WorldWideScience

Sample records for superhydrophobic cotton fabric

  1. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  2. Cotton fabrics with single-faced superhydrophobicity.

    Science.gov (United States)

    Liu, Yuyang; Xin, J H; Choi, Chang-Hwan

    2012-12-18

    This article reports on the fabrication of cotton fabrics with single-faced superhydrophobicity using a simple foam finishing process. Unlike most commonly reported superhydrophobic fabrics, the fabrics developed in this study exhibit asymmetric wettability on their two faces: one face showing superhydrophobic behavior (highly nonwetting or water-repellent characteristics) and the other face retaining the inherent hydrophilic nature of cotton. The superhydrophobic face exhibits a low contact angle hysteresis of θ(a)/θ(r) = 151°/144° (θ(a), advancing contact angle; θ(r), receding contact angle), which enables water drops to roll off the surface easily so as to endow the surface with well-known self-cleaning properties. The untreated hydrophilic face preserves its water-absorbing capability, resulting in 44% of the water-absorbing capacity compared to that of the original cotton samples with both sides untreated (hydrophilic). The single-faced superhydrophobic fabrics also retain moisture transmissibility that is as good as that of the original untreated cotton fabrics. They also show robust washing fastness with the chemical cross-linking process of hydrophobic fluoropolymer to fabric fibers. Fabric materials with such asymmetric or gradient wettability will be of great use in many applications such as unidirectional liquid transporting, moisture management, microfluidic systems, desalination of seawater, flow management in fuel cells, and water/oil separation.

  3. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lihui; Zhuang Wei; Xu Bi [Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); Cai Zaisheng, E-mail: zshcai@dhu.edu.cn [Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China)

    2011-04-15

    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO{sub 2} nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9{sup o} for a 5 {mu}L water droplet and a WSA of 13{sup o} for a 15 {mu}L water droplet.

  4. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T., E-mail: aruna_reddy@nal.res.in; Basu, Bharathibai J.

    2013-07-15

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  5. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process.

    Science.gov (United States)

    Shirgholami, Mohammad A; Khalil-Abad, Mohammad Shateri; Khajavi, Ramin; Yazdanshenas, Mohammad E

    2011-07-15

    Superhydrophobic cotton textiles are prepared by a simple, one-step and inexpensive phase separation method under ambient conditions by which a layer of polymethylsilsesquioxane (PMSQ) nanostructures is covered onto the cellulose fibers. By changing the silane precursor concentration, PMSQ nanostructures with various shapes, morphologies and sizes were fabricated. Nanostructures were characterized using SEM, EDS, and attenuated total reflectance FTIR. The wettability of the modified cellulose surfaces was characterized with contact-angle goniometry and sliding angle technique, respectively. The water contact angle of modified cotton is measured to be higher than 150°, which is high enough to exhibit the lotus effect as a result of the superhydrophobicity. Tunable water-repellent properties of the fabric are also demonstrated, with sliding contact angles varying from "sticky" to "slippery" depending upon different nanostructures on the surface of the fibers. It is expected that this simple technique will accelerate the large-scale production of superhydrophobic cellulosic materials with new industrial applications.

  6. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    Science.gov (United States)

    Das, Indranee; de, Goutam

    2015-12-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses.

  7. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    Science.gov (United States)

    Das, Indranee; De, Goutam

    2015-01-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754

  8. Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue et al

    2008-01-01

    Full Text Available By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry.

  9. Anthraquinone dyes for superhydrophobic cotton.

    Science.gov (United States)

    Salabert, J; Sebastián, R M; Vallribera, A

    2015-09-28

    Water-repellent, self-cleaning and stain resistant textiles are of interest for industrial applications. Anthraquinone reactive dyes were covalently grafted onto cotton fabric surfaces obtaining bright colors with good wash-fastness properties and giving rise to breathable superhydrophobic textiles with self-cleaning properties.

  10. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent

    Science.gov (United States)

    Yu, Minghua; Gu, Guotuan; Meng, Wei-Dong; Qing, Feng-Ling

    2007-01-01

    A superhydrophobic complex coating for cotton fabrics based on silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent (PFSC) was reported in this article. The complex thin film was prepared through a sol-gel process using cotton fabrics as a substrate. Silica nanoparticles in the coating made the textile surface much rougher, and perfluorooctylated quaternary ammonium silane coupling agent on the top layer of the surface lowered the surface free energy. Textiles coated with this coating showed excellent water repellent property, and water contact angle (CA) increased from 133° on cotton fabrics treated with pure PFSC without silica sol pretreatment up to 145°. The oil repellency was also improved and the contact angle of CH 2I 2 droplet on the fabric surface reached to 131°. In contrast, the contact angle of CH 2I 2 on the fabric surface treated with pure PFSC was only 125°.

  11. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials

    Energy Technology Data Exchange (ETDEWEB)

    Manatunga, Danushika Charyangi [Sri Lanka Institute of Nanotechnology, Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Silva, Rohini M. de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Nalin de Silva, K.M., E-mail: nalinds@slintec.lk [Sri Lanka Institute of Nanotechnology, Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka)

    2016-01-01

    Graphical abstract: - Highlights: • Superhydrophobicity using nonfluorinated agents on cotton roughened with nanosilica. • Sol–gel method to hydrophobize with HDTMS, SA, OTES, and HDTMS/SA HDTMS/OTES hybrids. • WCA of 150° or greater with the treatment. • Increased hydrophobicity and soil repellency obtained when a hybrid mixture is used. • Combinational treatment is effective when compared with the fluorosilane treatment. - Abstract: Creation of differential superhydrophobicity by applying different non-fluorinated hydrophobization agents on a cotton fabric roughened with silica nanoparticles was studied. Cotton fabric surface has been functionalized with silica nanoparticles and further hydrophobized with different hydrophobic agents such as hexadecyltrimethoxy silane (HDTMS), stearic acid (SA), triethoxyoctyl silane (OTES) and hybrid mixtures of HDTMS/SA and HDTMS/OTES. The cotton fabrics before and after the treatment were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The wetting behavior of cotton samples was investigated by water contact angle (WCA) measurement, water uptake, water repellency and soil repellency testing. The treated fabrics exhibited excellent water repellency and high water contact angles (WCA). When the mixture of two hydrophobization agents such as HDTMS/OTES and HDTMS/SA is used, the water contact angle has increased (145°–160°) compared to systems containing HDTMS, OTES, SA alone (130°–140°). It was also noted that this fabricated double layer (silica + hydrophobization agent) was robust even after applying harsh washing conditions and there is an excellent anti-soiling effect observed over different stains. Therefore superhydrophobic cotton surfaces with high WCA and soil repellency could be obtained with silica and mixture of hydrophobization agents which are cost effective and environmentally friendly when compared with the fluorosilane

  12. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides

    Science.gov (United States)

    Zhao, Yan; Xu, Zhiguang; Wang, Xungai; Lin, Tong

    2013-12-01

    A dual-functional coating with both superhydrophobic and UV-blocking properties was prepared on cotton fabric using a hybrid layered double hydroxide (LDH) nanoplatelet intercalated with 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (HMBS) molecules and an electrostatic layer-by-layer (LbL) assembly technique. The thermal stability of HMBS was greatly enhanced by the host-guest interaction with LDH layers. The as-prepared HMBS@LDH hybrid had a nearly neutral surface charge. To make it carry enough charge for the electrostatic LbL assembly, the HMBS@LDH nanoplatelet was further modified with 3-aminopropyltriethoxy silane. The nanoscale roughness generated by LDH nanoplatelets, together with low-surface-energy fluoroalkylsilane, endowed cotton fabrics with superhydrophobicity. The HMBS@LDH coating showed up to four-fold increase in the UV protection ability of cotton fabrics.

  13. Preparation of superhydrophobic surfaces on cotton textiles

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue et al

    2008-01-01

    Full Text Available Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.

  14. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica -based sols with nanoparticles of copper

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  15. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper.

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-15

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  16. Superhydrophobic and luminescent cotton fabrics prepared by dip-coating of APTMS modified SrAl2O4:Eu2+,Dy3+particles in the presence of SU8 and fluorinated alkyl silane

    Institute of Scientific and Technical Information of China (English)

    李婧; 赵燕; 葛明桥; 符思达; 林童

    2016-01-01

    An organic-inorganic composite dip-coating method was adopted in order to obtain ideal water repellent cotton fabrics. To be specific, a dual-functional coating with both superhydrophobic and luminescent properties was prepared on cotton fabric by using a dip-coating solution comprising (3-aminopropyl) trimethoxysilane (APTMS) modified SrAl2O4:Eu2+,Dy3+particles, SU8, and fluorinated alkyl silane (FAS). The micro/nano-scale roughness generated by SrAl2O4:Eu2+,Dy3+ particles, together with low-sur-face-energy FAS, rendered the cotton fabric superhydrophobic with a water contact angle of about 160° and a sliding angle as small as 2°. The coated fabric could withstand at least 100 cycles of standard laundry. The emission spectra of the coated fabric showed two emission peaks at 440 and 520 nm, which belonged to the blue and yellow-green color areas, respectively. The afterglow duration of the coated fabric was mainly influenced by the different depths of the trap levels in the SrAl2O4:Eu2+,Dy3+.

  17. Fabrication of tunable superhydrophobic surfaces

    Science.gov (United States)

    Shiu, Jau-Ye; Kuo, Chun-Wen; Chen, Peilin

    2004-02-01

    Inspired by the water-repellent behavior of the micro- and nano-structured plant surfaces, superhydrophobic materials, with a water contact larger than 150 degree, have received a lot of research attentions recently. It has been suggested that contamination, oxidation and current conduction can be inhibited on such superhydrophobic surfaces, and the flow resistance in the microfluidic channels can also be reduced using super water-repellent materials. In order to prepare superhydrophobic materials, we have developed two simple approaches for fabricating tunable superhydrophobic surfaces using nanosphere lithography and plasma etching. In the first case, the polystyrene nanospheres were employed to create well-ordered rough surfaces covered by gold and alkylthiols. Using oxygen plasma treatment, the topmost surface area can be modified systematically, as the result the water contact angle on such surfaces can be tuned from 132 to 170 degree. The water contact angles measured on these surfaces can be modeled by the Cassie"s formulation without any adjustable parameter. In the second approach, thin films of Teflon were spin-coated on the substrate surfaces and treated by oxygen plasma. Superhydrophobic surfaces with water contact angle up to 170 degree were obtained by this approach. If the ITO glasses were used as the substrates, the hydrophobicity of the surface can be tuned by applying DC voltage. Water contact angle can be adjusted from 158 degree to 38 degree.

  18. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available in cotton is of great industrial importance due to the demanding consumer market for high performance textiles. It is not only a high value- added characteristic but it also has high commercial use and wide spectra of applications. Super- hydrophobicity... stream_source_info Erasmus1_2009.pdf.txt stream_content_type text/plain stream_size 7375 Content-Encoding UTF-8 stream_name Erasmus1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 Indian Journal of Fibre & Textile...

  19. Silver nanowire-functionalized cotton fabric.

    Science.gov (United States)

    Nateghi, Mohammad R; Shateri-Khalilabad, Mohammad

    2015-03-01

    In this study, general functionalization of cotton fabric by loading silver nanowires (AgNWs) on cotton surface is reported. Initially, AgNWs were synthesized by a polyol process and then were conformal coated onto individual cotton fibers through a simple "dip and dry" process. SEM images revealed a thin and uniform AgNWs coating on the cotton microfibers which was supported by a surface chemical analysis by EDX. The average electrical surface resistivity of the fabric coated with conductive network of AgNWs was measured to be 27.4 Ω/sq. Incubating the modified fabric with either Escherichia coli or Staphylococcus aureus demonstrated that the fabric had substantial antimicrobial capacity against both Gram-positive and Gram-negative bacteria (100% microbial death). The fabric also showed excellent UV-blocking ability with the UV protection factor of 113.14. The fluorosilane coated AgNWs-loaded fabric displayed stable superhydrophobicity with CA and SHA values of 156.2°±3.2° and 7°, respectively.

  20. Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation.

    Science.gov (United States)

    Zhou, Cailong; Chen, Zhaodan; Yang, Hao; Hou, Kun; Zeng, Xinjuan; Zheng, Yanfen; Cheng, Jiang

    2017-03-15

    Phytic acid, which is a naturally occurring component that is widely found in many plants, can strongly bond toxic mineral elements in the human body, because of its six phosphate groups. Some of the metal ions present the property of bonding with phytic acid to form insoluble coordination complexes aggregations, even at room temperature. Herein, a superhydrophobic cotton fabric was prepared using a novel and facile nature-inspired strategy that introduced phytic acid metal complex aggregations to generate rough hierarchical structures on a fabric surface, followed by PDMS modification. This superhydrophobic surface can be constructed not only on cotton fabric, but also on filter paper, polyethylene terephthalate (PET) fabric, and sponge. Ag(I), Fe(III), Ce(III), Zr(IV), and Sn(IV) are very commendatory ions in our study. Taking phytic acid-Fe(III)-based superhydrophobic fabric as an example, it showed excellent resistance to ultraviolet (UV) irradiation, high temperature, and organic solvent immersion, and it has good resistance to mechanical wear and abrasion. The superhydrophobic/superoleophilic fabric was successfully used to separate oil/water mixtures with separation efficiencies as high as 99.5%. We envision that these superantiwetting fabrics, modified with phytic acid-metal complexes and PDMS, are environmentally friendly, low cost, sustainable, and easy to scale up, and thereby exhibit great potentials in practical applications.

  1. Fabrication of superhydrophobic film by microcellular plastic foaming method

    Science.gov (United States)

    Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk

    2014-08-01

    To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.

  2. Electrochemical fabrication of superhydrophobic Zn surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhang, Fangdong [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Shanxi Institute of Mechanical and Electrical Engineering, Changzhi 046000 (China); Song, Jinlong, E-mail: songjinlong@mail.dlut.edu.cn [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Wang, Long; Qu, Qingsong [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Lu, Yao; Parkin, Ivan [Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom)

    2014-10-01

    Highlights: • A simple electrochemical processing in the mixed electrolyte composed of NaCl and NaNO{sub 3} was developed to fabricate superhydrophobic Zn surfaces. • A layer of micro-nano hierarchical structures was obtained on the processed Zn surfaces. • Reaction mechanism of Zn in mixed electrolyte was analyzed. - Abstract: A superhydrophobic surface with a water contact angle of 165.3° and a tilting angle of 2° was fabricated on a zinc substrate by electrochemical processing using a mixed electrolyte composed of NaCl and NaNO{sub 3}, followed by overcoating with a fluorinated polymer. The fabrication process is based on the electrochemical processing of Zn under an applied electric field. Scanning electron microscope (SEM) and X-ray diffractometer system (XRD) were used to characterize surface morphology and crystal structures. Micrometer-scale pits, protrusions and numerous nanometer-scale dendrite structures were found on the surface. XRD results indicated that the new products formed on the treated surface. The anodic dissolution mechanism of Zn in the electrolyte was analyzed. The effects of processing time, processing current, electrolyte type and electrolyte concentration on surface micromorphology and superhydrophobicity of the samples were also investigated. The results show that the electrochemical processing does not require exacting processing parameters. This method is highly efficient and environmental friendly. The ideal processing conditions to create the optimum superhydrophobic surface are a processing time of 20 min, a current density of 0.2 A/cm{sup 2}, and a mixed electrolyte of 0.1 mol/L NaNO{sub 3} and 0.05 mol/L NaCl.

  3. Durable superhydrophobic finish of cotton fabric with modified silica hydrosol%棉织物的改性SiO2水溶胶耐久超疏水整理

    Institute of Scientific and Technical Information of China (English)

    庄伟; 徐丽慧; 方晓华; 白添淇; 蔡再生

    2011-01-01

    采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂,十六烷基三甲氧基硅烷为拒水添加剂,在表面活性剂十二烷基苯磺酸钠作用下,添加硅烷偶联剂,制备了改性纳米SiO2水溶胶,并将其用于棉织物的耐久疏水整理;探讨了硅烷偶联剂种类及添加量对棉织物耐洗性的影响.结果表明,用添加2%正硅酸四乙酯(TEOS)制得改性SiO2水溶胶,整理后棉织物具有耐久的拒水效果,皂洗20次后,棉织物的接触角和滚动角分别可达141.5°和25.0°,沾水评级75分.%Modified silica hydrosol is prepared by water-based sol-gel method using methyltrimethoxysilane (MTMOS) as the precursor, ammonia as the catalyst and hexadecyltrimethoxysilane (HDTMS) as the hydrophobic additive, and tetraethyl ortho-silicate (TEOS) is added in the presence of the anionic surfactant of sodium dodecyl benzenesulfonate (SDBS). Superhydro-phobic finish of cotton fabric is carried out with the modified silica hydrosol. The effects of the type of silane coupling agent and the adding dosage on durability are investigated. The test results show that when 2% TEOS is added to the modified silica hydrosol, the finished cotton fabric has a durable water repellent effect with the contact angle and roll angle up to 141.5° and 25.0° respectively, and spray rate of 75 even after 20 washing cycles.

  4. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications

    Science.gov (United States)

    Kaplan, Jonah; Grinstaff, Mark

    2015-01-01

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications. PMID:26383018

  5. Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Qing, Yongquan [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Zheng, Yansheng, E-mail: zhyansh88@163.com [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Lushan College of Guangxi University of Science and Technology, Liuzhou 545616, Guangxi (China); Hu, Chuanbo; Wang, Yong; He, Yi [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Gong, Yong [College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan (China); Mo, Qian [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China)

    2013-11-15

    In this paper, we report a simple and inexpensive method for fabricating modified-ZnO/polystyrene superhydrophobic surface on the cotton textiles. The surface wettability and topology of coating were characterized by contact angle measurement, Scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic -CH{sub 3} and -CF{sub 2}- group was introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to polystyrene was 7:3, the ZnO/polystyrene composite coating contact angle was 158°, coating surface with hierarchical micro/nano structures. Furthermore, the superhydrophobic cotton texiles have a very extensive application prospect in water–oil separation.

  6. A simple approach to fabricate stable superhydrophobic glass surfaces

    Science.gov (United States)

    Ji, Haiyan; Chen, Gang; Yang, Jin; Hu, Jie; Song, Haojie; Zhao, Yutao

    2013-02-01

    We present a facile method to fabricate superhydrophobic glass surface via one-step hydrothermal method and chemical modification. The etched glass surface shows the hierarchical textured morphology as well as the multiple scales of roughness and large numbers of nanorods and pores. The formation mechanism of the hierarchically structured surface is discussed in detail. After surface modification with vinyltriethoxysilane, the glass surface exhibits stable superhydrophobicity with a high contact angle of 155° and a low sliding angle of 5°. A water droplet of 10 μL can bounce away from the surface when it vertically hit the superhydrophobic glass surface. Moreover, the contact angle of the superhydrophobic glass surface under different pH values and storage time are measured to study the stability of the superhydrophobic property.

  7. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  8. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    Science.gov (United States)

    Xue, Chao-Hua; Jia, Shun-Tian; Zhang, Jing; Ma, Jian-Zhong

    2010-01-01

    This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted. PMID:27877336

  9. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue, Shun-Tian Jia, Jing Zhang and Jian-Zhong Ma

    2010-01-01

    Full Text Available This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

  10. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    OpenAIRE

    Xue, Chao-Hua; Jia, Shun-Tian; Zhang, Jing; Ma, Jian-Zhong

    2010-01-01

    This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

  11. Trade Statistics: Cotton Yarn & Fabric in Feb.

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Cotton is the single most important textile fiber in the world,accounting for nearly 40 percent of total world fiber production.While some 80 countries from around the globe produce cotton,the United States,China,and India together provide over half the world's cotton.This monthly update provides official CNTAC (China National Textile & Apparel Council ) data on China import and export of cotton yarn and cotton fabric,to show a general profile of China's foreign trade in current textile industry.

  12. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    Science.gov (United States)

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  13. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhi, E-mail: c2002z@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Li Feng [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Hao Limei [Department of Applied Physics, Xi' an University of Science and Technology, Xi' an 710054 (China); Chen Anqi; Kong Youchao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China)

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl{sub 2}{center_dot}4H{sub 2}O), myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163 Degree-Sign and rolling angle is less than 3 Degree-Sign . Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  14. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Science.gov (United States)

    Chen, Zhi; Li, Feng; Hao, Limei; Chen, Anqi; Kong, Youchao

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  15. Fabrication of superhydrophobic niobium pentoxide thin films by anodization

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bong-Yong [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Jung, Eun-Hye [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Department of Chemical Engineering, Inha University, Incheon 402-024 (Korea, Republic of); Kim, Jin-Ho, E-mail: jhkim@kicet.re.kr [Electronic and Optic Materials Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2014-07-01

    We report a simple method to fabricate a niobium oxide film with a lotus-like micro–nano surface structure. Self-assembled niobium pentoxide (Nb{sub 2}O{sub 5}) films with superhydrophobic property were fabricated by an anodization and a hydrophobic treatment. This process has several advantages such as low cost, simplicity and easy coverage of a large area. The surface of fabricated Nb{sub 2}O{sub 5} film was changed from hydrophilic to superhydrophobic surface by a treatment using fluoroaldyltrimethoxysilane (FAS) solution. This value is considered to be the lowest surface free energy of any solid, based on the alignment of -CF{sub 3} groups on the surface. In particular, among FAS coated surfaces, the micro–nano complex cone structured Nb{sub 2}O{sub 5} film showed the highest water-repellent property with a static contact angle of ca. 162°. This study gives promising routes from biomimetic superhydrophobic surfaces.

  16. A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface

    Science.gov (United States)

    Li, Feng; Geng, Xingguo; Chen, Zhi; Zhao, Lei

    2012-01-01

    This article has presented a novel method to fabricate superhydrophobic metal carboxylate surface on substrates like copper, ferrum, etc. This method markedly shortened the fabrication time to less than one second. The superhydrophobic effect is even better that the contact angle (CA) is 170±1° and the sliding angle (SA) fatty acid and metal salt plays a key role in this method. This method has tremendous potentials in industrial production of superhydrophobic materials.

  17. Functionalization of cotton fabrics through thermal reduction of graphene oxide

    Science.gov (United States)

    Cai, Guangming; Xu, Zhenglin; Yang, Mengyun; Tang, Bin; Wang, Xungai

    2017-01-01

    Graphene oxide (GO) was in-situ reduced on cotton fabrics by a simple heat treatment, which endowed cotton fabrics with multi-functions. GO was coated on the surface of cotton fabric through a conventional "dip and dry" approach. Reduced graphene oxide (RGO) was obtained from GO in the presence of cotton by heating under the protection of nitrogen. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were employed to characterize the complexes of RGO and cotton (RGO/cotton). The RGO/cotton fabrics showed good electrical conductivity, surface hydrophobicity and ultraviolet (UV) protection properties. These properties did not deteriorate significantly after repeated fabric bending and washing.

  18. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  19. Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces

    Science.gov (United States)

    Abdulhussein, Ali T.; Kannarpady, Ganesh K.; Wright, Andrew B.; Ghosh, Anindya; Biris, Alexandru S.

    2016-10-01

    Superhydrophobic surfaces are found in nature and possess several fascinating properties, including the ability to self-clean. A typical superhydrophobic surface has micro/nanostructure roughness and low surface energy, which combine to give it its unusual anti-wetting properties. Because of their unique capabilities, these surfaces have interested scientists in research and industry fields for years. In recent decades, researchers have developed a number of synthetic methods for producing novel superhydrophobic surfaces that mimic natural surfaces. These synthetic surfaces have been widely applied on different types of substrates for potential widespread, practical applications. This review article focuses on these advances in fabricating manmade superhydrophobic surfaces.

  20. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    NARCIS (Netherlands)

    Feng, Huanhuan; Zheng, Tingting; Wang, Huiliang

    2016-01-01

    Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three st

  1. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    NARCIS (Netherlands)

    Feng, Huanhuan; Zheng, Tingting; Wang, Huiliang

    2016-01-01

    Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three st

  2. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  3. Fabrication of Bionic Superhydrophobic Manganese Oxide/Polystyrene Nanocomposite Coating

    Institute of Scientific and Technical Information of China (English)

    Xianghui Xu; Zhaozhu Zhang; Fang Guo; Jin Yang; Xiaotao Zhu; Xiaoyan Zhou; Qunji Xue

    2012-01-01

    A superhydrophobic manganese oxide/polystyrene (MnO2/PS) nanocomposite coating was fabricated by a facile spraying process.The mixture solution of MnO2/PS was poured into a spray gun,and then sprayed onto the copper substrate using 0.2 MPa nitrogen gas to construct superhydrophobic coating.The wettability of the composite coating was measured by sessile drop method.When the weight ratio of MnO2 to PS is 0.5:1,the maximum of contact angle (CA) (140°) is obtained at drying temperature of 180 ℃.As the content of MnO2 increases,the maximum of CA (155°) is achieved at 100 ℃.Surface morphologies and chemical composition were analyzed to understand the effect of the content of MnO2 nanorods and the drying temperature on CA.The results show that the wettability of the coating can be controlled by the content ofMnO2 nanorods and the drying temperature.Using the proposed method,the thickness of the coating can be controlled by the spraying times.If damaged,the coating can be repaired just by spraying the mixture solution again.

  4. Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites.

    Science.gov (United States)

    Mohamed, Amina L; El-Sheikh, Manal A; Waly, Ahmed I

    2014-02-15

    Environmental concerns related to fluorinated and organophosphorus compounds led to a consideration of the methods for imparting flame retardancy and water/oil repellency to textiles. A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. Complex coating with amino-functionalized silica nano-particles on epoxy-functionalized cotton accompanied with ZnO nano-particles coating are carried out. In This context, new preparation techniques were used to prepare both aminated silica and ZnO nano-particles. The particle size was investigated using Transition Electron Microscope (TEM) and the chemical structure was investigated using FT-IR analysis and other analytical techniques. Cotton was functionalized with epoxy and carboxyl via grafting cotton with nano-emulsion consisted of mixture of glycidyl methacrylate (GMA) and acrylic acid (AA), and then treated for functional finishing through conventional pad-dry-cure method. The treated fabrics showed good water repellency and excellent flame retardant properties as determined by the standard test methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Triarylmethane Dyes for Artificial Repellent Cotton Fibers.

    Science.gov (United States)

    Montagut, Ana Maria; Gálvez, Erik; Shafir, Alexandr; Sebastián, Rosa María; Vallribera, Adelina

    2017-03-17

    Families of new hydrophobic and/or oleophobic triarylmethane dyes possessing long hydrocarbon or polyfluorinated chains have been prepared. When covalently grafted on to cotton fabric, these dyes give rise to a new type of colored superhydrophobic fibers.

  6. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der

    2011-07-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  7. A simple way to fabricate an aluminum sheet with superhydrophobic and self-cleaning properties

    Institute of Scientific and Technical Information of China (English)

    Yang Zhou; Wu Yi-Zhi; Ye Yi-Fan; Gong Mao-Gang; Xu Xiao-Liang

    2012-01-01

    A superhydrophobic aluminum sheet is fabricated via a hot water immersing process and subsequently surface modification with heptadecafluorodecyltrimethoxy-silane (HTMS).As revealed by the scan electron microscopy (SEM),X-ray diffraction (XRD),and Fourier-transform infrared spectrophotometer (FTIR) results,a rough pseudoboehmite film is formed on the aluminum sheet,and HTMS molecules are grafted on the film surface successfully.These two factors make the treated aluminum sheet present superhydrophobicity with a water contact angle larger than 160° and sliding angle less than 5°,and possess a self-cleaning property.Furthermore,the flexible superhydrophobic aluminum sheet could be pasted to a cylinder surface without destroying its superhydrophobicity.At the end,the effect of hot water treatment time on superhydrophobicity is investigated.

  8. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.

    Science.gov (United States)

    Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji

    2017-08-18

    Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.

  9. Study on the Handle of Keratin Transgenic Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    蒋培清; 严文源; 严灏景

    2004-01-01

    Gene of animal keratin can be inoculated into cotton fiber and thus get the keratin transgenic cotton fiber through transgenic technology. Handle of two kinds of pure cotton poplin, one of which is made of the keratin transgenic cotton while the other is made of the ordinary cotton of the same breed as control group and both with absolutely identical spinning, weaving, and dyeing process, was objectively evaluated with KES system. The result of analysis indicates that the principal changes of keratin transgenic cotton fabric are that the bending and shearing property of the fabric are considerably enhanced, KOSHI (Stiffness) and HARI (Anti-drape stiffness) of the fabric are good, while SHINAYAKASA (Flexibility with soft feeling) and SHARI (Crispness) decline.

  10. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  11. Combined Cellulase and Wrinkle-free Treatment on Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    周立明; 杨国荣; 袁进华

    2001-01-01

    1,2, 3,4 - butanetetracarboxylic acid (BTCA) offers an alternative to the conventional N-methlol compounds as a crosslinking agent for cellulose textiles. Cellulase treatment is an effective method to improve the handle of the cotton fabric. Thus it is of particular interest to treat cotton fabric using cellulase and BTCA simultaneously.In this study, BTCA was applied to the cellulase pretreated cotton fabric, and softener was also used. The results show that the treated fabric does not only have good wrinkle-free property but also good handle.

  12. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China); He, Yi, E-mail: chemheyi@swpu.edu.cn [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China); Luo, Pingya, E-mail: luopy@swpu.edu.cn [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); Chen, Xi; Liu, Bo [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China)

    2016-04-15

    Graphical abstract: - Highlights: • A facile fabrication of superhydrophobic film was obtained on carbon steel. • Composition of superhydrophobic film is iron palmitate. • The film exhibits excellent chemical stability and good self-cleaning effect. • Corrosion of C45 steel is significantly inhibited with superhydrophobic surface. - Abstract: Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air–liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  13. Application of Super-Hydrophobic Coating for Enhanced Water Repellency of Ballistic Fabric

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott Robert [ORNL

    2014-10-01

    The objective of this work was to demonstrate that a superhydrophobic coating technology developed at Oak Ridge National Laboratory (ORNL) increases the water repellency of ballistic fabric beyond that provided by existing water repellency treatments. This increased water repellency has the potential to provide durable ballistic fabric for body armor without adding significant weight to the armor or significant manufacturing cost. Specimens of greige and scoured ballistic fabric were treated with a superhydrophobic coating and their weights and degree of water repellency were compared to specimens of untreated fabric. Treatment of both greige and scoured ballistic fabrics yielded highly water repellent fabrics. Our measurements of the water droplet contact angles gave values of approximately 150 , near the lower limit of 160 for superhydrophobic surfaces. The coatings increased the fabric weights by approximately 6%, an amount that is many times less than the estimated weight increase in a conventional treatment of ballistic fabric. The treated fabrics retained a significant amount of water repellency following a basic abrasion test, with water droplet contact angles decreasing by 14 to 23 . Microscopic analysis of the coating applied to woven fabrics indicated that the coating adhered equally well to fibers of greige and scoured yarns. Future evaluation of the superhydrophobic water repellent treatment will involve the manufacture of shoot packs of treated fabric for ballistic testing and provide an analysis of manufacturing scale-up and cost-to-benefit considerations.

  14. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qinghe [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical & Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Wei, Yan; Wei, Zhu [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-04-30

    Graphical abstract: - Highlights: • This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion without a bath. • It has a vital significance to the industrialization of the fabrication of superhydrophobic surface on hard metal due to the advantages such as low cost, high efficiency, can be prepared in a large area, easy to construct in the field. • The preparation approach is so facile and time-saving that it delivers an opportunity to construct a superhydrophobic surface on carbon steel substrate and provides the feasibility for industrial application of superhydrophobic surface. • The as-prepared surface has many excellent properties, like low adhesive property, anti-corrosion ability, mechanical durability and anti-icing performance. - Abstract: Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on

  15. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Science.gov (United States)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  16. Influences of Cotton Fabric Treatments on Human Physical Responses during Exercise and Recovery

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We investigated the influences of liquid water transfer property of cotton fabric on human physiological responses, such as ear canal temperature, heart rate, blood pressure, stress hormone, during exercise and recovery.Long sleeves cotton knitted sportswear treated to have special liquid water transfer property were prepared:(1) Hydrophilic; ( 2 ) Hydrophobic; and ( 3 ) Moisture Management (MM). Wearing these garments, human subjects ran on treadmill according to a pre-designed experimental protocol. It was found that during exercise hydrophilic cotton caused significantly higher mean skin temperature than MM and hydrophobic cotton fabrics, while during recovcry, hydrophilic and MM cotton fabrics caused significantly higher mean skin temperature than hydrophobic cotton fabric. Hydrophilic cotton fabric caused significantly lower heart rate than MM cotton fabric, lower systolic blood pressure than MM and hydrophobic cotton fabrics.Hydrophobic cotton fabric caused significantly higher urinary catecholamine volume than hydrophilic and MM cotton fabric, indicating stronger physical stress.Hydrophilic cotton fabric caused significantly stronger thermal and humidity sensations than MM and hydrophobic cotton fabrics at the end of first and second exercise sessions. Hydrophilic cotton fabric caused significantly stronger discomfort sensation than hydrophobic cotton fabric at the end of first session of exercise. In the end of wear trial, MM cotton fabric caused significantly higher tiredness sensation than hydrophilic and hydrophobic cotton fabrics.

  17. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  18. Use of mineral pigments in fabrication of superhydrophobically engineered cellulosic paper

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2012-11-01

    Full Text Available Superhydrophobic materials have a lot of interesting potential applications. The self-cleaning property is a unique feature. Rendering the water-loving cellulosic paper superhydrophobic can open the door for value-added applications. Superhydrophobic paper is a fairly new area, and only very limited scientific publications are available in the literature. Among these publications, the topics on the use of mineral pigments in fabrication of superhydrophobic structures account for a large proportion. During the fabrication process, mineral pigments, e.g., silica, precipitated calcium carbonate, and clay, generally need to be hydrophobized, either directly or indirectly. Mineral pigments can be applied to cellulosic paper by surface treatment or wet-end filling, and good dispersabilities of these pigments are always highly demanded. A key mechanistic point is that by tunable particle packing or fabrication, mineral pigments may exhibit surface-roughening effects, which are critical for superhydrophobicity development. The roughening of a hydrophobic surface helps to enhance hydrophobicity. Possible concepts such as nano-structuring or controllable surface patterning of mineral pigments may help to improve superhydrophobicity. Environmental friendliness will also guide the scientific/technical development in this area.

  19. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching

    Science.gov (United States)

    Choi, Dongwhi; Yoo, Jaewon; Park, Sang Min; Kim, Dong Sung

    2017-01-01

    Superhydrophobic surfaces with extremely low wettability have attracted attention globally along with their remarkable characteristics such as anti-icing, anti-sticking, and self-cleaning. In this study, a facile and cost-effective approach of fabricating patternable superhydrophobic surfaces, which can be applied on various substrates (including large area and 3D curvilinear substrates), is proposed with a salt-dissolution-assisted etching process. This novel proposal is environmentally benign (entirely water-based and fluorine-free process). The only required ingredients to realize superhydrophobic surfaces are commercially available salt particles, polydimethylsiloxane (PDMS), and water. No expensive equipment or complex process control is needed. The fabricated superhydrophobic surface shows high static contact angle (∼151°) and a low sliding angle (∼6°), which correspond to the standards of superhydrophobicity. This surface also shows corrosive liquids (acid/alkali)-resistant characteristics. Moreover, the self-cleaning ability of the fabricated surfaces is explored. As a proof-of-concept application of the present approach, the spatially controllable superhydrophobic patterns on flat/curvilinear substrates are directly drawn with a minimum feature size of 500 μm without the use of expensive tooling, dies, or lithographic masks.

  20. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Science.gov (United States)

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    Science.gov (United States)

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Science.gov (United States)

    Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka

    2016-11-01

    The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  3. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu Bo [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhou Ming, E-mail: zm_laser@126.com [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Li Jian; Ye Xia; Li Gang; Cai Lan [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2009-10-15

    Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3 deg. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3 deg. and at the same time, the sliding angle (SA) is 4.2 deg.

  4. Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning

    Science.gov (United States)

    Xu, Zhanglian; Miyazaki, Koji; Hori, Teruo

    2016-05-01

    We report a fabric coating method inspired the superhydrophobic properties of lotus leaves and the strong adhesion of the adhesive proteins in mussels. Dopamine, which mimics the single units of the adhesive mussel proteins, was polymerized in an alkaline aqueous solution to coat the surface of fabrics. The versatile reactivity of polydopamine allows subsequent Ag deposition to form a lotus-leaf-like rough structure on the fabric surface. The composite fabric exhibited high water repellence after fluorination. Because dopamine can adhere to all kinds of materials, this method can be applied to many fabrics regardless of their properties and chemical compositions using a universal process. The modified fabrics exhibited excellent anti-wetting and self-cleaning properties with contact angles of >150° and sliding angles lower than 9°. The fabrics also efficiently separated oil from oil/water mixtures under various conditions. Our method is versatile and simple compared with other hydrophobic treatment methods, which usually only work on one type of fabric.

  5. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    Science.gov (United States)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  6. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

    Science.gov (United States)

    Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin

    2017-02-14

    A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

  7. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Feng, Haitao [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Lin, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yabin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Wang, Liping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Li, Wu, E-mail: liwu2016@126.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China)

    2016-08-15

    Highlights: • Superhydrophobic surface was fabricated by black chromium electrodeposition and stearic acid modification. • The reaction process is simple, and of low cost, and no special instrument or environment is needed. • The obtained superhydrophobic surface presents good water repellency, and performs well at corrosion resistance. - Abstract: The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 10{sup 6} Ω cm{sup −2}) and excellent corrosion protection efficiency (99.94%).

  8. Fabrication of cotton nano-powder and its textile application

    Institute of Scientific and Technical Information of China (English)

    GUAN YingTing; LI Yi

    2008-01-01

    A combination of chemical and mechanical treatment of cotton produced cotton powder (fibrils) with a mean diameter of 97 nm is analyzed by Laser Particle Size Analyzer. Transmission Electron Micro scope (TEM) study showed that the diameter of the fibrils was about 10-30 nm and the length was from 70nm to over 400 nm. The powder was then coated onto fabrics (100% polyester fabric, 100% wool fabric and 100% cotton fabric). Scanning Electron Microscope (SEM) study showed that cotton fibrils were adhered to the surface of treated fabrics (fibers). The ultraviolet protection factor (UPF) value (AS/NZS 4399:1996) for cotton fabrics increased about 20% after the treatment. This implies that the treated samples give a better protection from UV light. The moisture management test (MMT) of the fabrics such as wetting time at bottom, top maximum absorption rate, bottom maximum absorption rate, bottom maximum wetted radius and bottom spreading speed, et al., showed that there were significant changes after the treatment. These changes gave better moisture management ability to the treated fabrics and thus made the fabric more comfortable. However, Wide-angle X-ray Diffraction and Fourie Transform Infrared Spectroscopy analysis proved that supermolecular structure and chemical structure of treated fabrics were the same as the original fabrics. Other properties of the treated fabric such as thermal conductivity, wrinkle recovery, hand, et al., did not change. This implied that the basic function of the treated fabrics for the clothing industry was the same as untreated fabrics. This study is a foundation for further researches on textile application.

  9. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    Science.gov (United States)

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO2 nanoparticles (F-SiO2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO2 ratios were studied using (1)H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  11. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  12. Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate

    Science.gov (United States)

    Wang, Nan; Xiong, Dangsheng; Pan, Sai; Deng, Yaling; Shi, Yan

    2016-11-01

    Superhydrophobic/oleophilic coating was prepared on steel via wet chemical etching, and followed by surface modification. Surface grafting was manifested to be realized mainly on the oxidized area. Slippery liquid infused porous surface(s) (SLIPS) was prepared by infusing perfluorinated lubricant into the prepared superhydrophobic coating, to repel water, coffee, kerosene, and even hexane, suggesting a transition from superoleophilicity to lyophobicity. Furthermore, the lyohobicity was accessible only when the substrate is fluorinated. Moreover, the kinematic viscosity was demonstrated to be negatively correlated to the traveling speed of the liquids on the SLIPS.

  13. New prospects in pretreatment of cotton fabrics using microwave heating.

    Science.gov (United States)

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion.

  14. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  15. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  16. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  17. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  18. Nanosilica-Chitosan Composite Coating on Cotton Fabrics

    Science.gov (United States)

    Maharani, Dina Kartika; Kartini, Indriana; Aprilita, Nurul Hidayat

    2010-10-01

    Nanosilica-chitosan composite coating on cotton fabrics has been prepared by sol-gel method. The sol-gel procedure allows coating of material on nanometer scale, which several commonly used coating procedure cannot achieve. In addition, sol-gel coating technique can be applied to system without disruption of their structure functionaly. The coating were produced via hidrolysis and condensation of TEOS and GPTMS and then mixed with chitosan. The composite coating on cotton fabrics were characterized with X-Ray Diffraction and Scanning Electron microscopy (SEM) method. The result showed that the coating not changed or disrupted the cotton stucture. The coating result in a clear transparent thin layer on cotton surface. The nanocomposite coating has new applications in daily used materials, especially those with low heat resistance, such as textiles and plastics, and as an environmentally friendly water-repellent substitute for fluorine compounds.

  19. Superhydrophobic Properties of Nanotextured Polypropylene Foils Fabricated by Roll-to-Roll Extrusion Coating

    DEFF Research Database (Denmark)

    Telecka, Agnieszka; Murthy, Swathi; Sun, Ling

    2016-01-01

    etching with different processing gas flow rates. We provide a systematic study of the wetting properties for the fabricated surfaces and show that a controlled texture stretching effect in the R2R-EC process is instrumental to yield the superhydrophobic surfaces with water contact angles approaching 160...

  20. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  1. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  2. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three steps: abrasive paper scraping, adhesive tape bonding and 90° peeling. Scraping increases the roughness and enhence water contact angles (CAs on polyolefin surfaces. It increases more when the scraped surface are bonded with adhesive types and then then 90° peeled. The CA variation depends on the types of polyolefin and abrasive paper. Superhydrophobic lowdensity polyethylene (LDPE, high-density polyethylene (HDPE and polypropylene (PP surfaces (CA>150° are obtained and they all exhibit very low adhesive force and high resistance to strong acids and bases.

  3. Rapid fabrication and characterization of superhydrophobic tri-dimensional Ni/Al coatings

    Science.gov (United States)

    Guo, Xiaogang; Li, Xueming; Wei, Zhibo; Li, Xiaolin; Niu, Lidan

    2016-11-01

    Superhydrophobic tri-dimensional Ni/Al coatings (3DNACs) with great application value have been successfully fabricated via a simple two-step method combined with hydrogen bubble dynamic template and electrophoretic deposition technique after 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane treatment. The surface morphologies and chemical compositions were analyzed by FE-SEM, EDS, XRD, AFM and FT-IR in detail. The water contact angle of superhydrophobic 3DNACs surface was as high as 156 ± 2° (>150) much larger than that of unmodified samples. Moreover, the obtained samples exhibited great thermal properties and combustion performance. Thus, the superhydrophobic 3DNACs with prominent exothermic capability turn out to be a promising novel energy in field of mirco/nano energy materials for longer-term storage or transportation, especially in high humid environment.

  4. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  5. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  6. Water Breakthrough Pressure of Cotton Fabrics Treated with Fluorinated Silsesquioxane / Fluoroelastomer Coatings (Preprint)

    Science.gov (United States)

    2012-10-01

    antimicrobial properties of finished cotton: influence of sol- gel finishing procedure, Journal of Sol- Gel Science and Technology 61 (2012) 340-354. 7 [8] Y...46 (2011) 2503-2509. [23] M.S. Khalil-Abad, M.E. Yazdanshenas, Superhydrophobic antibacterial cotton textiles, Journal of Colloid and Interface...Science 351 (2010) 293-298. [24] J.Y. Liu, W.Q. Huang, Y.J. Xing, R. Li, J.J. Dai, Preparation of durable superhydrophobic surface by sol- gel method

  7. Facile approach in fabricating superhydrophobic SiO{sub 2}/polymer nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hengzhen [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Zhang Xia, E-mail: zhangxia0307@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Zhang Pingyu; Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Fluorine-free superhydrophobic SiO{sub 2}/polymer composite coatings are fabricated by a simple spin-coating method without any surface chemical modification. Black-Right-Pointing-Pointer The SiO{sub 2}/polymer coatings show long-term stability in the condition of continuous contact with corrosive water. Black-Right-Pointing-Pointer The coating can be fabricated on various metal substrates to prevent metal from corrosion. - Abstract: We have developed a facile spin-coating method to prepare water-repellent SiO{sub 2}/polymer composite coating without any surface chemical modification. The wettability can be adjusted by controlling the content of SiO{sub 2} nanoparticles. The coating demonstrates sustainable superhydrophobicity in the condition of continuous contact with corrosive liquids. Importantly, the coating can be fabricated on various metal substrates to prevent metal from corrosion.

