Grand unified theories from superstrings
Cleaver, G B
1996-01-01
I discuss how traditional grand unified theories, which require adjoint (or higher representation) Higgs fields for breaking to the standard model, can be contained within string theory. The status of stringy free fermionic three generation SO(10) SUSY--GUT models is reviewed. Progress in classification of both SO(10)_2 charged and uncharged embeddings and in N=1 spacetime solutions is discussed. Based on talks presented at the Workshop on SUSY Phenomena and SUSY GUTs, Santa Barbara, California, Dec. 7-11, 1995, and at the Orbis Scientiae, Coral Gables, Florida, January 25-28, 1996. To appear in the Proceedings of Orbis Scientiae, 1996.
A Grand Unified Theory of Interdisciplinarity
Davis, Lennard J.
2007-01-01
Aside from the appeal to administrators as a tool to reduce costs by combining less robust departments with heftier relations, interdisciplinarity is a powerful idea because it implies that different branches of knowledge can benefit from talking to one another: a grand, unified theory of knowledge in which each discipline contributes building…
Discovery of the Grand Unified Theory
Nair, Radhakrishnan
2010-11-01
I have discovered the Grand Unified Theory which unites quantum with classical mechanics. This discovery is based on a geocentric universe, the myth of empty space, four states of matter in three dimensional space and space-time exponentiation, instead of space-time curvature.
Inflationary Reheating in Grand Unified Theories
Bassett, B A; Bassett, Bruce A.; Tamburini, Fabrizio
1998-01-01
Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these theories ? We answer these questions in two interesting limiting cases and demonstrate an increased efficiency of reheating which strongly enhances non-thermal topological defect formation, including monopoles and domain walls. Nevertheless, the large fluctuations may resolve this monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which non-thermal destabilsation of discrete symmetries occurs at reheating.
A unified grand tour of theoretical physics
Lawrie, Ian D
2013-01-01
A Unified Grand Tour of Theoretical Physics invites its readers to a guided exploration of the theoretical ideas that shape our contemporary understanding of the physical world at the fundamental level. Its central themes, comprising space-time geometry and the general relativistic account of gravity, quantum field theory and the gauge theories of fundamental forces, and statistical mechanics and the theory of phase transitions, are developed in explicit mathematical detail, with an emphasis on conceptual understanding. Straightforward treatments of the standard models of particle physics and cosmology are supplemented with introductory accounts of more speculative theories, including supersymmetry and string theory. This third edition of the Tour includes a new chapter on quantum gravity, focusing on the approach known as Loop Quantum Gravity, while new sections provide extended discussions of topics that have become prominent in recent years, such as the Higgs boson, massive neutrinos, cosmological perturba...
Aspects Of Grand Unified And String Phenomenology
Walker, J W
2005-01-01
Explored in this report is the essential interconnectedness of Grand Unified and String Theoretic Phenomenology. In order to extract a modeled connection to low-energy physics from the context of superstring theory, it is presently necessary to input some preferred region of parameter space in which to search. This need may be well filled by a parallel study of Grand Unification, which is by contrast in immediate proximity to a wealth of experimental data. The favored GUT so isolated may then reasonably transfer this phenomenological correlation to a string embedding, receiving back by way of trade a greater sense of primary motivation, and potentially enhanced predictability for parameters taken as input in a particle physics context. The Flipped SU(5) GUT will be our preferred framework in which to operate and first receives an extended study in a non-string derived setting. Of particularly timely interest are predictions for super-particle mass ranges and the interrelated question of proton decay lifetime....
A unified grand tour of theoretical physics
Griffiths, J
2002-01-01
Anyone offering a grand tour is faced with several options. Should they concentrate on what may be considered to be essential features, or should they attempt to present a brief glimpse of almost everything? The present offering is a compromise between these two extremes. The area considered - theoretical physics - is now such a vast subject that some kind of compromise is essential. Indeed, the field is now so wide that few could even attempt to review it in a single-authored work. My task here is to assess how well this book has succeeded in its main aim of providing a unified (though introductory) tour of this subject. Constrained within a single volume, this is clearly not an updated Landau-Lifschitz. It cannot be expected to take any particular topic to the level of recent research. Nevertheless, it does seem to cover the broad range of essential topics which now constitute the subject. It starts (most appropriately in my opinion) with geometry. It then covers classical physics, general relativity and qu...
Grand unified hidden-sector dark matter
Lonsdale, Stephen J.; Volkas, Raymond R.
2014-10-01
We explore G×G unified theories with the visible and the hidden or dark sectors paired under a Z2 symmetry. Developing a system of "asymmetric symmetry breaking" we motivate such models on the basis of their ability to generate dark baryons that are confined with a mass scale just above that of the proton, as motivated by asymmetric dark matter. This difference is achieved from the distinct but related confinement scales that develop in unified theories that have the two factors of G spontaneously breaking in an asymmetric manner. We show how Higgs potentials that admit different gauge group breaking chains in each sector can be constructed, and demonstrate the capacity for generating different fermion mass scales. Lastly we discuss supersymmetric extensions of such schemes.
Trilepton Signal of Grand Unified Models at the Tevatron
Accomando, E; Dutta, B
2000-01-01
At the Tevatron, the most promising channel to detect supersymmetry is three leptons plus missing energy, where the leptons are $e$'s and/or $\\mu$'s. This final state appears from the production of chargino and second lighetst neutralino. However in grand unified models with universal scalar masses at the grand unified scale, this final state mostly consists of $\\tau$'s which are hard to detect. We show that for some regions of non universality in the scalar masses at the GUT scale based on unifying groups like SU(5) or SO(10), the final state mostly consists of 3$l$+${\\rlap/E}_T$ and $\\tau ll$+${\\rlap/E}_T$. The first mode has very high detection efficiency and the second one is expected to have high detection efficency as well. We also show that these models can have enough events in these modes to be detected in RUN II.
Low energy gauge couplings in grand unified theories and high precision physics
Energy Technology Data Exchange (ETDEWEB)
Lynn, B.W. [Stanford Univ., CA (United States). Dept. of Physics]|[Superconducting Super Collider Lab., Dallas, TX (United States)
1993-09-01
I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.
Baryon number violation catalysed by grand unified monopoles
Ellis, Jonathan Richard; Olive, Keith A
1982-01-01
It has been recognized for some time that grand unified monopoles may catalyze Delta B not=0 processes. The authors obtain model-independent upper bounds on the rates for such reactions from the survival of the baryon number generated in the early Universe and from present-day baryon stability. These constraints are compatible with recent estimates of large baryon number violating monopole cross sections, but a monopole flux close to present experimental upper limits could be detectable in forthcoming baryon decay experiments. The authors mention signatures for monopole-induced baryon 'decay' and point out that it could be used to solve the energy crisis.
The strong coupling constant in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.M.
1997-01-01
The prediction of the strong coupling constant in grand unified theories is reviewed, first in the standard model, then in the supersymmetric version. Various corrections are considered. The predictions in both supergravity-induced and gauge-mediated supersymmetry breaking models are discussed. In the region of parameter space without large fine tuning the strong coupling is predicted to be {alpha}{sub s} (M{sub Z}) {approx}> 0.13. Imposing {alpha}{sub s} (M{sub Z}) = 0.118, the authors require a unification scale threshold correction of typically -2%, which is accommodated by some GUT models but in conflict with others.
Grand Unified Theories and Lepton-Flavour Violation
Lim, C S
1998-01-01
Lepton-flavour violating processes, such as $\\mu \\to e\\gamma$, are studied in ordinary (non-SUSY) SU(5) and SUSY SU(5) grand unified theories. First given are some introductory argument on the mechanism of U.V. divergence cancellation in flavour changing neutral current processes and on the decoupling of particles with GUT scale masses . We next see that such general argument is confirmed by an explicit calculation of the amplitude of $\\mu \\to e\\gamma$ in ordinary SU(5), which shows that logarithmic divergence really cancels among diagrams and remaining finite part are suppressed by at least $1/M_{GUT}^2$. In SUSY SU(5), flavour changing slepton mass-squared term get a logarithmic correction, as recently claimed. However, when the effect of flavour changing wave function renormalization is also taken into account such logarithmic correction turns out to disappear, provided a condition is met among SUSY breaking soft masses. In SUGRA-inspired SUSY GUT, such condition is not satisfied. But the remaining logarit...
A grand unified model for liganded gold clusters
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-12-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.
Interacting topological insulator and emergent grand unified theory
You, Yi-Zhuang; Xu, Cenke
2015-03-01
Motivated by the Pati-Salam grand unified theory [J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974), 10.1103/PhysRevD.10.275], we study (4 +1 )d topological insulators with SU (4 ) ×SU (2) 1×SU (2) 2 symmetry, whose (3 +1 )d boundary has 16 flavors of left-chiral fermions, which form representations (4 ,2 ,1 ) and (4 ¯,1 ,2 ) . The key result we obtain is that, without any interaction, this topological insulator has a Z classification, namely, any quadratic fermion mass operator at the (3 +1 )d boundary is prohibited by the symmetries listed above; while under interaction, this system becomes trivial, namely, its (3 +1 )d boundary can be gapped out by a properly designed short-range interaction without generating nonzero vacuum expectation value of any fermion bilinear mass, or in other words, its (3 +1 )d boundary can be driven into a "strongly-coupled symmetric gapped (SCSG) phase." Based on this observation, we propose that after coupling the system to a dynamical SU (4 ) ×SU (2) 1×SU (2) 2 lattice gauge field, the Pati-Salam GUT can be fully regularized as the boundary states of a (4 +1 )d topological insulator with a thin fourth spatial dimension, the thin fourth dimension makes the entire system generically a (3 +1 )d system. The mirror sector on the opposite boundary will not interfere with the desired GUT, because the mirror sector is driven to the SCSG phase by a carefully designed interaction and is hence decoupled from the GUT.
Supersymmetric axion grand unified theories and their predictions
Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.
2016-10-01
We introduce a class of unified supersymmetric axion theories with unified and Peccei-Quinn (PQ) symmetries broken by the same set of fields at a scale ˜2 ×1 016 GeV . A typical domain wall number of order 30 leads to an axion decay constant fa of order 1 015 GeV . Inflation generates a large saxion condensate, giving a reheat temperature TR below the QCD scale for supersymmetry breaking of order 1-10 TeV. Axion field oscillations commence in the saxion matter-dominated era near the QCD scale, and recent lattice computations of the temperature dependence of the axion mass in this era allow a controlled calculation of the axion dark matter abundance. The observed abundance can be successfully explained by an initial axion misalignment angle of order unity, θi˜1 . A highly correlated set of predictions is discussed for fa, TR, the supersymmetric Higgs mass parameter μ , the amount of dark radiation Δ Neff, the proton decay rate Γ (p →e+π0), isocurvature density perturbations and the B mode of the cosmic microwave background. The last two are particularly interesting when the energy scale of inflation is also of order 1 016 GeV .
Number of fermion generations from a novel grand unified model
Energy Technology Data Exchange (ETDEWEB)
Byakti, Pritibhajan; Mazumdar, Arindam; Pal, Palash B. [Saha Institute of Nuclear Physics, Kolkata (India); Emmanuel-Costa, David [Universidade de Lisboa, Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico (IST), Lisbon (Portugal)
2014-02-15
Electroweak interactions based on the gauge group SU(3){sub L} x U(1){sub X}, coupled to the QCD gauge group SU(3){sub c}, can predict the number of generations to be multiples of three. We first try to unify these models within SU(N) groups, using antisymmetric tensor representations only. After examining why these attempts fail, we continue to search for an SU(N) GUT that can explain the number of fermion generations. We show that such a model can be found for N = 9, with fermions in antisymmetric rank-1 and rank-3 representations only, and we examine the constraints on various masses in the model coming from the requirement of unification. (orig.)
An SU(5) grand unified model with discrete flavour symmetries
Hernández, A E Cárcamo; Schmidt, Iván
2014-01-01
We propose a model based on the $SU(5)$ grand unification with an extra $Z_{2}\\otimes Z_{2}^{\\prime}\\otimes Z_{2}^{\\prime \\prime}\\otimes Z_{4}\\otimes Z_{12}$ flavor symmetry, which successfully describes the observed SM fermion mass and mixing pattern. The observed quark mass and mixing pattern is caused by the $Z_{4}$ and $Z_{12}$ symmetries, which are broken at very high scale by the $SU(5)$ scalar singlets $\\sigma $ and $\\chi $, charged respectively under these symmetries and which acquire VEVs at the GUT scale. The light neutrino masses are generated via a type I seesaw mechanism with three heavy Majorana neutrinos. The model has in total 17 effective free parameters, from which 2 are fixed and 15 are fitted to reproduce the experimental values of the 18 physical parameters in the quark and lepton sectors. The model predictions for both quark and lepton sectors are in excellent agreement with the experimental data.
Enhancement of proton decay rates in supersymmetric SU(5) grand unified models
Hisano, Junji; Kobayashi, Daiki; Nagata, Natsumi
2012-10-01
In the supersymmetric grand unified theories (SUSY GUTs), gauge bosons associated with the unified gauge group induce proton decay. We investigate the proton decay rate via the gauge bosons in the SUSY GUTs under the two situations; one is with extra vector-like multiplets, and the other is with heavy sfermions. It is found that the proton lifetime is significantly reduced in the former case, while in the latter case it is slightly prolonged. Determination of the particle contents and their mass spectrum below the GUT scale is important to predict the proton lifetime. The proton decay searches have started to access to the 1016GeV scale.
Enhancement of Proton Decay Rates in Supersymmetric SU(5) Grand Unified Models
Hisano, Junji; Nagata, Natsumi
2012-01-01
In the supersymmetric grand unified theories (SUSY GUTs), gauge bosons associated with the unified gauge group induce proton decay. We investigate the proton decay rate via the gauge bosons in the SUSY GUTs under the two situations; one is with extra vector-like multiplets, and the other is with heavy sfermions. It is found that the proton lifetime is significantly reduced in the former case, while in the latter case it is slightly prolonged. Determination of the particle contents and their mass spectrum below the GUT scale is important to predict the proton lifetime. The proton decay searches have started to access to the 10^16 GeV scale.
Upper Bound on the Proton Lifetime and the Minimal Non-SUSY Grand Unified Theory
Pérez, P F
2007-01-01
In this talk we show that it is possible to find an upper bound on the total proton lifetime. We conclude that the minimal realistic non-supersymmetric grand unified theory is the modified Georgi-Glashow model with a Higgs sector composed of 5_H, 24_H, and 15_H. We discuss the possibility to test this scenario at the next generation of proton decay experiments and future colliders through the production of light scalar leptoquarks.
Some Possible Grand Unified Preon Models with Light Quarks and Leptons
Du, Dongsheng; Lu, Gongru
Three grand unified preon models with light quarks and leptons are presented. All these models have natural family structure at the composite level. One of them can give a very low metacolor scale, ΛMC~3×104 GeV. It is argued that the best choice for a metacolor group is SU(4) and that for a unification group it is SU(9).
A new view of Baryon symmetric cosmology based on grand unified theories
Stecker, F. W.
1981-01-01
Within the framework of grand unified theories, it is shown how spontaneous CP violation leads to a domain structure in the universe with the domains evolving into separate regions of matter and antimatter excesses. Subsequent to exponential horizon growth, this can result in a universe of matter galaxies and antimatter galaxies. Various astrophysical data appear to favor this form of big bang cosmology. Future direct tests for cosmologically significant antimatter are discussed.
Implications of a class of grand unified theories for large scale structure in the universe
Shafi, Q.; Stecker, F. W.
1983-01-01
A class of grand unified theories in which cosmologicaly significant axion and neutrino energy densities arise naturally is discussed. To obtain large scale structure three scenarios are considered: (1) an inflationary scenario; (2) inflation followed by string production; and (3) a non-inflationary scenario with density fluctuations caused solely by strings. Inflation may be compatible with the recent observational indications that mega 1 on the scale of superclusters, particularly if strings are present.
Pseudo-Goldstone Higgs Doublets from Non-Vectorlike Grand Unified Higgs Sector
Hernández, A E Cárcamo
2016-01-01
We present a novel way of realizing the pseudo-Nambu-Goldstone boson mechanism for the doublet-triplet splitting in supersymmetric grand unified theories. The global symmetries of the Higgs sector are attributed to a non-vectorlike Higgs content, which is consistent with unbroken supersymmetry in a scenario with flat extra dimensions and branes. We also show how in such a model one can naturally obtain a realistic pattern for the Standard Model fermion masses and mixings.
Framework for baryonic R-parity violation in grand unified theories
Di Luzio, Luca; Nardecchia, Marco; Romanino, Andrea
2013-01-01
We investigate the possibility of obtaining sizeable R-parity breaking interactions violating baryon number but not lepton number within supersymmetric grand unified theories. Such a possibility allows to ameliorate the naturalness status of supersymmetry while maintaining successful gauge coupling unification, one of its main phenomenological motivations. We show that this can be achieved without fine-tuning or the need of large representations in simple SO(10) models.
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
Implications of non-universality of soft terms in supersymmetric grand unified theories
Matalliotakis, D
1994-01-01
Most discussions of supersymmetric grand unified theories assume universality of the soft supersymmetry breaking terms at the grand scale. We point out that the behaviour of these theories might change significantly in the presence of non--universal soft terms. Particularly in SO(10)--like models with a large value of tan\\beta we observe a decisive change of predictions, allowing the presence of relatively light gauginos as well as small supersymmetric corrections to the b--quark mass. Some results remain rather stable, including the \\mu--M_{1/2} correlation. Models with small tan\\beta seem to be less affected by non--universality which mainly leads to the new possibility of small m_{0} (i.e. the squark and slepton soft mass parameter), excluded in the universal case.
Lepton flavor violating process in a supersymmetric grand unified theory with right-handed neutrino
Baek, S; Okada, Y; Okumura, K; Baek, Seungwon; Goto, Toru; Okada, Yasuhiro; Okumura, Ken-ichi
2001-01-01
Motivated from the recent results of neutrino oscillation experiment, we investigated lepton flavor violating (LFV) processes in a SU(5) supersymmetric grand unified theory with right-handed neutrino. The current experimental upper bound for $\\mu \\to e\\gamma$ process gives already some constraint on the model. Correlation between $\\mu \\to e \\gamma$ and the SUSY contribution to the muon anomalous magnetic moment is also discussed. Future LFV experiments will give considerable impacts on this type of SUSY GUT models equipped with seesaw neutrino mass generation.
Lepton flavor-violating process in a supersymmetric grand unified theory with right-handed neutrinos
Energy Technology Data Exchange (ETDEWEB)
Baek, Seungwon; Goto, Toru; Okada, Yasuhiro; Okumura, Ken-ichi E-mail: okumurak@icrr.u-tokyo.ac.jp
2003-05-01
Motivated by the recent results of neutrino oscillation experiments, we investigated lepton flavor-violating (LFV) processes in a SU(5) supersymmetric grand unified theory with right-handed neutrinos. The current experimental upper bound for the {mu}{yields}e{gamma} process already gives some constraint on the model. The correlation between {mu}{yields}e{gamma} and the SUSY contribution to the muon anomalous magnetic moment is also discussed. Future LFV experiments will have considerable impacts on this type of SUSY GUT model equipped with seesaw neutrino mass generation.
Sáro, S
2003-01-01
Experiments leading to transuranium and far transuranium nuclei as far as element 106 (seaborgium) are described. Physical knowledge derived from experimental data at this stage of complete synthesis nuclear reactions since the 1980s is analyzed. The effect of the shell structure on the stability of the nuclei, the extra-push effect, and the effect of isospin are discussed. Experiments leading to the synthesis of nuclei with Z = 107 - 112 by cold fusion are also described, as are hot fusion reactions resulting in superheavy nuclei Z = 114, 116 where, however, confirmation is only pending. Current state of the art in this area is also highlighted
Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo
2009-01-01
We address the problem of rationalizing the pattern of fermion masses and mixings by adding a nonabelian flavor symmetry in a grand unified framework. With this purpose, we include an A4 flavor symmetry into a unified renormalizable SUSY GUT SU(5) model. With the help of the "Type II Seesaw" mechanism we are able to obtain the pattern of observed neutrino mixings in a natural way, through the so called tribimaximal matrix.
Low-mass right-handed gauge bosons from minimal grand unified theories
Parida, Biswonath Sahoo M K
2015-01-01
Prediction of low-mass $W_R$ and $Z_R$ gauge bosons in popular grand unified theories has been the subject of considerable attention over the last three decades. In this work we show that when gravity induced corrections due to dim.5 operator are included the minimal symmetry breaking chain of $SO(10)$ and $E_6$ GUTs can yield $W_R^{\\pm}$ and $Z_R$ bosons with masses in the range $(3-10)$ TeV which are accessible to experimental tests at the Large Hordan Collider. The RH neutrinos turn out to be heavy pseudo-Dirac fermions. The model can fit all fermion masses and manifest in rich structure of lepton flavor violation while proton life time is predicted to be much longer than the accessible limit of Super-Kamiokande or planned Hyper-Kamiokande collaborations.
Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models
Nagata, Natsumi; Zheng, Jiaming
2015-01-01
Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting DM candidates in terms of their quantum numbers of $\\text{SU}(2)_L \\otimes \\text{U}(1)_Y$, $B-L$, and $\\text{SU}(2)_R$. We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2)$_L$ singlets with zero hypercharge or doublets with $Y=1/2$ satisfy all constraints for $\\text{SU}(4)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R$ and $\\text{SU}(3)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$ intermediate scale gauge groups. Among fermion triplets with zero hypercharge, o...
Li, Tianjun
2010-01-01
In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the deflected AMSB, we also defi...
Li, Tianjun; Nanopoulos, Dimitri V.
2011-10-01
In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) × U(1) X or Pati-Salam SU(4) C × SU(2) L × SU(2) R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) × U(1) X models, and the Pati-Salam SU(4) C × SU(2) L × SU(2) R models. In the deflected AMSB, we also define the new indices for the gaugino mass relations, and calculate them as well. Using these gaugino mass relations and their indices, we may probe the messenger fields at intermediate scale in the GMSB and deflected AMSB, determine the supersymmetry breaking mediation mechanisms, and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.
Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo
2009-01-01
We analyze all possible extensions of the recently proposed minimal renormalizable SUSY SU(5) grand unified model with the inclusion of an additional A4 flavor symmetry. We find that there are 5 possible Cases but only one of them is phenomenologically interesting. We develop in detail such Case and we show how the fermion masses and mixing angles come out. As prediction we obtain the neutrino masses of order of 0.1 eV with an inverted hierarchy.
Implications of a class of grand-unified theories for large-scale structure in the universe
Shafi, Q.; Stecker, F. W.
1984-01-01
A class of grand-unified theories in which cosmologically significant axion and neutrino energy densities arise naturally is considered. To obtain large-scale structure, attention is given to (1) an inflationary scenario, (2) inflation followed by string production, and (3) a noninflationary scenario with density fluctuations caused solely by strings. It is shown that inflation may be compatible with the recent observational indications that Omega less than 1 on the scale of superclusters, particularly if strings are present.
The interplay between grand unified and flavour symmetries in a Pati-Salam x S4 model
Toorop, Reinier de Adelhart
2010-01-01
Both discrete flavour symmetries and Grand Unified symmetries explain apparent structures in the mass sector of the Standard Model. A model that combines both symmetries is therefore very appealing. We construct a model with the $S_4$ flavour symmetry and the Pati-Salam unification. We show that this model can indeed explain many observable relations between the masses of the quarks and leptons and that it is predictive in the neutrino sector. However, the combination of the two symmetries leads to new complications in the Higgs sector and in the running of the renormalisation group equations.
A supersymmetric grand unified theory of flavour with PSL{sub 2}(7)xSO(10)
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F., E-mail: king@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)
2010-06-11
We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL{sub 2}(7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL{sub 2}(7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL{sub 2}(7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL{sub 2}(7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.
Spectroscopy of superheavy quasimolecules
Energy Technology Data Exchange (ETDEWEB)
Verma, P. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany) and Vaish College, Rohtak-124001 (India) and Jamia Millia Islamia, New Delhi-110025 (India)]. E-mail: p.verma@gsi.de; Mokler, P.H. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); J-Liebig University, D-35392 Giessen (Germany); Braeuning-Demian, A. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Kozhuharov, C. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Braeuning, H. [J-Liebig University, D-35392 Giessen (Germany); Bosch, F. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Liesen, D. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Stoehlker, T. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Hagmann, S. [J-W-Goethe University, D-60486 Frankfurt (Germany); Chatterjee, S. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Gumberidze, A. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Reuschl, R. [J-W-Goethe University, D-60486 Frankfurt (Germany); Schoeffler, M. [J-W-Goethe University, D-60486 Frankfurt (Germany); Spillmann, U. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Orsic Muthig, A. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Tachenov, S. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Stachura, Z. [Institute for Nuclear Physics, PL-31342 Cracow (Poland); Wahab, M.A. [Jamia Millia Islamia, New Delhi-110025 (India)
2006-11-15
Superheavy quasimolecules are formed transiently during heavy-ion heavy-atom collisions at moderate collision velocities. Using highly charged projectiles, couplings in the inner-most shells of the quasimolecule can be probed. The present investigation of 69 MeV u{sup -1} Bi {sup q+}-ions (q=77, 81 and 82) on thin Au targets was aimed to determine the role of prior-to-collision inner shell vacancy in a superheavy quasiadiabatic collision. The possibility of using very thin solid targets for probing such collisions was investigated and the interaction distances for the inner-shell couplings were calculated.
Third generation effects on fermion mass predictions in supersymmetric grand unified theories
Naculich, S G
1993-01-01
Relations among fermion masses and mixing angles at the scale of grand unification are modified at lower energies by renormalization group running induced by gauge and Yukawa couplings. In supersymmetric theories, the $b$ quark and $\\tau$ lepton Yukawa couplings, as well as the $t$ quark coupling, may cause significant running if $\\tan \\beta$, the ratio of Higgs field expectation values, is large. We present approximate analytic expressions for the scaling factors for fermion masses and CKM matrix elements induced by all three third generation Yukawa couplings. We then determine how running caused by the third generation of fermions affects the predictions arising from three possible forms for the Yukawa coupling matrices at the GUT scale: the Georgi-Jarlskog, Giudice, and Fritzsch textures.
Bhattacharya, Subhaditya
2009-01-01
We derive the non-universal gaugino mass ratios in a supergravity (SUGRA) framework where the higgs superfields belong to the non-singlet representations {\\bf 54} and {\\bf 770} in a SO(10) Grand Unified Theory (GUT). We evaluate the ratios for two intermediate breaking chains, namely, $SU(2) \\times SO(7)$ and $SU(4)_C \\times SU(2)_L \\times SU(2)_R (G_{224})$ assuming the breaking of the SO(10) GUT group to the intermediate gauge group and that to the Standard Model (SM) takes place at the GUT scale itself. After a full calculation of the gaugino mass ratios, correcting some mistakes in the earlier calculation for 54, we obtain some new interesting low scale phenomenology of such breaking patterns after running down by the renormalization group equations (RGE). We also study the collider signatures in multilepton channels at the Large Hadron Collider (LHC) experiment for some selected benchmark points allowed by the cold dark matter relic density constraint provided by the WMAP data.
Ternary fission of superheavy elements
Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.
2016-01-01
Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.
Chung, Daniel J.H.; Riotto, Antonio; Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio
1999-01-01
We show that, contrary to the standard lore, dark matter may be superheavy (many orders of magnitude larger than the weak scale). We show that massive particles may be produced naturally during the transition from the inflationary phase to either a matter-dominated or radiation-dominated phase as a result of the expansion of the background spacetime acting on vacuum quantum fluctuations of the dark matter field. We find that as long as there are stable particles whose mass is of the order of the inflaton mass (presumably around 10^13 GeV), they will be produced in sufficient abundance to give Omega_0=1 quite independently of any details of the non-gravitational interactions of the dark-matter field.
Superheavy elements: existence, classification and experiment
Kostyghin, V. A.; Vaschenko, V. M.; Loza, Ye. A.
2012-01-01
This paper proposes spatial periodic table developed based on classic electron shell structure model. The periodic table determines location and chemical properties of superheavy elements. 14 new long-living superheavy elements found by Proton-21 laboratory and one long-living superheavy element found by A.Marinov were identified.
Evidence for primordial superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Gentry, R.V.; Cahill, T.A.; Fletcher, N.R.; Kaufmann, H.C.; Medsker, L.R.; Nelson, J.W.; Flocchini, R.G.
1976-07-05
Microscopic crystalline monazite inclusions showing giant halo formation in biotite mica have been analyzed by the method of proton-induced x-ray emission. The observed x-ray energy spectra are best explained by the presence of a number of superheavy elements. (AIP)
Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Vlcek, Brian J.
2014-06-01
The tensor-to-scalar ratio (r = 0.20+0.07-0.05) inferred from the excess B-mode power observed by the Background Imaging of Cosmic Extragalactic Polarization (BICEP2) experiment is almost twice as large as the 95% CL upper limits derived from temperature measurements of the WMAP (r grand unification scale, in this paper we investigate whether we can accommodate the required Neff with three right-handed (partners of the left-handed standard model) neutrinos living in the fundamental representation of a grand unified exceptional E6 group. We show that the superweak interactions of these Dirac states (through their coupling to a TeV-scale Z' gauge boson) lead to decoupling of right-handed neutrino just above the QCD cross over transition: 175 MeVlesssimTνRdeclesssim250 MeV. For decoupling in this transition region, the contribution of the three right-handed neutrinos to Neff is suppressed by heating of the left-handed neutrinos (and photons). Consistency (within 1σ) with the favored Neff is achieved for 4.5 TeV < MZ' < 7.5 TeV. The model is fully predictive and can be confronted with future data from LHC14.
Anchordoqui, Luis A; Huang, Xing; Vlcek, Brian J
2014-01-01
The tensor-to-scalar ratio (r = 0.20^{+0.07}_{-0.05}) inferred from the excess B-mode power observed by the Background Imaging of Cosmic Extragalactic Polarization (BICEP2) experiment is almost twice as large as the 95% CL upper limits derived from temperature measurements of the WMAP (r<0.13) and Planck (r<0.11) space missions. Very recently, it was suggested that additional relativistic degrees of freedom beyond the three active neutrinos and photons can help to relieve this tension: the data favor an effective number of light neutrino species N_{eff} = 3.86 \\pm 0.25. Since the BICEP2 ratio implies the energy scale of inflation (V_*^{1/4} \\sim 2 \\times 10^{16} GeV) is comparable to the grand unification scale, in this paper we investigate whether we can accommodate the required N_{eff} with three right-handed (partners of the left-handed standard model) neutrinos living in the fundamental representation of a grand unified exceptional E_6 group. We show that the superweak interactions of these Dirac st...
The Chemistry of Superheavy Elements
Schädel, M
2003-01-01
The chemistry of transactinide or superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. The current status of this atom-at-a-time chemical research and its future perspectives are reviewed from an experimental point of view together with some of the interesting results from n -rich nuclides near and at the N=162 neutron shell. Experimental techniques and important results enlightening typical chemical properties of elements 104 through 108 are presented in an exemplary way. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements in to groups 4 through 8, respectively. However, mainly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements simply from this position.
A pilgrimage through superheavy valley
Indian Academy of Sciences (India)
M Bhuyan; S K Patra
2014-05-01
We searched for the shell closure proton and neutron numbers in the superheavy region beyond = 82 and = 126 within the framework of non-relativistic Skryme–Hartree–Fock (SHF) with FITZ, SIII, SkMP and SLy4 interactions. We have calculated the average proton pairing gap $_p$, average neutron pairing gap $_n$, two-nucleon separation energy $S_{2q}$ and shell correction energy shell for the isotopic chain of = 112–126. Based on these observables, = 120 with = 182 is suggested to be the magic numbers in the present approach.
Chemical experiments with superheavy elements.
Türler, Andreas
2010-01-01
Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.
Madelung rule violation statistics and superheavy elements electron shell prediction
Loza, E
2012-01-01
The paper presents tetrahedron periodic table to conveniently include superheavy elements. Madelung rule violation statistics is discussed and a model for Madelung rule violation probability calculation is proposed. On its basis superheavy elements probable electron shell structure is determined.
Synthesis of superheavy nuclei with 238U target
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238U target is systematically studied.The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing.The cross sections of the superheavy nuclei at Z = 112 and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei,which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei.
Synthesis of superheavy nuclei with 238U target
Institute of Scientific and Technical Information of China (English)
LIU ZuHua; BAO JingDong
2009-01-01
The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238u target is systematically studied.The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing.The cross sections of the superheavy nuclei at Z=112 and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei,which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei.
