboelnaga

    2017-09-01

    Full Text Available A hybrid of chitosan and 3-amino-1,2,4-triazole was prepared using the semi-wet method, which allows for the adsorption of the triazole molecules on the chitosan surface. Moreover, an easy method for applying this hybrid to cotton fabric was established. The tensional strength, uniformity and compatibility of the hybrid components in forming of a strong film were studied using different variables, including the chitosan 3-amino-1,2,4-triazole ratio, fixation temperature and time. The loading of the hybrid onto the fabric in the absence and presence of cross linker (butane tetra carboxylic acid was also studied. The best conditions for preparing the hybrid was a 1:4 molar ratio of chitosan to 3-amino-1,2,4-triazole at 60 °C for 240 min, and those for the application of the hybrid to cotton fabric were a 1:1 molar ratio at 150 °C with a 5 min curing time. Both hybrid and treated cotton fabrics were characterized using FTIR, SEM, TGA, and DSC as well as the nitrogen content and tensional strength of the treated cotton. Finally, the antibacterial activities of the treated cotton fabric display 100% activity and excellent effects against gram-positive bacteria, Staphylococcus aureus and gram-negative Escherichia coli.

  11. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract.

    Science.gov (United States)

    El-Naggar, Mehrez E; Shaarawy, S; Hebeish, A A

    2018-02-01

    In situ formation of zinc oxide nanoparticles (ZnO-NPs) was studied within the framework of several factors. variables examined include (i) innovation of a new capping agent; (ii) nature of the cotton fabric related to its processing; (iii) formation of Zinc hydroxide (Zn(OH) 2 ) due to reduction of zinc acetate with sodium hydroxide (iv) treatment of the differently processed cotton fabrics with (Zn(OH) 2 ) functionalized dispersion as per the exhaustion method, (v) further treatment of the cotton fabrics with (Zn(OH) 2 ) dispersion according to the pad-dry-cure method and (Vi) conversion of (Zn(OH) 2 ) to ZnO-NPs during the curing step in the latter method. Results depict that the incorporation of the bio-extract obtained from date seed waste works effectively as capping material which stabilize ZnO-NPs. Mercerized bleached cotton fabric proves to be a better candidate than mercerized loomstate cotton fabric in conferring sustainable bactericidal and UV blocking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  13. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Science.gov (United States)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  14. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  15. Optimization Of Bleaching Parameters By Whiteness Index And Bursting Strength Of Knitted Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Abu Naser Md. Ahsanul Haque

    2015-04-01

    Full Text Available Abstract The study comprises the effect of different bleaching parameters on scoured single jersey cotton fabrics. Three different concentrations 1.8 gL 2.0 gL and 2.2 gL taken from 5 stock solution of hydrogen peroxide were considered for the experiment. In each concentration bleaching was performed in four individual temperatures 78C 88C 98C and 108C. In each of the temperatures bleaching were continued for four individual time period 20 30 40 and 50 minutes. The weight of sample fabric was 12.5 grams and 110 liquor ratio was maintained in each operation. The bleached samples were tested in a reflectance spectrophotometer datacolor 650 and also their bursting strengths were found from an Autoburst instrument following ISO 13038-1 method. The results show that bursting strength and whiteness index have an inverse relation between themselves. For the nominated concentrations of peroxide 88C to 98C temperature with 30 to 40 minutes time duration is suggested as the optimum bleaching parameter for knitted cotton fabric.

  16. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  17. Fabrication of transparent superhydrophobic silica-based film on a glass substrate

    Science.gov (United States)

    Wang, Shing-Dar; Luo, Shih-Shiang

    2012-05-01

    Tetraethoxysilane (TEOS) was hydrolyzed in an acidic environment and then reacted with hexamethyldisilazane (HMDS) to obtain a superhydrophobic transparent film on a glass substrate. The molar ratios of water and ethanol to TEOS, the pH value of the acidic (or basic) water that is used to hydrolyze TEOS, the heat treatment conditions and other factors were investigated systematically to optimize the transmission through, and the contact angle of water on the film. HMDS (total amount of HMDS/TEOS = 2) was divided into 20 parts, which were added into the sol successively to prevent the sudden production of a large quantity of NH3 in a small area of the sol. The optical and hydrophobic properties of the sol gel continued to change after it had been prepared. The conditions that TEOS was hydrolyzed with acidic water at pH 1.2 at 70 °C and the sol gel was aged at 20 °C for 48 h realized transmission of 90.9% and a water contact angle of 154.3°. No additional surface chemistry modification was needed.

  18. Fabrication of Superhydrophobic Surface with Controlled Wetting Property by Hierarchical Particles.

    Science.gov (United States)

    Xu, Jianxiong; Liu, Weiwei; Du, Jingjing; Tang, Zengmin; Xu, Lijian; Li, Na

    2015-04-01

    Hierarchical particles were prepared by synthetically joining appropriately functionalized polystyrene spheres of poly[styrene-co-(3-(4-vinylphenyl)pentane-2,4-dione)] (PS-co-PVPD) nanoparticles and poly(styrene-co-chloromethylstyrene) (PS-co-PCMS) microparticles. The coupling reaction of nucleophilic substitution of pendent β-diketone groups with benzyl chloride was used to form the hierarchical particles. Since the polymeric nanoparticles and microparticles were synthesized by dispersion polymerization and emulsion polymerization, respectively, both the core microparticles and the surface nanoparticles can be different size and chemical composition. By means of changing the size of the PS-co-PVPD surface nanoparticles, a series of hierarchical particles with different scale ratio of the micro/nano surface structure were successfully prepared. Moreover, by employing the PS-co-PVPD microparticles and PS-co-PCMS nanoparticles as building blocks, hierarchical particles with surface nanoaprticles of different composition were made. These as-prepared hierarchical particles were subsequently assembled on glass substrates to form particulate films. Contact angle measurement shows that superhydrophobic surfaces can be obtained and the contact angle of water on the hierarchically structured surface can be adjusted by the scale ratio of the micro/nano surface structure and surface chemical component of hierarchical particles.

  19. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    Science.gov (United States)

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure.

  20. Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance.

    Science.gov (United States)

    Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun

    2017-03-29

    Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.

  1. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2018-05-01

    Full Text Available The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC. Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS and stearic acid (STA modified kaolin (KL particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°. Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR and the total heat release (THR of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite.

  2. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up.

    Science.gov (United States)

    Zhang, Hui; Li, Yuqi; Xu, Yaoguang; Lu, Zexiang; Chen, Lihui; Huang, Liulian; Fan, Mizi

    2016-10-12

    To deal with marine oil spillage and chemical leakage issues, a highly efficient absorbent (cellulose based aerogel) with a low density (ρ 98.5%) and high mechanical strength was fabricated via a novel physical-chemical foaming method, plasma treatment and subsequent silane modification process. This aerogel has a perfect 3D skeleton and interconnected pores similar to honeycomb, which are favorable to oil adsorption and storage. More importantly, without introducing additional micro/nanoparticles, the rough micro/nano structure of the surface was directly constructed using plasma irradiation in this study. The low surface energy substrate was further introduced using a simple physical-soaking method and the resulting aerogel exhibited excellent superhydrophobicity (WCA > 156°) and superoleophilicity (OCA = 0°), which can selectively and efficiently absorb various oils or organic solvents from polluted water. In addition, this aerogel has a high storage capacity and absorption capacity (up to 4300% and 99% of its weight and volume, respectively). More interestingly, this aerogel exhibits excellent mechanical abrasion resistance and corrosion resistance even in strong acid, alkali solution and salt marine environment. The aerogel could be reused more than 30 times after removal of the absorbed oil by rinsing with ethanol.

  3. Desizing of Starch Containing Cotton Fabrics Using Near Atmospheric Pressure, Cold DC Plasma Treatment

    Science.gov (United States)

    Prasath, A.; Sivaram, S. S.; Vijay Anand, V. D.; Dhandapani, Saravanan

    2013-03-01

    An attempt has been made to desize the starch containing grey cotton fabrics using the DC plasma with oxygen as the gaseous medium. Process conditions of the plasma reactor were optimized in terms of distance between the plates (3.2 cm), applied voltage (600 V) and applied pressure (0.01 bar) to obtain maximum desizing efficiency. No discolouration was observed in the hot water extracts of the desized sample in presence of iodine though relatively higher solvent extractable impurities (4.53 %) were observed in the plasma desized samples compared to acid desized samples (3.38 %). Also, significant weight loss, improvements in plasma desized samples were observed than that of grey fabrics in terms of drop absorbency.

  4. Influence of amino-functional macro and micro silicone softeners on the properties of cotton fabric

    International Nuclear Information System (INIS)

    Jatoi, A.W.; Khatri, Z.

    2015-01-01

    Amino-functional silicone softeners are most widely used type of soft finishes owing to their outstanding permanent softness, smoothness and handle characteristics. These soft finishes are prepared in different emulsion droplet sizes such as macro and micro emulsions providing varying characteristics on the textile on which they are applied. The macroemulsions due to their larger droplet sizes lubricate fabric and yarn surfaces, while the micro-emulsion, thanks to their smaller sizes penetrate inside fiber pores. In this research amino-functional macro and micro emulsions have been applied on dyed cotton fabric in 1:1 combination and compared against their influence on physical properties such as bending length, abrasion resistance, tensile strength, crease resistance and water repellency. These emulsions have also been compared for their influence on colorimetric properties; color difference and color strength (K/S values). The results reveal that the softener application in combination improves the properties deteriorated by each softener when applied separately. (author)

  5. Functionalization of Cotton Fabrics with Polycaprolactone Nanoparticles for Transdermal Release of Melatonin

    Directory of Open Access Journals (Sweden)

    Daniele Massella

    2017-12-01

    Full Text Available Drug delivery by means of transdermal patches raised great interest as a non-invasive and sustained therapy. The present research aimed to design a patch for transdermal delivery of melatonin, which was encapsulated in polycaprolactone (PCL nanoparticles (NPs by employing flash nanoprecipitation (FNP technique. Melatonin-loaded PCL nanoparticles were successfully prepared with precise control of the particle size by effectively tuning process parameters. The effect of process parameters on the particle size was assessed by dynamic light scattering for producing particles with suitable size for transdermal applications. Quantification of encapsulated melatonin was performed by mean of UV spectrophotometry, obtaining the estimation of encapsulation efficiency (EE% and loading capacity (LC%. An EE% higher than 80% was obtained. Differential scanning calorimetry (DSC analysis of NPs was performed to confirm effective encapsulation in the solid phase. Cotton fabrics, functionalized by imbibition with the nano-suspension, were analyzed by scanning electron microscopy to check morphology, adhesion and distribution of the NPs on the surface; melatonin transdermal release from the functionalized fabric was performed via Franz’s cells by using a synthetic membrane. NPs were uniformly distributed on cotton fibres, as confirmed by SEM observations; the release test showed a continuous and controlled release whose kinetics were satisfactorily described by Baker–Lonsdale model.

  6. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton

    Science.gov (United States)

    Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes. PMID:25276112

  7. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    Science.gov (United States)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  8. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal.

    Science.gov (United States)

    Yoo, Jae-Hyuck; Kwon, Hyuk-Jun; Paeng, Dongwoo; Yeo, Junyeob; Elhadj, Selim; Grigoropoulos, Costas P

    2016-04-08

    Micron-sized ablated surface structures with nano-sized 'bumpy' structures were produced by femtosecond (fs) laser ablation of polytetrafluoroethylene (PTFE) film under ambient conditions. Upon just a single step, the processed surface exhibited hierarchical micro/nano morphology. In addition, due to the tribological properties of PTFE, polydimethylsiloxane (PDMS) could be replicated from the laser-ablated PTFE surface without anti-adhesive surface treatment. By controlling the design of the ablated patterns, tunable wettability and superhydrophobicity were achieved on both PTFE and PDMS replica surfaces. Furthermore, using fs laser ablation direct writing, a flexible superhydrophobic PDMS cage formed by superhydrophobic patterns encompassing the unmodified region was demonstrated for aqueous droplet positioning and trapping. Through evaporation-driven colloidal self-assembly in this superhydrophobic cage, a colloidal droplet containing polystyrene (PS) particles dried into a self-assembled photonic crystal, whose optical band gap could be manipulated by the particle size.