  8. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    Graphical abstract: - Highlights: • The superhydrophobic PFA/SiO{sub 2} coating was successfully fabricated by spraying. • The synthesized PFA latex showed core–shell structure and good dispersion. • The PFA/SiO{sub 2} coating showed good resistance to acid and base, weather and heat. • The superhydrophobic coating could be fabricated on various substrates. - Abstract: The core–shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO{sub 2} hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO{sub 2} particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO{sub 2} content on the wetting behavior and surface morphology of PFA/SiO{sub 2} hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core–shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO{sub 2} particles, the surface morphology and wetting behavior of the PFA/SiO{sub 2} hybrid coatings could be controlled. When the mass ratio of SiO{sub 2} to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano

  9. Eco-friendly rubberized cotton fabric roller for ginning machines.

    Science.gov (United States)

    Iyer, G V

    2007-01-01

    This article discusses the pollution caused by chrome composite leather-clad (CCLC) rollers commonly used in cotton roller ginning mills and suggests an alternative roller material. CCLC rollers contain about 18,000 to 36,000 mg/kg (ppm) total chromium in trivalent and hexavalent forms, which are toxic to human health and carcinogenic. When seed-cotton is processed in double roller (DR) ginning machines, the lint is contaminated with chromium, and chromium particles are carried into the spun yarns and cotton by-products. Specifically, due to persistent rubbing of the leather-clad roller over the stationary knife during the ginning process, the lint is contaminated with about 140 to 1990 ppm of chromium, and the spun yarns and cotton by-products contain about 100 to 200 ppm, far in excess of the standard limit of 0.1 ppm. Gin and mill workers are directly exposed to this carcinogenic substance. To offset this problem, pollution-free rubberized cotton fabric (RCF) rollers have been fabricated and tested in roller gins. The RCF roller covering is made of multiple layers of fabric bonded together using a white rubber compound, which has a surface finish conducive to high ginning efficiency. This eliminates chromium contamination and pollution during the ginning process. On the basis of the design and development of various test rollers and subsequent evaluation studies, the performance of pollution-free RCF rollers has been demonstrated with reference to their commercial benefit and eco-friendliness in cotton ginning mills.

  10. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface

    Science.gov (United States)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Yuan, Yuan; Zhao, Xuetong; Zhuang, Aoyun; Zhang, YiYi

    2015-03-01

    Aluminum is one of the most widely used metals in transmission lines. Accumulation of ice on aluminum may cause serious consequences such as tower collapse and power failure. Here we develop a method to fabricate a coral-like superhydrophobic surface to improve its anti-icing performance via chemical etching and hot-water treatment. The as-prepared surface exhibited superhydrophobicity with a contact angle (CA) of 164.8 ± 1.1° and the sliding angle smaller than 1°. The static and dynamic anti-icing behaviors of the superhydrophobic surface in different conditions were systematically investigated using a self-made device and artificial climate laboratory. Results show that the coral-like superhydrophobic structure displayed excellent anti-icing property. The water droplet remained unfrozen on the as-prepared surface at -6 °C for over 110 min. 71% of the surface was free of ice when exposed in "glaze ice" for 30 min. This investigation proposed a new way to design an anti-icing surface which may have potential future applications in transmission lines against ice accumulation.

  11. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Science.gov (United States)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  12. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O2- and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  13. Functional finishing in cotton fabrics using zinc oxide nanoparticles

    Indian Academy of Sciences (India)

    A Yadav; Virendra Prasad; A A Kathe; Sheela Raj; Deepti Yadav; C Sundaramoorthy; N Vigneshwaran

    2006-11-01

    Nanotechnology, according to the National Nanotechnology Initiative (NNI), is defined as utilization of structure with at least one dimension of nanometer size for the construction of materials, devices or systems with novel or significantly improved properties due to their nano-size. The nanostructures are capable of enhancing the physical properties of conventional textiles, in areas such as anti-microbial properties, water repellence, soil-resistance, anti-static, anti-infrared and flame-retardant properties, dyeability, colour fastness and strength of textile materials. In the present work, zinc oxide nanoparticles were prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent. These nanoparticles, which have an average size of 40 nm, were coated on the bleached cotton fabrics (plain weave, 30 s count) using acrylic binder and functional properties of coated fabrics were studied. On an average of 75%, UV blocking was recorded for the cotton fabrics treated with 2% ZnO nanoparticles. Air permeability of the nano-ZnO coated fabrics was significantly higher than the control, hence the increased breathability. In case of nano-ZnO coated fabric, due to its nano-size and uniform distribution, friction was significantly lower than the bulk-ZnO coated fabric as studied by Instron® Automated Materials Testing System. Further studies are under way to evaluate wash fastness, antimicrobial properties, abrasion properties and fabric handle properties.

  14. Determination of two reactive dyes concentration in dyed cotton fabric

    Directory of Open Access Journals (Sweden)

    Miljković Milena

    2012-01-01

    Full Text Available The purpose of this paper was to determine the unknown concentration of dichlortriazinyl reactive dyes, namely Reactive Yellow 22 and Reactive Blue 163, in dyed cotton fabric. The samples of cotton fabric were dyed individually with each dye as well as with a mixture of two dyes. The unknown concentrations of dyes were determined by measuring the corresponding reflectance values of dyed fabric samples and then using the relation between the concentration and reflectance values of the samples. The method set by Kubelka and Munk was used. The accuracy and repeatability of the concentrations determination were calculated by the statistical processing of the data obtained by measurements. Relative errors of individual determination of Reactive Yellow 22 and Reactive Blue 163 were 3.66% and 5.94% respectively. Relative errors in determination of Reactive Yellow 22 and Reactive Blue 163 in a mixture were 3.47% and 3.19% respectively. The results showed that reflectance spectrophotometry can be successfully used as the method for concentration determination of Reactive Yellow 22 and Reactive Blue 163 in dyed cotton fabric and can therefore be applied as the shade control method in dyeing.

  15. Ultrasonic-assisted fabrication of superhydrophobic ZnO nanowall films

    Indian Academy of Sciences (India)

    S SUTHA; R T RAJENDRA KUMAR; BALDEV RAJ; K R RAVI

    2017-06-01

    Zinc oxide-based superhydrophobic surfaces were fabricated on aluminium oxide-seeded glass substrates via sonochemical approach by varying the parameter, the sonication time duration. The fabricated structures have nanowall-like morphology with an average long axis length and thickness of $\\sim$300 and $\\sim$40 nm, respectively. The surface roughness createdby surface-modified ZnO nanowalls and the air pockets trapped within the dense nanowalls, transformed the hydrophobic glass substrates into superhydrophobic surfaces with water contact angle of 156$^{\\circ}$ during 20 min of sonication. An independent analysis was carried out to study the growth of ZnO nanowalls over glass substrates in the absence of the aluminium oxide seed layer and sonication process. The results suggested that the synergistic effect of the aluminium oxide seed layer and sonochemical process can enable the formation of ZnO nanowall structures favourable for superhydrophobic property. A possible growth mechanism of ZnO nanowalls formation during sonication process has been discussed in detail.

  16. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  17. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  18. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modification by aluminate coupling agent which reduced the surface energy greatly, was found to be responsible for the superhydrophobicity. The method adopted is relatively simple, facile, and cost-effective and can potentially be applied to large water-repellent surface coatings.

  19. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating

    Science.gov (United States)

    Zeng, Ou; Wang, Xian; Yuan, Zhiqing; Wang, Menglei; Huang, Juan

    2015-09-01

    A simple and low cost approach was developed to fabricate a superhydrophobic surface on copper foil. The oxidation and etching of the copper foil surface were promoted in NH4HCO3 solution using a water and ethanol admixture as a component solvent. After 28 h in this solution, a hydrophilic rough surface structure was obtained on the copper foil surface. With modification using a paraffin wax coating, the hydrophilic rough copper surface changed to become hydrophobic or superhydrophobic. The surface morphology and wettability were characterized by scanning electron microscopy (SEM) and contact angle measurements, respectively. When the optimum concentration of paraffin wax was about 2 g L-1, its water contact angle could reach about 152 ± 1.5° and its sliding angle was around 7°. The formation mechanism of the rough copper surface was also explored in detail. Both the experimental process and the material are environmentally friendly.

  20. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  1. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    Science.gov (United States)

    Xiu, Yonghao

    our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc. were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. However, most polymer surfaces we prepared failed the purpose. Silica surfaces with excellent UV stability were prepared. This method consists of preparation of rough silica surfaces, thermal treatment and the following surface hydrophobization by fluoroalkyl silane treatment. Fluoroalkyl groups are UV stable and the underlying species are silica which is also UV stable (UV transparent). UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Metal (Au) assisted etching was employed to fabricate nanostructures on micrometer pyramid surfaces. The light reflection on the prepared surfaces was investigated. After surface texturing using KOH etching for micrometer pyramids and the following nanostructure using metal assisted etching, surface light reflection reduced to a minimum value which shows that this surface texturing technique is highly promising for improving the photovoltaic efficiency while imparting photovoltaics the self-cleaning feature. This surface is also expected to be UV stable due to the same fluoroalkyl silane used

  2. Synthesis of polymeric fluorinated sol–gel precursor for fabrication of superhydrophobic coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-03-30

    Graphical abstract: - Highlights: • A polymeric fluorinated sol–gel precursor PFT is designed to fabricate superhydrophobic coatings. • The superhydrophobicity could be governed by the concentration of PFT. • Bio-mimicking self-cleaning property similar to lotus leaves could also be achieved. - Abstract: A fluorinated polymeric sol–gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol–gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  3. Bioscouring Knitted Cotton Fabric with an Experimental Pectate Lyase

    Institute of Scientific and Technical Information of China (English)

    D K Appiah; MAO Zhi-ping; L(U) Jia-hua

    2007-01-01

    An experimental pectate lyase enzyme was used toscour knitted cotton fabric and the emphasis was on pectinremoval. Using an enzyme dosage of 0.2 g/L at temperature55℃ and pH 6.35 for 30 rain, good scouring properties wereobtained. When appropriate concentrations of 1 - HydroxyEthylidene- 1, 1 - Diphosphonic Acid(HEDP) and CaCl2were added, the percentage pectin removal improvedsignificantly.

  4. "We Provide You the Right Cooperators!"-- Cotton Council International and Cotton Incorporated Join Hands to Participate in 2012 Intertextile Shanghai Apparel Fabrics%"We Provide You the Right Cooperators!"-- Cotton Council International and Cotton Incorporated Join Hands to Participate in 2012 Intertextile Shanghai Apparel Fabrics

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    During the Intertextile Shanghai Apparel Fabrics (China International Trade Fair for Apparel Fabrics and Accessories), which was held from October 22 to 25, 2012, Cotton Council International (COl) and Cotton Incorporated (Cl) joined forces with Central Fabrics Company Limited and Sanyang Textile Company Limited - both "COTTON USA" licensees - to promote U.S. cotton.

  5. Chemical modification of cotton fabrics for improving utilization of reactive dyes.

    Science.gov (United States)

    Fang, Long; Zhang, Xiaodong; Sun, Deshuai

    2013-01-02

    The cotton fabric was chemically modified with the acrylamide through Michael addition reaction and Hoffman degradation reaction. And the optimum chemical modification conditions were determined. The molecular structure of the modified cotton fabric was identified by Fourier transform infrared spectroscopy (FTIR). The structures of both the raw and modified cotton fabrics were investigated by X-ray diffraction and scanning electronic microscopy. The raw and modified cotton fabrics were dyed using commercial reactive dyes with vinyl-sulfone groups. The results showed that the total dye utilization of modified cotton fabrics in the salt-free dyeing was higher than that of raw cotton fabrics in the conventional dyeing. And the color fastness properties and tear strength of modified fabrics were both satisfactory.

  6. Thermal properties of flame retardant cotton fabric grafted by dimethyl methacryloyloxyethyl phosphate

    Directory of Open Access Journals (Sweden)

    Xing Tie-Ling

    2012-01-01

    Full Text Available Thermal properties of flame retardant cotton fabric grafted by dimethyl methacryloy-loxyethyl phosphate were investigated by the atom transfer radical polymerization method. Thermal gravimetric analysis was used to explore the thermal decomposition mode of flamed retardant cotton fabric. The weight loss rate of the flamed retardant cotton was bigger than that of the control cotton fabric, and a more final residual char of flamed retardant cotton was also observed. Flammability tests were used to study the flame retardance property of the flame retardant cotton fabric. The results showed that flamed retardant cotton fabric with 16.8% of weight gain could keep good flame retardance. Scanning electron microscope pictures were applied to investigate the morphology of residual char of the flame retardant samples.

  7. One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Li, Jicheng; Bai, Ningning; Xu, Lan; Li, Qing, E-mail: liqingswu@163.com

    2016-07-15

    Graphical abstract: - Highlights: • Independent superhydrophobic polyvinyl chloride (PVC) film was prepared by phase separation process. • The superhydrophobic PVC film showed excellent stability in acid, alkali and salt corrosive solutions. • This film was prepared on magnesium surface protecting it from corrosion. • This method was simple and universal. - Abstract: A one step, simple fabrication method to prepare independent superhydrophobic polyvinyl chloride (PVC) coating is reported in this paper. The rough surface structure and low surface energy could be simply obtained only by a phase separation process. The independent PVC superhydrophobic film was also applied on AZ91D magnesium alloy. Scanning electron microscopy (SEM), water contact angle measurements, electrochemical test and adhesion tests have been performed to characterize the surface morphology, wettability, anti-corrosion and adhesion strength of independent PVC film and superhydrophobic magnesium alloy respectively. The results indicated that whether it was the PVC film or superhydrophobic magnesium, they show static contact angles higher than 150°, excellent anti-corrosion effect and adhesion strength. We believed that the presented method could provide a straightforward and simple route to fabricate low-cost and anti-corrosion coating on various substrate materials. Moreover, this one step process may find potential application in the field of industry because of its simplicity and universality.

  8. Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Zhenrong [College of Textiles, Tianjin Polytechnic University, Tianjin 300160 (China); Gu Zhenya, E-mail: zhenyagu@hotmail.com [College of Textiles, Tianjin Polytechnic University, Tianjin 300160 (China); Huo Ruiting; Ye Yonghong [College of Textiles, Tianjin Polytechnic University, Tianjin 300160 (China)

    2009-05-30

    Due to the chemical stability and flexibility, polyvinylidene fluoride (PVDF) membranes are widely used as the topcoat of architectural membrane structures, roof materials of vehicle, tent fabrics, and so on. Further modified PVDF membrane with superhydrophobic property may be even superior as the coating layer surface. The lotus flower is always considered to be a sacred plant, which can protect itself against water, dirt, and dust. The superhydrophobic surface of lotus leaf is rough, showing the micro- and nanometer scale morphology. In this work, the microreliefs of lotus leaf were mimicked using PVDF membrane and the nanometer scale peaks on the top of the microreliefs were obtained by the method of chemical vapor deposition from solution. The surface morphology of PVDF membrane was investigated by scanning electronic microscopy (SEM) and atomic force microscope (AFM). Elemental composition analysis by X-ray photoelectron spectroscopy (XPS) revealed that the material of the nanostructure of PVDF membrane was polymethylsiloxane. On the lotus-leaf-like PVDF membrane, the water contact angle and sliding angle were 155 deg. and 4 deg., respectively, exhibiting superhydrophobic property.

  9. Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution

    Science.gov (United States)

    Zheng, Zhenrong; Gu, Zhenya; Huo, Ruiting; Ye, Yonghong

    2009-05-01

    Due to the chemical stability and flexibility, polyvinylidene fluoride (PVDF) membranes are widely used as the topcoat of architectural membrane structures, roof materials of vehicle, tent fabrics, and so on. Further modified PVDF membrane with superhydrophobic property may be even superior as the coating layer surface. The lotus flower is always considered to be a sacred plant, which can protect itself against water, dirt, and dust. The superhydrophobic surface of lotus leaf is rough, showing the micro- and nanometer scale morphology. In this work, the microreliefs of lotus leaf were mimicked using PVDF membrane and the nanometer scale peaks on the top of the microreliefs were obtained by the method of chemical vapor deposition from solution. The surface morphology of PVDF membrane was investigated by scanning electronic microscopy (SEM) and atomic force microscope (AFM). Elemental composition analysis by X-ray photoelectron spectroscopy (XPS) revealed that the material of the nanostructure of PVDF membrane was polymethylsiloxane. On the lotus-leaf-like PVDF membrane, the water contact angle and sliding angle were 155° and 4°, respectively, exhibiting superhydrophobic property.

  10. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  11. Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface.

    Science.gov (United States)

    Xia, Tian; Luo, Wenhao; Hu, Fan; Qiu, Wu; Zhang, Zhisen; Lin, Youhui; Liu, Xiang Yang

    2017-07-05

    On the basis of their superior optical performance, photonic crystals (PCs) have been investigated as excellent candidates for widespread applications including sensors, displays, separation processes, and catalysis. However, fabrication of structurally controllable large-area PC assemblies with no defects is still a tough task. Herein, we develop an effective strategy for preparing centimeter-scale crack-free photonic crystal films by the combined effects of soft assembly and superhydrophobic nanopin surfaces. Owing to its large contact angle and low-adhesive force on the superhydrophobic substrate, the colloidal suspension exhibits a continuous retraction of the three-phase (gas-liquid-solid) contact line (TCL) in the process of solvent (water molecules) evaporation. The constantly receding TCL can bring the colloidal spheres closer to each other, which could timely close the gaps due to the loss of water molecules. As a result, close-packed and well-ordered assembly structures can be easily obtained. We expect that this work may pave the way to utilize novel superhydrophobic materials for designing and developing high-quality PCs and to apply PCs in different fields.

  12. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation

    Science.gov (United States)

    Jagdheesh, R.; García-Ballesteros, J. J.; Ocaña, J. L.

    2016-06-01

    Inspired by the micro and nano structures of biological surface such as lotus leaf, rice leaves, etc. a functional near superhydrophobic surface of pure aluminum has been fabricated using one-step nanosecond laser processing. Thin aluminum sheets are micro-patterned with ultraviolet laser pulses to create near superhydrophobic surface in one-step direct laser writing technique. The impact of number of pulses/microhole with respect to the geometry and static contact angle measurements has been investigated. The microstructure shows the formation of blind microholes along with the micro-wall by laser processing, which improves the composite interface between the three phases such as water, air and solid, thus enhance the wetting property of the surface. The geometrical changes are supported by the chemical changes induced on the surface for improving the degree of hydrophobicity. Laser processed microholes exhibited near superhydrophobic surface with SCA measurement of 148 ± 3°. The static contact angle values are very consistent for repeated measurement at same area and across the laser patterned surface.

  13. The Influence of Cationization on the Dyeing Performance of Cotton Fabrics with Direct Dyes

    Directory of Open Access Journals (Sweden)

    M. F. Shahin

    2015-08-01

    Full Text Available The effect of cationic modification of cotton fabrics, using cationic agent (Chromatech 9414 on direct dyeing characteristics was studied in this work. Cationization of cotton fabric at different conditions (pH, cationic agent concentration, temperature and time was investigated and the optimum conditions were determined . Nitrogen content of cotton samples pretreated with cationic agent was indicated. The results showed that increasing cationic agent concentration lead to higher nitrogen content on cotton fabric . The cationized cotton fabrics were dyed with two direct dyes (C.I. Direct Yellow 142 - C.I. Direct red 224 and the results were compared to untreated cotton fabrics. The parameters which may affect the dyeing process such as dye concn., addition of salt, time and temperature of dyeing were studied. The dyeing results illustrate that cationization improves the fabric dyeability compared to the uncationized cotton and the magnitude of increase in colour depth depends on the nitrogen content of the cationized cotton fabric .The results also refer to possibility of dyeing cationized cotton fabric with direct dyes without addition of electrolytes to give colour strength higher than that achieved on uncationized cotton using conventional dyeing method .Another important advantage of cationic treatment is in the saving of dye concn., energy ,dyeing time , rinse water and subsequently saving of waste water treatment , and finally minimizes the environmental pollution . The changes in surface morphology of fibres after cationization were identified by various methods such as wettability and scanning with the electron microscope. Different fastness properties were evaluated.

  14. Innovative layer-by-layer processing for flame retardant behavior of cotton fabric

    Science.gov (United States)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of kaolin/casein with inorganic chemicals on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared with solutions of mixture of BPEI, urea, ...

  15. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  16. Application of Plasma finishing on Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Ajay Shankar Joshi,

    2015-04-01

    Full Text Available “Plasma” word is derived from the Greek and referring to the “something molded or fabricated”. Plasma treatments are gaining popularity in the textile industry. Plasma treatment has to be controlled carefully to avoid detrimental action of the plasma onto the substrate. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. For fabrics, cold plasma treatments require the development of reliable and large systems. Application of “Plasma Technology” in chemical processing of textiles is one of the revolutionary ways to boost the textile wet processing right from pre-treatments to finishing.

  17. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  18. Simple and Environmentally Friendly Fabrication of Superhydrophobic Alkyl Ketene Dimer Coated MALDI Concentration Plates

    Science.gov (United States)

    Romson, Joakim; Jacksén, Johan; Emmer, Åsa

    2017-08-01

    Here we present a method to manufacture peptide-concentrating MALDI-plates with alkyl ketene dimer (AKD) as a new superhydrophobic coating. The fabrication of the hydrophobic plates included application of AKD by airbrush, and negative contact printing to generate the concentration sites. Deposited sample droplets were contained within the prestructured sites, and self-adjusted onto the site if slightly misplaced. No AKD contamination was observed, and the plates could easily be cleaned and regenerated. The S/N values for four model peptides was about twice as high compared with a standard steel plate and a commercial concentration plate.

  19. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite

    Science.gov (United States)

    Guo, Yonggang; Wang, Qihua

    2010-10-01

    This study develops a one-step technique to synthesize various super water-repellent coatings with addition of modified silica nanoparticles. Surface topography observation showed that stacking of spherical silica nanoparticles formed primary surface roughness. The wettability of the products was investigated. It was found that the as-prepared surface possesses superhydrophobic properties not only for pure water but also for corrosive water under both acidic and basic conditions. The silica-based nanocomposite coatings can be fabricated on glass substrates and other functional engineering material surfaces, such as copper, iron, aluminum alloy, to form self-cleaning coatings.

  20. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Zhong, Minlin; Zhang, Hongjun; Xie, Yongde; Lin, Chen

    2014-08-01

    In this study, functional copper surfaces combined with vivid structural colors and superhydrophobicity were fabricated by picosecond laser. Laser-induced periodic surface structures (LIPSS), i.e. ripples, were fabricated by picosecond laser nanostructuring to induce rainbow-like structural colors which are uniquely caused by the grating - type structure. The effects of laser processing parameters on the formation of ripples were investigated. We also discussed the formation mechanism of ripples. With different combinations of the laser processing parameters, ripples with various morphologies were fabricated. After the modification with triethoxyoctylsilane, different types of ripples exhibited different levels of wettability. The fine ripples with minimal redeposited nanoparticles exhibited high adhesive force to water. The increased amount of nanoscale structures decreased the adhesive force to water and increased the contact angle simultaneously. In particular, a specific type of ripples exhibited superhydrophobicity with a large contact angle of 153.9 ± 3.2° and a low sliding angle of 11 ± 3°.

  1. Development of antibacterial ZnO-loaded cotton fabric based on in situ fabrication

    Science.gov (United States)

    Sun, Xiao-Zhu; Bremner, David H.; Wan, Na; Wang, Xiao

    2016-11-01

    A method provided for the deposition of nanostructured ZnO on cotton fabric to introduce antibacterial functionality was presented in this article. This strategy enabled fabric to be coated with inorganic-based functional materials through in situ synthesis of nanoparticles using ultrasonic irradiation. The amino-terminated silicon sol (AEAPTS) was employed to generate nanostructured ZnO, and the mechanism of the ultrasound-assisted coating was proposed. Antibacterial activities, UV protection and other properties of ZnO-loaded cotton characterized by SEM, FTIR, XRD and TGA were investigated. The results indicated that ZnO-loaded cotton exhibited excellent UV protective property, efficient antibacterial activities, well water-resistant effect, together with moderate cytotoxicity against L929 and lower tensile strength. The developed method provides not only a facile way for in situ synthesis of ZnO on textile but also the production of antibacterial materials for healthcare applications.

  2. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property.

    Science.gov (United States)

    Bozaci, Ebru; Akar, Emine; Ozdogan, Esen; Demir, Asli; Altinisik, Aylin; Seki, Yoldas

    2015-12-10

    In this study, fumaric acid (FA) crosslinked carboxymethylcellulose (CMC) hydrogel (CMCF) based silver nanocomposites were coated on cotton fabric for antibacterial property for the first time. The performance of the nanocomposite treated cotton fabric was tested for different mixing times of hydrogel solution, padding times and concentrations of silver. The cotton fabrics treated with CMC hydrogel based silver nanocomposites demonstrated 99.9% reduction for both Staphylococcus aureus (Sa) and Klebsiella pneumonia (Kp). After one cycle washing processes of treated cotton fabric, there is no significant variation observed in antibacterial activity. From SEM and AFM analyses, silver particles in nano-size, homogenously distributed, were observed. The treated samples were also evaluated by tensile strength, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) analysis, fluid absorbency properties, and whiteness index. The treatment of cotton fabric with CMCF hydrogel did not affect the whiteness considerably, but increased the absorbency values of cotton.

  3. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates

    Science.gov (United States)

    Liu, Hui; Gao, Shou-Wei; Cai, Jing-Sheng; He, Cheng-Lin; Mao, Jia-Jun; Zhu, Tian-Xue; Chen, Zhong; Huang, Jian-Ying; Meng, Kai; Zhang, Ke-Qin; Al-Deyab, Salem S.; Lai, Yue-Kun

    2016-01-01

    Multifuntional fabrics with special wettability have attracted a lot of interest in both fundamental research and industry applications over the last two decades. In this review, recent progress of various kinds of approaches and strategies to construct super-antiwetting coating on cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant applications related to artificial superhydrophobic fabrics with special wettability and controllable adhesion, e.g., oil-water separation, self-cleaning, asymmetric/anisotropic wetting for microfluidic manipulation, air/liquid directional gating, and micro-template for patterning. In addition to the anti-wetting properties and promising applications, particular attention is paid to coating durability and other incorporated functionalities, e.g., air permeability, UV-shielding, photocatalytic self-cleaning, self-healing and patterned antiwetting properties. Finally, the existing difficulties and future prospects of this traditional and developing field are briefly proposed and discussed. PMID:28773253

  4. [Determination of cotton content in cotton/ramie blended fabric by NIR spectra and variable selection methods].

    Science.gov (United States)

    Sun, Tong; Geng, Xiang; Liu, Mu-hua

    2014-12-01

    Rapid detection of textile fiber components is very important for production process of quality control, trading and market surveillance. The objective of this research was to assess cotton content in cotton/ramie blended fabric quickly by near infrared (NIR) spectrum technology and variable selection methods. Reflectance spectra of samples were acquired by a NIRFlex N-500 Fourier spectroscopy in the range of 4000~10,000 cm(-1), primary election of spectral range and pretreatment analysis were conducted first. Then, three variable selection methods such as UVE (uninformative variables elimination), SPA (successive projections algorithm) and CARS (competitive adaptive reweighted sampling) were used to select sensitive variables. After that, PLS (partial least squares) was used to develop calibration model for cotton content of cotton/ramie blended fabric, and the best calibration model was used to predict cotton content of samples in prediction set. The result indicates that range of 4052~8000 cm(-1) is optimal spectral range for cotton content modeling. CARS method is an efficient method to improve model performance, the correlation coefficient and root mean square error of CARS-PLS for calibration and prediction sets are 0.903, 0.749 and 8.01%, 12.93%, respectively. So NIR spectra combined with CARS method is feasible for assessing cotton content in cotton/ramie blended fabric, and CARS method can simplify model, improve model performance.

  5. Washing off intensification of cotton and wool fabrics by ultrasounds.

    Science.gov (United States)

    Peila, R; Actis Grande, G; Giansetti, M; Rehman, S; Sicardi, S; Rovero, G

    2015-03-01

    Wet textile washing processes were set up for wool and cotton fabrics to evaluate the potential of ultrasound transducers (US) in improving dirt removal. The samples were contaminated with an emulsion of carbon soot in vegetable oil and aged for three hours in fan oven. Before washing, the fabrics were soaked for 3 min in a standard detergent solution and subsequently washed in a water bath. The dirt removal was evaluated through colorimetric measurements. The total color differences ΔE of the samples were measured with respect to an uncontaminated fabric, before and after each washing cycle. The percentage of ΔE variation obtained was calculated and correlated to the dirt removal. The results showed that the US transducers enhanced the dirt removal and temperature was the parameter most influencing the US efficiency on the cleaning process. Better results were obtained at a lower process temperature.

  6. Bacterial contamination of nurses' white coats made from polyester and polyester cotton blend fabrics.

    Science.gov (United States)

    Gupta, P; Bairagi, N; Priyadarshini, R; Singh, A; Chauhan, D; Gupta, D

    2016-09-01

    In India, nurses wear white coats over their uniform. In this small study, patches of polyester and polyester cotton blend fabrics were attached to the white coats of nurses and sampled for contamination after one shift. Results showed that microbial adhesion is influenced by fabric type, with the microbial load on the polyester cotton blend fabric being 60% higher than that on the polyester fabric. Further studies need to be conducted to establish the correlation between fabric properties and microbial contamination.

  7. Evaluation of Efficacy of Melamine Treatment on Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    N. D. Bhandari

    1968-05-01

    Full Text Available Melamine resin treated cotton fabric was exposed to outdoor weathering for 12 months at Kanpur to study its efficacy against weathering. Along with this, fabric treated with (i hydrated oxides of copper+manganese(ii nickel naphthenate and (iii urea formaldehyde resin, were also exposed to find out the most efficacious treatment of these. Pre monsoon exposure of the three sets commenced from 29th of April, May and June ' 65 respectively. Breaking strength and tear strength data for 12 months exposure have revealed that treatment with hydrated oxides of copper + manganese affords maximum protection to cotton fabrics against weathering degradation irrespective of the month of exposure. Urea formaldehyde resin and nickel naphthenate treatment are the next best. Melamine treatment is equally good as hydrated oxides of copper+manganese if the results are based on breaking strength alone but considering loss in tear strength it gave a poor performance. All the treatment have been found to afford protection against irradiation from mercury arc lamp (rich in ultra violet light. Melamine and urea formaldehyde resin treatments were found completely resistant to microbiological attack in soil burial.

  8. Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Feng Du; Xianli Liu; Zhonghao Jiang; Luquan Ren

    2011-01-01

    Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.

  9. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  10. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  11. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  12. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Ding Bin [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Fiber and Polymer Science, University of California, Davis, CA 95616 (United States)], E-mail: bding@ucdavis.edu; Ogawa, Tasuku [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Kim, Jinho [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); SNT Ltd, Kawasaki 212-0054 (Japan); Fujimoto, Kouji [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Shiratori, Seimei [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); SNT Ltd, Kawasaki 212-0054 (Japan)], E-mail: shiratori@appi.keio.ac.jp

    2008-03-03

    We report a new approach for fabricating a super-hydrophobic nanofibrous zinc oxide (ZnO) film surface. The pure poly(vinyl alcohol) (PVA) and composite PVA/ZnO nanofibrous films can be obtained by electrospinning the PVA and PVA/zinc acetate solutions, respectively. After the calcination of composite fibrous films, the inorganic fibrous ZnO films with a reduced fiber diameter were fabricated. The wettability of three kinds of fibrous film surfaces were modified with a simple coating of fluoroalkylsilane (FAS) in hexane. The resultant samples were characterized by field emission scanning electron microscopy (FE-SEM), water contact angle (WCA), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). It was found that the pure PVA fibrous films maintained the super-hydrophilic surface property even after the FAS modification. Additionally, the WCA of composite fibrous films was increased from 105 to 132 deg. with the coating of FAS. Furthermore, the surface property of inorganic ZnO fibrous films was converted from super-hydrophilic (WCA of 0 deg.) to super-hydrophobic (WCA of 165{sup o}) after the surface modification with FAS. Observed from XPS data, the hydrophobicity of FAS coated various film surfaces were found to be strongly affected by the ratio of fluoro:oxygen on the film surfaces.

  13. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    Science.gov (United States)

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.

  14. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO4) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  15. Fabrication of a Superhydrophobic Surface with Flower-Like Microstructures with a One-Step Immersion Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younga; Go, Seungcheol; Ahn, Yonghyun [Dankook Univ., Yongin (Korea, Republic of)

    2013-11-15

    It has been demonstrated that flower-like microstructures can be fabricated on a Mg plate using a solution of propylphosphonic acid and HFTHTMS in ethanol. In the presence of propylphosphonic acid, the HFTHTMS is polymerized and then deposited on the surface of the Mg plates during the immersion period. Many flower-like structures were formed on the surface after at least 6 h of immersion, at which point the modified plate became superhydro-phobic. The nano-/micro scale flower-like structure is composed of fluorinated polysiloxane, which acts as a low-surface-energy material. SEM images reveal that the flower-like structure is composed of many thin flakes. It is confirmed that these structures on the surface contain air and result in an ideal structure for obtaining the superhydrophobic surface. This proposed coating method is simple and can be applied to a large sample to fabricate a superhydrophobic surface without expensive instruments. Superhydrophobicity of solid materials has attracted significant attention because it provides strong water repellency and self-cleaning properties. The chemical composition and nano-/microscale structures of the surface are key factors determining the surface properties. Recently, superhydro-phobic surfaces showing high water contact angles (CA) > 150 .deg. and low sliding angles (SA) < 10 .deg. have been the focus of much research because they have many applications in both academic fields and industrial processes.

  16. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  17. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, P-S; Yang, Y-M; Lee, Y-L [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 {mu}m/50 nm, 1.0 {mu}m/50 nm, and 0.5 {mu}m/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 {mu}m>1.0 {mu}m>1.5 {mu}m. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  18. A Novel Two-Step Method for Fabricating Silver Plating Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2016-01-01

    Full Text Available A novel two-step method was presented for fabricating silver plating cotton fabrics (SPCFs with high electrical conductivity and excellent washing fastness. First, polydopamine (PDA film was coated on the surface of cotton fabrics by in situ polymerization of dopamine, the silver ions in silver nitrate solution were reduced by the catechol groups of polydopamine, and silver nanoparticles were combined with polydopamine by covalent bond on the surface of cotton fabrics. Second, silver ions were reduced by glucose, and silver plating was coated on the surface. Subsequently, the properties of SPCFs were characterized by field emission scanning electron microscopy (FESEM, X-ray photoelectron spectroscopy (XPS and thermogravimetric analysis (TGA, and so forth. With the increasing of silver-ammonia solution concentration or dopamine concentration, the surface resistivity of SPCFs decreases and gradually stabilized. The surface resistivity of the SPCFs can reach 0.12±0.02 Ω, and electromagnetic shielding effectiveness (ESE of the SPCFs can reach 58.5±4.5 dB. Conductive fabrics have wide application prospect in many of fields, such as antibacterial, intelligent textiles, smart garments, electromagnetic shielding, and flexible sensors.

  19. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant

    Science.gov (United States)

    There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...

  20. An Investigation on Different Physical Properties of Cotton Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Shilpi Akter

    2017-01-01

    Full Text Available In this study, “An Investigation on Different Physical Properties of Cotton Woven Fabrics”, some sample fabrics were produced with plain, 2/2 twill, 3/1 twill and 4-end satin weave structure using four different weft counts. By means of regression, the correlation coefficient and correlation between different properties of fabrics were investigated. The findings of this study revealed that the crease recovery angle and the bending length are inversely proportional to each other. It was also found that with the increasing of weft yarn counts lead to a decreasing in stiffness, abrasion resistance and increasing in crease recovery angle. The pilling and wrinkle recovery affected very low by the increase of weft yarn count and for the variation of weave structure. Plain weave was superior to other structures in stiffness where as twill weave showed higher crease recovery.

  1. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO{sub 2} nanoparticles by spraying process on carbon steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibin [Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Chen, Eryu, E-mail: fishfly80@163.com [Hangzhou NCO Academy of CAPF, Hangzhou, Zhejiang 310023 (China); Jia, Xianbu [Hangzhou NCO Academy of CAPF, Hangzhou, Zhejiang 310023 (China); Liang, Lijun [Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wang, Qi, E-mail: qiwang@zju.edu.cn [Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2015-09-15

    Graphical abstract: - Highlights: • The SiO{sub 2} and PTFE NP-filled coatings exhibit excellent superhydrophobicity. • PTFE-filled coatings show denser structures and better liquid resistance than SiO{sub 2}. • Air pocket of Wentzel model explains the difference in the superhydrophobicity. - Abstract: Superhydrophobicity is extensively investigated because of the numerous methods developed for water-repellant interface fabrication. Many suitable functional materials for the production of superhydrophobic surfaces on various substrates are still being explored. In this study, inorganic SiO{sub 2} and organic polytetrafluoroethylene (PTFE) nanoparticles (NPs) are used for a comparative study on the performance of superhydrophobic coating on carbon steel surfaces. The NPs are added to PTFE coating emulsions by physical blending to form coating mixtures. Raw SiO{sub 2} NPs are then hydrophobized using KH-570 and validated by Fourier transform-infrared spectroscopy (FT-IR) and Dynamic Laser Scattering (DLS) grain size analyses. The microstructures of the surfaces are characterized by contact angle (CA) measurements and field emission-scanning electron microscope (FE-SEM) images. The prepared surfaces are subjected to adhesion, hardness, water resistance, and acid/alkali erosion tests. Hydrophobized SiO{sub 2}-filled coating surfaces are found to have better uniformity than raw SiO{sub 2} regardless of their similar maximum static contact angles (SCAs) about 150°. A SCA of 163.1° is obtained on the PTFE NP-filled coating surfaces that have a considerably denser structure than SiO{sub 2}. Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses reveal that all fabricated surfaces have good thermal stability and tolerate temperatures up to 550 °C. The PTFE NP-filled coating surfaces also exhibit excellent water and acid resistance. A possible mechanism concerning the amount of trapped air is proposed in relation to practical superhydrophobic

  2. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating

    Science.gov (United States)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-03-01

    A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  3. Fabrication and Superhydrophobic Property of ZnO Micro/Nanocrystals via a Hydrothermal Route

    Directory of Open Access Journals (Sweden)

    Chunmei Xiao

    2014-01-01

    Full Text Available Superhydrophobic ZnO micro/nanocrystals were fabricated on a large scale using a facile one-pot hydrothermal process successfully. The morphologies and chemical composition of as-synthesized ZnO were investigated by the scanning electron microscope (SEM and X-ray powder diffraction (XRD. The morphology of ZnO products changed from uniform size microrods to flower-like micronanostructures, when the temperature changed from 120°C to 180°C. The morphology of ZnO was strongly affected by the pH. The wettability of the as-synthesized ZnO micro/nanocrystals was studied by measuring water contact angle (CA. The largest static CA for water is 167°, which is closely related to both the ZnO micro/nanostructure and chemical modification. Furthermore, the as-prepared ZnO surface showed superhydrophobicity for some corrosive liquids such as basic and acidic aqueous solutions. The CAs of the surface modified with ZnO prepared at 160°C were over 155° in the range of pH = 1–13.

  4. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    Science.gov (United States)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ≈180° and sliding angle ≤1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ≈165.8° and sliding angle ≈6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ≈132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  5. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  6. Geometrical effect, optimal design and controlled fabrication of bio-inspired micro/nanotextures for superhydrophobic surfaces

    Science.gov (United States)

    Ma, F. M.; Li, W.; Liu, A. H.; Yu, Z. L.; Ruan, M.; Feng, W.; Chen, H. X.; Chen, Y.

    2017-09-01

    Superhydrophobic surfaces with high water contact angles and low contact angle hysteresis or sliding angles have received tremendous attention for both academic research and industrial applications in recent years. In general, such surfaces possess rough microtextures, particularly, show micro/nano hierarchical structures like lotus leaves. Now it has been recognized that to achieve the artificial superhydrophobic surfaces, the simple and effective strategy is to mimic such hierarchical structures. However, fabrications of such structures for these artificial surfaces involve generally expensive and complex processes. On the other hand, the relationships between structural parameters of various surface topography and wetting properties have not been fully understood yet. In order to provide guidance for the simple fabrication and particularly, to promote practical applications of superhydrophobic surfaces, the geometrical designs of optimal microtextures or patterns have been proposed. In this work, the recent developments on geometrical effect, optimal design and controlled fabrication of various superhydrophobic structures, such as unitary, anisotropic, dual-scale hierarchical, and some other surface geometries, are reviewed. The effects of surface topography and structural parameters on wetting states (composite and noncomposite) and wetting properties (contact angle, contact angle hysteresis and sliding angle) as well as adhesive forces are discussed in detail. Finally, the research prospects in this field are briefly addressed.

  7. Printing properties of the red reactive dyes with different number sulfonate groups on cotton fabric.

    Science.gov (United States)

    Xie, Kongliang; Gao, Aiqin; Li, Min; Wang, Xiao

    2014-01-30

    Cellulose fabric is an important printing substrate. Four red azo reactive dyes based on 1-naphthol-8-amino-3,6-disulfonic acid for cotton fabric printing were designed. Their UV-Vis spectra and printing properties for cotton were investigated. The relationship between the chemical structures of the dyes and their printing properties on cotton fabric was discussed. The results show that the color yield (K/S) values of the printed fabrics decreased with the increase of sulfonate groups, but the fixation and penetration of the reactive dyes on cotton fabric increased. The reactive dyes with fewer number sulfonate groups were sensitive to alkaline and urea. Whereas, the reactive dyes with numerous sulfonate groups were not sensitive to urea and had good leveling properties, penetration uniformity, and good wet fastness for cotton fabric. Surface wettability of all cotton fabrics printed with four dyes was excellent. It is possible to print cotton fabric urea-free using the reactive dyes with numerous sulfonate groups.

  8. Influence of Warp Yarn Tension on Cotton Greige and Dyed Woven Fabric Prosperities

    OpenAIRE

    Uzma Syed; Rafique Ahmed Jhatial

    2013-01-01

    Fabric properties such as pilling and abrasion resistance and tensile strength vary when greige fabric is processed further. The quality of dyed fabric depends on the quality of greige fabric. Cotton Plain and Twill weave fabrics were woven at three different warp yarn tension and then dyed using monochlorotriazine, Drimerene Red Cl-5B dye gives difference in fabric properties. The ASTM, American International Standards were used to determine the greige and dyed fabric properties. It has been...

  9. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.

    Science.gov (United States)

    Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek

    2014-06-15

    This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope.

  10. Dyeing of UV irradiated cotton and polyester fabrics with multifunctional reactive and disperse dyes

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad Bhatti

    2016-03-01

    Full Text Available The dyeing behaviour of UV irradiated cotton and polyester fabrics using multifunctional reactive and disperse dyes has been investigated. The plain, woven, mercerized, bleached, cotton and polyester fabrics were exposed to UV radiation (180 w, 254 nm for 30, 60, 90 and 120 min. Dyeing was performed using irradiated fabric with a dye solution of un-irradiated reactive and disperse/azo dyes. The dyeing parameters such as, temperature, time, pH and salt concentration have been optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton and polyester fabrics in CIE Lab systems using spectra flash SF600. Finally ISO standard methods were employed to observe the effect of UV radiation on fastness properties. It was found that UV radiation has a potential to improve the colour strength values of cotton and polyester fabrics by using reactive and disperse dyes.

  11. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    Science.gov (United States)

    Li, Yongqiang; Zhang, Yan; Zou, Chao; Shao, Jianzhong

    2015-12-01

    A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  12. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  13. Regenerable Antibacterial Cotton Fabric by Plasma Treatment with Dimethylhydantoin: Antibacterial Activity against S. aureus

    Directory of Open Access Journals (Sweden)

    Chang-E. Zhou

    2017-01-01

    Full Text Available This study examined the influence of variables in a finishing process for making cotton fabric with regenerable antibacterial properties against Staphylococcus aureus (S. aureus. 5,5-dimethylhydantoin (DMH was coated onto cotton fabric by a pad-dry-plasma-cure method. Sodium hypochlorite was used for chlorinating the DMH coated fabric in order to introduce antibacterial properties. An orthogonal array testing strategy (OATS was used in the finishing process for finding the optimum treatment conditions. After finishing, UV-Visible spectroscopy, Scanning Electron Microscopy (SEM, and Fourier Transform Infrared Spectroscopy (FTIR were employed to characterise the properties of the treated cotton fabric, including the concentration of chlorine, morphological properties, and functional groups. The results show that cotton fabric coated with DMH followed by plasma treatment and chlorination can inhibit S. aureus and that the antibacterial property is regenerable.