Superheavy elements and decay properties
Indian Academy of Sciences (India)
K P Santhosh
2015-09-01
The decay properties of the isotopes of = 115, 117, 118 and 119 have been extensively investigated, focussing on the newly synthesized isotopes within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The half-lives have also been evaluated using the Viola–Seaborg systematic (VSS) and the analytical formulae of Royer and it can be seen that our calculated values match well with these theoretical values. The mode of decay of these isotopes has also been studied by calculating the spontaneous fission half-lives. Thus, we have predicted 4 chains from 287115, 3 chains from 288115, 3 chains from 293117, 4 chains from 294117 and 3 chains from 294118 and, it can be seen that our predictions on the decay chains also match well with the experimental observations. The study on = 119 has predicted six consistent chains from 292−295119, 5 chains from 296119, 4 chains from 297119 and 3 chains from 298,299119. Thus, through our study on isotopes of = 115, 117, 118 and 119 superheavy nuclei, we could predict the range of isotopes that may be detectable using decay and we hope that the findings on the isotopes of = 119 will provide a new guide for future experiments.
Chemistry of the superheavy elements.
Schädel, Matthias
2015-03-13
The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models.
A way for synthesis of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Ohta, M.; Aritomo, Y.; Wada, T. [Konan Univ., Kobe (Japan). Dept. of Physics; Abe, Y.
1997-05-01
Fusion-fission process in heavy systems are analyzed by Smoluchowski equation taking into account the temperature dependent shell correction energy. The evaporation residue cross sections of superheavy elements have been shown to have an optimum value at a certain temperature, due to the balance between the diffusibility for fusion at high temperature and the restoration of the shell correction energy against fission at low temperature. The essential element which realize an significant yield for the (HI, 4-5n) reaction in superheavy mass region is found to be the characteristic time for cooling by neutron evaporation. (author)
Superheavy nuclei – cold synthesis and structure
Indian Academy of Sciences (India)
Raj K Gupta
2001-08-01
The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold ﬁssion, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean ﬁeld (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.
Doubly magic properties in superheavy nuclei
Institute of Scientific and Technical Information of China (English)
HUANG Ya-Wei; ZHU Jian-Yu
2009-01-01
A systematic study of global properties of superheavy nuclei in the framework of the Liquid Drop Model and the Strutinsky shell correction method is performed. The evolution equilibrium deformations, TRS graphs and α-decay energies are calculated using the TRS model. The analysis covers a wide range of even-even superheavy nuclei from Z = 102 to 122. Magic numbers and their observable influence occurring in this region have been investigated. Shell closures appear at proton number Z = 114 and at neutron number N = 184.
Grand Unified theory Ⅱ :derivation of the law of gravity%统一场论Ⅱ:万有引力定律的推导
Institute of Scientific and Technical Information of China (English)
叶更新
2012-01-01
利用大统一方程和自然平衡原理证明了万有引力定律,对质量的起源和引力的本质进行了详细地描述,对万有引力常数G的物理意义进行了说明.通过分析得出了如下结论:万有引力起源于微子的有序运动,本质上是微子微团流体的动能梯度力,3个方向相互垂直的等角速度运动的微子系统构成了基本广义粒子,其质量为内边界能量与体积的乘积.万有引力的作用范围是有限的,平方反比定律在广义粒子的边缘不再成立.物体的作用力和反作用力一般来说是不等的,只有在特殊情况下,即物体在组成成份相同时,二者才相等.万有引力常数G不是常数,而与广义粒子半径的平方成反比.粒子核的形成是大尺度粒子对微尺度粒子吸引作用而产生的,即使没有核,广义粒子及其引力仍然存在,是物质存在的基本形式和暗物质形成的原因.%The law of gravity is derived by using the grand unified equation and the principle of the nature balance. The origin of quality and the essence of gravity are described in detail, physical meaning of Gravitational constant is illuminated, Conclusions are drawn as follows by the analysis: Gravity originated in orderly movement of microparticles, essentially is a microfluidic kinetic energy gradient force, the microparticles system that rotate in three Mutual Perpendicular directions with a equivalent angular velocity constitutes a basic generalized particle, the quality equals the product of volume and internal boundary energy, sphere of gravitational action is in the limit range, the inverse square law is not tenable in the edge of the particle. Acting force the and reacting force of objects in general are not equal, except in the special circumstances that they are composed of the same composition. Gravitational constant G is not constant, it is inversely proportional to the square of the radius of generalized particle. The formation of nuclear
Exotic decay modes of odd-Z (105-119) superheavy nuclei
Rajeswari, N. S.; Balasubramaniam, M.
2014-06-01
Half-lives of proton emission for proton emitters with Z = 51 to 83 are calculated, in the frame-work of unified fission model with the penetrability calculated using the WKB approximation. For all the ground and isomeric state of the proton, the deformation degree of freedom is included. Calculated half-lives are in good agreement with the experimental ones. Experimentally for a few isotopes, proton and alpha branches are reported. Hence we have calculated the half-lives of alpha decay for these elements. For parent nuclei 157Ta, 166Ir, 167Ir, 176Tl and 177Tl, the alpha decay mode is preferred over the proton emission. Further, the calculations are extended to find half-lives of superheavy element with odd proton number in the range Z = 105 to 119, for both proton, alpha and for a few cluster decays. Calculations on superheavy elements reveal that cluster radioactivity has half-lives comparable with proton emissions. It is found that proton emission is the primary competing decay mode with respect to alpha decay for superheavy elements. Among considered clusters, 12C, 20Ne and 24Mg are found to have lowest half-lives among other N = Z clusters and for a few clusters the half-lives are found to be comparable with that of proton emission.
Exotic decay modes of odd-Z (105-119) superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Rajeswari, N.S. [Bharathiar University, Department of Physics, Coimbatore (India); Avinashilingam Institute for Home Science and Higher Education for Women - University, Department of Physics, Coimbatore (India); Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)
2014-06-15
Half-lives of proton emission for proton emitters with Z = 51 to 83 are calculated, in the frame-work of unified fission model with the penetrability calculated using the WKB approximation. For all the ground and isomeric state of the proton, the deformation degree of freedom is included. Calculated half-lives are in good agreement with the experimental ones. Experimentally for a few isotopes, proton and alpha branches are reported. Hence we have calculated the half-lives of alpha decay for these elements. For parent nuclei {sup 157}Ta, {sup 166}Ir, {sup 167}Ir, {sup 176}Tl and {sup 177}Tl, the alpha decay mode is preferred over the proton emission. Further, the calculations are extended to find half-lives of superheavy element with odd proton number in the range Z = 105 to 119, for both proton, alpha and for a few cluster decays. Calculations on superheavy elements reveal that cluster radioactivity has half-lives comparable with proton emissions. It is found that proton emission is the primary competing decay mode with respect to alpha decay for superheavy elements. Among considered clusters, {sup 12}C, {sup 20}Ne and {sup 24}Mg are found to have lowest half-lives among other N = Z clusters and for a few clusters the half-lives are found to be comparable with that of proton emission. (orig.)
Alpha decay properties of heavy and superheavy elements
Indian Academy of Sciences (India)
G M Carmel Vigila Bai; J Umai Parvathiy
2015-01-01
Analysing accurately the lifetimes of -decay chains is an important tool to detect and study the properties of superheavy nuclei. 48Ca is used in the synthesis of superheavy nuclei = 106−118 at Dubna. The experimental work of 48Ca projectiles at Dubna has given an opportunity to study the superheavy element (SHE). Here, the -decay properties for = 106–118 are evaluated using our CYE model and are compared with the available experimental and theoretical values.
Electric dipole moments of superheavy elements
Radžiūtė, Laima; Jönsson, Per; Bieroń, Jacek
2015-01-01
The multiconfiguration Dirac-Hartree-Fock (MCDHF) method was employed to calculate atomic electric dipole moments (EDM) of the superheavy element copernicium (Cn, $Z=112$). The EDM enhancement factors of Cn, here calculated for the first time, are about one order of magnitude larger than those of Hg. The exponential dependence of enhancement factors on atomic number $Z$ along group 12 of the periodic table was derived from the EDMs of the entire homolog series, $^{69}_{30}$Zn, $^{111}_{\\phantom{1}48}$Cd, $^{199}_{\\phantom{1}80}$Hg, $^{285}_{112}$Cn, and $^{482}_{162}$Uhb. These results show that superheavy elements with sufficiently large half-lives are good candidates for EDM searches.
Superheavy Elements Challenge Experimental and Theoretical Chemistry
Zvára, I
2003-01-01
When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.
Superheavy Element Research at Tasca at GSI
Düllmann, Christoph E.
2014-09-01
Experiments on the synthesis of the heaviest elements are in the center of the current research program on superheavy elements at GSI Darmstadt. At the gas-filled recoil separator TASCA, search experiments for the new elements 119 and 120 have been performed in the reactions 50Ti + 249Bk and 50Ti + 249Cf, respectively, and the production of element 117 in the reaction 48Ca + 249Bk was studied. The experiments were performed successfully and the data are currently under analysis.
Neutrino masses and superheavy dark matter in the 3-3-1-1 model
Huong, D T
2016-01-01
In this work, we interpret the 3-3-1-1 model when the B-L and 3-3-1 breaking scales behave simultaneously as the grand unification scale. This setup not only realizes the previously-achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the neutral fermions. All the new particles have the masses in the grand unification scale. The lightest particle among the W-particles that have wrong B-L number may be a superheavy dark matter as it is stabilized by the W-parity. The candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to gravitational effects on the vacuum or thermal production after cosmic inflation.
Statistical Behaviors of Quantum Spectra in Superheavy Nuclei
Institute of Scientific and Technical Information of China (English)
WUXi-zhen; LIZhu-xia; WANGNing
2003-01-01
Recently, the statistical features of spectra for the deformed space explored by the fission have been studied and a new insight into fission and hyperdeformation has been given. The extension of this kind of investigations to superheavy nuclear systems is a very valuable. In this paper we study the nearest neighbor level-spacing distributions of superheavy systems based on mean field models.
Asymptotically Safe Grand Unification
DEFF Research Database (Denmark)
Bajc, Borut; Sannino, Francesco
2016-01-01
for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal...... matter content required by phenomenology....
Alpha decay chains from superheavy nuclei
Samanta, C
2008-01-01
Magic islands for extra-stable nuclei in the midst of the sea of fission-instability were predicted to be around Z=114, 124 or, 126 with N=184, and Z=120, with N=172. Whether these fission-survived superheavy nuclei with high Z and N would live long enough for detection or, undergo alpha-decay in a very short time remains an open question. Alpha-decay half lives of nuclei with 130 118 are found to have alpha-decay half lives of the order of microseconds or, less.
The Superheavy Elements and Anti-Gravity
Anastasovski, Petar K.
2004-02-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.
Statistical Behavoirs of Quantum Spectra in Superheavy Nuclei
Institute of Scientific and Technical Information of China (English)
2001-01-01
From the point of view of the interplay between order and chaos, the most regular single-particle motion of neutrons has been found in the superheavy system of Z=120 and N=184 based on the Skyrme-Hartree-Fock model and in the system of Z=120 and N=\\12 based on the relativistic mean-field model. It has been shown that the statistical analysis of spectra indeed can give very valuable information about the stability of superheavy systems. The significance of this kind of study can go far beyond the investigation on the stability of superheavy systems and it may give a deep
Decay of heavy and superheavy nuclei
Indian Academy of Sciences (India)
K P Santhosh
2014-04-01
We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.
Superheavy nuclei: from predictions to discovery
Oganessian, Yu Ts; Sobiczewski, A.; Ter-Akopian, G. M.
2017-02-01
A fundamental outcome of modern nuclear microscopic theory is the prediction of the ‘islands of stability’ in the region of hypothetical superheavy elements (SHEs). In a heavy nucleus, going through the large-scale deformation on the way to fission, the motion of single nucleons is coupled with the collective degrees of freedom of the whole system. The most striking effect of this coupling is obtained for the case of fission of the heaviest nuclei, whose existence is defined entirely by the nuclear structure, i.e. by the shell effect. From this point of view, the synthesis and study of properties of superheavy nuclei (SHN) is a direct way for checking the basic statements of the microscopic nuclear theory. On the nuclide map, SHN outline the border of the heaviest nuclear masses. SHN set the limits of the periodic system of chemical elements. The study of possible existence of SHN in nature offers a way for testing different scenarios of astrophysical nucleosynthesis. The paper elucidates experimental approaches, used for testing the theory predictions made about the SHN, and presents the results of the discovery of the ‘stability island’ of SHEs.
Fermion Mass Generation in SO(10) with a Unified Higgs Sector
Babu, K S; Nath, P; Syed, R M; Gogoladze, Ilia; Nath, Pran; Syed, Raza M.
2006-01-01
An analysis of generating fermion masses via cubic couplings in SO(10) grand unification with a unified Higgs sector is given. The new framework utilizes a single pair of vector--spinor representation $144+\\bar{144}$ to break the gauge symmetry all the way to $SU(3)_C \\times U(1)_{em}$. Typically the matter--Higgs couplings in this framework are quartic and lead to naturally suppressed Yukawa couplings for the first two generations. Here we show that much larger third generation couplings naturally arise at the cubic level with additional matter in 10--plet and 45--plet representations of SO(10). Thus the physical third generation is a mixture of 16, 10 and 45--plet representations while the remaining components become superheavy and are removed from the low energy spectrum. In this scenario it is possible to understand the heaviness of the top in a natural way since the analysis generates a hierarchy in the Yukawa couplings so that $h_{\\textnormal {t}}/h_{\\textnormal {b}}>> 1$ where $h_{\\textnormal {t}} (h_{...
Shell Correction at the Saddle Point for Superheavy Nucleus
Institute of Scientific and Technical Information of China (English)
张炜; 张时声; 张双全; 孟杰
2003-01-01
The potential energy surface for superheavy nucleus has been studied within the framework of the constrained relativistic mean field theory, and the shell correction energy as a function of deformation has been extracted by the Strutinsky shell correction procedure. Contrary to the usual expectation, the shell correction energy at the saddle point is too important to be neglected, and it has essential contribution to the fission barrier in superheavy nucleus.
Population of rotational bands in superheavy nuclei
Directory of Open Access Journals (Sweden)
Antonenko N.V.
2012-02-01
Full Text Available Using the statistical approach, we study the population of ground-state rotational bands of superheavy nuclei produced in the fusion-evaporation reactions 208Pb(48Ca, 2n254No, 206Pb(48Ca, 2n252No, and 204Hg(48Ca, 2n250Fm. We calculate relative intensities of E2-transitions between the rotational states and entry spin distributions of the residual nuclei, evaporation residue cross sections, and excitation functions for these reactions. Fermi-gas model is used for the calculation of level density, and damping of shell effects both with excitation energy and angular momentum is taking into account. The results are in a good agreement with the experiment data.
Spontaneous fission properties of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Hessberger, F.P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz-Institut Mainz, Mainz (Germany)
2017-04-15
Spontaneous fission properties of transuranium isotopes are reviewed. Specific emphasis was laid on brief historical overviews of theoretical descriptions and experimental determination of basic properties as spontaneous fission half-lives, fission barriers, or total kinetic energy release in fission. Experimental spontaneous fission half-lives are compared with the results of recent theoretical predictions. Hindrance factors for spontaneous fission of odd-mass nuclei are discussed in context with the configuration (spin, parity) of the fissioning states and the change in energy of single particle levels at deformation. Kinetic energy release and mass distributions are discussed in the context of different fission modes, as symmetric and asymmetric or fission from elongated or compact shapes of the nascent fission fragments. An overview of recent fission barrier calculations of superheavy elements on the basis of macroscopic-microscopic models or self-consistent calculations is given, and the results are compared for selected examples. (orig.)
Entrance channel effects in superheavy element production
Nasirov, Avazbek; Giardina, Giorgio; Mandaglio, Giuseppe; Muminov, Akhtam
2016-12-01
The difference between evaporation residue cross sections measured in the cold (X+208Pb, 209Bi) and hot (48Ca+actinides) fusion reactions can be related to the stage of compound nucleus (CN) formation and/or to the stage of its survival against fission. The cold fusion reactions are favorable in synthesis of the superheavy elements (SHE) with charge numbers Z fusion reactions due to small excitation energy and large fission barrier of the CN formed in these reactions. The strong decrease of the cross sections of the synthesis of the SHE Z = 113 in the cold fusion reactions in comparison with the ones in the hot fusion reactions is the result of the increase of hindrance to the CN formation in the cold fusion reactions. The origin of the intrinsic fusion barrier, B, causing the strong decrease of the probability PCN in the cold fusion is discussed.
Superheavy thermal dark matter and primordial asymmetries
Bramante, Joseph; Unwin, James
2017-02-01
The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 1010 GeV. We proceed to study superheavy asym-metric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.
Asymptotically safe grand unification
Bajc, Borut; Sannino, Francesco
2016-12-01
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Asymptotically Safe Grand Unification
Bajc, Borut
2016-01-01
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Yamatsu, Naoki
2017-06-01
We discuss new-type grand unified theories based on grand unified groups broken into their special subgroups, as well as their regular subgroups. In the framework, when we construct 4-dimensional (4D) chiral gauge theories, i.e., the Standard Model (SM), 4D gauge anomaly cancelation restricts the minimal number of generations of the 4D SM Weyl fermions. We show that in a 6-dimensional (6D) SU(16) gauge theory on M^4× T^2/\\mathbb{Z}_2, one generation of the SM fermions can be embedded into a 6D bulk Weyl fermion. For the model including 3 chiral generations of the SM fermions, the 6D and 4D gauge anomalies on the bulk and fixed points are canceled out without exotic 4D chiral fermions.
Gauge coupling unification in gauge-Higgs grand unification
Yamatsu, Naoki
2016-04-01
We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.
Constructivism: Science Education's "Grand Unifying Theory."
Colburn, Alan
2000-01-01
Discusses constructivism as philosophy, as learning theory, and applied to the science classroom. Discusses six major recommendations and strategies for science teaching that involve trying to help students change their beliefs to be more in line with those held by the scientific community. Notes activities science teachers can use to make their…
Finite Grand Unified Theories and Inflation
Mukaigawa, S; Odintsov, S D; Mukaigawa, Seiji; Muta, Taizo; Odintsov, Sergei D.
1998-01-01
A class of finite GUTs in curved spacetime is considered in connection with the cosmological inflation scenario. It is confirmed that the running of the scalar-gravitational coupling constant in these models helps realizing the successful chaotic inflation. The analyses are made for some different sets of the models.
Finite grand unified theories and inflation
Mukaigawa, S.; Muta, Taizo; Odintsov, S. D.
1998-01-01
A class of finite GUTs in curved spacetime is considered in connection with the cosmological inflation scenario. It is confirmed that the use of the running scalar-gravitational coupling constant in these models helps realizing a successful chaotic inflation. The analyses are made for some different sets of the models.
Isotope Dependence of Superheavy Nucleus Formation Cross Section
Institute of Scientific and Technical Information of China (English)
LIU Zu-Hua; BAG Jing-Dong
2006-01-01
The dynamical process in the superheavy nucleus synthesis is studied on the basis of the two-dimensional Smolu-chowski equation. Special attention is paid to the isotope dependence of the cross section for the superheavy nucleus formation by means of making a comparison among the reaction systems of 54Fe + 204Pb, 56Fe + 206Pb, and 58Fe + 208Pb. It is found by this comparison that the formation cross section is very sensitive to the conditional saddle-point height and the neutron separation energy of the compound nucleus. Reaction systems with lower height of conditional saddle-point and smaller neutron separation energy are more favourable for the synthesis of the superheavy nucleus.
From heavy nuclei to super-heavy nuclei
Theisen, C
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei.
Formation of superheavy nuclei in cold fusion reactions
Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner
2007-01-01
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.
Superheavy Dark Matter in Light of Dark Radiation
Park, Jong-Chul
2014-01-01
Superheavy dark matter can satisfy the observed dark matter abundance if the stability condition is fulfilled. Here, we propose a new Abelian gauge symmetry ${\\rm U(1)}_H$ for the stability of superheavy dark matter as the electromagnetic gauge symmetry to the electron. The new gauge boson associated with ${\\rm U(1)}_H$ contributes to the effective number of relativistic degrees of freedom in the universe as dark radiation, which has been recently measured by several experiments, e.g., PLANCK. We calculate the contribution to dark radiation from the decay of a scalar particle via the superheavy dark matter in the loop. Interestingly enough, this scenario will be probed by a future LHC run in the invisible decay signatures of the Higgs boson.
Quasifission in heavy and superheavy element formation reactions
Hinde, D. J.; Dasgupta, M.; Jeung, D. Y.; Mohanto, G.; Prasad, E.; Simenel, C.; Walshe, J.; Wahkle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Kalkal, Sunil; Rafferty, D. C.; Rietz, R. du; Simpson, E. C.; David, H. M.; Düllmann, Ch. E.; Khuyagbaatar, J.
2016-12-01
Superheavy elements are created in the laboratory by the fusion of two heavy nuclei. The large Coulomb repulsion that makes superheavy elements decay also makes the fusion process that forms them very unlikely. Instead, after sticking together for a short time, the two nuclei usually come apart, in a process called quasifission. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission. A systematic study of carefully chosen mass-angle distributions has provided information on the global trends of quasifission. Large deviations from these systematics reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and thus implicitly in hindering or favouring superheavy element production.
Higgs interchange and bound states of superheavy fermions
Indian Academy of Sciences (India)
M De Sanctis
2013-09-01
Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other authors, a semirelativistic wave equation is solved using an accurate numerical method to determine the binding energies of these possible superheavy fermion-bound states. The interaction given by the Yukawa potential of the Higgs boson exchange is considered; the corresponding relativistic corrections are calculated by means of a model based on the covariance properties of the Hamiltonian. We study the effects given by the Coulomb force. Moreover, we calculate the contributions given by the Coulombic and confining terms of the strong interaction in the case of superheavy quark bound states. The results of the model are critically analysed.
On the Production of Superheavy Elements
Armbruster, P
2003-01-01
Since the discovery of Deformed Superheavy Nuclei (1983–85) a bridge connects the island of SHE to known isotopes of lighter elements. What we know experimentally and theoretically on the nuclear structure of SHE is reported in a first section. The making of the elements, with an analysis of production cross sections, and the macroscopic limitation to Z=112+ is presented in a second section. The break-down of fusion cross sections in the ‘Coulomb Falls’ within a range of about 10 elements is introduced as the universal limiting phenomenon. How the nuclear structure of the collision partners modifies the on-set of this limitation is presented in Section 3. Reactions induced by deformed nuclei are pushed by side collisions to higher excitation energies (4n- and 5n-channels), whereas reactions driven by the cluster-like, closed-shell nuclei, 208126Pb and 13882Ba, are kept at low excitation energies (1n- and 2n-channels). The on-set of production limitation for deformed collision partners is moved to smalle...
Spontaneous fission of superheavy nucleus $^{286}$Fl
Poenaru, Dorin N
2016-01-01
The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
Synthesis and properties of superheavy elements
Hofmann, S
2003-01-01
The nuclear shell model predicts that the next doubly magic shell-closure beyond sup 2 sup 0 sup 8 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding of experimental investigations is the exploration of this region of spherical 'SuperHeavy Elements' (SHEs). Experimental methods are described which allowed for the identification of elements 107 to 112 in studies of cold fusion reactions based on lead and bismuth targets. Also presented are data which were obtained on the synthesis of elements 112, 114, and 116 in investigation of hot fusion reactions using actinide targets. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decay properties as well as reaction cross- sections are compared with the results of theoretical studies. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the exploration of the regio...
Statistical Behaviors of Quantum Spectra in Superheavy Nuclei
Institute of Scientific and Technical Information of China (English)
WU Xi-Zhen; LI Zhu-Xia; WANG Ning; J.A. Maruhn
2003-01-01
From the point of view of the interplay between order and chaos, the most regular single-particle motion of neutrons has been found in the superheavy system with Z ＝ 120 and N ＝ 184 based on the Skyrme-Hartree-Fock model and in the system with Z ＝ 120 and N ＝ 172 based on the relativistic mean-field model. It has been shown that the statistical analysis of spectra can give valuable information about the stability of suprheavy systems. In addition it may yield deep insight into the single-particle motion in the mean field formed by the superheavy system.
Two-body dissipation effects on synthesis of superheavy elements
Tohyama, M
2015-01-01
To investigate the two-body dissipation effects on the synthesis of superheavy elements, we calculate low-energy collisions of the $N=50$ isotones ($^{82}$Ge, $^{84}$Se, $^{86}$Kr and $^{88}$Sr) on $^{208}$Pb using the time-dependent density-matrix theory (TDDM). TDDM is an extension of the time-dependent Hartree-Fock (TDHF) theory and can determine the time evolution of one-body and two-body density matrices. Thus TDDM describes both one-body and two-body dissipation of collective energies. It is shown that the two-body dissipation may increase fusion cross sections and enhance the synthesis of superheavy elements.
Synthesis of superheavy nuclei: Obstacles and opportunities
Directory of Open Access Journals (Sweden)
Zagrebaev V.I.
2015-01-01
Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.
Liberating methodological thinking in human sciences from grand theories
DEFF Research Database (Denmark)
Kharlamov, Nikita; Baldursson, Einar Baldvin
2016-01-01
focus on the necessity of a “grand unified theory” at the expense of any and all alternative perspectives. Properties of grand theories are discussed on the examples of Giddens and Bourdieu. It is argued that grand theories hamper a more productive focus on concrete phenomena. Robert Merton’s focus...
RELATIVISTIC CALCULATIONS OF THE SUPERHEAVY NUCLEUS 114-298
BOERSMA, HF
1993-01-01
We investigate ground-state properties of the superheavy nucleus with N = 184 and Z = 114, (298)114, using conventional relativistic mean-field theory and density-dependent mean-field theory, which reproduces Dirac-Brueckner calculations in nuclear matter. Our calculations provide support for N = 18
Grand Unification, Higgs Bosons, and Baryogenesis
Sher, Marc
2004-03-01
My task in these lectures is to discuss "Grand Unification and Higgs Bosons". Given that each of these subjects has had books written about them, this is a daunting task. My goal will be to introduce the basics of each topic, and provide references for those who wish to explore the topics further. I'll begin with a general motivation for grand unification, followed with an elementary review of SU(N) group algebra. The seminal SU(5) model will be discussed, followed by the supersymmetric version. On the second day, we'll look at other grand unified theories, and then look at the various methods of supersymmetry breaking in the context of grand unification. The third day, we'll turn to the Higgs mechanism, the effective potential, and mass bounds in the Standard Model and the MSSM. Finally, we'll look at baryogenesis, first in grand unified theories and then in the electroweak model.
Non-thermal leptogenesis with almost degenerate superheavy neutrinos
Allahverdi, R; Allahverdi, Rouzbeh; Mazumdar, Anupam
2003-01-01
We present a model with minimal assumptions for non-thermal leptogenesis with almost degenerate superheavy right-handed neutrinos in a supersymmetric set up. In this scenario a gauge singlet inflaton is directly coupled to the right-handed (s)neutrinos with a mass heavier than the inflaton mass. This helps avoiding potential problems which can naturally arise otherwise. The inflaton decay to the Standard Model leptons and Higgs, via off-shell right-handed (s)neutrinos, reheats the Universe. The same channel is also responsible for generating the lepton asymmetry, thus requiring no stage of preheating in order to excite superheavy right-handed (s)neutrinos. The suppressed decay rate of the inflaton naturally leads to a sufficiently low reheat temperature, which in addition, prevents any wash out of the yielded asymmetry. Finally, a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.
Probable Heavy Particle Decays from 306-339128 Superheavy Nuclei
Santhosh, K. P.; Sukumaran, Indu
2016-12-01
The heavy particle decays that are probable from the isotopes of Z = 128 superheavy nuclei within the range A = 306-339 have been analyzed within the Coulomb and proximity potential model (CPPM). The study includes the evaluation of heavy particle decay half-lives of 24 clusters, including both odd and even clusters that are supposed to be emitted from the Z = 128 superheavy nuclei. The predicted values in comparison with the models Universal curve (UNIV), Universal decay law (UDL), and scaling law of Horoi et al. are observed to follow the same trend, and almost all the values lie well within the experimental limit ( T 1/2 Geiger-Nuttall plots of log10( T 1/2) vs. Q -1/2 confirming the presence of shell closure effect and the plot of universal curve of log10( T 1 /2) vs.-lnP revealed the reliability of the model CPPM.
Formation of Superheavy Nuclei in Massive Fusion Reactions
Institute of Scientific and Technical Information of China (English)
FENG Zhao-qing; JIN Gen-ming; LI Jun-qing; Scheid Werner
2009-01-01
Within the concept of the dinuclear system(DNS),by incorporating the coupling of the relative motion to the nucleon transfer process,a dynamical model is proposed for describing the formation of superheavy residue nucleus in massive fusion reactions,in which the capture of two heavy colliding nuclei,the formation of compound nucleus and the de-excitation process are calculated using empirical coupled channel model,solving master equation numerically and statistical theory,respectively.By using the DNS model,the evaporation-residue excitation functions in the ~(48)Ca induced fusion reactions and in the cold fusion reactions are investigated systematically and compared with available experimental data.Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed.The possible factors that influencing the isotopic dependence of the production cross sections are analyzed.The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated.
Actinide Isotopes for the Synthesis of Superheavy Nuclei
Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Dean, D. J.; Ezold, J. G.; Felker, L. K.; Rykaczewski, K. P.
2014-09-01
Recent research resulting in the synthesis of isotopes of new elements 113-118 has demonstrated the importance of actinide targets in superheavy element research. Oak Ridge National Laboratory (ORNL) has unique facilities for the production and processing of actinide target materials, including the High Flux Isotope Reactor (HFIR) and the Radiochemical Engineering Development Center (REDC). These facilities have provided actinide target materials that have been used for the synthesis of all superheavy (SHE) elements above Copernicium (element 112). In this paper, the use of actinide targets for SHE research and discovery is described, including recent results for element 117 using 249Bk target material from ORNL. ORNL actinide capabilities are reviewed, including production and separation/purification, availabilities of actinide materials, and future opportunities including novel target materials such as 251Cf.
Probing superheavy quasimolecular collisions with incoming inner shell vacancies
Energy Technology Data Exchange (ETDEWEB)
Verma, P. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany) and JMI University, New Delhi (India) and Vaish College, Rohtak (India)]. E-mail: P.Verma@gsi.de; Mokler, P.H. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); J. Liebig University, Giessen (Germany); Braeuning-Demian, A. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Braeuning, H. [J. Liebig University, Giessen (Germany); Kozhuharov, C. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Bosch, F. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Liesen, D. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Hagmann, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); J.W. Goethe University, Frankfurt (Germany); Stoehlker, Th. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Stachura, Z. [Institute for Nuclear Physics, Cracow (Poland); Banas, D. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Swietokrzyska Academy, Kielce (Poland); Orsic-Muthig, A. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Schoeffler, M. [J.W. Goethe University, Frankfurt (Germany); Sierpowski, D. [Jagellonian University, Cracow (Poland); Spillmann, U. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Tashenov, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Toleikis, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Wahab, M.A. [JMI University, New Delhi (India)
2006-04-15
With the advanced accelerator technologies used at the SIS/ESR heavy ion facility at GSI, the highest charge states (bare, H-like, etc.) even for the heaviest ions can be provided for experiments at moderate collision velocities (v {sub ion} < v {sub K}). Hence, inner shell vacancies can be provided prior to collisions for the innermost shells of transiently formed superheavy quasimolecules. However, projectile K-vacancies may be destroyed while penetrating solids. The goal of the present investigation is to establish how far at relatively low collision velocities, high incoming ionic charge states do survive in thin solid targets and hence, how far thin solid targets can be utilized for studying superheavy quasimolecules with well-defined, open, incoming, inner shell vacancy channels. The dependence of quasimolecular collisions on projectile charge state (q) and target thickness (t) is studied in very thin Au solid targets for 69 MeV/u U {sup q+} ions (73 {<=} q {<=} 91)
Possible Way to Synthesize Superheavy Element Z=117
Zhao-Qing, Feng; Gen-Ming, Jin; Ming-Hui, Huang; Zai-Guo, Gan; Nan, Wang; Jun-Qing, Li
2007-01-01
Within the framework of the dinuclear system model, the production of superheavy element Z=117 in possible projectile-target combinations is analyzed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed in this letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n evaporation channels and the reactions ^{...
Heavy particle radioactivity from superheavy nuclei leading to $^{298}$114 daughter nuclei
Santhosh, K P
2013-01-01
The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116-124 have been studied within the Coulomb and proximity potential model (CPPM). The Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., has also been used for the evaluation of the decay half lives. A comparison of our predicted half lives with the values evaluated using these empirical formulas are in agreement with each other and hence CPPM could be considered as a unified model for alpha and cluster decay studies. Within our fission model, we have studied cluster formation probability for various clusters and the maximum cluster formation probability for the decay accompanying $^{298}$114 reveals its doubly magic behavior. In the plots for log_10(T_1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to $^{298}$114 (Z = 114, N = ...
Grand Unification and Exotic Fermions
Feger, Robert P
2015-01-01
We exploit the recently developed software package LieART to show that SU(N) grand unified theories with chiral fermions in mixed tensor irreducible representations can lead to standard model chiral fermions without additional light exotic chiral fermions, i.e., only standard model fermions are light in these models. Results are tabulated which may be of use to model builders in the future. An SU(6) toy model is given and model searches are discussed.