  9. CCI and CI Join Hands:A Better Supply Chain with More Innovations on Cotton Fabrics

    Institute of Scientific and Technical Information of China (English)

    Tom; Xue

    2010-01-01

    Cotton Council International("CCI")and Cotton Incorporated("CI") joined forces again,from October 19-22,2010 at Intertextile Shanghai,to promote natural fiber-U.S.cotton.As global textile strategic partners,both organizations were bringing together alliances through the cotton

  10. Superhydrophobic Cu{sub 2}S@Cu{sub 2}O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Pihui, E-mail: phpi@scut.edu.cn; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-28

    Highlights: • A superhydrophobic film with macro/nano structure was fabricated on copper surface. • The as-prepared film shows outstanding water repellency and long-term storage stability. • The same method was used to fabricate superhydrophobic/superoleophilic copper mesh. • The obtained mesh could realize separation of various oily sewages with separation efficiency above 94%. - Abstract: Cu{sub 2}S and Cu{sub 2}O composite (Cu{sub 2}S@Cu{sub 2}O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu{sub 2}S@Cu{sub 2}O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu{sub 2}S@Cu{sub 2}O film on copper surface on a large scale due to its simplicity and low cost.

  11. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.

    Science.gov (United States)

    Guo, Ping; Zhai, Shangru; Xiao, Zuoyi; An, Qingda

    2015-05-15

    Facing the issues of significant increase of industrial oily wastewater and frequent accident of oil spills, the developing of efficient and affordable absorbents for improving oil pollution is of practical significance. Herein, several superhydrophobic and superoleophilic materials, utilizing filter paper, filter cloth and polyester sponge as substrates, through facile coating of hybrid SiO2 colloid particles from controllable PMHS-TEOS sol system were presented. These methyl-modified particles not only provided hierarchical micro/nano-scale structure with distinct roughness, but also largely lowered the surface energy of the coated substances, leading to excellent superhydrophobic and superoleophilic surfaces. The modified filter cloths could be applied for oil/water separation owing to the flexible and foldable property; sponges could efficiently absorb oil or organic solvents in situ on account of its low density and high porosity, and meanwhile the absorbed oil could be easily recollected by simple squeezing. It is worth mentioning that both modified filter cloths and sponges exhibited excellent selectivity, high efficiency, outstanding rapidity and remarkable recyclability. More importantly, after treatment of 100 abrasion cycles with metal scalpel and strongly acidic and basic water droplets, the whole WCA values of resultant filter cloths still maintained superhydrophobic character (>150°), illuminating the charming mechanical and chemical stability of sol-gel processed coating with hierarchical roughness and covalently bonded methyl groups. Combining controllable fabrication process and cheap raw precursors, this method enables scalable manufacturing of stable and superhydrophobic substances, which are promising in practical applications involved in oil/water separation and oil sorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Wettability of natural superhydrophobic surfaces.

    Science.gov (United States)

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed; Le Bé chec, Mickaë l; Guyoneaud, Ré my; Pigot, Thierry; Paolacci, H.; Lacombe, Sylvie M.

    2013-01-01

    . The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant

  14. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  16. Application of eco-friendly antimicrobial finish butea monosperma leaves on fabric properties of polyester and cotton/polyester

    International Nuclear Information System (INIS)

    Sadaf, S.; Saeed, M.; Kalsoom, S.; Saeed, M.

    2017-01-01

    The study was aimed to check the effect of eco-friendly antimicrobial finish on 100% polyester and 50/50 cotton/polyester woven fabrics. The leaves' extract of Butea monosperma was used as an eco-friendly antimicrobial finish. The fabric was first desized, scoured, bleached and washed then antimicrobial finish was applied by using pad dry cure method. The aesthetic, comfort and mechanical fabrics properties were checked before and after applying antimicrobial finish. Under aesthetic property stiffness and smoothness appearance was checked, under comfort related property absorbency and air permeability was checked and under mechanical property tear and tensile strength was checked. The antimicrobial finish was checked by using ASTEM E2149 Shake Flask method. The AATCC and ISO standard testing methods were used for checking fabric properties. One way ANOVA statistical test was applied for analysis of results. Antimicrobial finish has increased aesthetic (stiffness, smoothness appearance), comfort (absorbency, air permeability) and mechanical (tensile and tear strengths) properties of polyester and cotton/polyester fabrics. The antimicrobial finish was effective on both 100% polyester and 50/50 cotton/polyester fabrics up to 25 washes. This study is beneficial to medical industry, paramedical staff, sports wears, home furnishing as well as common people. (author)

  17. Comparative performance evaluation of conventional and ultrasonic assisted bleaching of cotton fabric

    International Nuclear Information System (INIS)

    Farooq, A.; Ashraf, M.A.

    2013-01-01

    Summary: Conventional bleaching process is an important and quality influencing process for textile wet processors. However, the process requires high energy consumption, and is slow and time consuming. In the present research work, cotton woven fabric was bleached with different bleaching agents using conventional and ultrasonic assisted techniques. After bleaching whiteness index, weight loss and tensile strength of samples were measured and compared statistically. The results showed that ultrasonic energy intensifies the diffusion of chemicals and increases the production of hydroxyl radicals which catalyze the bleaching process. Ultrasonic assisted bleaching proved to be a novel technique that can produce better results than conventional bleaching process even at low temperature and in less time. (author)

  18. Superhydrophobic silica coating by dip coating method

    International Nuclear Information System (INIS)

    Mahadik, Satish A.; Parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S.; Wagh, Pratap B.; Gupta, Satish; Gurav, Jyoti

    2013-01-01

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  19. Antibacterial Effect of Acrylic Acid-Grafted Cotton, Wool and Polyester Fabrics on the Growth of Staphylococcus Aureus

    International Nuclear Information System (INIS)

    El-Gendy, E.H.; Hussien, H.A.; Hassan, A.A.

    2008-01-01

    The effects of nutrient time (t) and acrylic acid graft yield (GY) on the growth of Staphylococcus aureus bacteria on cotton, wool and polyester fabrics have been studied. The bacterial growth increases with the increase in t after a 6 h-incubation period (IP). For cotton fabrics, the IP increases from 6 h to 12 h as the GY increases to 20%. The initial growth rate (R) is found to decrease with the increase in graft yield. The order (n) and rate constant (k) of the growth process are calculated at 303 K from the logarithmic dependence of R on GY. Both kinetic parameters are dependent on the type of fabric. The growth rate constant k is the lowest for grafted cotton and the highest for grafted polyester fabrics. The inhibiting effect of grafted poly acrylic acid (PAA), on the S. aureus growth rate is attributed to the release of hydrogen ions (H + ) from the grafts into the nutrient aqueous solution. The accumulation of H + ions, which increase with the increase in GY, at the cell wall and their possible diffusion inside the cell cause a perturbing effect that impairs the viability of the cells. This is observed from the increase in the polysaccharide layer around the cell due to increase in GY to 20%. Transmission electron micrographs revealed the existence of considerable changes in the shape of the cells as a result of PAA grafted on the fabrics

  20. Process Optimization of Eco-Friendly Flame Retardant Finish for Cotton Fabric: a Response Surface Methodology Approach

    Science.gov (United States)

    Yasin, Sohail; Curti, Massimo; Behary, Nemeshwaree; Perwuelz, Anne; Giraud, Stephane; Rovero, Giorgio; Guan, Jinping; Chen, Guoqiang

    The n-methylol dimethyl phosphono propionamide (MDPA) flame retardant compounds are predominantly used for cotton fabric treatments with trimethylol melamine (TMM) to obtain better crosslinking and enhanced flame retardant properties. Nevertheless, such treatments are associated with a toxic issue of cancer-causing formaldehyde release. An eco-friendly finishing was used to get formaldehyde-free fixation of flame retardant to the cotton fabric. Citric acid as a crosslinking agent along with the sodium hypophosphite as a catalyst in the treatment was utilized. The process parameters of the treatment were enhanced for optimized flame retardant properties, in addition, low mechanical loss to the fabric by response surface methodology using Box-Behnken statistical design experiment methodology was achieved. The effects of concentrations on the fabric’s properties (flame retardancy and mechanical properties) were evaluated. The regression equations for the prediction of concentrations and mechanical properties of the fabric were also obtained for the eco-friendly treatment. The R-squared values of all the responses were above 0.95 for the reagents used, indicating the degree of relationship between the predicted values by the Box-Behnken design and the actual experimental results. It was also found that the concentration parameters (crosslinking reagents and catalysts) in the treatment formulation have a prime role in the overall performance of flame retardant cotton fabrics.

  1. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    Science.gov (United States)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  2. Colour Fastness and Tensile Strength of Cotton Fabric Dyed with Natural Extracts of Alkanna tinctoria by Continuous Dyeing Technique

    International Nuclear Information System (INIS)

    Khattak, S. P.; Rafique, S.; Inayat, F.; Ahmad, B.

    2015-01-01

    A natural dye extracted from the roots of alkanet (Alkanna tinctoria) was applied on cotton fabric by pad-steam dyeing technique. The study was designed to evaluate the colour fastness and tensile properties of dyed cotton after using various mordants, cationizing agents, UV absorbers and crosslinkers with this natural dye. Metallic mordants included aluminium sulphate, copper sulphate, ferric chloride, potassium dichromate and hydrated potassium aluminum sulphate or alum. Alkanet root extract produced variety of green shades with different dyeing auxiliaries. Better wash, light, crocking fastness; good colour coordinates such as chroma, hue, colour strength and increase in tensile strength was accomplished with post-mordanting of CuSO/sub 4/. Cationization of cotton with quaternary ammonium compound (both pre-treatment and post-treatment) and post-finishing with soft polyurethane emulsion has enhanced the fastness properties, tensile strength as well as relative colour strength (K/S) , whereas, reactive UV absorber based on oxalanilide and heterocyclic compound as UV absorber greatly increased the light fastness of alkanet dyed cotton. Crosslinkers applied with alkanet dye on cotton (methylolation product based on glyoxalmonourein, modified dimethyloldihydroxyethylene urea, modified dihydroxy ethylene urea) also improved the fastness but could not bring further development in the shade and K/S value of the dyed sample. (author)

  3. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  5. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited electro-brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianchi [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); Ge, Shirong [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China)

    2015-11-30

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al{sub 2}O{sub 3} composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al{sub 2}O{sub 3} Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  6. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  7. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  8. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods...

  9. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    Science.gov (United States)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  10. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Chakradhar, R.P.S., E-mail: chakra@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Kumar, V. Dinesh [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Rao, J.L. [Department of Physics, S.V. University, Tirupathi 517502 (India); Basu, Bharathibai J., E-mail: bharathi@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India)

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of {approx}108{sup o}, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155{sup o} and less than 5{sup o} respectively. The surface properties such as surface free energy ({gamma}{sub p}), interfacial free energy ({gamma}{sub pw}), and the adhesive work (W{sub pw}) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  11. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Science.gov (United States)

    Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ˜108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy ( γp), interfacial free energy ( γpw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  12. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    International Nuclear Information System (INIS)

    Chakradhar, R.P.S.; Kumar, V. Dinesh; Rao, J.L.; Basu, Bharathibai J.

    2011-01-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108 o , however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155 o and less than 5 o respectively. The surface properties such as surface free energy (γ p ), interfacial free energy (γ pw ), and the adhesive work (W pw ) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  13. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment

    International Nuclear Information System (INIS)

    Peng Shujing; Liu Xiulan; Sun Jie; Gao Zhiqiang; Yao Lan; Qiu Yiping

    2010-01-01

    This paper studies the influence of moisture absorption of cotton fabrics on the effectiveness of atmospheric pressure plasma jet (APPJ) on desizing of polyvinyl alcohol (PVA). Cotton fabrics with three different moisture regains (MR), namely 1.8%, 7.3%, and 28.4% corresponding to 10%, 65%, and 98% of relative humidity respectively, are treated for 16 s, 32 s, 48 s, and 64 s. X-ray photoelectron spectroscopy analysis indicates that the plasma treated PVA has higher oxygen concentration than the control. Mass loss results show that the fabric with the highest MR has the largest mass loss after 64 s plasma exposure. Solubility measurement reveals that the sample with the lowest MR has the highest desizing efficacy and the percent desizing ratio reaches 96% after 64 s exposure plus a 20 min hot wash, which is shown as clean as the unsized sample through scanning electron microscopy analysis. The yarn tensile strength test results show that APPJ has no negative effect on fabric tensile strength.