  14. Application of Acid Dyestuffs with Different Molecule Structure in Combined Dyeing and Finishing of Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    DONG Yong-chun

    2005-01-01

    Simultaneous dyeing and durable press finishing of cotton fabrics with acid dyes bearing the different molecule structure and durable press finishing agent (DP agent abbr. ) based on modified DMDHEU were investigated by using the pad-dry-cure process. Some factors affecting the process, such as structure of acid dyes, DP agent, catalysts and curing temperature were discussed. The dyed and finished fabrics were evaluated with respect to color strength, fixation, crease recovery angle, breaking strength and fastness properties. The results indicate that structure of acid dyes has a striking effect on the color strength of dyed and finished cotton fabric. The color strength and dry crease recovery angle of dyed and finished cotton fabric increases, whereas breaking strength decreases with increasing concentration of DP agent. It is necessary for ammonium nitrate to serve as catalyst. It is found that relatively satisfactory properties of dyed and finished cotton fabric can be obtained with appropriate adjustment of treating conditions.

  15. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Zhang, Qi; Phang, In Yee; Tan, Joel Ming Rui; Cui, Yan; Ling, Xing Yi

    2013-11-13

    An analytical platform suitable for trace detection using a small volume of analyte is pertinent to the field of toxin detection and criminology. Plasmonic nanostructures provide surface-enhanced Raman scattering (SERS) that can potentially achieve trace toxins and/or molecules detection. However, the detection of highly diluted, small volume samples remains a challenge. Here, we fabricate a superhydrophobic SERS platform by assembling Ag nanocubes that support strong surface plasmon and chemical functionalization for trace detection with sample volume of just 1 μL. Our strategy integrates the intense electromagnetic field confinement generated by Ag nanocubes with a superhydrophobic surface capable of analyte concentration to lower the molecular detection limit. Single crystalline Ag nanocubes are assembled using the Langmuir-Blodgett technique to create surface roughness. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag coating is evaporated over the Ag nanocubes to "weld" the Ag nanocubes onto the substrate followed by chemical functionalization with perfluorodecanethiol. The resulting substrate has an advancing contact angle of 169° ± 5°. Our superhydrophobic platform confines analyte molecules within a small area and prevents the random spreading of molecules. An analyte concentrating factor of 14-fold is attained, as compared to a hydrophilic surface. Consequently, the detection limit of our superhydrophobic SERS substrate reaches 10(-16) M (100 aM) for rhodamine 6G using 1 μL analyte solutions. An analytical SERS enhancement factor of 10(11) is achieved. Our protocol is a general method that provides a simple, cost-effective approach to develop a stable and uniform superhydrophobic SERS platform for trace molecular sensing.

  16. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Sarıışık Merih

    2010-01-01

    Full Text Available Abstract ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL process on cotton fabrics properties.

  17. Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons

    Science.gov (United States)

    A comparative study was conducted to identify the effects of processing parameters on physical and combustion properties of needlepunched (NP) and hydroentangled (H-E) nonwoven fabrics produced from fibers of a standard Mid-South white fiber cotton and a naturally colored brown fiber cotton. The fl...

  18. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yubin [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Qiuying, E-mail: liqy@ecust.edu.cn [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Shanghai Key Laboratory Polymeric Materials (China); Key Laboratory of Ultrafine Materials of Ministry of Education (China); Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2011-05-15

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

  19. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  20. Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hak-Jong; Shin, Ju-Hyeon; Choo, Soyoung; Ryu, Sang-Woo; Kim, Yang-Doo; Lee, Heon, E-mail: heonlee@korea.ac.kr

    2015-06-30

    Hierarchical Al surfaces were fabricated using three different kinds of alkaline-based chemical etching processes. The surface morphology changes to a needle-like microstructure or to nanoscale flakes on a microscale porous structure depending on the chemical solution used. These surfaces were characterized by field-emission scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and contact angle measurements. After the hydrophobic treatment, the etched Al surface shows non-wetting properties, exhibiting a static contact angle over 150° and a dynamic contact angle less than 5° for deionized water. Oleophobic properties for diiodomethane and N,N-dimethylformamide are exhibited by all etched Al surfaces. - Highlights: • This research fabricated and analyzed the etched Al surface via a simple wet etching process. • The morphology of Al surface is changed according to the presence of Zn ions. • The wettability of Al surface is controlled by roughness and surface treatment. • Superhydrophobicity and superoleophobicity are achieved on the wet etched Al mesh.

  1. Cationic starch (Q-TAC) pre-treatment of cotton fabric: influence on dyeing with reactive dye.

    Science.gov (United States)

    Ali, Shamshad; Mughal, Mohsin Ali; Shoukat, Umair; Baloch, Mansoor Ali; Kim, Seong Hun

    2015-03-01

    Reactive dyes require high concentrations of an electrolyte to improve dye-fiber interaction, leading to the discharge of harmful effluent. One approach to reduce this unsafe release is treatment of the cotton fabric with cationic chemical reagents. This paper reports on the treatment of cotton fabric with cationic starch (Q-TAC), a commercial product, by batchwise method and pad batch method for the first time prior to reactive dyeing process. Furthermore,three commercial reactive dyes, based on monochloro triazine, vinyl sulfone and monochlorotriazine + vinyl sulfonechemistry, was applied on the cotton fabrics by continuous (pad-dry-cure) method. The treated cotton fabric by batchwise method produced 70% higher color yield (K/S) and 20% enhanced dye fixation (%F) than the untreated cotton fabric. X-ray photoelectron spectrometer (XPS) analysis revealed the presence of N1s peaks in the treated cotton fabrics. The crystallinity of treated cotton fabrics was reduced in comparison to untreated cotton fabric as revealed by wide angle X-ray diffraction (WAXD) measurements. Field Emission Scanning Electron Microscopy (FE-SEM) showed that the surface of treated cotton fabrics was rougher than untreated cotton fabric due to the deposition of cationic starch. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum confirmed the existence of quaternary ammonium groups, N(+)(CH3)3, in the treated cotton fabrics. The analysis of color fastness tests demonstrated good to excellent ratings for treated cotton fabrics. In this way, cationic starch treatment of cotton fabric before reactive dyeing process has been proven potentially a more environmentally sustainable method than conventional dyeing method.

  2. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.

    Science.gov (United States)

    Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi

    2014-12-28

    An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 μL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.

  3. Effect of Inter Yarn Fabric Porosity on Dye Uptake of Reactive Dyed cotton Woven Fabric

    Directory of Open Access Journals (Sweden)

    Salam Farooq

    2015-07-01

    Full Text Available Fabric Porosity is an important property in determining the functional properties of a fabric. It relates to the count of a yarn as well as to the type of weave. Twill and satin cotton woven fabrics in three different weft densities (warp density kept constant were used to investigate the effect of porosity on the dyeuptake within one weave. The effects of change in weave type, keeping yarn densities the same, on the porosity were also investigated. Objective determination of porosity was carried out using an image analysis technique while, colour yield was determined using K/S values. Higher the weft density in a satin fabric low will be the porosity of that fabric. Porosity values varied from 6.85-10.98% for S1 and S3 respectively. However, for the twill fabric no substantial change in porosity have been observed as the porosity values varied from 6.4-5.3% for T1 and T3 respectively. Colour strengths for S1 and T1 are lower than S3 and T3 respectively for all the primary colours at 0.25, 1.00 and 2.00% depth levels. It is observed that the change in colour strength is more prominent at 2% depth level as compared to 0.25% depth level

  4. Superhydrophobic surfaces

    Science.gov (United States)

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  5. Influence of Laundering on the Quality of Sewn Cotton and Bamboo Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2013-03-01

    Full Text Available In the presented study the effect of laundering on the quality of sewn cotton and bamboo plain woven fabrics was investigated considering both the textile parameters and the type of chemical treatment. Quality parameters of sewn cotton and bamboo woven fabrics such as: fabric strength, seam strength and seam slippage at the moment of 4 mm seam opening were evaluated before and after washing with “Tide” washing powder without softeners or with softeners: “Surcare” and “Pflege Weicspuler”. There was also determined surface density, warp and weft densities as well as thicknesses under the pressures 0.625 kPa and 3.125 kPa, and calculated the comparative thickness that was considered as softness or porosity of fabrics. Notwithstanding that both the investigated fabrics were cellulosic their behavior after laundering was different. Under the tested conditions, unwashed and laundered with or without chemical softeners cotton fabric didn’t demonstrate seam slippage. The seam slippage resistance of laundered without or with softener specimens of bamboo fabric was increased in respect to control fabric. The larger changes in seam efficiency and seam strength because of laundering were determined for bamboo woven fabric then for cotton fabric. They could be influenced by the higher changes in bamboo fabric’s structure. The highest difference between the structure parameters of both fabrics was determined for comparative thickness. It was significantly increased for cotton fabric and decreased for bamboo fabric after chemical softening comparing to untreated fabrics.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3831

  6. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  7. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  9. The study of antibacterial activity and stability of dyed cotton fabrics modified with different forms of silver

    Directory of Open Access Journals (Sweden)

    Lazić Vesna

    2012-01-01

    Full Text Available This study compares the effect of colloidal silver nanoparticles and commercial RUCO-BAC AGP agent with silver chloride as an active component on antibacterial activity of dyed cotton fabrics. Cotton fabrics were dyed with vat dyes Bezanthren olive T and Bezanthren grey FFB. Antibacterial activity of silver loaded dyed cotton fabrics was tested against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli. Unlike RUCO-BAC AGP synthesized silver nanoparticles deposited onto dyed cotton fabrics provided maximum bacteria reduction independently of applied dye. The stability of modified cotton fabrics was analyzed in artificial sweat at pH 5.5 and 8.0. Approximately the same amount of silver was released from differently modified cotton fabrics in artificial sweat. Larger amount of silver was released in the sweat at pH 8.0.

  10. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants

    Directory of Open Access Journals (Sweden)

    Sarkar Ajoy K

    2004-10-01

    Full Text Available Abstract Background The ultraviolet properties of textiles dyed with synthetic dyes have been widely reported in literature. However, no study has investigated the ultraviolet properties of natural fabrics dyed with natural colorants. This study reports the Ultraviolet Protection Factor (UPF of cotton fabrics dyed with colorants of plant and insect origins. Methods Three cotton fabrics were dyed with three natural colorants. Fabrics were characterized with respect to fabric construction, weight, thickness and thread count. Influence of fabric characteristics on Ultraviolet Protection Factor was studied. Role of colorant concentration on the ultraviolet protection factor was examined via color strength analysis. Results A positive correlation was observed between the weight of the fabric and their UPF values. Similarly, thicker fabrics offered more protection from ultraviolet rays. Thread count appears to negatively correlate with UPF. Dyeing with natural colorants dramatically increased the protective abilities of all three fabric constructions. Additionally, within the same fabric type UPF values increased with higher depths of shade. Conclusion Dyeing cotton fabrics with natural colorants increases the ultraviolet protective abilities of the fabrics and can be considered as an effective protection against ultraviolet rays. The UPF is further enhanced with colorant of dark hues and with high concentration of the colorant in the fabric.

  11. Superhydrophobic hBN-Regulated Sponges with Excellent Absorbency Fabricated Using a Green and Facile Method

    Science.gov (United States)

    Zhou, Ying; Wang, Yao; Liu, Tengfei; Xu, Gang; Chen, Guangming; Li, Huayi; Liu, Lichun; Zhuo, Qiqi; Zhang, Jiaoxia; Yan, Chao

    2017-03-01

    The world faces severe environmental, human and ecological problems when major oil spills and organic discharges are released into the environment. And so it is imperative to develop tools and high performance innovative materials that can efficiently absorb these organic discharges. Furthermore, green, facile methods to produce these advanced materials are also needed. In this paper, we demonstrate a novel porous supersponge based on melamine coated with hBN. This superhydrophobic sponge (with a contact angle >150°) exhibits excellent absorption performance for oils and organic solvents, including good selectivity, high capacity (up to 175 g·g-1) and extraordinary recyclability (less than 20% decline after 30 cycles of absorption/squeezing). The synthetic procedure required only ultrasonication and immersion of the sponge in aqueous hBN solution, being a green, cost-effective and scalable production methodology. By virtue of the straightforward and cost-effective fabrication method, along with the excellent absorption performance, hBN-decorated sponges have great promise for real world practical application in the field of oil spills and organic leakage cleanup.

  12. Superhydrophobic hBN-Regulated Sponges with Excellent Absorbency Fabricated Using a Green and Facile Method

    Science.gov (United States)

    Zhou, Ying; Wang, Yao; Liu, Tengfei; Xu, Gang; Chen, Guangming; Li, Huayi; Liu, Lichun; Zhuo, Qiqi; Zhang, Jiaoxia; Yan, Chao

    2017-01-01

    The world faces severe environmental, human and ecological problems when major oil spills and organic discharges are released into the environment. And so it is imperative to develop tools and high performance innovative materials that can efficiently absorb these organic discharges. Furthermore, green, facile methods to produce these advanced materials are also needed. In this paper, we demonstrate a novel porous supersponge based on melamine coated with hBN. This superhydrophobic sponge (with a contact angle >150°) exhibits excellent absorption performance for oils and organic solvents, including good selectivity, high capacity (up to 175 g·g−1) and extraordinary recyclability (less than 20% decline after 30 cycles of absorption/squeezing). The synthetic procedure required only ultrasonication and immersion of the sponge in aqueous hBN solution, being a green, cost-effective and scalable production methodology. By virtue of the straightforward and cost-effective fabrication method, along with the excellent absorption performance, hBN-decorated sponges have great promise for real world practical application in the field of oil spills and organic leakage cleanup. PMID:28332612

  13. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Science.gov (United States)

    Bayer, I. S.; Steele, A.; Martorana, P. J.; Loth, E.

    2010-11-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5), dodecamethylcyclohexasiloxane (D 6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  14. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  15. Stable superhydrophobic surface: fabrication of interstitial cottonlike structure of copper nanocrystals by magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Guoxing Li, Bo Wang, Yi Liu, Tian Tan, Xuemei Song, Er Li and Hui Yan

    2008-01-01

    Full Text Available A stable superhydrophobic copper surface was obtained by radio-frequency magnetic sputtering on Si (100 and quartz substrates. The water contact angle and sliding angle of the superhydrophobic copper surface were 160.5° and 3±1.9°, respectively. Scanning electron microscopy (SEM photos show that the superhydrophobic surface structure comprises many uniform nanocrystals with a diameter of about 100 nm. A brief explanation of the formation of this special microstructure and the mechanism of its wettability were proposed.

  16. Effect of Jute Proportion on the Color Strength Value of Jute/Cotton Union Fabric

    Directory of Open Access Journals (Sweden)

    R. Prathiba Devi, R. Rathinamoorthy, Dr. J. Jeyakodi Moses

    2013-08-01

    Full Text Available The dye ability of the Jute/Cotton union fabric with cotton yarn in the warp and Jute: Cotton yarns in the weft direction were studied with different percentage of Jute/Cotton blend in weft direction. The K/S and colour tristimulus values of (reactive dye the different formulations (Jute/cotton: 30:70, 40:60, 50:50 and 70:30 after and before the softening finish were studied. The experiment focuses on the effect of jute content on the colour strength and fastness properties of finished fabric. The result reveals that, the colour strength value (K/S was higher in the case of fabric proportion with more jute (70:30 jute/cotton. The finishingprocess has significant influence on the colour strength value (p<0.05. The fastness properties including light, washing, rubbing and perspiration of dyed fabrics were also satisfactory. To analyse the effect of jute proportion on colour strength and the effect of finishing on colour value, ANOVA was performed.

  17. Prediction of Color Properties of Cellulase-Treated 100% Cotton Denim Fabric

    Directory of Open Access Journals (Sweden)

    C. W. Kan

    2013-01-01

    Full Text Available Artificial neural network (ANN model was used for predicting colour properties of 100% cotton denim fabrics, including colour yield (in terms of K/S value and CIE L*, a*, b*, C*, and h° values, under the influence of cellulase treatment with various combinations of cellulase processing parameters. Variables examined in the ANN model included treatment temperature, treatment time, pH, mechanical agitation, and fabric yarn twist level. The ANN model was compared with a linear regression model where the ANN model produced superior results in the prediction of colour properties of cellulase-treated 100% cotton denim fabrics. The relative importance of the examined factors influencing colour properties was also investigated. The analysis revealed that cellulase treatment processing parameters played an important role in affecting the colour properties of the treated 100% denim cotton fabrics.

  18. Bioactive cotton fabrics containing chitosan and biologically active substances extracted from plants.

    Science.gov (United States)

    Mocanu, G; Nichifor, M; Mihai, D; Oproiu, L C

    2013-01-01

    The paper studies the obtaining of bioactive textiles using chitosan-coated fabrics, in which biologically active substances contained by Viola Tricolor (VT) - an extract of three Viola species (Violaceae) - were immobilized. Chitosan was applied on cotton fabric or on chemically modified cotton (having reactive -CHO or carboxymethyl groups), as tripolyphosphate (TPP) crosslinked fine particles, or by use of glutaraldehyde crosslinking agent. The amount of VT retained on the fabrics was found to depend on the procedure of chitosan application on the cotton. The obtained bioactive textiles are expected to have antioxidant activity due to the biologically active substances from VT; they can be used for obtaining clothes for people with allergies or other skin problems, assuring a controlled release of biomolecules. The study focuses on the in vitro release of VT retained on the fabrics, as well as on its antioxidant activity.

  19. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    Science.gov (United States)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  20. Superhydrophobic hBN-Regulated Sponges with Excellent Absorbency Fabricated Using a Green and Facile Method

    National Research Council Canada - National Science Library

    Ying Zhou; Yao Wang; Tengfei Liu; Gang Xu; Guangming Chen; Huayi Li; Lichun Liu; Qiqi Zhuo; Jiaoxia Zhang; Chao Yan

    2017-01-01

    .... This superhydrophobic sponge (with a contact angle >150°) exhibits excellent absorption performance for oils and organic solvents, including good selectivity, high capacity (up to 175 g[ANO TELEIA]g-1...

  1. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m(2)g(-1). As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  2. anolyte as an alternative bleach for stained cotton fabrics

    African Journals Online (AJOL)

    user

    anolyte, colour change, sodium hypochlorite, bleach, stain ... Cotton is a natural fibre that is high in demand worldwide. ... various dyes are commonly used in the processing and .... prepared an hour before any test was carried out whereby ...

  3. Synthesis of Fluorocyclotriphosphazene Derivatives and Their Fire-Retardant Finishing on Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Li Zhanxiong

    2010-01-01

    Full Text Available A series of novel fire-retardant agents, fluorocyclotriphosphazene derivatives with the substitution groups of 2,2,3,3-tetrafluoropropoxy groups were synthesized using hexachlorocyclotriphosphazene and 2,2,3,3-tetrafluoropropyl alcohol as starting materials. The synthesized fire-retardant agent was emulsified and applied on the cotton fabric finishing to reduce the flammability and afford water/oil repellency simultaneously. The optimum finishing process was achieved according to the test of cotton finishing with fluorocyclotriphosphazene. The treated cotton showed not only excellent fire-retardant performance, but also water and oil repellency with little change in strength and whiteness.

  4. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE.

  5. A facile method for the fabrication of a superhydrophobic polydopamine-coated copper foam for oil/water separation

    Science.gov (United States)

    Zhou, Wei; Li, Guangji; Wang, Liying; Chen, Zhifeng; Lin, Yinlei

    2017-08-01

    A simple dip-coating method was explored to construct hierarchical structures on a 3D copper foam (CF) surface by combining the intrinsic properties of mussel-inspired polydopamine (PDA) and a 3D metal structure. The CF substrate was sequentially modified with PDA and Ag nanoparticles (NPs) and then coupled with n-dodecyl mercaptan (NDM) to create a durable superhydrophobic CF for oil/water separation. The morphology, chemical composition and wettability of the fabricated modified CF surface were characterized. The modified CF surface possesses an increased roughness and exhibits superhydrophobicity, with water contact angle values greater than 150°. The PDA coating on the CF surface can reduce silver ions and anchor the formed NPs onto the surface to construct the hierarchical structure of the superhydrophobic CF. Furthermore, the oil/water separation properties were also investigated. The modified CF can separate a series of oil/water mixtures with a high efficiency and relatively high intrusion pressure. More importantly, the modified CF retains its high efficiency after 30 repeated uses (more than 98% for a dodecane/water mixture), exhibiting excellent durability. The mechanism of oil/water separation is also discussed. The results of this study indicate that the modified CF can serve as a promising candidate for the large-scale separation of oily pollutants from water.

  6. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-06-15

    This paper reports a new design to fabricate broadband antireflective superhydrophobic coatings by versatile dip-coating of three silica-based sols: silica sol (below 10nm) prepared under acidic conditions (sol A), silica nanoparticle (ca. 25 nm) suspension prepared by the Stöber method (sol B) and mesoporous silica nanoparticle (MSN) suspension, followed by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The maximum transmittance of coatings reached as high as 95.3% at the wavelength of 630 nm, whereas the water contact angle was 153° with sliding angle ≤5° by applying of the A2/B/MSN2 coating. The superhydrophobic A/B/MSN2 coating (water contact angle: 153°, sliding angle: ≤5°) showed excellent antireflection in the wavelength range of 400-2000 nm, especially in the wavelength range of 742-1573 nm where the transmittance of glass substrate is significantly lower. Transmission electron microscopy was used to characterize the morphology of synthesized nanoparticles. Scanning electron microscopy and atomic force microscopy were used to observe the morphology and estimate the surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The broadband antireflection of superhydrophobic A/B/MSN2 coating was discussed in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization

    Science.gov (United States)

    Sun, Jun; Bi, Hong

    2012-03-01

    A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.

  8. Synthesis and Application of Sodium Benzoylthioglycollate to Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tao

    2004-01-01

    The paper discussed the synthesis and application of sodium benzoylthioglycollate (BTG) to cotton cellulose. The main product was proved to be BTG. Dyeing substantivity of modified cotton fibre by BTG with disperse dye were improved. The effect of modification conditions, such as the property of alkali and its using amount, curing temperature and time were discussed. Colour yield and resistance to wash fastness were also measured.

  9. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  10. Total Wear Comfort Index as an Objective Parameter for Characterization of Overall Wearability of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Sheela Raj

    2009-12-01

    Full Text Available The state of physical comfort experienced by awearer under a given environmental condition isgreatly influenced by the tactile, thermal andmoisture transport properties of the fabric. An indepthstudy carried out to understand fabric handleand wear comfort in relation to fiber, yarn and fabricstructural parameter is presented in this paper. Theresults obtained from this study provide an invaluableinsight into engineering of required quality featuresinto the cotton fabrics so as to provide optimum wearcomfort. A comprehensive grading indexincorporating the transport attributes (air permeabilityand moisture and thermal transport of the fabric hasbeen derived to grade end use efficiency of the fabricjuxtaposing with fabric hand, which would finallydecide the overall quality of the apparel fabric.

  11. Influence of Warp Yarn Tension on Cotton Greige and Dyed Woven Fabric Prosperities

    Directory of Open Access Journals (Sweden)

    Uzma Syed

    2013-01-01

    Full Text Available Fabric properties such as pilling and abrasion resistance and tensile strength vary when greige fabric is processed further. The quality of dyed fabric depends on the quality of greige fabric. Cotton Plain and Twill weave fabrics were woven at three different warp yarn tension and then dyed using monochlorotriazine, Drimerene Red Cl-5B dye gives difference in fabric properties. The ASTM, American International Standards were used to determine the greige and dyed fabric properties. It has been observed fabric woven at proper loom setting or warp yarn tension have high strength, less pilling and abrasion tendency as compared to fabric woven at variant warp yarn tension. Moreover, fabric tenacity is decreased after dyeing whereas, slight difference in pilling and abrasion values is observed after dyeing than that of greige fabric.

  12. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  13. The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics

    Directory of Open Access Journals (Sweden)

    AMORIM ALEXANDRA M.

    2002-01-01

    Full Text Available Results of dyeing of cotton fabrics with a bifunctional reactive dye were significantly improved when the fabric after bleaching with hydrogen peroxide was treated with catalase for the elimination of hydrogen peroxide residues from the fabrics. Compared to processes with a varying number of washing steps, with and without commercial reducing agents, the consumption of water could be significantly reduced, without altering the final color shade.

  14. Fabrication of a lotus-like micro nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic

    Science.gov (United States)

    Wu, Xufeng; Shi, Gaoquan

    2005-10-01

    We report a simple method for fabricating a lotus-like micro-nanoscale binary structured surface of copper phosphate dihydrate. The copper phosphate dihydrate nanosheets were generated by galvanic cell corrosion of a copper foil with aqueous phosphorus acid solution drops and dried in an oxygen gas atmosphere, and they self-organized into a film with a lotus-like micro-nanoscale binary structured surface. The wettability of this surface can be changed from superhydrophilic to highly hydrophobic or superhydrophobic by heating or modifying it with an n-dodecanethiol monolayer.

  15. Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic.

    Science.gov (United States)

    Wu, Xufeng; Shi, Gaoquan

    2005-10-01

    We report a simple method for fabricating a lotus-like micro-nanoscale binary structured surface of copper phosphate dihydrate. The copper phosphate dihydrate nanosheets were generated by galvanic cell corrosion of a copper foil with aqueous phosphorus acid solution drops and dried in an oxygen gas atmosphere, and they self-organized into a film with a lotus-like micro-nanoscale binary structured surface. The wettability of this surface can be changed from superhydrophilic to highly hydrophobic or superhydrophobic by heating or modifying it with an n-dodecanethiol monolayer.

  16. Synthesis and applications of vegetable oil-based fluorocarbon water repellent agents on cotton fabrics.

    Science.gov (United States)

    Zhao, Tao; Zheng, Junzhi; Sun, Gang

    2012-06-05

    Vegetable oil-based fluorocarbon water repellent agents were prepared by chemical modifications of different vegetable oils - soybean and linseed oils through several reactions, including saponification, acidification, acylation of vegetable oil and trans-esterification with 2,2,2-trifluoroethanol and 2,2,3,3-tetrafluoropropanol. The resulted fluorocarbon agents were then copolymerized with styrene. The structures of the vegetable oil based agents were characterized by FT-IR and NMR. By evaluating water contact angle and time of water disappearance on cotton fabrics, as well as whiteness and breaking strength of cotton fabrics that were treated by these agents, optimum fabric finishing conditions were explored. The cotton fabrics finished with the vegetable oil-based fluorocarbon agents showed excellent water repellency, while other properties of the cotton fabrics declined to certain level. The linseed oil-based tetrafluoropropanol water repellent agent displayed the highest water repellency among all modified oils. All the treated fabrics exhibited good durability of water repellency. The linseed oil-based tetrafluoropropanol water repellent agent demonstrated the best durability among all repellent agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. EFFECT OF OXYGEN PLASMA PRETREATMENT AND TITANIUM DIOXIDE OVERLAY COATING ON FLAME RETARDANT FINISHED COTTON FABRICS

    Directory of Open Access Journals (Sweden)

    Yin Ling Lam

    2011-03-01

    Full Text Available Flammability properties of plasma pretreated cotton fabrics subjected to flame-retardant treatment were studied. Plasma pretreatment, using an atmospheric pressure plasma jet (APPJ, was applied to cotton fabrics to enhance material properties, while retaining inherent advantages of the substrates. An organic phosphorus compound (flame-retardant agent, FR together with a melamine resin (crosslinking agent, CL and phosphoric acid (catalyst, PA were used. Titanium dioxide (TiO2 or nano-TiO2 was used as a co-catalyst for cotton fabrics to improve treatment effectiveness and minimize side effects. Surface morphology of plasma pretreated cotton specimens subjected to flame-retardant treatment showed a roughened and wrinkled fabric surface with high deposition of the finishing agent, caused by an etching effect of plasma and attack of acidic FR. Combustibility of FR-CL-PA-TiO2 and FR-CL-PA-Nano-TiO2 treated fabrics was evaluated by a 45° flammability test. FR-CL-PA-treated specimens showed superior flame-retardancy, which was further improved by plasma pretreatment and addition of metal oxide as a co-catalyst. However, in comparison with the control sample, flame-retardant-treated cotton specimens had lower breaking load and tearing strength, resulting from side effects of the crosslinking agent used, while plasma pretreatment might compensate for the reduction in tensile strength caused by flame-retardant agents. In addition, both plasma pretreatment and metal oxide co-catalyst added in the flame-retardant finishing improved the crosslinking process between FR and cotton fabric, minimizing formation of free formaldehyde and allowing the use of FR in industry.

  18. 77 FR 31182 - Final Withdrawal of Regulations Pertaining to Imports of Cotton Woven Fabric and Short Supply...

    Science.gov (United States)

    2012-05-25

    ... Pertaining to Imports of Cotton Woven Fabric and Short Supply Procedures AGENCY: Import Administration... short supply procedures. Both sets of regulations are obsolete: The tariff quota on cotton woven fabric expired in 2009, and the short supply voluntary restraints have not affected U.S. trade for over 19...

  19. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System

    Directory of Open Access Journals (Sweden)

    Charles Q. Yang

    2016-09-01

    Full Text Available Blending Nomex® with cotton improves its affordability and serviceability. Because cotton is a highly flammable fiber, Nomex®/cotton blend fabrics containing more than 20% cotton require flame-retardant treatment. In this research, combination of a hydroxyl functional organophosphorus oligmer (HFPO and 1,2,3,4-butanetetracarboxylic acid (BTCA was used for flame retardant finishing of the 65/35 Nomex®/cotton blend woven fabric. The system contains HFPO as a flame retardant, BTCA as a bonding agent, and triethenolamine (TEA as a reactive additive used to enhance the performance of HFPO/BTCA. Addition of TEA improves the hydrolysis resistance of the HFPO/BTCA crosslinked polymeric network on the blend fabric. Additionally, TEA enhances HFPO’s flame retardant performance by reducing formation of calcium salts and also by providing synergistic nitrogen to the treated blend fabric. The Nomex®/cotton blend fabric treated with the HFPO/BTCA/TEA system shows high flame resistance and high laundering durability at a relatively low HFPO concentration of 8% (w/w. The heat release properties of the treated Nomex®/cotton blend fabric were measured using microscale combustion calorimetry. The functions of BTCA; HFPO and TEA on the Nomex®/cotton blend fabric were elucidated based on the heat release properties, char formation, and fire performance of the treated blend fabric.

  20. A Novel Aqueous Polyurethane Containing Short Fluoroalkyl Chains:Synthesis and Application on Cotton Fabrics

    Institute of Scientific and Technical Information of China (English)

    ZHU Ming-jie; QING Feng-ling; MENG Wei-dong

    2006-01-01

    As very useful superficial modification agents, the common long perfluoroalkyl - containing agents are facing the ecological problems, such as persistence, bioaccumulation,and/or toxicity in the environment. In order to overcome the problems, we designed and synthesized a polyether diol containing short perfluoroalkyl side chains, which was condensed with diisocyanate to form fluorine-containing aqueous polyurethane. This aqueous polyurethane was applied on cotton fabrics by conventional pad-dry-cure process. The treated cotton fabrics showed good water repellent property with the contact angle reached 131°, and also possessed good washing durability.

  1. Fabricating an enhanced stable superhydrophobic surface on copper plates by introducing a sintering process

    Science.gov (United States)

    Hu, Jinyi; Yuan, Wei; Yan, Zhiguo; Zhou, Bo; Tang, Yong; Li, Zongtao

    2015-11-01

    The superhydrophobic surface has the potential for use in functional applications. This study reports a novel method for coupling a sintering process with a traditional technique based on the solution-immersion method to prepare a stable superhydrophobic surface. The use of a sintering process aids in the enhancement of the adhesive strength and acid resistance of the surface structure. The advantage of using this method lies in its flexibility in regulating the processing parameters and functional behaviours. The influences of different processing parameters were experimentally investigated. The surface treated with a sintering process remains superhydrophobic with a contact angle of >150° after immersion in an acid solution for 120 h. The sintered surface maintains good integrity after experiencing ultrasonic vibration for 5 min. The results indicate that the sintering temperature must be optimized to increase the adhesive strength and maintain sufficient hydrophobicity. The modification time is an important factor related to the level of hydrophobicity.

  2. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    Science.gov (United States)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  3. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study.

    Science.gov (United States)

    Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego

    2016-08-20

    Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries.

  4. Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics.

    Science.gov (United States)

    Vilcnik, Aljaz; Jerman, Ivan; Surca Vuk, Angela; Kozelj, Matjaz; Orel, Boris; Tomsic, Brigita; Simoncic, Barbara; Kovac, Janez

    2009-05-19

    In a continuation of previous studies, the wetting properties of the hydrophobic diureapropyltriethoxysilane [bis(aminopropyl)-terminated polydimethylsiloxane (1000)] (PDMSU) sol-gel hybrid, which forms washing-resistant water-repellent finishes on cotton fabrics, were further investigated. The addition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) to PDMSU resulted in a highly apolar low-energy surface on aluminum with gammaStotal equal to 14.5 mJ/m2 and a DetlaGiwi value of -82 mJ/m2. Mixed PFOTES-PDMSU finishes applied on cotton fabrics increased the water contact angles (thetaw) from approximately 130 degrees (PDMSU) to 147 degrees, also imparting oleophobicity (thetadiiodomethane=130 degrees, thetan-hexadecane=120 degrees) to the finished cotton fabrics. Washing caused breakage of the coating's integrity as established from SEM, which was attributed to the partial removal of PFOTES from the composite films, also shown by subtractive IR attenuated total reflectance (ATR) and XPS spectral measurements made on washed and unwashed fabrics. The antibacterial properties of the PFOTES-PDMSU-finished fabrics were assessed with the transfer method (EN ISO 20743:2007), revealing that the reduction of Escherichia coli bacteria on unwashed cotton fabrics was nearly 100%. Moreover, for washed (10 times) cotton fabrics a much higher bacterial reduction was noted for the PFOTES-PDMSU finishes (60.6+/-10.8%), surpassing PDMSU (30.4+/-6.1%) and commercial fluoroalkoxysilane (FAS) (21.9+/-5.7%) finishes. The structure of PFOTES-PDMSU gels, xerogels, and the corresponding coatings was investigated by analyzing the 29Si NMR and IR ATR spectra and comparing them with the spectra of PFOTES and octameric (T8) PFOTES based polyhedra. The results revealed the tendency of PFOTES to condense in octameric silsesquioxane polyhedra (T8), coexisting in the PDMSU sol-gel network with cyclic tetramers (T4(OH)4) and open cube-like species (T7(OH)3). The presence of -OH

  5. Laser Treatment of Cotton Fabric for Durable Antibacterial Properties of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shirin Nourbakhsh

    2012-07-01

    Full Text Available In the present study, cotton fabric was exposed to laser exposure at different energy levels and then the silver nanoparticles were coated on untreated and laser treated cotton fabrics. Methylene blue dye was used to detect the presence of carboxylic acid groups (-COO on laser treated cotton and the dye absorption results were determined spectrophotometrically. ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy analysis and antibacterial tests were carried out to investigate the silver ion content and bactericidal properties of silver nanoparticles on cotton fabrics. Infrared spectroscopy (FTIR/ATR analysis and scanning electron microscopy (SEM were used to identify chemical changes and to study the morphology of the surface of the fibers. EDAX (Energy Dispersive X-ray Spectroscopy analysis was calculated for SEM micrographs. The results showed according to the higher uptake of methylene blue dye that the negative charge of the carboxylic acid groups had been created by laser treatment. Although the FTIR spectroscopy results did not show an increase in carboxylic acid groups, the cationic dye absorption increased. The durability of the Ag+ ion particles on repeated laundered laser treated cotton was proven by antibacterial and ICP tests, particularly when the laser energy was increased.

  6. Electrochemical behaviour of superhydrophobic coating fabricated by spraying a carbon nanotube suspension

    Indian Academy of Sciences (India)

    L Belsanti; H Ogihara; S Mahanty; G Luciano

    2015-04-01

    In this study, superhydrophobic films were prepared through a spraying process of carbon nanotube (CNT) suspension on aluminium alloy substrate and characterized by scanning electronic microscope (SEM) contact angles (CAs) and potentiodynamic polarization tests in 0.1 M NaCl solution. Results indicate the positive effect of superhydrophobic film on the CA ($\\ge 160^\\circ $) in comparison with the bare metal due to the high porosity density at the surface caused by the presence of CNTs. The electrochemical observations indicate the presence of a positive shift of corr that confers a better corrosion resistance of the coated samples.

  7. DESIGN AND FABRICATION OF SUPER-HYDROPHOBIC SURFACES ON SILICON WAFERS AND STUDY OF EFFECTS TO HYDROPHOBICITY

    Institute of Scientific and Technical Information of China (English)

    LI Baojia; ZHOU Ming; QIAN Kunxi; CAI Lan

    2008-01-01

    Some superhydrophobic siliconbased surfaces with periodic square pillar array microstructures were designed and fabricated, also their apparent contact angles (CAs) were quantitatively measured. On the basis of the classical Wenzel's theory and Cassie's theory, two generally applicable equations corresponding of the cases of wetted contact and composite contact, which could reflect the relations between geometrical parameters of square pillar microstructures and apparent CAs, were educed. Then a theoretical prediction of the fabricated siliconbased surfaces was carried out by the equations, which was compatible with the result of experimental measurement, and this showed the rationality of the educed equations. The CAs of the surface prepared by merely plasma etching to create microstructures and by only Teflon treating were compared, and the result indicated that the effect of the former on achieving hydrophobic surfaces was greater than that of the later. Under the premise of synthetically considering transition between the two contact states, the effects of geometrical parameters of the square pillar microstructures to hydrophobicity were analyzcation, thereon a design condition and a design principle for super-hydrophobic surfaces which would be of specific application value were summarized.

  8. Dual-switchable surfaces between hydrophobic and superhydrophobic fabricated by the combination of click chemistry and RAFT

    Directory of Open Access Journals (Sweden)

    M. S. Han

    2014-07-01

    Full Text Available A dual-switchable surface between hydrophobic and superhydrophobic has been fabricated successfully by combining reversible addition-fragmentation chain transfer polymerization (RAFT polymeric technology and thiol-NCO click chemistry. Well-defined block copolymer, poly(7-(6-(acryloyloxy hexyloxy coumarin-b-poly(N-Isopropylacryl amide, was synthesized by RAFT, and then the block copolymer was grafted onto the surface of SiO2 modified by toluene disocynate (TDI via thiol-NCO click chemistry. The results of nuclear magnetic resonance (NMR and Fourier Transform Infrared (FTIR spectroscopies confirmed that the block copolymer (Number average molecular weight (Mn = 9400, polydispersity index (PDI = 1.22 has been synthesized successfully. The static contact angle (CA of the surface prepared by SiO2/P (7-6-AC-b-PNIPAAm switches from 98±2 to 137±2° by adjusting the temperature. Furthermore, the contact angle can also oscillate between 137±2 and 157±2° on the irradiation of UV light at 365 and 254 nm, respectively. The dual-switchable surfaces exhibit high stability between hydrophilicity and superhydrophobicity. Therefore, the method provides a new method to fabricate the dual-stimuli-responsive surface with tunable wettability, reversible switching, and also be easily extended to other dual-responsive surfaces. This ability to control the wettability by the adjustment of the temperature and UV light has applications in a broad range of fields.

  9. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  10. Application of Purified Lawsone as Natural Dye on Cotton and Silk Fabric

    Directory of Open Access Journals (Sweden)

    Md. Mahabub Hasan

    2015-01-01

    Full Text Available The color which is obtained from the leaves of Henna, that is, Lawsonia inermis L., is used frequently in hair coloring. It is the chemical lawsone that is responsible for the reddish brown color. Its content makes it a substantive dye for dyeing the textile materials. This work concerns with the extraction and purification of natural dyestuff from a plant Lawsonia inermis L. and dyeing of cotton and silk fabric in exhaust dyeing method. The dye portion is isolated from the total extract by column chromatography and is evaluated by dyeing cotton and silk under different dyeing conditions. The color strength and fastness properties of the dye are undertaken by changing mordant and techniques of mordanting. The changes of colors have been noticed by using different types of mordant. The dye exhaustion percentage, wash, rubbing, and light fastness results reveal that the extract of henna can be used for coloration of cotton and silk fabric.

  11. Effect of dyeing on antibacterial efficiency of silver coated cotton fabrics

    Science.gov (United States)

    Shahidi, Sheila; Rezaee, Sahar; Hezavehi, Emadaldin

    2014-04-01

    Despite numerous investigations during recent decades in the field of antimicrobial treating textile fibers using silver, many obscurities remain regarding the durability and dyeing ability and the influences of dyeing on the antimicrobial effectiveness of silver-treated fibers. In this research work, the cotton fabrics were sputtered using DC magnetron sputtering system for different times of exposure by silver. Then the silver coated samples were dyed by different classes of synthetic and natural dyes. The dye ability of coated samples was compared with untreated cotton. The reflective spectrophotometer was used for this purpose. The morphology of the cotton fabrics before and after dyeing was observed using a scanning electron microscope (SEM). The antibacterial activity of samples before and after dyeing, were investigated and compared. For antibacterial investigation, the antibacterial counting tests were used. It was concluded that, dyeing does not have any negative effect on antibacterial activity of coated samples and very good antibacterial activity was achieved after dyeing.

  12. Influence of Warp Yarn Tension on Cotton Woven Fabric Structures

    Directory of Open Access Journals (Sweden)

    Uzma Syed

    2013-01-01

    Full Text Available Control of the warp and weft yarn tension is an important factor. In this research, effect of warp yarn tension variations on the quality of greige and dyed woven fabrics was investigated. Six fabric samples (three Plain and three Twill weaves were woven on shuttle loom at varied warp yarn tension. The fabric samples were then pre-treated and dyed (Drimarene Red Cl 5B, 3% owf using laboratory singeing machine and HT dyeing machine. Greige fabric quality such as fabric inspection, fabric length, fabric width, GSM (Gram per Square Meter, EPI (Ends per Inch, PPI (Picks per Inch, and dyed fabric quality such as L*, a*, b*, C, h o , (K/S ?max and fastness properties were assessed according to the standard. It has been observed that fabric samples, both Plain and Twill weave; woven at improper warp yarns tension gives rejected greige fabric quality and 1-7% lower (K/S 550nm values as compared to the fabric weave at requisite warp yarn tension such as 38-39cN for Plain fabric and 78cN for Twill fabric for 42x38 and 64x36 tex construction. Hence, among other weave faults, warp yarn tension variation has influence on the greige fabric quality as well as caused improper and uneven dyeing behavior.

  13. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  14. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  15. Cooperative action of cellulase enzyme and carboxymethyl cellulose on cotton fabric cleanability from a topographical standpoint

    NARCIS (Netherlands)

    Calvimontes, A.; Lant, N.J.; Dutschk, Victoria

    2011-01-01

    In this study, the effect of cotton treatment with cellulose and carboxymethyl cellulose on soil release of three different types of fabric: woven plain, woven twill and knitted were systematically studied. A recent study of the effect of a cleaning cellulase enzyme on cellulose films has proven

  16. Wrinkle Resistant Finishing of Cotton Fabrics with the Complex System of PBTCA/CA

    Institute of Scientific and Technical Information of China (English)

    宋海涛; 隋淑英; 朱平; 董朝红; 张林

    2011-01-01

    In this paper,the wrinkle resistant finishing of cotton fabric with the complex system of PBTCA and CA was mainly discussed.The influence of finishing conditions such as the amount of finishing agent and catalyst,curing temperature and curing time were st

  17. Cooperative action of cellulase enzyme and carboxymethyl cellulose on cotton fabric cleanability from a topographical standpoint

    NARCIS (Netherlands)

    Calvimontes, A.; Lant, N.J.; Dutschk, V.

    2011-01-01

    In this study, the effect of cotton treatment with cellulose and carboxymethyl cellulose on soil release of three different types of fabric: woven plain, woven twill and knitted were systematically studied. A recent study of the effect of a cleaning cellulase enzyme on cellulose films has proven tha

  18. Impact of high and zero formaldehyde crosslinkers on the performance of the dyed cotton fabric

    Directory of Open Access Journals (Sweden)

    Mohsin Muhammad

    2014-01-01

    Full Text Available Performance of the colored cotton fabrics dyed with sulphur, vat, direct and reactive dyes was investigated by using two crosslinkers. DMDHEU was used as formaldehyde based crosslinker and BTCA was assessed as a zero formaldehyde alternative. Shade change of the fabrics treated with both crosslinkers was comparable and in acceptable range apart from all sulphur dyes and two reactive dyes. However, shade change of the sulphur dyed fabrics was significantly improved when typical sodium hypophosphite based catalyst for BTCA was replaced with sodium phosphate. In addition, tensile strength and easy care performance of the crosslinker treated dyed fabric was also assessed.