A unified theory in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).
Directory of Open Access Journals (Sweden)
Editorial, Equipo
1961-07-01
Full Text Available El empleo creciente del material pesado auxiliar en la construcción de obras de ingeniería civil ha motivado la fabricación de grandes plataformas, capaces de transportar toda clase de maquinaria auxiliar. En general, este tipo de maquinaria requiere medios de transporte, pues su circulación por carreteras es lenta, obstructiva y cara, siempre que se trate de grandes distancias, caso presente en la mayoría de ocasiones en que se exige un traslado de esta maquinaria de una a otra obra.
DEFF Research Database (Denmark)
Torgersen, Mads
of the most complex type relations put forth in type systems research, without compromising such fundamental qualities as conceptuality, modularity and static typing. While many new constructs and unifications are put forth to substantiate their conceptual validity, type rules are given to support......This thesis presents the RUNE language, a semantic construction of related and tightly coupled programming constructs presented in the shape of a programming language. The major contribution is the succesfull design of a highly unified and general programming model, capable of expressing some...... their typeability and examples are described to demonstrate their use. Novel constructs include a parallel approach to object generation, and a blend of structural and nominal subtyping, while a very general class construct integrates the notions of procedures, parameterisation and genericity, and provides...
Complete theory of grand unification in five dimensions
Hall, Lawrence J.; Nomura, Yasunori
2002-10-01
A fully realistic unified theory is constructed, with SU(5) gauge symmetry and supersymmetry both broken by boundary conditions in a fifth dimension. Despite the resulting explicit breaking of SU(5) locally at a boundary of the dimension, when the size of the extra dimension is taken to be large precise predictions emerge for gauge coupling unification, αs(MZ)=0.118+/-0.003, and for Yukawa coupling unification, mb(MZ)=3.3+/-0.2 GeV. The 5D theory is then valid over a large energy interval from the compactification scale, Mc~=1×1015 GeV, to the scale of strong coupling, Ms~=1×1017 GeV. A complete understanding of the Higgs sector of the minimal supersymmetric standard model is given, with explanations for why the Higgs triplets are heavy, why the Higgs doublets are protected from a large tree-level mass, and why the μ and B parameters are naturally generated to be of order the supersymmetry breaking scale. All sources of proton decay from operators of dimension four and five are forbidden, while a new origin for baryon number violating dimension six operators is found to be important. The exchange of the superheavy gauge boson, with a brane-localized kinetic energy interaction, leads to τp~1034 yr, with several branching ratios determined in terms of a single mixing parameter. The theory is only realistic for an essentially unique choice of matter location in the fifth dimension: the ten-plets of the first two generations must lie in the bulk, with all other matter located on the SU(5) preserving boundary. Several aspects of flavor follow from this geometry: only the third generation possesses an SU(5) mass relation, and the lighter two generations have only small mixings with the heaviest generation except for neutrinos. The entire superpartner spectrum is predicted in terms of only two free parameters. The squark and slepton masses have sizes determined by their location in the fifth dimension, allowing a significant experimental test of the detailed
Possible Way to Synthesize Superheavy Element Z=117
Zhao-Qing, Feng; Ming-Hui, Huang; Zai-Guo, Gan; Nan, Wang; Jun-Qing, Li
2007-01-01
Within the framework of the dinuclear system model, the production of superheavy element Z=117 in possible projectile-target combinations is analyzed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed in this letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n channels, and the system ^{51}V+^{244}Pu in 3n channel.
Possible Way to Synthesize Superheavy Element Z = 117
Institute of Scientific and Technical Information of China (English)
FENG Zhao-Qing; JIN Gen-Ming; HUANG Ming-Hui; GAN Zai-Guo; WANG Nan; LI Jun-Qing
2007-01-01
Within the framework of the dinuclear system model, the production of superheavy element Z = 117 in possible projectile-target combinations is analysed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed, such as the isotopes 248,249Bk in 48Ca induced reactions in 3n evaporation channels and the reactions 45Sc+246,248Cm in 3n and 4n channels, and the system 51V+244pu in 3n channel.
Radiatively Induced Fermi Scale in Grand Unification
DEFF Research Database (Denmark)
Alanne, Tommi; Meroni, Aurora; Sannino, Francesco;
2016-01-01
We consider Grand Unified Theories in which the hierarchy between the unification and the Fermi scale emerges radiatively. Within the Pati-Salam framework, we show that it is possible to construct a viable model where the Higgs is an elementary pseudo-Goldstone boson, and the correct hierarchy...
Ground State Properties of Superheavy Nuclei in Macroscopic-Microscopic Model
Institute of Scientific and Technical Information of China (English)
ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHENG Qiang
2008-01-01
The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential The calculations well produced the ground state binding energies,a-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with available experimental data.The calculated results are also compared with theoretical results from other MM models and from relativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy region and that the MM model results are not very sensitive to the choice of microscopic single-particle potential.
Goradia, Shantilal
2013-04-01
Century old GR fails to unify quantum physics, nuclear force or distinguish between the mass of living bodies from inert mass. Probabilistic gravity [1] explains strong coupling (nuclear force). The natural log of the age of the universe, 10E60 in Planck times, equaling 137 (1/Alpha) extends physics to deeper science, if we stand on the shoulders of giants like Feynman and Gamow. Implications of [1] are that it is not the earth, but M and S numbers of the particles of the earth are remotely interacting with corresponding numbers of the particles of the moon and the sun respectively, neglecting other heavenly bodies in this short draft. This new physics is likely to enable creative scientific minds to throw light on a theoretical basis for an otherwise arbitrary cosmological constant, uniformity of microwave background, further vindication of Boltzmann, quantum informatics, Einstein’s later publicized views and more, eliminating the need to spend money for implicitly nonexistent quantum gravity and graviton.[4pt] [1] Journal of Physical Science and Applications 2 (7) (2012) 265-268.
Directory of Open Access Journals (Sweden)
García de Castro, Emilio
1957-11-01
Full Text Available Se describen en este artículo una serie de aparatos para grandes cocinas, vistos por los autores durante un rápido viaje por Alemania. Aprovechando los datos obtenidos se analizan brevemente las necesidades de una gran cocina moderna, comentando los planos de las instalaciones en varios hoteles o instituciones de todo el mundo. La mayoría de la información.
Ultra High Energy Cosmic Rays & Super-heavy Dark Matter
Marzola, Luca
2016-01-01
We reanalyse the prospects for upcoming Ultra-High Energy Cosmic Ray experiments in connection with the phenomenology of Super-heavy Dark Matter. We identify a set of observables well suited to reveal a possible anisotropy in the High Energy Cosmic Ray flux induced by the decays of these particles, and quantify their performance via Monte Carlo simulations that mimic the outcome of near-future and next-generation experiments. The spherical and circular dipoles are able to tell isotropic and anisotropic fluxes apart at a confidence level as large as $4\\sigma$ or $5\\sigma$, depending on the Dark Matter profile. The forward-to-backward flux ratio yields a comparable result for relatively large opening angles of about 40~deg, but it is less performing once a very large number of events is considered. We also find that an actual experiment employing these observables and collecting 300~events at 60~EeV would have a $50\\%$ chance of excluding isotropy against Super-heavy Dark Matter at a significance of at least $3...
Status and perspectives of the Dubna superheavy element factory
Dmitriev, Sergey; Itkis, Mikhail; Oganessian, Yuri
2016-12-01
In the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research (FLNR JINR), construction of a new experimental complex is currently in progress (Superheavy Element Factory), aimed at the synthesis of new superheavy nuclides and the detailed study of those already synthesized. The project includes the construction of a new accelerator of stable and long-lived isotopes in the mass range A = 10-100 with an intensity of up to 10 pμ A and energy up to 8 MeV/nucleon; con-struction of a new experimental building and infrastructure for housing the accelerator with five channels for the transportation of beams to a 1200-m2 experimental hall that is equipped with systems of shielding and control for operations with radioactive materials; development of new separators of reaction products; upgrade of the existing separators and development of the new detection modules for the study of nuclear, atomic, and chemical properties of new elements. The first experiments are planned for 2018.
Super-Heavy Dark Matter - Towards Predictive Scenarios from Inflation
Kannike, Kristjan; Raidal, Martti
2016-01-01
A generic prediction of the Coleman-Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, call for a paradigm shift in the dark sector physics. Accordingly, the dark matter is heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman-Weinberg inflation scenarios, study the systematics of super-heavy dark matt...
Probable cluster decays from $^{270-318}$118 superheavy nuclei
Santhosh, K P
2014-01-01
The cluster decay process in $^{270-318}$118 superheavy nuclei has been studied extensively within the Coulomb and proximity potential model (CPPM), thereby investigating the probable cluster decays from the various isotopes of $Z = 118$. On comparing the predicted decay half lives with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al., it was seen that, our values matches well with these theoretical values. A comparison of the predicted alpha decay half life of the experimentally synthesized superheavy isotope $^{294}$118 with its corresponding experimental value shows that, our theoretical value is in good agreement with the experimental value. The plots for $log_{10}(T_{1/2})$ against the neutron number of the daughter in the corresponding decay reveals the behavior of the cluster half lives with the neutron number of the daughter nuclei and for most of the decays, the half life was fo...
Superheavy fragments produced in the asymmetric strongly damped collision
Institute of Scientific and Technical Information of China (English)
TIAN Jun-Long; WU Xi-Zhen; LI Zhu-Xia; ZHAO Kai
2008-01-01
The strongly damped collisions of very heavy nuclei 232Th+250Cf at the energy range of 680-1880 MeV have been studied within the improved quantum molecular dynamics model. The production probability of primary superheavy fragments with Z ≥ 114 (SHFs) for the asymmetric reaction 232Th+250Cf is higher than that for the symmetric reaction 244Pu+244Pu and 238U+238U. The calculated results show that the mass and charge distributions of primary fragments, the excitation energy distribution of SHFs depend on the incident energies strongly. Two stages of the decay process of composite systems are distinguished by very different decay slopes, which imply different decay mechanisms of the composite system. The first stage is for the decay of giant composite systems and the second one corresponds to the decay of fragments of giant composite systems including SHFs through emitting neutron, proton or other charged particles, and also through fission or fragmentation. The slow reduction of SHFs in the second stage seems to be helpful for the survival of primary superheavy fragments.
Covariant density functional theory: Reexamining the structure of superheavy nuclei
Agbemava, S E; Nakatsukasa, T; Ring, P
2015-01-01
A systematic investigation of even-even superheavy elements in the region of proton numbers $100 \\leq Z \\leq 130$ and in the region of neutron numbers from the proton-drip line up to neutron number $N=196$ is presented. For this study we use five most up-to-date covariant energy density functionals of different types, with a non-linear meson coupling, with density dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov (RHB) theory based on an effective separable particle-particle interaction of finite range and deformation effects are taken into account. This allows us to assess the spread of theoretical predictions within the present covariant models for the binding energies, deformation parameters, shell structures and $\\alpha$-decay half-lives. Contrary to the previous studies in covariant density functional theory, it was found that the impact of $N=172$ spherical shell gap on the structure of superheavy elemen...
Half-life predictions for decay modes of superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Rodriguez, O.; Guzman, F. [Instituto Superior de Ciencias e Tecnologia Nucleares (InSTEC), La Habana (Cuba); Barbosa, T.N.; Garcia, F.; Dimarco, A. [Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas
2004-09-01
We applied the Effective Liquid Drop Model (ELDM) to predict the alpha-decay, cluster emission and cold fission half-life-values of nuclei in the region of Superheavy Elements (SHE). The present calculations have been made in the region of the ZN-plane defined by 155 <=N <=220 and 110<=Z<=135. Shell effects are included via the Q-value of the corresponding decay case. We report the results of a systematic calculation of the half-life for the three nuclear decay modes in a region of the ZN-plane where superheavy elements are expected to be found. Results have shown that, among the decay modes investigated here, the alpha decay is the dominant one. i.e, the decay mode of smallest half-lives. Half-life predictions for alpha decay, cluster emission and cold fission for the isotopic family of the most recent SHE detected of Z=115 and for the isotopic family of the already consolidated SHE of Z=111 are presented. (author)
Stability against $\\alpha$ decay of some recently observed superheavy elements
Chowdhury, Partha Roy; Bhattacharyya, Abhijit
2011-01-01
The probability of $\\alpha$ particle emission for some recently observed superheavy nuclei (SHN) are investigated. The $\\alpha$-decay half lives of SHN are calculated in a quantum tunneling model with density dependent M3Y (DDM3Y) effective nuclear interaction using theoretical and measured $Q_\\alpha$ values. We determine the density distribution of $\\alpha$ and daughter nuclei from the relativistic mean field theory (RMF) using FSUGold force, NL3 and TM1 parameter sets. The double folded nuclear potential is numerically calculated in a more microscopic manner using these density distributions. The estimated values of $\\alpha$-decay half-lives are in good agreement with the recent data. We compare our results with recently detected $\\alpha$-decay chains from new element with atomic number Z=117 reported by JINR, Dubna. Finally, we determine the half-lives of superheavy elements with Z=108-120 and neutron number N=152-190 to explore the long-standing predictions on the existence of an "island of stability" due...
Calculation of decay half-lives for superheavy elements using the double folding model
Institute of Scientific and Technical Information of China (English)
ZHANG Gao-Long; LE Xiao-Yun
2009-01-01
α decay half-lives of some new synthesized superheavy elements, possibly synthesized superheavy elements and decay products are calculated theoretically within the WKB approximation by using microscopic m-nucleus interaction potentials. These nuclear potentials between the α particle and daughter nuclei are obtained by using the double folding integral of the matter density distribution of the α particle and daughter nuclei with a density-dependent effective nucleon-nucleon interaction, in which the zero-range exchange term is supplemented. The calculated α decay half-lives are compared with those of the different models and experimental data. It is shown that the present calculation successfully provides the half-lives of the observed αdecays for some new superheavy elements and therefore gives reliable predictions for α decay of possibly synthesized superheavy elements in future experiments.
Upper Limit of the Periodic Table and Synthesis of Superheavy Elements
Directory of Open Access Journals (Sweden)
Khazan A.
2007-04-01
Full Text Available For the first time, using the heaviest possible element, the diagram for known nuclides and stable isotopes is constructed. The direction of search of superheavy elements is indicated. The Periodic Table with an eighth period is tabulated.
Upper Limit of the Periodic Table and Synthesis of Superheavy Elements
Khazan A.
2007-01-01
For the first time, using the heaviest possible element, the diagram for known nuclides and stable isotopes is constructed. The direction of search of superheavy elements is indicated. The Periodic Table with an eighth period is tabulated.
Phenomenology of SU(5) finite unified theories
Energy Technology Data Exchange (ETDEWEB)
Heinemeyer, S [Instituto de Fisica de Cantabria (CSIC-UC), Edificio Juan Jorda, Avda. de Los Castros s/n, 39005 Santander (Spain); Mondragon, M [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G, E-mail: heinemey@mail.cern.c, E-mail: myriam@fisica.unam.m, E-mail: zoupanos@mail.cern.c [Physics Department, National Technical University of Athens, Zografou Campus: Heroon Polytechniou 9, 15780 Zografou, Athens (Greece)
2009-06-01
Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, leading to a large reduction in the number of free parameters. We confront the predictions of SU(5) FUTs with the top and bottom quark masses, which allows us to discriminate among different models. We include further low-energy phenomenology constraints, such as B physics observables, the bound on the SM Higgs mass and the cold dark matter density, and then are able to make predictions for the lightest Higgs boson mass and the sparticle spectrum.
Search for superheavy-element decay in samples of Madagascar monazite
Energy Technology Data Exchange (ETDEWEB)
Ketelle, B.H.; O' Kelley, G.D.; Stoughton, R.W.; Halperin, J.
1976-12-27
Two samples of Madagascar monazite from the same geological formation as the biotite studied by Gentry et al. were examined by using a neutron multiplicity counter capable of detecting binary or ternary spontaneous fission decay in any element. No events characteristic of spontaneous fission decay of superheavy elements were found. Derived limits indicate that if superheavy elements were present, then their spontaneous fission half-lives must be extremely long or their concentrations extremely small. (AIP)
Ionization potentials of superheavy elements No, Lr, and Rf and their ions
Dzuba, V. A.; Safronova, M. S.; Safronova, U. I.; Kramida, A.
2016-10-01
We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a relativistic hybrid method that combines configuration interaction (CI) with the linearized coupled-cluster approach. Extensive study of the completeness of the four-electron CI calculations for Hf and Rf was carried out. As a test of theoretical accuracy, we also calculated ionization potential of Yb, Lu, Hf, and their ions, which are homologues of the superheavy elements of this study.
Royer, G.; Zhang, H. F.
2008-01-01
International audience; The synthesis of superheavy elements has advanced strongly recently and their main observed decay mode is alpha emission. Predictions of alpha decay half-lives of other possible superheavy nuclei are needed. The alpha decay potential barrier is often described using a finite square well for the one-body shapes plus an hyperbola for the Coulomb repulsion between the alpha particle and its daughter. An arbitrary adjustment of the parameters allows to reproduce roughly th...
Alpha decay energies and half-lives for possibly synthesized superheavy elements
Institute of Scientific and Technical Information of China (English)
ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHOU Xiao-Hong; GAN Zai-Guo; QIN Zhi; XU Hu-Shan
2008-01-01
We investigate the ground state properties of some superheavy nuclei, which may be synthesized in future experiments. Special emphases are placed on the alpha decay energies and half-lives. The alpha decay energies and half-lives from different theoretical models are compared and discussed comprehensively. Through these calculations and comparisons, the optimal superheavy elements to be synthesized in future experiments are proposed theoretically.
Kojima, Kentaro; Yamashita, Toshifumi
2011-01-01
We propose a novel way to break grand unified gauge symmetries via the Hosotani mechanism in models that can accommodate chiral fermions. Adjoint scalar fields are realized through the so-called diagonal embedding method which is often used in the heterotic string theory. We calculate the one-loop effective potential of the adjoint scalar field in a five dimensional model compactified on an S^1/Z_2 orbifold, as an illustration. It turns out that the potential is basically the same as the one in an S^1 model, and thus the results in literatures, in addition to the chiral fermions, can be realized easily.
Grand unification: quo vadis domine
Energy Technology Data Exchange (ETDEWEB)
Senjanovic, G.
1985-01-01
The present theoretical and experimental situation with grand unification is summarized. The issues of proton decay and the Weinberg angle are addressed, going through the predictions of both the standard SU(5) theory and its supersymmetric extension. The SO(10) theory, which provides a minimal one family model, is then studied. The gravitational characteristics of domain walls and strings are then discussed. It is argued that there is a need to go beyond SO(10) in order to incorporate a unified picture of families. This leads to the prediction of mirror fermions, whose physics is analyzed. 31 refs. (LEW)
Fission of super-heavy nuclei explored with Skyrme forces
Schindzielorz, N; Klüpfel, P; Reinhard, P -G; Hager, G
2010-01-01
We present a large scale survey of life-times for spontaneous fission in the regime of super-heavy elements (SHE), i.e. nuclei with Z=104-122. This is done on the basis of the Skyrme-Hartree-Fock model. The axially symmetric fission path is computed using a quadrupole constraint. Self-consistent cranking is used for the collective masses and associated quantum corrections. The actual tunneling probability is estimated by the WKB approximation. Three typical Skyrme forces are used to explore the sensitivity of the results. Benchmarks in the regime Z=104-108 show an acceptable agreement. The general systematics reflects nicely the islands of shell stabilization and the crossover from $\\alpha$-decay to fission for the decay chains from the region of Z/N=118/176.
Remarks on the fission barriers of super-heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)
2016-04-15
Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)
Systematic study of survival probability of excited superheavy nuclei
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The stability of excited superheavy nuclei (SHN) with 100 Z 134 against neutron emission and fission is investigated by using a statistical model. In particular, a systematic study of the survival probability against fission in the 1n-channel of these SHN is made. The present calculations consistently take the neutron separation energies and shell correction energies from the calculated results of the finite range droplet model which predicts an island of stability of SHN around Z = 115 and N = 179. It turns out that this island of stability persists for excited SHN in the sense that the calculated survival probabilities in the 1n-channel of excited SHN at the optimal excitation energy are maximized around Z = 115 and N = 179. This indicates that the survival probability in the 1n-channel is mainly determined by the nuclear shell effects.
Entrance channel effects in superheavy element production
Directory of Open Access Journals (Sweden)
Nasirov Avazbek
2016-01-01
Full Text Available The difference between evaporation residue cross sections measured in the cold (X+208Pb, 209Bi and hot (48Ca+actinides fusion reactions can be related to the stage of compound nucleus (CN formation and/or to the stage of its survival against fission. The cold fusion reactions are favorable in synthesis of the superheavy elements (SHE with charge numbers Z < 112 in comparison with the hot fusion reactions due to small excitation energy and large fission barrier of the CN formed in these reactions. The strong decrease of the cross sections of the synthesis of the SHE Z = 113 in the cold fusion reactions in comparison with the ones in the hot fusion reactions is the result of the increase of hindrance to the CN formation in the cold fusion reactions. The origin of the intrinsic fusion barrier, B*fus, causing the strong decrease of the probability PCN in the cold fusion is discussed.
Nuclear spectroscopy with Geant4. The superheavy challenge
Sarmiento, Luis G.
2016-12-01
The simulation toolkit Geant4 was originally developed at CERN for high-energy physics. Over the years it has been established as a swiss army knife not only in particle physics but it has seen an accelerated expansion towards nuclear physics and more recently to medical imaging and γ- and ion- therapy to mention but a handful of new applications. The validity of Geant4 is vast and large across many particles, ions, materials, and physical processes with typically various different models to choose from. Unfortunately, atomic nuclei with atomic number Z > 100 are not properly supported. This is likely due to the rather novelty of the field, its comparably small user base, and scarce evaluated experimental data. To circumvent this situation different workarounds have been used over the years. In this work the simulation toolkit Geant4 will be introduced with its different components and the effort to bring the software to the heavy and superheavy region will be described.
Search for possible superheavy particles in sodium nuclei
Dick, W. J.; Greenlees, G. W.; Kaufman, S. L.
1986-01-01
A search has been made for isotopes of sodium of mass >100 amu. Such heavy isotopes could arise from the presence of superheavy particles in the primordial soup which became constituents of nuclear matter. The experimental technique involved studying the isotopic mass shift of the Na D2 atomic transition using high-resolution laser spectroscopy and the photon-burst method. An upper limit for the heavy-particle-to-nucleon ratio of 5×10-12 was found. Cosmological-model predictions for this ratio in nuclear matter are ~=10-10. Any comparison of these two values assumes no mass fractionation has occurred in the geophysical disposition and subsequent extraction of the sodium forming the atomic beam and also no differences in the distribution of heavy isotopes among the elements, compared to normal isotopes, during their astrophysical formation. Making these assumptions enables limits to be placed on the heavy-particle annihilation cross sections in the formation process.
Search for possible superheavy particles in sodium nuclei
Energy Technology Data Exchange (ETDEWEB)
Dick, W.J.; Greenlees, G.W.; Kaufman, S.L.
1986-01-01
A search has been made for isotopes of sodium of mass >100 amu. Such heavy isotopes could arise from the presence of superheavy particles in the primordial soup which became constituents of nuclear matter. The experimental technique involved studying the isotopic mass shift of the Na D2 atomic transition using high-resolution laser spectroscopy and the photon-burst method. An upper limit for the heavy-particle-to-nucleon ratio of 5 x 10 S was found. Cosmological-model predictions for this ratio in nuclear matter are approx. =10 . Any comparison of these two values assumes no mass fractionation has occurred in the geophysical disposition and subsequent extraction of the sodium forming the atomic beam and also no differences in the distribution of heavy isotopes among the elements, compared to normal isotopes, during their astrophysical formation. Making these assumptions enables limits to be placed on the heavy-particle annihilation cross sections in the formation process.
Dissipative dynamics of the synthesis of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Wada, Takahiro; Aritomo, Y.; Tokuda, T.; Okazaki, K.; Ohta, M. [Konan Univ., Kobe (Japan). Dept. of Physics; Abe, Y.
1997-07-01
Fusion-fission process in heavy systems are analyzed by Smoluchowski equation taking into account the temperature dependent shell correction energy. The evaporation residue cross sections of superheavy elements have been shown to have an optimum value at a certain temperature, due to the balance between the diffusibility for fusion at high temperature and the restoration of the shell correction energy against fission at low temperature. The isotope dependence of the evaporation residue cross section is found to be very strong. Neutron rich compound system with small neutron separation energy is favorable for larger cross section because of the quick restoration of the shell correction energy. The Z-dependence is discussed for the formation of the compound nuclei with Z=102 to Z=114. (author)
Estimation of atomic masses of heavy and superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)
1997-07-01
To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)
Warped Supersymmetric Grand Unification
Goldberger, W D; Smith, D R; Goldberger, Walter D.; Nomura, Yasunori; Smith, David R.
2003-01-01
We construct a realistic model of grand unification in AdS_5 truncated by branes, in which the unified gauge symmetry is broken by boundary conditions and the electroweak scale is generated by the AdS warp factor. We show that the model preserves the successful gauge coupling unification of the 4D MSSM at leading-logarithmic level. Kaluza-Klein towers, including those of XY gauge and colored Higgs multiplets, appear at the TeV scale, while the extra dimension provides natural mechanisms for doublet-triplet splitting and proton decay suppression. In one possible scenario supersymmetry is strongly broken on the TeV brane, in which case the lightest SU(3)_C x SU(2)_L x U(1)_Y gauginos are Dirac fermions, with universal masses at the weak scale, and the mass of the lightest XY gaugino is pushed well below that of the lowest gauge boson KK mode, improving the prospects for its production at the LHC. The bulk Lagrangian possesses a symmetry that we call GUT parity. If GUT parity is exact, the lightest GUT particle,...
Shell Effect of Superheavy Nuclei in Self-consistent Mean-Field Models
Institute of Scientific and Technical Information of China (English)
RENZhong-Zhou; TAIFei; XUChang; CHENDing-Han; ZHANGHu-Yong; CAIXiang-Zhou; SHENWen-Qing
2004-01-01
We analyze in detail the numerical results of superheavy nuclei in deformed relativistic mean-field model and deformed Skyrme-Hartree-Fock model. The common points and differences of both models are systematically compared and discussed. Their consequences on the stability of superheavy nuclei are explored and explained. The theoreticalresults are compared with new data of superheavy nuclei from GSI and from Dubna and reasonable agreement is reached.Nuclear shell effect in superheavy region is analyzed and discussed. The spherical shell effect disappears in some cases due to the appearance of deformation or superdeformation in the ground states of nuclei, where valence nucleons occupysignificantly the intruder levels of nuclei. It is shown for the first time that the significant occupation of vaJence nucleons on the intruder states plays an important role for the ground state properties of superheavy nuclei. Nuclei are stable in the deformed or superdeformed configurations. We further point out that one cannot obtain the octupole deformation of even-even nuclei in the present relativistic mean-field model with the σ，ω and ρ mesons because there is no parityviolating interaction and the conservation of parity of even-even nuclei is a basic assumption of the present relativistic mean-field model.
From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds
Energy Technology Data Exchange (ETDEWEB)
Theisen, Ch
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
Grand-unification cosmology and the parameters of a neutrino-dominated universe
Energy Technology Data Exchange (ETDEWEB)
Doroshkevich, A.G.; Khlopov, M.Y.
1983-05-01
Some new opportunities are suggested for reconciling the probable values of the neutrino mass predicted by grand unified theories with the observed parameters of the universe. The theoretical parameters would thereby be severely constrained, and might be verified experimentally.
Odd-even Effect of Survival Probability for Superheavy Compound Nuclei
Institute of Scientific and Technical Information of China (English)
LiWenfei; XuHushan; MaYue; ZhangHongfei; ZuoWei; LiJunqing; WangNan; ZhaoEnguang; W.Scheid
2003-01-01
The survival probability of a compound nucleus measures the competition among the neutron evaporation, light charged particle emissions and fission in the process of its de-excitation. It is considered as one of the crucial factors for producing superheavy elements, which is usually described by the existing statistical models[1]. In spite of the well developed statistical theory itself, however, due to the unclearness of the structure of superheavy nuclei, some characteristic quantities for evaluating the fission and particle emission widths are correspondingly ambiguous. This report gives the study on the odd-even effects of the survival probability based on a statistical model. The calculation details can be found.
Electric dipole moments of superheavy elements: A case study on copernicium
RadžiÅ«tÄ--, Laima; Gaigalas, Gediminas; Jönsson, Per; Bieroń, Jacek
2016-06-01
The multiconfiguration Dirac-Hartree-Fock method was employed to calculate the atomic electric dipole moments (EDMs) of the superheavy element copernicium (Cn, Z =112 ). The EDM enhancement factors of Cn, calculated here, are about one order of magnitude larger than those of Hg. The exponential dependence of the enhancement factors on the atomic number Z along group 12 of the periodic table was derived from the EDMs of the entire homologous series, Zn, Cd, Hg, Cn, and Uhb. These results show that superheavy elements with sufficiently long half-lives are potential candidates for EDM searches.
Electron structure of superheavy elements Uut, Fl and Uup ($Z$=113 to 115)
Dzuba, V A
2016-01-01
We use recently developed method of accurate atomic calculations which combines linearized single-double coupled cluster method with the configuration interaction technique to calculate ionisation potentials, excitation energies, static polarizabilities and valence electron densities for superheavy elements Uut, Fl and Uup ($Z$=113 to 115) and their ions. The accuracy of the calculations is controlled by comparing similar calculations for lighter analogs of the superheavy elements, Tl, Pb and Bi with experiment. The role of relativistic effects and correlations is discussed and comparison with earlier calculations is presented.
Finite unified theories and the top quark mass
Energy Technology Data Exchange (ETDEWEB)
Mondragon, M. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Zoupanos, G. [Physics Dept., Nat. Technical Univ., Athens (Greece)
1995-01-01
We present results of a study of two phenomenologically interesting SU(5) supersymmetric Grand Unified models, which are finite to all-loops before spontaneous symmetry breaking. The finiteness conditions provide us with relationships among the Yukawa and gauge couplings at the unification point, which in turn predict a heavy top quark mass ( similar 175-190GeV). ((orig.))
Towards a Grand Unified Theory of Mathematics and Physics
Woit, Peter
2015-01-01
Wigner's "unreasonable effectiveness of mathematics" in physics can be understood as a reflection of a deep and unexpected unity between the fundamental structures of mathematics and of physics. Some of the history of evidence for this is reviewed, emphasizing developments since Wigner's time and still poorly understood analogies between number theory and quantum field theory.
Fermion masses and Higgs physics in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Bhatti, Abdul Aziz
2010-03-12
The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)
An experimental paradigm opening the world of superheavy elements
Armbruster, P.; Münzenberg, Gottfried
2012-07-01
The history of the discovery of the six elements Z = 107 ∓ 112, bohrium, hassium, meitnerium, darmstadtium, roentgenium, and copernicium goes back to the early 1960s. An experimental method to separate and identify rare nuclear reaction products, the recoil separation, was developed and optimised for beams of fission products at European research reactors. Chemical elements beyond the then first transactinides ( Z = 104), which owe their stability to the internal structure of atomic nuclei, were predicted theoretically. A big brother of the shell-stabilised nucleus 208Pb, a spherical magic nucleus at Z = 114∓126 and N = 184, might reach lifetimes long enough to be detected. In the seventies, hunting superheavy elements (SHE) was on the agenda of nuclear chemistry. Could the Periodic Table of Elements be extended to Z = 120, and is the order of electrons in the atom still following the laws established for lighter elements? In Germany, the heavy ion accelerator (UNILAC) was built by Christoph Schmelzer and his team at GSI, Darmstadt. SHE and UNILAC met the recoil separators in 1968, and SHIP (Separator for Heavy Ion reaction Products) was ready together with the first UNILAC-beams in 1976. Recoil separation is orders of magnitude more sensitive, selective, and faster than earlier methods used to synthesise elements up to seaborgium, Z = 106. The experimental paradigm we introduced opened the world of SHEs. At SHIP we discovered and investigated the elements Z = 107∓112 in the years 1980-2000. Our laboratory was the world champion during this time. Today our experimental method is used worldwide in the search for SHEs, but the leadership went to the Russian laboratory JINR in Dubna, which extended the Periodic Table by 6 more elements to Z = 118, the candidate for the next rare gas.
Institute of Scientific and Technical Information of China (English)
2007-01-01
The futuristic National Grand Theater of China opened its grand curtains for a test show in September. Will this costly addition to Beijing’s entertainment scene be affordable to ordinary audiences?
Searches for the superheavy hydrogen isotope H-7 in the absorption of stopped pi(-) mesons
Gurov, Yu. B.; Aleshkin, D. V.; Lapushkin, S. V.; Laukhin, I. V.; Pechkurov, V. A.; Poroshin, N. O.; Sandukovsky, V. G.; Tel'kushev, M. V.; Chernyshev, B. A.