  14. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    Science.gov (United States)

    Scacchetti, F. A. P.; Pinto, E.; Soares, G.

    2017-10-01

    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. The purpose of this study was to establish the conditions to obtain a cotton material that is comfortable, with self-cleaning and antimicrobial properties. For this purpose, microcapsules of phase change materials (mPCM) and titanium dioxide nanoparticles (TiO2 NP) were applied. The resulting fabrics were characterized with resource to infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy (SEM). The self-cleaning properties of treated fabrics were also analysed based on the photocatalytic ability of coated fabrics. Therefore, the decomposition of methyl orange (MO) and the degradation of red wine and curry spots under the irradiation of a solar simulator were analysed. Thus, the incorporation of TiO2 particles into the cotton fabric promoted self-cleaning and antibacterial characteristics, but the presence of PCM combined with TiO2 increases the bioactivity of materials.

  15. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-08-15

    Encapsulation is the best method to protect the plant extracts against volatility and instability in the presence of air, light, moisture and high temperatures. Nevertheless, application of encapsulated plant extracts on the textiles requires a low-temperature and high rate processing to avoid from breaking or destroying of capsules. The present paper represents application of nanocapsules prepared by ultrasound irradiation assisted W/O/W microemulsion method on the cotton fabric through UV curing method. The surface and structure of nanocapsules and treated cotton fabric using FESEM and FT-IR indicated the spherical nanocapsules with size of 60-80nm stabilized on the fabric surface in a film layer feature. Also, the treated cotton fabric showed a good release behavior of 96h, a high stability against washing and rubbing tests and a relative good antimicrobial activity with 91, 89 and 94% reduction against S. aureus, E. coli and C. albicans, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Energy and greenhouse gas emissions of Australian cotton : from field to fabric

    Energy Technology Data Exchange (ETDEWEB)

    Khabbaz, B.G.; Chen, G.; Baillie, C. [Southern Queensland Univ., Toowoomba, QLD (Australia). Faculty of Engineering and Surveying, National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study in which a life cycle assessment (LCA) of cotton production in Australia was conducted to evaluate energy use and greenhouse gas (GHG) emissions from tillage to export shipping. The study showed that on-farm indirect cotton-farming is the most energy consuming component, consuming nearly 32.36 GJ/ha of energy. On-farm indirect cotton-farming is the most GHG emitting component, emitting about 1.64 tonne of carbon dioxide (CO{sub 2})/ha. Energy use and the emissions by off-farm direct cotton-farming were calculated as 5.09 GJ/ha and 0.14 tonne CO{sub 2}/ha respectively. Energy consumed by off-farm indirect farming was found to be 0.036 GJ/ha or 0.002 tonne CO{sub 2}/ha. The total energy usage and greenhouse gas emissions in the Australian cotton farming system were estimated to be 46.43 GJ/ha and 2.42 tonnes CO{sub 2}/ha for on-farm, and 5.13 GJ/ha and 0.145 tonne CO{sub 2}/ha for the off-farm sections. In total, after including emissions caused by nitrogen based fertilizers, 51.57 GJ/ha of energy is used and 2.86 tonnes CO{sub 2}/ha is emitted by a typical Australian cotton farming system from tillage to export shipping.

  18. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed

    2013-06-01

    This study describes a method derived from ISO/TC 206/SC specifications to assess the bactericidal activity against a bacterial strain, Pseudomonas fluorescens, of various photocatalytic fabrics, under UVA and filtered visible light. The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant bactericidal efficiency. TiO2-coated fabrics are very efficient against P. fluorescens after 4 h UVA irradiation (bacteria survival below the detection limit). Under UVA-free visible light, anthraquinone-sensitized TiO2 coated fabrics induced a significant bactericidal activity after 2 h irradiation, while anthraquinone alone-coated fabrics were not as efficient and TiO2 coated fabrics were almost inefficient. These results show that although exhibiting a weak n-π* band in the 350-420 nm range, anthraquinone is a good candidate as an efficient visible light photosensitizer. A synergy effect between anthraquinone and TiO2 was demonstrated. A possible reaction mechanism, involving a synergy effect for singlet oxygen formation with anthraquinone-sensitized TiO2 is proposed to account for these results. © 2012 Elsevier B.V. All rights reserved.

  19. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    Science.gov (United States)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  20. Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles

    Science.gov (United States)

    Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu

    2018-06-01

    Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.

  1. Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles

    Science.gov (United States)

    Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu

    2018-05-01

    Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.

  2. Fixation of some chemically modified reactive dye during gamma irradiation of cotton fabrics in presence of vinyl and acrylic monomers

    International Nuclear Information System (INIS)

    Zohdy, M.H.; El-Naggar, A.M.; Abdallah, W.A.

    1999-01-01

    The radiation grafting of vinyl sulfone dye having an activated double bond in presence of styrene monomer or its mixtures with ethyl acrylate onto cotton fabric has been investigated. The chemical reaction of the vinyl sulfone form with peroxy radicals on cotton fabric through covalent bonding is tested by extracting the dyed samples in 50% aqueous DMF solution. It was found that the presence of styene monomer in the dyeing solution is essential for the reaction or grafting of the vinyl sulfone dye. However, when a constant styrene concentration of 5% was used in the dye bath, the color strength expressed as K/S was found to increase by increasing the dye concentration. The results showed that the color strength obtained in case of using 10% ethyl acrylate is much lower than in the case of using the same concentration of styrene monomer. A solvent composition of equal ratios of methanol and water has been proven to be suitable to produce the highest improvement in the color strength. The irradiation dose was found to play an important role in initiating the reaction of the vinyl sulfone dye

  3. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings

    Science.gov (United States)

    Li, Yingzhan; Wang, Bijia; Sui, Xiaofeng; Xie, Ruyi; Xu, Hong; Zhang, Linping; Zhong, Yi; Mao, Zhiping

    2018-03-01

    Durable flame retardant and antibacterial hybrid coatings were developed for cotton fabrics via simultaneous polymerization of dopamine and hydrolytic condensation of N3P3[NH(CH2)3Si(OC2H5)3]6. Silver nanoparticles were also introduced to the coatings by in situ reaction of AgNO3 with catechol moieties on polydopamine (PDA) in the absence of any external reducing agents. Energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to study the morphology and constitution of the coatings. Thermal stability and combustion behaviors were characterized with thermogravimetric analysis (TGA) and vertical flammability tests. Considerable flame retardancy was obtained for the modified cotton fabrics, which also exhibited decent antibacterial activities (99.99%) against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli. The modification was durable with largely intact flame retardancy and antimicrobial properties after 30 washing cycles.

  4. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  5. THE APPLICATION AND CHARACTERIZATION OF GRAPHENE DECORATED WITH TiO2 –Fe (1%-N ON COTTON FABRICS

    Directory of Open Access Journals (Sweden)

    DUMITRESCU Iuliana

    2017-05-01

    Full Text Available Doped TiO2/graphene nanocomposites are studied due to their capacity to absorb the visible rays and large applicability in photo-catalytic applications. In this paper, we summarize our experiments on the development of photocatalytic fabrics based on deposition of doped TiO2/graphene nanocomposites by ultrasound method. We have investigated the surface morphology by scanning electron microscopy (SEM and elemental composition was determinate through EDX. Other information were obtained from electrical resistivity analysis measured on Prostat PRS-801 instrument, evaluation of the cotton fabrics wettability by measuring the contact angle on a VCA Optima instrument and evaluation of the photo-catalytic properties of the treated fabrics under solar and visible light (Xenotest by measuring the trichromatic coordinates of the treated and untreated textile materials. The results demonstrated that the ultrasound is an effective method to deposit nanoparticles on textile materials and that the uniform dispersion of TiO2- graphene composites depends on sonication parameters. Also, the treatment used on textile materials doesn’t improve the electrical properties of the knit. The results obtain after evaluation of the photo-catalytic activity by photo degradation of methylene blue under visible and solar light show the performance of the developed fabrics and also that the photo-catalytic activity is high under visible light and solar light.

  6. The fluorescence and absorption of white and dyed cotton fabrics laundered with brightening agents

    International Nuclear Information System (INIS)

    Kakoma, Maseka

    2005-01-01

    The absorbtion and emmission spectra of white and coloured cotton treated with Fluorescent Brightening Agents,(FBA's) used in formulating domestic laundry products have been characterized using a BFC-450 Bispectra Colorimeter. It was found that on white bleached cotton treated with FBA's, the intensity of fluorescence increases with increasing FBA concentration, very rapidly at first and approaching a limiting value at higher concentration.On dyed goods, it was found that the intensity offluoresnce increases with increasing FBA concentration to a maximum limit too, but decreases with increase in dye concentration. It was found that the absorbtion is not significantly affected by the FBA concentration in most of the shades except for yellow dyeings. In the yellow dyeings it was found that at lower dye concentration, absorption increases with an increase in FBA concentration. (author)

  7. Electrospun Superhydrophobic Self-Cleaning Materials

    Science.gov (United States)

    Zhao, Yong; Wang, Nü

    In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

  8. Fabrics coated with lubricated nanostructures display robust omniphobicity

    International Nuclear Information System (INIS)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings. (paper)

  9. Fabrics coated with lubricated nanostructures display robust omniphobicity

    Science.gov (United States)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  10. Development of Cotton Fabrics with Durable UV Protective and Self-cleaning Property by Deposition of Low TiO2 Levels through Sol-gel Process.

    Science.gov (United States)

    Mishra, Anu; Butola, Bhupendra Singh

    2018-01-19

    In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.

  11. Polymer additives for improving performance properties of cotton fabric crosslinked with 1,2,3,4 butanetetracarboxylic acid

    International Nuclear Information System (INIS)

    Refaie, R.

    2005-01-01

    1,2,3,4 butanetetracarboxylic acid (BTCA) represents an environmental safe alternative for commercial formaldehyde containing resins that acquire cotton textile easy care properties. However, several draw-back are encountered with BTCA finishing treatment, like excessive fabric tendering, yellowing as well as lower dye affinity. The feasibility of adding different polymers, viz-polyethylene glycol 600 (PEG), polyvinyl alcohol, and carboxymethyl cellulose (CMC), alone or in admixture with chitosan to the finishing bath containing BTCA was investigated. Moreover, cationized forms of these polymers were also used as additives in the finishing formulation containing BTCA. Results obtained of CMC alone or with chitosan (0.5 %), with BTCA finishing formulation improves Cease Recovery Angle, Tensile strength, as well as basic dye ability compared with or without additives

  12. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  13. Removing the residual cellulase by graphene oxide to recycle the bio-polishing effluent for dyeing cotton fabrics.

    Science.gov (United States)

    Wang, Rui; Yang, Chao; Fang, Kuanjun; Cai, Yuqing; Hao, Longyun

    2018-02-01

    In this research, a stable graphene oxide (GO) suspension was prepared by chemical reduction method from graphite powder. By TEM, the irregular GO sheets with single-atom-layered structure could be observed. The zeta potentials measurement indicated the surface charges of GO were strongly related to pH. BET analysis showed the GO had a specific surface area of 30.7 m 2 /g and pore volume of 0.10 cm 3 /g. When the GO was used to remove the residual cellulase in bio-polishing effluent, it was found the removal capacity reached its maximum value at the pH 4-5. The kinetics studies showed that the removal process of cellulase followed a pseudo-second-order kinetic model with a rate constant (k 2 ) of 0.276 × 10 -3  g/mg min and equilibrium adsorption capacity of 278.55 mg/g, respectively. By plotting the adsorption isotherms, it was found the Langmuir model fitted the experimental data well with a cellulase adsorption capacity of 574.71 mg/g, indicating the adsorption of cellulase by GO in a monolayer manner. When dyeing the cotton fabrics with reactive dyes, it was found that the cotton fabrics could acquire similar color properties in the recycled bio-polishing effluent as in fresh water, meaning the effectiveness of removing cellulase by GO and the feasibility of recycling the bio-polishing effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cotton fabric finishing with TiO2/SiO2 composite hydrosol based on ionic cross-linking method

    International Nuclear Information System (INIS)

    Xu, Z.J.; Tian, Y.L.; Liu, H.L.; Du, Z.Q.