  19. Investigation on Effluent Characteristics of Organic Cotton Fabric Dyeing With Eco-Friendly Remazol Reactive Dyes

    OpenAIRE

    Md. Mashiur Rahman Khan; Md. Mazedul Islam; Elias Khalil

    2014-01-01

    Environmental sustainability is the major concern in the age of modern world. For textile and apparel sector, this has been a burning issue for many related concerned bodies. The pretreatment and dyeing process of greige fabrics results in large volume of effluents that has harmful effect on environment. In this study, the ecological parameters of the effluents obtained from scouring and dyeing of 100% organic cotton single jersey knitted fabrics with environmentally low impact Remazol ser...

  20. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  1. Antimicrobial activity of cotton and silk fabric with herbal extract by micro encapsulation

    Institute of Scientific and Technical Information of China (English)

    Saraswathi R; Krishnan PN; Dilip C

    2010-01-01

    Objective:To explore the antimicrobial activity of microcapsules encapsulated with mixture of herbs like neem, tulsi and turmeric, and its application on cellulosic fabric in the form of microcapsules.Methods: The microcapsules were prepared from the mixture of herbs by plain diffusion method, a natural encapsulation technique with yeast and applied on cotton and silk fabric by pad-dry-cure method. The microcapsules were fixed on cotton and silk fabric using the binder UF Silpure FBR-5(PA)B at 120 ℃. The antimicrobial activities of the finished fabric were assessed by using three types of bacteria includingStaphylococcus aureus,Escherichia coli andPseudomonas.Results:The results of antimicrobial activity from the tests including parallel streak method and disc diffusion method showed that activity of the mixture of herbs was very effective among the three types of bacteria selected, and the antimicrobial activity of prepared microcapsule againstPseudomonas was very good.Conclusions:The herbal microcapsule treated fabric could be applied in the field of medicine. The scanning electron microscope photographs ensure the fixing of the microcapsules firmly in the yarn structure of plain woven cotton and silk fabric.

  2. Mechanical strength and hydrophobicity of cotton fabric after SF{sub 6} plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kamlangkla, K. [Nanoscience and Nanotechnology Program, Center of Innovative Nanotechnology, Chulalongkorn University, Bangkok 10330 (Thailand); Paosawatyanyong, B. [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand); Pavarajarn, V. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Hodak, Jose H. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Hodak, Satreerat K., E-mail: Satreerat.H@Chula.ac.th [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand)

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF{sub 6} plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF{sub 6} pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF{sub 6} pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  3. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    Science.gov (United States)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF pressure is higher than 0.3 Torr. The water contact angle ( 149°) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  4. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    Science.gov (United States)

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample.

  5. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  6. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property.

    Science.gov (United States)

    Wang, Chunxia; Lv, Jingchun; Ren, Yu; Zhou, Qingqing; Chen, Jiayi; Zhi, Tian; Lu, Zhenqian; Gao, Dawei; Ma, Zhipeng; Jin, Limin

    2016-03-15

    ZnO/carboxymethyl chitosan (ZnO/CMCS) composite was prepared and confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, Scanning electron microscope (SEM), Transmission electron microscope (TEM). The combination of plasma pretreatment and ZnO/CMCS composite finishing was applied to provide durable UV resistance and antibacterial activity for cotton fabric. Cotton fabric was pretreated by cold oxygen plasma and the ZnO/CMCS composite finishing was carried out by pad-dry-cure. Cotton fabric was characterized by SEM, FTIR, UV resistance, antibacterial activity and Thermogravimetry (TG). SEM and FTIR analysis demonstrated the presence of ZnO/CMCS composite on cotton fabric and the increasing loading efficiency of ZnO/CMCS composite owing to plasma treatment. UV resistance and antibacterial activity of the finished cotton fabric were greatly improved, which increased with the increasing concentration of ZnO/CMCS composite. TG analysis indicated that the combined finishing of cotton fabric with plasma pretreatment and ZnO/CMCS composite could improve its thermal property. The finished cotton fabric exhibited an excellent laundering durability in UV resistance and antibacterial activity.

  7. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    Science.gov (United States)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  8. Two-site adsolubilization model of incorporation of fluoromonomers into fluorosurfactants formed on cotton fabric.

    Science.gov (United States)

    Hanumansetty, Srinivas; O'Rear, Edgar

    2014-04-01

    The adsorption of surfactants and adsolubilization of organic compounds on knit cotton fabric are fundamentally important in admicellar polymerization to impart characteristics like water repellency, stain resistance, and flame retardancy. The main objective of this research is to study adsorption and adsolubilization of fluororsurfactants and fluoromonomers used to obtain water repellency characteristics. Adsorption of nonionic (fluoroaliphatic amine oxide) and cationic (fluoroaliphatic quaternary ammonium surfactant) fluororsurfactants at the interface of cotton is investigated with and without fluoroacrylate monomers. A two-site adsolubilization model was used to predict the aggregation number of fluorosurfactant.

  9. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property.

    Science.gov (United States)

    Firoz Babu, K; Dhandapani, P; Maruthamuthu, S; Anbu Kulandainathan, M

    2012-11-06

    Polymer-silver nanocomposites modified cotton fabrics were prepared by in situ chemical oxidative polymerization using pyrrole and silver nitrate. In a redox reaction between pyrrole and silver nitrate, silver ions oxidize the pyrrole monomer and get reduced. This reduced silver as nanoparticles deposited on/into the polypyrrole/cotton matrix layer and the interaction between silver and polypyrrole was by adsorption or electrostatic interaction. The structure and composite formation on cotton fiber was investigated using SEM, FT-IR, XPS and XRD. The results showed that a strong interaction existing between silver nanoparticles with polypyrrole/cotton matrix. FT-IR studies clearly indicated that the interaction between polypyrrole (-N-H) and cellulose (>C-OH) was by hydrogen bonding. It is observed that the conductivity of the composite coated fabrics has been increased by the incorporation of silver nanoparticles. In the synthesized composites, silver content plays an important role in the conductivity and antimicrobial activity rate of the fabrics against gram positive Staphylococcus aureus and gram negative Escherichia coli bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pyrazole-based compounds in chitosan liposomal emulsion for antimicrobial cotton fabrics.

    Science.gov (United States)

    Nada, Ahmed; Al-Moghazy, Marwa; Soliman, Ahmed A F; Rashwan, Gehan M T; Eldawy, Taghreed Hosny Ahmed; Hassan, Ashraf Abd Elhakim; Sayed, Galal Hosni

    2017-09-13

    The chemistry of pyrazoles has gained increasing attention due to its diverse pharmacological properties such as antiviral, antagonist, antimicrobial, anticancer, anti-inflammatory, analgesic, anti-prostate cancer, herbicidal, acaricidal and insecticidal activities. 1-Phenyl pyrazole-3, 5-diamine, 4-[2-(4-methylphenyl) diazenyl] and 1H- pyrazole-3 (1), 5-diamine, 4-[2-(4-methylphenyl) diazenyl] (2) were synthesized, characterized and encapsulated into liposomal chitosan emulsions for textile finishing. The chemical modifications of cotton fabrics were demonstrated by infrared analysis. Retention of the fabric mechanical properties was investigated by reporting the tensile strength values. Synthesized pyrazole-based compounds were screened for cytotoxicity against skin fibroblast cell line and showed very limited toxicity for both compounds. Antimicrobial potentials of the treated cotton fabrics were tested against bacterial strains E. coli ATCC 8379 and Staphylococcus aureus ATCC 25923. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Thermogravimetric Study of Cotton Fabric Flame-Retardancy by Means of Impregnation with Red Phosphorus

    Institute of Scientific and Technical Information of China (English)

    MOSTASHARI,S.M.; FAYYAZ,F.

    2008-01-01

    The effect of red phosphorus was found to be effective for flame-retardancy of a pure cotton fabric.The laundered bone-dried weighed samples were impregnated with red phosphorus at suitable concentrations.Vertical flame spread test was accomplished.The optimum add-on value to impart flame-retardancy onto cotton fabric was determined around 3.95 g of red phosphorus per 100 g of fabric.TG/DTG curves of treated samples showed a well-timed weight loss occurred with regard to untreated specimens.This illustrates the sufficiency of impregnation and support its catalytic action on flame-retardancy,which is compliance with data obtained via flammability test.The resuits are in favor of "Chemical Action Theory","Gas Theory" and "Condensed Phase Retardation".

  12. Influence of Textile Structure and Silica Based Finishing on Thermal Insulation Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    G. Rosace

    2016-01-01

    Full Text Available The aim of this work is to investigate the influence of weave structures and silica coatings obtained via sol-gel process on the thermal insulation properties of cotton samples. For this reason three main weave structures (plain, satin, and piqué of cotton fabric were selected with different yarn count, threads per cm, and mass per square meter values. Thereafter, only for the plain weave, the samples were padded using silica sol formed by hydrolysis and subsequent condensation of 3-glycidoxypropyltrimethoxysilane under acidic conditions. The silanized plain weave samples were characterized by TGA and FT-IR techniques. The thermal properties were measured with a home-made apparatus in order to calculate thermal conductivity, resistance, and absorption of all the treated fabric samples. The relationship between the thermal insulation properties of the plain weave fabrics and the concentration of sol solutions has been investigated. Fabrics weave and density were found to strongly influence the thermal properties: piqué always shows the lowest values and satin shows the highest values while plain weave lies in between. The thermal properties of treated high-density cotton plain weave fabric were proved to be strongly influenced by finishing agent concentration.

  13. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    Science.gov (United States)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  14. Interaction of Alginate/Copper System on Cotton and Bamboo Fabrics: The Effect on Antimicrobial Activity and Thermophysiological Comfort Properties

    Directory of Open Access Journals (Sweden)

    Muhammet UZUN

    2013-09-01

    Full Text Available Antimicrobialagent treated materials have been widely used clinically as medical devices and articles, in which the active substances, such as antimicrobial molecules, are present on or in the matrix of the surface of the devices and articles.This study aims to treat a selection of fabrics with alginate/copper, and then determine the treated fabrics’antimicrobial activity against two common Gram-positive and Gram-negative bacteria. It is also aimed to analyse and evaluate the thermophysiological properties of the treated fabrics. Cotton, organic cotton and bamboo woven fabrics were employed. The fabrics were applied in 1 %, 3 % and 5 %w/v copper solutions andsubsequentlyspecimens were subjected to 10 min and 20 min ultrasonic energy treatment. The results clearly demonstrated that the cotton and organic cotton fabrics were successfully treatedwith the alginate/copper and the treated fabrics showed considerable zone of inhibitions. The bamboo fabric did not appear to bond effectively with the copper alginate, andas the result,the fabrics did not display any improved bacterial protection against the chosen bacteria. In fact the bamboo fabric lost its natural antimicrobialproperties after the alginate and copper treatment.The thermophysiological comfort properties of the treated cotton fabrics changed significantly; on the other hand, the treated bamboo fabrics were not affected by the copper treatment.  DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1217

  15. Superhydrophobicity from microstructured surface

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lijun; WU Xuedong; LOU Zeng; WU Dan

    2004-01-01

    Superhydrophobicity is referred to the wettability of a solid surface which has a water apparent contact angle greater than 150°. It has attracted great interest in both fundamental researches and practical applications. This paper discusses two models: Wenzel model and Cassie model, to describe the superhydrophobic states of surface. The effectsof surface morphology and microstructure on superhydrophobicity are discussed, and the internal relationship between Wenzel and Cassie states is presented. These two su perhydrophobic states can coexist and they present different properties on contact angle hysteresis. It is reported that the irreversible transition can be realized from Cassie state to Wenzel state under some certain conditions. This paper also gives a review of recent progresses in the strategies of fabricating superhydrophobic surfaces by designing microstructured or microtextured surfaces. Finally, the fundamental research and applications of superhydrophobic surfaces are prospected.

  16. Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes.

    Science.gov (United States)

    Wang, Jin-lei; Ren, Ke-feng; Chang, Hao; Zhang, Shi-miao; Jin, Lie-jiang; Ji, Jian

    2014-02-21

    Thin organic films containing carbon nanotubes (CNTs) have received increasing attention in many fields. In this study, a robust thin superhydrophobic film has been created by using layer-by-layer assembly of the carbon nanotubes wrapped by poly(dopamine) (CNT@PDA) and poly(ethyleneimine) (PEI). UV-vis spectroscopy, ellipsometry, and quartz crystal microbalance with dissipation (QCM-D) measurements confirmed that the sequential deposition of PEI and CNT@PDA resulted in a linear growth of the (PEI-CNT@PDA) film. This thin film contained as much as 77 wt% CNTs. Moreover, a very stable and flexible free-standing (PEI-CNT@PDA) film could be obtained by employing cellulose acetate (CA) as a sacrificial layer. The film could even withstand ultrasonication in saturated SDS aqueous solution for 30 min. SEM observations indicated that the ultrathin film consisted of nanoscale interpenetrating networks of entangled CNTs and exhibited a very rough surface morphology. The (PEI-CNT@PDA) film turned superhydrophobic after being coated with a low-surface-energy compound. The superhydrophobic films showed excellent resistance against the adhesion of both platelets and Escherichia coli (E. coli). The (PEI-CNT@PDA) films and the proposed methodology may find applications in the area of medical devices to reduce device-associated thrombosis and infection.

  17. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Rukosuyev, Maxym V.; Lee, Jason [Mechanical Engineering, University of Victoria (Canada); Cho, Seong Jin; Lim, Geunbae [Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Jun, Martin B.G., E-mail: mbgjun@uvic.ca [Mechanical Engineering, University of Victoria (Canada)

    2014-09-15

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment.

  18. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Loghman, E-mail: l.karimi@srbiau.ac.ir [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Khajavi, Ramin [Department of Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Mirjalili, Mohammad [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2015-03-30

    Graphical abstract: - Highlights: • Producing superior photo-active cotton fabric using graphene/titanium dioxide nanocomposite. • Optimizing processing conditions using response surface methodology. • Obtaining significant photo-activity properties on cotton fabric by this method under sun irradiation. • Possessing excellent antimicrobial activity with low cytotoxicity on human fibroblasts. - Abstract: A new facile route based on cotton fabric coated with graphene/titanium dioxide nanocomposite is reported to produce photo-active cellulose textiles. A thin layer of graphene oxide has been produced on cotton fabrics by a dip-dry process. The graphene oxide-coated cotton fabrics were then immersed in titanium trichloride aqueous solution to yield a fabric coated with graphene/titanium dioxide nanocomposite. The photo-activity efficiency of the coated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. To obtain the optimum condition, the response surface methodology (RSM) through the central composite design was applied and the role of both graphene oxide and titanium trichloride concentrations on photo-activity efficiency was investigated. The physicochemical properties of the prepared samples has been characterized by a series of techniques, including Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of the application of graphene/titanium dioxide nanocomposite on the physical properties of the cotton fabric, such as tensile strength, bending rigidity and crease recovery angle has been analyzed. Other characteristics of treated fabrics such as antibacterial, antifungal and cytotoxicity were also investigated. Cotton fabric coated with optimum concentrations of graphene oxide and titanium trichloride obtained significant photo-activity efficiency under UV and sunlight irradiations. Moreover, the graphene

  19. Fabrication of superhydrophobic silicone rubber by ArF-excimer-laser-induced microstructuring for repelling water in water

    Science.gov (United States)

    Okoshi, Masayuki; Setyo Pambudi, Wisnu

    2016-11-01

    Microswellings of 1 µm height, 1.5 µm diameter, and regular intervals of 2.5 µm on a silicone rubber surface were fabricated using a 193 nm ArF excimer laser. The laser was focused on silicone by each microsphere made of silica glass of 2.5 µm diameter; these microspheres covered the entire surface of the silicone. The surface underneath each microsphere selectively swelled owing to the photodissociation of the Si-O bonds of silicone. The contact angle of water was measured to be approximately 155°, indicating a clear superhydrophobicity. The samples successfully repelled water in water to form an air gap layer between silicone and water.

  20. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  1. Fabrication and application of TiO2-based superhydrophilic-superhydrophobic patterns on titanium substrates for offset printing.

    Science.gov (United States)

    Nakata, Kazuya; Nishimoto, Shunsuke; Kubo, Atsushi; Tryk, Donald; Ochiai, Tsuyoshi; Murakami, Taketoshi; Fujishima, Akira

    2009-06-02

    A fabrication process for superhydrophilic-superhydrophilic patterns on titanium substrates prepared through a combination of an ink-jet technique and site-selective decomposition of a self-assembled monolayer (SAM) by a TiO(2) photocatalyst under UV irradiation is described. We demonstrate that the prepared titanium substrate is applicable as an offset printing plate with high resolution (133 and 150 lines per inch). Furthermore, the superhydrophilic-superhydrophobic patterns on the substrate can be deposited repeatedly after elimination of the patterns by photocatalytic decomposition of TiO(2) under UV irradiation. A second printed image with the renewed substrate showed no significant difference in image quality compared with the initial image.

  2. NEW METHOD OF UNION DYEING OF COTTON/NYLON BLENDED FABRIC USING CHITOSAN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    KALIYAMOORTHI Karthikeyan

    2015-05-01

    Full Text Available Dyeing of fabric blends such as Cotton/Nylon (C/N is presently dyed by two-bath or one-bath two-step dyeing. Cellulose fibers when immersed in water produce a negative electrokinetic potential. The negative charge on the fiber repels the anionic dye ions and consequently the exhaustion of the dye bath is limited. When the fabric is treated with chitosan (polyacrylamide, the primary hydroxyl groups of cellulose is partially modified into amide groups, which intern leads the cellulose to act like as polyamide fiber. As a naturally deriving substance, chitosan has several beneficial properties such as being nontoxic and biodegradable. Absorption of acid dyes by chitosan is mostly by electrostatic interactions, the larger surface area of chitosan nanoparticles is advantageous for enhancement of dyeability of textile material. Experimental work was carried out on finding the possibility of one bath dyeing of chitosan pretreated cotton/nylon fabric with acid dyes. The effect of chitosan pretreatment on dyeability, fastness, and few physicochemical properties has been investigated, and results are presented. The cotton/nylon sample treated with 0.3% of chitosan nanoparticles had higher K/S values, washing, and crocking fastness. Also observed, dyed fabric had antibacterial potential due to the antibacterial property of chitosan. New method of union dyeing showed level dyeing having good fastness properties and offers the option of cost effective and eco-friendly.

  3. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    Science.gov (United States)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  4. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

    Science.gov (United States)

    Wang, C. X.; Ren, Y.; Lv, J. C.; Zhou, Q. Q.; Ma, Z. P.; Qi, Z. M.; Chen, J. Y.; Liu, G. L.; Gao, D. W.; Lu, Z. Q.; Zhang, W.; Jin, L. M.

    2017-02-01

    A practical and ecological method for preparing the multifunctional cotton fabrics with excellent laundering durability was explored. Cotton fabrics were modified by plasma induced vapor phase graft polymerization (PIVPGP) of acrylic acid (AA) and subsequently silver nanoparticles (AgNPs) were in situ synthesized on the treated cotton fabrics. The AgNP loaded cotton fabrics were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), antibacterial activity, self-cleaning activity, thermal stability and laundering durability, respectively. SEM observation and EDX, XPS and XRD analysis demonstrated the much more AgNPs deposition on the cotton fabrics modified by PIVPGP of AA. The AgNP loaded cotton fabrics also exhibited better antibacterial activity, self-cleaning activity, thermal stability and laundering durability. It was concluded that the surface modification of the cotton fabrics by PIVPGP of AA could increase the loading efficiency and binding fastness of AgNPs on the treated cotton fabrics, which could fabricate the cotton fabrics with durable multifunction. In addition, the mechanism of in situ synthesis of AgNPs on the cotton fabrics modified by PIVPGP of AA was proposed.

  5. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations

    Science.gov (United States)

    Liu, Hanzhou; Lv, Ming; Deng, Bo; Li, Jingye; Yu, Ming; Huang, Qing; Fan, Chunhai

    2014-08-01

    To improve the laundering durability of the silver functionalized antibacterial cotton fabrics, a radiation-induced coincident reduction and graft polymerization is reported herein where a pomegranate-shaped silver nanoparticle aggregations up to 500 nm can be formed due to the coordination forces between amino group and silver and the wrapping procedure originated from the coincident growth of the silver nanoparticles and polymer graft chains. This pomegranate-shaped silver NPAs functionalized cotton fabric exhibits outstanding antibacterial activities and also excellent laundering durability, where it can inactivate higher than 90% of both E. coli and S. aureus even after 50 accelerated laundering cycles, which is equivalent to 250 commercial or domestic laundering cycles.

  6. Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO

    Science.gov (United States)

    Prasad, V.; Arputharaj, A.; Bharimalla, A. K.; Patil, P. G.; Vigneshwaran, N.

    2016-12-01

    In situ synthesis of nano-ZnO onto 100% cotton fabrics (terry or woven) by spraying or dipping process resulted in durable antibacterial and UV protection finishes. The nano-sized pore structure of cellulosic fibrils acted as nucleation site for formation of nano-ZnO from the precursors, zinc nitrate and sodium hydroxide. Both the processes resulted in excellent antibacterial activity (>98%) against two representative pathogens, Staphylococcus aureus (Gram-positive) and Klebsiella pneumoniae (Gram-negative) even after 50 wash cycles. The UV protection factor (UPF) was maintained above the minimum accepted level of 50 till 50 wash cycles. Spraying process resulted in 3 times less uptake of nano-ZnO than that of dipping process, without significant reduction in functional properties. The water absorbency and colour of the terry cotton fabrics remain unaffected in the developed processes.

  7. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    T. Alomayri

    2014-09-01

    Full Text Available Cotton fabric (CF reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.

  8. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.

    Science.gov (United States)

    Li, Jian; Jing, Zhijiao; Zha, Fei; Yang, Yaoxia; Wang, Qingtao; Lei, Ziqiang

    2014-06-11

    In this paper, tunable adhesive superhydrophobic ZnO surfaces have been fabricated successfully by spraying ZnO nanoparticle (NP) suspensions onto desired substrates. We regulate the spray-coating process by changing the mass percentage of hydrophobic ZnO NPs (which were achieved by modifying hydrophilic ZnO NPs with stearic acid) in the hydrophobic/hydrophilic ZnO NP mixtures to control heterogeneous chemical composition of the ZnO surfaces. Thus, the water adhesion on the same superhydrophobic ZnO surface could be effectively tuned by controlling the surface chemical composition without altering the surface morphology. Compared with the conventional tunable adhesive superhydrophobic surfaces, on which there were only three different water sliding angle values: lower than 10°, 90° (the water droplet is firmly pinned on the surface at any tilted angles), and the value between the two ones, the water adhesion on the superhydrophobic ZnO surfaces has been tuned effectively, on which the sliding angle is controlled from 2 ± 1° to 9 ± 1°, 21 ± 2°, 39 ± 3°, and 90°. Accordingly, the adhesive force can be adjusted from extremely low (∼2.5 μN) to very high (∼111.6 μN). On the basis of the different adhesive forces of the tunable adhesive superhydrophobic surfaces, the selective transportation of microdroplets with different volumes was achieved, which has never been reported before. In addition, we demonstrated a proof of selective transportation of microdroplets with different volumes for application in the droplet-based microreactors via our tunable adhesive superhydrophobic surfaces for the quantitative detection of AgNO3 and NaOH. The results reported herein realize the selective transportation of microdroplets with different volumes and we believe that this method would potentially be used in many important applications, such as selective water droplet transportation, biomolecular quantitative detection and droplet-based biodetection.

  9. The Application of Microwave Low Temperature Plasma in Pretreatment of Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-guang; CUI Gui-xin; GU Zhen-ya

    2005-01-01

    The effect of microwave low temperature plasma pretreatment on desizing and removing natural impurity of cellulose fiber was studied. The influencing factors of pretreatment such as treating power, gas pressures and time were discussed in detail and the final effect had been compared with that of traditional pretreating process of cotton fabric. The results showed that better capillary effect, strength, whiteness and dyeing K/S value could be given by means of microwave low temperature plasma treatment.

  10. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  11. Innovative technologies for anti-flammable cotton fabrics

    Science.gov (United States)

    Due to its environmentally friendly properties, supercritical carbon dioxide (scCO2) is considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercr...

  12. Fabrication of a Bionic Needle with both Super-Hydrophobic and Antibacterial Properties

    Institute of Scientific and Technical Information of China (English)

    Xin Qi; Wei Song; Zhu Mao; Wenran Gao; Qian Cong

    2013-01-01

    Many biological surfaces possess unusual micro-nano hierarchical structures that could influence their wettability,which provide new methods for the construction of novel materials.In this work,silver nanoparticles were successfully coated on the surface of stainless steel needle by a simple electroless replacement reaction process between the AgNO3 solution and the activated stainless steel needle.After the replacement reaction,porous micro/nanostrctures were formed on the surface of the stainless steel needle.By modifying long chains ofthiol molecules,the stainless steel needle exhibited good super-hydrophobic property with a contact angle greater than 150°.Moreover,the silver coated stainless steel needle (bionic needle) showed strong antibacterial activity against the gram-negative bacterium Escherichia coli (E.coli).By calculating the area of the inhibition zone against E.coli formed on agar medium,the antibacterial activity of the bionic needle with the contact angle of 152° is much better than that with the contact angle of 138°.The as-prepared bionic needle with both super-hydrophobic and antibacterial properties has the potential to be applied in modem medical devices.

  13. Multi-walled carbon nanotube-coated cotton fabric for possible energy storage devices

    Indian Academy of Sciences (India)

    S P Bharath; J Manjanna; A Javeed; S Yallappa

    2015-02-01

    A conducting cotton fabric with a resistance of <1.5 k cm-2 was obtained by dip coating of multiwalled carbon nanotubes (MWCNTs) dispersed in a surfactant, sodium dodecyl sulphate (SDS). The dip coating was repeated up to 20 times to increase the loading of MWCNT as observed from optical absorption spectra (max = 442 nm). The field emission scanning electron microscopy (FE-SEM) image of coated fabric at different magnifications shows micro-fibril structure. Energy-dispersive X-ray analysis (EDXA) spectra show peaks for carbon and other constituent elements of SDS, Na and S. In order to improve the functionality of loaded MWCNT, the coated fabric was treated with 5% HNO3 for 3 h. For such a sample, the resistance decreased significantly to 1.5 k cm-2, whereas it is 2.0 and 2.5 k cm-2 for untreated and KOH-treated sample. This is in corroboration with − characteristics, and is attributed to increased loading of MWCNT through hydrogen bonding with glycosidic group present in cotton (cellulose) fibres. The series capacitance of the MWCNT-coated fabric is about 40 F cm-2, which is found to decrease with the increase in frequency, close to zero at about 20 kHz. A capacitor formed by placing two MWCNT-coated fabrics between etched PCB plates (terminal contacts) shows the charging capacity of about 1 F.

  14. Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride.

    Science.gov (United States)

    Lv, Fangbing; Wang, Chaoxia; Zhu, Ping; Zhang, Chuanjie

    2015-06-05

    Development of a simple process for separating cellulose and nylon 6 from their blended fabrics is indispensable for recycling of waste mixed fabrics. An efficient procedure of dissolution of the fabrics in an ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) and subsequent filtration separation has been demonstrated. Effects of treatment temperature, time and waste fabrics ratio on the recovery rates were investigated. SEM images showed that the cotton cellulose dissolved in [AMIM]Cl while the nylon 6 fibers remained. The FTIR spectrum of regenerated cellulose (RC) was similar with that of virgin cotton fibers, which verified that no other chemical reaction occurred besides breakage of hydrogen bonds during the processes of dissolution and separation. TGA curves indicated that the regenerated cellulose possessed a reduced thermal stability and was effectively removed from waste nylon/cotton blended fabrics (WNCFs). WNCFs were sufficiently reclaimed with high recovery rate of both regenerated cellulose films and nylon 6 fibers.

  15. Fabrication and characterization of superhydrophobic copper fiber sintered felt with a 3D space network structure and their oil-water separation

    Science.gov (United States)

    Hu, Jinyi; Yuan, Wei; Chen, Wenjun; Xu, Xiaotian; Tang, Yong

    2016-12-01

    This study reports the fabrication of a novel stable superhydrophobic and superoleophylic porous metal material on a copper fiber sintered felt (CFSF) substrate via a simple solution-immersion method. Oxidation and modification times are two important factors related to the level of hydrophobicity; oxidation for 1 h and modification for 24 h are appropriate to build a superhydrophobic CFSF surface with a water contact angle of 152.83° and a kerosene contact angle of 0°. The stability and high temperature resistance of superhydrophobic CFSF were studied. A novel device was designed to measure the water repellent ability of the treated CFSF. The results indicated that the water repellent ability of superhydrophobic CFSF was almost constant after 40 cycles of sanding. Both the water contact angle and the microstructure of the modified CFSF surface remained nearly unchanged after experiencing ultrasonic vibration for 1 min. The modified CFSF surface maintains super hydrophobicity after being treated at 180 °C for 1 h. The separation efficiencies for different types of oils and organic solvents (kerosene, chloroform, n-hexane and gasoline) are more than 96%. The modified CFSF retains a high robustness of separation efficiency even after it is recycled for the separation of kerosene and water for more than 10 times.

  16. Fast and low-cost method to fabricate large-area superhydrophobic surface on steel substrate with anticorrosion and anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe; Zhu, Wei [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-07-15

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property compared to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.

  17. ANTIMICROBIAL TEXTILE PREPARED BY SILVER DEPOSITION ON DIELECTRIC BARRIER DISCHARGE TREATED COTTON/POLYESTER FABRIC

    Directory of Open Access Journals (Sweden)

    Mirjana Kostić

    2008-11-01

    Full Text Available The objective of this research was to impart the additional value on cotton//polyester (Co/PES fabrics (i.e. antimicrobial properties to improve the quality of life and thus to tap new markets with the product. In this paper, silver ions were incorporated in Co/PES fabrics by chemisorptions into the fabric previously treated in a dielectric barrier discharge (DBD. A series of the DBD fabric treatments were done in order to determine the most suitable experimental conditions for the DBD activation of the fabric surface, while the optimal conditions for silver ions sorption by Co/PES fabrics were determined by changing sorption conditions. The antimicrobial Co/PES fabrics prepared by dielectric barrier discharge mediated silver deposition show an antimicrobial activity against tested pathogens: S. aureus, E. coli, and C. albicans under in vitro conditions. The obtained results confirm the practicability of the plasma modification process and furthermore show that with some delays in the next step, i.e. silver ion sorption, we can get the increase in the amount of the sorbed silver ions; the maximum sorption capacity of modified Co/PES fabrics was 0.135 mmol of Ag+ ions per gram of a fabric.

  18. Preparation of crosslinked polysiloxane/SiO{sub 2} nanocomposite via in-situ condensation and its surface modification on cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Lifen, E-mail: haolifen@sust.edu.cn [College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Zibo Dahuanjiu Polygrace Tannery Group Co. Ltd., Zibo, Shandong 256400 (China); Gao, Tingting [College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Xu, Wei [College of Resource and Environment, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Zibo Dahuanjiu Polygrace Tannery Group Co. Ltd., Zibo, Shandong 256400 (China); Wang, Xuechuan [College of Resource and Environment, Shaanxi University of Science and Technology, Xi' an, Shaanxi 710021 (China); Yang, Shuqin; Liu, Xiangguo [Zibo Dahuanjiu Polygrace Tannery Group Co. Ltd., Zibo, Shandong 256400 (China)

    2016-05-15

    Highlights: • We used a two-step method to fabricate novel crosslinked polysiloxane/SiO{sub 2} nanocomposite (CLPS-SiO{sub 2}). • Superhydrophobic surface on cotton fiber can be conveniently constructed by CLPS-SiO{sub 2}. • Color and softness of the CLPS-SiO{sub 2} treated fabric would not be influenced at all. • The CLPS-SiO{sub 2} treated fabric possessed good washing durability. - Abstract: Novel crosslinked polysiloxane/SiO{sub 2} nanocomposite (CLPS-SiO{sub 2}) was successfully prepared via the in-situ condensation reaction of silica sols and crosslinked polysiloxane with end-capped triethoxysilane in solvent, which was firstly fabricated through the modification of our previously developed crosslinked polysiloxane with end-capped epoxy groups using aminopropyltriethoxysilane (APTES) and noted as APTES-CLPS. Chemical structures and thermal properties of the as-prepared resultants were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectra ({sup 1}H/{sup 13}C NMR) and thermogravimetric analysis (TGA). CLPS-SiO{sub 2} was applied as surface modification agent to treat cotton fabrics. Film morphologies and surface properties were examined with scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and other instruments. FTIR and NMR confirmed structure of the products. CLPS-SiO{sub 2} showed better thermal stability than APTES-CLPS due to anchor of the nanosilica. APTES-CLPS could deposit a smooth film on cotton fiber surface. Besides, CLPS-SiO{sub 2} also coated the fibers with many nano-scaled tubercles beneath this smooth film by SEM. However, the APTES-CLPS film and the CLPS-SiO{sub 2} film on silicon-wafer were never homogeneous and had a few low or high peaks. The root mean square roughness (Rq) of APTES-CLPS film reached to 0.441 nm in 2 × 2 μm{sup 2} scanning field and at 5 nm data scale. Owing to the incorporation of

  19. Fabrication and characterization of superhydrophobic and superlipophilic silica nanofibers mats with excellent heat resistance

    Directory of Open Access Journals (Sweden)

    Gao S.

    2016-01-01

    Full Text Available A kind of silica nanofibers (SNF mats with superhydrophobicity and superlipophilicity as well as excellent heat resistance, had been prepared by modifying of 1, 1, 1, 3, 3, 3-hexamethyldisilazane on electrospun SNF mats. The effects of heat treatment time on properties of modified SNF mats were investigated by scanning electron microscopy, nitrogen absorption analysis, X-ray photoelectron spectroscopy, and contact angle measurement. With high specific surface area 240.1 m2/g, the optimal modified SNF mat approached water contact angle (WCA 153.2° and fuel contact angle (FCA 0°, furthermore, even after annealing by 450°C in air for 1h , WCA remained at 135.5° and FCA kept at 3.8°, which opened a new way to improve heat resistance of fuel-water filter paper.

  20. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  1. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Understanding the Mechanism of Action of Triazine-Phosphonate Derivatives as Flame Retardants for Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Monique M. Nguyen

    2015-06-01

    Full Text Available Countless hours of research and studies on triazine, phosphonate, and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, a limited number of studies shed light on the mechanism of flame retardancy of their combination on cotton fabrics. The purpose of this research is to gain an understanding of the thermal degradation process of two triazine-phosphonate derivatives on cotton fabric. The investigation included the preparation of diethyl 4,6-dichloro-1,3,5-triazin-2-ylphosphonate (TPN1 and dimethyl (4,6-dichloro-1,3,5-triazin-2-yloxy methyl phosphonate (TPN3, their application on fabric materials, and the studies of their thermal degradation mechanism. The studies examined chemical components in both solid and gas phases by using attenuated total reflection infrared (ATR-IR spectroscopy, thermogravimetric analysis coupled with Fourier transform infrared (TGA-FTIR spectroscopy, and 31P solid state nuclear magnetic resonance (31P solid state NMR, in addition to the computational studies of bond dissociation energy (BDE. Despite a few differences in their decomposition, TPN1 and TPN3 produce one common major product that is believed to help reduce the flammability of the fabric.

  3. Conductive reduced graphene oxide/MnO2 carbonized cotton fabrics with enhanced electro -chemical, -heating, and -mechanical properties

    Science.gov (United States)

    Tian, Mingwei; Du, Minzhi; Qu, Lijun; Zhang, Kun; Li, Hongliang; Zhu, Shifeng; Liu, Dongdong

    2016-09-01

    Versatile and ductile conductive carbonized cotton fabrics decorated with reduced graphene oxide (rGO)/manganese dioxide (MnO2) are prepared in this paper. In order to endow multifunction to cotton fabric, graphene oxide (GO) is deposited on cotton fibers by simple dip-coating route. MnO2 nanoparticles are assembled on the surface of cotton fabric through in-situ chemical solution deposition. MnO2/GO@cotton fabrics are carbonized to achieve conductive fabric (MnO2/rGO@C). The morphologies and structures of obtained fabrics are characterized by SEM, XRD, ICP and element analysis, and their electro-properties including electro-chemical, electro-heating and electro-mechanical properties are evaluated. The MnO2/rGO@C yields remarkable specific capacitance of 329.4 mA h/g at the current density of 100 mA/g, which is more than 40% higher than that of the control carbonized cotton fabric (231 mA h/g). Regarding electro-heating properties, the temperature of MnO2/rGO@C fabric could be monotonically increased to the steady-state maximum temperatures (ΔTmax) of 36 °C within 5 min under the applied voltage 15 V while the ΔTmax = 17 °C of the control case. In addition, MnO2/rGO@C exhibits repeatable electro-mechanical properties and its normalized resistance (R-R0)/R0 could reach 0.78 at a constant strain (curvature = 0.6 cm-1). The MnO2/rGO@C fabric is versatile, scalable, and adaptable to a wide variety of smart textiles applications.

  4. The Effects of TiO2 Nanoparticles over Time on the Physical and Mechanical Properties of White Cotton Fabrics and Fabrics Died with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mirkhan

    2016-05-01

    Full Text Available Today, nano particles of titanium are used mainly in the textile industry. Examples of it can be named as cultivation of nano particles of titanium on polyester cotton fabrics, with features as white-washing, self- cleaning and also the effect of TiO2 on the dyed textiles with natural dyes as well as the effect of commodities reactive to increase the brightness and transparency of them. But, as this procedure has the added benefits, it will sure have some disadvantages and thus, the aim of this project is to study the effects of nano- TiO2 in the passage of time, at different times over the physical and mechanical properties of checked cotton fabrics. And even the study of dyed fabrics with natural dyes in reactive so that it can examine the beneficial and harmful effects of the degradation and also check the results on the Cotton Nano TiO2 Fabric.

  5. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    Energy Technology Data Exchange (ETDEWEB)

    Pransilp, Porntapin, E-mail: lookpad_hae@hotmail.com [Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University (Thailand); Pruettiphap, Meshaya, E-mail: pruettiphap_m@hotmail.com [Program of Petrochemistry, Faculty of science, Chulalongkorn University (Thailand); Bhanthumnavin, Worawan, E-mail: worawan.b@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University (Thailand); Paosawatyanyong, Boonchoat, E-mail: paosawat@sc.chula.ac.th [Department of Physics, Faculty of Science, Chulalongkorn University (Thailand); Kiatkamjornwong, Suda, E-mail: ksuda@chula.ac.th [Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University (Thailand); Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University (Thailand); Academy of Science, The Royal Society of Thailand, Sueapa, Dusit, Bangkok 10300 (Thailand)

    2016-02-28

    Graphical abstract: - Highlights: • Both O{sub 2} and N{sub 2} plasma increased cotton surface wettability and higher K/S. • SF6 plasma gave hydrophobicity on cotton surface and increased contact angle to 138°. • Plasma treatment on cotton fabric produced surface roughness. • XPS confirmed the generation of new functional groups on cotton fabric. • Wettability and surface roughness controlled K/S and good ink adhesion. - Abstract: Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O{sub 2}), nitrogen (N{sub 2}) and sulfur hexafluoride (SF{sub 6}), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O{sub 2} plasma treatments produced new functional groups, −O−C−O/C=O and O−C=O while N{sub 2} plasma treatments produced additionally new functional groups, C−N and O=C−NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF{sub 6} plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF{sub 6} plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and

  6. The Effect of Stretching on Ultraviolet Protection of Cotton and Cotton/Coolmax-Blended Weft Knitted Fabric in a Dry State

    Directory of Open Access Journals (Sweden)

    Sun-pui Ng

    2013-10-01

    Full Text Available In this paper, the ultraviolet protection factor (UPF of weft knitted fabrics made from 20Ne cotton yarn, Coolmax yarn and their blends in dry, relaxed and stretched states were studied. According to the fibre composition, samples were divided into three groups: Group I (single cotton yarn; Group II (cotton/cotton combination; and Group III (Coolmax/cotton combination for discussion. In addition, yarn and fabric properties such as yarn tenacity, yarn strength, fibre combination and water vapour transmission that affect the corresponding UPF values are used for formulating a prediction model in order to determine UPF. Generally speaking, when samples are measured under stretched conditions in a dry state, they exhibit a remarkable reduction in ultraviolet protective power, as pores are opened up and UV radiation can easily penetrate through these pores. In addition, greater stretch percentage came along with greater reduction in UPF. This can be explained by the fact that the amount and the size of pores increase when samples are subjected to greater tension.

  7. Protease Enzyme Used for Artificial Ageing on Modern Cotton Fabric for Historic Textile Preservation and Restoration

    Directory of Open Access Journals (Sweden)

    Harby E. AHMED

    2013-06-01

    Full Text Available Some of Historical textiles objects in Egyptian museums are containing different types of adhesives from previous restoration processes. Furthermore, they may contain some protein stains such as blood stains, which could involve more damage for the historical textiles. In the context of removing the adhesives by various methods, one may cause damage in the textiles, therefore the biotechnological application of enzymes seems to be a very promising approach in the restoration of historical objects. Our results show that enzyme removing is the most effective method, among all tested methods, in the removing of resistant old adhesives and stains. The tested enzymes for the removing technique solved the problems caused by other traditional removing techniques of resistant old adhesives from museum textiles. The main fibers of the tested objects were cotton fibers dyed with some natural dyes. Thus, the fibers that were used in this study were cotton, dyed with Turmeric dye, madder dye mordanted with alum, CuSO4 or Ferric Citrate, as well as without mordant. Additionally,we studied the effect of the enzyme on the mechanical parameters of fibers (Tensile strength, Elongation, Crystallinity index, by FTIR, XRD and ASTM. Furthermore, the effect of enzymes on the morphology of the surface of the untreated and enzymatically treated dyed fabric was investigated by using SEM and Stereoscopy. The effect of enzymes as a function of enzyme concentration and time of treatment on the fabrics color parameters was extensively studied. There was no impact-destructive effect on cotton fibers after the enzyme treatment. Thus, we could conclude that the enzyme have a very slight effect on cotton fibers dyed with natural dyes.

  8. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Science.gov (United States)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  9. Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil

    Science.gov (United States)

    Qu, Mengnan; He, Jinmei; Cao, Biyun

    2010-10-01

    Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

  10. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  11. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    Science.gov (United States)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  12. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    Science.gov (United States)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  13. Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    Science.gov (United States)

    Pi, Pihui; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-01

    Cu2S and Cu2O composite (Cu2S@Cu2O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu2S@Cu2O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu2S@Cu2O film on copper surface on a large scale due to its simplicity and low cost.

  14. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  15. Dyeing of Organic Cotton Fabric using Conventional and Ultrasonic Exhaust Dyeing Method

    Directory of Open Access Journals (Sweden)

    Uzma Syed

    2013-04-01

    Full Text Available In this research dyeing behavior of organic cotton woven fabric using ultrasonic technique and conventional dyeing method has been compared. The fabric samples were dyed with reactive dyes Drimarene Red Cl-5B and Drimarene Blue Cl-BR (0.5% owf using exhaust dyeing method. The samples were ultrasonically dyed at varied temperature (60, 50 and 40oC for 60, 50, 40 and 30 minutes and for conventional method at varied temperature but at recommended time, 60 minutes. For optimizing the dyeing behavior, the samples were causticized by pad-batch method and then dyed with ultrasonic technique at varied temperature and time. It has been observed organic cotton fabric dyed using ultrasonic exhaust method at 60oC for 50 minutes gives highest (K/S?max value, excellent fastness property, deeper dye diffusion and less surface deterioration compared to the conventional dyeing method. Moreover, causticized and dyed sample with ultrasonic technique at 60oC for 30 minutes gives colour strength value almost equal to the conventional recommended dyeing method. Hence, dyeing of organic material using ultrasonic exhaust method saves energy and time

  16. Research on marking lines of silicone elastomer PDMS for super-hydrophobic surface fabrication based on picosecond laser

    Science.gov (United States)

    Gang, Xiao; Dong, Shiyun; Yan, Shixing; Song, Chaoqun; Wang, Bin

    2016-10-01

    The picosecond laser has ultrashort pulse and superstrong peak power, which make it being focused on and applied in the micro-nanoscale fabrication field. Silicone elastomer PDMS is a typical antifouling material which can desorb defacement, using picosecond laser etching the surface through the way of galvanometer scanning in order to obtain a surface with micro-nano texture. The article studied the relationship between process parameters such as the power density, the scanning rate and the appearance of etched groove respectively, especially the width and depth of the groove. The results show that : for single marking, with the raise of the laser power density I, the depth of the groove increases, the inclination angle of the side wall is reduced. In another time, with the increase of the scanning rate v ,the depth of the groove decreases gradually and the surface morphology cannot be seen clearly. For multiple marking, the depth of the groove shown a falling slope from big to small with the increase of marking number. Finally,we got a path to optimize the process parameters to obtain a surface with micro-nano structures. After testing the surface contact angle, we found that the surface contact angle increased from 113° to 152°,which reached the level of superhydrophobic surface.