2006-01-01
Experimental searches for the superheavy hydrogen isotope H-7 were performed in reactions involving the absorption of stopped pi(-) mesons on Be-9 and B-11 nuclei. In the reaction Be-9(pi(-), pp)X, the missing-mass spectrum shows evidence for the formation of H-7 states, that of E-r = 16 +/- 1 MeV a
Ways to produce new superheavy isotopes with Z = 111-117 in charged particle evaporation channels
Hong, Juhee; Adamian, G. G.; Antonenko, N. V.
2017-01-01
The excitation functions of the production of new heaviest isotopes of superheavy nuclei with charge numbers 111-117 in the pxn and αxn evaporation channels of the 48Ca-induced hot fusion reactions are predicted for the first time for future experiments.
A Proposed Reaction Channel for the Synthesis of the Superheavy Nucleus Z=109
Institute of Scientific and Technical Information of China (English)
WANG Kun; MA Yu-Gang; MA Guo-Liang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; GUO Wei; ZHONG Chen; SHEN Wen-Qing
2004-01-01
@@ We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30Si + 243Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.
Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission
Energy Technology Data Exchange (ETDEWEB)
Ter-Akopian, G.M., E-mail: gurgen@jinr.ru; Dmitriev, S.N.
2015-12-15
There is little chance that superheavy nuclei with lifetimes of no less than 100 million years are present on the stability island discovered at present. Also, pessimistic are the results of estimates made about their nucleosynthesis in r-process. Nevertheless, the search for these nuclei in nature is justified in view of the fundamental importance of this topic. The first statistically significant data set was obtained by the LDEF Ultra-Heavy Cosmic-Ray Experiment, consisting of 35 tracks of actinide nuclei in galactic cosmic rays. Because of their exceptionally long exposure time in Galaxy, olivine crystals extracted from meteorites generate interest as detectors providing unique data regarding the nuclear composition of ancient cosmic rays. The contemporary searches for superheavy elements in the earth matter rely on knowledge obtained from chemical studies of artificially synthesized superheavy nuclei. New results finding out the chemical behavior of superheavy elements should be employed to obtain samples enriched in their homologues. The detection of rare spontaneous fission events and the technique of accelerator mass spectrometry are employed in these experiments.
Khuyagbaatar, J.; Shevelko, V. P.; Borschevsky, A.; Duellmann, Ch. E.; Tolstikhina, I. Yu.; Yakushev, A.
2013-01-01
The average charge states (q) over bar of heavy and superheavy ions (atomic numbers Z = 80-114) passing through He gas are studied experimentally and theoretically. Experimental data were measured at the gas-filled recoil separator, i.e., the TransActinide Separator and Chemistry Apparatus (TASCA) a
Anti-Grand Unification and Critical Coupling Universality
Laperashvili, L V
1997-01-01
The present work considers the phase transition between the confinement and "Coulomb" phases in U(1), SU(2) and SU(3)-sectors of Anti-grand unified theory described by regularized Wilson loop action. It was shown the independence of the critical coupling constants of the regularization method ("universality").
Soar and the case for unified theories of cognition.
Cooper, R; Shallice, T
1995-05-01
Despite the potential importance to cognitive psychology of unified theories no attempt has been made to assess concretely the methodological problems that such theorising produces. This paper addresses this issue of unified theorising, and in particular the arguments for unified theories put forward by Newell (1990). Close examination of these arguments reveals that Newell's approach does not adequately counter the difficulties which beset the grand theories of the 1930s, nor the problems of irrelevant specification which arise in modern computational psychological work. These difficulties do not prevent the development of unified theories, but they do pose serious problems, problems which it is argued can only be met by rigorous empirical testing together with extreme methodological sensitivity. The methodological concerns lead us to examine Soar, perhaps the most well-developed unified theory, from methodological, computational, and empirical perspectives. Our conclusions are that, whilst Soar represents an impressive body of research, its methodological foundations are insecure, it is ill specified as a computational/psychological theory, and under empirical testing it does not stand up to close scrutiny as a unified theory. The Soar research programme as it currently stands thus fails to meet the necessary methodological demands imposed by unified theorising.
Kobayashi, K; Ashie, Y; Hosaka, J; Ishihara, K; Itow, Y; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Taki, K; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Okumura, K; Ooyabu, T; Saji, C; Takenaga, Y; Desai, S; Kearns, E; Likhoded, S; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Liu, D W; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J E; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Scholberg, K; Walter, C W; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Kato, I; Maesaka, H; Morita, T; Nakadaira, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Yokoyama, M; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Habig, A; Fukuda, Y; Jung, C K; Kato, T; Malek, M; Mauger, C; McGrew, C; Sarrat, A; Sharkey, E; Yanagisawa, C; Toshito, T; Miyano, K; Tamura, N; Ishii, J; Kuno, Y; Yoshida, M; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Nakajima, Y; Nishijima, K; Harada, T; Ishino, H; Watanabe, Y; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A; Washburn, K; Wilkes, R J
2005-01-01
We report the results for nucleon decay searches via modes favored by supersymmetric grand unified models in Super-Kamiokande. Using 1489 days of full Super-Kamiokande-I data, we searched for $p \\to \\bar{\
Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei
Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-12-01
Fusion - fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the "Fusion by Diffusion" (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Alpha Decay Preformation Factors for Even-Even 280-316116 Superheavy Isotopes
Alsaif, Norah A. M.; Radiman, Shahidan; Yahaya, Redzuwan; Ahmed, Saad M. Saleh
2016-06-01
The success of the cluster formation model (CFM) in deriving an energy-dependent formula for the preformation factors of heavy nuclei has motivated us to expand this approach to the superheavy isotopes (SHI). In this paper, the alpha-cluster formation (preformation factor) behavior inside the parent nuclei of SHI with atomic number Z = 116 and neutron numbers 164 ≤ N ≤ 200 is determined using the alpha preformation formula contained within the CFM. The cluster formation energy of the alpha particles and the total energy of the parent nuclei are calculated on the basis of the various binding energies. Our results clearly show that the CFM remains valid for superheavy nuclei (SHN). In addition, our calculations reveal that the alpha clustering mechanism and formation probability in 280-316116 even-even SHI are similar to those of even-even heavy nuclei in a general sense.
Synthesis of superheavy elements at the Dubna gas-filled recoil separator
Energy Technology Data Exchange (ETDEWEB)
Voinov, A. A., E-mail: voinov@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Collaboration: JINR (Dubna), LLNL (Livermore), ORNL (Oak Ridge), University of Tennessee (Knoxville), Vanderbilt University (Nashville), Research Institute of Atomic Reactors (Dimitrovgrad) Collaboration
2016-12-15
A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the “island of stability” of superheavy nuclei produced in complete fusion reactions of {sup 48}Ca ions and {sup 238}U–{sup 249}Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112–118, as well as the properties of their decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.
Candidates for Long Lived High-K Ground States in Superheavy Nuclei
Jachimowicz, P; Skalski, J
2015-01-01
On the basis of systematic calculations for 1364 heavy and superheavy nuclei, including odd-systems, we have found a few candidates for high-K ground states in superheavy nuclei. The macroscopic-microscopic model based on the deformed Woods-Saxon single particle potential which we use offers a reasonable description of SH systems, including known: nuclear masses, $Q_{\\alpha}$-values, fission barriers, ground state deformations, super- and hyper-deformed minima in the heaviest nuclei. %For odd and odd-odd systems, both ways of including pairing correlations, % blocking and the quasi-particle method, have been applied. Exceptionally untypical high-K intruder contents of the g.s. found for some nuclei accompanied by a sizable excitation of the parent configuration in daughter suggest a dramatic hindrance of the $\\alpha$-decay. Multidimensional hyper-cube configuration - constrained calculations of the Potential Energy Surfaces (PES's) for one especially promising candidate, $^{272}$ Mt, shows a $\\backsimeq$ 6 Me...
Structural and decay properties of $Z=132,138$ superheavy nuclei
Rather, Asloob A; Usmani, A A; Kumar, Bharat; Patra, S K
2016-01-01
In this paper, we analyze the structural properties of $Z=132$ and $Z=138$ superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL$3^{*}$ parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as $\\alpha$-decay, $\\beta$-decay and spontaneous fission of the isotopic chain of superheavy nuclei with $Z=132$ within the range 312 $\\le$ A $\\le$ 392 and 318 $\\le$ A $\\le$ 398 for $Z=138$ is systematically analyzed within self-consistent relativistic mean field model. From our analysis, we inferred that the $\\alpha$-decay and spontaneous fiss...
Microscopic Analysis of the α-DECAY in Heavy and Superheavy Nuclei
Delion, D. S.; Sandulescu, A.; Greiner, W.
2004-09-01
We analyze the α-decay along N - Z chains in heavy and superheavy nuclei. The α-particle preformation amplitude is estimated within the pairing model, while the penetration part by the deformed WKB approach. We show that for N > 126 the plateau condition is not fulfilled along any α-chain, namely the logarithmic derivative of the Coulomb function changes much faster in comparison with that of the preformation factor. We correct this deficiency by considering an α-cluster factor in the preformation amplitude, depending upon the Coulomb parameter. For superheavy region an additional dependence upon the number of interacting α-particles indicates a clustering feature connected with a larger radial component.
Dynamics of light, intermediate, heavy and superheavy nuclear systems formed in heavy-ion collisions
Indian Academy of Sciences (India)
Manoj K Sharma; Gurvinder Kaur
2014-05-01
The dynamical description of light, intermediate, heavy and superheavy nuclei formed in heavy-ion collisions is worked out using the dynamical cluster decay model (DCM), with reference to various effects such as deformation and orientation, temperature, angular momentum etc. Based on the quantum mechanical fragmentation theory (QMFT), DCM has been applied to understand the decay mechanism of a large number of nuclei formed in low-energy heavy-ion reactions. Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a compound nucleus, treats light particles (LPs) or equivalently evaporation residues (ERs), intermediate mass fragments (IMFs) and fission fragments on equal footing and hence, provides an alternative to the available statistical model approaches to address fusion–fission and related phenomena.
Super- and Hyperdeformed Isomeric States and Long-Lived Superheavy Elements
Marinov, A; Kolb, D; Brandt, R; Gentry, R V; Pape, A
2004-01-01
The recent discoveries of the long-lived high spin super- and hyperdeformed isomeric states and their unusual radioactive decay properties are described. Based on their existence a consistent interpretation is given to the production of the long-lived superheavy element with Z = 112, via secondary reactions in CERN W targets, and to the low energy and very enhanced alpha-particle groups seen in various actinide fractions separated from the same W target. In addition, consistent interpretations are suggested for previously unexplained phenomena seen in nature. These are the Po halos, the low-energy enhanced 4.5 MeV alpha-particle group proposed to be due to an isotope of a superheavy element with Z = 108, and the giant halos.
Fusion-fission probabilities, cross sections and structure notes of super-heavy nuclei
Kowal, Michał; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-01-01
Fusion - fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using "Fusion by Diffusion" (FBD) model. Predictive power of this approach is shown for experimentally known Lv, Og isotopes and predictions given for Z=119,120. Ground state and saddle point properties as: masses, shell corrections, pairing energies and deformations necessary for cross section estimations are calculated systematically within the multidimensional microscopic - macroscopic method based on the deformed Woods-Saxon single particle potential. In the frame of FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Structure of exotic nuclei and superheavy elements in meson field theory
Energy Technology Data Exchange (ETDEWEB)
Linn, Khin Nyan
2008-07-15
In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)
New Superheavy Element Isotopes: 242Pu(48Ca,5n)285114
Energy Technology Data Exchange (ETDEWEB)
Ellison, Paul A; Gregorich, Kenneth E.; Berryman, Jill S.; Bleuel, Darren L.; Clark, Roderick M.; Dragojevic, Irena; Dvorak, Jan; Fallon, Paul; Fineman-Sotomayor, Carolina; Gates, Jacklyn M.; Gothe, Oliver R.; Lee, I-Yang; Loveland, Walter D.; McLaughlin, Joseph P.; Paschalis, Stefanos; Petri, Marina-Kalliopi; Qian, Jing; Stavsetra, Liv; Wiedeking, Mathis; Nitsche, Heino
2010-10-22
The new, neutron-deficient, superheavy element isotope {sup 285}114 was produced in {sup 48}Ca irradiations of {sup 242}Pu targets at a center-of-target beam energy of 256 MeV (E* = 50 MeV). The {alpha} decay of {sup 285}114 was followed by the sequential {alpha} decay of four daughter nuclides, {sup 281}Cn, {sup 277}Ds, {sup 273}Hs, and {sup 269}Sg. {sup 265}Rf was observed to decay by spontaneous fission. The measured {alpha}-decay Q values were compared with those from a macroscopic-microscopic nuclear mass model to give insight into superheavy element shell effects. The {sup 242}Pu({sup 48}Ca,5n){sup 285}114 cross section was 0.6{sub -0.5}{sup +0.9} pb.
New approach for alpha decay half-lives of superheavy nuclei and applicability of WKB approximation
Dong, Jianmin; Zuo, Wei; Scheid, Werner
2011-01-01
The alpha decay half-lives of recently synthesized superheavy nuclei (SHN) are calculated by applying a new approach which estimates them with the help of their neighbors based on some simple formulas. The estimated half-life values are in very good agreement with the experimental ones, indicating the reliability of the experimental observations and measurements to a large extent as well as the predictive power of our approach. The second part of this work is to test the applicability of the ...
Alpha-decay energies of superheavy nuclei for the Fayans functional
Tolokonnikov, S V; Kortelainen, M; Lutostansky, Yu S; Saperstein, E E
2016-01-01
Alpha-decay energies for several chains of super-heavy nuclei are calculated by using Fayans functional FaNDF$^0$. They are compared to the experimental data and predictions of two Skyrme functionals, SLy4 and SkM*, and of the macro-micro method as well. The corresponding lifetimes are calculated with the use of the semi-phenomenological formulas by Parkhomenko and Sobiczewski and by Royer and Zhang.
Z=110-111 elements and the stability of heavy and superheavy elements
Wu Cheng Li; Feng, D H
1995-01-01
The recent discovery of isotopes with Z=110--111 suggests evidence for (1) a monopole--monopole interaction that does not appear explicitly in Nilsson--Strutinsky mass systematics, and (2) a competition between SU(2) and SU(3) dynamical symmetries that has been predicted for this region. Our calculations suggest that these new isotopes are near spherical, and may represent a true island of superheavy nuclei, but shifted downward in neutron number by these new physical effects.
Superheavy dark matter and IceCube neutrino signals:bounds on decaying dark matter
Rott, Carsten; Park, Seong Chan
2014-01-01
Superheavy dark matter may show its presence in high energy neutrino signals detected on earth. From the latest results of IceCube, we could set the strongest lower bound on the lifetime of dark matter beyond 100 TeV around $10^{28} {\\rm sec}$. The excess around a PeV is noticed and may be interpreted as the first signal of DM even though further confirmation and dedicated searches are invited.
Superheavy Element Studies with TASCA at GSI: Spectroscopy of Element 115 Decay Chains
Rudolph, Dirk
Experimental campaigns on investigations of the superheavy elements 115, 117, 119, and 120 were conducted 2011 and 2012 at the gas-filled "TransActinide Separator and Chemistry Apparatus" (TASCA) at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Nuclear structure implications of first-ever α-photon coincidence spectroscopy on element 115 and its daughters obtained with the TASISpec set-up are discussed, likewise possible connections between decay chains associated with elements 115 and 117.
Superheavy Element Studies with TASCA at GSI: Spectroscopy of Element 115 Decay Chains
Rudolph, Dirk
2015-01-01
Experimental campaigns on investigations of the superheavy elements 115, 117, 119, and 120 were conducted 2011 and 2012 at the gas-filled “TransActinide Separator and Chemistry Apparatus” (TASCA) at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Nuclear structure implications of first-ever α-photon coincidence spectroscopy on element 115 and its daughters obtained with the TASISpec set-up are discussed, likewise possible connections between decay chains associated with...
Super-heavy dark matter – Towards predictive scenarios from inflation
Energy Technology Data Exchange (ETDEWEB)
Kannike, Kristjan [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Racioppi, Antonio, E-mail: antonio.racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia)
2017-05-15
A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.
Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
Macroscopic-microscopic calculations of ground state properties of superheavy nuclei
Institute of Scientific and Technical Information of China (English)
ZHI Qi-jun; Mao Ying-chen; REN Zhong-zhou
2006-01-01
We systematically calculate the ground state properties of superheavy even-even nuclei with proton number Z=94-118.The calculations are based on the liquid drop macroscopic model and the microscopic model with the modified single-particle oscillator potential. The calculated binding energies and α-decay energies agree well with the experimental data.The reliability of the macroscopic-microscopic(MM)model for superheavy nuclei is confirmed by the good agreement between calculated results and experimental ones. Detailed comparisons between our calculations and M(o)ller's are made.It is found that the calculated results also agree with M(o)ller's results and that the MM model is insensitive to the microscopic single-particle potential. Calculated results are also compared with results from relativistic mean-field (RMF)model and from Skyrme-Hatree-Fock(SHF) model.In addition,half-lives,deformations and shape coexistence are also investigated.The properties of some unknown nuclei are predicted and they will be useful for future experimental researches of superheavy nuclei.
Influence of hexadecapole deformation on production cross sections of superheavy nuclei
Bao, X. J.; Guo, S. Q.; Zhang, H. F.; Li, J. Q.
2016-12-01
The current heaviest superheavy nuclei (SHN) are experimentally synthesized by using 48Ca to bombard actinide nuclei via fusion reactions. Actinide nuclei often have considerable hexadecapole deformation in addition to quadrupole deformation, which was not considered in previous theoretical studies. With the dinuclear system concept, and by taking the hexadecapole deformation in to consideration in addition to the quadrupole deformation, the hot fusion probability leading to the synthesis of SHN is investigated systematically. Synthesis of superheavy elements 296118 and 295118 by using the 48Ca+251Cf reaction channel is evaluated and discussed, and the maximal evaporation residue cross sections (ERCSs) of the 3n and 4n channels are predicted to be 1.90 and 0.11 pb, respectively. The predicted maximum ERCSs in 3n and 4n evaporation channels of the 249Bk(50Ti,xn){}299-x119 reaction are 0.12 and 0.04 pb, respectively. The most favorable reaction to synthesize the element Z = 120 turns out to be 251Cf(50Ti,xn){}301-x120, but the predicted maximum cross section for this reaction is only 67 fb. Therefore, superheavy element 119 may be the most hopeful new element for Z\\gt 118 to be synthesized under some improved experimental conditions in the near future.
Klev, Ansten
2016-10-01
Unified science is a recurring theme in Carnap's work from the time of the Aufbau until the end of the 1930's. The theme is not constant, but knows several variations. I shall extract three quite precise formulations of the thesis of unified science from Carnap's work during this period: from the Aufbau, from Carnap's so-called syntactic period, and from Testability and Meaning and related papers. My main objective is to explain these formulations and to discuss their relation, both to each other and to other aspects of Carnap's work. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)
1993-09-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
Hybrid Unifying Variable Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the
Grand Hotel prijutil hudozhnikov
2004-01-01
Raadioajakirjanik Lea Veelmaa lindistas "Kunstikanali" 2004. a. esimese saate Grand Hotel Viljandis. Saatekülaliseks oli maalikunstnik Andres Tolts. Toltsi kaheksa akrüülmaali on eksponeeritud hotelli fuajees ja restoranis
Institute of Scientific and Technical Information of China (English)
RENWEI
2005-01-01
China unveiled a unified stock index to track both markets in Shanghai and Shenzhen in April, a move likely to open a floodgate for more trading derivatives such as index futures. The new index, with 300 component companies traded on Shanghai and Shenzhen stock exchanges, will be the first of its kind on the mainland. The index members will be the largest 300 stocks - 180 from Shanghai and 120 from Shenzhen - in terms of market capitalization,
Unified Engineering Software System
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
DEFF Research Database (Denmark)
Buhl, Kenneth Øhlenschlæger
2012-01-01
Formålet med denne artikel er at se nærmere på erfaringerne fra den maritime kampagne under den militære indsats i konflikten i Libyen i 2011, som i NATO regi blev kendt som Operation Unified Protector (OUP). Dækningen i de danske medier fokuserede primært på luftkampagnen, hvilket må tilskrives,...
Directory of Open Access Journals (Sweden)
Philip J. Kellman
2011-05-01
Full Text Available What is the relation between perceptual learning (PL in basic sensory discriminations and in more complex tasks, including real-world learning tasks? Most recent PL work focuses on the former, using simple sensory dimensions and a few specific stimulus values. In contrast, other PL research and virtually all real-world tasks involve discovery of invariance amidst variation, and may also involve PL working synergistically with other cognitive abilities. In this talk I will suggest that, despite superficial differences, low- and high-level PL tasks draw upon—and reveal—a unified type of learning. I will consider several arguments that have been advanced in favor of confining perceptual learning to plasticity at the earliest cortical levels along with models of PL based on receptive field change vs. selection. These analyses do not support the idea of a separate low-level process but do support both the abstract character of PL and its dependence on unifying notions of discovery and selection. In the final part of the talk, I will relate this unified view of PL to direct practical applications. Learning technology based on PL modules (PLMs can address elusive aspects of learning, including pattern recognition, transfer, and fluency, even in high-level, symbolic domains, such as mathematics learning.
Hilltop supernatural inflation and SUSY unified models
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Gravity as a Grand Unification of Forces
Sharafiddinov, R S
2004-01-01
Any of all possible types of charges corresponds in nature to a kind of the inertial mass. Such a mass - charge duality of matter explains the coexistence of grand united rest mass and charge for the same neutrino equal respectively to its all the gravitational mass and charge which consist of the gravitoelectric, gravitoweak, gravitostrong and a range of others, innate components. From their point of view, a new grand unification theory has been created at the discussion of a question about unification of forces of a different nature. In this theory, the gravitational field must be naturally united gauge field of the unified system of the most diverse combinations of electromagnetic photons, weak bosons and strong gluons where the four pairs of forces of the micro world fundamental interactions are united. Some consequences and laboratory confirmations of the suggested theory have been listed which allow also to define the structure of the graviton as a grand united boson. Thereby it gives the possibility to...
The Multiple Faces of Effective Grand Strategy
Directory of Open Access Journals (Sweden)
Bryan N. Groves
2010-01-01
Full Text Available Effective national leaders throughout history have deliberately developed grand strategies and successfully implemented them to attain their political goals, while also integrating and accomplishing economic, social, defense, and sometimes religious objectives. Not all leaders have been successful, however, as this process is immensely complex and can be adversely affected by the actions of other leaders around their region and the world. It bears examination, then, to determine what factors contribute to successful grand strategies and why many leaders fail to reach their stated ends. This article utilizes a historic case study approach and explores three key areas of grand strategy: universal principles, Clausewitzian approaches, and indirect approaches. I handle each separately and in distinct fashion, though some connective tissue does interlace across sections. Additionally, the unifying argument is that thoughtful, rational leaders, who weigh the costs and benefits associated with each course of action available to them, still must heed the truths embedded in these three sections to attain their objectives. Not doing so often leads to failure, unrealized goals, and a nation gone awry.
Orbifold Grand Unification: A Solution to the Doublet-Triplet Problem
Jia, Bei
2014-01-01
To solve the doublet-triplet splitting problem in SU(5) grand unified theories, we propose a four dimensional orbifold grand unified theory by acting Z2 on the SU(5) gauge group. Without an adjoint Higgs, the orbifold procedure breaks the SU(5) gauge symmetry down to the standard model gauge group, and removes the triplet component of the fundamental SU(5) Higgs. In the supersymmetric framework, we show that the orbifold procedure removes two triplet superfields of the Higgs multiplets and leaves us with the minimal supersymmetric standard model, which also solves the hierarchy problem and realizes gauge coupling unification. We also discuss possible UV completions of the orbifold theories.
Santhosh, K. P.; Safoora, V.
2016-08-01
Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.
K -shell ionization during α decay of polonium isotopes and superheavy nuclei
Trzhaskovskaya, M. B.; Nikulin, V. K.
2016-03-01
The theory of K -shell ionization during α decay of the 84Po isotopes is considered in detail as a part of our general study of the inner shell ionization probability of heavy and superheavy nuclei. Calculations of K -shell ionization with allowance made for the α -particle tunneling through the atomic Coulomb barrier have been performed in the framework of the fully quantum mechanical treatment developed for the first time by Anholt and Amundsen. Further information is available [Anholt and Amundsen, Phys. Rev. A 25, 169 (1982), 10.1103/PhysRevA.25.169]. As distinct from all previous the K -shell ionization calculations where the Dirac hydrogenlike wave functions have been used, we have found the discrete and continuum electron wave functions in the framework of the relativistic self-consistent Dirac-Fock method. In addition, we have taken into consideration accurately terms associated with the α -particle tunneling. Our exact calculations show that the tunneling contribution to the ionization probability is of great importance while Anholt and Amundsen have asserted that the contribution is small. We have obtained that the K -shell ionization probability during α decay of five isotopes of 84Po correlate better with the available experimental data providing the tunneling is included in calculations. New calculations for K -shell ionization during α decay of superheavy elements Fm249100,No253102,Rg272111, as well as Rn22286 are also presented. The data may be of importance in the combined α ,γ , and conversion-electron spectroscopy used in the superheavy element synthesis analysis.
A cruise in the archipelagos of superheavy elements, heavy-cluster emitters and nuclear molecules
Greiner, W
2002-01-01
I review some of the most important achievements in the theoretical investigations that we carried out in the last three decades at Frankfurt on the extension of the periodic system and heavy-ion emission. After discussing the problem of cold fusion and formation of Superheavy Elements (SHE) I will consider the reverse process, i.e. the spontaneous cold fragmentation of heavy nuclei into different channels like cluster radioactivity and cold fission. I will speculate on the properties of the putative quasi-molecules arising in the recent discovery of the triple fission of sup 2 sup 5 sup 2 Cf. (author)
Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations
Energy Technology Data Exchange (ETDEWEB)
Kosior, Amelia [Maria Curie-Sklodowska University, Poland; Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL
2017-01-01
Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.
Cluster decay analysis and related structure effects of fissionable heavy and superheavy nuclei
Indian Academy of Sciences (India)
Manoj K Sharma; Gurvinder Kaur
2015-09-01
Collective clusterization approach of dynamical cluster decay model (DCM) has been applied to study the attributes of hot ( ≠ 0) and rotating (ℓ = 0) nuclei lying in heavy and super-heavy mass regimes. We present here an overview of the characteristic fission decay properties such as shell effect, role of entrance channel, quadrupole (2) deformations and impact of hot (equatorial) compact orientation degree of freedom in comparison to cold (polar) elongated configuration. The presence of non-compound nucleus process, i.e., quasifission, is also investigated. Apart from studying the decay of excited state nuclei, the dynamics of heavy particle cluster emission is also addressed using the preformed cluster model (PCM).
Alpha-decay energies of superheavy nuclei for the Fayans functional
Energy Technology Data Exchange (ETDEWEB)
Tolokonnikov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Borzov, I.N. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Joint Institute for Nuclear Research, Dubna (Russian Federation); Kortelainen, M. [University of Jyvaskyla, Department of Physics, P.O. Box 35 (YFL), Jyvaskyla (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Lutostansky, Yu.S. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Saperstein, E.E. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)
2017-02-15
Alpha-decay energies for several chains of superheavy nuclei are calculated within the self-consistent mean-field approach by using the Fayans functional FaNDF{sup 0}. They are compared to the experimental data and predictions of two Skyrme functionals, SLy4 and SkM{sup *}, and of the macro-micro method as well. The corresponding lifetimes are calculated with the use of the semi-phenomenological formulas by Parkhomenko and Sobiczewski and by Royer and Zhang. (orig.)
All-order calculations of the spectra of superheavy elements E113 and E114
Dinh, T H
2016-01-01
We apply a recently developed method (V. A. Dzuba, PRA 90, 012517 (2014); J. S. M. Ginges and V. A. Dzuba, PRA 91, 042505 (2015)) to calculate energy levels of superheavy elements Uut (Z = 113), Fl (Z = 114), and Fl+. The method combines the linearized single-double coupledcluster technigue, the all-order correlation potential method and configuration interaction method. Breit and quantum electrodynamic corrections are included. The role of relativistic and correlation effects is discussed. Similar calculations for Tl, Pb and Pb+ are used to gauge the accuracy of the calculations.
Recent α decay half-lives and analytic expression predictions including superheavy nuclei
Royer, G.; Zhang, H. F.
2008-03-01
New recent experimental α decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the α emitter and the Qα value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the α decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Qα of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].
Ionization potentials and polarizabilities of superheavy elements from Db to Cn ($Z$=105 to 112)
Dzuba, V A
2016-01-01
Relativistic Hartree-Fock and random phase approximation methods for open shells are used to calculate ionization potentials and static scalar polarizabilities of eight superheavy elements with open $6d$-shell, which include Db, Sg, Bh, Hs, Mt, Ds, Rg and Cn ($Z$=105 to 112). Inter-electron correlations are taken into account with the use of the semi-empirical polarization potential. Its parameters are chosen to fit the known ionization potentials of lighter atoms. Calculations for lighter atoms are also used to illustrate the accuracy of the approach.
Status of the low-energy super-heavy element facility at RIKEN
Energy Technology Data Exchange (ETDEWEB)
Schury, P., E-mail: schury@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M.; Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Kimura, S. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Morimoto, K.; Haba, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Jeong, S. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Koura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Miyatake, H. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Morita, K.; Reponen, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Sonoda, T.; Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Dept. Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States)
2016-06-01
In order to investigate nuclei produced via fusion–evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion–evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.
A Statistical Approach to Describe Highly Excited Heavy and Superheavy Nuclei
Chen, Peng-Hui; Li, Jun-Qing; Zhang, Hong-Fei
2016-01-01
A statistical approach based on the Weisskopf evaporation theory has been developed to describe the de-excitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating $\\gamma$-ray, light particles (neutrons, protons, $\\alpha$ etc) in competition with the binary fission, in which the structure effects (shell correction, fission barrier, particle separation energy) contribute to the processes. The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies. The available data of fusion-evaporation excitation functions in the $^{28}$Si+$^{198}$Pt reaction can be reproduced nicely well within the approach.
Long lifetime components in the decay of excited super-heavy nuclei
Directory of Open Access Journals (Sweden)
Morjean M.
2013-12-01
Full Text Available For nuclear reactions in which super-heavy nuclei can be formed, the essential difference between the fusion process followed by fission and non-equilibrium processes leading to fission-like fragments is there action time. Quite probable non-equilibrium processes, characterized by very short reaction times, are highlighted thanks to mass-angle correlations. However, long lifetime components associated with fission following fusion have been observed with two independent experimental techniques, providing evidence for the formation of compound nuclei with Z = 120 and 124, followed by mass asymmetric fission.
Liberating methodological thinking in human sciences from grand theories
DEFF Research Database (Denmark)
Kharlamov, Nikita; Baldursson, Einar Baldvin
2016-01-01
Many humanistic and social disciplines are naturally inclined to seek for human-, person-, self- centered focus, and develop a holistic theory of such. Such disciplines continually engage with philosophical, metaphysical and meta-theoretical perspectives. This engagement often leads to a singular...... focus on the necessity of a “grand unified theory” at the expense of any and all alternative perspectives. Properties of grand theories are discussed on the examples of Giddens and Bourdieu. It is argued that grand theories hamper a more productive focus on concrete phenomena. Robert Merton’s focus...... on “middle range” theories is revisited and its continuing relevance is highlighted. The level of abstraction characteristic of such theories, as well as the way they engage with the empirical social reality, are discussed. The article concludes by considering the paradoxical reductionism that can...
Vizgin, Vladimir P
2011-01-01
Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of
Neutrino masses and superheavy dark matter in the 3-3-1-1 model
Energy Technology Data Exchange (ETDEWEB)
Huong, D.T.; Dong, P.V. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)
2017-04-15
In this work, we interpret the 3-3-1-1 model when the B - L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B - L number in comparison to those of the standard model particles may be superheavy dark matter as it is stabilized by W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to gravitational effects on the vacuum or thermal production after cosmic inflation. (orig.)
Lü, Hongliang; Boilley, David; Abe, Yasuhisa; Shen, Caiwan
2016-09-01
Background: Synthesis of superheavy elements is performed by heavy-ion fusion-evaporation reactions. However, fusion is known to be hindered with respect to what can be observed with lighter ions. Thus some delicate ambiguities remain on the fusion mechanism that eventually lead to severe discrepancies in the calculated formation probabilities coming from different fusion models. Purpose: In the present work, we propose a general framework based upon uncertainty analysis in the hope of constraining fusion models. Method: To quantify uncertainty associated with the formation probability, we propose to propagate uncertainties in data and parameters using the Monte Carlo method in combination with a cascade code called kewpie2, with the aim of determining the associated uncertainty, namely the 95 % confidence interval. We also investigate the impact of different models or options, which cannot be modeled by continuous probability distributions, on the final results. An illustrative example is presented in detail and then a systematic study is carried out for a selected set of cold-fusion reactions. Results: It is rigorously shown that, at the 95 % confidence level, the total uncertainty of the empirical formation probability appears comparable to the discrepancy between calculated values. Conclusions: The results obtained from the present study provide direct evidence for predictive limitations of the existing fusion-evaporation models. It is thus necessary to find other ways to assess such models for the purpose of establishing a more reliable reaction theory, which is expected to guide future experiments on the production of superheavy elements.