    2015-01-01

    Highlights: • We studied the cotton finishing with TiO 2 /SiO 2 based on ionic cross-linking method. • The samples treated with CHTAC had lower value of whiteness. • The samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. • The ionic cross-linking treatment (CHTAC + BTCA + TiO 2 /SiO 2 ) was better than with TiO 2 /SiO 2 sol alone. - Abstract: Cotton fabric was successfully modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHTAC), 1,2,3,4-butanetetracarboxylic acid (BTCA) and TiO 2 /SiO 2 sol. Self-cleaning characteristic was investigated using a Color Measuring and Matching System with 6 h sunlight irradiation. And the stability of TiO 2 /SiO 2 coatings was explored by measuring the washing fastness and wrinkle resistance of treated cotton samples. In addition, whiteness index, crease recovery angle and tensile strength retention (%) of treated samples were evaluated. Moreover, the morphology, structure change and crystallinity of samples were observed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The results revealed that the samples treated with CHTAC had lower value of whiteness index as compared with original cotton fabric. It was also found that samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. Moreover, the treatment of CHTAC and BTCA had adverse effect on the crystallinity of cotton samples, as treated samples had lower crystallinity in comparison with raw cotton fabrics. Nevertheless, the stability of self-cleaning coatings was better for samples treated with ionic cross-linking treatment (CHTAC + BTCA + TiO 2 /SiO 2 ) than samples treated with TiO 2 /SiO 2 sol alone. Furthermore, compared with original samples the UV-blocking property of ionic cross-linking treated samples was obviously enhanced

  15. Superhydrophobic cellulose-based bionanocomposite films from Pickering emulsions

    Science.gov (United States)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip J.; Loth, Eric; Miller, Lance

    2009-04-01

    Inherently superhydrophobic and flexible cellulose-based bionanocomposites were fabricated from solid stabilized (Pickering) emulsions. Emulsions were formed by dispersing cyclosiloxanes in water stabilized by layered silicate particles and were subsequently modified by blending into a zinc oxide nanofluid. The polymer matrix was a blend of cellulose nitrate and fluoroacrylic polymer (Zonyl 8740) precompatibilized in solution. Coatings were spray cast onto aluminum substrates from polymer blends dispersed in modified Pickering emulsions. No postsurface treatment was required to induce superhydrophobicity. Effect of antiseptic additives on bionanocomposite superhydrophobicity is also discussed. Replacing cellulose nitrate with commercial liquid bandage solutions produced identical superhydrophobic coatings.

  16. Dyeing of white and indigo dyed cotton fabrics with Mimosa tenuiflora extract

    Directory of Open Access Journals (Sweden)

    Gökhan Erkan

    2014-04-01

    Full Text Available Mimosa tenuiflora extract has been used in food industry as an additive and in textile and leather industry as a colorant. Two types of fabrics, ready to be dyed white and indigo dyed fabrics, were dyed with M. tenuiflora extract. The fabrics were mordanted after dyeing with six different metal salts. Colorimetric evaluations of fabrics were carried out by spectrophotometer. Colour fastness to washing, rubbing and light were performed. Colour strength of fabrics was calculated from Kubelka–Munk formula. Highest vividness (C∗ values were obtained by Ni mordant. Moderate fastness values were observed. However poor wet rubbing fastness values were observed in the case of indigo dyed fabrics due to lack of good wet rubbing fastness of indigo itself.

  17. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  18. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating.

    Science.gov (United States)

    Selvam, S; Rajiv Gandhi, R; Suresh, J; Gowri, S; Ravikumar, S; Sundrarajan, M

    2012-09-15

    Sulfated β-cyclodextrin was synthesized from sulfonation of β-cyclodextrin and sulfated polymer was crosslinked with cotton fabric using ethylenediaminetetraacetic acid as crosslinker. ZnO, TiO(2) and Ag nanoparticles were prepared and characterized by XRD, UV, DLS, SEM and PSA. The prepared nanoparticles were coated on crosslinked cotton fabric. The crosslinking and nanoparticles coating effects of cotton fabrics were studied by FTIR and SEM analysis. The antibacterial test was done against gram positive Staphylococcus aureus and gram negative Escherichia coli bacterium. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Superhydrophobic Materials for Biomedical Applications

    Science.gov (United States)

    Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946

  20. Synthesis of Silver Nanoparticles in Cotton Fabric by Polyvinyl-2-pyrrolidone as a Reducing and Stabilizing Agent

    Directory of Open Access Journals (Sweden)

    Farbod Alimohammadi

    2012-12-01

    Full Text Available Silver nanoparticles have been extensively applied in various fields suchas polymers and textile fibers considering their well known antimicrobialproperties. In conventional methods nano silver is synthesized through chemical reduction however, in this paper a novel synthesis method based on aqueous solution of ammonia/silver complex with cationic stabilizer along with UV-C irradiation is introduced. On this basis, silver nitrate was oxidized with sodium hydroxide and then transformed into [Ag(NH32]+ aqueous solution with ammonia followed by adding PVP as a reducing and stabilizing agent and irradiated by UV-C. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption and the X-ray diffraction (XRD demonstrated that the colloidal nanoparticles were pure silver and Zeta sizer showed particle size distribution. Cotton fabric finishing was accomplished in pad process with various concentrations of nano-sized colloidal silver. Some characteristics of the fabric such as antimicrobial against different microorganisms including gram positive bacteria (Staphylococcous aureus, one gram negative bacteria (Escherichia coli, UV–vis spectrophotometry, color space a*, b* and L*, scanning electron microscopy, EDAX were investigated. Very good antibacterial efficacy against S. aureus and E. coli (higher than 97% appeared even by applying a low nanosilver content (200 ppm for twenty cycles of home laundering. Polyvinyl pyrrolidone resulted in a remarkable control in the release of silver nanoparticle from the coating and can improve the long-term microbiological activity, especially against home laundering.

  1. EFFECT OF UV IRRADIATION ON THE DYEING OF COTTON FABRIC WITH REACTIVE BLUE 204

    Directory of Open Access Journals (Sweden)

    ROŞU Liliana

    2017-05-01

    Full Text Available Reactive dyes are synthetic organic compounds used on a wide scale in textile industry, for painting materials of different types and compositions (e.g. 100% cotton, wool, natural satin, viscose, synthetic fibres. Reactive dyes are solid compounds (powders completely water soluble at normal temperature and pressure conditions. Their structures contain chromophore groups, which generate colour, and auxochrome groups, which determine the compounds water solubility and the capacity to fix to the textile fiber. Such organic compounds absorb UV-Vis radiations at specific wavelengths, corresponding to maximum absorbtion peaks, in both solution and dyed fiber. The human organism, through the dyed clothing, comes in direct contact with those dyes which can undergo modifications once exposed to UV radiations, having the posibility to reach the organism via cutanated transport. As it is known, the provoked negative effects are stronger during summer when UV radiations are more intense and in order to reduce their intensity dark coloured clothing is avoided. Dyes can be transformed in compounds which are easily absorbed into the skin. Some of these metabolites can be less toxic than the original corresponding dye, whilst others, such as free radicals, are potentially cancerous. Knowledge of the biological effects of the organic dyes, reactive dyes in particular, correlated with their structural and physical characteristics, permanently consists an issue of high scientific and practical interest and its solution may contribute in the diminishing of risk factors and improving of population health. UV radiation influence on the structural and colour modifications of textile materials were studied. Colour modifications are due to structural changes in aromatic and carbonil groups. In most cases photo-oxidative processes were identified in the dye structure. Dyeing was performed using non-irradiated and irradiated cotton painted with reactive blue dye 204.

  2. "Shrink-to-fit" superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates.

    Science.gov (United States)

    Manna, Uttam; Carter, Matthew C D; Lynn, David M

    2013-06-11

    An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheraz

    2015-03-01

    Full Text Available This paper aims to investigate the relationship between fabric weave structure and its comfort properties. The two basic weave structures and four derivatives for each selected weave structure were studied. Comfort properties, porosity, air permeability and thermal resistance of all the fabric samples were determined. In our research the 1/1 plain weave structure showed the highest thermal resistance making it suitable for cold climatic conditions. The 2/2 matt weave depicted the lowest thermal resistance which makes it appropriate for hot climatic conditions.

  5. Preparation of polymeric superhydrophobic surfaces and analysis of their wettability

    Science.gov (United States)

    Zhuang, Jian; Huang, Manling; Zhang, Yajun; Wu, Daming; Kuang, Tairong; Xu, Hong; Zhang, Xiaoxu

    2015-10-01

    In this paper, we presented three simple, facile and low-cost manufacturing methods—template method, nanoparticle filling method and extrusion stamping forming method—to fabricate the polymeric superhydrophobic surfaces. The stainless steel wire mesh as the template and glass beads was investigated in this study for the first time and low-cost hollow glass beads were rarely used as particles for fabricating the superhydrophobic surface. The water contact angle measurement of polymeric surfaces was used to investigate the effect of mesh count, glass beads and PTFE on fabricating polymeric superhydrophobic surface. It was found that the mesh count significantly affected the hydrophobicity of polymer surface in template method. The addition of glass beads improved the hydrophobicity by nanoparticle filling method. The addition of PTFE was of importance to fabricate the superhydrophobic surface by extrusion stamping forming method. The surface microstructure was also observed by scanning electron microscope.

  6. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  7. Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2.

    Science.gov (United States)

    Liu, Kai; Zhang, Xuan; Yan, Kelu

    2018-05-15

    Tetraacetylhydrazine (TH) as bleach activator for H 2 O 2 cotton bleaching was synthesized and characterized by 1 H NMR, 13 C NMR and MS spectra. TH has better solubility than that of TAED. The CIE whiteness index (WI), H 2 O 2 decomposition rate and bursting strength were employed to investigate the performance of H 2 O 2 /TH bleaching system. By addition of TH, WI and H 2 O 2 decomposition rate increased significantly at 70 °C. Bleaching temperature, NaHCO 3 concentration and bleaching time were also discussed in detail and the loss of bursting strength is not clear. By using benzenepentacarboxylic acid (BA) as a fluorescent probe for hydroxyl radical detection, the bleaching process of H 2 O 2 /TH system was investigated. Acetylhydrazine and diacetylhydrazine were also utilized to further confirm the process. In addition, bimolecular decomposition was investigated by using 9,10-dimethylanthracene (DMA) as fluorescent probe of 1 O 2 . Based on these experimental results, the bleaching mechanism of H 2 O 2 /TH system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A sustainable and green process for scouring of cotton fabrics using xylano-pectinolytic synergism: switching from noxious chemicals to eco-friendly catalysts.

    Science.gov (United States)

    Singh, Avtar; Kaur, Amanjot; Patra, Arun Kumar; Mahajan, Ritu

    2018-04-01

    The objective of this research was to develop an appropriate, eco-friendly, cost-effective bioscouring methodology for removing natural impurities from cotton fabric. Maximum bioscouring was achieved using 5.0 IU xylanase and 4.0 IU pectinase with material to liquid ratio of 1:15 in a 50 mM buffer (glycine-NaOH buffer, 1.0 mM EDTA and 1% Tween-80, pH 8.5) with a treatment time of 60 min at 50 °C and an agitation speed of 60 rpm. The bioscoured cotton fabrics showed a gain of 1.17% in whiteness, 3.23% in brightness and a reduction of 4.18% in yellowness in comparison to fabric scoured with an alkaline scouring method. Further, after bleaching, the whiteness, brightness and tensile strength of the bioscoured fabrics were increased by 2.18, 2.33 and 11.74% along with a decrease of 4.61% in yellowness of bioscoured plus bleached fabrics in comparison to chemically scoured plus bleached fabrics. From the results, it is clear that bioscouring is more efficient, energy saving and an eco-friendly process and has the potential to replace the environment-damaging scouring process with the xylano-pectinolytic bioscouring process.