  17. Influence of the dye transfer inhibitors for the washing of softened cotton fabric

    OpenAIRE

    Carrión Fité, Francisco Javier

    2014-01-01

    In this, work the performance of several dye transfer inhibitors (DTI) copolymers (PVP, PVNO and PVNO with PVP) was tested for use as DTIs in washing softened undyed cotton fabric, in the presence of a direct dye in the washing bath, with and without water hardness. Three direct dyes were tested: red, blue and yellow. The detergent used was composed of an LAS anionic surfactant and a non-ionic fatty alcohol ethoxylate surfactant with 7¿m. OE, both separately and in the different molar proport...

  18. Scouring Potential of Mesophile Acidic Proteases of Pseudomonas aeruginosa for Grey Cotton Fabrics

    Science.gov (United States)

    Saravanan, D.

    2013-04-01

    Mesophile, acidic proteases were produced using the microbial source, Pseudomonas aeruginosa, with wider thermal tolerances. Process conditions of scouring treatment were optimized using Taguchi method for optimum temperature, time, pH and concentration of protease. Treatment with the protease lower weight loss values compared to the alkali scouring, however, significant improvement in the absorbency compared to the grey samples was observed. Large amounts of pectin left out in the samples resulted in higher extractable impurities, substantiated by the FTIR results. Relatively, lower reduction in the tear strengths was observed in both warp and weft directions after protease treatment of the cotton fabrics.

  19. Superhydrophobic Properties of Nanotextured Polypropylene Foils Fabricated by Roll-to-Roll Extrusion Coating

    DEFF Research Database (Denmark)

    Telecka, Agnieszka; Murthy, Swathi; Sun, Ling

    2016-01-01

    We demonstrate the use of roll-to-roll extrusion coating (R2R-EC) for fabrication of nanopatterned polypropylene (PP) foils with strong antiwetting properties. The antiwetting nanopattern is originated from textured surfaces fabricated on silicon wafers by a single-step method of reactive ion...

  20. STUDY ON THE BIOSCOURING TREATMENT OF 50 % OF HEMP + 50 % OF COTTON FABRICS

    Directory of Open Access Journals (Sweden)

    PUSTIANU Monica

    2017-05-01

    Full Text Available This work presents the study of the Bioscouring treatment applied on 50 % of hemp + 50 % of cotton blended materials. The goal of the treatment was the removing of morphological impurities present in cotton and hemp fibers in order to obtain cleaner materials with better properties. For enzymatic treatments different concentrations (1-3 % o.w.f from a commercial product named Beisol PRO (a mixture of enzymes pectinases were used. The reaction media was made of phosfate buffer solution of 0.1 M and pH 8. (sodium phosfate/disodium phosphate, 2 g/L sodium citrate (complexing agent and 0.5 % Denimcol Wash RGN (wetting agent. All the experiments were carried out after a central, rotatable second order compound program with two independent variables: enzyme concentration (concentrations between 1-3 % o.w.f and treatment time (15-55 minutes at 20:1 liquid to fabric ratio and a temperature of 55 0C. The reatment efficiency has been verified by the following analyses: weight loss, hydrophilicity, whiteness degree, yellowness degree, crystallinity, tensile strength, elongation at break, Scanning Electron Microscopy (SEM, spectrophotometric analysis in CIELAB system of the samples dyed with alizarin dye. After all the investigations it was found that the bioscouring procedure of 50 % of hemp + 50 % of cotton blended materials conducted to a proper removal of the morphological impurities without affecting the internal structure of cellulose or any significant degradation of the material.

  1. Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric.

    Science.gov (United States)

    Javid, Amjed; Raza, Zulfiqar Ali; Hussain, Tanveer; Rehman, Asma

    2014-01-01

    The present study dealt with emulsive fabrication of chitosan microcapsules encapsulating essential oils in the present of bio/surfactant. The size distribution, morphology and stability of microcapsules were examined by using advanced surface characterisation techniques. At cetyl trimethyl ammonium bromide (CTAB) concentration of 330 mg/L, the smallest average size of microcapsules was observed as12.8 μm; whereas with biosurfactant at 50 mg/L, the microcapsules of smallest average size of 7.5 μm were observed. The fabricated microcapsules were applied on a desized, bleached and mercerised cotton fabric by using pad-dry-cure method by using a modified dihydroxy ethylene urea as a cross-linking agent. The cross-linking was confirmed by using scanning electron microscopy and Fourier transform infrared spectroscopy techniques. The antibacterial activity of finished fabric was evaluated using the turbidity estimation method. The stiffness and wrinkle recovery properties of the treated fabric were also investigated by using the standard methods. In general, antibacterial activity of treated fabric increased with the increase in chitosan and essential oil concentrations, whereas stiffness increased with increase in concentration of chitosan but decreased with increase in essential oil concentration.

  2. Influence of the fluorescent brightener Periblanc BA on the degree of whiteness of the knitted cotton fabric

    Directory of Open Access Journals (Sweden)

    Miljković Milena N.

    2011-01-01

    Full Text Available In this study the influence of the different fluorescent brightener Periblanc BA concentrations on the degree of knitted cotton fabric whiteness was investigated. Two consecutive experimental runs were performed. The first was the bleaching of the knitted cotton fabric with hydrogen peroxide using the methods of two and single bath exhaustion while the second was the optical bleaching with fluorescent brightener Periblanc BA using the exhaustion method. CIE Whiteness Index and Tint value were measured on the Color-Eye 3000 spectrophotometer at the standard illuminant D65 (Ice-Texicon, d/8, D65/10° while K/S values were determined using the Kubelka Munk equation. The results show that cotton fabric bleached with fluorescent brightener Periblanc BA after bleaching with hydrogen peroxide using two bath exhaustion method has higher degree of whiteness (118.8 with a reddish tint in comparison to the one bleached with hydrogen peroxide using single bath method (106.1.

  3. Synthesis, structural characterization and antibacterial activity of cotton fabric modified with a hydrogel containing barium hexaferrite nanoparticles

    Science.gov (United States)

    Staneva, Desislava; Koutzarova, Tatyana; Vertruyen, Benedicte; Vasileva-Tonkova, Evgenia; Grabchev, Ivo

    2017-01-01

    Barium hexaferrite nanoparticles were synthesized by co-precipitation of Ba2+ and Fe3+ cations with NaOH under of high-power ultrasound. The nanoparticles were dispersed in an aqueous solution of the hydrogel precursors. This solution was used to impregnate the cotton fabric dyed with a photoinitiator. The composite material BaFe12O19 nanoparticles-hydrogel-cotton fabric was prepared by surface initiate photopolymerization under visible light. The modification of the cotton fabric and uniform distribution of the nanoparticles in the structure of the hydrogel were analyzed by scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), fluorescence and colourimetric analyses. The antibacterial efficacy of the material was evaluated against Gram-negative Escherichia coli and Pseudomonas aeruginosa.

  4. Gamma radiations induced improvement in dyeing properties and colorfastness of cotton fabrics dyed with chicken gizzard leaves extracts

    Science.gov (United States)

    Batool, Fatima; Adeel, Shahid; Azeem, Muhammad; Ahmad Khan, Ali; Ahmad Bhatti, Ijaz; Ghaffar, Abdul; Iqbal, Naeem

    2013-08-01

    Cotton fabric and chicken gizzard leaves powder were treated with different absorbed doses of 5, 10, 15, 20 and 25 kGy using Cs-137 gamma irradiator. Effects of different mordants on dyeing of un-irradiated and irradiated cotton fabrics were investigated in the CIE Lab system using Spectraflash SF650. Methods suggested by International Standard Organization (ISO) were followed throughout the study period. The results indicated that color strength of cotton fabric was significantly improved by the gamma ray treatment. Absorbed dose of 10 kGy was proved to be most effective in improving cotton dyeing properties compared with other levels of gamma radiation used in the study. The optimum temperature for dyeing was 60 °C with the time duration of 60 min using 4 g/L of electrolyte with alkali solubilized extract of chicken gizzard. Furthermore, 4% of iron (Fe) as pre-mordant and 1% of tannic acid (TA) as post-mordant proved to be more effective in enhancing the color fastness properties of irradiated cotton fabric.

  5. Preparation of functionalized cotton fabrics by means of melatonin loaded β-cyclodextrin nanosponges.

    Science.gov (United States)

    Mihailiasa, Manuela; Caldera, Fabrizio; Li, Jiemeng; Peila, Roberta; Ferri, Ada; Trotta, Francesco

    2016-05-20

    Biofunctional textiles are a new category of advanced materials which combine conventional textiles with advanced drug delivery systems to obtain fabrics able to release active principles through skin. The work presents the synthesis of hyper cross-linked β-cyclodextrins nanosponges with the carbonyl group acting as bridge between cyclodextrin molecules. The result of the synthesis is a 3-D porous structure, where melatonin molecules have been complexed. The complex has been characterized by elemental analysis, DSC, SEM, XRD and FT-IR spectroscopy and the results confirm that melatonin interacts with the synthesized nanosponge at molecular level. Melatonin loaded nanosponges have been dispersed on cotton fibres, which have proved to be a suitable substrate for durable nanosponge adsorption. The in vitro release tests from the funtionalized fabrics have shown a zero order kinetics, which is typical of a reservoir diffusion controlled system.

  6. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    Science.gov (United States)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  7. Application of fluorinated compounds to cotton fabrics via sol-gel

    Science.gov (United States)

    Ferrero, Franco; Periolatto, Monica

    2013-06-01

    The aim of this work was the study of the surface modification of cotton fibers to confer hydro and oil repellency to the fabrics. A surface treatment not involving the bulk of the fibers was chosen, so fabrics can maintain comfort properties. Moreover the study focused on an economical and environmental friendly process, in order to obtain an effective treatment with good fastness to washing. A modified silica based film was applied on fibers surface by sol-gel, comparing laboratory grade reagents with a commercial product as precursors and optimizing process parameters. From obtained results sol-gel can be indicated as a promising process to confer an effective and durable finishing to cotton fibers with low add-ons. Long impregnation times can significantly improve the treatment fastness, while ironing the washed samples can restore, at least partially, hydro and oil repellency lost after the washing. Obtained results were supported by a deep surface characterization of untreated, treated and washed samples. The best results were obtained using the commercial product as the only precursor. This is interesting for an industrial application, due to the low cost of this product if compared with the laboratory grade reagents investigated. Some applications of finished textiles can be for household use, technical garments, umbrellas or outdoor textiles.

  8. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton.

    Science.gov (United States)

    Surdu, Lilioara; Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes.

  9. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton

    Science.gov (United States)

    Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes. PMID:25276112

  10. Thermal Comfort Properties of Clothing Fabrics Woven with Polyester/Cotton Blend Yarns

    Directory of Open Access Journals (Sweden)

    Özdemir Hakan

    2017-06-01

    Full Text Available In this research, thermal and water vapor resistance, components of thermal comfort of 65/35 and 33/67% polyester/ cotton (PES/CO blend fabrics woven with 2/2 twill, matt twill, cellular and diced weaves, which are commonly used for clothing, were determined. The results indicate that both the fabric construction and the constituent fiber properties affect thermal comfort properties of clothing woven fabrics. Cellular weave, which is derivative of sateen weave and diced weave, which is compound weave, has the highest thermal resistance appropriating for cold climatic conditions. On the other hand, the 2/2 twill weave and matt twill weave, which is derivative of sateen weave, depicted the lowest water vapor thermal resistance, making it convenient for hot climatic conditions. Besides, fabrics woven with 65/35% PES/CO blend yarns have higher thermal resistance, so they are suitable for cold climatic conditions. Fabrics woven with 33/67% PES/CO blend yarns have lower water vapor resistance, so they are convenient for hot climatic conditions.

  11. Rapid fabrication of superhydrophobic Al/Fe2O3 nanothermite film with excellent energy-release characteristics and long-term storage stability

    Science.gov (United States)

    Ke, Xiang; Zhou, Xiang; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei

    2017-06-01

    One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe2O3 nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al2O3 shell and FAS-17. Superhydrophobic Al/Fe2O3 nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in natural aging test and 60.5% in accelerated aging test. This study is instructive to the practical applications of nanothermites, especially in highly humid environment.

  12. An Approach to Mass Customization of Military Uniforms Using Superoleophobic Nonwoven Fabrics (Postprint)

    Science.gov (United States)

    2010-11-01

    AFRL-RX-TY-TP-2010-0051 AN APPROACH TO MASS CUSTOMIZATION OF MILITARY UNIFORMS USING SUPEROLEOPHOBIC NONWOVEN FABRICS POSTPRINT Dnyanada...2010 An Approach to Mass Customization of Military Uniforms Using Superoleophobic Nonwoven Fabrics (POSTPRINT) FA8650-07-1-5916 0602102F GOVT L0...hydroentangled nonwovens and nylon-cotton blended woven fabrics were modified, and made superhydrophobic and superoleophobic to protect soldiers against the

  13. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.

    Science.gov (United States)

    Guo, Ping; Zhai, Shangru; Xiao, Zuoyi; An, Qingda

    2015-05-15

    Facing the issues of significant increase of industrial oily wastewater and frequent accident of oil spills, the developing of efficient and affordable absorbents for improving oil pollution is of practical significance. Herein, several superhydrophobic and superoleophilic materials, utilizing filter paper, filter cloth and polyester sponge as substrates, through facile coating of hybrid SiO2 colloid particles from controllable PMHS-TEOS sol system were presented. These methyl-modified particles not only provided hierarchical micro/nano-scale structure with distinct roughness, but also largely lowered the surface energy of the coated substances, leading to excellent superhydrophobic and superoleophilic surfaces. The modified filter cloths could be applied for oil/water separation owing to the flexible and foldable property; sponges could efficiently absorb oil or organic solvents in situ on account of its low density and high porosity, and meanwhile the absorbed oil could be easily recollected by simple squeezing. It is worth mentioning that both modified filter cloths and sponges exhibited excellent selectivity, high efficiency, outstanding rapidity and remarkable recyclability. More importantly, after treatment of 100 abrasion cycles with metal scalpel and strongly acidic and basic water droplets, the whole WCA values of resultant filter cloths still maintained superhydrophobic character (>150°), illuminating the charming mechanical and chemical stability of sol-gel processed coating with hierarchical roughness and covalently bonded methyl groups. Combining controllable fabrication process and cheap raw precursors, this method enables scalable manufacturing of stable and superhydrophobic substances, which are promising in practical applications involved in oil/water separation and oil sorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    Science.gov (United States)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-02-01

    Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O2), nitrogen (N2) and sulfur hexafluoride (SF6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O2 plasma treatments produced new functional groups, sbnd Osbnd Csbnd O/Cdbnd O and Osbnd Cdbnd O while N2 plasma treatments produced additionally new functional groups, Csbnd N and Odbnd Csbnd NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher ink adhesion and wider color gamut after the O2 plasma treatment comparing with those after N2 plasma treatment.

  15. CCI and CI Join Hands:A Better Supply Chain with More Innovations on Cotton Fabrics

    Institute of Scientific and Technical Information of China (English)

    Tom; Xue

    2010-01-01

    Cotton Council International("CCI")and Cotton Incorporated("CI") joined forces again,from October 19-22,2010 at Intertextile Shanghai,to promote natural fiber-U.S.cotton.As global textile strategic partners,both organizations were bringing together alliances through the cotton

  16. Antimicrobial Activity of Perspiration Pads and Cotton Cloth Fabricated with the Ethyl Acetate Extract of Eichhornia crassipes (Mart. Solms

    Directory of Open Access Journals (Sweden)

    P. Lalitha

    2014-01-01

    Full Text Available Waterhyacinth is one of the most dangerous aquatic weeds causing various ecological and environmental issues. The plant has several pharmaceutical properties in spite of its harmful nature. In the present study, perspiration pads and cotton cloth fabricated with the ethyl acetate extract of waterhyacinth were evaluated for its activity against Corynebacterium. Perspiration pads and samples of cotton cloth were fabricated with ethyl acetate extract of Eichhornia crassipes by three methods, namely, dipping, sonication, and homogenization. The antimicrobial activity of the fabricated textile materials was tested against Corynebacterium, a microorganism commonly seen in human sweat. Disc diffusion method (AATCC 147 was used for evaluating the antimicrobial nature of the fabricated samples. Sonication was found to be efficient for coating of the extract on the cotton cloth, whereas dipping method was found to be efficient in case of perspiration pads. No bacterial growth was observed under and on the fabricated cloth and perspiration pads indicating that the fabrics possess bacteriostatic property and not bactericidal property and the absence of leaching of the extract. The results showed significant antimicrobial activity of the ethyl acetate extract of Eichhornia crassipes coated onto fabrics against Corynebacterium with no growth under and on the test sample.

  17. Wettability of natural superhydrophobic surfaces.

    Science.gov (United States)

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Preparation of antibacterial coating based on in situ synthesis of ZnO/SiO{sub 2} hybrid nanocomposite on cotton fabric

    Energy Technology Data Exchange (ETDEWEB)

    Barani, Hossein, E-mail: barani@birjand.ac.ir

    2014-11-30

    Graphical abstract: - Highlights: • In situ approach was used to synthesize ZnO/SiO{sub 2} nanocomposites. • Spherical structure and stabilized ZnO/SiO{sub 2} hybrid nanocomposites were synthesized. • The synthesized ZnO particles have a hexagonal wurtzite crystal structure. • The ZnO nanoparticles enhance the moisture content of cotton fabric. • ZnO/SiO{sub 2} loaded cotton fabrics presented a good antibacterial property. - Abstract: In this study, the antibacterial cotton fabric was prepared using zinc oxide/silicon dioxide (ZnO/SiO{sub 2}) nanocomposite. The ZnO nanoparticles were synthesized with an in situ approach using two different methods on the cotton fabric. One of the methods was to synthesize ZnO nanoparticles into the prepared sol solution, and then coating on the cotton fabric. The other method was to synthesize ZnO nanoparticles on the silicon dioxide-coated cotton fabric. The morphological, structural, thermal, and antibacterial properties of ZnO/SiO{sub 2} nanocomposite-coated cotton fabric was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffractometer, thermo gravimetric analysis, and Attenuated Total Reflection-Fourier Transform Infrared spectrometer. Synthesis of ZnO nanoparticles on the silicon dioxide coated cotton fabric sample resulted in agglomerated nanoparticles on the surface of cotton fiber, while the spherical nanoparticles structure was formed by synthesizing them into the sol solution of silicon dioxide. The EDS results indicated presence of ZnO/SiO{sub 2} nanocomposite on the surface of coated cotton fabric, and presented an inhibition zone against Staphylococcus aureus and Escherichia coli.

  19. Interfacial microfluidic transport on micropatterned superhydrophobic textile.

    Science.gov (United States)

    Xing, Siyuan; Jiang, Jia; Pan, Tingrui

    2013-05-21

    Textile-enabled interfacial microfluidics, utilizing fibrous hydrophilic yarns (e.g., cotton) to guide biological reagent flows, has been extended to various biochemical analyses recently. The restricted capillary-driving mechanism, however, persists as a major challenge for continuous and facilitated biofluidic transport. In this paper, we have first introduced a novel interfacial microfluidic transport principle to drive three-dimensional liquid flows on a micropatterned superhydrophobic textile (MST) platform in a more autonomous and controllable manner. Specifically, the MST system utilizes the surface tension-induced Laplace pressure to facilitate the liquid motion along the hydrophilic yarn, in addition to the capillarity present in the fibrous structure. The fabrication of MST is simply accomplished by stitching hydrophilic cotton yarn into a superhydrophobic fabric substrate (contact angle 140 ± 3°), from which well-controlled wetting patterns are established for interfacial microfluidic operations. The geometric configurations of the stitched micropatterns, e.g., the lengths and diameters of the yarn and bundled arrangement, can all influence the transport process, which is investigated both experimentally and theoretically. Two operation modes, discrete and continuous transport, are also presented in detail. In addition, the gravitational effect as well as the droplet removal process have been also considered and quantitatively analysed during the transport process. As a demonstration, an MST design has been implemented on an artificial skin surface to collect and remove sweat in a highly efficient and facilitated means. The results have illustrated that the novel interfacial transport on the textile platform can be potentially extended to a variety of biofluidic collection and removal applications.

  20. Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via γ-ray-induced grafting

    Science.gov (United States)

    Miao, Hui; Bao, Fenfen; Cheng, Liangliang; Shi, Wenfang

    2010-07-01

    The perfluoroalkyl phosphate acrylates were grafted onto a cotton fabric via γ-ray irradiation to improve the hydrophobic and oleophobic properties. The change in chemical structure of grafted cotton fabric was detected by the Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy. The contact angles for water and sunflower oil were determined to be over 150° and 140°, respectively, after irradiated with a dose range of 471-5664 Gy. The flame retardancy of the fabric with a grafting ratio of over 13.0 wt% was improved, reaching to 24 compared with 18 of which before grafted, according to the limiting oxygen index measurement. The microstructure of the fabric before and after grafted was observed by the scanning electron microscope.

  1. Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via gamma-ray-induced grafting

    Energy Technology Data Exchange (ETDEWEB)

    Miao Hui; Bao Fenfen; Cheng Liangliang [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China); Shi Wenfang, E-mail: wfshi@ustc.ed [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China)

    2010-07-15

    The perfluoroalkyl phosphate acrylates were grafted onto a cotton fabric via gamma-ray irradiation to improve the hydrophobic and oleophobic properties. The change in chemical structure of grafted cotton fabric was detected by the Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy. The contact angles for water and sunflower oil were determined to be over 150 deg. and 140 deg., respectively, after irradiated with a dose range of 471-5664 Gy. The flame retardancy of the fabric with a grafting ratio of over 13.0 wt% was improved, reaching to 24 compared with 18 of which before grafted, according to the limiting oxygen index measurement. The microstructure of the fabric before and after grafted was observed by the scanning electron microscope.

  2. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution

    Science.gov (United States)

    Fan, Tao; Hu, Ruimin; Zhao, Zhenyun; Liu, Yiping; Lu, Ming

    2017-04-01

    A simple and economical micro-dissolved process of embedding titanium dioxide (TiO2) nanoparticles into surface zone of cotton fabrics was developed. TiO2 was coated on cotton fabrics in 7% wt NaOH/12% wt urea aqueous solution at low temperature. Photocatalytic efficiency of cotton fabrics treated with TiO2 nanoparticles was studied upon measuring the photocatalytic decoloration of Rhodamine B (RhB) under ultraviolet irradiation. Self-cleaning property of cotton fabric coated with TiO2 was evaluated with color depth of samples (K/S value). The treated fabrics were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FITR), tensile strength, stiffness and whiteness. The results indicated, TiO2 nanoparticles could be embedded on the surface layer of cotton fabrics throuth surface micro-dissolve method. Treated cotton fabrics possessed distinct photocatalytic efficiency and self-cleaning properties. Tensile strength and whiteness of modified cotton fabrics appeared moderately increasement.

  3. Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimetry

    Science.gov (United States)

    Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...

  4. Application of a phosphazene derivative as a flame retardant for cotton fabric using conventional method and supercritical CO2

    Science.gov (United States)

    Conventional pad-dry-cure (non-scCO2) and supercritical carbon dioxide (scCO2) application methods were investigated to study the effectiveness of a phosphazene derivative as a flame retardant on cotton fabric. 1,1',4,5-tetrahydrotrispiro[1,3,2-diazaphosphole-2,2'-[1,3,5,2,4,6]triazatriphosphinine-4...

  5. Wash fastness improvement of malachite green-dyed cotton fabrics coated with nanosol composites of silica–titania

    Indian Academy of Sciences (India)

    I Kartini; I Ilmi; E S Kunarti; Kamariah

    2014-10-01

    Washing fastness of dyed cotton fabrics by malachite green (MG) blended with nanosols composite of SiO2–TiO2 has been significantly enhanced. The nanoparticulate inorganic sols were prepared by acidcatalyzed hydrolysis of titanium (IV) tetraisopropoxide (TTIP) and tetraethylortosilicate (TEOS) in ethanol at room temperature. The effect of silica on the characteristics of nanosols composite of TiO2–SiO2 was studied. Nanosols morphology was examined by transmission electron microscope (TEM). The nanosols silica–titania composite showed homogeneous morphology of interconnected spheres of about 20–25 nm. Enhanced dye absorption was observed at nanosols with silica content. The reflection spectra of the samples before and after leaching test using sodium dodecyl sulphate were recorded. The results showed that embedding TiO2–SiO2 and SiO2 sols into the MG dye can improve the wash fastness by 40–95%. The highest improvement was obtained by SiO2–MG-coated cotton fabrics as well as composites of SiO2–TiO2–MG-dyed cotton fabrics at highest silica content. The MG-nanosols composite silica–titania dyed cotton fabric has also shown remarkable antibacterial activity over Staphylococcus aureus and Escherichia coli.

  6. Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric

    Directory of Open Access Journals (Sweden)

    M. M. AbdElhady

    2012-01-01

    Full Text Available Synthesis of chitosan/ZnO nanoparticles was performed using different concentrations of ZnO at different temperatures. Nanoparticles of ZnO/chitosan were prepared in rod form with average length 60 nm and average width 5–15 nm. Thus, obtained nanoparticles of ZnO/chitosan were characterized using UV spectrophotometer, FTIR, TEM, X-ray, and SEM. Size and shape of chitosan/ZnO nanoparticles relied on conditions of their synthesis. Notably, chitosan/ZnO in rod form with average length of 60 nm and average width 5–15 nm could be achieved. Application of chitosan/ZnO nanoparticles to cotton fabric conferred on the latter antibacterial and UV protection properties. Cotton fabric was characterized using SEM, ultraviolet protection factor (UPF rating, and antibacterial (gram-positive and gram-negative characteristics. Finished cotton fabric exhibited good antibacterial properties against gram-positive and gram-negative bacteria. The UV testes indicated a significant improvement in UV protection of finished cotton fabric which is increasing by increasing the concentration of nanoparticles of ZnO/chitosan.

  7. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans.

  8. In-Vitro Analysis of the Effect of Constructional Parameters and Dye Class on the UV Protection Property of Cotton Knitted Fabrics.

    Science.gov (United States)

    Kan, Chi-Wai; Au, Chui-Ha

    2015-01-01

    Cotton knitted fabrics were manufactured with different yarn types (conventional ring spun yarn and torque-free ring spun yarn) with different fibre types (combed cotton and combed Supima cotton) and yarn fineness (Ne30 and Ne40). These fabrics were then dyed with three types of dye (reactive, direct and sulphur dye) with three dye concentrations (0.1%, 1.0% and 5.0% on-weight of fabric (owf)) in three colours (red, yellow and blue). This study examined the impact of constructional parameters and dyeing on ultraviolet (UV) protection properties of cotton knitted fabric. In-vitro test with spectrophotometer was used for evaluating the UV protection property of dyed cotton knitted fabrics. Among the six parameters investigated, fineness of yarn and dye concentration were the most significant factors affecting UPF while the color effect is the least significant. Experimental results revealed that the UPF value of dyed fabrics made from combed cotton is generally higher than the combed Supima cotton since combed cotton is composed of shorter fibres which facilitate the blocking or absorption of UV radiation. Second, fabrics made with twist yarn (i.e. ring spun yarn) have higher UPF value than the corresponding ESTex one (i.e. torque-free yarn) in general since fabrics made with ring spun yarn tend to shrink during wet processing and so it is more compact. Third, the UPF value of fabrics made with 30Ne yarn was higher than the 40Ne one since it is thicker and has lower fabric porosity. Fourth, fabrics dyed with lower concentration of dye gave the lowest UPF. Fifth, the sulphur dyed samples performed worse than the reactive and direct dyed samples in terms of UV protection property. Sixth, there is no significant difference in UPF for red, yellow and blue coloured fabrics. Seventh, this study also demonstrated that lightness of fabric is negatively related to UV protection property.

  9. In-Vitro Analysis of the Effect of Constructional Parameters and Dye Class on the UV Protection Property of Cotton Knitted Fabrics.

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    Full Text Available Cotton knitted fabrics were manufactured with different yarn types (conventional ring spun yarn and torque-free ring spun yarn with different fibre types (combed cotton and combed Supima cotton and yarn fineness (Ne30 and Ne40. These fabrics were then dyed with three types of dye (reactive, direct and sulphur dye with three dye concentrations (0.1%, 1.0% and 5.0% on-weight of fabric (owf in three colours (red, yellow and blue. This study examined the impact of constructional parameters and dyeing on ultraviolet (UV protection properties of cotton knitted fabric. In-vitro test with spectrophotometer was used for evaluating the UV protection property of dyed cotton knitted fabrics. Among the six parameters investigated, fineness of yarn and dye concentration were the most significant factors affecting UPF while the color effect is the least significant. Experimental results revealed that the UPF value of dyed fabrics made from combed cotton is generally higher than the combed Supima cotton since combed cotton is composed of shorter fibres which facilitate the blocking or absorption of UV radiation. Second, fabrics made with twist yarn (i.e. ring spun yarn have higher UPF value than the corresponding ESTex one (i.e. torque-free yarn in general since fabrics made with ring spun yarn tend to shrink during wet processing and so it is more compact. Third, the UPF value of fabrics made with 30Ne yarn was higher than the 40Ne one since it is thicker and has lower fabric porosity. Fourth, fabrics dyed with lower concentration of dye gave the lowest UPF. Fifth, the sulphur dyed samples performed worse than the reactive and direct dyed samples in terms of UV protection property. Sixth, there is no significant difference in UPF for red, yellow and blue coloured fabrics. Seventh, this study also demonstrated that lightness of fabric is negatively related to UV protection property.

  10. Adhesion behaviors on superhydrophobic surfaces.

    Science.gov (United States)

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  11. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  12. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric.

    Science.gov (United States)

    Leistner, Marcus; Abu-Odeh, Anas A; Rohmer, Sarah C; Grunlan, Jaime C

    2015-10-05

    Polyester-cotton (PECO) blends are widely used in the textile industry because they combine the softness of cotton and the strength and durability of polyester. Unfortunately, both fiber types share the disadvantage of being flammable. The layer-by-layer coating technique was used to deposit a highly effective flame retardant (melamine polyphosphate) from water onto polyester-cotton fabric. Soluble melamine and sodium hexametaphosphate form this water-insoluble flame retardant during the coating procedure. This unique nanocoating imparts self-extinguishing properties to PECO with only 12% relative coating weight. Vertical flame testing, pyrolysis combustion flow calorimetry (PCFC), thermogravimetric analysis (TGA), and scanning electron microscopy were used to evaluate the quality of the coating as well as its flame retardant performance. A combination of both condensed and gas-phase activity appears to be the reason for this effective flame retardancy. Degradation pathways of both cotton and polyester are affected by the applied coating, as shown by PCFC and TGA. Use of environmentally benign and non-toxic chemicals, and the ease of layer-by-layer deposition, making this coating an industrially feasible alternative to render polyester-cotton fabric self-extinguishing.

  13. Fabrication of Corrosion Resistance Micro-Nanostructured Superhydrophobic Anodized Aluminum in a One-Step Electrodeposition Process

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2016-02-01

    Full Text Available The formation of low surface energy hybrid organic-inorganic micro-nanostructured zinc stearate electrodeposit transformed the anodic aluminum oxide (AAO surface to superhydrophobic, having a water contact angle of 160°. The corrosion current densities of the anodized and aluminum alloy surfaces are found to be 200 and 400 nA/cm2, respectively. In comparison, superhydrophobic anodic aluminum oxide (SHAAO shows a much lower value of 88 nA/cm2. Similarly, the charge transfer resistance, Rct, measured by electrochemical impedance spectroscopy shows that the SHAAO substrate was found to be 200-times larger than the as-received aluminum alloy substrate. These results proved that the superhydrophobic surfaces created on the anodized surface significantly improved the corrosion resistance property of the aluminum alloy.

  14. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    Science.gov (United States)

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-05-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices.

  15. Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric

    Science.gov (United States)

    Velhal, Sulbha Girish; Kulkarni, S. D.; Latpate, R. V.

    2016-09-01

    Among the different methods employed for the synthesis of nanoparticles, the biological method is most favorable and quite well established. In microorganisms, use of fungi in the biosynthesis of silver nanoparticles has a greater advantage over other microbial mediators. In this study, intracellular synthesis of silver nanoparticles from Aspergillus terrerus (Thom) MTCC632 was carried out. We observed that synthesis of silver nanoparticles depended on factors such as temperature, amount of biomass and concentration of silver ions in the reaction mixture. Hence, optimization of biosynthesis using these parameters was carried out using statistical tool `robust experimental design'. Size and morphology of synthesized nanoparticles were determined using X-ray diffraction technique, field emission scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy. Nano-embedded cotton fabric was further prepared and studied for its antibacterial properties.

  16. 纯棉蜡印布生产工艺%Wax printing of cotton fabric

    Institute of Scientific and Technical Information of China (English)

    张玲

    2012-01-01

    生产工艺流程较长,质量难以控制,应在包括坯布采购、前处理、染色、甩蜡、染蜡纹、退蜡、印花及后整理等工序中注意各种可能影响产品质量的问题.文中阐述了纯棉蜡印布加工要点,分析了常见问题产生的原因,提出了解决方法.%Wax printing of cotton fabric is introduced, matters needing attention in following procedures are pointed out, including merchandising, pretreatment, waxing, cracking, dyeing, de-waxing, printing and finishing. The reasons for problems in wax printing are analyzed, and solutions are put forward.

  17. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication.

    Science.gov (United States)

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-05-18

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices.

  18. Metallic superhydrophobic surfaces via thermal sensitization

    Science.gov (United States)

    Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.

    2017-06-01

    Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.

  19. The effect of plasma pre-treatment on NaHCO{sub 3} desizing of blended sizes on cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Li Xuming [Key Laboratory of Textile Science and Technology, Ministry of Education (China); College of Textiles, Donghua University, Shanghai 201620 (China); College of Textile and Clothing, Shaoxing University, Shaoxing 312000 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education (China); College of Textiles, Donghua University, Shanghai 201620 (China)

    2012-03-15

    The influence of the He/O{sub 2} atmospheric pressure plasma jet pre-treatment on subsequent NaHCO{sub 3} desizing of blends of starch phosphate and poly(vinyl alcohol) on cotton fabrics is investigated. Atomic force microscopy and scanning electron microscopy analysis indicate that the surface topography of the samples has significantly changed and the surface roughness increases with an increase in plasma exposure time. X-ray photoelectron spectroscopy analysis shows that a larger number of oxygen-containing polar groups are formed on the sized fabric surface after the plasma treatment. The results of the percent desizing ratio (PDR) indicate that the plasma pretreatment facilitated the blended sizes removal from the cotton fabrics in subsequent NaHCO{sub 3} treatment and the PDR increases with prolonging plasma treatment time. The plasma technology is a promising pretreatment for desizing of blended sizes due to dramatically reduced desizing time.

  20. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  1. Roles of Novel Reactive Cationic Copolymers of 3-Chloro-2-hydroxypropylmethyldiallylammonium Chloride and Dimethyldiallylammonium Chloride in Fixing Anionic Dyes on Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Yikai Yu

    2013-01-01

    Full Text Available The roles of novel reactive cationic copolymers (P(CMDA-DMDAACs of 3-chloro-2-hydroxypropylmethyldiallylammonium chloride (CMDA and dimethyldiallylammonium chloride (DMDAAC in fixing anionic dyes on cotton fabric were studied by modern instrumental analysis technologies such as FT-IR spectra and SEM analysis, to achieve the new theoretical guides for the wide applications of those dye fixatives. The FT-IR spectra of the obtained insoluble-water color lakes verified that they could be formed from the electrostatic interactions of the P(CMDA-DMDAACs with anionic dyes, which were further confirmed by the FT-IR analysis of the anionic dyes on dyeing cotton sample fixed by P(CMDA-DMDAACs. The FT-IR spectra of cotton samples fixed by P(CMDA-DMDAACs showed the absorptions of P(CMDA-DMDAACs and the signs similar to the formation of new ether linkage on cotton fabric even after being repeatedly washed, which were further confirmed by the SEM analysis of the fixed dyeing cotton samples. Thus, the reactive units (CMDA of the obtained P(CMDA-DMDAACs could be expected to bring about the covalent bonds with the hydroxyl groups of cotton (cellulose to form an ether linkage when fixing, resulting in the stronger interactions of P(CMDA-DMDAACs with cotton fabric, as well as their electrostatic forces with anionic dyes to produce the insoluble-water color lakes, for the development of fastness of anionic dyes on cotton fabric.

  2. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    Science.gov (United States)

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  3. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited electro-brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianchi [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); Ge, Shirong [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China)

    2015-11-30

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al{sub 2}O{sub 3} composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al{sub 2}O{sub 3} Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  4. Cotton fabric functionalisation with menthol/PCL micro- and nano-capsules for comfort improvement.

    Science.gov (United States)

    Mossotti, Raffaella; Ferri, Ada; Innocenti, Riccardo; Zelenková, Tereza; Dotti, Francesca; Marchisio, Daniele L; Barresi, Antonello A

    2015-01-01

    Cotton functionalisation with poly-ɛ-caprolactone (PCL) micro- and nano-capsules containing menthol was carried out with the aim of introducing a long-lasting refreshing sensation. The preparation of the polymer micro- and nano-capsules was carried out by solvent displacement technique. A confined impinging jets mixer was used in order to ensure fast mixing and generate a homogeneous environment where PCL and menthol can self-assemble. The micro- and nano-capsules and the functionalised fabrics were characterised by means of DSC, FT-IR spectroscopy and SEM imaging. Micro- and nano-capsules of different size, from about 200 to about 1200 nm, were obtained varying menthol to PCL ratio (from 0.76 to 8), overall concentration and flow rate (i.e. mixing conditions). The inclusion of menthol was confirmed by DSC analysis. A patch test was carried out by 10 volunteers. Micro-capsules were found to be effective in conferring the fabric a refreshing sensation without altering skin physiology.

  5. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    Science.gov (United States)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  6. Influence of Amino-Ffunctional Macro and Micro Silicone Softeners on the Properties of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Jatoi

    2015-01-01

    Full Text Available Amino-functional silicone softeners are most widely used type of soft finishes owing to their outstanding permanent softness, smoothness and handle characteristics. These soft finishes are prepared in different emulsion droplet sizes such as macro and micro emulsions providing varying characteristics on the textile on which they are applied. The macroemulsions due to their larger droplet sizes lubricate fabric and yarn surfaces, while the micro-emulsion, thanks to their smaller sizes penetrate inside fiber pores. In this research amino-functional macro and micro emulsions have been applied on dyed cotton fabric in 1:1 combination and compared against their influence on physical properties such as bending length, abrasion resistance, tensile strength, crease resistance and water repellency. These emulsions have also been compared for their influence on colorimetric properties; color difference and color strength (K/S values. The results reveal that the softener`s application in combination improves the properties deteriorated by each softener when applied separately

  7. New finishing possibilities for producing durable multifunctional cotton/wool and viscose/wool blended fabrics.

    Science.gov (United States)

    Ibrahim, N A; El-Zairy, M R; Eid, B M; El-Zairy, E M R; Emam, E M

    2015-03-30

    This research work focuses on the development of a one-bath functional finishing procedure for imparting durable multifunctional properties such as easy care, soft-hand, antibacterial and/or ultra violet (UV) protection to cotton/wool and viscose/wool blends using diverse finishing combinations and formulations. In this study finishing agents such as reactant resin, silicon softeners, 4-hydroxybenzophenone, triclosan, and pigment colorant were selected using magnesium chloride/citric acid as a mixed catalyst and the pad-dry microwave fixation technique. The results reveal that enhancement in the imparted functional properties are governed by type of the finished substrate as well as nature and concentration of finishing formulation components. The finished fabrics still retained high level of functionalities even after 15 consecutive laundering. Surface morphology and composition of selected samples were investigated using scan electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The mode of interactions was also investigated. Practical applications for multifunctionlization of cellulose/wool blended fabrics are possible using these sorts of proper finishing formulations and unique finishing application method.

  8. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    Science.gov (United States)

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.

  9. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.

  10. Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric

    Science.gov (United States)

    Yaghoubidoust, Fatemeh; Wicaksono, Dedy H. B.; Chandren, Sheela; Nur, Hadi

    2014-10-01

    Improving the electrical response of polypyrrole-cotton composite is the key issue in making flexible electrode with favorable mechanical strength and large capacitance. Flexible graphene oxide/cotton (GO/Cotton) composite has been prepared by dipping pristine cotton in GO ink. The composite‘s surface was further modified with polypyrrole (Ppy) via chemical polymerization to obtain Ppy/GO/Cotton composite. The composite was characterized using SEM, FTIR and XRD measurements, while the influence of GO in modifying the physicochemical properties of the composite was also examined using TG and cyclic voltammetry. The achieved mean particle size for Ppy/Cotton, Ppy/GO/Cotton and GO estimated using Scherrer formula are 58, 67 and 554 nm, respectively. FTIR spectra revealed prominent fundamental absorption bands in the range of 1400-1800 cm-1. The increased electrical conductivity as much as 2.2 × 10-1 S cm-1 for Ppy/GO/Cotton composite measured by complex impedance, is attributed to the formation of continuous conducting network. The partial reduction of GO on the surface of cotton (GO/Cotton) during chemical polymerization can also affect the conductivity. This simple, economic and environmental-friendly preparation method may contribute towards the controlled growth of quality and stable Ppy/GO/Cotton composites for potential applications in microwave attenuation, energy storage system, static electric charge dissipation and electrotherapy.

  11. Superhydrophobic Nickel Films Fabricated by Electro/Electroless Deposition%电化学沉积法制备超疏水镍薄膜

    Institute of Scientific and Technical Information of China (English)

    田菲菲; 胡安民; 李明; 毛大立

    2012-01-01

    通过电镀方法在铜基体表面制备出了粗糙镍表面,SEM照片显示镍层呈现纳米针状结构,接触角测试表明水在其表面接触角约为112°,调节电镀时间,增大纳米针尺寸并不能实现超疏水性.在针状镍表面继续施加化学镀,对微结构进行修饰,SEM照片显示当化学镀达到1min时,纳米针尖被球冠状结构所代替,水在表面接触角增至152.3°,这表明镍表面成功地从疏水性转变成了超疏水性.%Superhydrophobic nickel films were prepared by electrodeposition and electroless deposition without chemical modification. Experimental results reveal that the nickel film fabricated by electrodeposition is characterized with nanocone arrays and only has a contact angle of about 112°. By coupling electroless deposition, as the second step, hemispherically topped nanocones are generated when electroless deposition time amounts 1 min and a high contact angle as much as 152. 3° is obtained; nickel surface has successfully transformed from hydrophobic to superhydrophobic.

  12. PHYSICAL PROPERTIES OF ANTIBACTERIAL TREATED COTTON FABRICS AND EFFECT OF LAUNDRY CYCLE

    Directory of Open Access Journals (Sweden)

    PALAMUTCU Sema

    2014-05-01

    Full Text Available During daily usage of textiles, humidity and warmth conditions provide appropriate living conditions for bacteria and microorganisms in textile products. Bacteria growth, infection and cross infection by pathogens might develop due to usage of textile products. Especially since World War II, antibacterial textile products have developed as a result of the hygiene demand of the society. In this study, triclosan (sample A, quaternary ammonium plus triclosan (sample B, dichlorophenol (sample C, silver (sample D, quaternary ammonium (sample E and chitosan (sample F based six different antibacterial additives were applied on 100% cotton fabrics for antibacterial treatment. All six treated fabrics and the untreated fabric (control sample were washed for 40 cycles; the antibacterial efficacies were tested; changes in tear strength and Berger whiteness values of the samples were recorded prior to washing and after 1st, 5th, 10th, 20th and 40th washing cycles. Regarding all washing cycles, a decrease in tear strength results is observed between unwashed and 40 cycle washed samples. Textile materials such as bedlinen, pillow cases, surgeon gowns for which tear strength values are important and that have antibacterial treatments should be tested for tear strength values for different washing cycles to see if they meet minimum tear strength requirements. The change in tear strength and Berger whiteness of samples shows differences according to the antibacterial agent treated and washing cycle applied. Generally, slight decreases in tear strength values are observed. And slight decreases in whiteness, except for sample F which is treated with chitosan, are observed as well. Textile materials having antibacterial treatments should be tested for the special antibacterial agent they are treated and for the number of washing cycles that is required for their product life.