Production cross sections of the superheavy nucleus 117 based on the dinuclear system model
Institute of Scientific and Technical Information of China (English)
ZHAO Wei-Juan; ZHANG Yong-Qi; WANG Hua-Lei; SONG Li-Tao; LI Lu-Lu
2010-01-01
Within the framework of the dinuclear system model,the capture of two colliding nuclei,and the formation and de-excitation process of a compound nucleus are described by using an empirical coupled channel model,solving the master equation numerically and the statistical evaporation model,respectively.In the process of heavy-ion capture and fusion to synthesize superheavy nuclei,the barrier distribution func-tion is introduced and averaging collision orientations are considered.Based on this model,the production cross sections of the cold fusion system 76-82Se+209Bi and the hot fusion systems 55Mn+238U,51V-+244Pu,59 Co+232 Th,48 Ca+247-249 Bk and 45 Sc+246-248 Cm are calculated.The isotopic dependence of the largest production cross sections is analyzed briefly,and the optimal projectile-target combination and excitation energy of the ln-4n evaporation channels are proposed.It is shown that the hot fusion systems 48Ca+247 249Bk in the3n evaporation channels and 45Sc+248Cm in the 2n-4n channels are optimal for synthesizing the superheavy element 117.
Khuyagbaatar, J.; Shevelko, V. P.; Borschevsky, A.; Düllmann, Ch. E.; Tolstikhina, I. Yu.; Yakushev, A.
2013-10-01
The average charge states q¯ of heavy and superheavy ions (atomic numbers Z=80-114) passing through He gas are studied experimentally and theoretically. Experimental data were measured at the gas-filled recoil separator, i.e., the TransActinide Separator and Chemistry Apparatus (TASCA) at GSI Darmstadt, for ion energies of a few hundred keV/u at gas pressures of 0.2 to 2.0 mbar. An attempt is made to describe experimental q¯ values by means of atomic calculations of the binding energies and electron-loss and electron-capture cross sections. The influence of the gas-density effect is included in the calculations. The calculated q¯ reproduce the experimental values for elements with Z=80-114 within 20%. A comparison with different semiempirical models is presented as well, including a local fit of high accuracy, which is often used in superheavy-element experiments to estimate the average charge states of heavy ions, e.g., at the gas-filled recoil separator TASCA. The q¯ values for elements with Z=115, 117, 119, and 120 at He-gas pressure of 0.8 mbar are predicted.
Dominguez Uceta, Enrique
2009-01-01
Selección de 10 museos de arquitectura contemporánea realizada con Rafael Moneo y Juan Miguel Hernández León, con las mejores obras museísticas de 10 grandes arquitectos. Los edificios, de Wright, Sert, Scarpa, Piano & Rogers, Kahn, Moneo, Piano, Gehry, Siza y Herzog & de Meuron, son descritos y analizados.
Gauge-Higgs EW and Grand Unification
Hosotani, Yutaka
Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unifiation scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase θH in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for θH bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.
Gauged flavor, supersymmetry and grand unification
Mohapatra, Rabindra N.
2012-07-01
I review a recent work on gauged flavor with left-right symmetry, where all masses and all Yukawa couplings owe their origin to spontaneous flavor symmetry breaking. This is suggested as a precursor to a full understanding of flavor of quarks and leptons. An essential ingredient of this approach is the existence of heavy vector-like fermions, which is the home of flavor, which subsequently gets transmitted to the familiar quarks and leptons via the seesaw mechanism. I then discuss implications of extending this idea to include supersymmetry and finally speculate on a possible grand unified model based on the gauge group SU(5)L×SU(5)R which provides a group theoretic origin for the vector-like fermions.
Gauged Flavor, Supersymmetry and Grand Unification
Mohapatra, Rabindra N
2012-01-01
I review a recent work on gauged flavor with left-right symmetry, where all masses and all Yukawa couplings owe their origin to spontaneous flavor symmetry breaking. This is suggested as a precursor to a full understanding of flavor of quarks and leptons. An essential ingredient of this approach is the existence of heavy vector-like fermions, which is the home of flavor, which subsequently gets transmitted to the familiar quarks and leptons via the seesaw mechanism. I then discuss implications of extending this idea to include supersymmetry and finally speculate on a possible grand unified model based on the gauge group $SU(5)_L\\times SU(5)_R$ which provides a group theoretic origin for the vector-like fermions.
Energy Technology Data Exchange (ETDEWEB)
Mondragon, M [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G, E-mail: myriam@fisica.unam.m, E-mail: zoupanos@mail.cern.c [Physics Department, National Technical University of Athens, Zografou Campus: Heroon Polytechniou 9, 15780 Zografou, Athens (Greece)
2009-06-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the beta-functions in certain N=1 supersymmetric GUTS even to all orders. Furthermore, developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations also in this dimensionful sector of the theories. Of particular interest for the construction of realistic theories is a RGI sum rule for the soft scalar masses holding to all orders.
Interplay between grand unification and supersymmetry in SU(5) and 6
Indian Academy of Sciences (India)
Borut Bajc
2016-02-01
Some aspects of minimal supersymmetric renormalizable grand unified theories are reviewed here. These include some constraints on the model parameters from the Higgs and light fermion masses in SU(5), and the issues of symmetry breaking, doublet–triplet splitting and fermion masses in 6.
Unifying CP violations of quark and lepton sectors
Energy Technology Data Exchange (ETDEWEB)
Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, 02447, Seoul (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, 34141, Taejon (Korea, Republic of); Department of Physics, Seoul National University, 1 Gwanakro, Gwanak-Gu, 08826, Seoul (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, 02447, Seoul (Korea, Republic of)
2016-01-08
A preliminary determination of the Dirac phase in the PMNS matrix is δ{sub PMNS}≈-(π/2). A rather accurately determined Jarlskog invariant J in the CKM matrix is close to the maximum. Since the phases in the CKM and PMNS matrices will be accurately determined in the future, it is an interesting problem to relate these two phases. This can be achieved in a families-unified grand unification if the weak CP violation is introduced spontaneously à la Froggatt and Nielsen at a high energy scale, where only one meaningful Dirac CP phase appears.
Unifying CP violations of quark and lepton sectors
Energy Technology Data Exchange (ETDEWEB)
Kim, Jihn E. [Kyung Hee University, Department of Physics, Seoul (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), Taejon (Korea, Republic of); Seoul National University, Department of Physics, Seoul (Korea, Republic of); Nam, Soonkeon [Kyung Hee University, Department of Physics, Seoul (Korea, Republic of)
2015-12-15
A preliminary determination of the Dirac phase in the PMNS matrix is δ{sub PMNS} ∼ -(π)/(2). A rather accurately determined Jarlskog invariant J in the CKM matrix is close to the maximum. Since the phases in the CKM and PMNS matrices will be accurately determined in the future, it is an interesting problem to relate these two phases. This can be achieved in a families-unified grand unification if the weak CP violation is introduced spontaneously a la Froggatt and Nielsen at a high energy scale, where only one meaningful Dirac CP phase appears. (orig.)
Graviton as a Grand United Gauge Boson
Sharafiddinov, Rasulkhozha S.
2015-04-01
To any type of charge corresponds a kind of inertial mass. Such a mass-charge duality explains the availability in the neutrino of the naturally united rest mass and charge equal to all its mass and charge consisting of the electric, weak, strong and a range of other the innate components. From their point of view, we discuss a new theory of a grand unification. In this theory, the gravitational field is a naturally united field of the unified system of the most diverse combinations of the electric photons, magnetic monophotons, weak bosons and the strong gluons where the four pairs of forces of a different nature are united. Some consequences and laboratory confirmations of the discussed theory have been listed, in which graviton is predicted as a grand united gauge boson. Therefore, the gravitons constitute a natural light testifying in favor of gravitational force. They show that to each type of light corresponds a kind of force. Thereby, the suggested field theory that unites all gauge bosons in gravitons gives the possibility to directly look on the nature of gravitational matter elucidating the interratio of intragraviton forces and the problem of elementary particle fundamental symmetries.
The ﬁrst endcap disc of CMS being lowered slowly and carefully 100 m underground into the experimental cavern. The disc is one of 15 large pieces to make the grand descent. The uniquely shaped slice, 16 m high, about 50 cm thick weighs 400 tonnes. The two HF that were lowered earlier in November can also be seen in the foreground and background.
Petajan, Eric D.
1995-12-01
Terrestrial broadcast television in the United States has remained essentially unchanged in the last fifty years except for the addition of color and stereo sound. Today, personal computers are addressing the need for random access of high resolution images and CD quality audio. Furthermore, advances in digital video compression and digital communication technology have cleared the way toward offering high resolution video and audio services to consumers using traditional analog communications channels. In 1987, the U.S. Federal Communications Commission (FCC) chartered an advisory committee to recommend an advanced television system for the United States. From 1990 to 1992, the Advanced Television Test Center tested four all-digital systems, one analog High Definition Television (HDTV) system, and one enhancement NTSC system using broadcast and cable television environment simulators. The formation of the HDTV Grand Alliance in May of 1993 resulted from the withdrawal of the only analog HDTV system from the competition and a stalemate between the other four all- digital systems. The HDTV Grand Alliance system is composed of the best components from previously competing digital systems demonstrated to the FCC. Moving Pictures Experts Group (MPEG-2) syntax is used with novel encoding techniques to deliver a set of video scanning formats for a variety of applications. This paper describes the important features and concepts embodied in the HDTV Grand Alliance system.
A Unifying Modularity in Networks
Institute of Scientific and Technical Information of China (English)
HAO Jun-Jun; CAI Shui-Ming; HE Qin-Bin; LIU Zeng-Rong
2010-01-01
@@ We propose a new modularity criterion in complex networks,called the unifying modularity q which is independent of the number of partitions.It is shown that,for a given network,the relationship between the upper limit of Q and the number of the partitions,k,is sup(Qk)=(k-1)/k.Since the range of Q for each partition number is inconsistent,we try to extend the concept Q to unifying modularity q,which is independent of the number of partitions.Subsequently,we indicate that it is more accurately to determine the number of partitions by using unifying modularity q than Q.
Seven Deadliest Unified Communications Attacks
York, Dan
2010-01-01
Do you need to keep up with the latest hacks, attacks, and exploits effecting Unified Communications technology? Then you need Seven Deadliest Unified Communication Attacks. This book pinpoints the most dangerous hacks and exploits specific to Unified Communications, laying out the anatomy of these attacks including how to make your system more secure. You will discover the best ways to defend against these vicious hacks with step-by-step instruction and learn techniques to make your computer and network impenetrable. Attacks featured in this book include: UC Ecosystem Attacks Insecure Endpo
A novel approach to the island of stability of super-heavy elements search
Directory of Open Access Journals (Sweden)
Wieloch A.
2016-01-01
Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.
New approach for alpha decay half-lives of superheavy nuclei and applicability of WKB approximation
Dong, Jianmin; Zuo, Wei; Scheid, Werner
2011-07-01
The α decay half-lives of recently synthesized superheavy nuclei (SHN) are calculated by applying a new approach which estimates them with the help of their neighbors based on some simple formulas. The estimated half-life values are in very good agreement with the experimental ones, indicating the reliability of the experimental observations and measurements to a large extent as well as the predictive power of our approach. The second part of this work is to test the applicability of the Wentzel-Kramers-Brillouin (WKB) approximation for the quantum mechanical tunneling probability. We calculated the accurate barrier penetrability for alpha decay along with proton and cluster radioactivity by numerically solving Schrödinger equation. The calculated results are compared with those of the WKB method to find that WKB approximation works well for the three physically analogical decay modes.
New approach for alpha decay half-lives of superheavy nuclei and applicability of WKB approximation
Energy Technology Data Exchange (ETDEWEB)
Dong Jianmin [Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Institute for Theoretical Physics, Justus Liebig University, D-35392 Giessen (Germany); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China); Zuo Wei, E-mail: zuowei@impcas.ac.cn [Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Scheid, Werner [Institute for Theoretical Physics, Justus Liebig University, D-35392 Giessen (Germany)
2011-07-01
The {alpha} decay half-lives of recently synthesized superheavy nuclei (SHN) are calculated by applying a new approach which estimates them with the help of their neighbors based on some simple formulas. The estimated half-life values are in very good agreement with the experimental ones, indicating the reliability of the experimental observations and measurements to a large extent as well as the predictive power of our approach. The second part of this work is to test the applicability of the Wentzel-Kramers-Brillouin (WKB) approximation for the quantum mechanical tunneling probability. We calculated the accurate barrier penetrability for alpha decay along with proton and cluster radioactivity by numerically solving Schroedinger equation. The calculated results are compared with those of the WKB method to find that WKB approximation works well for the three physically analogical decay modes.
New approach for alpha decay half-lives of superheavy nuclei and applicability of WKB approximation
Dong, Jianmin; Scheid, Werner; 10.1016/j.nuclphysa.2011.06.016
2011-01-01
The alpha decay half-lives of recently synthesized superheavy nuclei (SHN) are calculated by applying a new approach which estimates them with the help of their neighbors based on some simple formulas. The estimated half-life values are in very good agreement with the experimental ones, indicating the reliability of the experimental observations and measurements to a large extent as well as the predictive power of our approach. The second part of this work is to test the applicability of the Wentzel-Kramers-Brillouin (WKB) approximation for the quantum mechanical tunneling probability. We calculated the accurate barrier penetrability for alpha decay along with proton and cluster radioactivity by numerically solving Schr\\"odinger equation. The calculated results are compared with those of the WKB method to find that WKB approximation works well for the three physically analogical decay modes.
Royer, Guy; Zhang, Hongfei
The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Qα. The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Qα are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Qα determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.
Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber
Wieloch, A; Péter, J; Lojek, K; Alamanos, N; Amar, N; Anne, R; Angélique, J C; Auger, G; Dayras, R; Drouart, A; Fontbonne, J M; Gillibert, A; Grévy, S; Hanappe, F; Hannachi, F; Hue, R; Khouaja, A; Legou, T; López-Martens, A; Liénard, E; Manduci, L; De Oliveira-Santos, F; Politi, G; Saint-Laurent, M G; Stodel, C; Stuttgé, L; Tillier, J; De Tourreil, R; Villari, A C C; Wieleczko, J P
2004-01-01
Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.
Recent $\\alpha$ decay half-lives and analytic expression predictions including superheavy nuclei
Royer, G
2008-01-01
New recent experimental $\\alpha$ decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the $\\alpha$ emitter and the Q$\\alpha$ value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the $\\alpha$ decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Q$\\alpha$ of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].
Influence of proton shell closure on the evaporation residue cross sections of superheavy nuclei
Bao, X. J.; Guo, S. Q.; Zhang, H. F.; Li, J. Q.
2017-04-01
Within the dinuclear system model we systematically calculate the evaporation residue cross sections (ERCSs) of superheavy nuclei (SHN) for the 48Ca-induced hot fusion reactions. Different calculations of the fission barriers of the SHN are used. The difference is as large as two orders of magnitude of ERCSs by applying the various fission barriers for the reaction 48Ca+249Cf. The dependence of the calculated ERCSs on the predicted shell structure and magic numbers of the heavier SHN is discussed. It is found that the structure of SHN crucially influences the ERCSs. Measurement of ERCSs for at least one isotope of the Z > 118 nucleus would help us to set a proper shell model for the SHN with Z > 118.
A statistical approach to describe highly excited heavy and superheavy nuclei
Chen, Peng-Hui; Feng, Zhao-Qing; Li, Jun-Qing; Zhang, Hong-Fei
2016-09-01
A statistical approach based on the Weisskopf evaporation theory has been developed to describe the de-excitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating γ-rays, light particles (neutrons, protons, α etc) in competition with binary fission, in which the structure effects (shell correction, fission barrier, particle separation energy) contribute to the processes. The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies. The available data of fusion-evaporation excitation functions in the 28Si+198Pt reaction can be reproduced nicely within the approach. Supported by Major State Basic Research Development Program in China (2015CB856903), National Natural Science Foundation of China Projects (11175218, U1332207, 11475050, 11175074), and Youth Innovation Promotion Association of Chinese Academy of Sciences
Fission half-lives of super-heavy nuclei in a microscopic approach
Warda, M
2012-01-01
A systematic study of 160 heavy and super-heavy nuclei is performed in the Hartree-Fock-Bogoliubov approach with the finite range and density dependent Gogny force with the D1S parameter set. We show calculations in several approximations: with axially symmetric and reflexion symmetric wave functions, with axially symmetric and non-reflexion symmetric wave functions and finally some representative examples with triaxial wave functions are also discussed. Relevant properties of the ground state and along the fission path are thoroughly analyzed. Fission barriers, Q$_\\alpha$-factors and lifetimes with respect to fission and $\\alpha$-decay as well as other observables are discussed. Larger configuration spaces and more general HFB wave functions as compared to previous studies provide a very good agreement with the experimental data.
A search for superheavy elements in meteorites using a neutron multiplicity detector
Energy Technology Data Exchange (ETDEWEB)
Barton, J.C. (Birkbeck Coll., London (United Kingdom)); Hatton, C.J. (Leeds Univ. (United Kingdom). Dept. of Combined Studies); McMillan, J.E. (Leeds Univ. (United Kingdom). Dept. of Physics)
1991-12-01
A search for superheavy element fission events in meteoritic samples was made using a novel neutron multiplicity detector which was operated underground. No differences could be detected between samples of meteoritic and terrestrial materials. All multiple neutron events could be attributed either to very small amounts of fissile material contaminating the detector materials or to the effects of cosmic rays. An upper limit of 1.3 kg{sup -1}y{sup -1} for the fission rate in meteorites is derived. Assuming the half life to be 10{sup 9}y, this translates to a concentration of <1.0 x 10{sup -15}kg kg{sup -1} which is below all previous measurements. (author).
Unified Maximally Natural Supersymmetry
Huang, Junwu
2016-01-01
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ unification: $\\sin^2 \\theta_W(M_Z) \\simeq 0.231$ is predicted to $\\pm 2\\%$ by unifying $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ into a 5D $SU(3)_{\\rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 \\sim 4.4\\,{\\rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{\\rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 \\sim 40 \\,{\\rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{\\rm EW}$ with masses lighter than $\\sim 1.2\\,{\\rm TeV}$, and squarks in the mass range $1.4\\,{\\rm TeV} - 2.3\\,{\\rm TeV}$, providing distinct signature...
Review of even element super-heavy nuclei and search for element 120
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Barth, W.; Burkhard, H.G.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Schoett, H.J.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbuilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)
2016-06-15
The reaction {sup 54}Cr + {sup 248}Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei. (orig.)
Validation of new superheavy elements and IUPAC-IUPAP joint working group
Jarlskog, Cecilia
2016-12-01
The great chemist Glenn Seaborg has written a delightful little book "Man-made Transuranium Elements", published in 1963, in which he points out that: "The former basic criterion for the discovery of a new element - namely, chemical identification and separation from all previously-known elements - had to be changed in the case of lawrencium (element 103). This also may be true for elements beyond lawrencium." Indeed this is what has happened. The elements with Z ≥ 103 are produced in nuclear reactions and are detected by counters. The detectors have undergone substantial refinement. For example one uses multiwire proportional chambers [for which George Charpak received the 1992 Nobel Prize in Physics] as well as solid state micro-strip detectors. In spite of this remarkable shift from chemistry to physics, the managerial staff of the International Union of Pure and Applied Chemistry (IUPAC) does not seem to be aware of what has been going on. The validation of superheavy elements should be done by physicists as the chemists lack the relevant competence as I will discuss here below. This article is about a collaboration between International Union of Pure and Applied Chemistry (IUPAC) and its sister organization International Union of Pure and Applied Physics (IUPAP), to deal with discovery of superheavy elements beyond Z = 112. I spent a great deal of time on this issue. In my opinion, the collaboration turned out to be a failure. For the sake of science, which should be our most important concern (and not politics), the rules for the future collaborations, if any, should be accurately defined and respected. The validation of new elements should be done by people who have the relevant competence - the physicists.
Unified School Districts, Census 2000
Earth Data Analysis Center, University of New Mexico — The New Mexico 2000 Unified School Districts layer was derived from the TIGER Line files from the US Census Bureau. The districts are clipped to the state...
Unified approach to hard diffraction
Peschanski, R
2001-01-01
Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bj} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions.
Unified metamodel of object system
Oleynik, P. P.
2015-01-01
This article describes the unified metamodel of object system which can be used for domain-driven design (DDD) of information system. At the beginning of the work carried out in-depth analysis of existing studies devoted to the organization different metamodels. Metamodel for representing fragments in the figures presented class diagrams of Unified Modeling Language (UML). In the beginning of this article provides a general diagram which displays important associations. Next are separately sh...
DEFF Research Database (Denmark)
Dirckinck-Holmfeld, Lone; Balacheff, Nicolas; Bottino, Rosa Maria
2016-01-01
settings across Europe. However, to strengthen the various research practices and to develop a common scientific language on TEL research the Grand Challenge Problem is to establish a vivid network and a community of practice among the research labs. TELEARC (Technology Enhanced Learning European Advanced......Small and medium sized research labs (SMLs) are dominating European TEL research. This is justified by the great numbers of countries and regions in Europe needing to develop a research and innovation competence to facilitate the diverse educational systems contextualized in various institutional...... Research Consortium) has been established to realize such a network. The chapter presents the framework of TELEARC....
Directory of Open Access Journals (Sweden)
Denis Alcides-Rezende
2008-01-01
Full Text Available The objective of this work is to analyse the integration of information systems and information technology resources in the municipal planning of 14 small cities of Rio Grande do Sul (Brazil. The research methodology consisted of a multiple case study together with a convenient non-probabilistic sample chosen through a research protocol. The results demonstrate the difficulties of these cities to organise the municipal data as well as their struggle for accessibility of information and planning for management and control.
Naimi, S; Ito, Y; Mita, H; Okada, K; Ozawa, A; Schury, P; Sonoda, T; Takamine, A; Wada, M; Wollnik, H
2012-01-01
A novel ion source based on electrospray ionization and radiofrequency carpet technique has been built. This ion source is designed to deliver relatively heavy molecules for the calibration of a multi reflection time-of-flight mass spectrograph (MRTOF-MS) that will be used for direct mass measurements of superheavy elements. The operation of the ion source as well as the analysis by the MRTOF-MS with heavy molecular ions is described.
Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions
Energy Technology Data Exchange (ETDEWEB)
Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)
2016-09-15
In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)
Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions
Ghahramany, N.; Ansari, A.
2016-09-01
In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as 48Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature.
Correlations between neutrons and protons near Fermi surface and $Q_{\\alpha}$ of super-heavy nuclei
Wang, Ning; Wu, Xizhen; Meng, Jie
2015-01-01
The shell corrections and shell gaps in nuclei are systematically studied with the latest Weizs\\"acker-Skyrme (WS4) mass model. We find that most of asymmetric nuclei with (sub)-shell closures locate along the shell stability line (SSL), $N=1.37Z+13.5$, which might be due to a strong correlation between neutrons and protons near Fermi surface. The double magicity of nuclei $^{46}$Si and $^{78}$Ni is predicted according to the corresponding shell gaps, shell corrections and nuclear deformations. The unmeasured super-heavy nuclei $^{296}$118 and $^{298}$120, with relatively large shell gaps and shell corrections, also locate along the SSL, whereas the traditional magic nucleus $^{298}$Fl evidently deviates from the line. The $\\alpha$-decay energies of super-heavy nuclei with $Z=113-126$ are simultaneously investigated by using the WS4 model together with the radial basis function corrections. For super-heavy nuclei with large shell corrections, the smallest $\\alpha$-decay energy for elements $Z=116$, 117 and 11...
The Origin of Families and $SO(18)$ Grand Unification
BenTov, Yoni
2015-01-01
We exploit a recent advance in the study of topological superconductors to propose a solution to the nagging family puzzle of particle physics in the context of SO(18) (or more correctly, Spin(18)) grand unification. We argue that Yukawa couplings of intermediate strength may allow the mirror matter and extra families to decouple at arbitrarily high energies. As was clear from the existing literature, we have to go beyond the Higgs mechanism in order to solve the family puzzle. A pattern of symmetry breaking which results in the SU(5) grand unified theory with horizontal or family symmetry USp(4) = Spin(5) (or more loosely, SO(5)) leaves exactly three light families of matter and seems particularly appealing. We comment briefly on an alternative scheme involving discrete non-abelian family symmetries. In a few lengthy appendices we review some of the pertinent condensed matter theory.
Grand unification in extra dimensions and proton decay
Energy Technology Data Exchange (ETDEWEB)
Feruglio, F. [Universita di Padova and INFN, Dipt. di Fisica, Padova (Italy)
2001-07-01
We discuss baryon and lepton violation in the context of a simple-dimensional grand unified model, based on the orbifold S{sup 1}/(Z{sub 2} x Z'{sub 2}). While gauge and Higgs degrees of freedom live in the bulk, matter is located on the boundaries of the space-time. We show that proton decay is naturally suppressed or even forbidden by suitable implementations of the parity symmetries in the mater sector. The corresponding mechanism does not affect the SU(5) description of fermion masses also including neutrinos. (author)
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Grande Bretagne酒店在过去的130年间被认为是雅典的“贵族包厢”。它坐落于市中心最著名的街区之一．对面是宪法广场，国会议院和国家花园，酒店的地理位置非常理想．通过短时间的步行就可以到达附近的高级购物区，餐馆，露天咖啡馆，博物馆和商务区，到目前为止，这家酒店已经接待了很多的国际领导人和知名人士。
Energy Technology Data Exchange (ETDEWEB)
Tsang, Chin-Fu.
1969-05-22
The thesis is concerned with the relation between a microscopic approach and a macroscopic approach to the study of the nuclear binding energy as a function of neutron number, proton number and nuclear deformations. First of all we give a general discussion of the potential energy of a system which can be divided into a bulk region and a thin skin layer. We find that this energy can be written down in the usual liquid drop type of expression, i.e., in terms of the volume, the surface area and other macroscopic properties of the system. The discussion is illustrated by a study of noninteracting particles in an orthorhombic potential well with zero potential inside and infinite potential outside. The total energy is calculated both exactly (a microscopic approach) and also from a liquid drop type of expression (a macroscopic approach). It turns out that the latter approach reproduces the smooth average of the exact results very well. We next make a digression to study the saddle point shapes of a charged conducting drop on a pure liquid drop model. We compare the properties of a conducting drop with those of a drop whose charges are distributed uniformly throughout its volume. The latter is the usual model employed in the study of nuclear fission. We also determined some of the more important symmetric saddle point shapes. In the last part of the thesis we generalize a method due to Strutinski to synthesize a microscopic approach (the Nilsson model) and a macroscopic approach (the liquid drop model). The results are applied to realistic nuclei. The possible occurrence of shape isomers comes as a natural consequence of the present calculation. Their trends as a function of neutron and proton members are discussed and the results are tabulated. We also work out the stabilities of the predicted superheavy nuclei with proton number around 114 and neutron number around 184 and 196. Some of these nuclei appear to have extremely long life times. The possible experimental
Memory materials: a unifying description
Directory of Open Access Journals (Sweden)
Massimiliano Di Ventra
2011-12-01
Full Text Available There are so many materials properties leading to memory that a unifying description seems impossible. However, it is easy to show that the majority of two-terminal electronic devices based on memory materials and systems, when subject to time-dependent perturbations, behave simply as, or as a combination of, memristors, memcapacitors, and meminductors; namely non-linear circuit elements with memory. This unifying description opens up new venues for digital and analog applications ranging from information storage to biologically-inspired circuits. In this review, interesting research opportunities that emerge from this new perspective will be outlined.
The Simplest Unified Growth Theory
DEFF Research Database (Denmark)
Strulik, Holger; Weisdorf, Jacob Louis
This paper provides a unified growth theory, i.e. a model that explains the very long-run economic and demographic development path of industrialized economies, stretching from the pre-industrial era to present-day and beyond. Making strict use of Malthus' (1798) so-called preventive check...... hypothesis - that fertility rates vary inversely with the price of food - the current study offers a new and straightforward explanation for the demographic transition and the break with the Malthusian era. The current framework lends support to existing unified growth theories and is well in tune...... with historical evidence about structural transformation...
Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model
Energy Technology Data Exchange (ETDEWEB)
Erler, Jochen
2011-01-31
Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)
Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.
Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp
2016-09-01
Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.
Traces of heavy and superheavy cosmic nuclei in olivines of extraterrestial origin
Energy Technology Data Exchange (ETDEWEB)
Ignatova, R.; Taneva, T. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Pelas, P.; Stetsenko, S.; Perelgin, V. (Joint Inst. for Nuclear Research, Dubna (USSR))
1982-01-01
The paths of traces of WH nuclei from cosmic rays have been measured in olivines from the meteorites Maryalakhti, Eagle Stein, Liposki khutor with radiation ages 175, 45 and 220 million years respectively. 3 cm/sup 3/ olivines of these meteorites have been examined and more than 500 traces of nuclei with Z(>=)90 have been found measured including 3 traces 1.5-1.8 times longer than the traces created by the uranium and thorium nuclei. These traces may be left by nuclei with Z(>=)110. The crystals were chosen from localizations situated at 2-7 cm, 8-9 cm and 10-12 cm from the outside atmospheric surface of the meteorite. The abundancy of the Z(>=)50 nuclei in gigantic cosmic rays, averaged for a period of (<=) 200 millions of years has been compared with the distribution of the elements in the substances from the Solar system. A new value has been found for the hypothetical superheavy elements Z(>=)110 in galactic cosmic rays. It is 1.4 x 10 /sup -9/ from that of the iron group nuclei.
Heavy particle radioactivity from superheavy nuclei leading to {sup 298}114 daughter nuclei
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P., E-mail: drkpsanthosh@gmail.com; Priyanka, B.
2014-09-15
The feasibility for the alpha decay and the heavy particle decay from the even–even superheavy (SH) nuclei with Z=116–124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying {sup 298}114. In the plots for log{sub 10}(T{sub 1/2}) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to {sup 298}114 (Z=114, N=184). Most of the predicted half lives are well within the present upper limit for measurements (T{sub 1/2}<10{sup 30} s) and the computed alpha half lives for {sup 290,292}Lv agree well with the experimental data.
Heavy particle radioactivity from superheavy nuclei leading to 298114 daughter nuclei
Santhosh, K. P.; Priyanka, B.
2014-09-01
The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116- 124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying 298114. In the plots for log10 (T1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to 298114 (Z = 114, N = 184). Most of the predicted half lives are well within the present upper limit for measurements (T1/2 <1030 s) and the computed alpha half lives for 290,292Lv agree well with the experimental data.
Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model
Institute of Scientific and Technical Information of China (English)
CHENBao-Qiu; MAZhong-Yu
2004-01-01
The macroscopic deformed potential energies for super-heavy elements Z = 110,112,114,116,118 arc determined within a generalized liquid drop model (GLDM). A quasi-molecular mechanism is introduced to describe the deformation of a nucleus in the GLDM and the shell model simultaneously. The macroscopic energy of a twocenter nuclear system in the GLDM includes the volume-, surface-, and Coulomb-energies, the proximity effect at each mass asymmetry, and accurate nuclear radius. The shell correction is calculated by the Strutinsky method and the microscopic single particle energies are derived from a shell model in an axially deformed Woods-Saxon potential with the quasi-molecular shape. The total potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the fusion barriers of the cold reactions 64Ni + 208 spb → 272 110*, 70Zn + 208pb → 278 112*, 76Ge + 208seb → 284 114*,82Se + 208pb → 29 116*, 86Kr + 208pb → 294 118*. It is found that the neck in the quasi-molecular shape is responsible for the deep valley of the fusion barrier. In the cold fusion path, double-hump fusion barriers could be predicted by the shell corrections and complete fusion events may occur.
Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model
Institute of Scientific and Technical Information of China (English)
CHEN Bao-Qiu; MA Zhong-Yu
2004-01-01
The macroscopic deformed potential energies for super-heavy elements Z = 110,112,114,116,118 are determined within a generalized liquid drop model (GLDM). A quasi-molecular mechanism is introduced to describe the deformation of a nucleus in the GLDM and the shell model simultaneously. The macroscopic energy of a twocenter nuclear system in the GLDM includes the volume-, surface-, and Coulomb-energies, the proximity effect at each mass asymmetry, and accurate nuclear radius. The shell correction is calculated by the Strutinsky method and the microscopic single particle energies are derived from a shell model in an axially deformed Woods-Saxon potential with the quasi-molecular shape. The total potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the fusion barriers of the cold reactions 64Ni + 208Pb → 272110*, 70Zn + 208Pb → 278112*, 76Ge + 208pb → 284114*,82Se + 208Pb → 290116*, 86Kr + 208Pb → 294118*. It is found that the neck in the quasi-molecular shape is responsible for the deep valley of the fusion barrier. In the cold fusion path, double-hump fusion barriers could be predicted by the shell corrections and complete fusion events may occur.