  9. Photocatalytic self-cleaning cotton fabrics with platinum (IV) chloride modified TiO{sub 2} and N-TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Long, Mingce, E-mail: long_mc@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Zheng, Longhui; Tan, Beihui [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Shu, Heping [Xiaoxi New Materials Science and Technology (Shanghai) Co. Ltd., 655 Cangyuan Road, Shanghai, 200240 (China)

    2016-11-15

    Highlights: • Platinum (IV) chloride modified TiO{sub 2} and N-TiO{sub 2} nanosols are synthesized. • Pt-TiO{sub 2} coatings display enhanced performance in the degradation of MO and stains. • Surface attached PtCl{sub 6}{sup 2−} enable visible light activity of TiO{sub 2} coated cotton fabric. - Abstract: To enable photocatalytic self-cleaning cotton fabrics working under visible light irradiation, platinum (IV) chloride modified TiO{sub 2} (Pt-TiO{sub 2}) and N-TiO{sub 2} (Pt-N-TiO{sub 2}) nanosols are synthesized through a low temperature precipitation-peptization method. According to the characterizations of XRD, DRS and TEM, all nanoparticles are anatase nanocrystallites in the sizes of less than 10 nm, while N-TiO{sub 2} nanoparticles have better crystallization and smaller sizes. However, the cotton fabrics functionalized with Pt-TiO{sub 2} display significantly enhanced photocatalytic activity for methyl orange degradation and coffee stain removal under both solar simulator and visible light irradiation, while the performance of that coatings of Pt-N-TiO{sub 2} is poor. Further XRF and XPS results indicate that surface species on N-TiO{sub 2} block the adsorption of PtCl{sub 6}{sup 2−} anions, whereas these anions strongly attach on the surface of TiO{sub 2} nanoparticles, and accordingly enable functionalized cotton fabrics efficient visible light driven activities based on a mechanism of charge transfer from ligand to metal (CTLM) excitation.

  10. Multi-walled carbon nanotube-coated cotton fabric for possible ...

    Indian Academy of Sciences (India)

    For such a sample, the resistance decreased significantly to 1.5 k cm−2, whereas it is 2.0 and ... areas such as antibacterial properties, water repellence, soil resistance .... we plan to take up detailed electrical studies of MWCNT-coated fabrics.

  11. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    Science.gov (United States)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  12. A facial approach combining photosensitive sol–gel with self-assembly method to fabricate superhydrophobic TiO{sub 2} films with patterned surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zongfan, E-mail: duanzf@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China); Zhao, Zhen; Luo, Dan; Zhao, Maiqun [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Zhao, Gaoyang, E-mail: Zhaogy@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Patterned TiO{sub 2} films were prepared by photosensitive sol–gel method. • Surface had quasi micro-lens array structure, leading to superhydrophobicity. • The surface with the lowest period exhibited the highest contact angel of 163°. • UV irradiation induced the conversion to superhydrophilicity. - Abstract: Superhydrophobic TiO{sub 2} films with micro-patterned surface structure was prepared through a facial approach combining photosensitive sol–gel method with following surface modification by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS). The patterned surface possessed quasi micro-lens array structure resembling processus mastoideus of lotus, leading to excellent hydrophobicity. The relationship between hydrophobic performance and the period of the micro-patterned TiO{sub 2} surface was investigated. The water contact angles (CAs) of micro-patterned TiO{sub 2} surface increased with the decrease of the periods, and the patterned surface with the lowest period of 0.83 μm showed the highest CA of 163°. It suggests that this approach would offer an advantage to control the wettability properties of superhydrophobic surfaces by adjusting the fine pattern structure. Furthermore, the superhydrophobic state could be converted to the state of superhydrophilicity under ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the PFOTCS monolayer on the micro-patterned TiO{sub 2} Surface.

  13. Controllable synthesizing DLC nano structures as a super hydrophobic layer on cotton fabric using a low-cost ethanol electrospray-assisted atmospheric plasma jet

    Science.gov (United States)

    Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.

    2018-06-01

    The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.

  14. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  15. Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jingpeng Li

    2015-01-01

    Full Text Available Bamboo with water-resistant, UV-resistant, and fire-resistant properties was desirable in modern society. In this paper, the original bamboo was firstly treated with ZnO sol and then hydrothermally the ZnO nanosheet networks grow onto the bamboo surface and subsequently modified with fluoroalkyl silane (FAS-17. The FAS-17 treated bamboo substrate exhibited not only robust superhydrophobicity with a high contact angle of 161° but also stable repellency towards simulated acid rain (pH = 3 with a contact angle of 152°. Except for its robust superhydrophobicity, such a bamboo also presents superior water-resistant, UV-resistant, and fire-resistant properties.

  16. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  17. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics

    International Nuclear Information System (INIS)

    Peng Shujing; Gao Zhiqiang; Sun Jie; Yao Lan; Qiu Yiping

    2009-01-01

    The effect of argon/oxygen atmospheric dielectric barrier discharge (DBD) treatment on desizing and scouring of polyvinyl alcohol (PVA) on cotton fabric was studied with respect to the treatment duration of 1, 2, 4 and 6 min. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen concentration increased for the plasma treated PVA film. Solubility measurement revealed that plasma treatment increased PVA solubility in hot washing but less effective in cold washing. Scanning electron microscopy (SEM) showed that the fiber surfaces were as clean as unsized fibers after 6 min treatment followed by hot washing. Wickability analysis indicated that the capillary heights of plasma treated fabrics increased significantly as the plasma treatment duration increased. The results of the yarn tensile strength test showed that the plasma treatment did not have a negative effect on fabric tensile strength.

  18. Polymeric nanoencapsulation of insect repellent: Evaluation of its bioefficacy on Culex quinquefasciatus mosquito population and effective impregnation onto cotton fabrics for insect repellent clothing

    Directory of Open Access Journals (Sweden)

    A.P.B. Balaji

    2017-10-01

    Full Text Available Diethylphenylacetamide (Bulk-DEPA, an organic insect repellent was subjected to Poly(ethylene glycol (PEG polymerization followed by Phase Inversion Temperature (PIT emulsification method to yield the polymeric nanodroplets of DEPA (Nano-DEPA. The mean hydrodynamic diameter was found to be 149 ± 1.06 nm. The efficacy of Bulk-DEPA and Nano-DEPA was comparatively investigated on the Culex quinquefasciatus mosquito population. The larvicidal bioassay was performed on the 1st, 2nd, and 3rd instar larvae of Culex quinquefasciatus and the median lethal indices (LC50 of was found to be 0.055, 0.208, 1.397 mg/L and 0.023, 0.144, 0.260 mg/L for Bulk-DEPA and Nano-DEPA respectively. The histopathological studies were found to be corroborative with the larvicidal bioassay. The median knockdown indices (KD50 on 2–3 day old sucrose fed adult mosquitoes determined by WHO cone bioassay and was found to be 55.168 and 33.277 mg/L for Bulk-DEPA and Nano-DEPA. The obtained results indicate the improved efficacy possessed by the Nano-DEPA as comparative to Bulk-DEPA even at lower concentrations. Further, the Nano-DEPA was impregnated onto the alginate cross-linked (ACL and Plain (PL cotton fabrics, and the Washing resistance index (WRI was determined. The obtained results indicate the higher WRI possessed by the ACL cotton fabric than the PL cotton fabric. This was owing to the effective physical entrapment of Nano-DEPA onto the alginate matrices, which was further substantiated by high-resolution scanning electron microscopic (HR-SEM studies. Overall, the present study has emphasized the benefit of formulating Bulk-DEPA into Nano-DEPA to exert higher efficacy on the mosquito population. In addition, study has provided the methodology for the effective impregnation of Nano-DEPA onto the cotton fabrics for the reliable application in long lasting insect repellent clothing.

  19. Buoyancy increase and drag-reduction through a simple superhydrophobic coating

    OpenAIRE

    Hwang, G. B.; Patir, A.; Page, K.; Lu, Y.; Allan, E.; Parkin, I. P.

    2017-01-01

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown...

  20. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  1. Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by in-situ suspension polymerization

    International Nuclear Information System (INIS)

    Jiang Xue; Tian Xiuzhi; Gu Jian; Huang Dan; Yang Yiqi

    2011-01-01

    Two kinds of nano TiO 2 -polyacrylate hybrid dispersions, TBM-w and TBM-e were synthesized by in-situ suspension polymerization and solution polymerization respectively, in order to fix the nano TiO 2 on fabrics. The photocatalytic self-cleaning fabrics have received much attention in recent years for its water-saving and environment-protection advantages. However, the fixation of the photocatalyst on fabrics is still a key problem that inhibits industrialization of these eco-friendly fabrics. The cotton fabric was treated by the two hybrid dispersions. The photocatalytic self-cleaning property was characterized. Infrared spectroscopy, burning loss test and thermogravimetry showed that some copolymer chains entangled with the nano TiO 2 . Transmission electron microscope illustrated that there was a polymeric layer on the surface of nano TiO 2 . The average diameter of TBM-w was smaller than that of TBM-e based on size analysis. The photocatalytic decoloration of the grape syrup indicated that the fabric with TiO 2 -polymer hybrid had excellent self-cleaning property.

  2. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    Science.gov (United States)

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  3. Preparation of crosslinked polysiloxane/SiO2 nanocomposite via in-situ condensation and its surface modification on cotton fabrics

    Science.gov (United States)

    Hao, Lifen; Gao, Tingting; Xu, Wei; Wang, Xuechuan; Yang, Shuqin; Liu, Xiangguo

    2016-05-01

    Novel crosslinked polysiloxane/SiO2 nanocomposite (CLPS-SiO2) was successfully prepared via the in-situ condensation reaction of silica sols and crosslinked polysiloxane with end-capped triethoxysilane in solvent, which was firstly fabricated through the modification of our previously developed crosslinked polysiloxane with end-capped epoxy groups using aminopropyltriethoxysilane (APTES) and noted as APTES-CLPS. Chemical structures and thermal properties of the as-prepared resultants were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectra (1H/13C NMR) and thermogravimetric analysis (TGA). CLPS-SiO2 was applied as surface modification agent to treat cotton fabrics. Film morphologies and surface properties were examined with scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and other instruments. FTIR and NMR confirmed structure of the products. CLPS-SiO2 showed better thermal stability than APTES-CLPS due to anchor of the nanosilica. APTES-CLPS could deposit a smooth film on cotton fiber surface. Besides, CLPS-SiO2 also coated the fibers with many nano-scaled tubercles beneath this smooth film by SEM. However, the APTES-CLPS film and the CLPS-SiO2 film on silicon-wafer were never homogeneous and had a few low or high peaks. The root mean square roughness (Rq) of APTES-CLPS film reached to 0.441 nm in 2 × 2 μm2 scanning field and at 5 nm data scale. Owing to the incorporation of nanosilica, that of CLPS-SiO2 film continuously increased and could attain 4.528 nm in 2 × 2 μm2 scanning field and at 20 nm data scale. XPS analysis further demonstrates that there was a CLPS-SiO2 film covered on the cotton surface and the silyl groups had the tendency to enrich at the film-air interface. In addition, hydrophobicity of the CLPS-SiO2 treated fabric would be enhanced with augment of the amount of nanocomposite. Water contact angle of this

  4. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  5. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Svetlichnyi, Valery; Shabalina, Anastasiia, E-mail: shabalinaav@gmail.com; Lapin, Ivan; Goncharova, Daria; Nemoykina, Anna

    2016-05-30

    Highlights: • ZnO nanoparticles obtained by pulsed laser ablation exhibit antibacterial activity. • H{sub 2}O{sub 2} and Zn{sup 2+} are not responsible for antibacterial activity of obtained zinc oxide. • Nano-ZnO/cotton fabric composite is a promising material for antibacterial bandage. - Abstract: A simple deposition method was used to prepare a ZnO/cotton fabric composite from water and ethanol dispersions of ZnO nanoparticles obtained by the pulsed laser ablation method. The structure and composition of the nanoparticles from dispersions and as-prepared composites were studied using electron microscopy, X-ray diffraction, and spectroscopy. The nanoparticles and composite obtained exhibited antibacterial activity to three different pathogenic microorganisms—Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. An attempt to understand a mechanism of bactericidal effect of ZnO nanoparticles was made. It was shown that zinc ions and hydrogen peroxide were not responsible for antibacterial activity of the particles and the composite, and surface properties of nanoparticles played an important role in antibacterial activity of zinc oxide. The proposed composite is a promising material for use as an antibacterial bandage.