  13. Preparation and Properties of Conductive, Superhydrophobic and Oleophobic Polyester Fabrics%导电双疏涤纶织物制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    冯磊; 徐壁; 蔡再生

    2015-01-01

    目的:制备具有良好导电性能的超疏水疏油纺织品。方法首先利用化学镀方法在涤纶织物表面镀铜,构筑微米-亚微米粗糙结构,然后利用全氟辛基三甲氧基硅烷( PFTMS )通过化学气相沉积方法在镀铜织物表面覆盖一层低表面能基团,制备导电超疏水疏油织物。采用电子扫描电镜( SEM)、能量色散X射线光谱仪( EDXS)、接触角测试仪和方阻测试仪对其表面形貌、表面元素分布、疏水疏油性、导电性能进行研究。结果 PFTMS修饰的镀Cu织物导电性能优异,方阻为230 mΩ左右,织物抗紫外线指数达到50+;织物与水滴接触角达152.0°,与十六烷油滴接触角达120.7°。结论将化学镀和化学气相沉积法相结合,在涤纶纤维表面化学镀铜并用PFTMS进行低表面能物质修饰,可以成功制备具有导电功能的超疏水疏油纺织品。%ABSTRACT:Objective To prepare superhydrophobic and oleophobic textile fabrics with good conductive property. Methods The surface of polyester fabric was first coated with copper using the chemical copper-plating method to build a micron-submicron struc-ture. Then the superhydrophobic and oleophobic conductive fabrics were fabricated through chemical vapor deposition of 1H,1H, 2H,2H-perfluorooctyltrimethoxysilane (PFTMS) to generate a layer of low surface energy group on the surface of the Cu-planted polyester fabrics. The properties of amphiphobic polyester fabrics including surface morphology, element distribution, amphipho-bicity and electrical conductivity were investigated with scanning electron microscope ( SEM) , energy dispersive X-ray spectroscopy ( EDXS) , contact angle tester and square resistance tester. Results It showed that the PFTMS-Cu-modified polyester fabrics had outstanding conductive capability, the sheet resistance was about 230 mΩ, and the resistance to UV performance was up to 50+. The contact angles of the modified polyester fabrics

  14. Facile preparation of super durable superhydrophobic materials.

    Science.gov (United States)

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  16. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    Science.gov (United States)

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK(-1). Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles.

  17. Study on Performance Comparison between Linen Fabric and Cotton Fabric%亚麻织物与棉织物性能对比研究

    Institute of Scientific and Technical Information of China (English)

    熊芳; 蒋颖刚; 眭建华

    2012-01-01

    选用规格、结构相近的亚麻织物和棉织物,测定样品的拉伸、撕破、磨损、抗皱、悬垂、透气、透湿等性能指标,通过对比分析探讨亚麻织物性能特征。结果表明:亚麻成品布的撕破、耐磨、抗皱、悬垂等性能差于棉成品布,而拉伸、透气、透湿等性能优于棉成品布。经处理后的亚麻成品布的断裂强力、撕破强力、耐磨性、抗皱性均有所降低,而透气、透湿及悬垂性能却均有所提高。%To explore the characteristics of linen fabric performance, we comparatively analysis the performance of linen fabric and cotton fabric, which are similar in specification and structure. A series of performance test are made, such as tensile, tear, wear, anti-wrinkle and drape, breathability, moisture permeability and other performance indicators. The results show that the performance of linen finished cloth, such as tear, wear, anti-wrinkle and drape performance, is worse than cotton finished fabrics. While the stretch, breathability and moisture permeability properties are superior to cotton finished fabrics. After treatment, the fracture strength, tear strength, abrasion resist- ance and wrinkle resistance of linen fabric are decrease. While the breathability, moisture permeability and drape are improved.

  18. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.

    Science.gov (United States)

    Zhong, Xiao-Hua; Li, Ya-Li; Feng, Jian-Min; Kang, Yan-Ru; Han, Shuai-Shuai

    2012-09-21

    A continuous cotton-like carbon nanotube fiber yarn, consisting of multiple threads of high purity double walled carbon nanotubes, was fabricated in a horizontal CVD gas flow reactor with water vapor densification by the direct chemical vapor deposition spinning process. The water vapor interaction leads to homogeneous shrinking of the CNT sock-like assembly in the gas flow. This allows well controlled continuous winding of the dense thread inside the reactor. The CNT yarn is quite thick (1-3 mm), has a highly porous structure (99%) while being mechanically strong and electrically conductive. The water vapor interaction leads to homogeneous oxidation of the CNTs, offering the yarn oxygen-functionalized surfaces. The unique structure and surface of the CNT yarn provide it multiple processing advantages and properties. It can be mechanically engineered into a dense yarn, infiltrated with polymers to form a composite and mixed with other yarns to form a blend, as demonstrated in this research. Therefore, this CNT yarn can be used as a "basic yarn" for various CNT based structural and functional applications.

  19. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    Science.gov (United States)

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength.

  20. Ultrasonic effect on the desizing efficiency of α-amylase on starch-sized cotton fabrics.

    Science.gov (United States)

    Hao, Longyun; Wang, Rui; Fang, Kuanjun; Liu, Jingquan

    2013-07-25

    Enzymatic desizing by α-amylase and ultrasound irradiation are the two important clean technologies in the textile industry. In the present work, with the aim of giving a further insight to the influence of ultrasound on α-amylase activity and its desizing efficiency, the ultrasound-based experiments were afforded in two ways: (i) step-wise treatment of α-amylase by ultrasound and then enzymatic desizing, as well as; (ii) simultaneous utilization of ultrasound and α-amylase for the desizing. By the step-wise strategy, it is found that the ultrasound has negative impact on the α-amylase activity using soluble starch as substrate. However, the sonicated α-amylase possesses higher desizing efficiency because there are higher hydrophobic interactions between sonicated α-amylase protein and starch-sized cotton and thus intensifies its catalytic activity. By the simultaneous procedure, the enhancement to desizing efficiency is more pronounced than that by the step-wise procedure. This can be attributed to comprehensive actions of several reasons such as more effective stirring/mixing mechanism, damages or changes to substrate, more effective catalysis to hydrolytic reactions and faster removal of loosened products from the fabric bulk.

  1. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics

    Directory of Open Access Journals (Sweden)

    Gobi Nallathambi

    2011-12-01

    Full Text Available Silica nanoparticles particles were synthesized from rice hulls and characterized. The particles were found to be amorphous in nature, ranging in size from 50 to 100 nm. The concentration of silica nanoparticles, pH and curing time were taken as independent variables to design the experiment. Box-Behnken method has been used to derive the experimental plan and fifteen experiments were conducted. Regression equations have been formed with the dependent and independent variables and the results of all possible combinations have been derived. The combination of optimized concentration of BTCA and SHP were used as crosslinking agent and catalyst respectively and silica nano particles were used to enhance the physical properties of the cotton fabric. The effect of pH and curing time on physical properties were analysed by FTIR studies. By ranking method the best combination of process parameters were identified. From this study, it was observed that higher concentration of silica nanoparticles with BTCA improve the crease recovery angle and tensile strength. FTIR studies revealed that the increase of pH and curing time increases the ester carbonyl band intensity ratio.

  2. Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness

    Science.gov (United States)

    Singh, Arun K.; Singh, Jayant K.

    2017-09-01

    In this study, we have developed super-repellent surface on cotton fabric via a facile and eco-friendly strategy using zirconia particles with water-soluble siloxane emulsion. The coated fabric using zirconia-siloxane (ZS) coating showed super-repellency of liquids with surface tension >47.7 mN/m, like water, mixtures of isopropyl alcohol with deionized water (2% and 5%, v/v), and ethylene glycol with contact angle of 158°, 155°, 153° and 152°, respectively. Furthermore, the coated fabric displays low sliding angle, materials with ability to repel water in the presence of oily pollutants are very useful in application related to sea water. Thus as-prepared coated fabric, with dual functionality, is a promising material for many applications including anti-wetting, self-cleaning, support for aquatic floating devices and as a filtration material for rapid and continuous oil-water separation.

  3. Mechanical durability of superhydrophobic and oleophobic copper meshes

    Science.gov (United States)

    Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

    2014-10-01

    We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

  4. Applications of FT-IR spectroscopy to the studies of esterification and crosslinking of cellulose by polycarboxylic acids: Part II. The performance of the crosslinked cotton fabrics

    Science.gov (United States)

    Wei, Weishu; Yang, Charles Q.

    1998-06-01

    Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.

  5. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Superhydrophobic chitosan-based coatings for textile processing

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N.A., E-mail: NAI-72@yandex.ru [Ivanovo State Textile Academy, F. Engels Avenue 21, 153000 Ivanovo (Russian Federation); Philipchenko, A.B. [Kazan State Medical University, Butlerova 49, 420012 Kazan, Tatarstan (Russian Federation)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Chitosan nanoparticles can be used for design of the superhydrophobic anti-bacterial textile. Black-Right-Pointing-Pointer Spraying the nanoparticle dispersion allows one to get multiscale textured coating. Black-Right-Pointing-Pointer Relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates and coating wettability. - Abstract: A simple method to design the superhydrophobic anti-bacterial textile for biomedical applications was developed. For the coating formulation the spraying of nanoparticles dispersion over the textile sample was applied, allowing the way to get multiscale textured layer on a top of cotton fabric. The anti-bacterial functionality of coating is supported by using chitosan-based nanoparticles. In our approach the fabrication of nanoparticles was based on electrostatic interaction between amine group of chitosan and negatively charged fluoroanion. It was demonstrated that the relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates in the coating and its wettability as well as in durability of coatings in contact with aqueous media.

  7. COMPARATIVE STUDY OF EXHAUSTION AND PAD-STEAM METHODS FOR IMPROVEMENT OF HANDLE, DYE UPTAKE AND WATER ABSORPTION OF POLYESTER/COTTON FABRIC

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2011-09-01

    Full Text Available In this study, a pad-steam process for treatment of polyester/cotton fabric with sodium hydroxide is developed and the effects of process parameters on selected properties of the fabric are investigated. The results are compared with the conventional exhaustion process. Both processes improved the handle, dyeability and water absorption of the polyester/cotton fabric, but the pad-steam process has the advantages of less strength loss of the fibers, shorter treatment time, lower consumption of water and chemicals that make the process less hazardous to the environment.

  8. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    Science.gov (United States)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  9. Synthesis of uniform and size-controllable carbon nanospheres by a simple hydrothermal method and fabrication of carbon nanosphere super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Joula, Mohsen Heidari; Farbod, Mansoor, E-mail: farbod_m@scu.ac.ir

    2015-08-30

    Highlights: • A simple hydrothermal method was used to produce carbon nanospheres (CNSs). • The size of CNSs was controlled by the concentration of initial sucrose solution. • The size of CNSs was reduced to 100 nm by post-annealing of the CNSs. • A glass substrate was coated with CNSs thick film using spin coating method. • Contact angle of a water droplet was 153° indicating the film is super-hydrophobic. - Abstract: A simple hydrothermal method was used to produce high yield, monodisperse and tightly controllable size of carbon nanospheres (CNSs) by adjusting the concentration of initial sucrose solution in a sealed autoclave at 170 °C for 8 h. By changing the solution concentration from 0.5 to 0.1 mol l{sup −1}, the sizes of carbon spheres (CS) were reduced from about 2500 to about 300 nm. Also by increasing the solution volume to the vessel volume ratio (V{sub s}/V{sub v}) from 5/6 to 11/13, the yield of CS was increased from 25% up to about 55% of initial raw materials. It was found that by post-annealing of the 300 nm CNSs at 435 °C for 30 min, their diameters were reduced to 100 nm. Moreover, annealing in air atmosphere had a noticeable influence on the surface functional groups and bonds of CNSs. In addition, CNSs were used to fabricate hydrophobic surfaces by coating their ethanolic colloidal solution on glass substrates. The measured contact angle (CA) of a water droplet was about 153°, indicating that the CNSs thick layers were super-hydrophobic. The size dependence of CNSs on the different parameters has been discussed.

  10. A New Approach to Dyeing of 80 : 20 Polyester/Cotton Blended Fabric Using Disperse and Reactive Dyes

    OpenAIRE

    2011-01-01

    Polyester/Cotton blended fabrics are normally dyed by two-bath or one-bath two-step dyeing method. This paper deals with a new approach involving azeotropic ternary mixture of organic solvents pretreatment to dye polyester/cotton blends using disperse and reactive dyes in one-bath method. The effect of solvent pretreatments on dyeability, fastness, and few physicochemical properties has been investigated involving SEM, FTIR, DSC, and XRD studies, and results are presented.

  11. A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode

    Science.gov (United States)

    Zhou, Qianlong; Ye, Xingke; Wan, Zhongquan; Jia, Chunyang

    2015-11-01

    Recently, the topic of developing lightweight, flexible and implantable energy storage systems to address the energy-supply problem of wearable electronics has aroused increasing interests. In this paper, by introducing reduced graphene oxide (rGO), we successfully converted the commercial cotton fabric into free-standing, electrically conductive and electrochemically active fabric. Flexible supercapacitor based on the obtained conductive reduced graphene oxide-carbonized cotton fabric (rGO/CCF) exhibits high capacitance (87.53 mF cm-2 at 2 mV s-1), well cycling stability (89.82% capacitance retention after 1000 charge-discharge cycles) and excellent electrochemical stability (90.5% capacitance retention after 100 bending cycles). Moreover, a macroscopic three-dimensional sandwich-interdigital device structure was designed to enhance the supercapacitor performance. The unique rGO/CCF based sandwich-interdigital structure (SIS) supercapacitor shows a volumetric capacitance of 5.53 F cm-3 at current density of 0.0625 A cm-3 in aqueous electrolyte, which is 1.67 and 4.28 orders higher than the traditional sandwich structure (SS) and interdigital structure (IS) supercapacitor based on the same electrode material and electrolyte. Furthermore, energy density enhancement of the supercapacitor has also been achieved by adopting the well-designed device structure. The original SIS supercapacitor based on the elaborate device structure and high-performance electrode material may provide new design opportunities for flexible energy storage devices.

  12. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness.

    Science.gov (United States)

    Kale, Bandu Madhukar; Wiener, Jakub; Militky, Jiri; Rwawiire, Samson; Mishra, Rajesh; Jacob, Karl I; Wang, Youjiang

    2016-10-01

    A new route to make cotton fabric self-cleaning and permanently stiff by coating cellulose-TiO2 on its surface is demonstrated herein. Cellulose-TiO2 dispersion was used for coating and was prepared by mixing TiO2 nanoparticles with cellulose in 60% H2SO4 solution. The surface morphology of cellulose-TiO2 nanoparticles coated sample was analyzed by SEM. The appearance of white TiO2 particles on the surface of the cotton fabric confirmed the successful coating process. The Orange II dye was used as stain and its degradation was observed under UV light. X-ray diffraction analysis showed that cellulose II content increases slightly (by 5.3%) after the solvent treatment. Washing fastness study showed that the fabric stiffness was permanent and self-cleaning properties were stable with 1, 3 and 5% TiO2 coated samples. Air and water vapor permeability was not decreased considerably, whereas tensile strength was increased significantly after coating.

  13. The establishment and external validation of NIR qualitative analysis model for waste polyester-cotton blend fabrics.

    Science.gov (United States)

    Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei

    2014-10-01

    A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.

  14. Wearability-Research of Cotton Bamboo Hemp Blended Fabric%棉竹浆汉麻混纺织物服用性能研究

    Institute of Scientific and Technical Information of China (English)

    唐建东; 王平; 李立成

    2012-01-01

    Wearability of cotton bamboo hemp blended fabric was researched. Wearability of cotton/bamboo/hemp 40/40/20 blended fabric, cotton/hemp 80/20 blended fabric and pure cotton fabric were tested. Air permeability, moisture permeability, drapability and crease recovery of the three fabrics were contrasted, the test results were analyzed. The result shows that air permeability, moisture permeability, drapability and crease recovery of cotton bamboo hemp blended fabric are the best. It is considered that the wearability of cotton bamboo hemp blended fabric is the best and can be developed as military uniform and high grade clothing.%研究棉竹浆汉麻混纺织物的服用性能.对相同规格的棉/竹浆/汉麻40/40/20混纺织物、棉/汉麻80/20混纺织物和纯棉织物做了服用性能对比试验,比较了织物的透气性、透湿性、悬垂性和抗皱性差异,并对试验结果进行了分析.结果表明:棉竹浆汉麻混纺织物的透气性、透湿性、悬垂性、折痕回复性均优于棉汉麻混纺织物和纯棉织物.认为:棉竹浆汉麻混纺织物服用性能最佳,可用于开发军用服装及高档服饰.

  15. Optical emission spectroscopy of OH lines in N2 and Ar plasma during the treatments of cotton fabric

    Science.gov (United States)

    Skoro, Nikola; Puac, Nevena; Spasic, Kosta; Malovic, Gordana; Gorjanc, Marija; Petrovic, Zoran Lj

    2016-09-01

    Low pressure non-equilibrium plasmas are proven to be irreplaceable tool in material processing. Among other fields their applications in treatments of textiles are still diversifying, but the main role of plasma is activation of the surface of treated sample. After, or during, the treatments these surfaces can be covered with different materials or species (such as microcapsules) that enhance properties of the fabric. In order to investigate mechanisms how active species from plasma interact with the cotton surface, we studied both plasma and surface properties. Bleached cotton samples were treated in low-pressure nitrogen and argon plasma in a chamber with parallel-plate electrodes. The effect of the plasma treatment on the cotton samples was investigated with the colorimetric measurements on dyes absorption by a spectrophotometer. Optical emission spectroscopy was performed by using spectrometer with a sensitive CCD camera. We have recorded the evolution of the maximum of the intensity of OH and N2 second positive band lines. Measurement were done with and without samples in the chamber and comparison between the lines intensity was made. The parameters for optimal plasma treatment conditions were determined. Research supported by the MESTD, projects III41011 and ON171037.

  16. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed

    2013-06-01

    This study describes a method derived from ISO/TC 206/SC specifications to assess the bactericidal activity against a bacterial strain, Pseudomonas fluorescens, of various photocatalytic fabrics, under UVA and filtered visible light. The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant bactericidal efficiency. TiO2-coated fabrics are very efficient against P. fluorescens after 4 h UVA irradiation (bacteria survival below the detection limit). Under UVA-free visible light, anthraquinone-sensitized TiO2 coated fabrics induced a significant bactericidal activity after 2 h irradiation, while anthraquinone alone-coated fabrics were not as efficient and TiO2 coated fabrics were almost inefficient. These results show that although exhibiting a weak n-π* band in the 350-420 nm range, anthraquinone is a good candidate as an efficient visible light photosensitizer. A synergy effect between anthraquinone and TiO2 was demonstrated. A possible reaction mechanism, involving a synergy effect for singlet oxygen formation with anthraquinone-sensitized TiO2 is proposed to account for these results. © 2012 Elsevier B.V. All rights reserved.

  17. Dyeing and finishing manufacturing practice of weft elastic cotton fabric%纯棉纬弹织物的染整生产实践

    Institute of Scientific and Technical Information of China (English)

    林茂华

    2016-01-01

    详细阐述了纯棉纬弹织物染整加工的工艺流程及其工艺要点。认为热定型是加工成功的关键,并对染色提出了看法。%The dyeing and finishing technical process and its key points of weft elastic cotton fabric were illustrated in detailed. Results show that heat setting is the key to successful process, and the idea was also provided for dyeing the weft elastic cotton fabric.

  18. Synthesis of novel polymethacrylates with siloxyl bridging perfluoroalkyl side-chains for hydrophobic application on cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Lu; Dai, Li; Yuan, Yanhua; Liu, Anqi [College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); National Engineering Laboratory for Modern Silk, Suzhou 215123 (China); Zhanxiong, Li, E-mail: lizhanxiong@suda.edu.cn [College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); National Engineering Laboratory for Modern Silk, Suzhou 215123 (China)

    2016-05-15

    Highlights: • Novel polymethacrylates with multi-perfluoroalkyl groups were reported. • TFSMA monomer in the polymer contributed much to the lower surface free energy. • PSD and TEM showed a broader size distribution with the increasing fluorine content. • EDS and XPS revealed migration of perfluoroalkyl chains under high temperature. - Abstract: Three novel fluorinated methacrylate monomers with siloxyl bridging perfluoroalkyl groups were synthesized and characterized. Afterwards, the corresponding polymethacrylate latexes, namely monofluoroalkylsiloxyl polymethacrylate (PMFSMA), bisfluoroalkylsiloxyl polymethacrylate (PBFSMA) and trisfluoroalkylsiloxyl polymethacrylate (PTFSMA), were prepared and coated onto cotton fabrics to make them water-repellent. Particle size, particle size distribution, zeta potential and high-resolution transmission electron microscope (TEM) were tested to assess the emulsion stability and particle morphology. Thermal properties of PTFSMA were evaluated by thermal-gravimetric analysis (TGA). Surface properties of the coated cotton fabrics were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), water contact angle (WCA), adhesive force and X-ray photoelectron spectroscopy (XPS). It was found that the incorporation of more perfluoroalkyl chains and the annealing process could decrease the surface free energy of polymer film to 13.7 mN/m. Furthermore, the EDS spectra of PTFSMA film after annealing showed an enrichment of fluorine in the film-air interface.

  19. Synthesis of novel polymethacrylates with siloxyl bridging perfluoroalkyl side-chains for hydrophobic application on cotton fabrics

    Science.gov (United States)

    Cai, Lu; Dai, Li; Yuan, Yanhua; Liu, Anqi; Zhanxiong, Li

    2016-05-01

    Three novel fluorinated methacrylate monomers with siloxyl bridging perfluoroalkyl groups were synthesized and characterized. Afterwards, the corresponding polymethacrylate latexes, namely monofluoroalkylsiloxyl polymethacrylate (PMFSMA), bisfluoroalkylsiloxyl polymethacrylate (PBFSMA) and trisfluoroalkylsiloxyl polymethacrylate (PTFSMA), were prepared and coated onto cotton fabrics to make them water-repellent. Particle size, particle size distribution, zeta potential and high-resolution transmission electron microscope (TEM) were tested to assess the emulsion stability and particle morphology. Thermal properties of PTFSMA were evaluated by thermal-gravimetric analysis (TGA). Surface properties of the coated cotton fabrics were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), water contact angle (WCA), adhesive force and X-ray photoelectron spectroscopy (XPS). It was found that the incorporation of more perfluoroalkyl chains and the annealing process could decrease the surface free energy of polymer film to 13.7 mN/m. Furthermore, the EDS spectra of PTFSMA film after annealing showed an enrichment of fluorine in the film-air interface.

  20. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    Science.gov (United States)

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  1. An easy route to make superhydrophobic surface

    Science.gov (United States)

    Panda, Kalpataru; Kumar, N.; Polaki, S. R.; Panigrahi, B. K.

    2012-06-01

    Superhydrophobic films with excellent flexibility have been fabricated on silicon surface, generated by means of a chemical galvanic cell route, within a short span of 10 sec. The results show a water contact angle of 155° (superhydrophobic) for the chemically modified silicon surface while it is 63° (hydrophilic) in pure silicon substrate. The surface roughness increases with well ordered protrusions after the chemical treatment. Surface roughness and low surface energy are ascribed for the superhydrophobic behavior of these chemically modified silicon surfaces.

  2. A parametric study of the confined spraying distance, solution concentration, and spraying time for the spraying technique used to fabricate PS superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Myoung; Cho, Young Sam [Wonkwang University, Iksan (Korea, Republic of)

    2015-11-15

    In this study, a parametric study was performed for the spraying technique used to fabricate polystyrene (PS) superhydrophobic surfaces. The spraying distance, the spraying time and the polymer concentration were selected as the parameters to be varied. Tetrahydrofuran (THF) was used for the solvent. First, a dissolved PS solution in THF was prepared. Then, the dissolved PS solution was sprayed onto the coverglass. The Nozzle size, working pressure, glove box temperature and humidity were fixed at 0.2 mm, 0.2 MPa, 23.15±0.83 .deg. C and 54.13±1.46%, respectively. After that, the surface morphology of the sprayed surface and water contact angle (WCA) were assessed by Scanning electron microscopy (SEM) and a contact angle meter. According to the spraying distance increased, the WCA was decreased in all three cases of the 1.5 vol% PS solution. However, the WCA was approximately 158 .deg. regardless of the spraying time or distance in all three cases of 6.0 vol% PS solution. The amount of PS deposited per unit area was shown to be the key parameter in determining the hydrophobicity, as expected. However, the PS concentration and the spraying distance affected the hydrophobicity regardless of the amount of PS deposited. Additionally, using least-squares method of the Origin 8.1 program fitting procedures for the WCA results, a water-contact-angle map of the PS-sprayed specimen was generated within the experimental parameters.

  3. Superhydrophobic porous networks for enhanced droplet shedding

    Science.gov (United States)

    Liu, Yahua; Wang, Zuankai

    2016-09-01

    Recent research has shown that the use of submillimeter-scale tapered post arrays could generate the so-called pancake bouncing, which is characterized by the fast shedding of impinging drops from the surface in a pancake shape without undergoing the retraction stage as observed on conventional superhydrophobic surfaces. Despite this exciting discovery, the fabrication of this unique superhydrophobic surface with tapered post arrays involves complex processes, hindering its wide applications in practical sectors. Here, we report on the facile strategy to prepare a new hierarchical multilayered superhydrophobic surface directly from commercially available porous matrix that allows for efficient drop shedding. Further study shows that the enhanced drop mobility observed on such a surface is attributed to the synergistic cooperation of hierarchical structures endowing an adequate energy storage and effective energy release. The facile fabrication of superhydrophobic surface with enhanced drop mobility may find many practical applications including anti-icing, dropwise condensation and self-cleaning.

  4. The effect of seed cotton moisture during harvesting on - part 2- yarn and fabric quality

    Science.gov (United States)

    Part 1 of this study found that there were significant differences in terms of fiber quality and processing performance of seed cotton harvested from one field using a John Deere 7760 spindle harvester at two moisture levels, 12%, and storing the harvested modules for 12 weeks prior to gin...

  5. 玫瑰香精纳米胶囊加香缓释棉织物的性能研究%Properties of Aroma Sustained-release Cotton Fabric with Rose Fragrance Nanocapsule

    Institute of Scientific and Technical Information of China (English)

    胡静; 肖作兵; 周如隽; 马双双; 王明熙; 李臻

    2011-01-01

    The aroma sustained-release cotton fabric was prepared by finishing rose fragrance nanocapsules directly on cotton. The structure and properties of nanocapsules were demonstrated by transmission electron microscope (TEM), dynamic light scattering (DLS), fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS) and electronic nose. The results showed that the spherical nanocapsule dispersed evenly and the average diameter kept 51.4 nm. The existence of -COO peak (1741 cm-) in the FTIR curve of the finished cotton fabric and the decrease of crystallinity demonstrated that rose fragrance nanocapsules have been incorporated into the cotton fabrics. The washing resistance of the cotton fabrics finished by 51.4 nm nanocapsules was much better than that by rose fragrance alone. Besides, the loss of fragrance from the cotton fabrics finished by 51.4 nm nanocapsules was obviously lower than that by 532 nm nanocapsules and rose fragrance. The smaller the nanocapsule size, the better the sustained release property. Electronic nose analysis also displayed that the aroma released from the cotton fabrics finished by nanocapsules after washing has no obvious variety in contrast to that without washing. The cotton fabrics finished by nanocapsules has the excellent sustained release property.

  6. Reinigung superhydrophober Oberflächen

    OpenAIRE

    Dallmann, Silke

    2011-01-01

    The unique surface structure of the lotus leaf in combination with hydrophobic epicuticular wax crystalloids results in extreme water repellency and self-cleaning properties. In recent years biomimetic superhydrophobic surfaces have been fabricated by mimicking the structure of the lotus leaf. The biggest problem of the fine surface roughness is the sensitivity to oily contaminants and mechanical stress which limit the application of technical superhydrophobic sur...

  7. Fabrics coated with lubricated nanostructures display robust omniphobicity

    Energy Technology Data Exchange (ETDEWEB)

    Shillingford, C; MacCallum, N; Wong, TS; Kim, P; Aizenberg, J

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e. g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  8. Fabrics coated with lubricated nanostructures display robust omniphobicity

    Science.gov (United States)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  9. Superhydrophobic laser ablated PTFE substrates

    Energy Technology Data Exchange (ETDEWEB)

    Falah Toosi, Salma; Moradi, Sona [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Kamal, Saeid [Laboratory for Advanced Spectroscopy and Imaging research (LASIR) Chemistry Department, The University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Hatzikiriakos, Savvas G., E-mail: savvas.hatzi@ubc.ca [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada)

    2015-09-15

    Highlights: • Uniaxial and biaxial patterns fabricated on PTFE surface are responsible for superhydrophobic behavior of the surface. • Biaxial scan artificially creates high level of dual scale roughness on the PTFE surface with high contact angles (CAs) and low contact angle hysteresis (CAH) similar in all directions. • Contact angle of biaxially scanned surfaces can be as high as 170° and their contact angle hysteresis can reach as low as 3°. - Abstract: The effect of femtosecond laser irradiation process parameters (fluence, scanning speed and beam overlap) on the wettability of the resulted micro/nano-patterned morphologies on polytetrafluoroethylene is studied in detail. Several distinctly different micro/nano-patterns were fabricated including uniaxial and biaxial patterns. In particular, using biaxial scanning well defined pillared morphology was fabricated. The wettability analysis of the biaxially scanned samples revealed enhanced superhydrophobicity exhibiting high contact angles and low contact angle hysteresis.

  10. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-07-01

    Textile fabric based electrodes due to their lightweight, flexibility and cost effectiveness, coupled with the ease of fabrication are recently given a huge attention as wearable energy sources. The current dye sensitized solar cells (DSSCs) are based on Platinized-Fluorinated Tin oxide (Pt-FTO) glass electrode, which is not only expensive, but also rigid and heavyweight. In this work, a highly conductive-graphene coated cotton fabric (HC-GCF) is fabricated with a surface resistance of only 7 Ω sq-1. HC-GCF is used as an efficient counter electrode (CE) in DSSC and the results are examined using photovoltaic and electrochemical analysis. HC-GCF counter electrode shows a negligible change of resistance to bending at various bending positions and is also found extremely resistant to electrolyte solution and washing with water. Cyclic voltammogram, Nyquist and the Tafel plots suggest an excellent electro catalytic activity (ECA) for the reduction of tri-iodide (I3-) ions. Symmetrical cells prepared using HC-GCF, indicate a very low charge transfer resistance (RCT) of only 1.2 Ω, which is nearly same to that of the Pt with 1.04 Ω. Furthermore, a high photovoltaic conversion efficiency (PCE) of 6.93% is achieved using HC-GCF counter electrode using polymer electrolyte.

  11. THE APPLICATION AND CHARACTERIZATION OF GRAPHENE DECORATED WITH TiO2 –Fe (1%-N ON COTTON FABRICS

    Directory of Open Access Journals (Sweden)

    DUMITRESCU Iuliana

    2017-05-01

    Full Text Available Doped TiO2/graphene nanocomposites are studied due to their capacity to absorb the visible rays and large applicability in photo-catalytic applications. In this paper, we summarize our experiments on the development of photocatalytic fabrics based on deposition of doped TiO2/graphene nanocomposites by ultrasound method. We have investigated the surface morphology by scanning electron microscopy (SEM and elemental composition was determinate through EDX. Other information were obtained from electrical resistivity analysis measured on Prostat PRS-801 instrument, evaluation of the cotton fabrics wettability by measuring the contact angle on a VCA Optima instrument and evaluation of the photo-catalytic properties of the treated fabrics under solar and visible light (Xenotest by measuring the trichromatic coordinates of the treated and untreated textile materials. The results demonstrated that the ultrasound is an effective method to deposit nanoparticles on textile materials and that the uniform dispersion of TiO2- graphene composites depends on sonication parameters. Also, the treatment used on textile materials doesn’t improve the electrical properties of the knit. The results obtain after evaluation of the photo-catalytic activity by photo degradation of methylene blue under visible and solar light show the performance of the developed fabrics and also that the photo-catalytic activity is high under visible light and solar light.

  12. Comparison of Three Methods for Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces (Postprint)

    Science.gov (United States)

    2011-04-01

    AFRL-RX-TY-TP-2010-0076 COMPARISON OF THREE METHODS FOR GENERATING SUPERHYDROPHOBIC, SUPEROLEOPHOBIC NYLON NONWOVEN SURFACES Rahul Saraf...Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces (POSTPRINT) FA8650-07-1-5916 0602102F GOVT L0 QL102006 ^Saraf, Rahul,; ^Lee, Hoon...three different techniques to achieve superhydrophobicity and superoleophobicity using hydroentangled nylon nonwoven fabric: pulsed plasma polymerization

  13. 一步喷涂法制备低黏附的超疏水颗粒表面%One-step spray-coating process for the fabrication of low adhesive superhydrophobic particle surfaces

    Institute of Scientific and Technical Information of China (English)

    李健; 凌菁; 徐明; 严军; 景治娇

    2014-01-01

    采用硬脂酸和十八烷基三氯硅烷分别对商业来源的ZnO、TiO2和SiO2颗粒进行修饰得到相应的疏水颗粒。然后利用简单的一步喷涂法通过喷涂所制备的疏水颗粒的无水乙醇悬浮液制备自清洁型的超疏水颗粒表面。通过红外光谱(FT-IR)、X-射线光电子能谱(XPS)、X-射线粉末衍射(XRD)证明低表面能物质成功地修饰在这些氧化物表面;用扫描电镜(SEM )观察超疏水表面形貌发现表面团聚现象比较严重;用DSA100型接触角测量仪测量所制备的超疏水颗粒表面对水滴的静态接触角高达160°,滚动角小于5°,说明该表面具有良好的超疏水性能。%Hydrophobic particles are obtained by functionalizing the commercially available particles such as ZnO , TiO2 and SiO2 with low energy materials like stearic acid (SA ) and octadecyltrichlorosilane (OTCS ) . And then a facile one-step spray-coating process is developed for the fabrication of superhydrophobic particle surfaces by spraying hydrophobic particle suspensions onto desired substrate . The as-prepared superhydrophobic particle surfaces exhibit both superhydrophobicity and self-cleaning properties . The samples are characterized by Fourier transformation infrared spectra (FT-IR ) , X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) ,indicating that ZnO ,TiO2 and SiO2 are successfully modifed with low energy materials . The as-prepared surfaces are charaterized by scanning electron microscopy (SEM ) , showing that the agglomeration of these surfaces is serious , which leads to superhydrophobicity . T he superhydrophobic surfaces show a contact angle larger than 160° and a sliding angle smaller than 5° , which is measured on a Kruss DSA 100 apparatus at ambient temperature . The results indicate that these surfaces have good superhydrophobicity .

  14. Enzymatic pre-treatment as a means of enhancing the antibacterial activity and stability of ZnO nanoparticles sonochemically coated on cotton fabrics

    OpenAIRE

    Perelshtein, Ilana; Ruderman, Yelena; Perkas, Nina; Traeger, Kamelia; Tzanov, Tzanko; Beddow, Jamie; Joyce, Eadaoin; Mason, Timothy J.; Blanes, María; Mollá, Korina; Gedanken, Aharon

    2012-01-01

    Zinc oxide nanoparticles (ZnO NP’s) are known for their excellent antibacterial properties. This paper describes a method for enhancing the stability and the antibacterial activity of ZnO NPs synthesized and embedded sonochemically on cotton fabrics, by pre-treating the fabric surface with cellulase enzyme. The enzymatic pre-treatment resulted in the deposition of smaller sized NPs with improved adhesion. The reduction in particle size brought about better antibacterial performance against...

  15. "Shrink-to-fit" superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates.

    Science.gov (United States)

    Manna, Uttam; Carter, Matthew C D; Lynn, David M

    2013-06-11

    An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects.

  16. Ethyl chitosan synthesis and quantification of the effects acquired after grafting it on a cotton fabric, using ANOVA statistical analysis.

    Science.gov (United States)

    Popescu, Vasilica; Muresan, Augustin; Popescu, Gabriel; Balan, Mihaela; Dobromir, Marius

    2016-03-15

    Three ethyl chitosans (ECSs) have been prepared using the ethyl chloride (AA) that was obtained in situ. Each ECS was applied on a 100% cotton fabric through a pad-dry-cure technology. Using the ANOVA as statistic method, the wrinkle-proofing effects have been determined varying the concentrations of AA (0.1-2.1mmol) and chitosan (CS) (0.1-2.1mmol). Alkylation and grafting mechanisms have been confirmed by the results of FTIR, (1)H NMR, XPS, SEM, DSC and termogravimetric analyses. The performances of each ECS as wrinkle-proofing agent have been revealed through quantitative methods (taking-up degree, wrinkle-recovering angle, tensile strength and effect's durability). The ECSs confer wrinkle-recovering angle and tensile strength higher than those of the witness sample. Durability of ECSs grafted on cotton have been demonstrated by a good capacity of dyeing with non-specific (acid/anionic and cationic) dyes under severe working conditions (100°C, 60min) and a good antimicrobial capacity.

  17. Performance of a Pectinase from Bacillus Subtilis WSHB04-02 Used in Bioscouring of Cotton Fabrics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A pectinase produced by Bacillus subtilis WSHB04-02 isolated from soil with lyase activity operating at alkaline pH was studied. The MichaelisMenten kinetic parameters of this newly isolated pectinase on different substrates, such as citrus pectin and polygalacturonic acid (PGA), were determined, and pectin proved to be the most suitable substrate. The effects of temperature and pH on pectinase activity and stability were also investigated. The optimal temperature for pectinase was 55℃ with a stable range of 45℃- 55℃. In general,pectinase was pH insensitive and the stable pH ranged from 8.6 to 10.0. Ultimately the bioscouring effects of cotton fabrics using this pectinase were evaluated and some promising results were obtained.

  18. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Yonghao; Hess, Dennis W [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (United States); Liu Yan; Wong, C P, E-mail: dennis.hess@chbe.gatech.edu, E-mail: cp.wong@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)

    2010-04-16

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

  19. Structure Irregularity Impedes Drop Roll-Off at Superhydrophobic Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil

    2014-01-01

    We study water drop roll-off at superhydrophobic surfaces with different surface patterns. Superhydrophobic microcavity surfaces were fabricated in silicon and coated with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS). For the more irregular surface patterns, the observed increase in roll...

  20. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  1. Superhydrophobic surfaces: from natural to biomimetic to functional.

    Science.gov (United States)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2011-01-15

    Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly' wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar to a simple copying or duplicating of biological structures. In this feature article, we review the recent studies in both natural superhydrophobic surfaces and biomimetic superhydrophobic surfaces, and highlight some of the recent advances in the last four years, including the various smart routes to construct rough surfaces, and a lot of chemical modifications which lead to superhydrophobicity. We also review their functions and applications to date. Finally, the promising routes from biomimetic superhydrophobic surfaces in the next are proposed.

  2. Dyeing of white and indigo dyed cotton fabrics with Mimosa tenuiflora extract

    Directory of Open Access Journals (Sweden)

    Gökhan Erkan

    2014-04-01

    Full Text Available Mimosa tenuiflora extract has been used in food industry as an additive and in textile and leather industry as a colorant. Two types of fabrics, ready to be dyed white and indigo dyed fabrics, were dyed with M. tenuiflora extract. The fabrics were mordanted after dyeing with six different metal salts. Colorimetric evaluations of fabrics were carried out by spectrophotometer. Colour fastness to washing, rubbing and light were performed. Colour strength of fabrics was calculated from Kubelka–Munk formula. Highest vividness (C∗ values were obtained by Ni mordant. Moderate fastness values were observed. However poor wet rubbing fastness values were observed in the case of indigo dyed fabrics due to lack of good wet rubbing fastness of indigo itself.

  3. Identification and persistence of Pinus pollen DNA on cotton fabrics: A forensic application.

    Science.gov (United States)

    Schield, Cassandra; Campelli, Cassandra; Sycalik, Jennifer; Randle, Christopher; Hughes-Stamm, Sheree; Gangitano, David

    2016-01-01

    Advances in plant genomics have had an impact on the field of forensic botany. However, the use of pollen DNA profiling in forensic investigations has yet to be applied. Five volunteers wore a jacket with Pinus echinata pollen-containing cotton swatches for a 14-day period. Pollen decay was evaluated at days 0, 3, 6, 9 and 14 by microscopy. Pollen grains were then transferred to slides using a portable forensic vacuum handle. Ten single grains per swatch were isolated for DNA analysis. DNA was extracted using a high throughput extraction method. A nine-locus short tandem repeat (STR) multiplex system, including previously published primers from Pinus taeda, was developed. DNA was amplified by PCR using fluorescent dyes and analyzed by capillary electrophoresis. Pollen counts from cotton swatches in a 14-day period exhibited an exponential decay from 100% to 17%. The success rate of PCR amplification was 81.2%. Complete and partial STR profiles were generated from 250 pollen grains analyzed (44% and 37%, respectively). Due to the limited amount of DNA, drop-in events were observed (1.87%). However, the rate of contamination with pollen from other pine individuals originating from environmental sources was 4.4%. In conclusion, this study has shown that pollen can be a stable source of forensic DNA evidence, as a proof-of-principle, and that may persist on cotton clothing for at least 14 days of wear. This method can be applied in forensic cases where pollen grains larger than 10 μm (e.g., from herbs or trees) may be transferred to clothing (worn by suspect or victim) by primary contact.

  4. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Perelshtein, Ilana; Applerot, Guy; Perkas, Nina; Gedanken, Aharon [Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Guibert, Geoffrey; Mikhailov, Serguei [Haute Ecole Arc Ingenierie IMA-Arc, NEODE, 17 Eplatures-Grise, CH-2300 La Chaux-de-Fonds (Switzerland)], E-mail: gedanken@mail.biu.ac.il

    2008-06-18

    Silver nanoparticles were synthesized and deposited on different types of fabrics using ultrasound irradiation. The structure of silver-fabric composites was studied by physico-chemical methods. The mechanism of the strong adhesion of silver nanoparticles to the fibers is discussed. The excellent antibacterial activity of the Ag-fabric composite against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) cultures was demonstrated.

  5. Superhydrophobic hierarchical structures produced through novel low-cost stamp fabrication and hot embossing of thermoplastic film

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chae Hee; Han, Sol Yi; Kim, Kwang; Kim, Wook Bae [Korea Polytechnic University, Siheung (Korea, Republic of); Eo, Jae Dong [SNDENG Co., Ltd., Ansan (Korea, Republic of)

    2015-11-15

    We present a simple and cost-effective method to produce super hydrophobic surfaces in thermoplastic polymer substrates, which contain hierarchical micro/nano structures that resemble lotus leaves. The method involved the fabrication of an Al stamp through the sequential application of laser ablation and anodization to create micro- and nano-structures, respectively. The fabricated patterns on the Al stamp were replicated on the thermoplastic Cyclic olefin copolymer (COC) film surfaces through a hot embossing technique. Static water contact angles were measured to evaluate the hydrophobicity of the patterned COC surfaces. The static water contact angle on the micro/nano hierarchical structured COC surface was measured to be 162.3 .deg. on average. The hot embossing process was repeated 31 times with a nano-structured Al stamp, and the replicated COC surfaces showed consistent water contact angles.

  6. Superhydrophobic materials for biomedical applications.

    Science.gov (United States)

    Falde, Eric J; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W

    2016-10-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. One Step Photopolymerization of N, N-Methylene Diacrylamide and Photocuring of Carboxymethyl Starch-Silver Nanoparticles onto Cotton Fabrics for Durable Antibacterial Finishing

    Directory of Open Access Journals (Sweden)

    M. A. El-Sheikh

    2014-01-01

    Full Text Available The PI/UV system ((4-trimethyl ammonium methyl benzophenone chloride/UV was used to synthesize carboxymethyl starch- (CMS- stabilized silver nanoparticles (AgNPs. AgNPs so prepared had round shape morphology with size of 1–7 nm. The prepared AgNPs were utilized to impart antibacterial finishing for cotton fabrics. The PI/UV system was further utilized to fix AgNPs onto cotton fabrics by photocrosslinking of AgNPs-CMS composite onto cotton fabrics to impart durable antibacterial properties. Effect of irradiation time and incorporating N, N-methylene diacrylamide (MDA in different concentrations on antibacterial performance before and after repeated washing cycles was studied. S. aureus and E. coli were used to evaluate the antibacterial performance of finished fabrics. The antibacterial performance was directly proportional to the irradiation time and concentration of MDA but inversely proportional to the number of washing cycles. The inhibition zone of S. aureus and E. coli is the same although they are different in the cell wall structure and mode of action due to the nanosize structure formed.

  8. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    Science.gov (United States)

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye.

  9. A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline.

    Science.gov (United States)

    Hashemikia, Samaneh; Hemmatinejad, Nahid; Ahmadi, Ebrahim; Montazer, Majid

    2016-02-01

    Here, mesoporous silica particles containing tetracycline were loaded on cotton fabric for possible application on the infected human skin. Amino functionalized mesoporous silica, SBA-15-NH2, was chosen as a safe drug carrier loaded with tetracycline via post impregnation method. Diverse content of the drug loaded silica particles were then attached on the cotton fabric surface using polysiloxane reactive softener as a soft and safe fixing agent. UV-Vis spectroscopy was used to study the drug delivery properties of the mesoporous silica on the treated cotton fabrics. The treated fabric with long drug release properties was selected as the optimized sample. Further analysis was carried out on this sample including anti-bacterial, water contact angle, bending length, mineral content and washing durability. Also, SEM images, EDX patterns, X-Ray spectra and thermal behavior of the optimum sample were studied. The optimized treated sample indicated the gradual release profile of tetracycline in PBS buffer media within 48h along with excellent anti-bacterial efficiency as a good feature for biological application.