Alpha-decay of deformed superheavy nuclei as a probe of shell closures
Ismail, M.; Seif, W. M.; Adel, A.; Abdurrahman, A.
2017-02-01
A systematic study on α-decay half-life time, Tα, of α-particle emission from a large number of deformed heavy and superheavy nuclei is presented. The calculations are employed in the framework of the density-dependent cluster model. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the double-folding model with the realistic effective Michigan-three-Yukawa Reid nucleon-nucleon interaction. We study the neutron number variation of log Tα and arranged different isotones at each neutron magic number according to their stability, in the sense that the more stable isotone corresponds to the lowest value of log Tα. We found that the half-life time becomes minimum when the neutron or proton numbers of the corresponding daughter nucleus are magic. Moreover, the half-life time is maximum for parent nucleus with magicity. The nuclear stability is assumed to be proportional with the depth of the minimum value in log Tα for the daughter nucleus or the height of its maximum value for the parent one. The neutron magic numbers predicted and confirmed from the present study are 126, 152, 162, 172, 184, 196, 202 and 212, most of them were deduced by other authors based on different methods.
Grand Unification: An Elusive Grail.
MOSAIC, 1979
1979-01-01
Traces the history of the search for the ultimate nature of matter. The work of outstanding physicists since the late nineteenth century is discussed as it relates to the total picture of the search for a single unifying theory. (SA)
The Simplest Unified Growth Theory
DEFF Research Database (Denmark)
Strulik, Holger; Weisdorf, Jacob Louis
This paper provides a unified growth theory, i.e. a model that explains the very long-run economic and demographic development path of industrialized economies, stretching from the pre-industrial era to present-day and beyond. Making strict use of Malthus' (1798) so-called preventive check...
Unifying approach to hard diffraction
Navelet, H
2001-01-01
We find a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. A theoretical interpretation in terms of S-Matrix and perturbative QCD properties in the small x_{Bj} regime is proposed.
Indian Academy of Sciences (India)
Mridula Garg; Shweta Mittal
2004-05-01
In the present paper we derive a unified new integral whose integrand contains products of Fox -function and a general class of polynomials having general arguments. A large number of integrals involving various simpler functions follow as special cases of this integral.
Large Unifying Hybrid Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.
Equation of State for Particles Arising at the Universe at Grand Unification Energies
Dymnikova, I G
1994-01-01
First postinflationary stage of the Universe evolution is considered in more detail. It is shown that heavy particles with mass $M_{H}\\sim M_{GUT}$ arising at the Universe at phase transitions at Grand Unification Energies behave like ideal quantum degenerate Bose gas. The equation of state for both scalar and gauge bosons is presented including the coupling constant and vacuum expectation value at $E_{GUT}$. One possible way is proposed to connect cosmological observational data with parameters of Grand Unified Theories.
Gartrell, Nanette
2014-01-01
A winner of 59 Grand Slam championships including a record 9 Wimbledon singles titles, Martina Navratilova is the most successful woman tennis player of the modern era. Martina was inducted into the International Tennis Hall of Fame, named "Tour Player of the Year" seven times by the Women's Tennis Association, declared "Female Athlete of the Year" by the Associated Press, and ranked one of the "Top Forty Athletes of All-Time" by Sports Illustrated. Equally accomplished off the court, Martina is an author, philanthropist, TV commentator, and activist who has dedicated her life to educating people about prejudice and stereotypes. After coming out as a lesbian in 1981, Martina became a tireless advocate of equal rights for lesbian, gay, bisexual, and transgender (LGBT) people, and she has contributed generously to the LGBT community. Martina is the author of seven books, including most recently Shape Your Self: My 6-Step Diet and Fitness Plan to Achieve the Best Shape of your Life, an inspiring guide to healthy living and personal fitness. Martina was diagnosed with breast cancer in 2010.
Kasamatsu, Yoshitaka; Yokokita, Takuya; Toyomura, Keigo; Shigekawa, Yudai; Haba, Hiromitsu; Kanaya, Jumpei; Huang, Minghui; Ezaki, Yutaka; Yoshimura, Takashi; Morita, Kosuke; Shinohara, Atsushi
2016-12-01
To establish a new methodology for superheavy element chemistry, the coprecipitation behaviors of 34 elements with samarium hydroxide were investigated using multitracer produced by a spallation of Ta. The chemical reactions were rapidly equilibrated within 10s for many elements. In addition, these elements exhibited individual coprecipitation behaviors, and the behaviors were qualitatively related to their hydroxide precipitation behaviors. It was demonstrated that the ammine and hydroxide complex formations of superheavy elements could be investigated using the established method. Copyright © 2016 Elsevier Ltd. All rights reserved.
76 FR 19893 - Unified Command Plan 2011
2011-04-08
...#0;#0; ] Memorandum of April 6, 2011 Unified Command Plan 2011 Memorandum for the Secretary of... the revised Unified Command Plan. Consistent with title 10, United States Code, section 161(b)(2)...
Unified Hybrid Network Theoretical Model Trilogy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.
Local grand unification in the heterotic landscape
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Jonas
2009-07-15
We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)
Unifiability in extensions of K4
Gencer, Ç.; de Jongh, D.
2009-01-01
We extend and generalize the work on unifiability of [8]. We give a semantic characterization for unifiability and non-unifiability in the extensions of K4. We apply this in particular to extensions of KD4, GL and K4.3 to obtain a syntactic characterization and give a concrete decision procedure for
Neutron-anti-neutron oscillation as a test of grand unification
Mohapatra, Rabindra N
1996-01-01
We discuss the predictions for neutron-anti-neutron oscillation in various supersymmetric and non-supersymmetric grand unified theories. It is pointed out that in a new class of superstring inspired grand unified theories of E_6-type that satisfy gauge coupling unification, breakdown of B-L symmetry occurs at an intermediate scale leading in turn to \\Delta B=1 type R-parity violating interactions naturally suppressed to the level of 10^{-5} to 10^{-7}. This inturn implies an N-\\bar{N} transition time of order 10^{10} to 10^{11} sec. which may be observable in the next generation of experiments. This model also satisfies the conditions needed for generating the cosmological baryon asymmetry of the right order of magnitude for a restricted range of the parameter space.
Spilker, L. J.; Edgington, S. G.; Altobelli, N.
2016-12-01
After more than 12 years in Saturn orbit, the Cassini-Huygens mission has entered its final year of data collection. Cassini will return its final bits of unique data on 15 September 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Since early 2016 Cassini's orbital inclination was slowly increased towards its final inclination. In November Cassini transitioned to a series of 20 orbits with peripases just outside Saturn's F ring that include some of the closest flybys of the tiny ring moons and excellent views of the F ring and outer A ring. Cassini's final close flyby of Titan will propel it across Saturn's main rings and into its final orbits. Cassini's Grand Finale begins in April 2017 and is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost ring and Saturn's upper atmosphere providing insights into fundamental questions unattainable during the rest of the mission. It will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles' composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on Saturn's interior structure and mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo and the true rotation rate of Saturn's interior. The ion and neutral mass spectrometer will sniff the exosphere and upper atmosphere and examine water-based molecules originating from the rings. The cosmic dust analyzer will sample particle composition from different parts of the main rings. Recent science highlights and science objectives from Cassini's final orbits will be discussed. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of
Energy Technology Data Exchange (ETDEWEB)
Anghel, Claudia Ioana, E-mail: claudia.anghel@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele, P.O.Box MG-6, RO-077125 (Romania); University of Bucharest, Faculty of Physics, RO-077125 Bucharest - Magurele (Romania); Silisteanu, Andrei Octavian [Radiopharmaceutical Research Center, Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele, P.O.Box MG-6, RO-077125 (Romania)
2015-12-07
The most important decay modes for heavy and superheavy nuclei are their α-decay and spontaneous fission. This work investigates the evolution and the competition of these decay modes in long isotopic sequences. The partial half-lives are given by minimal sets of parameters extracted from the fit of experimental data and theoretical results. A summary of the experimental and calculated α-decay and spontaneous fission half-lives of the isotopes of elements Rf, Db, and Sg is presented. Some half-life extrapolations for nuclides not yet known are also obtained.
Mean-field studies of time reversal breaking states in super-heavy nuclei with the Gogny force
Energy Technology Data Exchange (ETDEWEB)
Robledo, L. M., E-mail: luis.robledo@uam.es [Departamento Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)
2015-10-15
Recent progress on the description of time reversal breaking (odd mass and multi-quasiparticle excitation) states in super-heavy nuclei within a mean field framework and using several flavors of the Gogny interaction is reported. The study includes ground and excited states in selected odd mass isotopes of nobelium and mendelevium as well as high K isomeric states in {sup 254}No. These are two and four-quasiparticle excitations that are treated in the same self-consistent HFB plus blocking framework as the odd mass states.
Hua-Lei, Wang; Jin-Ge, Jiang; Min-Liang, Liu
2013-01-01
High-spin yrast structures of even-even superheavy nuclei $^{254-258}$Rf are investigated by means of total-Routhian-surface approach in three-dimensional ($\\beta_2, \\gamma, \\beta_4$) space. The behavior in the moments of inertia of $^{256}$Rf is well reproduced by our calculations, which is attributed to the $j_{15/2}$ neutron rotation-alignment. The competition between rotationally aligned $i_{13/2}$ proton and $j_{15/2}$ neutron is discussed. High-spin predictions are also made for its neighboring isotopes $^{254,258}$Rf.
Unified capacitance modelling of MOSFETs
Johannessen, O. G.; Fjeldly, T. A.; Ytterdal, T.
1994-01-01
A unified physics based capacitance model for MOSFETs suitable for implementation in circuit simulators is presented. This model is based on the charge conserving, so-called Meyer-like approach proposed by Turchetti et al., and utilizes a unified charge control model to assure a continuous description of the MOSFET capacitances both above and below threshold. The capacitances associated with the model are comparable to those of the well-known BSIM model in the above-threshold regime, but it is more precise in the description of near-threshold and subthreshold behaviour. Moreover, the discontinuities at the transitions between the various regimes of operation are removed. The present modelling scheme was implemented in our circuit simulator AIM-Spice, and simulations of the dynamic behaviour of various demanding benchmark circuits clearly reveal its superiority over simulations using the simple Meyer model.
Unified Theory of Fundamental Interactions
Institute of Scientific and Technical Information of China (English)
WU Ning
2003-01-01
Based on local gauge invariance, four different kinds of fundamental interactions in nature are unified in a theory which has SU(3)C( )SU SU(2)L( )U(1)( )s Gravitational Gauge Group gauge symmetry. In this approach,gravitational field, like electromagnetic field, intermediate gauge field, and gluon field, is represented by gauge potential.Four kinds of fundamental interactions are formulated in the similar manner, and therefore can be unified in a direct or semi-direct product group. The model discussed in this paper is a renormalizable quantum model and can be regarded as an extension of the standard model to gravitational interactions, so it can be used to study quantum effects of gravitational interactions.
Proposal of unified fermion texture
Królikowski, W
1998-01-01
A unified form of mass matrix is proposed for neutrinos, charged leptons, up quarks and down quarks. Some constraints for the parameters involved are tent% atively postulated. Then, the predictions are neatly consistent with available experimental data. Among the predictions are: (i) $ m_\\tau \\simeq 1776.80 $~MeV (with the inputs of $ m_e $ and $ m_\\mu $), (ii) $ m_{\
A New Unified Evolution Equation
1998-01-01
WE propose a new unified evolution equation for parton distribution functions appropriate for both large and small Bjorken x. Compared with the Ciafaloni- Catani-Fiorani-Marchesini equation, the cancellation of soft poles between virtual and real gluon emissions is made explicitly without introducing infrared cutoffs, next-to-leading contributions to the Sudakov resummation can be included systematically, and the scales of the running coupling constants are determined unambiguously.
Unified broadcast in sensor networks
DEFF Research Database (Denmark)
Hansen, Morten Tranberg; Jurdak, Raja; Kusy, Branislav
2011-01-01
to consolidate these broadcasts focus on piggybacking information into existing services but such tight coupling between protocols limits code reuse and interoperability of applications. We present Unified Broadcast (UB) which combines broadcasts from multiple protocols while maintaining a modular architecture......Complex sensor network applications include multiple services such as collection, dissemination, time synchronization, and failure detection protocols. Many of these protocols require local state maintenance through periodic broadcasts which leads to high control overhead. Recent attempts...
Unified approach to alpha decay calculations
Indian Academy of Sciences (India)
C S Shastry; S M Mahadevan; K Aditya
2014-05-01
With the discovery of a large number of superheavy nuclei undergoing decay through emissions, there has been a revival of interest in decay in recent years. In the theoretical study of decay the -nucleus potential, which is the basic input in the study of -nucleus systems, is also being studied using advanced theoretical methods. In the light of these, theWentzel–Kramers–Brillouin (WKB) approximation method often used for the study of decay is critically examined and its limitations are pointed out. At a given energy, the WKB expression uses barrier penetration formula for the determination of the transmission coefficient. This approach utilizes the -nucleus potential only at the barrier region and ignores it elsewhere. In the present era, when one has more precise experimental information on decay parameters and better understanding of -nucleus potential, it is desirable to use a more precise method for the calculation of decay parameters. We describe the analytic -matrix (SM) method which gives a procedure for the calculation of decay energy and mean life in an integrated way by evaluating the resonance pole of the -matrix in the complex momentum or energy plane. We make an illustrative comparative study of WKB and -matrix methods for the determination of decay parameters in a number of superheavy nuclei.
Systematic Study on Alpha Decay Half-Lives of Superheavy Nuclei
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The α-decay half-lives of a set of superheavy nuclear isotope chain from Z = 105 to 120 have been analyzed systematically within the WKB method, and some nuclear structure features are found. The decay barriers have been determined in the quasi-molecular shape path within the Generalized Liquid Drop Model (GLDM) including the proximity effects between nucleons in a neck and the mass and charge asymmetry. The results are in reasonable agreement with the published experimental data for the alpha decay half-lives of isotopes of charge 112, 114, and 116, of the element 294118 and of some decay products. A comparison of present calculations with the results by the DDM3Y effective interaction and by the Viola-Seaborg-Sobiczewski (VSS) formulae is also made. The experimental α decay half lives all stand in between the GLDM calculations and VSS formula results. This demonstrates the possibility of these models to provide reasonable estimates for the half-lives of nuclear decays by α emissions for the domain of SHN. The half-lives of these new nuclei are thus well tested from the reasonable consistence of the macroscopic, the microscopic, the empirical formulae and the experimental data. This also shows that the present data of SHN themselves are consistent.It could suggest that the present experimental claims on the existence of new elements Z = 110 ～ 118 are reliable.It is expected that greater deviations of a few SHN between the data and the model may be eliminated by further improvements on the precision of the measurements.
Santhosh, K. P.; Nithya, C.
2016-12-01
Decay modes of isotopes of the superheavy element Z = 123 within the range 297 ≤ A ≤ 307 have been studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. Three different mass tables were used for the calculation of the alpha decay energy. A close study of alpha decay half-lives within the range 297 ≤ A ≤ 307 has been performed using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The alpha half-lives calculated using CPPMDN are in harmony with the values obtained by the Viola-Seaborg systematic, the universal curve of Poenaru et al., and the analytical formula of Royer. Spontaneous fission half-lives are evaluated using the new shell-effect-dependent formula proposed by Santhosh et al., and the semi-empirical formula of Xu et al. Through our study it is seen that the isotopes 300-303123 exhibit 8α chains and the isotopes 304-307123 exhibit 5α chains with half-lives in a measurable range. Clearly the isotopes of Z = 123 within the range 300 ≤ A ≤ 307 will decay through alpha emission followed by spontaneous fission and thus can be predicted as synthesized and detected in laboratory via alpha decay. Since the predictions on decay modes of isotopes of the superheavy element Z = 123 is done for the first time it is hoped that the study will open up new areas in experimental investigations.
Santhosh, K P
2016-01-01
A systematic study on the alpha decay half lives of various isotopes of superheavy element \\textit{Z} = 121 within the range 290 $\\leq$ A $\\leq$ 339 is presented for the first time using Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated $\\alpha$ decay half lives of the isotopes within our formalism match well with the values computed using Viola-Seaborg systematic, Universal curve of Poenaru et al., and the analytical formula of Royer. In our study by comparing the $\\alpha$ decay half lives with the spontaneous fission half lives, we have predicted $2\\alpha$ chain from $^{309, 311, 312}$121, $3\\alpha$ chain from $^{310}$121 and $1\\alpha$ chain from $^{313, 314}$121. Clearly our study shows that the isotopes of superheavy element \\textit{Z} = 121 within the mass range 309 $\\leq$ A $\\leq$ 314 will survive fission and can be synthesized and detected in the laboratory via alpha decay. We hope that our predictions will provide a new guide to future experiments.
Santhosh, K P
2012-01-01
Cold reaction valleys in the radioactive decay of superheavy nuclei {286}^112, {292}^114 and {296}^116 are studied taking Coulomb and Proximity Potential as the interacting barrier. It is found that in addition to alpha particle, 8^Be, 14^C, 28^Mg, 34^Si, 50^Ca, etc. are optimal cases of cluster radioactivity since they lie in the cold valleys. Two other regions of deep minima centered on 208^Pb and 132^Sn are also found. Within our Coulomb and Proximity Potential Model half-life times and other characteristics such as barrier penetrability, decay constant for clusters ranging from alpha particle to 68^Ni are calculated. The computed alpha half-lives match with the values calculated using Viola--Seaborg--Sobiczewski systematics. The clusters 8^Be and 14^C are found to be most probable for emission with T_1/2 < 1030s. The alpha-decay chains of the three superheavy nuclei are also studied. The computed alpha decay half-lives are compared with the values predicted by Generalized Liquid Drop Model and they are...
Unifying suspension and granular rheology.
Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier
2011-10-28
Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Sedenion unified theory of gravi-electromagnetism
Chanyal, B. C.
2014-11-01
In this paper, we represent 16-component sedenions, the generalization of octonions, which is noncommutative space-time algebra. The sedenions is neither a composition algebra nor a division algebra because it has zero divisors. Here we have formulated the sedenionic unified potential equations, unified fields equations and unified current equations of dyons and gravito-dyons. We have developed the sedenionic unified theory of dyons and gravito-dyons in terms of two eight-potentials leading to the structural symmetry between generalized electromagnetic fields of dyons and generalized gravito-Heavisidian fields of gravito-dyons. Thus we have obtained the sedenionic form of generalized Dirac-Maxwell's equations, unified work-energy theorem (Poynting theorem), generalized unified gravi-electromagnetic force and other quantum equations of dyons and gravito-dyons in simple, compact and consistent way incorporating the non-associativity and non-commutativity of sedenion variables.
Unified symmetry of Vacco dynamical systems
Institute of Scientific and Technical Information of China (English)
Li Yuan-Cheng; Jing Hong-Xing; Xia Li-Li; Wang Jing; Hou Qi-Bao
2007-01-01
Based on the total time derivative along the trajectory of the time, we study the unified symmetry of Vacco dynamical systems. The definition and the criterion of the unified symmetry for the system are given. Three kinds of conserved quantities, i.e. the Noether conserved quantity, the generalized Hojman conserved quantity and the Mei conserved quantity, are deduced from the unified symmetry. An example is presented to illustrate the results.
Unifying Memory and Database Transactions
Dias, Ricardo J.; Lourenço, João M.
Software Transactional Memory is a concurrency control technique gaining increasing popularity, as it provides high-level concurrency control constructs and eases the development of highly multi-threaded applications. But this easiness comes at the expense of restricting the operations that can be executed within a memory transaction, and operations such as terminal and file I/O are either not allowed or incur in serious performance penalties. Database I/O is another example of operations that usually are not allowed within a memory transaction. This paper proposes to combine memory and database transactions in a single unified model, benefiting from the ACID properties of the database transactions and from the speed of main memory data processing. The new unified model covers, without differentiating, both memory and database operations. Thus, the users are allowed to freely intertwine memory and database accesses within the same transaction, knowing that the memory and database contents will always remain consistent and that the transaction will atomically abort or commit the operations in both memory and database. This approach allows to increase the granularity of the in-memory atomic actions and hence, simplifies the reasoning about them.
Yukawa-unified natural supersymmetry
Baer, Howard; Kulkarni, Suchita
2012-01-01
Previous work on t-b-\\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\\sim125 GeV. As Yukawa unification requires large tan\\beta\\sim50, while EWFT requires rather light third generation squarks and low \\mu\\sim100-250 GeV, B-physics constraints from BR(B\\to X_s\\gamma) and BR(B_s\\to \\mu+\\mu-) can be severe. We are able to find models with EWFT \\Delta\\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be a...
Testing Grand Unification at the (S)LHC
Rainwater, D L
2007-01-01
We examine the possibility of measuring the three gauge couplings at high scales at the LHC, in order to see the first steps as they run toward Grand Unification at much higher energies. Using the MSSM with sparticle masses of several hundred GeV as an example of a theory in which the couplings do unify at very high energies, we find that the processes pp->lv, pp->l+l- and pp->gamma+j can be useful to discriminate the SM from the MSSM with masses at the few hundred GeV scale, and determine that the couplings are converging at better than the SM prediction toward the GUT scale. Such measurements indirectly probe the existence of lower mass states, charged under the SM gauge groups, but which may be difficult to produce directly or extract from backgrounds at the LHC.
Lepton-Flavour Violation in Ordinary and Supersymmetric Grand Unified Theories
Lim, C S; Taga, Bungo
2000-01-01
By an explicit calculation we show that in ordinary SU(5) logarithmic divergence in the amplitude of $\\mu \\to e\\gamma$ cancels among diagrams and remaining finite part is suppressed by at least $1/M_{GUT}^2$. In SUSY SU(5), when the effect of flavour changing wave function renormalization is taken into account such logarithmic correction disappears, provided a condition is met among SUSY breaking masses. In SUGRA-inspired SUSY GUT the remaining logarithmic effect is argued not to be taken as a prediction of the theory.
Ito, T; Tanimoto, M; Ito, Toshiaki; Okamura, Naotoshi; Tanimoto, Morimitsu
1998-01-01
We propose the Fritzsch-Branco-Silva-Marcos type fermion mass matrix, which is a typical texture in the nearest-neighbor interaction form, in SU(5) GUT. By evolution of the mass matrices with SU(5) GUT relations in the minimal SUSY standard model, we obtain predictions for the unitarity triangle of CP violation as well as the quark flavor mixing angles, which are consistent with experimental data, in the case of \\tan\\beta \\simeq 3.
Sodickson, Daniel K.; Feng, Li; Knoll, Florian; Cloos, Martijn; Ben-Eliezer, Noam; Axel, Leon; Chandarana, Hersh; Block, Tobias; Otazo, Ricardo
2015-03-01
The task of imaging is to gather spatiotemporal information which can be organized into a coherent map. Tomographic imaging in particular involves the use of multiple projections, or other interactions of a probe (light, sound, etc.) with a body, in order to determine cross-sectional information. Though the probes and the corresponding imaging modalities may vary, and though the methodology of particular imaging approaches is in constant ferment, the conceptual underpinnings of tomographic imaging have in many ways remained fixed for many decades. Recent advances in applied mathematics, however, have begun to roil this intellectual landscape. The advent of compressed sensing, anticipated in various algorithms dating back many years but unleashed in full theoretical force in the last decade, has changed the way imagers have begun to think about data acquisition and image reconstruction. The power of incoherent sampling and sparsity-enforcing reconstruction has been demonstrated in various contexts and, when combined with other modern fast imaging techniques, has enabled unprecedented increases in imaging efficiency. Perhaps more importantly, however, such approaches have spurred a shift in perspective, prompting us to focus less on nominal data sufficiency than on information content. Beginning with examples from MRI, then proceeding through selected other modalities such as CT and PET, as well as multimodality combinations, this paper explores the potential of newly evolving acquisition and reconstruction paradigms to change the way we do imaging in the lab and in the clinic.
Grand unified theories, topological defects, and ultrahigh-energy cosmic rays
Bhattacharjee, Pijushpani; Hill, Christopher T.; Schramm, David N.
1992-01-01
The ultrahigh-energy (UHE) proton and neutrino spectra resulting from collapse or annihilations of topological defects surviving from the GUT era are calculated. Irrespective of the specific process under consideration (which determines the overall normalization of the spectrum), the UHE proton spectrum always 'recovers' at approximately 1.8 x 10 exp 11 GeV after a partial Greisen-Zatsepin-Kuz'min 'cutoff' at approximately 5 x 10 exp 10 GeV and continues to a GUT-scale energy with a universal shape determined by the physics of hadronic jet fragmentation. Implications of the results are discussed.
SU(5) Grand Unified Theory, its Polytopes and 5-fold Symmetric Aperiodic Tiling
Koca, Mehmet; Siyabi, Abeer Al
2016-01-01
We associate the lepton-quark families with the vertices of the 4D polytopes 5-cell and the rectified 5-cell derived from the SU(5) Coxeter-Dynkin diagram. The off-diagonal gauge bosons are associated with the root poytope (1000)A4 whose facets are tetrahedra and the triangular prisms. The edge-vertex relations are interpreted as the SU(5) charge conservation. The Dynkin diagram symmetry of the SU(5) diagram can be interpreted as a kind of particle-antiparticle symmetry. The Voronoi cell of the root lattice consists of the union of the polytopes (1000)A4 + (0100)A4 + (0010)A4 + (0001)A4 whose facets are 20 rhombohedra. We construct the Delone (Delaunay) cells of the root lattice as the alternating 5-cell and the rectified 5-cell, a kind of dual to the Voronoi cell. The vertices of the Delone cells closest to the origin consists of the root vectors representing the gauge bosons. The faces of the rhombohedra project onto the Coxeter plane as thick and thin rhombs leading to Penrose-like tiling of the plane whic...
Examination of Tachyonic Particle Phenomena In Yielding A New Grand Unified Field Theory
Park, T
2000-01-01
The author proposes that the EPR experiment is the key to finding the non-relativistic tachyonic particle. The theory proposed here is that 1) EPR supraluminal photon-to-photon communication transfer of information, 2) ultra light speed non-paired photon particles, and 3) the varying constants of light speed at different points in space, are all due to scalar potentials. It has been theorized that in quantum physics two particles can interact nonlocally because such particles are treated as an indivisible whole. The author theorizes that simple waves can co-exist, in which such waves exhibit a property where total disturbance at any point varies from point-to-point, yet is totally independent of time. However, these simple waves can exist everywhere at everytime. Indeed, the unadulterated Maxwellian scalar potential of a system of forces can be resolved into trains of simple plane waves in any given direction whatsoever, with each simple wave propagating at a constant velocity far greater than the original ac...
Relating LHC event rates to supersymmetric Grand Unified Theories containing $SU(5)$
Herrmann, Björn; Stoll, Yannick
2015-01-01
We elaborate on a recently found $SU(5)$ relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale $SU(5)$ tests realizable at the LHC. We present a variety of tests, which appear as relations among observables involving flavour violation or chirality flips and rely on the techniques of top polarimetry, charm-tagging, or Higgs detection from cascade decays. We discuss the cases of natural Supersymmetry and top-charm Supersymmetry as example cases. We find that $O(10)$ to $O(100)$ events are needed to obtain 50\\% of relative precision at 3$\\sigma$ significance for all proposed tests.
Implications of Yukawa unification for the Higgs sector in supersymmetric grand-unified models
Langacker, P G; Paul Langacker; Nir Polonsky
1994-01-01
The SU(5) unification-scale relation h_b=h_tau between the b and tau Yukawa couplings severely constrains tan beta and m_t (even more so if h_t=h_b= h_tau holds) in supersymmetric models. We examine the implications of these constraints for the Higgs sector assuming universal soft breaking terms, and emphasize that both of these relations impose unique characteristics in terms of symmetries and of the spectrum. We further study the tan beta near 1 scenario, which is suggested by h_b=h_tau, and, in particular, the loop- induced mass of the light Higgs boson. We compare the effective potential and renormalization group methods and stress the two-loop ambiguities in the calculation of the mass. These and a large enhancement to the loop correction due to t-scalar left-right mixing considerably weaken the upper bound. Nevertheless, we find that for this scenario the Higgs boson is probably lighter than 110 GeV, and typically lighter than 100 GeV. Thus, it is in the mass range that may be relevant for LEPII. Our nu...
78 FR 11678 - Notice of Inventory Completion: Grand Rapids Public Museum, Grand Rapids, MI
2013-02-19
... National Park Service Notice of Inventory Completion: Grand Rapids Public Museum, Grand Rapids, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Grand Rapids Public Museum has completed an... Grand Rapids Public Museum. Repatriation of the human remains and associated funerary objects to...
Energy Technology Data Exchange (ETDEWEB)
Koura, H.; Uno, M.; Tachibana, T.; Yamada, M. [Waseda Univ., Advanced Research Institute for Science and Engineering, Tokyo (Japan)
2000-03-01
A nuclear mass formula is constructed which is composed of two parts, one describing the general trend of the masses as a function of Z and N and the other representing deviations of individual masses from this general trend. These deviations, referred to as shell energies, are calculated by a new method for spherical as well as deformed nuclei only with use of spherical single-particle potentials. The root-mean-square deviation from experimentally known masses is 0.68 MeV. The obtained mass formula, is applicable to any nucleus with Z {>=} 2 and N {>=} 2. By this mass formula {alpha}-decay energies are calculated, and {alpha}-decay half-lives of superheavy elements are estimated. (author)
NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions
Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing
2009-08-01
The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.
Santhosh, K P
2016-01-01
Probable projectile-target combinations for the synthesis of superheavy element $^{302}$120 have been studied taking Coulomb and proximity potential as the interaction barrier. The probabilities of compound nucleus formation, PCN for the projectile-target combinations found in the cold reaction valley of $^{302}$120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion and evaporation residue cross sections for the reactions of all the probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of SHE $^{302}$120 in heavy ion fusion reactions. The calculated fusion and evaporation cross section for the more asymmetric (hotter) projectile-target combination is found to be higher than the less asymmetric (colder) combination. It can be seen from the nature of quasi-fission barrier height, mass asymmetry, probability of compound nucleus formation, survival probability and excitation energy, the system...
Veselsky, M.; Klimo, J.; Ma, Yu-Gang; Souliotis, G. A.
2016-12-01
The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter K0=240 -260 MeV is obtained while the stiff density-dependences of the symmetry energy (γ >1 ) are rejected.
Unifying physical concepts of reality
Energy Technology Data Exchange (ETDEWEB)
Gilbert, T.L.
1983-08-01
Physics may be characterized as the science of matter and energy. It anchors the two ends of the frontiers of science: the frontier of the very small and the frontier of the very large. All of the phenomena that we observe and study at the frontiers of science - all external experiences - are manifestations of matter and energy. One may, therefore, use physics to exemplify both the diversity and unity of science. This theme will be developed in two separate examples: first by sketching, very briefly, the historical origins of frontiers of the very small and very large and the converging unity of these two frontiers; and then by describing certain unifying concepts that play a central role in physics and provide a framework for relating developments in different sciences.
Towards a Unified Programming Language
DEFF Research Database (Denmark)
Madsen, Ole Lehrmann
2000-01-01
find that the languages of the future should integrate the best available concepts and constructs in such a way that the programmer does not think of multiple paradigms when using a given language. In this paper, we describe to what extent the BETA language has been successful in obtaining a unified......The goal of research in programming languages should be to develop languages that integrates the best of concepts and constructs from the various programming paradigms. We do not argue for a multi-paradigm language, where the programmer alternates between the different paradigms/styles. Instead, we...... style and where more research is needed. In addition to traditional paradigms such as object-oriented-, imperative-functional- and logic programming, we also discuss concurrent programming and prototype-based programming. We discuss language features such as the BETA pattern construct, virtual...
A unifying process capability metric
Directory of Open Access Journals (Sweden)
John Jay Flaig
2009-07-01
Full Text Available A new economic approach to process capability assessment is presented, which differs from the commonly used engineering metrics. The proposed metric consists of two economic capability measures – the expected profit and the variation in profit of the process. This dual economic metric offers a number of significant advantages over other engineering or economic metrics used in process capability analysis. First, it is easy to understand and communicate. Second, it is based on a measure of total system performance. Third, it unifies the fraction nonconforming approach and the expected loss approach. Fourth, it reflects the underlying interest of management in knowing the expected financial performance of a process and its potential variation.