  6. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, D.; Yogamalar, N. R.; Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai – 600025 (India); Thenammai, A. N.; Hemamalini, R. [Department of Physics, Queen Mary’s College, Chennai – 600004 (India)

    2015-06-24

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.

  8. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    International Nuclear Information System (INIS)

    Selvakumar, D.; Yogamalar, N. R.; Jayavel, R.; Thenammai, A. N.; Hemamalini, R.

    2015-01-01

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application

  9. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    Science.gov (United States)

    Selvakumar, D.; Thenammai, A. N.; Yogamalar, N. R.; Hemamalini, R.; Jayavel, R.

    2015-06-01

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.

  10. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Maráková, N.; Humpolíček, P.; Kašpárková, V.; Capáková, Z.; Martinková, L.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-01-01

    Roč. 396, 28 February (2017), s. 169-176 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020022; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : antimicrobial activity * conductivity * cotton Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.387, year: 2016

  11. A preliminary study of dyeing greige cotton nonwoven fabrics with and without traditional scouring and bleaching processes

    Science.gov (United States)

    A previous study conducted at the Southern Regional Research Center had shown that certain processing metrics and conditions of hydroentangling greige (non-bleached) cotton removed almost all of the fiber’s natural hydrophobic impurities, such as the waxes, and made the resulting hydroentangled fabr...

  12. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  13. Multifunctional superhydrophobic coatings for large area applications

    Science.gov (United States)

    Megaridis, Constantine; Schutzius, Thomas; Das, Arindam; Tiwari, Manish; Bayer, Ilker

    2009-11-01

    Formulation of flexible superhydrophobic coatings (water droplet contact angles above 150 deg and roll-off angles below 10 deg) with high durability and electrical conductivity, and their fabrication using scalable techniques is a major challenge. The current work lays their foundation using solution processed polymer nanocomposites. Carefully selected polymer(s) are used to disperse filler particles and the dispersions are applied by spraying process. The filler particle size, surface energy and other functionalities are varied to produce the coatings. Sub-micron poly(tetrafluoroethylene) (PTFE) particles and carbon black or other nanoparticles are jointly used to obtain hierarchical morphology (micro-to-nanoscale roughness) and superhydrophobicity. As examples, firstly, acrylonitrile-co-butadiene rubber based nanocomposites are shown to maintain superhydrophobicity up to 200% linear and for 100 cycles of reversible 0 to 100% uniaxial stretching. Secondly, poly(vinylidene fluoride) and poly(methyl methacrylate) blend based nanocomposites containing carbon nanofibers are demonstrated as superhydrophobic coatings with electrical conductivity up to 300 S/m.

  14. Electrokinetics on superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Papadopoulos, Periklis; Deng Xu; Vollmer, Doris; Butt, Hans-Jürgen

    2012-01-01

    On a superhydrophobic surface a liquid is exposed to a large air-water interface. The reduced wall friction is expected to cause a higher electro-osmotic mobility. On the other hand, the low charge density of a superhydrophobic surface reduces the electro-osmotic mobility. Due to a lack of experimental data it has not been clear so far whether the reduced wall friction or the reduced charge density dominate the electrokinetic mobilities. To separate the relative contributions of electrophoresis and electro-osmosis, the mobilities of colloids on a negatively charged hydrophilic, a superhydrophobic (Cassie) and a partially hydrophilized superhydrophobic (Cassie composite) coating were measured. To vary the charge density as well as its sign with respect to those of the colloids the partially hydrophilized surfaces were coated with polyelectrolytes. We analyzed the electrokinetic mobilities of negatively charged polystyrene colloids dispersed in aqueous medium on porous hydrophilic and superhydrophobic surfaces by confocal laser scanning electron microscopy. In all cases, the external electric field was parallel to the surface. The total electrokinetic mobilities on the superhydrophobic (Cassie) and negatively charged partially hydrophilized (Cassie composite) surfaces were similar, showing that electro-osmosis is small compared to electrophoresis. The positively charged Cassie composite surfaces tend to ‘trap’ the colloids due to attracting electrostatic interactions and rough morphology, reducing the mobility. Thus, either the charge density of the coatings in the Cassie composite state or its slip length is too low to enhance electro-osmosis.

  15. Fabrication of boronate-decorated polyhedral oligomeric silsesquioxanes grafted cotton fiber for the selective enrichment of nucleosides in urine.

    Science.gov (United States)

    Gao, Li; Wei, Yinmao

    2016-06-01

    Various cotton fiber based boronate-affinity adsorbents are recently developed for the sample pretreatment of cis-diol-containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4-formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis-diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in-pipette-tip solid-phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in-pipette-tip solid-phase extraction coupled with high-performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N  =  3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9-10.2%, n = 3). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  17. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shanshan; Liu, Ming [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Wu, Yiqiang, E-mail: wuyq0506@126.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Luo, Sha [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Qing, Yan, E-mail: qingyan0429@163.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Haibo [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-11-15

    Graphical abstract: Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. Display Omitted - Highlights: • Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES. • The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°. • The superhydrophobic surface showed a durable and robust wear-resistance performance. - Abstract: In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  18. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.

    Science.gov (United States)

    Aria, Adrianus I; Gharib, Morteza

    2014-06-17

    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication.

  19. Highly Stretchable and Conductive Superhydrophobic Coating for Flexible Electronics.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Chen, Zhonghua; Zeng, Xingrong

    2018-03-28

    Superhydrophobic materials integrating stretchability with conductivity have huge potential in the emerging application horizons such as wearable electronic sensors, flexible power storage apparatus, and corrosion-resistant circuits. Herein, a facile spraying method is reported to fabricate a durable superhydrophobic coating with excellent stretchable and electrical performance by combing 1-octadecanethiol-modified silver nanoparticles (M-AgNPs) with polystyrene- b-poly(ethylene- co-butylene)- b-polystyrene (SEBS) on a prestretched natural rubber (NR) substrate. The embedding of M-AgNPs in elastic SEBS matrix and relaxation of prestretched NR substrate construct hierarchical rough architecture and endow the coating with dense charge-transport pathways. The fabricated coating exhibits superhydrophobicity with water contact angle larger than 160° and a high conductivity with resistance of about 10 Ω. The coating not only maintains superhydrophobicity at low/high stretch ratio for the newly generated small/large protuberances but also responds to stretching and bending with good sensitivity, broad sensing range, and stable response cycles. Moreover, the coating exhibits excellent durability to heat and strong acid/alkali and mechanical forces including droplet impact, kneading, torsion, and repetitive stretching-relaxation. The findings conceivably stand out as a new tool to fabricate multifunctional superhydrophobic materials with excellent stretchability and conductivity for flexible electronics under wet or corrosive environments.

  20. Hot Embossing for Whole Teflon Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Jie Li

    2018-06-01

    Full Text Available In this paper, we report a simple fabrication process of whole Teflon superhydrophobic surfaces, featuring high-aspect-ratio (>20 nanowire structures, using a hot embossing process. An anodic aluminum oxide (AAO membrane is used as the embossing mold for the fabrication of high-aspect-ratio nanowires directly on a Teflon substrate. First, high-aspect-ratio nanowire structures of Teflon are formed by pressing a fluorinated ethylene propylene (FEP sheet onto a heated AAO membrane at 340 °C, which is above the melting point of FEP. Experimental results show that the heating time and aspect ratios of nanopores in the AAO mold are critical to the fidelity of the hot embossed nanowire structures. It has also been found that during the de-molding step, a large adhesive force between the AAO mold and the molded FEP greatly prolongs the length of nanowires. Contact angle measurements indicate that Teflon nanowires make the surface superhydrophobic. The reliability and robustness of superhydrophobicity is verified by a long-term (~6.5 h underwater turbulent channel flow test. After the first step of hot-embossing the Teflon nanowires, microstructures are further superimposed by repeating the hot embossing process, but this time with microstructured silicon substrates as micromolds and at a temperature lower than the melting temperature of the FEP. The results indicate that the hot embossing process is also an effective way to fabricate hierarchical micro/nanostructures of whole Teflon, which can be useful for applications of Teflon material, such as superhydrophobic surfaces.

  1. How does substrate roughness affect the service life of a superhydrophobic coating?

    Science.gov (United States)

    Zhang, Xin; Mo, Jiliang; Si, Yifan; Guo, Zhiguang

    2018-05-01

    Although the development of superhydrophobic coatings is rapidly maturing, issues related to their low mechanical durability persist. In this context, the effect of substrate roughness on the service life of superhydrophobic coatings was studied. In this study, superhydrophobic coatings were fabricated on sandpapers of different roughness and reciprocating wear tests were conducted. The wear-resistance number of the superhydrophobic coating, defined as the maximum number of friction cycles after which the superhydrophobic surface started to lose its superhydrophobicity, increased from 50 to 24,000 with an increase in the substrate roughness from 2000 CW to 240 CW (CW is defined as the number of particles arranged in an inch), while it decreased from 24,000 to 17,000 with a further increase in the substrate roughness from 240 CW to 60 CW. Observations of the surface structure and wear analyses indicated that the superhydrophobic material infiltrated the spaces between the sand grains, and the rough peaks could consequently protect the superhydrophobic material during the wear tests. However, this protection weakens when the substrate roughness increases or decreases beyond certain values. Furthermore, these phenomena and results were also verified by applying the superhydrophobic coatings to different types of common substrates.

  2. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    International Nuclear Information System (INIS)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-01-01

    Graphical abstract: - Highlights: • Highly transparent, stable, and superhydrophobic PET film was fabricated by dip-coating way. • The gradient structure is beneficial to both hydrophobicity and transparency. • The superhydrophobic PET film after physical damage can quickly regain by one-step spary. • The fabrication method is available for various substrates and large-scale production. - Abstract: Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  3. Wetting study of patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)], E-mail: Bhushan.2@osu.edu; Jung, Yong Chae [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)

    2007-10-15

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements.

  4. Superhydrophobic nanofluidic channels for enhanced electrokinetic conversion

    Science.gov (United States)

    Checco, Antonio; Al Hossain, Aktaruzzaman; Rahmani, Amir; Black, Charles; Doerk, Gregory; Colosqui, Carlos

    2017-11-01

    We present current efforts in the development of novel slit nanofluidic channels with superhydrophobic nanostructured surfaces designed to enhance hydrodynamic conductivity and improve selective transport and electrokinetic energy conversion efficiencies (mechanical-electrical energy conversion). The nanochannels are fabricated on silicon wafers using UV lithography, and their internal surface is patterned with conical nanostructures (feature size and spacing 30 nm) defined by block copolymer self-assembly and plasma etching. These nanostructures are rendered superhydrophobic by passivation with a hydrophobic silane monolayer. We experimentally characterize hydrodynamic conductivity, effective zeta potentials, and eletrokinetic flows for the patterned nanochannels, comparing against control channels with bare surfaces. Experimental observations are rationalized using both continuum-based modeling and molecular dynamics simulations. Scientific and technical knowledge produced by this work is particularly relevant for sustainable energy conversion and storage, separation processes and water treatment using nanoporous materials. The ONR Contract # N000141613178 and NSF-CBET award# 1605809.

  5. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix

    International Nuclear Information System (INIS)

    Gupta, K.K.; Abbas, S.M.; Goswami, T.H.; Abhyankar, A.C.

    2014-01-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni–Zn ferrite (Ni 0.5 Zn 0.5 Fe 2 O 4 ) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8–18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6–1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2–12.4 GHz) and Ku (12–18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense. - Highlights: • Ni–Zn ferrite (Ni 0.5 Zn 0.5 Fe 2 O 4 ) with acetylene black found effective coating for microwave absorption. • Coating formulation containing 40 wt% ferrite, 3 wt% carbon and 57 wt% PU offered 40% absorption, 20% transmission and 40% reflection

  6. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.K., E-mail: krishna62@rediffmail.com [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abbas, S.M.; Goswami, T.H. [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abhyankar, A.C. [Defence Institute of Advanced Technology( DIAT), Giri Nagar, Pune 411025 (India)

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni–Zn ferrite (Ni {sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8–18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6–1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2–12.4 GHz) and Ku (12–18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense. - Highlights: • Ni–Zn ferrite (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) with acetylene black found effective coating for microwave absorption. • Coating formulation containing 40 wt% ferrite, 3 wt% carbon and 57 wt% PU offered 40% absorption, 20

  7. Multi function Finishing and Pigment Printing of UV Cured Cotton/Polyester Fabrics Coated with Plasticized Epoxy Resin/ZnO Formulation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Mousaa, I.M.; Ali, N.M.