  10. EFFECT OF UV IRRADIATION ON THE DYEING OF COTTON FABRIC WITH REACTIVE BLUE 204

    Directory of Open Access Journals (Sweden)

    ROŞU Liliana

    2017-05-01

    Full Text Available Reactive dyes are synthetic organic compounds used on a wide scale in textile industry, for painting materials of different types and compositions (e.g. 100% cotton, wool, natural satin, viscose, synthetic fibres. Reactive dyes are solid compounds (powders completely water soluble at normal temperature and pressure conditions. Their structures contain chromophore groups, which generate colour, and auxochrome groups, which determine the compounds water solubility and the capacity to fix to the textile fiber. Such organic compounds absorb UV-Vis radiations at specific wavelengths, corresponding to maximum absorbtion peaks, in both solution and dyed fiber. The human organism, through the dyed clothing, comes in direct contact with those dyes which can undergo modifications once exposed to UV radiations, having the posibility to reach the organism via cutanated transport. As it is known, the provoked negative effects are stronger during summer when UV radiations are more intense and in order to reduce their intensity dark coloured clothing is avoided. Dyes can be transformed in compounds which are easily absorbed into the skin. Some of these metabolites can be less toxic than the original corresponding dye, whilst others, such as free radicals, are potentially cancerous. Knowledge of the biological effects of the organic dyes, reactive dyes in particular, correlated with their structural and physical characteristics, permanently consists an issue of high scientific and practical interest and its solution may contribute in the diminishing of risk factors and improving of population health. UV radiation influence on the structural and colour modifications of textile materials were studied. Colour modifications are due to structural changes in aromatic and carbonil groups. In most cases photo-oxidative processes were identified in the dye structure. Dyeing was performed using non-irradiated and irradiated cotton painted with reactive blue dye 204.

  11. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Smart and Fragrant Garment via Surface Modification of Cotton Fabric With Cinnamon Oil/Stimuli Responsive PNIPAAm/Chitosan Nano Hydrogels.

    Science.gov (United States)

    Bashari, Azadeh; Hemmatinejad, Nahid; Pourjavadi, Ali

    2017-09-01

    This paper deals with obtaining aromatherapic textiles via applying stimuli-responsive poly N-isopropyl acryl amide (PNIPAAm) /chitosan (PNCS) nano hydrogels containing cinnamon oil on cotton fabric and looks into the treated fabric characteristics as an antibacterial and temperature/pH responsive fabric. The semi-batch surfactant-free dispersion polymerization method was proposed to the synthesis of PNCS nano particles. The incorporation of modified β -cyclodextrin ( β -CD) into the PNCS nanohydrogel was performed in order to prepare a hydrophobic(cinnamon oil) carrier embedded in stimuli-responsive nanohydrogel. The β -CD postloading process of cinnamon oil in to the hydrogel nano particles was performed via ultrasonic bath and exhaustion methods. The antibacterial activity of the treated fabrics at different temperatures demonstrated the preparing new functional bio-antibacterial fabrics with temperature responsiveness.

  13. Effects of Treating with Laccase on Properties of Dyed Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; FAN Xue-rong; CUI Li; WANG Qiang

    2008-01-01

    A laecase (Denilite IIS) was used to treat reactive dyes. The results indicated that the laecase could remove the loosely adhering, unfixed or hydrolyzed dyes from the dyed fabric efficiently, which led to obvious improvements of color fastness. Furthermore, the wavelength of maximum absorbanee of the residual solution of dyeing laccase-treated was different from that of the detergent-treated, which implied the laccase could accelerate structural changes of the adhering or hydrolyzed dyes from fabric in treating, resulting in obvious color changes of the residual solution. In addition, excessive iaccase also could decolorize a few fixed reactive dyes from the dyed fabric, with a decrease of color strength and less further improvements of color fastness.

  14. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheraz

    2015-03-01

    Full Text Available This paper aims to investigate the relationship between fabric weave structure and its comfort properties. The two basic weave structures and four derivatives for each selected weave structure were studied. Comfort properties, porosity, air permeability and thermal resistance of all the fabric samples were determined. In our research the 1/1 plain weave structure showed the highest thermal resistance making it suitable for cold climatic conditions. The 2/2 matt weave depicted the lowest thermal resistance which makes it appropriate for hot climatic conditions.

  15. The fabrication of stable superhydrophobic surfaces using a thin Au/Pd coating over a hydrophilic 3C-SiC nanorod network

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Afzal [Materials Science Centre, IIT Kharagpur, West Bengal 721302 (India); Sohail, Shiraz [Department of Electrical Engineering, IIT Kharagpur, West Bengal 721302 (India); Jacob, Chacko, E-mail: cxj14_holiday@yahoo.com [Materials Science Centre, IIT Kharagpur, West Bengal 721302 (India)

    2015-10-30

    Graphical abstract: - Highlights: • Superhydrophobicity achieved using a metallic coating on a nanorod surface of 3C-SiC. • Hierarchical nanostructures made up of nanorod network with thin Au/Pd coating. • Surface adsorbed organic contaminants further lowered the surface energy. • High water contact angle (160°) and very low sliding angle (<5°) of a water droplet. • Reproducibility of the results was checked over a period of 14 months. - Abstract: In this work, it has been demonstrated that for hydrophilic materials, like SiC, etc., superhydrophobicity can be achieved by coating them with a material like Au/Pd with surface adsorbed organic contaminants, rather than modifying them by fluoropolymers as is usually done. Dense and randomly aligned 3C-SiC nanorods were grown in a cold-wall APCVD reactor using Ni as a catalyst which formed a network of micro/nano air pockets and exhibited superhydrophobic behavior when modified by an Au/Pd metal alloy coating by forming hierarchical nanostructures with surface adsorbed organic contaminants. A high water contact angle (160°), very low sliding angle (<5°), rebounding and a rubber ball-like behavior of a water droplet were observed on such a metal (Au/Pd) modified surface of 3C-SiC nanorods. The durability of the surface and reproducibility of the results was checked over a period of about 14 months under ambient atmosphere at room temperature, which demonstrates the long term stability of these superhydrophobic surfaces.

  16. A facial approach combining photosensitive sol–gel with self-assembly method to fabricate superhydrophobic TiO{sub 2} films with patterned surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zongfan, E-mail: duanzf@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China); Zhao, Zhen; Luo, Dan; Zhao, Maiqun [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Zhao, Gaoyang, E-mail: Zhaogy@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Patterned TiO{sub 2} films were prepared by photosensitive sol–gel method. • Surface had quasi micro-lens array structure, leading to superhydrophobicity. • The surface with the lowest period exhibited the highest contact angel of 163°. • UV irradiation induced the conversion to superhydrophilicity. - Abstract: Superhydrophobic TiO{sub 2} films with micro-patterned surface structure was prepared through a facial approach combining photosensitive sol–gel method with following surface modification by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS). The patterned surface possessed quasi micro-lens array structure resembling processus mastoideus of lotus, leading to excellent hydrophobicity. The relationship between hydrophobic performance and the period of the micro-patterned TiO{sub 2} surface was investigated. The water contact angles (CAs) of micro-patterned TiO{sub 2} surface increased with the decrease of the periods, and the patterned surface with the lowest period of 0.83 μm showed the highest CA of 163°. It suggests that this approach would offer an advantage to control the wettability properties of superhydrophobic surfaces by adjusting the fine pattern structure. Furthermore, the superhydrophobic state could be converted to the state of superhydrophilicity under ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the PFOTCS monolayer on the micro-patterned TiO{sub 2} Surface.

  17. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    Science.gov (United States)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  18. Photocatalytic self-cleaning cotton fabrics with platinum (IV) chloride modified TiO{sub 2} and N-TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Long, Mingce, E-mail: long_mc@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Zheng, Longhui; Tan, Beihui [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 (China); Shu, Heping [Xiaoxi New Materials Science and Technology (Shanghai) Co. Ltd., 655 Cangyuan Road, Shanghai, 200240 (China)

    2016-11-15

    Highlights: • Platinum (IV) chloride modified TiO{sub 2} and N-TiO{sub 2} nanosols are synthesized. • Pt-TiO{sub 2} coatings display enhanced performance in the degradation of MO and stains. • Surface attached PtCl{sub 6}{sup 2−} enable visible light activity of TiO{sub 2} coated cotton fabric. - Abstract: To enable photocatalytic self-cleaning cotton fabrics working under visible light irradiation, platinum (IV) chloride modified TiO{sub 2} (Pt-TiO{sub 2}) and N-TiO{sub 2} (Pt-N-TiO{sub 2}) nanosols are synthesized through a low temperature precipitation-peptization method. According to the characterizations of XRD, DRS and TEM, all nanoparticles are anatase nanocrystallites in the sizes of less than 10 nm, while N-TiO{sub 2} nanoparticles have better crystallization and smaller sizes. However, the cotton fabrics functionalized with Pt-TiO{sub 2} display significantly enhanced photocatalytic activity for methyl orange degradation and coffee stain removal under both solar simulator and visible light irradiation, while the performance of that coatings of Pt-N-TiO{sub 2} is poor. Further XRF and XPS results indicate that surface species on N-TiO{sub 2} block the adsorption of PtCl{sub 6}{sup 2−} anions, whereas these anions strongly attach on the surface of TiO{sub 2} nanoparticles, and accordingly enable functionalized cotton fabrics efficient visible light driven activities based on a mechanism of charge transfer from ligand to metal (CTLM) excitation.

  19. Roles of Novel Reactive Cationic Copolymers of 3-Chloro-2-hydroxypropylmethyldiallylammonium Chloride and Dimethyldiallylammonium Chloride in Fixing Anionic Dyes on Cotton Fabric

    OpenAIRE

    2013-01-01

    The roles of novel reactive cationic copolymers (P(CMDA-DMDAAC)s) of 3-chloro-2-hydroxypropylmethyldiallylammonium chloride (CMDA) and dimethyldiallylammonium chloride (DMDAAC) in fixing anionic dyes on cotton fabric were studied by modern instrumental analysis technologies such as FT-IR spectra and SEM analysis, to achieve the new theoretical guides for the wide applications of those dye fixatives. The FT-IR spectra of the obtained insoluble-water color lakes verified that they could be form...

  20. Experimental Study on the Polyester-Cotton Blended Fabrics' Flame Retardancy%涤棉混纺织物阻燃性能的实验分析

    Institute of Scientific and Technical Information of China (English)

    章梦洁; 伍仲; 方园

    2013-01-01

    In the light of the problem that it's difficult to apply flame retardant finish to cotton-polyester blended fabric as a result of wick effect, the authors adopt a new type of flame retardant to finish the fabric. Additionally, the compositions of fire retardant will coordinate to achieve flame retardancy. Based on this, the authors utilize orthogonal experiment to analyze the way in which how blending ratio, fabric density and fabric structure affect the flame retardant performance of cotton-polyester blended fabric. It turns out that the vertical burning damage length is from 40 to 47 mm, which is less than 50 mm, and the limiting oxygen index is greater than 27. 5, which reaches the requirements for flame retardancy. The flame retardant performance of cotton-polyester blended fabric is closely related to the contents of the fire retardant and the way to apply fire retardant finish. It also proves that the flame retardant performance of cotton-polyester blended fabric increases and then decreases when the contents increase, the performance is positively correlated to the density of fabric, while the fabric structure does not significantly connect with it.%针对涤棉混纺织物“烛芯效应”而引起的阻燃整理难度大的问题,采用复合新型阻燃剂复配技术对涤棉混纺织物进行阻燃处理.通过正交试验的方法综合分析了混纺比、织物密度、织物组织结构等影响因素与涤棉织物阻燃性能之间的关联性.研究结果表明,经复配阻燃处理后的涤棉混纺织物的垂直燃烧损毁长度在40~47 mm范围内,均<50 mm,极限氧指数均>27.5,达到难燃织物的标准;随着织物中涤纶含量的增加,阻燃性能先增大后减小,涤纶含量为35%时阻燃效果最好;阻燃性能与织物密度正相关,而织物组织结构对阻燃影响并不显著.

  1. Green application of flame retardant cotton fabric using supercritical carbon dioxide

    Science.gov (United States)

    Due to its environmentally benign character, supercritical carbon dioxide (scCO2) is considered in green chemistry as a substitute for organic solvents in chemical reactions. In this poster, an innovative approach for preparation of flame retardant woven and nonwoven fabrics were obtained by utiliz...

  2. Photocatalytic self-cleaning cotton fabrics with platinum (IV) chloride modified TiO2 and N-TiO2 coatings

    Science.gov (United States)

    Long, Mingce; Zheng, Longhui; Tan, Beihui; Shu, Heping

    2016-11-01

    To enable photocatalytic self-cleaning cotton fabrics working under visible light irradiation, platinum (IV) chloride modified TiO2 (Pt-TiO2) and N-TiO2 (Pt-N-TiO2) nanosols are synthesized through a low temperature precipitation-peptization method. According to the characterizations of XRD, DRS and TEM, all nanoparticles are anatase nanocrystallites in the sizes of less than 10 nm, while N-TiO2 nanoparticles have better crystallization and smaller sizes. However, the cotton fabrics functionalized with Pt-TiO2 display significantly enhanced photocatalytic activity for methyl orange degradation and coffee stain removal under both solar simulator and visible light irradiation, while the performance of that coatings of Pt-N-TiO2 is poor. Further XRF and XPS results indicate that surface species on N-TiO2 block the adsorption of PtCl62- anions, whereas these anions strongly attach on the surface of TiO2 nanoparticles, and accordingly enable functionalized cotton fabrics efficient visible light driven activities based on a mechanism of charge transfer from ligand to metal (CTLM) excitation.

  3. A novel photo-grafting of acrylamide onto carboxymethyl starch. 1. Utilization of CMS-g-PAAm in easy care finishing of cotton fabrics.

    Science.gov (United States)

    El-Sheikh, Manal A

    2016-11-05

    The photosensitized grafting of vinyl monomers onto a range of polymeric substrates has been the subject of particular interest in the recent past. Carboxymethyl starch (CMS)-poly acrylamide (PAAm) graft copolymer (CMS-g-PAAm) with high graft yield was successfully prepared by grafting of acrylamide onto CMS using UV irradiation in the presence of the water soluble 4-(trimethyl ammoniummethyl) benzophenone chloride photoinitiator. CMS-g-PAAm with nitrogen content of 8.3% and grafting efficiency up to 98.9% was obtained using 100% AAm, a material: liquor ratio of 1:14 and 1% photinitiator at 30°C for 1h of UV irradiation. The synthesis of CMS-g-PAAm was confirmed by FTIR and Nitrogen content (%). Surface morphology of CMS and surface morphological changes of CMS after grafting with AAm were studied using SEM. Thermal properties of both CMS and CMS-g-PAAm were studied using TGA and DSC. To impart easy care finishing to cotton fabrics, aqueous formulations of: CMS-g-PAAm, dimethylol dihydroxy ethylene urea (DMDHEU), CMS-g-PAAm-DMDHEU mixture or methylolated CMS-g-PAAm were used. Cotton fabrics were padded in these formulations, squeezed to a wet pick up 100%, dried at 100°C for 5min, cured at 150°C for 5min, washed at 50°C for 10min and air-dried. CRA (crease recovery angle) of untreated fabrics and fabrics finished with a mixture of 2% CMS-g-PAAm and 10% DMDHEU or methylolated CMS-g-PAAm (10% formaldehyde) were: 136°, 190°, 288° respectively. Increasing the number of washing cycles up to five cycles results in an insignificant decrease in the CRA and a significant decrease in RF (releasable formaldehyde) of finished fabric samples. The morphologies of the finished and unfinished cotton fabrics were performed by SEM.

  4. Drag reduction properties of superhydrophobic mesh pipes

    Science.gov (United States)

    Geraldi, Nicasio R.; Dodd, Linzi E.; Xu, Ben B.; Wells, Gary G.; Wood, David; Newton, Michael I.; McHale, Glen

    2017-09-01

    Even with the recent extensive study into superhydrophobic surfaces, the fabrication of such surfaces on the inside walls of a pipe remains challenging. In this work we report a convenient bi-layered pipe design using a thin superhydrophobic metallic mesh formed into a tube, supported inside another pipe. A flow system was constructed to test the fabricated bi-layer pipeline, which allowed for different constant flow rates of water to be passed through the pipe, whilst the differential pressure was measured, from which the drag coefficient (ƒ) and Reynolds numbers (Re) were calculated. Expected values of ƒ were found for smooth glass pipes for the Reynolds number (Re) range 750-10 000, in both the laminar and part of the turbulent regimes. Flow through plain meshes without the superhydrophobic coating were also measured over a similar range (750  superhydrophobic coating, ƒ was found for 4000  superhydrophobic mesh can support a plastron and provide a drag reduction compared to a plain mesh, however, the plastron is progressively destroyed with use and in particular at higher flow rates.

  5. STUDY ON THE INFLUENCE OF ULTRASOUND IN BIOSCOURING TREATMENT OF 50 % OF FLAX + 50 % OF COTTON FABRICS

    Directory of Open Access Journals (Sweden)

    DOCHIA Mihaela

    2017-05-01

    Full Text Available Study on the influence of ultrasound in Bioscouring treatment of 50 % of flax + 50 % of cotton fabric was made. The role of the Bioscouring treatment was the removing of natural cellulose attendants such as: pectin, hemicelluloses, waxes, extractable substances, etc. The cleaning treatment was carried out with a commercial enzymatic product called Beisol PRO (which consists of a mixture of enzymes pectinases, in water at a 20:1 liquid to fabric ratio and a temperature of 55 0C, in the presence of a complexing agent (2 g/L EDTA and a washing agent (0.5 % Denimcol Wash RGN. The effect of the enzyme mixture was intensified by ultrasound at a frequency of 45 kHz in an ultrasonic bath Elmasonic X-tra basic 2500 from Elma Company, Germany, leading to the improvement of the process and better properties for treated material. The experiments were conducted after a central, rotatable second order compound program with two independent variables: enzyme concentration (concentrations between 1-3% o.w.f and treatment time (15-55 minutes. Treated samples were analyzed for weight loss, hydrophilicity, whiteness index, yellowness index, crystallinity, tensile strength, elongation at break, scanning electron microscopy analysis (SEM, CIELAB color system analysis of the samples dyed with alizarin and ruthenium red dyes. The results showed that the bioscouring process performed in the presence of ultrasound has been effective at a lower enzyme concentration and a lower duration of the treatment, thereby reducing the costs and the possibility of degradation of the treated material.

  6. Biomimetic Method To Assemble Nanostructured Ag@ZnO on Cotton Fabrics: Application as Self-Cleaning Flexible Materials with Visible-Light Photocatalysis and Antibacterial Activities.

    Science.gov (United States)

    Manna, Joydeb; Goswami, Srishti; Shilpa, Nagaraju; Sahu, Nivedita; Rana, Rohit K

    2015-04-22

    A bioinspired mineralization route to prepare self-cleaning cotton fabrics by functionalizing their surface with nanostructured Ag@ZnO is demonstrated herein. In a polyamine-mediated mineralization process, while the nucleation, organization and coating of ZnO is done directly from water-soluble zinc salts under mild conditions, the entrapped polyamine in the ZnO matrix acts as reducing agent to generate Ag(0) from Ag(I) at room temperature. The Ag@ZnO coated cotton fabrics are characterized by FESEM, HRTEM, XRD, and UV-vis-DRS to confirm the formation and coating of Ag@ZnO particles on individual threads of the fabric. The presence of Ag nanoparticles not only enables the ZnO-coated fabrics exhibiting improved photocatalytic property but also allows for visible-light-driven activities. Furthermore, it exhibits efficient antimicrobial activity against both Gram-positive and Gram-negative bacteria. Therefore, besides these multifunctional properties, the polyamine-mediated bioinspired approach is expected to pave way for functionalization of flexible substrates under mild conditions as desirable for the development and fabrication of smart, lightweight, and wearable devices for various niche applications.

  7. In situ synthesis of nano ZnO on starch sized cotton introducing nano photo active fabric optimized with response surface methodology.

    Science.gov (United States)

    Khosravian, Shokoufeh; Montazer, Majid; Malek, Reza M A; Harifi, Tina

    2015-11-05

    In this study the idea of in situ synthesis of ZnO nanoparticles on starch sized raw cotton fabric was followed to produce white cotton fabric with durable self-cleaning activity and tunable wettability. Alkaline condition of the preparation procedure played a prominent role in the synthesis and adsorption of ZnO nanoparticles on the cellulosic fabric. Moreover, starch size assisted the synthesis procedure and controlling the size of nanoparticles. The successful synthesis of nano ZnO particles on the treated fabrics was confirmed with XRD, FESEM and EDX. A central composite design based on response surface methodology was applied to study the influence of zinc nitrate and NaOH concentration, and their appropriate percentage for the best photoactivity and whiteness was obtained. The treated fabrics indicated good self-cleaning property toward degradation of Methylene Blue stain under sunlight irradiation while simultaneously benefited from higher whiteness due to the photo activity of nano white ZnO that is called "nano-photo bleaching".

  8. Flame-Retarding of Cotton/Polyester Blended Yarn Fabrics Using Two-Component Sequential Treatment; Nidankai shori ni yoru men/poriesuteru konboshifu no nannenka

    Energy Technology Data Exchange (ETDEWEB)

    Kubokawa, Hiroo. [Textile Research Institute of Gunma Prefecture, Gunma (Japan)

    1999-01-10

    Cotton/polyester (C/P) blended yarn fabrics were treated with several flame retardants used for poly (ethylene terephthalate)(PET) using pad-dry-cure method. The relationships between the chemical structures of the flame retardants and their partition into PET fibers were investigated. When tetrabromobisphenol A (TBP-A) was tested, the amount of sorption increased with increasing concentration of TBP-A in treating acetone solution, and reached 4.0%o.w.f. (% on the weight of the fibre) at 10 wt%. THis treated fabric was again treated with a flame retardant for cotton, Pyrovatex CP New, which contains dimethyl 2-(N-hydroxymethylcarbamovl)ethylphosphonate as a main component. However, sufficient flame retardancy was not obtained. The second partition of TBP-A to cotton during heating was thought to lower the sorption efficiency of Pyrovatex CP New. Based on this assumption, for the case of the two-component sequential treatment, the Pyrovatex CP New treatment, which generates covalent bonds with hydroxy groups of cellulose, should be carried out prior to the TBP-A treatment. When a C/P blended yarn fabric was treated with Pyrovatex CP New and then with TBP-A, the amount of sorption of Pyrovatex CP New was 9.6%o.w.f. and the amount of sorption of TBP-A was 4.6%o.w.f. The limiting oxygen index of the treated fabric was 27.2%, a sufficient value for flame retardancy. Fromthis result, it was concluded that the practica flame-retardant finishing of c/p blended yarn fabrics could be carried out by using a simple finishing machine. (author)

  9. Cotton fabric finishing with TiO{sub 2}/SiO{sub 2} composite hydrosol based on ionic cross-linking method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.J.; Tian, Y.L.; Liu, H.L., E-mail: hlliu@dhu.edu.cn; Du, Z.Q.

    2015-01-01

    Highlights: • We studied the cotton finishing with TiO{sub 2}/SiO{sub 2} based on ionic cross-linking method. • The samples treated with CHTAC had lower value of whiteness. • The samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. • The ionic cross-linking treatment (CHTAC + BTCA + TiO{sub 2}/SiO{sub 2}) was better than with TiO{sub 2}/SiO{sub 2} sol alone. - Abstract: Cotton fabric was successfully modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHTAC), 1,2,3,4-butanetetracarboxylic acid (BTCA) and TiO{sub 2}/SiO{sub 2} sol. Self-cleaning characteristic was investigated using a Color Measuring and Matching System with 6 h sunlight irradiation. And the stability of TiO{sub 2}/SiO{sub 2} coatings was explored by measuring the washing fastness and wrinkle resistance of treated cotton samples. In addition, whiteness index, crease recovery angle and tensile strength retention (%) of treated samples were evaluated. Moreover, the morphology, structure change and crystallinity of samples were observed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The results revealed that the samples treated with CHTAC had lower value of whiteness index as compared with original cotton fabric. It was also found that samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. Moreover, the treatment of CHTAC and BTCA had adverse effect on the crystallinity of cotton samples, as treated samples had lower crystallinity in comparison with raw cotton fabrics. Nevertheless, the stability of self-cleaning coatings was better for samples treated with ionic cross-linking treatment (CHTAC + BTCA + TiO{sub 2}/SiO{sub 2}) than samples treated with TiO{sub 2}/SiO{sub 2} sol alone. Furthermore, compared with original samples the UV-blocking property of ionic cross-linking treated samples was obviously enhanced.

  10. Desorption properties of cotton fabric for oil soil%棉织物对油类污渍的脱附

    Institute of Scientific and Technical Information of China (English)

    杨立强; 张淑芝; 苏高峰; 刘学民

    2012-01-01

    以水溶性阿拉伯树胶作为对比,研究了棉织物上蓖麻油、磷脂、液体石蜡、羊毛脂的脱附过程.用准二级动力学方程拟合了脱附动力学,相关系数均接近于1.结果表明:阿拉伯树胶在洗衣液中的脱附效果最好,脱附得最快,羊毛脂最难脱附,但是脱附速率较快.通过SEM表面观察发现,洗涤后阿拉伯树胶在纤维上几乎没有残留;羊毛脂洗涤前后变化不大,蓖麻油不易吸附也不易清除;磷脂、液体石蜡、蓖麻油洗涤前后均有一定程度的残留,附着在纤维表面,不同污渍在棉纤维表面的结合力不同.%A comparative study was undertaken of desorption process of water soluble arabic gum, castor oil, phosphatide, liquid paraffin, lanolin from the cotton fabric under certain conditions. Quasi-secondary reaction kinetics equation was used to fit desorption curves, and the correlation coefficients were close to 1. The results showed that arabic gum exhibited the best desorption result and the fastest desorption rate in the washing water. On the contrary, lanolin was most difficult to be desorbed, but it had faster desorption rate than other soils. SEM observation showed that almost no arabic gum residue was on the fiber surface after washing; lanolin changed little before and after washing; castor oil was not easy to be adsorbed or easy to be removed; and phosphatide, liquid paraffin, castor oil all displayed certain degree of residues after washing, and were adhered to the fiber surface. Adhesion forces of different soilson the sunface of cotton fiber were different.

  11. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  12. Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jingpeng Li

    2015-01-01

    Full Text Available Bamboo with water-resistant, UV-resistant, and fire-resistant properties was desirable in modern society. In this paper, the original bamboo was firstly treated with ZnO sol and then hydrothermally the ZnO nanosheet networks grow onto the bamboo surface and subsequently modified with fluoroalkyl silane (FAS-17. The FAS-17 treated bamboo substrate exhibited not only robust superhydrophobicity with a high contact angle of 161° but also stable repellency towards simulated acid rain (pH = 3 with a contact angle of 152°. Except for its robust superhydrophobicity, such a bamboo also presents superior water-resistant, UV-resistant, and fire-resistant properties.

  13. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  14. Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile.

    Science.gov (United States)

    Rastgoo, Madine; Montazer, Majid; Malek, Reza M A; Harifi, Tina; Mahmoudi Rad, Mahnaz

    2016-07-01

    A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe(2+) to Fe(3+) via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.

  15. 表面Cu-Sn金属化棉织物性能研究%Study of the Properties of Cu-Sn Metallization Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    阿茹罕; 杨召; 佐同林; 杨杰

    2015-01-01

    The cotton fabrics were proceeded electroless copper and tin plating.The surface morphology of the cotton fabric was observed and compared before and after plating using a scanning electron microscope.The fabric surface elemental analysis showed that the chemical plating and electroplating tin achieved the expected results.The result showed that the thickness of fabric increased, pilling property decreased and the insulation performance declined.%以棉织物为基布先后对其进行化学镀铜和电镀锡,使其成为Cu-Sn包覆金属化织物;用扫描电子显微镜观察电镀前后棉织物的表面形态,并对其表面元素做了图谱分析。结果表明化学镀铜和电镀锡取得了预期效果,棉织物厚度增加,易起毛起球,保温性能下降。

  16. Colorimetric Assay and Antibacterial Activity of Cotton, Silk, and Wool Fabrics Dyed with Peony, Pomegranate, Clove, Coptis chinenis and Gallnut Extracts

    Directory of Open Access Journals (Sweden)

    Young-Hee Lee

    2009-01-01

    Full Text Available To investigate the antibacterial functionality of natural colorant extracts, five kinds of natural dying aqueous solutions were obtained by extraction from peony, pomegranate, clove, Coptis chinensis and gallnut using water at 90 °C for 90 min with a liquor ratio (solid natural colorant material/water, weight ratio of 1:10. The colorimetric assay and antibacterial activity of cotton, silk, and wool fabrics dyed with these natural colorant extracts were examined. It was found that these properties were significantly dependent on the structure of colorant and the kind of fabrics. The hues (H of all fabrics dyed with these natural colorants were in the range of 6.05YR -1.95Y. The order of value (V was wool, silk and cotton. The chroma (C of all samples was found to be at very low levels indicating the natural tone. All the fabrics dyed with the five natural colorants (peony, pomegranate, clove, Coptis chinensis and gallnut extracts displayed excellent antibacterial activity (reduction rate: 96.8 - 99.9% against Staphylococcus aureus. However, in the case of Klebsiella pneumoniae, the antibacterial activity was found to depend on the kind of natural colorant extract used.

  17. 纯棉织物B型活性印花冷堆固色%Cold print-batch process of cotton fabric with B type reactive dyes

    Institute of Scientific and Technical Information of China (English)

    陈友波; 唐群; 吴君风

    2012-01-01

    Cotton printing is carried out with cold batching fixation using B-type reactive dyes. In this process, alkaline is first padded into high count polyester fabric, and then the reactive printed cotton fabric is batched and dwelled together with the treated polyester fabric. The factors affecting the printing effects are analyzed, including specifications of polyester fabric, the padder pressure and thickener types. Cold batching fixation and steaming fixation are compared. It is found that the cold batching fixation features high color yield of up to 90% and good color fastness.%纯棉织物用异双活性基的B型活性染料印花后冷堆固色,通过将固色碱液施于经纬密度较高的涤纶布上,再将其与印有活性染料的纯棉织物一起打卷,使该含有碱剂的涤纶织物衬于棉织物之中.通过试验,分析了影响印花效果的因素,包括涤纶的组织规格、轧车压力、糊料种类等;比较了冷堆固色与汽蒸固色的效果,发现B型活性染料采用冷堆固色方法,固色率可达90%,且色牢度好.

  18. Superhydrophobic Superoleophobic Woven Fabrics (Preprint)

    Science.gov (United States)

    2011-06-01

    eCB H Δ sin sin (Δ θ θ θ fθ        )1 2 (16) Similarly, a Cassie-Baxter gain factor, GeCB, can be obtained by the Cassie–Baxter...equation:        CB r eCB e sin sin ( θ θ fG )1 2 (17) Since 1 — f2 ≤ 1, GeCB ≤ 1. According to McHale, the Cassie–Baxter gain...HCB r eCB -metastable H Δ cos1 c1 (Δ θ θ osθ fθ          )1 2 (18)          CB r eCB

  19. Superhydrophobic functionalized graphene aerogels.

    Science.gov (United States)

    Lin, Yirong; Ehlert, Gregory J; Bukowsky, Colton; Sodano, Henry A

    2011-07-01

    Carbon-based nanomaterials such as carbon nanotubes and graphene are excellent candidates for superhydrophobic surfaces because of their intrinsically high surface area and nonpolar carbon structure. This paper demonstrates that graphene aerogels with a silane surface modification can provide superhydrophobicity. Graphene aerogels of various concentrations were synthesized and the receding contact angle of a water droplet was measured. It is shown that graphene aerogels are hydrophobic and become superhydrophobic following the application of a fluorinated surfactant. The aerogels produced for this experiment outperform previous carbon nanomaterials in creating superhydrophobic surfaces and offer a more scalable synthetic procedure for production.

  20. Optimization research about polyester/cotton fabric soil release finish process%涤棉织物易去污整理工艺优化

    Institute of Scientific and Technical Information of China (English)

    姚永旺; 闫英山; 李玉华; 李春光; 吕建品

    2015-01-01

    The soil release finishing agent and softer for polyester/cotton fabric soil release finishing were optimized, and the soil release property was improved by the synergistic effect of soil release finishing agent and polyether derivative HP and optimization of technological conditions. The soil release finishing process for cotton fabric is that cotton fabric was baked for 2 min under 160 ℃ with soil release agent SR-7000 60 g/L, polyether derivative HP 30 g/L, softer HF 103 30 g/L, easy care finishing agent EFR 80 g/L, catalyzer 531 20 g/L, and strong protective agent HLC 30 g/L. The soil release property of finished fabric is 3.5 scale after 30 times washing.%在涤棉织物的易去污整理过程中对易去污整理剂、柔软剂进行优选,通过易去污整理剂与聚醚衍生物HP协同作用和优化工艺条件提高织物易去污效果.涤棉织物易去污整理工艺条件:易去污整理剂SR-7000 60 g/L,聚醚衍生物HP 30 g/L,柔软剂HF103 30 g/L,免烫整理剂EFR 80 g/L,催化剂531 20 g/L,强力保护剂HLC 30 g/L,焙烘温度160 ℃ ,焙烘时间2 min.整理后的织物30次水洗后易去污效果3.5级.

  1. 棉织物的微胶囊阻燃整理%Microencapsulated flame retardancy of cotton fabric

    Institute of Scientific and Technical Information of China (English)

    杨建国; 詹永宝; 党高峰; 杜方东

    2012-01-01

    以含硅材料为壁材,包覆水溶性含磷阻燃剂,制成微胶囊阻燃剂.通过添加协效剂Sb2O3和Al(OH)3对棉织物进行阻燃整理,优化阻燃整理处方.试验表明,整理液中含微胶囊阻燃剂100 g/L,Sb2O370 g/L,AI(OH)3 50 g/L,黏合剂120 g/L,柔软剂50 g/L,尿素10 g/L,渗透剂JFC 10 g/L,分散剂NNO10 g/L,含磷化合物50 g/L,即可赋予织物良好的阻燃效果,且织物手感和强力下降不大.%The microencapsulated flame retardant is prepared with water-based phosphorus containing flame retardant as core and silicone containing material as shell, and its application to flame retardant finish is carried out assisted with inorganic syner-gist Sb2O3 and Al(OH)3. It is found that flame retardant finish with microcapsule 100 g/L, Sb2O3 70 g/L, Al( OH)3 50 g/L, binder 120 g/L, softener 50 g/L, urea 10 g/L, penetrating agent JFC 10 g/L, dispersant NNO10 g/L and phosphorus containing chemical 50 g/L, can impart cotton fabric good flame retardancy with little negative effect on handle and strength.

  2. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  3. 改性棉织物的涂料染色工艺探讨%Discussion on pigment dyeing of modified cotton fabric

    Institute of Scientific and Technical Information of China (English)

    孟春丽; 安刚; 曹毅

    2011-01-01

    Cotton fabric was modified with PECH-amine.Using self-made low temperature self-crosslinking agent as fixing agent, the application property of fixing agent in pigment dyeing was discussed.The results showed that the PECH-amine modification of cotton fabric changed the adsorption ability of cotton fiber to pigment, which increased the dye uptake and color depth of pigment on cotton fibers.The fixation of self-made low temperature self-crosslinking agent brought about good color fastness and handle.The modification of cotton fabric and pigment dyeing technology were investigated, the optimal modification technology was as follows:4 g/L of modifier, 6~8 g/L caustic soda, 1 :30 of liquor ratio, and dyed at 80 ℃ for 30 min, washed to neutral.The optimal pigment dyeing technology was as follows: pigment <8%(owf), 1:20 of liquor ratio, dyed at 90 ℃ for 50min under neutral condition, the sample was withdrawn, washed, soaped, washed and dried.%采用PECH-amine对棉织物改性,自制低温自交联粘合剂为固色剂,探讨其在涂料染色中的应用性能.结果表明:棉织物经PECH-amine改性后,改变了棉纤维对涂料的吸附能力,使得涂料对棉纤维的上染率和染深性提高;经自制低温自交联粘合剂交联固着,改性棉织物的染色牢度和手感均较好.探讨了棉织物的改性及涂料染色工艺,优化的改性工艺为:改性剂4g/L,烧碱6~8g/L,浴比1∶30,80℃处理30 min,水洗至中性.优化的涂料染色工艺为:涂料<8%(owf)时,浴比1∶20,中性条件下90C染色50 min,取出,水洗,皂洗,水洗,烘干.

  4. 中性纤维素酶整理丝光棉织物工艺的确定%Process of neutral cellulase finishing on mercerizing cotton fabrics

    Institute of Scientific and Technical Information of China (English)

    孙洁; 贺江平; 梁金山; 赵建华

    2012-01-01

    研究中性纤维素酶整理丝光棉织物后对其性能的影响.通过实验分析酶用量、pH值、整理温度和时间对织物失重率、顶破强力、硬挺度及抗起毛起球性的影响,并最终确定最佳工艺条件.实验结果表明,中性纤维素酶整理丝光棉织物的最佳工艺为酶用量2%(o.w.f),pH值为7.5,整理温度50℃,整理时间55min.在最佳工艺条件下整理的丝光棉织物,各方面性能有不同程度的改善.并且,顶破强力控制在220N以上,仍能保持织物应有的使用性能.%The influence of neutral cellulase finishing on characters of mercerizing cotton fabrics is studied,the impact of the dosage of cellulase, pH value, treating temperature, and time on the weight-loss ratio, the bursting strength, the stiffness, and the pilling resistance are analyzed through the experiments, the optimum process of neutral cellulase finishing on characters of mercerizing cotton fabrics is determined as follows the dosage of cellulase is 2%(o. w. f), the pH value is 7. 5, the treating temperature is 50"C , and the time is 55min. The various aspects of performance of the mercerizing cotton fabrics under optimum process have improved. When the busting strength control is over 220N, it is still considered acceptable for use performance.

  5. Preparation and controlled release effect of soybean protein/multicarboxylic acids modified cotton fabric%大豆蛋白/复合羧酸改性棉织物的制备及其缓释效果

    Institute of Scientific and Technical Information of China (English)

    许云辉; 王晓明; 张晓丽

    2013-01-01

    To develop an eco-friendly and multifunctional cotton fabric,the modification treatment of cotton fabric was undertaken using citric acid,maleic acid and soybean protein so that the chemical bonding between soybean protein and cotton fabric was formed through the bridging function of multicarboxylic acids.Effects of treating conditions on the weighting percentage of cotton fabric were analyzed and the optimized process parameters were obtained.The characterization of infrared spectra and X-ray photoelectron spectrometry showed that the esterification crosslinking occurred between multicarboxylic acids and macromolecules of cotton fiber according to ring-anhydride mechanism,while the soybean protein was adhered to the cotton fabric with amido bond by the bridging function of multicarboxylic acids.The breaking strength of soybean protein modified cotton fabric slightly decreased,whereas the anti-ultraviolet-ray property of the modified cotton fabric after cactus extract treatment improved remarkably.Furthermore,the drug controlled release test showed that when soybean protein modified cotton fabric was used as the carrier for cactus extract,good controlled release effect was achieved.%为开发生态多功能棉织物,采用柠檬酸、马来酸、大豆蛋白对棉织物进行改性处理,通过复合羧酸的桥联作用,使大豆蛋白与棉织物形成化学键交联结合,研究处理条件对棉织物增重率的影响,并得出最优工艺参数.红外光谱和光电子能谱测试表明,复合羧酸与棉纤维大分子按环酐机制产生酯化交联,大豆蛋白借助复合羧酸的桥联作用以酰胺键共价结合在棉织物上.大豆蛋白改性棉织物的断裂强力略有下降,再经仙人掌提取物处理的大豆蛋白改性棉织物抗紫外线性能明显提高,药物缓释试验显示,大豆蛋白改性棉织物作为药物载体对仙人掌提取物的缓释效果良好.

  6. Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite "Earth-plus"

    Directory of Open Access Journals (Sweden)

    Kasuga E

    2011-09-01

    Full Text Available Eriko Kasuga1,2, Yoshiyuki Kawakami2,3, Takehisa Matsumoto1, Eiko Hidaka1, Kozue Oana2, Naoko Ogiwara1, Dai Yamaki4, Tsukasa Sakurada4, Takayuki Honda1,51Department of Laboratory Medicine, Shinshu University Hospital, 2Division of Infection Control and Microbiological Regulation, Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3Division of Clinical Microbiology, Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, 4Shinshu Ceramics Co Ltd, Kiso, Nagano, Japan; 5Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, JapanBackground: Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite "Earth-plus".Methods: Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains.Results: The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours.Conclusion: Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric.Keywords: hydroxyapatite

  7. Dyeing and finishing process of cotton/polyamide weft-elastic fabric%棉锦纬弹织物染整工艺

    Institute of Scientific and Technical Information of China (English)

    叶宗保

    2015-01-01

    对棉锦纬弹织物染整工艺的前处理、染色、后整理以及产品质量控制方面进行了详细介绍。对染整过程容易出现的问题进行了分析。%The pretreatment, dyeing, finishing and product quality control of cotton/polyamide weft-elastic fabric were detailed introduced. The common problems in the dyeing and finishing process were also analyzed.

  8. 色媒体改性棉织物酸性染料浸染染色%Acid Dyes Dip Dyeing on Cotton Fabric Modified by Color Media

    Institute of Scientific and Technical Information of China (English)

    王洪海

    2015-01-01

    采用阳离子改性剂色媒体对棉织物进行改性处理,之后用酸性染料染色。探讨并分析了改性剂色媒体用量、染色温度、染色时间、染色浴比等工艺参数对染色效果的影响,优化改性棉织物酸性染料浸染染色工艺,并介绍了改性棉织物染色后的固色处理工艺。结果表明,当染料用量为1.0%时,优化的工艺条件为:改性剂色媒体用量为3.0%,染色温度70℃,染色时间40 min,浴比1∶30;改性棉织物染色后具有较好的耐摩擦色牢度和沾色牢度,但耐皂洗褪色牢度较差,应加以进一步的固色处理,高分子固色剂DM的最佳用量为2.0%。%Cotton fabric was modified by cationic modifier color media and dyed by acid dyes. The effects of the dosage of modifier color media, dyeing temperature, dyeing time and bath ratio on dyeing effect were discussed and analyzed, dip dyeing process of modified cotton fabric with acid dyes was optimized, and the fixation process of modified cotton fabric was introduced. The results show that when the dosage of acid dyes is 1.0%, the optimal process conditions are that the dosage of color media is 3.0%, dyeing temperature is 70 ℃, dyeing time is 40 minutes, bath ratio is 1∶30; modified cotton fabric has good fastness to rubbing and staining, but the fastness to soaping is poor; it should be treated by further fixation, and the suitable dosage of macromolecule fixing agent DM is 2.0%.

  9. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  10. Cotton fabric coated with nano TiO{sub 2}-acrylate copolymer for photocatalytic self-cleaning by in-situ suspension polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xue, E-mail: jiangx@jiangnan.edu.cn [Key Laboratory of Eco-textiles of Ministry of Education, College of textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122 (China); State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 (China); Tian Xiuzhi; Gu Jian; Huang Dan [Key Laboratory of Eco-textiles of Ministry of Education, College of textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122 (China); Yang Yiqi [Key Laboratory of Eco-textiles of Ministry of Education, College of textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122 (China); Department of Textiles, Clothing and Design, 234 HECO Bldg, University of Nebraska-Lincoln, Lincoln, NE 68583-0802 (United States)

    2011-08-01

    Two kinds of nano TiO{sub 2}-polyacrylate hybrid dispersions, TBM-w and TBM-e were synthesized by in-situ suspension polymerization and solution polymerization respectively, in order to fix the nano TiO{sub 2} on fabrics. The photocatalytic self-cleaning fabrics have received much attention in recent years for its water-saving and environment-protection advantages. However, the fixation of the photocatalyst on fabrics is still a key problem that inhibits industrialization of these eco-friendly fabrics. The cotton fabric was treated by the two hybrid dispersions. The photocatalytic self-cleaning property was characterized. Infrared spectroscopy, burning loss test and thermogravimetry showed that some copolymer chains entangled with the nano TiO{sub 2}. Transmission electron microscope illustrated that there was a polymeric layer on the surface of nano TiO{sub 2}. The average diameter of TBM-w was smaller than that of TBM-e based on size analysis. The photocatalytic decoloration of the grape syrup indicated that the fabric with TiO{sub 2}-polymer hybrid had excellent self-cleaning property.