Unifying Theories of Mobile Channels
Directory of Open Access Journals (Sweden)
Gerard Ekembe Ngondi
2016-06-01
Full Text Available In this paper we present the denotational semantics for channel mobility in the Unifying Theories of Programming (UTP semantics framework. The basis for the model is the UTP theory of reactive processes (precisely, the UTP semantics for Communicating Sequential Processes (CSP, which is slightly extended to allow the mobility of channels: the set of actions in which a process is authorised to participate, originally static or constant (set during the process's definition, is now made dynamic or variable: it can change during the process's execution. A channel is thus moved around by communicating it via other channels and then allowing the receiving process to extend its alphabet with the received channel. New healthiness conditions are stated to ensure an appropriate use of mobile channels.
Harmonious Unifying Hybrid Preferential Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
The basic concepts and methods for harmonious unifying hybrid preferential model(HUHPM)are based on random preferential attachment(RPA)mixed with deterministic preferential attachment(DPA),so there is only one unified hybrid ratio dr,which is defined as:
Toward a Unified AGN Structure
Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis
2012-01-01
We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.
Yukawa-unified natural supersymmetry
Baer, Howard; Kraml, Sabine; Kulkarni, Suchita
2012-12-01
Previous work on t - b - τ Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m h 125 GeV. As Yukawa unification requires large tan β 50, while EWFT requires rather light third generation squarks and low μ ≈ 100 - 250 GeV, B-physics constraints from BR( B → X s γ) and BR( B s → μ + μ -) can be severe. We are able to find models with EWFT Δ ≲ 50 - 100 (better than 1-2% EWFT) and with Yukawa unification as low as R yuk 1.2 (20% unification). The unification is lessened to R yuk 1.3 when B-physics constraints are imposed. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1 - 2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A → μ + μ - decay might allow a determination of tan β 50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e + e - collider with sqrt{s}˜ 0.5 TeV.
Ultrahigh energy cosmic rays as a Grand Unification signal
Fodor, Z
2001-01-01
We analyze the spectrum of the ultrahigh energy (above \\approx 10^{9} GeV) cosmic rays. With a maximum likelihood analysis we show that the observed spectrum is consistent with the decay of extragalactic GUT scale particles. The predicted mass for these superheavy particles is m_X=10^b GeV, where b=14.6_{-1.7}^{+1.6}.
Energy Technology Data Exchange (ETDEWEB)
Bertaina, M., E-mail: bertaina@to.infn.it [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Apel, W.D. [Institut fuer Kernphysik, KIT - Karlsruher Institut fuer Technologie (Germany); Arteaga-Velazquez, J.C. [Universidad Michoacana, Instituto de Fisica y Matematicas, Morelia (Mexico); Bekk, K. [Institut fuer Kernphysik, KIT - Karlsruher Institut fuer Technologie (Germany); Bluemer, J. [Institut fuer Kernphysik, KIT - Karlsruher Institut fuer Technologie (Germany); Institut fuer Experimentelle Kernphysik, KIT - Karlsruher Institut fuer Technologie (Germany); Bozdog, H. [Institut fuer Kernphysik, KIT - Karlsruher Institut fuer Technologie (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, KIT - Karlsruher Institut fuer Technologie (Germany); and others
2012-11-11
The KASCADE-Grande experiment, located at Karlsruhe Institute of Technology (Germany) is a multi-component extensive air-shower experiment devoted to the study of cosmic rays and their interactions at primary energies 10{sup 14}-10{sup 18} eV. Main goals of the experiment are the measurement of the all-particle energy spectrum and mass composition in the 10{sup 16}-10{sup 18} eV range by sampling charged (N{sub ch}) and muon (N{sub {mu}}) components of the air shower. The method to derive the energy spectrum and its uncertainties, as well as the implications of the obtained result, is discussed. An overview of the analyses performed by KASCADE-Grande to derive the mass composition of the measured high-energy comic rays is presented as well.
A Grand Delta(96) x SU(5) Flavour Model
King, Stephen F; Stuart, Alexander J
2012-01-01
Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36...
Energy Technology Data Exchange (ETDEWEB)
Bluemer, J; Apel, W D; Badea, F; Bekk, K; Bozdog, H; Daumiller, K; Doll, P; Engel, R; Engler, J [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J C; Cossavella, F; Souza, V de; Finger, M [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bertaina, M; Chiavassa, A; Cantoni, E; Di Pierro, F [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Brancus, I M [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M; Buchholz, P [Fachbereich Physik, Universitaet Siegen (Germany)], E-mail: Johannes.Bluemer@ik.fzk.de (and others)
2008-07-15
KASCADE-Grande is an extensive air shower array co-located with the original KASCADE air shower experiment at Forschungszentrum Karlsruhe, Germany. The multi-detector system allows to investigate the energy spectrum, composition, and anisotropies of cosmic rays in the energy range extended up to 10{sup 18} eV. An overview on the performance of the apparatus and first results are presented.
Directory of Open Access Journals (Sweden)
Charlote Wink
2007-01-01
Full Text Available The occurrence of Cryptophlebia carpophagoides Clarke, 1951, (Lepidoptera: Olethreutidae, in fruit of Enterolobium contortisiliquum (Vell. Morong, has bun first registered in the state of Rio Grande do Sul, Brazil. The damaged fruit was collected in the campus of National University of Santa Maria, Santa Maria, from May to June of 2003 and 2004. It was evidenced that the caterpillars damage the fruit of that specie affecting the integrety, the vigor and the germination of the seeds.
Seagrass from Unified Florida Reef Tract Map (NODC Accession 0123059)
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Map representing Seagrass areas. Version 1.1 - December 2013. The Unified Florida Reef Tract Map (Unified Reef Map) provides...
Bounce inflation in $f(T)$ Cosmology: A unified inflaton-quintessence field
Bamba, Kazuharu; Hanafy, W El; Ibrahim, Sh Kh
2016-01-01
We investigate a bounce inflation model with a graceful exit into the Friedmann-Robertson-Walker (FRW) decelerated universe within $f(T)$-gravity framework, where $T$ is the torsion scalar in the teleparallelism. We study the cosmic thermal evolution, the model predicts a super-cold universe during the pre-contraction phase, which is consistent with the requirements of the slow-roll models, while it performs a reheating period by the end of the contraction with a maximum temperature just below the Grand Unified Theory (GUT) temperature. However, it matches the radiation temperature of the hot big bang at later stages. The equation-of-state due to the effective gravitational sector suggests that our universe is self-accelerated by teleparallel gravity. We consider the case of the propagating torsion when a scalar field, called the tlaplon field, serves as torsion potential, the tlaplon model gives a unified description of inflaton and quintessence models in a single model.
Improving naturalness in Gauge Mediation with non-unified messenger sectors
Calibbi, Lorenzo; Mustafayev, Azar; Raza, Shabbar
2016-01-01
We study models of gauge-mediated supersymmetry breaking with messengers that do not belong to complete representations of grand-unified gauge groups. We show that certain setups characterized by heavy Wino can greatly improve the fine tuning with respect to models with unified messengers, such as minimal gauge mediation. The typical models with low tuning feature multi-TeV superparticles, with the exception of the Higgsinos and possibly Bino and right-handed sleptons. As a consequence, the absence of signals for supersymmetry at the LHC is trivially accommodated in our framework. On the other hand, testing these models will be challenging at the LHC. We finally show that the gravitino can be a consistent candidate for cold dark matter, provided a rather low reheating temperature, if a standard thermal history of the universe is assumed.
Energy Technology Data Exchange (ETDEWEB)
Apel, W.D. [Karlsruhe Institute of Technology - Campus North, Institut fuer Kernphysik, Karlsruhe (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology - Campus South, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Badea, A.F.; Bekk, K. [Karlsruhe Institute of Technology - Campus North, Institut fuer Kernphysik, Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Bluemer, J. [Karlsruhe Institute of Technology - Campus North, Institut fuer Kernphysik, Karlsruhe (Germany); Karlsruhe Institute of Technology - Campus South, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Bozdog, H. [Karlsruhe Institute of Technology - Campus North, Institut fuer Kernphysik, Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik, Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Karlsruhe Institute of Technology - Campus South, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Daumiller, K. [Karlsruhe Institute of Technology - Campus North, Institut fuer Kernphysik, Karlsruhe (Germany); Souza, V. de [Karlsruhe Institute of Technology - Campus South, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Di Pierro, F., E-mail: dipierr@to.infn.i [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Doll, P.; Engel, R.; Engler, J.; Finger, M. [Karlsruhe Institute of Technology - Campus North, Institut fuer Kernphysik, Karlsruhe (Germany); Fuhrmann, D. [Bergische Universitaet Wuppertal, Fachbereich Physik, Wuppertal (Germany)
2010-08-21
KASCADE-Grande is the enlargement of the KASCADE extensive air shower detector, realized to expand the cosmic ray studies from the previous 10{sup 14}-10{sup 17} eV primary energy range to 10{sup 18} eV. This is performed by extending the area covered by the KASCADE electromagnetic array from 200x200 to 700x700 m{sup 2} by means of 37 scintillator detector stations of 10 m{sup 2} area each. This new array is named Grande and provides measurements of the all-charged particle component of extensive air showers (N{sub ch}), while the original KASCADE array particularly provides information on the muon content (N{sub {mu}}). Additional dense compact detector set-ups being sensitive to energetic hadrons and muons are used for data consistency checks and calibration purposes. The performance of the Grande array and its integration into the entire experimental complex is discussed. It is demonstrated that the overall observable resolutions are adequate to meet the physical requirements of the measurements, i.e. primary energy spectrum and elemental composition studies in the primary cosmic ray energy range of 10{sup 16}-10{sup 18} eV.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiao-Yun [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Chen, Xu-Rong [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China)
2015-07-15
The production of superheavy Λ{sub c} {sub anti} {sub c}{sup *}(4209) baryon in the K{sup -}p → η{sub c}Λ process via s-channel is investigated with an effective Lagrangian approach and the isobar model. Moreover, the background from the K{sup -}p → η{sub c}Λ reaction through the t-channel with K* exchange and u-channel with nucleon exchange are also considered. The numerical results indicate it is feasible to search for the superheavy Λ{sub c} {sub anti} {sub c}{sup *}(4209) via K{sup -}p scattering. The relevant calculations not only shed light on the further experiment of searching for the Λ{sub c} {sub anti} {sub c}{sup *}(4209) through kaon-induced reaction, but also enable us to have a better understanding of the exotic baryons. (orig.)
Borschevsky, A.; Pašteka, L. F.; Pershina, V.; Eliav, E.; Kaldor, U.
2015-02-01
Calculations of the first and second ionization potentials and electron affinities of superheavy elements 115-117 are presented. The calculations are performed in the framework of the Dirac-Coulomb Hamiltonian, and the results are corrected for the Breit and QED contributions. Correlation is treated by the relativistic coupled cluster approach with single, double, and perturbative triple excitations [CCSD(T)]. The same approach is used to calculate the ionization potentials and electron affinities of the lighter homologues, Bi, Po, and At. Comparison of the available experimental values for these atoms, namely, the first ionization potentials (IPs) of Bi, Po, and At and the second IP and EA of Bi, with our results shows excellent agreement, within a few hundredths of an eV, lending credence to our predictions for their superheavy homologues. High-accuracy predictions are also made for the second ionization potentials and electron affinities of Po and At, where no experiment is available.
Higgs and Sparticle Masses from Yukawa Unified SO(10): A Snowmass White Paper
Ajaib, M Adeel; Shafi, Qaisar; Un, Cem Salih
2013-01-01
We discuss ways to probe t-b-tau Yukawa coupling unification condition at the Energy and Intensity frontiers. We consider non-universal soft supersymmetry breaking mass terms for gauginos related by the SO(10) grand unified theory (GUT). We have previously shown that t-b-tau Yukawa coupling unification prefers a mass of around 125 GeV for the Standard Model-like Higgs boson with all colored sparticle masses above 3 TeV. The well-known MSSM parameter tan(beta) is about 47-48 and neutralino-stau coannihilation yields the desired relic dark matter density.
Twin-unified SU(5) × SU(5)′ GUT and phenomenology
Indian Academy of Sciences (India)
Zurab Tavartkiladze
2016-02-01
In this article, after a short introduction, grand unified SU(5) × SU(5)′ model augmented by 2 parity has been discussed. The latter turns out to be important for phenomenology. Specific pattern of the GUT symmetry breaking causes new strong dynamics at low energies. Consequently, the Standard Model leptons, along with right-handed/sterile neutrinos, come out as composite states. Issues of the gauge coupling unification, generation of the charged fermion and neutrino masses will be presented. Also, various phenomenological implications and constraints will be discussed.
331 Models and Grand Unification: From Minimal SU(5) to Minimal SU(6)
Deppisch, Frank F; Patra, Sudhanwa; Sarkar, Utpal; Valle, Josè W F
2016-01-01
We consider the possibility of grand unification of the $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model in an SU(6) gauge unification group. Two possibilities arise. Unlike other conventional grand unified theories, in SU(6) one can embed the $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model as a subgroup such that different multiplets appear with different multiplicities. Such a scenario may emerge from the flux breaking of the unified group in an E(6) F-theory GUT. This provides new ways of achieving gauge coupling unification in $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ models while providing the radiative origin of neutrino masses. Alternatively, a sequential variant of the $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model can fit within a minimal SU(6) grand unification, which in turn can be a natural E(6) subgroup. This minimal SU(6) embedding does not require any bulk exotics to account for the chiral families while allowing for a TeV scale $\\mathrm{ SU(3)_c \\otimes SU(3...
Energy Technology Data Exchange (ETDEWEB)
Hong, Juhee [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic University, Mathematical Physics Department, Tomsk (Russian Federation)
2016-10-15
The possibilities of production of new isotopes of superheavy nuclei with charge numbers Z = 109-114 in various asymmetric hot fusion reactions are studied for the first time. The excitation functions of the formation of these isotopes in the xn evaporation channels are predicted and the optimal conditions for the synthesis are proposed. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of the heaviest nuclei obtained in cold and hot complete fusion reactions. (orig.)
Hong, Juhee; Adamian, G. G.; Antonenko, N. V.
2016-10-01
The possibilities of production of new isotopes of superheavy nuclei with charge numbers Z = 109-114 in various asymmetric hot fusion reactions are studied for the first time. The excitation functions of the formation of these isotopes in the xn evaporation channels are predicted and the optimal conditions for the synthesis are proposed. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of the heaviest nuclei obtained in cold and hot complete fusion reactions.
Synthesis and Chemical Properties of Superheavy Elements%超重元素的合成及其化学性质
Institute of Scientific and Technical Information of China (English)
秦芝; 范芳丽; 吴晓蕾; 白静; 丁华杰; 雷富安; 田伟; 郭俊盛
2011-01-01
超重元素是指原子序数大于等于104号的元素,超重元素的研究是目前核物理和核化学领域的前沿课题之一。本文介绍了当前国际上超重元素合成的最新进展,包括三种合成方法——＂热熔合＂、＂冷熔合＂和＂温熔合＂以及最新的超重元素117号元素的合成,同时详细介绍了108号和112号元素的化学性质研究的实验进展情况,并对超重元素的未来发展进行展望。%Superheavy elements are those with high atomic number,beginning with element 104（Rf）.The research of superheavy elements is frontier topics in nuclear physics and nuclear chemistry.The present status of synthesis of superheavy elements is introduced,including the three synthesis methods——＂hot fusion＂,＂cold-fusion＂ and ＂warm fusion＂ and the discovery of a new chemical element with atomic number Z=117.The current experimental studies of gas chemistry of element 108 and element 112 are discussed in detail.The prospects of the development of superheavy elements are reviewed.
A unified theory of superconductivity
Huang, Xiuqing
2008-01-01
In this work, we argue that the phonon-mediated BCS theory may be incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, spin--charge stripe order, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates, MgB2 and the newly-discovered Fe-based family) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2, iron-based and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a triangular vortex lattice in pure MgB2 single crystal with a charge carrier density n=1.49*10^22/cm3. For iron-based superconductors, the relationship between the superconducting vortex phases and the optimal doping levels are analytically ...
Unifying evolutionary and network dynamics
Swarup, Samarth; Gasser, Les
2007-06-01
Many important real-world networks manifest small-world properties such as scale-free degree distributions, small diameters, and clustering. The most common model of growth for these networks is preferential attachment, where nodes acquire new links with probability proportional to the number of links they already have. We show that preferential attachment is a special case of the process of molecular evolution. We present a single-parameter model of network growth that unifies varieties of preferential attachment with the quasispecies equation (which models molecular evolution), and also with the Erdős-Rényi random graph model. We suggest some properties of evolutionary models that might be applied to the study of networks. We also derive the form of the degree distribution resulting from our algorithm, and we show through simulations that the process also models aspects of network growth. The unification allows mathematical machinery developed for evolutionary dynamics to be applied in the study of network dynamics, and vice versa.
Graafikatriennaali grand prix Korea kunstnikule
1998-01-01
Tallinna XI graafikatriennaali rahvusvaheline žürii andis grand prix korea kunstnikule Chung¡Sang-Gonile, kolm võrdset preemiat - soome kunstnikele Anita Jensenile ja Tapani Mikkonenile ning jaapani kunstnikule Estuko Obatale. Eesti Kunstimuuseumi preemia - Wendy Swallow. Tallinna linna preemia ja Ivar Luki sponsoripreemia - Walter Jule. Sponsoripreemiad : Paletti Eesti AS preemia - Inga Heamägi; Rannila Profiili preemia - Mojca Zlokarnik; UNDP preemia - Andrea Juan. Rotermanni soolalao arhitektuuri- ja kunstikeskuse diplom - Lis Ingram, Heli Päivikki Kurunsaari, Randi Strand, Wendy Swallow
Grand canonical Molecular Dynamics Simulations
Fritsch, S; Junghans, C; Ciccotti, G; Site, L Delle; Kremer, K
2011-01-01
For simulation studies of (macro-) molecular liquids it would be of significant interest to be able to adjust/increase the level of resolution within one region of space, while allowing for the free exchange of molecules between (open) regions of different resolution/representation. In the present work we generalize the adaptive resolution idea in terms of a generalized Grand Canonical approach. This provides a robust framework for truly open Molecular Dynamics systems. We apply the method to liquid water at ambient conditions.
Graafikatriennaali grand prix Korea kunstnikule
1998-01-01
Tallinna XI graafikatriennaali rahvusvaheline žürii andis grand prix korea kunstnikule Chung¡Sang-Gonile, kolm võrdset preemiat - soome kunstnikele Anita Jensenile ja Tapani Mikkonenile ning jaapani kunstnikule Estuko Obatale. Eesti Kunstimuuseumi preemia - Wendy Swallow. Tallinna linna preemia ja Ivar Luki sponsoripreemia - Walter Jule. Sponsoripreemiad : Paletti Eesti AS preemia - Inga Heamägi; Rannila Profiili preemia - Mojca Zlokarnik; UNDP preemia - Andrea Juan. Rotermanni soolalao arhitektuuri- ja kunstikeskuse diplom - Lis Ingram, Heli Päivikki Kurunsaari, Randi Strand, Wendy Swallow
Grand Challenges of Enterprise Integration
Energy Technology Data Exchange (ETDEWEB)
Brosey, W.D; Neal, R.E.; Marks, D.
2001-04-01
Enterprise Integration connects and combines people, processes, systems, and technologies to ensure that the right people and the right processes have the right information and the right resources at the right time. A consensus roadmap for Technologies for Enterprise Integration was created as part of an industry/government/academia partnership in the Integrated Manufacturing Technology Initiative (IMTI). Two of the grand challenges identified by the roadmapping effort will be addressed here--Customer Responsive Enterprises and Totally Connected Enterprises. Each of these challenges is briefly discussed as to the current state of industry and the future vision as developed in the roadmap.
Unified Approach in the DSS Development Process
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available The structure of today's decision support environment become very complex due to new generation of Business Intelligence applications and technologies like Data Warehouse, OLAP (On Line Analytical Processing and Data Mining. In this respect DSS development process are not simple and needs an adequate methodology or framework able to manage different tools and platforms to achieve manager's requirements. The DSS development process must be view like a unified and iterative set of activities and operations. The new techniques based on Unified Process (UP methodology and UML (Unified Modeling Language it seems to be appropriate for DSS development using prototyping and RAD (Rapid Application Development techniques. In this paper we present a conceptual framework for development and integrate Decision Support Systems using Unified Process Methodology and UML.
A unified approach to the Painleve Transcendents
2016-01-01
We utilise a recent approach via the so-called re-scaling method to derive a unified and comprehensive theory of the solutions to Painleve's differential equations (I), (II) and (IV), with emphasis on the most elaborate equation (IV).
Exhaustivity and intonation: a unified theory
Westera, M.
2017-01-01
This dissertation presents a precise, unified and explanatory theory of human conversation, centered on two broad phenomena: exhaustivity implications and intonational meaning. In a nutshell: (i) speakers have two types of communicative intentions, namely information sharing and attention sharing, (
Some Representations of Unified Voigt Functions
Institute of Scientific and Technical Information of China (English)
M. KAMARUJJAMA; Dinesh SINGH
2005-01-01
The authors derive a set of unified representations of the Voigt functions in terms of familiar special functions of Mathematical Physics. Some deductions from these representations are also considered.
A Unified Framework for Systematic Model Improvement
DEFF Research Database (Denmark)
Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay
2003-01-01
A unified framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation (SDE) modelling, statistical tests and multivariate nonparametric regression...
Unified Data Model for Biological Data
Directory of Open Access Journals (Sweden)
Muhammad Idrees
2014-07-01
Full Text Available A data model empowers us to store, retrieve and manipulate data in a unified way. We consider the biological data consists of DNA (De-Oxyribonucleic Acid, RNA (Ribonucleic Acid and protein structures. In our Bioinformatics Lab (Bioinformatics Lab, Alkhawarizmi Institute of Computer Science, University of Engineering & Technology, Lahore, Pakistan, we have already proposed two data models for DNA and protein structures individually. In this paper, we propose a unified data model by using the data models of TOS (Temporal Object Oriented System after making some necessary modifications to this data model and our already proposed the two data models. This proposed unified data model can be used for the modeling and maintaining the biological data (i.e. DNA, RNA and protein structures, in a single unified way
Unified Dark Matter Scalar Field Models
Directory of Open Access Journals (Sweden)
Daniele Bertacca
2010-01-01
of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.
Unified characterisations of resolution hardness measures
Beyersdorff, O; Kullmann, O.
2014-01-01
Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations b...
Proposal of Unified Fermion Texture
Krolikowski, W.
1998-03-01
unified form of mass matrix is proposed for neutrinos, charged leptons, up quarks and down quarks. Some constraints for the parameters involved are tentatively postulated. Then, the predictions are neatly consistent with available experimental data. Among the predictions are: (i) mτ ~1776.80 MeV (with the inputs of me and mμ ), (ii) mν_0 ≪ mν_1~(0.6 to )× 10-2 eV and mν_2~ (0.2 to 1)× 10-1 eV (with the atmospheric-neutrino inputs of |mν_22 - mν_12| × (0.0003 to 0.01) eV2 and the νμ → ντ oscillation amplitude × 0.8), and also ( iii) ms ~270 MeV, |Vub/Vcb| ~0.082 and argVub ~-640 (with the inputs of mc = 1.3 GeV, mb = 4.5 GeV, |Vus| = 0.221 and |Vcb| = 0.041, where mu ≪ mc ≪ mt and md ≪ ms ≪ mb ). All elements of the Cabibbo--Kobayashi--Maskawa matrix are evaluated. All elements of its lepton counterpart are calculated up to an unknown phase (Appendix B). Some items related to dynamical aspects of the proposed fermion ``texture'' are briefly commented on (Appendix A). In particular, the notion of a novel dark matter, free of any Standard Model interactions (and their supersymmetric variants), appears in the case of preon option.
American Grand Strategy: The End of Primacy?
2015-02-13
harbingers of the end of American power or influence, we should note the new context of our international relationships and reassess our grand strategy as...AIR WAR COLLEGE AIR UNIVERSITY AMERICAN GRAND STRATEGY THE END OF PRIMACY? by Carey J. Jones, USAF, Lt Col A Research Report Submitted...Grand Strategy: The End of Primacy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER
Higgs as a Probe of Supersymmetric Grand Unification with the Hosotani Mechanism
Kakizaki, Mitsuru; Taniguchi, Hiroyuki; Yamashita, Toshifumi
2013-01-01
The supersymmetric grand unified theory where the SU(5) gauge symmetry is broken by the Hosotani mechanism predicts the existence of adjoint chiral superfields whose masses are at the supersymmetry breaking scale. The Higgs sector is extended with the SU(2)_L triplet with hypercharge zero and neutral singlet chiral multiplets from that in the minimal supersymmetric standard model. Since the triplet and singlet chiral multiplets originate from a higher-dimensional vector multiplet, this model is highly predictive. Properties of the particles in the Higgs sector are characteristic and can be different from those in the Standard Model and other models. We evaluate deviations in coupling constants of the standard model-like Higgs boson and the mass spectrum of the additional Higgs bosons. We find that our model is discriminative from the others by precision measurements of these coupling constants and masses of the additional Higgs bosons. This model can be a good example of grand unification that is testable at ...
Higgs as a probe of supersymmetric grand unification with the Hosotani mechanism
Yamashita, T
2015-01-01
The supersymmetric grand unified theory where the $SU(5)$ gauge symmetry is broken by the Hosotani mechanism provides a natural solution to the so-called doublet-triplet splitting problem. At the same time, this model derives a general and distinctive prediction that is testable at TeV scale collider experiments. To be more concrete, adjoint chiral supermultiplets with masses around TeV scale appear. Since these additional fields originate from a higher-dimensional gauge supermultiplet, our model is highly predictive. We study especially the Higgs sector and show that our model is discriminative from the others by precision measurements of the couplings and masses. Namely, we may get a hint of the breaking mechanism of the grand unification at future collider experiments.
Implications of the CMS search for W$_{R}$ on grand unification
Bandyopadhyay, Triparno; Raychaudhuri, Amitava
2016-01-01
The CMS experiment at the Large Hadron Collider has reported a 2.8$\\sigma$ excess in the $(2e)(2jets)$ channel around 2.1 TeV. Interpretation of this data is reconsidered in terms of the production of a right-handed weak gauge boson, $W_R$, of the left-right symmetric model and in an $SO(10)$ grand unified theory abiding by the Extended Survival Hypothesis. The left-right symmetric model can be consistent with this excess if (a) the heavy right-handed neutrino has a mass near $W_R$, or (b) if $g_L \
77 FR 11575 - Notice of Inventory Completion: Grand Rapids Public Museum, Grand Rapids, MI
2012-02-27
... National Park Service Notice of Inventory Completion: Grand Rapids Public Museum, Grand Rapids, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Grand Rapids Public Museum has completed an... Rapids Public Museum. Repatriation of the human remains and associated funerary objects to the...
Proposal of unified fermion texture
Energy Technology Data Exchange (ETDEWEB)
Krolikowski, W. [Institute of Theoretical Physics, Warsaw University, Warsaw (Poland)
1998-03-01
A unified form of mass matrix is proposed for neutrinos, charged leptons, up quarks and down quarks. Some constraints for the parameters involved are tentatively postulated. Then, the predictions are neatly consistent with available experimental data. Among the predictions are: (i) m{sub {tau}} {approx_equal} 1776.80 MeV (with the inputs of m{sub e} and m{sub {mu}}), (ii) m{sub {nu}0}<
Grand challenges for biological engineering.
Yoon, Jeong-Yeol; Riley, Mark R
2009-09-22
Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society.
Grand challenges for biological engineering
Directory of Open Access Journals (Sweden)
Riley Mark R
2009-09-01
Full Text Available Abstract Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society.
Grand Unification in Neutron Stars
Kaspi, Victoria M
2010-01-01
The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to `isolated neutron stars,' from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-ray Observatory, in celebration of its tenth anniversary. Finally, I describe the current status of efforts at physical `grand unification' of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.
Grandes almacenes en Ginebra, Suiza
Directory of Open Access Journals (Sweden)
Braillard, P.
1968-10-01
Full Text Available This large building, whose metal structure is one of the most important ones erected in Switzerland, has 14 storeys. The sales zones occupy all the above ground floor levels, and the basements contain garages and stores. Additionally, there is a restaurant on the third floor, and administrative offices in the fourth floor of this outstanding commercial building, the «La Placette» Stores, of Geneva.Este gran edificio, cuya estructura metálica es una de las mayores construidas en Suiza, fue organizado en 14 niveles. Las plantas baja y superiores están destinadas a «venta»; y los sótanos, a garajes, almacenes, etc. La tercera planta alberga, además, el comedor, restaurante, etc.; y la cuarta, los locales de administración y dirección de este notable edificio comercial: «Grandes Almacenes La Placette», de Ginebra.
Grand unification of neutron stars.
Kaspi, Victoria M
2010-04-20
The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.
Proton decay and grand unification
Senjanovic, Goran
2009-01-01
I review the theoretical and experimental status of proton decay theory and experiment. Regarding theory, I focus mostly, but not only, on grand unification. I discuss only the minimal, well established SU(5) and SO(10) models, both ordinary and supersymmetric. I show how the minimal realistic extensions of the original Georgi - Glashow model can lead to interesting LHC physics, and I demonstrate that the minimal supersymmetric SU(5) theory is in perfect accord with experiment. Since no universally accepted model has of yet emerged, I discuss the effective operator analysis of proton decay and some related predictions from a high scale underlying theory. A strong case is made for the improvement of experimental limits, or better the search of, two body neutron decay modes into charged kaons and charged leptons. Their discovery would necessarily imply a low energy physics since they practically vanish in any theory with a desert in energies between M_W and M_GUT.
Grand unification of neutron stars
Kaspi, Victoria M.
2010-01-01
The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205
Google Earth Grand Tour Themes
De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.; Dordevic, M. M.
2014-12-01
As part of an NSF TUES Type 3 project entitled "Google Earth for Onsite and Distance Education (GEODE)," we are assembling a "Grand Tour" of locations on Earth and other terrestrial bodies that every geoscience student should know about and visit at least in virtual reality. Based on feedback from colleagues at previous meetings, we have identified nine Grand Tour themes: "Plates and Plumes," "Rocks and Regions," "Geology Through Time," "The Mapping Challenge*," "U.S. National Parks*," "The Magical Mystery Tour*," "Resources and Hazards," "Planets and Moons," and "Top of the Pops." Themes marked with an asterisk are most developed at this stage and will be demonstrated in real time. The Mapping Challenge invites students to trace geological contacts, measure bedding strike and dip and the plunge, trend, and facing of a fold. There is an advanced tool for modeling periclinal folds. The challenge is presented in a game-like format with an emphasis on puzzle-solving that will appeal to students regardless of gender. For the tour of U.S. national parks, we divided the most geologically important parks into four groups—Western Pacific, West Coast, Rockies, and East Coast. We are combining our own team's GigaPan imagery with imagery already available on the Internet. There is a great deal of imagery just waiting to be annotated for geological education purposes. The Magical Mystery Tour takes students to Google Streetview locations selected by instructors. Students are presented with questions or tasks and are given automatic feedback. Other themes are under development. Within each theme, we are crowd-sourcing contributions from colleagues and inviting colleagues to vote for or against proposed locations and student interactions. The GEODE team includes the authors and: Heather Almquist, Stephen Burgin, Cinzia Cervato, Gene Cooper, Paul Karabinos, Terry Pavlis, Jen Piatek, Bill Richards, Jeff Ryan, Ron Schott, Kristen St. John, and Barb Tewksbury.
Proton hexality in local grand unification
Energy Technology Data Exchange (ETDEWEB)
Foerste, Stefan; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, Patrick K.S. [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics
2010-07-15
Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of ''Local Grand Unification'' discussed in the framework of model building in (heterotic) string theory. (orig.)
The Promise and Pitfalls of Grand Strategy
2012-08-01
clarify the analysis that follows.3 There is no single, universally accepted definition of grand strategy. The British military historian Sir Basil ...presidential campaign—that American policy had come loose from its democratic moorings . When it comes to grand strategy, working within the strictures
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Grand Canal. 117.285 Section 117.285 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.285 Grand Canal. (a) The draw of the Lansing Island bridge, mile 0.7, shall open on...
Search for long-lived superheavy eka-tungsten with radiopure ZnWO$_4$ crystal scintillator
Belli, P; Cappella, F; Cerulli, R; Danevich, F A; Denisov, V Yu; d'Angelo, A; Incicchitti, A; Kobychev, V V; Poda, D V; Polischuk, O G; Tretyak, V I
2015-01-01
The data collected with a radioactively pure ZnWO$_4$ crystal scintillator (699 g) in low background measurements during 2130 h at the underground (3600 m w.e.) Laboratori Nazionali del Gran Sasso (INFN, Italy) were used to set a limit on possible concentration of superheavy eka-W (seaborgium Sg, Z = 106) in the crystal. Assuming that one of the daughters in a chain of decays of the initial Sg nucleus decays with emission of high energy $\\alpha$ particle ($Q_\\alpha > 8$ MeV) and analyzing the high energy part of the measured $\\alpha$ spectrum, the limit N(Sg)/N(W) < 5.5 $\\times$ 10$^{-14}$ atoms/atom at 90% C.L. was obtained (for Sg half-life of 10$^9$ yr). In addition, a limit on the concentration of eka-Bi was set by analysing the data collected with a large BGO scintillation bolometer in an experiment performed by another group [L. Cardani et al., JINST 7 (2012) P10022]: N(eka-Bi)/N(Bi) < 1.1 $\\times$ 10$^{-13}$ atoms/atom with 90% C.L. Both the limits are comparable with those obtained in recent exp...