    2015-01-01

    Cotton/ Polyester fabrics were coated with epoxy acrylate (EA) formulations plasticized by castor oil (CO), in the presence of benzophenone as initiator, ZnO (antibacterial agent) and pigment printing. Ultra violet (UV) irradiation was used as a curing system. The effect of UV irradiation time and CO percentage on the mechanical and crease recovery properties were investigated. The effect of the coating process on the cross-section feature by using scanning electron microscope (SEM), the antibacterial properties, water retardance, colour difference and the durability for washing of the coated fabrics were also investigated. From the results, it was found that the crease recovery and antibacterial properties were enhanced. Also, the colour durability against multiple washing cycles gave adequate results after application of the investigated coating formulation. The most fitting castor oil per cent was found to be 45%, while the 3% ZnO recorded the best antibacterial and mechanical properties. The pigment per cent that gave the highest durability and adequate colour strength was 0.6%.

  8. Facile preparation of superhydrophobic surface with high adhesive ...

    Indian Academy of Sciences (India)

    Glass substrates modified by carbon/silica composites are fabricated through a two-step process for the preparation of a superhydrophobic surface (water contact angle ≥ 150°). Carbon nanoparticles were first prepared through a deposition process on glass using a hydrothermal synthesis route, then the glass was ...

  9. Atomically Bonded Transparent Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  10. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  11. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  12. Progressive and cumulative fabric effects of multiple hydroentangling impacts at different water pressures on greige cotton substrate

    Science.gov (United States)

    A practical study was conducted to determine the effects of the hydroentangling jet strip’s orifice size and the hydroentangling water pressure on the energy expended and the properties of the resulting nonwoven fabrics produced on a commercial-grade hydro-entanglement (HE) system, using greige cott...

  13. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder.

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-08

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  14. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-01

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  15. Studies on Coloration and UV Protective Action of Anar Peel (Pomegranate Rind) as an Effective Natural Colorant for Cotton Khadi Fabric

    Science.gov (United States)

    Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali

    2017-10-01

    Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.

  16. Studies on Coloration and UV Protective Action of Anar Peel (Pomegranate Rind) as an Effective Natural Colorant for Cotton Khadi Fabric

    Science.gov (United States)

    Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali

    2018-06-01

    Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.

  17. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  18. Modeling superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, M. A.; Tafreshi, H. Vahedi; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  19. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.

    Science.gov (United States)

    Hwang, Gi Byoung; Patir, Adnan; Page, Kristopher; Lu, Yao; Allan, Elaine; Parkin, Ivan P

    2017-06-08

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO 2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction.

  20. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  1. Producing superhydrophobic roof tiles

    International Nuclear Information System (INIS)

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-01-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic–inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie–Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol–gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie–Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. (paper)

  2. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    Science.gov (United States)

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  3. Toward an Active Fabric-Based Air Decontamination System

    National Research Council Canada - National Science Library

    Gaddy, G. A; Bratcher, Matthew S; Mills, G; Huang, S; Slaten, B. L; Debortoli, J

    2004-01-01

    ...) particles that were grafted on cotton fabric and on TiO2 particles that were embedded in glass fabric Modified TiO2 particles were grafted onto cotton fabric and irradiated in the presence of CHCl3...

  4. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water

    Science.gov (United States)

    Su, Changhong; Xu, Youqian; Zhang, Wei; Liu, Yang; Li, Jun

    2012-01-01

    A porous ceramic tube with superhydrophobic and superoleophilic surface was fabricated by sol-gel and then surface modification with polyurethane-polydimethysiloxane, and an oil-water separator based on the porous ceramic tube was erected to characterize superhydrophobic and superoleophilic surface's separation efficiency and velocity when being used to reclaim oil from oily water and complex oily water containing clay particle. The separator is fit for reclaiming oil from oily water.

  5. Hybrid surface design for robust superhydrophobicity.

    Science.gov (United States)

    Dash, Susmita; Alt, Marie T; Garimella, Suresh V

    2012-06-26

    Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.

  6. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes

    Science.gov (United States)

    Yohe, Stefan T.; Freedman, Jonathan D.; Falde, Eric J.; Colson, Yolonda L.; Grinstaff, Mark W.

    2014-01-01

    Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate-co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications. PMID:25309305

  7. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    Science.gov (United States)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  8. Enhancement of abdominal wall defect repair using allogenic platelet-rich plasma with commercial polyester/cotton fabric (Damour) in a canine model

    Science.gov (United States)

    ABOUELNASR, Khaled; HAMED, Mohamed; LASHEN, Samah; EL-ADL, Mohamed; ELTAYSH, Rasha; TAGAWA, Michihito

    2017-01-01

    Platelet-rich plasma (PRP) has an important role in musculoskeletal surgery; however, it has been underutilized for accelerating the healing of abdominal wall defects in veterinary practice. Therefore, the aim of this study was to evaluate the use of commercial polyester/cotton fabric (Damour) as a new composite mesh for the repair of experimentally induced abdominal wall defects in canine models, and to investigate the possible role of PRP for improving such repair and reducing allied complications. For this purpose, abdominal wall defects were created in 24 healthy mongrel dogs and then repaired with mesh alone (control group) or mesh and allogenic PRP (PRP group). Dogs were euthanized after 2 or 4 months for gross examination of implantation site, detection of adhesion score and hernia recurrence. Moreover, tissue samples were collected for histological and gene expression analyses for neovascularization, collagen formation and tissue incorporation. Hernia recurrence was not recorded in PRP-treated dogs that also displayed significantly more neovascularization and less severe adhesion to the underlings (1.08 ± 0.51) in comparison to control group (2.08 ± 0.99). Histological and molecular evaluation confirmed the gross findings that collagen deposition, new vessel formation, and overexpression of angiogenic and myofibroplastic genes (COL1α1, COL3α1, VEGF and TGFβ1) were observed more frequently in the PRP group, at both time points. In conclusion, we found that addition of allogenic PRP to Damour mesh enhanced neovessel formation, and increased tissue deposition and incorporation, with subsequent reduction of peritoneal adhesion and recurrence rate. PMID:28603214

  9. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  10. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  11. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  12. Fourier transform infrared imaging of Cotton trash mixtures

    Science.gov (United States)

    There is much interest in the identification of trash types comingled with cotton lint. A good understanding of the specific trash types present can lead to the fabrication of new equipment which can identify and sort cotton trash found with cotton fiber. Conventional methods, including the High Vo...

  13. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food.

    Science.gov (United States)

    Li, Yao; Bi, Jingran; Wang, Siqi; Zhang, Tan; Xu, Xiaomeng; Wang, Haitao; Cheng, Shasha; Zhu, Bei-Wei; Tan, Mingqian

    2018-03-07

    Significant wastage of residual liquid food, such as milk, yogurt, and honey, in food containers has attracted great attention. In this work, a bio-inspired edible superhydrophobic interface was fabricated using U.S. Food and Drug Administration-approved and edible honeycomb wax, arabic gum, and gelatin by a simple and low-cost method. The bio-inspired edible superhydrophobic interface showed multiscale structures, which were similar to that of a lotus leaf surface. This bio-inspired edible superhydrophobic interface displayed high contact angles for a variety of liquid foods, and the residue of liquid foods could be effectively reduced using the bio-inspired interface. To improve the adhesive force of the superhydrophobic interface, a flexible edible elastic film was fabricated between the interface and substrate material. After repeated folding and flushing for a long time, the interface still maintained excellent superhydrophobic property. The bio-inspired edible superhydrophobic interface showed good biocompatibility, which may have potential applications as a functional packaging interface material.

  14. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding

    Science.gov (United States)

    Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing

    2018-04-01

    A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.

  15. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes

    Science.gov (United States)

    Nakayama, Katsutoshi; Hiraga, Takuya; Zhu, Chunyu; Tsuji, Etsushi; Aoki, Yoshitaka; Habazaki, Hiroki

    2017-11-01

    Herein we report simple electrochemical processes to fabricate a self-healing superhydrophobic CeO2 coating on Type 304 stainless steel. The CeO2 surface anodically deposited on flat stainless steel surface is hydrophilic, although high temperature-sintered and sputter-deposited CeO2 surface was reported to be hydrophobic. The anodically deposited hydrophilic CeO2 surface is transformed to hydrophobic during air exposure. Specific accumulation of contaminant hydrocarbon on the CeO2 surface is responsible for the transformation to hydrophobic state. The deposition of CeO2 on hierarchically rough stainless steel surface produces superhydrophobic CeO2 surface, which also shows self-healing ability; the surface changes to superhydrophilic after oxygen plasma treatment but superhydrophobic state is recovered repeatedly by air exposure. This work provides a facile method for preparing a self-healing superhydrophobic surface using practical electrochemical processes.

  16. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2010-12-01

    Full Text Available Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare.This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°, while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°. The procedure reported here can be applied to substrates consisting of other materials and having various shapes.The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

  17. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  18. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  19. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating

    International Nuclear Information System (INIS)

    Zheng Yansheng; He Yi; Qing Yongquan; Zhuo Zhihao; Mo Qian

    2012-01-01

    Highlights: ► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface. - Abstract: Superhydrophobic coating has been fabricated on the glass substrates with modified SiO 2 sol and polytetrafluoroethylene emulsion through a sol–gel process. SiO 2 sol was modified with γ-glycidoxypropyl trimethoxysilane. The coatings were characterized by water contact angle measurement, Scanning electron microscope, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and thermal synthetic analysis. The experimental results show that coatings exhibited superhydrophobic and heat-resistant property with a water average contact angle of 156° and sliding angle of 6°, coating has a rough surface with both micro- and nanoscale structures, γ-glycidoxypropyl trimethoxysilane enhanced the hydrophobicity of the coatings. Low surface energy of polymer and special structure of the coatings were responsible for the hydrophobic of the surfaces.

  20. Electrochemical behaviour of superhydrophobic coating fabricated ...

    Indian Academy of Sciences (India)

    ties make it useful in household and industrial fields such as marine, automotive and ... are its simplicity, more cost effectiveness and less complex condition to .... Li M, Zhai J, Liu H, Song Y, Jiang L and Zhu D 2003 J. Phys. Chem. B 107 9954.

  1. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Hu, Liangbing; Deshazer, Heather Dawn; Cui, Yi

    2010-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  2. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro

    2010-06-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  3. The preparation and antibacterial effects of dopa-cotton/AgNPs

    International Nuclear Information System (INIS)

    Xu Hong; Shi Xue; Ma Hui; Lv Yihang; Zhang Linping; Mao Zhiping

    2011-01-01

    Silver nanoparticles (AgNPs) have been known to have powerful antibacterial activity. In this paper, in situ generation of AgNPs on the surface of dopamine modified cotton fabrics (dopa-cotton/AgNPs) in aqueous solution under room temperature is presented. X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to analyze the surface chemical composition and the morphology of the modified cotton fabrics, respectively. The results indicated that the surface of cotton fabrics was successfully coated with polydopamine and AgNPs. The cotton fabrics with AgNPs showed durable antibacterial activity.

  4. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces

    Science.gov (United States)

    Velayi, Elmira; Norouzbeigi, Reza

    2018-05-01

    Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.

  5. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.

    Science.gov (United States)

    Su, Bin; Li, Mei; Lu, Qinghua

    2010-04-20

    Superhydrophobic surfaces in nature such as legs of water striders can get an extra supporting force from the deformed water surface they contact, leading to an anticipation of using water-repellent surfaces on ship and even submarine hulls to reduce friction drag. Here, we first fabricate superhydrophobic coatings with microstructures on glass balls by introducing hydrophobic silica nanoparticles into a polyethylene terephthalate (PET) film. Then, the movement of a superhydrophobic ball on and below water surface is investigated and compared with that of a highly hydrophilic normal glass ball. The results reveal that a superhydrophobic ball can fall more slowly under water compared with a normal glass ball, because the dense microbubbles trapped at the solid/water interface around the superhydrophobic ball act not as a reducer, but as an enhancer for the friction drag. In contrast, the faster movement of a superhydrophobic ball on the water surface can be mainly attributed to the great reduction of skin friction owing to the increased area of the solid/atmosphere interface.