  11. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    Science.gov (United States)

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  12. 阳离子改性棉织物的靛蓝染色%Indigo dyeing of cationic modified cotton fabric

    Institute of Scientific and Technical Information of China (English)

    吕青华; 王齐兵; 余志成

    2012-01-01

    为提高靛蓝染料对纯棉织物的染色深度,采用自制阳离子改性剂ZS对棉织物进行改性,讨论了改性剂和氢氧化钠用量、改性温度、改性时间等因素对保险粉或二氧化硫脲还原体系中靛蓝染色性能的影响.试验得到棉织物改性工艺参数为改性剂ZS 4 g/L,NaOH 1.0 g/L,改性温度70℃,改性时间40 min.棉织物改性后靛蓝染色K/S值最高可达到19.3,而未改性棉织物的染色K/S值仅为12.2,且改性后染色织物的耐洗色牢度、耐摩擦色牢度良好.棉织物经改性后靛蓝染色只需浸染-氧化3次就能达到常规6次浸染-氧化的染色深度.%Cotton fabric is modified with the self-made cationic modifier ZS and then dyed with indigo dyes to improve dye depth. The influences of dosage of modifier and sodium hydroxide, modifying temperature and time on dyeing properties in sodium hydrosulfite and thiourea dioxide reduction system separately are discussed. The results indicate that modification process parameters for cotton fabric is cationic modifier ZS 4 g/L, NaOH 1.0 g/L,treating at 70 ℃ for 40 min. The K/S value of the modified cotton dyeings can reach 19.3, while the unmodified one is only 12.2, and the color fastness to soaping and rubbing are also good. The indigo dyeing of the modified cotton fabrics with 3 times dip dyeing-oxidation will be able to achieve the dyeing depth of the conventional 6 times dip dyeing-oxidation.

  13. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Directory of Open Access Journals (Sweden)

    Yunhong Liang

    2017-03-01

    Full Text Available Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing, an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L, interval (S, and height (H of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  14. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    Science.gov (United States)

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  15. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Svetlichnyi, Valery; Shabalina, Anastasiia, E-mail: shabalinaav@gmail.com; Lapin, Ivan; Goncharova, Daria; Nemoykina, Anna

    2016-05-30

    Highlights: • ZnO nanoparticles obtained by pulsed laser ablation exhibit antibacterial activity. • H{sub 2}O{sub 2} and Zn{sup 2+} are not responsible for antibacterial activity of obtained zinc oxide. • Nano-ZnO/cotton fabric composite is a promising material for antibacterial bandage. - Abstract: A simple deposition method was used to prepare a ZnO/cotton fabric composite from water and ethanol dispersions of ZnO nanoparticles obtained by the pulsed laser ablation method. The structure and composition of the nanoparticles from dispersions and as-prepared composites were studied using electron microscopy, X-ray diffraction, and spectroscopy. The nanoparticles and composite obtained exhibited antibacterial activity to three different pathogenic microorganisms—Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. An attempt to understand a mechanism of bactericidal effect of ZnO nanoparticles was made. It was shown that zinc ions and hydrogen peroxide were not responsible for antibacterial activity of the particles and the composite, and surface properties of nanoparticles played an important role in antibacterial activity of zinc oxide. The proposed composite is a promising material for use as an antibacterial bandage.

  16. Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric.

    Science.gov (United States)

    Pathak, Hilor; Madamwar, Datta

    2010-03-01

    Indigo is one of the oldest dyes manufactured chemically and is mostly used in textile, food, and pharmaceutical industries. However, owing to the environmental hazards posed by the chemical production, the present scenario in the field stipulates a biosynthesis alternative for indigo production. The present study describes an indigenously isolated naphthalene-degrading strain Pseudomonas sp. HOB1 producing a blue pigment when indole was added in the growth medium. This blue pigment was analyzed by high-pressure thin-layer chromatography and other spectroscopic techniques which revealed it to be the indigo dye. Pseudomonas sp. HOB1 showed ability to produce 246 mg indigo liter(-1) of the medium. The K (m) for the enzyme naphthalene dioxygenase which is involved in indigo formation is 0.3 mM, and V (max) was as high as 50 nmol min(-1) mg dry biomass(-1). The bacterial indigo dye was further successfully applied for dyeing cotton fabrics. The high indigo productivity of Pseudomonas sp. HOB1 using naphthalene as growth substrate and its applicability on cotton fabrics, therefore, stems the probability of using this culture for commercial indigo production.

  17. Low temperature peroxide bleaching of cotton fabric activated with monoacetyl guanidine%棉织物双氧水/乙酰胍低温活化漂白

    Institute of Scientific and Technical Information of China (English)

    王宏; 曹机良

    2011-01-01

    采用双氧水/乙酰胍(ACG)活化体系替代传统工艺对棉织物进行漂白.通过考察活化剂种类、ACG的用量、漂白温度和时间,以及漂白pH值对漂白效果的影响,并与双氧水、双氧水/TAED漂白体系进行比较.结果显示,在30%双氧水3 g/L、ACG用量1.6 g/L、pH值约为8和温度60℃的条件下处理60 min,可获得很好的漂白效果.%Bleaching of cotton fabric is carried out with hydrogen peroxide/acetylguanidine ( ACG) activation system.Factors of activator types, ACG dosage, bleaching temperature and time as well as pH value on bleaching effects are investigated, and compared to those with hydrogen peroxide or hydrogen peroxide/tetraacetylethylenedianime ( TAED) systems.Results show that cotton fabric treated at 60 ℃ for 60 min with hydrogen peroxide ( 30% )3 g/L, ACG 1.6 g/L, pH value about 8, features high whiteness.

  18. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications.

  19. 改性棉织物的天然紫胶无媒染色%Non-mordant dyeing of modified cotton fabric with natural lac dye

    Institute of Scientific and Technical Information of China (English)

    刘小猛; 胡啸林; 董玲

    2015-01-01

    采用改性剂B对纯棉织物进行改性,用天然紫胶染料进行无媒染色,并对改性工艺和改性后的染色工艺进行了优化.结果表明,棉织物改性工艺为:改性剂B用量6%,改性pH=12,80℃浸渍40 min;染色工艺为:染料用量1%(omf),染色pH=4.7,80℃染色60 min.改性后棉织物的染色深度明显增加,耐摩擦色牢度和耐皂洗色牢度较好,兼具防紫外性能.%Pure cotton fabric was modified by modifier B and then dyed with natural lac dye without any mordant. The modifying and dyeing processes were optimized. The optimal process was determined as fol⁃lows: modifying with 6% of modifier B at 80 ℃ for 40 min under pH=12, dyeing with 1%(omf) lac dye at 80 ℃ for 60 min under pH=4.7. The color depth of modified cotton fabric was obviously improved, the color fastness to rubbing and soaping were good and had good anti-ultraviolet effect.

  20. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    Science.gov (United States)

    Selvakumar, D.; Thenammai, A. N.; Yogamalar, N. R.; Hemamalini, R.; Jayavel, R.

    2015-06-01

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.

  1. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, D.; Yogamalar, N. R.; Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai – 600025 (India); Thenammai, A. N.; Hemamalini, R. [Department of Physics, Queen Mary’s College, Chennai – 600004 (India)

    2015-06-24

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.

  2. 棉针织内衣织物滑爽性加工技术研发%Technical Research of Smoothness Process of Cotton Knitted Underwear Fabric

    Institute of Scientific and Technical Information of China (English)

    潘玉明

    2015-01-01

    介绍了棉针织内衣织物舒适性、生态化的发展趋势,强调了提升内衣面料舒适性的重要性,并以织物的滑爽性作为重要指标进行了技术改进.采用了锰砂过滤、活性炭过滤和树脂过滤结合的3道过滤装置全面净化水质,并优化了用纱及针织工艺,同时将净化水用于棉针织内衣织物的常规工艺染整加工中.结果表明,3道过滤装置全面净化水质后,有助于织物净洗,防止了织物上染化料与水中杂质结合生成难溶性的物质固着在织物上,从而增进了织物的滑爽性;采用3道过滤装置净化水质来增进织物滑爽性,有助于绿色环保.%The development tendency about comfort and ecologicalization of cotton knitted underwear fabric was introduced,and the importance of improving comfort of underwear fabric was stressed,and with smoothness as im-portant index,the technology was improved.The water was purified comprehensively by three filter units which combined with manganese sand filtration,activated carbon filtration and resin filtration,and the choice of yarn and the knitting process were optimized.At the same time,purified water was used for the dyeing and finishing of cot-ton knitted underwear fabric.The results show that the water purified by three filter units contribute to fabric wash-ing,and prevents insoluble materials which combined dyestuffs and chemicals on fabric with impurities in water from fixing on fabric,thus improving the smoothness of fabric; improving the smoothness of fabric by purifying wa-ter with three filter units contributes to green environmental protection.

  3. Water repellent finish of cotton fabrics with fluorine modified flax oil%棉织物的含氟改性亚麻油拒水整理

    Institute of Scientific and Technical Information of China (English)

    郑俊芝; 赵涛

    2011-01-01

    亚麻油经过一系列改性后与四氟丙醇反应,得到含氟酯类拒水剂,然后将其溶于乙酸乙酯中,并应用于棉织物拒水整理.通过测试整理棉织物的接触角、水滴消失时间、白度以及断裂强度,评价拒水剂的性能,得到适合的整理工艺条件为:二浸二轧拒水剂(80 g/L)→预烘(100℃,4min)→焙烘(180℃,3min).经过整理的棉织物接触角达到141°,水滴消失时间为6 480 s;20次水洗后,接触角仍保持在137°左右,耐皂洗效果较好.%A fluorine-contained ester is prepared by the reaction of modified flax soil and 2,2,3,3-tetrafluoropropanol, and then it is dissolved in ethyl acetate and applied to water repellent finish of cotton fabric. The property of the agent is evaluated by testing the contact angle, whiteness and breaking strength of the treated fabric. The optimum finish conditions are determined as follows: double dip-double nip (the concentration of water repellent agent is 80 g/L)→predrying (100 ℃,4 min) →curing (180 ℃, 3 min).The contact angel of the treated cotton fabric reaches 141° and the time of disappearance of water drop is 6 480 s. The treated fabric features fast water repellent effect to soaping and its contact angel remains 137°after 20 cycles of washing.

  4. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    Bajopas Volume 5 Number 2 December, 2012. Bayero Journal of Pure and ... stages of thermal degradation with first degradation between 2500C – 3000C and estimated 75% weight loss. ... smoke density and environmental friendliness.

  5. Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in the aerobic Captina silt loam soil

    Science.gov (United States)

    The increasing use of disposable nonwovens made of petroleum-based materials generates a large amount of non-biodegradable, solid waste in the environment. As an effort to enhance the usage of biodegradable cotton in nonwovens, this study analyzed the biodegradability of mechanically pre-cleaned gr...

  6. 75 FR 50847 - Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders

    Science.gov (United States)

    2010-08-18

    ..., paper, or non-woven cotton fabric, the payment will be calculated on 25 percent of the weight (gross... further processing, for spinning, papermaking, or manufacture of non-woven cotton fabric, 25 percent of... definitions from the regulations for cotton non-recourse loans and loan deficiency payments. It clarifies...

  7. WLS助剂改性的棉纱线硫化染料浸染染色工艺研究%Study on dip dyeing of WLS agent modified cotton fabric with sulfur dye

    Institute of Scientific and Technical Information of China (English)

    刘元军; 王雪燕; 韩超; 刘元臣

    2014-01-01

    Cotton fabric was modified with cationic agent WLS, the influence of dyeing properties using dip dyeing process with sulfur dye was studied. And the optimal dyeing process of agent WLS modified cotton fabric with sulfur dye was optimized. Then the dyeing properties of the dip dyeing modified cotton fabric with sulfur dye were estimated. The result indicated that the dip dyeing modified cotton fabric with sulfur dye exhibited higher K/S value and higher dyeing percentage. Comparing to traditional crafts, dyeing WLS agent modified cotton solve problems of using sodium bisulfite, low dyeing percentage, wastewater pollution and so on. So the dip dyeing modified cotton fabric with sulfur dye is helpful to energy conservation and development of environmentally friendly dyeing process.%固定阳离子改性剂WLS改性棉纱线工艺,研究硫化染料浸染染色工艺条件对染色性能的影响,优选出改性棉纱线硫化染料浸染染色的最佳工艺,评价了改性棉纱线硫化染料浸染染色效果。结果表明:改性棉纱线硫化染料的上染百分率和K/S值显著提高。WLS助剂改性棉纱线解决了传统硫化染料染色时,还原剂用量大,染料上染率低,染色废水污染严重等问题,这种改性工艺对于节能减排,开发环保型染色工艺非常有利。

  8. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process

    Science.gov (United States)

    Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than their synthetic counterparts. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-cl...

  9. Superhydrophobic alumina surface based on stearic acid modification

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China); Zhang Hongxia; Mao Pengzhi; Wang Yanping; Ge Yang [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2011-02-15

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2{sup o} is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and {gamma}-Al{sub 2}O{sub 3}. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  10. Fabrication of Superhydrophobic Surfaces with Hierarchical Structures by an Ultrasonic Etch Method%超声刻蚀法构建分级结构的超疏水表面

    Institute of Scientific and Technical Information of China (English)

    黄建业; 王峰会; 侯绍行; 赵翔

    2014-01-01

    在湿法刻蚀和超声空化的基础上,采用超声刻蚀法制备了具有微纳米分级结构的超疏水表面.以等体积比的硝酸/乙醇(体积分数为4%)和双氧水(质量分数为30%)的混合溶液作为刻蚀剂,在室温下对60Si2Mn钢、60#钢、T10钢、Cr06钢、65Mn钢和硅钢表面超声刻蚀2~10 min,构建出多种形貌的微纳米分级结构.上述表面经氟硅烷修饰后具有超疏水性,水的表观接触角高达157.0°,155.8°,157.4°,154.9°,157.6°和156.8°,滚动角分别为6.5°,19.2°,6.1°,7.8°,6.7°和7.2°.与常规刻蚀方法相比,超声刻蚀的化学刻蚀作用因与空化作用耦合而得到强化和改变,从而在钢表面构建出分级结构.由于材料表面微结构形貌和固/液界面接触状态不同,制得的超疏水表面表现出的润湿行为也不同.超声刻蚀法简单易行,成本低廉,适用于其它金属表面构建微纳米分级结构和超疏水表面.%Based on wet etching and ultrasonic cavitation, an ultrasonic etch method was proposed for fabrica-ting micro-and nanoscale hierarchical structures. By ultrasonic etching with isopyknic mixture of nitric acid/ethanol(4%, volume fraction) and hydrogen peroxide(30%, mass fraction) for 2-10 min at room tempe-rature, several hierarchical structures were fabricated on the surfaces of 60Si2Mn, 60#, T10, Cr06, 65Mn and silicon steel. After decorated with fluorosilane, the aforementioned surfaces become superhydrophobic and show water contact angles of 156. 0°, 154. 8°, 156. 4°, 153. 9°, 156. 6° and 155. 8°, respectively, and the corresponding roll angles are 6. 5°, 19. 2°, 6. 1°, 7. 8°, 6. 7° and 7. 2°, respectively. Compared to the regu-lar etching, the chemical corrosion of ultrasonic etching was enhanced and modified by coupling with cavita-tion, and therefore could fabricate hierarchical structures. Due to the differences in microstructure morpholo-gies and wetting states of solid/liquid interfaces, the superhydrophobic

  11. Use of inverse gas chromatography to characterize cotton fabrics and their interactions with fragrance molecules at controlled relative humidity.

    Science.gov (United States)

    Cantergiani, Ennio; Benczédi, Daniel

    2002-09-06

    The present work focused on the surface characterization and fragrance interactions of a common cotton towel at different relative humidities (RHs) using inverse gas chromatography (IGC) and dynamic vapour sorption. The sigmoidal water sorption isotherms showed a maximum of 16% (w/w) water uptake with limited swelling at 100% RH. This means that water interacts strongly with cotton and might change its initial physico-chemical properties. The same cotton towel was then packed in a glass column and characterized by IGC at different relative humidities, calculating the dispersive and specific surface energy components. The dispersive component of the surface energy decreases slightly as a function of relative humidity (42 mJ/m2 at 0% RH to 36 mJ/m2 at 80% RH) which would be expected from swelling of the humidified cotton. The Gutmann's donor constant Kd increased from 0.28 kJ/mol at 0% RH to 0.42 kJ/mol at 80% RH, indicating that a greater hydrophilic surface exists at 80% RH, which is also as expected. Water, undecane and four fragrance molecules (dimetol, benzyl acetate, decanal and phenylethanol) were used to investigate cotton-fragrance interactions between 0 and 80% RH. The adsorption enthalpies and the Henry's constants were calculated and are discussed. The higher values for the adsorption enthalpies of polar molecules such as dimetol and phenylethanol suggest the presence of hydrogen bonds as the main adsorption mechanism. The Henry's constant of dimetol was also determined by headspace gas chromatography measurements at 20% RH, giving a similar value (230 nmol/Pa g by IGC and 130 nmol/Pa g by headspace GC), supporting the usefulness of IGC for such determinations. This work confirms the usefulness of chromatographic methods to investigate biopolymers such as textiles, starches and hairs.

  12. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  13. Properties of cotton fabrics finished by olive oil microcapsules%橄榄油微胶囊整理棉织物的性能

    Institute of Scientific and Technical Information of China (English)

    于丹凤; 裴广玲

    2012-01-01

    In order to prolong the acting time of olive oil with fabrics, olive oil microcapsules were prepared using gelatin and Arabic gum as wall materials and applied to finish the cotton fabric. The effects of pre-drying and curing temperature and time, and volume ratio of finishing agent to adhesive agent on the properties of the finished fabric were investigated. The olive oil percentage and air and moisture permeability of the finished fabric were tested as well. The results showed that the oil content of finished cotton fabric was up to 2% -5% when pre-drying temperature was 70 ℃ , curing temperature was 120℃ for 1 min, solid content of finishing agent was 5 % , and the volume ratio of finishing agent to adhesive agent was 1:1. Moreover, the finished fabric had good slow-release property, good air and moisture permeability, and considerable washing fastness, being able to satisfy the common serviceability requirements.%为延长橄榄油在纺织品及服饰上的作用时间,以明胶和阿拉伯胶为壁材,将其制备成橄榄油微胶囊.并采用自制的橄榄油微胶囊,对棉织物进行整理.考察预烘、焙烘温度和时间、微胶囊材料与黏合剂的比例等对织物性能的影响.并对整理后棉织物含油率、透气透湿性能等进行测试.结果表明,当预烘温度为70℃、焙烘温度为120℃、焙烘时间为1 min、整理剂固含量为5%、整理剂与黏合剂的体积比为1∶1时,整理过的棉织物含油率在2% ~5%,透气透湿性较好,具有较好的缓释性能和一定的耐水洗性,能够满足一般服用要求.

  14. Development and Production of Coffee-carbon/Cotton/Modal Blended Healthcare Fabric%咖啡炭/棉/木代尔混纺保健功能织物开发与生产

    Institute of Scientific and Technical Information of China (English)

    崔鸿钧

    2015-01-01

    Based on practical experience of developing and producing coffee-carbon/cotton/Modal blended healthcare fabric, the author introduces the main design elements and techniques for developing multi-ifber blended fabric and analyzed the process and technical measures for producing the coffee-carbon/cotton/Modal blended healthcare fabric, offering reference for developing such kind of blended fabric.%以咖啡炭/棉/木代尔混纺保健功能织物开发生产为例,详细介绍了多组份混纺织物开发的主要设计要素和设计方法,分析探讨了咖啡炭/棉/木代尔混纺保健功能织物生产各工序的工艺和技术措施,为该类织物的开发提供参考。

  15. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  16. Application of Ultrasonic Technology in Cotton PLA Fabric Desizing%超声波技术在棉PLA织物退浆中的应用

    Institute of Scientific and Technical Information of China (English)

    宋建芳; 傅忠君; 王招军

    2012-01-01

    探讨超声波技术在棉PLA混纺织物酶退浆中的应用效果及退浆工艺优化.分别采用常规酶退浆与超声波酶退浆对棉PLA混纺织物进行退浆,比较了退浆后织物的退浆率、白度和经向断裂强力,并对超声波酶退浆条件下的酶浓度、双氧水浓度、精炼剂浓度、保温温度和保温时间及pH值进行了优化.试验结果表明:与常规酶退浆相比,超声波作用下的酶退浆可使棉PLA混纺织物的退浆率和白度明显提高,但断裂强力有一定程度下降;超声波作用下的酶退浆较理想工艺为退浆酶浓度5 g/L,双氧水浓度8 g/L,精炼剂浓度8g/L,保温温度70℃、保温时间50 min,pH值7.5.认为,将超声波技术应用在织物酶退浆中具有节能减排的实际意义.%Application effect of ultrasonic technology in cotton PLA blended fabric enzymes desizing and desizing processing optimization were discussed. Conventional enzymes desizing and ultrasonic enzymes desizing were adopted respectively on cotton PLA blended fabric. Desizing rate, whiteness and breaking strength in warp direction were contrasted. Enzymes concentration, hydrogen peroxide concentration, refining agent concentration, holding temperature, holding time and pH value in ultrasonic enzymes desizing condition were optimized. The test result shows that compared conventional enzymes desizing, desizing rate and whiteness of cotton PLA blended fabric are higher obviously when adopting ultrasonic enzymes desizing, while the breaking strength is reduced in certain degree. In ultrasonic enzymes desizing processing, the better processing should be enzymes concentration 5 g/L, hydrogen peroxide concentration 8 g/L,refining a-gent concentration 8 g/L,holding temperature 70 ℃ ,holding time 50 min and pH value 7. 5. It is considered that significance of energy saving is larger by applying ultrasonic enzymes desizing technology.

  17. 茶多酚在棉织物上的媒染性能%Mordant dyeing behaviors of cotton fabric with tea polyphenols

    Institute of Scientific and Technical Information of China (English)

    唐慧; 唐人成

    2011-01-01

    The mordant dyeing of cotton fabric with tea polyphenols ( TP) is carried out with ferrous sulfate, ferric sulfata and aluminum potassium sulfate as mordants.The influences of pH value, immersion temperature of TP treatment and the dosage of mordant in post-mordanting on dyeing behaviors are investigated, furthermore, the color fastness and UV protection property of the dyeings are measured.TP is more stable under acidic condition than neutral and alkaline conditions owing to the increase in the ionization and oxidization of phenolichydroxyl.The colors of the cotton fabrics with ferrous sulfate, ferric sulfate and aluminum potassium sulfate as mordants are violetish grey, pale grey and pale yellow respectively, and the color strength varies with metal ions.It is found that the dyeings feature excellent gray scale for staining of color fastness to soaping and rubbing fastness, while the gray scale for color change of color fastness to soaping is poor.In addition, cotton fabrics dyed with TP show good UV protective performance.%以硫酸亚铁、硫酸铁和硫酸铝钾为媒染剂,研究茶多酚(TP)在棉织物上的媒染性能.通过探讨后媒法中茶多酚处理的pH 值、温度及媒染剂用量对媒染性能的影响,测试染后织物的染色牢度和紫外防护性能,结果表明,茶多酚在酸性条件下较稳定,中性和碱性条件下酚羟基的电离和氧化程度增加.棉织物经硫酸亚铁、硫酸铁和硫酸铝钾媒染后分别呈紫灰色、浅灰色和浅黄色,得色深度随金属离子种类的不同而异,且具有良好的耐洗沾色和耐摩擦牢度,但耐洗变色牢度较差;此外,茶多酚染色能赋予棉织物较好的紫外防护性能.

  18. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shanshan; Liu, Ming [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Wu, Yiqiang, E-mail: wuyq0506@126.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Luo, Sha [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Qing, Yan, E-mail: qingyan0429@163.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Haibo [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-11-15

    Graphical abstract: Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. Display Omitted - Highlights: • Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES. • The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°. • The superhydrophobic surface showed a durable and robust wear-resistance performance. - Abstract: In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  19. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    Science.gov (United States)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  20. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.

    Science.gov (United States)

    Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong

    2017-03-01

    Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.

  1. Radiation-induced grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities

    Science.gov (United States)

    Kumar, Virendra; Bhardwaj, Y. K.; Rawat, K. P.; Sabharwal, S.

    2005-06-01

    Mutual radiation grafting technique using 60Co gamma radiation has been used to carry out grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton cellulose substrate. Grafting yield increased with radiation dose and decreased with dose rate but was adversely affected by the presence of O 2 and salts of Fe 2+ and Cu 2+. However, the presence of an acid did not affect grafting in the concentration range studied. The effect of organic solvents like methanol, ethanol, n-propanol, iso-propanol, tert-butanol on grafting yield was investigated in the mixed aqueous solvent system. The VBT grafted cotton samples showed significantly higher water uptake and water retention properties and possessed excellent anti-bacterial activity against strains like Escherichia coli and Staphylococcus aureus. Samples with 25% grafting extent showed 6 log cycles reduction in bacterial counts within 6 h of exposure time. The anti-bacterial activity of the grafted cotton samples was retained after several cycles of washing and drying in a commercial detergent powder.

  2. Research Progress on One-bath Dyeing of Nylon/Cotton Fabric%锦/棉织物一浴法染色研究进展

    Institute of Scientific and Technical Information of China (English)

    陈镇; 粟建权

    2015-01-01

    本文简单介绍了锦纶、棉纤维的基本结构和染色性能,详细阐述了活性染料、活性/中性染料、活性/分散染料、活性/金属络合染料、活性/酸性染料、酸性染料、直接/酸性染料、中性/直接染料、液体硫化染料等当前9种不同的锦/棉织物一浴染色工艺的基本原理和研究进展。%In this paper, the basic structure and dyeing properties of nylon and cotton were introduced briefly. The basic principle and research progress of nine different one-bath dyeing methods for nylon/cotton fabric were described in detail, including reactive dyeing, reactive/neutral dyeing, reactive/disperse dyeing, reactive/metal complex dyeing, reactive/acid dyeing, acid dyeing, direct/acid dyeing, neutral/direct dyeing, liquid sulfur dyeing.

  3. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity

    Science.gov (United States)

    Svetlichnyi, Valery; Shabalina, Anastasiia; Lapin, Ivan; Goncharova, Daria; Nemoykina, Anna

    2016-05-01

    A simple deposition method was used to prepare a ZnO/cotton fabric composite from water and ethanol dispersions of ZnO nanoparticles obtained by the pulsed laser ablation method. The structure and composition of the nanoparticles from dispersions and as-prepared composites were studied using electron microscopy, X-ray diffraction, and spectroscopy. The nanoparticles and composite obtained exhibited antibacterial activity to three different pathogenic microorganisms-Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. An attempt to understand a mechanism of bactericidal effect of ZnO nanoparticles was made. It was shown that zinc ions and hydrogen peroxide were not responsible for antibacterial activity of the particles and the composite, and surface properties of nanoparticles played an important role in antibacterial activity of zinc oxide. The proposed composite is a promising material for use as an antibacterial bandage.

  4. Low salt dyeing of cotton fabric with reactive dyes%棉织物活性染料低盐染色

    Institute of Scientific and Technical Information of China (English)

    高晓红; 贾雪平

    2011-01-01

    对棉织物阳离子改性后再用活性染料进行染色.研究表明:采用优化的改性工艺(阳离子改性剂9.5 g/L,NaOH 5.0 g/L,浴比50:1,80℃改性55 min)对棉织物进行处理后,再低盐染色[活性染料2%(omf),元明粉lO g/L,浴比50:1,染色温度55℃,染色时间雅格素红60 min、雅格素黄和雅格素藏青50 min]染色,染料固着率高,可实现棉织物活性染料低盐染色.%Cationic modified cotton fabric is dyed with reactive dyes. The results show that low salt dyeing of cotton fabric can be realized with high fixation yield, cationic modification is carried out at 80℃ for 55 minutes with cationic modifier 9.5 g/L,NaOH 5.O g/L and bath ratio 50 ∶ 1, and low salt dyeing is undergone at 55℃ with reactive dyes 2%(omf) , anhydrous sodium sulphate 10g/L and bath ratio 50 ∶ 1, dyeing time for Argazol red is 60 minutes, for Argazol yellow and Argazol turquoise blue is 50 minutes respectively.

  5. Enzyme pretreatment of high-count cotton fabric%纯棉细布的生物酶前处理工艺

    Institute of Scientific and Technical Information of China (English)

    岳仕芳

    2012-01-01

    Enzyme is applied to pretreatment of high counts cotton fabrics to realize alkali free clean production. Quality indexes of semi-products and wastewater indexes of different pretreatment processes are discussed. The results show that the high counts cotton fabrics pretreated with peroxide desizing and bleaching, enzyme cold pad batch, hot washing process have the whiteness of 81.39%, capillary effect of 8.2 cm/30 min and lower strength loss of 5.8%. The pretreatment process with cold pad batch method can realize alkali free pretreatment, cut down water and energy consumption, and reduce wastewater discharge and burden on wastewater treatment.%纯棉高支织物前处理中使用生物酶,以实现无碱清洁生产.探讨了几种前处理工艺的半制品质量指标和废水指标.结果表明,采用氧退漂-生物酶冷堆-热水洗工艺对纯棉高支轻薄织物进行前处理,半制品白度81.39%,毛效8.2 cm/30 min,强力损伤率5.8%,尤其是强力保留率较高.该工艺通过冷堆完成,实现了无碱前处理,大幅降低了能耗和水耗,减少了排污量及废水处理难度.

  6. Production Experience of Pure Cotton Superfine Compact Crepe De Chine Fabric%纯棉特细紧密纺双绉织物的生产体会

    Institute of Scientific and Technical Information of China (English)

    蔡永东

    2012-01-01

    Production technology key points of pure cotton superfine compact crepe de chine fabric were discussed. According to yarn kinky problems in weaving,hard twist yarn was set in weaving preparatory process. Warping tension was controlled slightly larger. The special processing was adopted, including middle concentration and pressure , lower viscosity,re-soaked,covered and double size box, reducing sizing percentage appropriately, using less with or without PVA. In weaving process, loom tension, shed processing and weft-inserting processing were adjusted properly. Finally defects caused by hard twist yarn can be reduced,loom efficiency can be reached 95% ,2 000 twist per meter pure cotton superfine compact crepe de chine fabric can be produced successfully.%探讨纯棉特细紧密纺双绉织物的生产技术要点.针对织物在织造过程中易退捻扭结的问题,对强捻纱在织前准备工序进行了定形处理,整经张力偏大控制,浆纱采用“中浓低黏、中压力、重浸透、求被覆、双浆槽、适当降低上浆率、少用或不用PVA”的工艺路线,织造时合理调节上机张力、开口工艺、引纬工艺等参数.结果减少了强捻纱易扭结所造成的疵点,使织机效率达到95%,顺利开发出2 000捻/m纯棉特细紧密纺双绉织物.

  7. 精梳棉牛奶纤维混纺小提花织物的开发%Development of Combed Cotton Milk Fiber Blended Small Jacquard Fabric

    Institute of Scientific and Technical Information of China (English)

    杨小玲; 杜胜英; 魏强; 梁红丽

    2012-01-01

    探讨精梳棉牛奶纤维混纺小提花织物的生产技术措施.分析了精梳棉牛奶纤维混纺织物的特点,指出:该种织物织前工序应采用“小张力,低速度,重被覆,保伸长,减毛羽”的工艺原则,减少纱线毛羽及伸长;织造工序选用“小张力,适当大开口”的工艺原则,优选经位置线.通过一系列技术措施的实施,织机效率达到87.5%,产品下机一等品率达85%,达到了预期的目标.%Production technology measures of combed cotton milk fiber blended small jacquard fabric were discussed. Properties of combed cotton milk fiber blended fabric were analyzed. It is pointed out that processing principle of smaller tension,lower speed,more covering,proper elongation,less hairiness was adopted in weaving preparatory process. Elongation and hairiness of yarn were reduced. In weaving process, processing of smaller tension, proper larger Bhed was adopted,warp shed line was optimized. Through a series of technology measures,loom efficiency can reach 87. 5% ,production first grade percentage before cloth repairing can reach 85% ,the target can be reached.

  8. Recent advances in superhydrophobic nanomaterials and nanoscale systems.

    Science.gov (United States)

    Nagappan, Saravanan; Park, Sung Soo; Ha, Chang-Sik

    2014-02-01

    This review describes the recent advances in the field of superhydrophobic nanomaterials and nanoscale systems. The term superhydrophobic is defined from the surface properties when the surface shows the contact angle (CA) higher than 150 degrees. This could be well known from the lotus effect due to the non-stick and self-cleaning properties of the lotus leaf (LL). We briefly introduced the methods of preparing superhydrophobic surfaces using top-down approaches, bottom-up approaches and a combination of top-down and bottom-up approaches and various ways to prepare superhydrophobic nanomaterials and nanoscale systems using the bio-inspired materials, polymer nanocomposites, metal nanoparticles graphene oxide (GO) and carbon nanotubes (CNTs). We also pointed out the recent applications of the superhydrophobic nanomaterials and nanoscale systems in oil-spill capture and separations, self-cleaning and self-healing systems, bio-medicals, anti-icing and anti-corrosive, electronics, catalysis, textile fabrics and papers etc. The review also highlights the visionary outlook for the future development and use of the superhydrophobic nanomaterials and nanoscale systems for a wide variety of applications.

  9. Fabrication and Characteration of Superhydrophobic Polymer/hydrophobic SiO2 Composite Coatings%聚合物/疏水性SiO2超疏水复合涂层的制备及表征

    Institute of Scientific and Technical Information of China (English)

    郭永刚; 耿铁; 吴海宏; 邓鹏辉

    2013-01-01

    使用低密度聚乙烯、聚甲基丙烯酸甲酯和疏水性SiO2为原料,通过简单的共混涂膜方法在玻璃基底上制得了具有超疏水性能的聚乙烯/疏水性SiO2和聚甲基丙烯酸甲酯/疏水性SiO2复合涂层;用接触角测量仪、扫描电子显微镜、X-射线光电子能谱仪等分析手段对涂层的润湿性能、微观结构以及表面化学成分等进行了表征.结果表明,所制备的两种聚合物/疏水性SiO2复合涂层的静态水接触角都超过150°,滚动角低至3.0°.聚合物和疏水性SiO2共混涂膜后形成了类似于荷叶的微纳米二元结构,是其表面具有优异超疏水性能的主要原因.%Using low density polyethylene (PE),polymethyl methacrylate (PMMA) and hydrophobic SiO2 as the raw materials,PE/hydrophobic SiO2 and PMMA/hydrophobic SiO2 composite coatings with superhydrophobicity were fabricated on the glass substrate by a simple one-step casting method.Several analysis equipments,such as contact angle meter,scanning electron microscope and X-ray photoelectron spectroscopy instrument,were used to characterize and analyse the wettability,morphology,and surface chemical properties of the as-prepared coatings,respectively.The results show that the static water contact angles of the two coatings are higher than 150° and the sliding angles are lower than 3.0°.It is also found that the micro-nano-binary structure,similar to lotus leaves,is essential for achieving an excellent superhydrophobic surface.

  10. Determination of cotton fabric fish odor by HS-GC-MS%基于HS-GC-MS的棉织物鱼腥味检测

    Institute of Scientific and Technical Information of China (English)

    王晓宁; 王昊; 廖青

    2011-01-01

    为提高人工嗅辨法检测棉织物鱼腥味测试结果的客观性和重现性,通过实验建立了棉织物中鱼腥味物质三甲胺的静态顶空-气相色譜-质谱检测方法,并对三甲胺的多次顶空萃取动力学进行了初步探讨.实验结果表明,样品的平衡温度是影响棉织物鱼腥味测试的重要因素,平衡温度高,分析物质扩散速度快,分析灵敏度高,但温度过高,分析物质分解.该方法线性关系良好,加标回收率在90%以上,最低检测限为20μg/mL,RSD值为5.98%.该方法操作简便,可用于棉织物异味中鱼腥味的检测,并且三甲胺浓度随时间的变化符合一级反应动力学.%The goal of this study was to improve the reproducibility and objectivity of determination of fish odor on cotton by nose. The static headspace-gas chromatography-mass spectrometry method was used to detect fish odor material trimethylamine in cotton fabrics and dynamics of multiple headspace extraction was discussed. Results showed that the most important influencing factor was equality temperature. The high equality temperature leads to rapid diffusion speed and sensitiveness of the material being tested. But too high the temperature results in decomposition of the material. Linearity range of this method is good,with the recovery over 90%, detection limit 20 μg/mL,and RSD 5.98%. This method is simple, rapid and accurate, and can be applied for determining the fish odor in the cotton fabrics. And the concentration of trimethylamine varying with time conforms to the first-order reaction dynamics.

  11. High Stability Performance of Superhydrophobic Modified Fluorinated Graphene Films on Copper Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Rafik Abbas

    2017-01-01

    Full Text Available A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.

  12. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    Science.gov (United States)

    Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.

  13. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng, E-mail: zsguan@njtech.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Highly transparent, stable, and superhydrophobic PET film was fabricated by dip-coating way. • The gradient structure is beneficial to both hydrophobicity and transparency. • The superhydrophobic PET film after physical damage can quickly regain by one-step spary. • The fabrication method is available for various substrates and large-scale production. - Abstract: Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  14. Fabrication of Transparent Superhydrophobic by Co-hydrolysis Method%共水解法制备透明超疏水表面

    Institute of Scientific and Technical Information of China (English)

    李西营; 李萌萌; 秦艳雨; 高丽; 刘勇; 杨浩; 毛立群

    2012-01-01

    Nano-particles SiO2 were modified in situ with hydrophobic property due to the grafting of long-chain-alkane silane on them.The as-prepared surfaces demonstrated perfect water-repellent behavior considering their high contact angle and negligible hysteresis.The superhydrophobic surfaces were transparent and can bear high-speed water droplet impact.In contrast to traditional process in which very expensive perfluorine silane was necessary,the facile dip-coating of in-situ modified SiO2 micro particles required no post treatment.%利用硅烷偶联剂与正硅酸乙酯共水解法对SiO2纳米颗粒进行原位疏水化处理,并采用共水解后的溶胶在玻璃基底上浸渍提拉成膜,两次成膜后即可以使玻璃表面呈现良好的超疏水性并保持较好的透明度。论文通过扫描电镜、原子力显微镜、傅立叶变换红外光谱、接触角仪进一步对超疏水表面进行了表征。实验结果显示制备的超疏水表面不仅具有较大的表观接触角(≥150°),而且该表面有着较小的接触角滞后。通过该方法制备的超疏水表面不需要使用昂贵的全氟烷进行后续疏水化处理,从而简化了超疏水表面的制备工艺。

  15. Influence of activation methods on waste cotton-polyester fabric recycling%活化方法对废旧涤/棉混纺织物回收利用的影响

    Institute of Scientific and Technical Information of China (English)

    燕敬雪; 张瑞云

    2012-01-01

    In order to better recover cotton component from the waste cotton-polyester blended fabrics, four different activation methods, including sodium hydroxide, sodium hydroxide and ultrasonic treatment, ethylenediaraine, and ethylenediamine and ultrasonic treatment, were adopted to activate the blended fabrics to obtain proper methods on the principle of minimizing the impact on polyester and maximizing the solubility of cotton cellulose. The influence of four different activation methods on polyesler mass, mechanical properties and chemical structures of waste cotton-polyester blended fabrics was investigated, and the results revealed that the sodium hydroxide and sodium hydroxide and ultrasonic treatment have less effect on polyester, and can be used to activate the waste cotton-polyester blended fabrics. The further study result of the influence of the two methods above on molecular structure and solubility of cotton fibers showed that sodium hydroxide and ultrasonic treatment is the best suitable way to activate the waste cotton-polyester blended fabrics.%为更好地溶解废旧涤/棉混纺织物中的棉纤维,采用4种活化方法对废旧涤/棉混纺织物进行活化,并在4种活化方法中寻找最适合的活化方法,其原则是应尽量减少对涤纶各方面的影响和增加棉纤维素的溶解度.通过比较4种活化方法对废旧涤/棉混纺织物中涤纶的质量、拉伸性能、化学结构的影响,发现氢氧化钠和氢氧化钠+超声波处理方法对涤纶各方面的影响较小,可用于活化废旧涤/棉混纺织物.进一步探讨这2种活化方法对棉纤维素结构和溶解性的影响发现,氢氧化钠+超声波活化方法最适合用来活化废旧涤/棉混纺织物.

  16. Water slip flow in superhydrophobic microtubes within laminar flow region

    Institute of Scientific and Technical Information of China (English)

    Zhijia Yu; Xinghua Liu; Guozhu Kuang

    2015-01-01

    The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as wel as to science and technology development. Experiments were car-ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam-inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching–fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc-tion ranges from 8%to 31%. It decreases with increasing Reynolds number when Re b 900, owing to the transition from Cassie state to Wenzel state. However, it is almost unchanged with further increasing Re after Re N 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.

  17. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.K., E-mail: krishna62@rediffmail.com [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abbas, S.M.; Goswami, T.H. [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abhyankar, A.C. [Defence Institute of Advanced Technology( DIAT), Giri Nagar, Pune 411025 (India)

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni–Zn ferrite (Ni {sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8–18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6–1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2–12.4 GHz) and Ku (12–18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense. - Highlights: • Ni–Zn ferrite (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) with acetylene black found effective coating for microwave absorption. • Coating formulation containing 40 wt% ferrite, 3 wt% carbon and 57 wt% PU offered 40% absorption, 20

  18. Photovoltaic fabrics

    Science.gov (United States)

    2015-04-22

    during wire fabrication. Weaving was demonstrated for both military-type nylon -cotton blend (NYCO) warp fibers and cotton-polyester warp fibers. A...Lowell, MA 01852 14. ABSTRACT This report describes a project to improve photovoltaic fabrics. It had four objectives: 1) Efficiency – make PV wires on...a continuous basis that exhibit 7% efficiency; 2) Automated Welding – demonstrate an automated means of interconnecting the electrodes of one wire

  19. 阳离子涂料对棉机织物的染色工艺%Dyeing of cotton woven fabric with cationic pigment

    Institute of Scientific and Technical Information of China (English)

    周光勇; 陈俊; 顾学平

    2012-01-01

    Cotton woven fabric was dyed with new developed cationic pigments. The optimum dyeing processes was determined according to single-factor and orthogonal experiments: cationic pigment 10% (omf),liquor ratio 1:10,pH 8,dyeing at 80 ? for 20 min,with the addition of 10 g/L of pigment fastness improver DM-5146,holding at 40 ? for 20 min,then the dyed fabric was treated with softening agent silicone oil. The product displayed good color fastness.%采用新开发的阳离子涂料对纯棉机织物染色,通过正交试验和单因素分析,优化染色工艺:阳离子涂料10%(omf),浴比1:10,pH=8,80 ℃保温20 min,再加入涂料牢度提升剂DM-5146 10g/L,40℃保温20 min,最后经硅油柔软整理,成品织物具有良好的色牢度.

  20. 棉型织物的三防和易去污整理%Water-, oil-, stain proofing and soil release finish of cotton fabric

    Institute of Scientific and Technical Information of China (English)

    杨俊文

    2012-01-01

    前处理、染色和后整理等工艺处理对棉型织物的三防和易去污整理效果都有影响.试验结果表明,为保证氟化物三防和易去污双效整理的效果,前处理时要将织物上的各种杂质去除干净,以保证毛效合格;染色后布面pH值保持在5~7,整理工作液中不能添加与三防和易去污功效机理相反的助剂.%The finishing results of water-, oil- and stain- proof and soil release finish of cotton fabric are affected by pretreat-ment, dyeing and finishing processes. The results show that in order to ensure the finishing results, impurities should be removed completely to obtain good capillary effect, the pH value of fabric surface should be controlled at 5 ~7 after dyeing, and auxiliaries that have reversed behaviors should not be added into the finishing liquor.

  1. Tencel棉渐变提花织物的设计与生产%Design and Production of Tencel Cotton Gradually Changing Jacquard Fabric

    Institute of Scientific and Technical Information of China (English)

    陈秀敏; 葛晓华; 莫杰

    2011-01-01

    总结Tencel棉渐变提花织物的设计与生产技术要点.通过在整经工序加大边纱张力,避免经轴松边;浆纱工序在浆料配伍上以增强、保伸、减磨为原则;穿筘工序合理设计工艺;织造工序分别调节大小织轴张力和调整每筘穿入数;染整工序合理选择工艺,确保织物风格特点等技术措施,使得该织物织机效率提高到87%,入库一等品率达到96.2%以上.%Design and production technology key points of Tencel cotton gradually changing jacquard fabric were summed up. Warp beam loosen should be avoided through increasing side end tension in warping process. Principle of increasing strength,keeping elongation and reducing friction was adopted in adjusting size mixture. Processing of reed was designed rationally. Warp beam tensions and