  6. Superhydrophobic paper in the development of disposable labware and lab-on-paper devices.

    Science.gov (United States)

    Sousa, Maria Peixoto; Mano, João Filipe

    2013-05-01

    Traditionally in superhydrophobic surfaces history, the focus has frequently settled on the use of complex processing methodologies using nonbiodegradable and costly materials. In light of recent events on lab-on-paper emergence, there are now some efforts for the production of superhydrophobic paper but still with little development and confined to the fabrication of flat devices. This work gives a new look at the range of possible applications of bioinspired superhydrophobic paper-based substrates, obtained using a straightforward surface modification with poly(hydroxybutyrate). As an end-of-proof of the possibility to create lab-on-chip portable devices, the patterning of superhydrophobic paper with different wettable shapes is shown with low-cost approaches. Furthermore, we suggest the use of superhydrophobic paper as an extremely low-cost material to design essential nonplanar lab apparatus, including reservoirs for liquid storage and manipulation, funnels, tips for pipettes, or accordion-shaped substrates for liquid transport or mixing. Such devices take the advantage of the self-cleaning and extremely water resistance properties of the surfaces as well as the actions that may be done with paper such as cut, glue, write, fold, warp, or burn. The obtained substrates showed lower propensity to adsorb proteins than the original paper, kept superhydrophobic character upon ethylene oxide sterilization and are disposable, suggesting that the developing devices could be especially adequate for use in contact with biological and hazardous materials.

  7. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cotton contamination

    CSIR Research Space (South Africa)

    Van der Sluijs, MHJ

    2018-05-01

    Full Text Available This review focusses on physical forms of contaminant including the presence, prevention and/or removal of foreign bodies, stickiness and seed-coat fragments rather than the type and quantity of chemical residues that might be present in cotton...

  9. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  10. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  11. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  12. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    Science.gov (United States)

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  13. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M

    2018-06-04

    A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.

  14. Recent Advances in Superhydrophobic Electrodeposits

    Directory of Open Access Journals (Sweden)

    Jason Tam

    2016-03-01

    Full Text Available In this review, we present an extensive summary of research on superhydrophobic electrodeposits reported in the literature over the past decade. As a synthesis technique, electrodeposition is a simple and scalable process to produce non-wetting metal surfaces. There are three main categories of superhydrophobic surfaces made by electrodeposition: (i electrodeposits that are inherently non-wetting due to hierarchical roughness generated from the process; (ii electrodeposits with plated surface roughness that are further modified with low surface energy material; (iii composite electrodeposits with co-deposited inert and hydrophobic particles. A recently developed strategy to improve the durability during the application of superhydrophobic electrodeposits by controlling the microstructure of the metal matrix and the co-deposition of hydrophobic ceramic particles will also be addressed.

  15. Preparation of wood-like structured copper with superhydrophobic properties

    Science.gov (United States)

    Wang, Tianchi; Liu, Guiju; Kong, Jian

    2015-12-01

    Here, we report a method to use natural wood lauan as a template to fabricate superhydrophobic biomorphic copper on a carbon substrate (Cu/C). First, a carbon substrate with the microstructure of lauan was obtained by sintering lauan in an oxygen-free environment. A biomorphic Cu/C material was then obtained by immersing this carbon substrate into a Cu(NO3)2 solution and sintering. Finally, the hydrophobicity of the products obtained was investigated. The Cu/C retained the microstructure of the wood well. It exhibited excellent superhydrophobicity after it was modified with fluorine silane. The water contact angle of this modified Cu/C reached 160°.

  16. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    International Nuclear Information System (INIS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O 3 treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar + -etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O 3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films

  17. 棉梭织物酶、碱氧短流程前处理工艺研究%Research on the short process pretreatment using enzyme and alkali oxygen for woven cotton fabrics

    Institute of Scientific and Technical Information of China (English)

    张伟超; 邢建伟; 徐成书

    2016-01-01

    采用酶冷堆退浆、煮漂一步法对棉梭织物进行短流程前处理,并对处理后的棉织物进行性能分析,得到最优工艺条件:酶冷堆置过程中退浆酶WT8404g/L、JFC 2g/L,一步法汽蒸过程中精练剂XQC 6g/L、硅酸钠6g/L、氢氧化钠5g/L、过氧化氢(100%)9g/L.在此工艺条件下前处理的效果与传统前处理工艺效果接近,退浆率可达到93%以上,白度为84,毛效达到11cm/30min,该工艺相比传统两步法前处理工艺可省去多道工序,具有碱用量少、节能节水等优点.%The cooled reactors enzyme desizing,scouring and bleaching of one step method for cotton woven fabrics was subj ected for short process of pretreatment,and the properties of the treated cotton fabric were tested,the optimum process conditions were obtained:desizing enzyme WT840 4g/L and JFC 2g/L in the process of cooled reactors enzyme,scouring agent XQC 6g/L,sodium silicate 6g/L, sodium hydroxide 5g/L,hydrogen peroxide(100%)9g/L in the process of one step steaming.Under the conditions of this process,the effects of the cotton fabric treated were close to those of the tradi-tional pretreatment with desizing rate more than 95%,the whiteness higher than 84 and capillary effect is 11cm/30min.The new pretreatment process has the advantages of short procedures,lower us-age of alkali,energy and water saving compared to traditional two step pretreatment process.

  18. Injection molded superhydrophobic surfaces based on microlithography and black silicon processing

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Taboryski, Rafael

    2012-01-01

    in detail with an engineering perspective on choice of materials and manufacturability by injection molding. Microscope slides with superhydrophobic properties were succesfully fabricated. Preliminary results indicate a contact angle increase from 95° for the unstructured polymer to a maximum 150......°. The lowest drop roll off angles observed were in the range 1° to 5°....

  19. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei, E-mail: kwgao@yahoo.com

    2015-05-15

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  20. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    International Nuclear Information System (INIS)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-01-01

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution

  1. Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y H; Li, Z Y; Wang, B; Wang, C X; Chen, D H; Yang, G W [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics Science and Engineering, Zhongshan University, Guangzhou 510275 (China)

    2005-09-07

    Thin films of ZnO agave-like nanowires were prepared on amorphous carbon thin layers on silicon substrates using thermal chemical vapour transport and condensation without any metal catalysts. The unusual superhydrophobicity of the fabricated surface was measured; the water contact angle reaches 151.1 deg. On the basis of experimental and theoretical analyses, it appears likely that the biomimetic microcomposite and nanocomposite surfaces of the prepared thin films of ZnO agave-like nanowires are responsible for the excellent superhydrophobicity.

  2. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    Science.gov (United States)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  3. From natural to biomimetic: The superhydrophobicity and the contact time.

    Science.gov (United States)

    Liang, Yun-Hong; Peng, Jian; Li, Xiu-Juan; Xu, Jin-Kai; Zhang, Zhi-Hui; Ren, Lu-Quan

    2016-08-01

    The superhydrophobicities and the contact time of lotus leaf and reed leaf were investigated. The results indicated that both lotus leaf and reed leaf have good superhydrophobic properties, and the water contact time was 12.7 and 14.7 ms on the surface of lotus leaf and reed leaf, respectively. Surface structure plays a key role in the different contacting times. Homogeneous distribution of papillae on the surface of lotus leaf was more helpful to reduce the contact time than anisotropic groove-shape on the surface of reed leaf. Based on the bionics coupling theory, the bionics sample possessing similar lotus-leaf-like surface structure on the aluminum alloy was designed and fabricated successfully. The water contact angle was about 153 ± 2°, sliding angle less than 5°, and the water contact time was 13.4 ms on the surface of bionics sample, which presented excellent superhydrophobic property, and achieved the aim of bionic design. Microsc. Res. Tech. 79:712-720, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Zhang Hongyun; Li Wen; Fang Guoping

    2012-01-01

    Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.

  5. Chemically robust carbon nanotube–PTFE superhydrophobic thin films with enhanced ability of wear resistance

    Institute of Scientific and Technical Information of China (English)

    Kewei Wang; Pan Xiong; Xiuping Xu; Kan Wang; YanLong Li; Yufeng Zheng

    2017-01-01

    A chemically robust superhydrophobic nanocomposite thin film with enhanced wear resistance is prepared from a composite comprising polytetrafluoroethylene (PTFE) and carbon nanotubes. The superhydrophobic thin films with hierarchical structure are fabricated by spraying an environmentally friendly aqueous dispersion containing carbon nanotubes and PTFE resin on silicon wafer. Thin films with a contact angle of 154.1° ± 2° and a sliding angle less than 2° remain superhydrophobic after abrading over 500 times under a pressure of 50 g/cm2. The thin film is also extremely stable even under much stress conditions. To further the understanding of the enhancement of wear resistance, we investigated the formation of microsized structure and their effects. The growth of microbumps is caused by attracting solution droplet to the hydrophilic islands on hydrophobic surface.

  6. Superhydrophobicity and regeneration of PVDF/SiO2 composite films

    Science.gov (United States)

    Liu, Tao; Li, Xianfeng; Wang, Daohui; Huang, Qinglin; Liu, Zhen; Li, Nana; Xiao, Changfa

    2017-02-01

    Superhydrophobicity of polymers is easily destroyed by careless touching due to the softness of microstructures. In this study, based on a well-constructed polyvinylidene fluoride (PVDF) surface, a novel superhydrophobic PVDF/SiO2 composite film was fabricated by adding hydrophobic SiO2 nanoparticle and solvent into a coagulation bath. The water contact angle of the composite film reached 162.3° and the sliding angle was as low as 1.5°. More importantly, the composite film could be regenerated only through immersing the composite film in the designed regeneration agent. The composition of the designed regeneration agent ensured that SiO2 nanoparticles were firmly adhered on the film surface even under the ultrasonic cleaning. Hence, the superhydrophobicity and self-cleaing property could be regenerated and maintained effectively, and moreover, these propeties could resist a proper pressure. In addition, after many rubbing-regenerating cycles, the regeneration method was still valid.

  7. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    International Nuclear Information System (INIS)

    Li, Jian; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang

    2014-01-01

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  8. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-05-01

    We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.

  9. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    Science.gov (United States)

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  10. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  11. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    Science.gov (United States)

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  12. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Current university and USDA lab cotton contamination research

    Science.gov (United States)

    U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination can be classified under four major categorizes: fabrics and strings ...

  14. Fourier transform infrared macro-imaging of botanical cotton trash

    Science.gov (United States)

    The marketability of cotton fiber is directly tied to the trash comingled with it. Trash can contaminate cotton during harvesting, ginning, and processing. Thus, the removal of trash is important from field to fabric. An ideal prerequisite to removing trash from lint is identifying what trash types...

  15. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Science.gov (United States)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-12-01

    Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  16. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.

    Science.gov (United States)

    Xu, Qian Feng; Liu, Yang; Lin, Fang-Ju; Mondal, Bikash; Lyons, Alan M

    2013-09-25

    Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated.

  17. Ultralow contact angle hysteresis and no-aging effects in superhydrophobic tangled nanofiber structures generated by controlling the pore size of a 99.5% aluminum foil

    Science.gov (United States)

    Lee, Sangmin; Hwang, Woonbong

    2009-03-01

    Superhydrophobic surfaces designed to improve hydrophobicity have high advancing contact angles corresponding to the Cassie state, but these surfaces also exhibit high contact angle hysteresis. We report here a simple and inexpensive method for fabricating superhydrophobic tangled nanofiber structures with ultralow contact angle hysteresis and no-aging degradation, based on a widening process. The resulting nanostructures are suitable for diverse applications including microfluidic devices for biological studies and industrial self-cleaning products for automobiles, ships and houses.

  18. Three-tier rough superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-01-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s"−"1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s"−"1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties. (paper)

  19. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process

    International Nuclear Information System (INIS)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.

    2014-01-01

    A super-hydrophobic nickel film with micro-nano structure was successfully fabricated by electrodeposition process. By controlling electrodeposition parameters and considering different storage times for the coatings in air, various nickel films with different wettability were fabricated. Surface morphology of nickel films was examined by means of scanning electron microscop