Indian Academy of Sciences (India)
K P Santhosh; R K Biju
2009-04-01
Based on the concept of cold valley in fission and fusion, the radioactive decay of superheavy280−314116 nuclei was studied taking Coulomb and proximity potentials as the interacting barrier. It is found that the inclusion of proximity potential does not change the position of minima but minima become deeper which agrees with the earlier findings of Gupta and co-workers. In addition to alpha particle minima, the other deepest minima occur for 8Be, 12,14C clusters. In the fission region two deep regions are found each consisting of several comparable minima, the first region centred on 208Pb and the second is around 132Sn. The cluster decay half-lives and other characteristics are computed for various clusters ranging from alpha particle to 70Ni. The computed half-lives for alpha decay match with the experimental values and with the values calculated using Viola–Seaborg–Sobiczewski (VSS) systematic. The plots connecting computed values and half-lives against neutron number of daughter nuclei were studied for different clusters and it is found that the next neutron shell closures occur at = 162, 172 and 184. Isotopic and isobaric mass parabolas are studied for various cluster emissions and minima of parabola indicate neutron shell closure at = 162, 184 and proton shell closure at = 114. Our study shows that $^{276}_{162}$114 is the deformed doubly magic and $^{298}_{184}$114 is the spherical doubly magic nuclei.
The formation and decay of superheavy nuclei produced in sup 4 sup 8 Ca-induced reactions
Kumar, S; Gupta, R K; Münzenberg, G; Scheid, W
2003-01-01
The formation of superheavy nuclei in sup 4 sup 8 Ca+ sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 2 sup , sup 2 sup 4 sup 4 Pu and sup 2 sup 4 sup 8 Cm reactions and their subsequent decay are studied within the quantum mechanical fragmentation theory (QMFT) and the QMFT-based preformed cluster decay model (PCM) of Gupta and collaborators. According to QMFT, all these sup 4 sup 8 Ca-induced reactions are cold fusion reactions with relative excitation energies larger than those for the Pb-induced cold fusion reactions and smaller than those for the lighter beam, i.e. Mg, Si or S-induced hot fusion reactions. The same reactions were first suggested by Gupta et al in 1977 on the basis of QMFT, and this study re-establishes the same result. In fact, for such heavy isotopes of Z = 110 to 116, sup 5 sup 0 Ca is shown to be a better beam for cold fusion, but sup 5 sup 0 Ca is a radioactive nucleus. The alpha-decay half-lives of these nuclei after 3n and/or 4n evaporations, i.e. of the evaporation resi...
Fostering Scientific Literacy: Establishing Social Relevance via the Grand Challenges
Lyford, M. E.; Myers, J. D.; Buss, A.
2010-12-01
distinct advantages. First, it defines an enduring and meaningful rationale for society to invest resources in educational programs that promote scientific literacy. Second, it provides an educational context designed to engage individuals and motivate them to learn. Third, the nature of grand challenges provides mechanisms for addressing other affective barriers to individual learning that are commonly associated with controversial science-societal issues. Fourth, a grand challenge approach provides a framework to identify the concepts and processes of science a scientifically literate person should understand. Based on our experiences, we propose grand challenge science literacy (GCSL) courses or curricula are based on two primary foundations: the nature of science and the unifying concepts of science. Complementing this foundation is the science necessary to understand the grand challenge. To illustrate how science can contribute to crafting a just, equitable and sustainable solution, a GCSL course must also incorporate non-STEM perspectives, e.g. economics, politics. Finally, the personal perspectives learners bring to the classroom must be explicitly considered throughout the course.
Energy Technology Data Exchange (ETDEWEB)
Armbruster, P.; Agarwal, Y.K.; Bruechle, W.; Bruegger, M.; Dufour, J.P.; Gaggeler, H.; Hessberger, F.P.; Hofmann, S.; Lemmertz, P.; Muenzenberg, G.; Poppensieker, K.; Reisdorf, W.; Schadel, M.; Schmidt, K.; Schneider, J.H.R.; Schneider, W.F.W.; Suemmerer, K.; Vermeulen, D.; Wirth, a.G.; Ghiorso, A.; Gregorich, K.E.; Lee, D.; Leino, M.; Moody, K.J.; Seaborg, G.T.; Welch, R.B.; Wilmarth, P.; Yashita, S.; Frink, C.; Greulich, N.; Herrmann, G.; Hickmann, U.; Hildebrand, N.; Kratz, J.V.; Trautman, N.; Fowler, M.M.; Hoffman, D.C.; Daniels, W.R.; von Gunten, H.R.; Dornhoefer, H.
1985-02-04
A search for superheavy elements was made in bombardments of /sup 248/Cm with /sup 48/Ca ions performed at projectile energies close to the interaction barrier in order to keep the excitation energy of the compound nucleus Z = 116, A = 296 as low as possible. No evidence for superheavy nuclei was obtained in a half-life region from 1 ..mu..s to 10 yr with a production cross section greater than 10/sup -34/ to 10/sup -35/ cm/sup 2/. .AE
Prospects for Yukawa Unified SO(10) SUSY GUTs at the CERN LHC
Baer, Howard; Sekmen, Sezen; Summy, Heaya
2008-01-01
The requirement of t-b-\\tau Yukawa coupling unification is common in simple grand unified models based on the gauge group SO(10), and it also places a severe constraint on the expected spectrum of superpartners. For Yukawa-unified models with \\mu >0, the spectrum is characterized by three mass scales: {\\it i}). first and second generation scalars in the multi-TeV range, {\\it ii}). third generation scalars, \\mu and m_A in the few-TeV range and {\\it iii}). gluinos in the \\sim 350-500 GeV range with chargino masses around 100-160 GeV. In such a scenario, gluino pair production should occur at large rates at the CERN LHC, followed by gluino three-body decays into neutralinos or charginos. Discovery of Yukawa-unified SUSY at the LHC should hence be possible with only 1 fb^{-1} of integrated luminosity, by tagging multi-jet events with 2--3 isolated leptons, without relying on missing E_T. A characteristic dilepton mass edge should easily be apparent above Standard Model background. Combining dileptons with b-jets,...
Prospects of a Unified Management System
DEFF Research Database (Denmark)
Jørgensen, Tine Herreborg; Simonsen, Gorm
2002-01-01
In this article, the trend among management systems towards a common structure and the inclusion of additional areas of corporate concern (quality, environment, occupational health and safety and social responsibility) is outlined. The article suggests that a large part of the work associated...... that the company could wish to include in their management system and possibly have certified. It is estimated that such a unified management system would contribute to synergy between the activities related to each area of concern, resulting in a more careful and efficient treatment of the increasing number...... with implementing and maintaining standardised management systems can be rationalised by developing a ?unified system?. The unified system is proposed to consist of a common basic standard of general managerial methodology expandable with supplements, which are related to the specific areas of concern...
Spherical collapse for unified dark matter models
Caramês, Thiago R P; Velten, Hermano E S
2014-01-01
We study the non-linear spherical "top hat" collapse for Chaplygin and viscous unified cosmologies. The term unified refers to models where dark energy and dark matter are replaced by one single component. For the generalized Chaplygin gas (GCG) we extend previous results of [R. A. A. Fernandes {\\it et al}. Physical Review D 85, 083501 (2012)]. We discuss the differences at non-linear level between the GCG with $\\alpha=0$ and the $\\Lambda$CDM model. We show that both are indeed different. The bulk viscous model which differs from the GCG due to the existence of non-adiabatic perturbations is also studied. In this case, the clustering process is in general suppressed and the viable parameter space of the viscous model that accelerates the background expansion does not lead to collapsed structures. This result challenges the viability of unified viscous models.
A Unified Approach to Generalized Stirling Functions
Institute of Scientific and Technical Information of China (English)
Tianxiao HE
2012-01-01
Here presented is a unified approach to generalized Stirling functions by using generalized factorial functions,k-Gamma functions,generalized divided difference,and the unified expression of Stirling numbers defined in[16].Previous well-known Stirling functions introduced by Butzer and Hauss[4],Butzer,Kilbas,and Trujilloet[6]and others are included as particular cases of our generalization.Some basic properties related to our general pattern such as their recursive relations,generating functions,and asymptotic properties are discussed,which extend the corresponding results about the Stirling numbers shown in[21]to the defined Stirling functions.
Directory of Open Access Journals (Sweden)
Julio Premat
2011-07-01
Full Text Available Este texto, borrador de un trabajo más amplio, pretende despejar algunas pistas de lectura de La grande, en tanto que paradójico final de la producción de Saer. Digo “paradójico” porque puede tomársela como una novela de comienzo o de origen : de un volver a empezar, en todos los sentidos del término. En esa perspectiva podrían estudiarse algunos núcleos temáticos (como el retorno o el recuerdo de cara a la construcción del texto, a la relación planteada con la tradición y a la singular historia de su escritura (y al material genético que rodea y completa esta novela a la vez inacabada y póstuma. En esta intervención, la idea es la de comentar tres textos, escenas o frases del texto, y a partir de allí esbozar pistas para un estudio que está en ciernes.Première ébauche d’un travail de plus d’ampleur, ce texte vise à éclairer quelques pistes de lecture de La grande, en tant que fin paradoxale de la production de Saer. Je dis « paradoxale » parce que l’on peut considérer cette œuvre comme un roman des commencements ou des origines : comme un retour aux débuts, dans tous les sens du terme. Dans cette perspective, plusieurs nœuds thématiques (comme le retour ou le souvenir pourraient être étudiés en relation à la construction du texte, à la relation qui s’établit avec la tradition et à la singulière histoire de son écriture (et au matériau génétique qui entoure et complète ce roman, à la fois inachevé et posthume. Il sera question ici de commenter trois textes, scènes ou phrases du texte, et d’ébaucher à partir de là quelques pistes pour une étude à l’état naissant.The objective of this text, a draft for a broader work, is to outline some reading clues for La grande, inasmuch as it constitutes a paradoxical ending of Saer’s production. I say “paradoxical” because we can consider this work a novel of beginnings or of origins: a return to the beginning, in every meaning of the
Grand Unification in Higher Dimensions
Hall, L J; Hall, Lawrence J.; Nomura, Yasunori
2003-01-01
We have recently proposed an alternative picture for the physics at the scale of gauge coupling unification, where the unified symmetry is realized in higher dimensions but is broken locally by a symmetry breaking defect. Gauge coupling unification, the quantum numbers of quarks and leptons and the longevity of the proton arise as phenomena of the symmetrical bulk, while the lightness of the Higgs doublets and the masses of the light quarks and leptons probe the symmetry breaking defect. Moreover, the framework is extremely predictive if the effective higher dimensional theory is valid over a large energy interval up to the scale of strong coupling. Precise agreement with experiments is obtained in the simplest theory --- SU(5) in five dimensions with two Higgs multiplets propagating in the bulk. The weak mixing angle is predicted to be sin^2theta_w = 0.2313 \\pm 0.0004, which fits the data with extraordinary accuracy. The compactification scale and the strong coupling scale are determined to be M_c \\simeq 5 x...
The Bottom Mass Prediction in Supersymmetric Grand Unification; Uncertainties and Constraints
Langacker, P; Langacker, Paul; Polonsky, Nir
1994-01-01
Grand unified theories often predict unification of Yukawa couplings (e.g., $h_{b} = h_{\\tau}$), and thus certain relations among fermion masses. The latter can distinguish these from models that predict only coupling constant unification. The implications of Yukawa couplings of the heavy-family in the supersymmetric extension of the standard model (when embedded in a GUT) are discussed. In particular, uncertainties associated with $m_{t}$ and $m_{b}$, threshold corrections at the low-scale, and threshold and nonrenormalizable-operator corrections associated with a grand-unified sector at the high-scale are parametrized and estimated. The implication of these and of the correlation between $m_{t}$ and the prediction for $\\alpha_{s}$ are discussed. Constraints on the $\\tan\\beta$ range in such models and an upper bound on the $t$-quark pole mass are given and are shown to be affected by the $\\alpha_{s}-m_{t}$ correlation. Constraints on the low-scale thresholds are found to be weakened by uncertainties associat...
Militari italiani e grande guerra
Directory of Open Access Journals (Sweden)
Emilio Franzina
2015-01-01
Full Text Available Il saggio verte su alcuni aspetti dei fenomeni immigratori che si collegano alla genesi e alla tenuta dei sensi di appartenenza etnica e nazionale. Accanto alla progressiva rimozione dei vecchi meccanismi di acculturazione linguistica, che scalzano, ove posseduto in partenza, l’italiano procurando la sua sostituzione progressiva –e in parte fisiologica– con il castigliano si assiste in America, per integrazione, anche al declino dell’“italianità politica”. Un momento di svolta prima del definitivo affermarsi di tale processo di “argentinizzazione” fu rappresentato però dalla congiuntura della grande guerra. Il suo deflagrare, infatti, coincise con il momento di massima espansione (non solo a Buenos Aires della presenza immigratoria straniera e di quella italiana in particolare. Diversamente da quanto succederà più tardi con il secondo conflitto mondiale, dopo quasi vent’anni però di declino o di arresto dei flussi in entrata, tra il 1914 e il 1918 si poté assistere infatti a una concreta forma di doppio patriottismo o di duplice lealtà politico-istituzionale da parte dei gruppi etnici immigratori all’interno dei quali si generarono scelte come la decisione presa da molti dei loro componenti di arruolarsi sotto le bandiere delle “antiche patrie” per raggiungere i campi di battaglia europei.
Toward a Unified View of Cognitive Control
Salvucci, Dario D.; Taatgen, Niels A.
2011-01-01
Allen Newell (1973) once observed that psychology researchers were playing "twenty questions with nature," carving up human cognition into hundreds of individual phenomena but shying away from the difficult task of integrating these phenomena with unifying theories. We argue that research on cogniti
Unified Modern Mathematics, Course 3, Teachers Commentary.
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
This commentary is to be used with "Unified Modern Mathematics, Course III." Statements of specific purposes and goals of each section of every chapter of Course III are included in the "Commentary." Also included are suggestions for teaching concepts presented in each section; time estimates for each section; suggested instructional aids for…
Unified Modern Mathematics, Course 1, Teachers Commentary.
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
This commentary is designed for use with "Unified Modern Mathematics, Course I," Parts 1 and 2. Included in the commentary are statements of the specific purposes and goals of each section of every chapter, suggestions for teaching the concepts presented in each section, time estimates for each section, suggested instructional aids for presenting…
Unified Modern Mathematics, Course 2, Teachers Commentary.
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
This commentary is designed for use with "Unified Modern Mathematics, Course II," Parts 1 and 2. As in the commentary for "Course I," statements of the specific purposes and goals of each section of every chapter are presented. Also included are suggestions for teaching the concepts presented in each section, time estimates for each section,…
Unifying Quantitative Methodology in Social Research.
Willson, Victor L.
A case is made for representing quantitative methods in use in the social sciences within a unified framework based on structural equation methodology (SEM). Most of the methods now in use are shown in their SEM representation. It is suggested that the visual and verbal representations of SEM are of most use, while specific estimation and…
A Unified Introduction to Ordinary Differential Equations
Lutzer, Carl V.
2006-01-01
This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)
Toward a Unified Theory of Reading
Sadoski, Mark; Paivio, Allan
2007-01-01
Despite nearly 40 years of scientific theorizing about reading, the field remains fragmented with little progress toward unification. In this article, we (a) emphasize the privileged position of unified theories in all science, (b) compare the growth of theory in cognitive science and reading, (c) identify the phenomenal domain of a unified…
Unified classical path theories of pressure broadening.
Bottcher, C.
1971-01-01
Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.
A unified approach to Fierz identities
Babalic, E. M.; Coman, I. A.; Lazaroiu, C. I.
2013-11-01
We summarize a unified and computationally efficient treatment of Fierz identities for form-valued pinor bilinears in various dimensions and signatures, using concepts and techniques borrowed from a certain approach to spinors known as "geometric algebra". Our formulation displays the real, complex and quaternionic structures in a conceptually clear manner, which is moreover amenable to implementation in various symbolic computation systems.
A unifying approach to CoDesign
Achterop, S; Milligan, P; Coor, P
1998-01-01
Basic arguments are described to create a unified CoDesign environment. A unique feature is the use of a single language to describe systems. Different subsets describe hardware, both structure and behavior, as well a software. It vividly shows that software and hardware are much more alike than usu
A Unifying Curriculum for Museum-Schools
Povis, Kaleen E.
2011-01-01
There are over two dozen schools in the United States with the word "museum" in their names. However, the philosophy and pedagogy that tie these schools together is unclear. A consistent definition, criteria for classification, and a unifying curriculum to guide museum- schools is lacking. Yet, museum-schools continue to open across the country.…
A Unifying View of Computational Electrochemistry
Bieniasz, L. K.
2007-11-01
The current state of development of Computational Electrochemistry is briefly discussed, and a unifying view of the field is proposed, with the aim of stimulating a communication between, and unity of, computationally oriented electrochemists involved in diverse kinds of computations. The most recent work of the author, pertaining to the field, is also reviewed.
A unified stability property in spin glasses
Panchenko, Dmitry
2011-01-01
Gibbs' measures in the Sherrington-Kirkpatrick type models satisfy two asymptotic stability properties, the Aizenman-Contucci stochastic stability and the Ghirlanda-Guerra identities, which play a fundamental role in our current understanding of these models. In this paper we show that one can combine these two properties very naturally into one unified stability property.
Computational Unified Set Theory and Application
Institute of Scientific and Technical Information of China (English)
Zhang Jiang; Li Xuewei; He Zhongxiong
2006-01-01
The computational unified set model (CUSM) as the latest progress of Unified Set theory is introduced in this paper. The model combines unified set theory, information granule, complex adaptive system and cognitive science to present a new approach to simulate the cognition of human beings that can be viewed as the evolutionary process through the automatic learning from data sets. The information granule, which is the unit of cognition in CUSM, can be synthesized and created by the basic operators. It also can form the granule network by linking with other granules. With the learning from database, the system can evolve under the pressure of selection. As the adaptive results, fuzzy sets, vague sets and rough sets, etc can emerge out spontaneously. The CUSM answers the question of the origin of the uncertainties in thinking process described by unified set theory, that is due to the emergent properties of a holistic system of multiple cognitive units. And also the CUSM creates a dynamic model that can adapt to the environment. As a result, the "closed world" limitation in machine learning may be broken. The paper also discusses the applications of CUSM in rules discovery, problem solving, clustering analysis and data mining etc. The main features of the model comparing with the classical approaches toward those problems are its adaptability, flexibility and robustness but not accuracy.
Grand unification in higher dimensions
Hall, Lawrence J.; Nomura, Yasunori
2003-07-01
We have recently proposed an alternative picture for the physics at the scale of gauge coupling unification, where the unified symmetry is realized in higher dimensions but is broken locally by a symmetry breaking defect. Gauge coupling unification, the quantum numbers of quarks and leptons and the longevity of the proton arise as phenomena of the symmetrical bulk, while the lightness of the Higgs doublets and the masses of the light quarks and leptons probe the symmetry breaking defect. Moreover, the framework is extremely predictive if the effective higher dimensional theory is valid over a large energy interval up to the scale of strong coupling. Precise agreement with experiments is obtained in the simplest theory— SU(5) in five dimensions with two Higgs multiplets propagating in the bulk. The weak mixing angle is predicted to be sin 2θw=0.2313±0.0004, which fits the data with extraordinary accuracy. The compactification scale and the strong coupling scale are determined to be M c≃5×10 14 GeV and M s≃1×10 17 GeV, respectively. Proton decay with a lifetime of order 10 34 years is expected with a variety of final states such as e+π0, and several aspects of flavor, including large neutrino mixing angles, are understood by the geometrical locations of the matter fields. When combined with a particular supersymmetry breaking mechanism, the theory predicts large lepton flavor violating μ→ e and τ→ μ transitions, with all superpartner masses determined by only two free parameters. The predicted value of the bottom quark mass from Yukawa unification agrees well with the data. This paper is mainly a review of the work presented in hep-ph/0103125, hep-ph/0111068, and hep-ph/0205067 [1-3].
Directory of Open Access Journals (Sweden)
Nicanor R. S. Pinto
2009-04-01
Full Text Available O processo de (reconstrução do SUS no Município de São Paulo, Brasil, foi analisado, no período de 2001- 2008, por meio de estudo de caso, utilizando-se distintas fontes: documentos; entrevistas com informantes-chave e observação participante. Os conceitos de política de saúde e de gestão em saúde foram utilizados na qualidade de categorias analíticas. Foram selecionadas e analisadas apenas políticas priorizadas pela gestão iniciada em 2001 e que tiveram sustentação até 2008. Discutem-se desafios para a (reconstrução do SUS no município relacionados com o contexto político-institucional e com mudanças de estrutura implementadas. As reorganizações da Secretaria Municipal de Saúde de São Paulo propiciaram a constituição e manutenção de dois subsistemas municipais, um hospitalar e outro ambulatorial. Negociações entre os governos municipal, estadual e federal não avançaram para que o município assumisse a gestão de fato de todo sistema de saúde, constatando-se a coexistência de três subsistemas públicos de saúde paralelos: dois municipais e um estadual. A sustentação política do Programa Saúde da Família foi associada ao fato de que esse programa não se constituiu como marca da primeira gestão municipal e, ainda, de ser política prioritária e estimulada pelo governo federal.The (reconstruction of the Unified National Health System (SUS in the Municipality of São Paulo, Brazil, from 2001 to 2008 was analyzed by means of a case study, using different sources: documents, interviews with key informants, and participant observation. Health policy and health management were used as the analytical categories. The study selected and analyzed only the policies that were prioritized by the administration that took office in 2001 and that were maintained until 2008. The article discusses challenges for (reconstruction of the SUS in São Paulo, related to the political and institutional context and including
Rio Grande Channel, El Paso Area, 1852
Earth Data Analysis Center, University of New Mexico — Historical map of Rio Grande river between Texas and Mexico. U.S.-Mexican Boundary Survey.The original map is a Xerox of a Photolithographic Copy of Salazar...
Waterfowl Evaluation- Lake Ophelia / Grand Cote NWR's
US Fish and Wildlife Service, Department of the Interior — This memo describes the waterfowl evaluation on Lake Ophelia and Grand Cote National Wildlife Refuges. A team of multiagency biologist overviewed the waterfowl...
Las cinco grandes dimensiones de la personalidad
Directory of Open Access Journals (Sweden)
Jan ter Laak
1996-12-01
Full Text Available Este artículo revisa las distintas posiciones teóricas sobre las cinco grandes dimensiones de la personalidad, mostrando las semejanzas y diferencias entre las posturas teóricas. Esta contribución presenta lo siguiente: (a la génesis del contenido y la estructura de las cinco dimensiones; (b la fortaleza de las cinco dimensiones; (e la relación de las cinco grandes dimensiones con otros constructos de personalidad; (d discute el valor predictivo de las puntuaciones del perfil de las cinco dimensiones para criterios pertinentes; (e analiza el estatus teórico de las cinco dimensiones; (f discute críticas históricas sobre las cinco grandes dimensiones y se formulan respuestas a estas críticas; (g hace conjeturas para el futuro de las cinco grandes dimensiones; y (h concluye con algunas conclusiones y comentarios.
Rio Grande Channel, Guadalupe Area, 1852
Earth Data Analysis Center, University of New Mexico — Historical map of Rio Grande river between Texas and Mexico. U.S.- Mexican Boundary Survey. The original map is a xerox of a map entitled Boundary between the United...
A Grand Gathering of Storytelling Artists
Institute of Scientific and Technical Information of China (English)
1998-01-01
The grand storytelling fair held in Majie Township, Hebei Province every year, has a history of more than 400 years. ● Most of the stories used to be based on ancient legends and folk stories. Nowadays, there are also many newly-written pieces about people’s lives in modern times. ● Every year, the grand storytelling performance attracts hundreds and thousands of locals and visitors from several neigh-boring provinces.
Energy Technology Data Exchange (ETDEWEB)
1981-01-01
Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base. (GHT)
UNIFIED THEORETICAL MOMENT EXPRESSIONS FOR ELUTION CHROMATOGRAPHY AND FRONTAL CHROMATOGRAPHY
Institute of Scientific and Technical Information of China (English)
YANGGengliang; TAOZuyi
1992-01-01
The unified theoretical moment expressions for elution chromatography and frontal chromatography when the sorption process is described by a linear model were derived. The moment expressions derived by previous authors can be obtained from these unified theoretical moment expressions. In this paper, a mathematical analysis has been carried out so as to set up a unified theoretical basis for elution and frontal chromatography.
Schädel, Matthias
2016-12-01
Multi-nucleon transfer reactions, frequently termed deep-inelastic, between heavy-ion projectiles and actinide targets provide prospects to synthesize unknown isotopes of heavy actinides and superheavy elements with neutron numbers beyond present limits. The 238U on 238U reaction, which revealed essential aspects of those nuclear reactions leading to surviving heavy nuclides, mainly produced in 3n and 4n evaporation channels, is discussed in detail. Positions and widths of isotope distributions are compared. It is shown, as a general rule, that cross sections peak at irradiation energies about 10% above the Coulomb barrier. Heavy target nuclei are essential for maximizing cross sections. Experimental results from the 238U on 248Cm reaction, including empirical extrapolations, are compared with theoretical model calculations predicting relatively high cross sections for neutron-rich nuclei. Experiments to test the validity of such predictions are proposed. Comparisons between rather symmetric heavy-ion reactions like 238U on 248Cm (or heavier targets up to 254Es) with very asymmetric ones like 18O on 254Es reveal that the ones with 238U as a projectile have the highest potential in the superheavy element region while the latter ones can be advantageous for the synthesis of heavy actinide isotopes. Concepts for highly efficient recoil separators designed for transfer products are presented.
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K. P.; Sabina, S. [Kannur University, School of Pure and Applied Physics (India)
2012-08-15
Cold reaction valleys in the radioactive decay of superheavy nuclei {sup 286}112, {sup 292}114, and {sup 296}116 are studied taking Coulomb and Proximity Potential as the interacting barrier. It is found that in addition to alpha particle, {sup 8}Be, {sup 14}C, {sup 28}Mg, {sup 34}Si, {sup 50}Ca, etc. are optimal cases of cluster radioactivity since they lie in the cold valleys. Two other regions of deep minima centered on {sup 208}Pb and {sup 132}Sn are also found. Within our Coulomb and Proximity Potential Model half-life times and other characteristics such as barrier penetrability, decay constant for clusters ranging from alpha particle to {sup 68}Ni are calculated. The computed alpha half-lives match with the values calculated using Viola-Seaborg-Sobiczewski systematics. The clusters {sup 8}Be and {sup 14}C are found to be most probable for emission with T{sub 1/2} < 10{sup 30} s. The alpha-decay chains of the three superheavy nuclei are also studied. The computed alpha-decay half-lives are compared with the values predicted by Generalized Liquid Drop Model and they are found to match reasonably well.
Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.
2012-12-01
By using the dinuclear system (DNS) model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF) and the complete fusion (CF) process up to formation of the compound nucleus (CN) having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER) by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF) by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 - 126 range and, eventually, also to heaviest nuclei, are discussed.
Sharma, M M; Münzenberg, G
2004-01-01
We have investigated properties of $\\alpha$-decay chains of recently produced superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with inclusion of the vector self-coupling of $\\omega$ meson in the framework of the relativistic mean-field theory. It is shown that the experimentally observed alpha-decay energies and half-lives are reproduced well by this Lagrangian model. Further calculations for the heavier elements with Z=117-125 show that these nuclei are superdeformed with a prolate shape in the ground state. A superdeformed shell-closure at Z=118 lends an additional binding and an extra stability to nuclei in this region. Consequently, it is predicted that the corresponding $Q_\\alpha$ values provide $\\alpha$-decay half-lives for heavier superheavy nuclei within the experimentally feasible conditions. The results are compared with those of macroscopic-microscopic approaches. A perspective of the difference in shell effects amongst various approaches is presented and its consequences o...
Directory of Open Access Journals (Sweden)
Romaniuk M.
2012-12-01
Full Text Available By using the dinuclear system (DNS model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF and the complete fusion (CF process up to formation of the compound nucleus (CN having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 − 126 range and, eventually, also to heaviest nuclei, are discussed.
Different Views of the Grand Canyon
Elders, Wilfred A.
Each year the spectacular scenery of the Grand Canyon of Arizona awes its more than 4,000,000 visitors. Just as its enormous scale dwarfs our human sense of space, its geology also dwarfs our human sense of time. Perhaps here, more than anywhere else on the planet, we can experience a sense of ``Deep Time.'' The colorful rocks exposed in the vertical walls of the canyon display a span of 1.8 billion years of Earth's history [Beus and Morales, 2003]. But wait! There is a different view! According to Vail [2003], this time span is only 6,000 years and the Grand Canyon and its rocks are a record of the Biblical 6 days of creation and Noah's flood. During a visit to Grand Canyon, in August 2003, I learned that Vail's book, Grand Canyon: A Different View, is being sold within the National Park. The author and compiler of Grand Canyon: A Different View is a Colorado River guide who is well acquainted with the Grand Canyon at river level. He has produced a book with an attractive layout and beautiful photographs. The book is remarkable because it has 23 co-authors, all male, who comprise a veritable ``Who's Who'' in creationism. For example, Henry Morris and John Whitcomb, the authors of the seminal young Earth creationist text, The Genesis Flood [Whitcomb and Morris, 1961], each contribute a brief introduction. Each chapter of Grand Canyon: A Different View begins with an overview by Vail, followed by brief comments by several contributors that ``have been peer reviewed to ensure a consistent and Biblical perspective.'' This perspective is strict Biblical literalism.
Towards a unified medical lexicon for French.
Zweigenbaum, Pierre; Baud, Robert; Burgun, Anita; Namer, Fiammetta; Jarrousse, Eric; Grabar, Natalia; Ruch, Patrick; Le Duff, Franck; Thirion, Benoît; Darmoni, Stéfan
2003-01-01
Medical Informatics has a constant need for basic Medical Language Processing tasks, e.g., for coding into controlled vocabularies, free text indexing and information retrieval. Most of these tasks involve term matching and rely on lexical resources: lists of words with attached information, including inflected forms and derived words, etc. Such resources are publicly available for the English language with the UMLS Specialist Lexicon, but not in other languages. For the French language, several teams have worked on the subject and built local lexical resources. The goal of the present work is to pool and unify these resources and to add extensively to them by exploiting medical terminologies and corpora, resulting in a unified medical lexicon for French (UMLF). This paper exposes the issues raised by such an objective, describes the methods on which the project relies and illustrates them with experimental results.
UMLF: a unified medical lexicon for French.
Zweigenbaum, Pierre; Baud, Robert; Burgun, Anita; Namer, Fiammetta; Jarrousse, Eric; Grabar, Natalia; Ruch, Patrick; Le Duff, Franck; Forget, Jean-François; Douyère, Magaly; Darmoni, Stéfan
2005-03-01
Medical Informatics has a constant need for basic medical language processing tasks, e.g. for coding into controlled vocabularies, free text indexing and information retrieval. Most of these tasks involve term matching and rely on lexical resources: lists of words with attached information, including inflected forms and derived words, etc. Such resources are publicly available for the English language with the UMLS Specialist Lexicon, but not in other languages. For the French language, several teams have worked on the subject and built local lexical resources. The goal of the present work is to pool and unify these resources and to add extensively to them by exploiting medical terminologies and corpora, resulting in a unified medical lexicon for French (UMLF). This paper exposes the issues raised by such an objective, describes the methods on which the project relies and illustrates them with experimental results.
Unified models of the cosmological dark sector
Energy Technology Data Exchange (ETDEWEB)
Zimdahl, W; Velten, H E S [Universidade Federal do EspIrito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, EspIrito Santo (Brazil); Hipolito-Ricaldi, W S, E-mail: winfried.zimdahl@pq.cnpq.br, E-mail: hipolito@ceunes.ufes.br, E-mail: velten@cce.ufes.br [Universidade Federal do EspIrito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil)
2011-09-22
We model the cosmological substratum by a viscous fluid that is supposed to provide a unified description of the dark sector and pressureless baryonic matter. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically non-adiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0} {approx} -0.53 of the deceleration parameter. Moreover, different from other approaches, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.
A survey of unified constitutive theories
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.; Walker, K. P.
1985-01-01
The state of the art of time temperature dependent elastic viscoplastic constitutive theories which are based on the unified approach werre assessed. This class of constitutive theories is characterized by the use of kinetic equations and internal variables with appropriate evolutionary equations for treating all aspects of inelastic deformation including plasticity, creep, and stress relaxation. More than 10 such unified theories which are shown to satisfy the uniqueness and stability criteria imposed by Drucker's postulate and Ponter's inequalities are identified. The theories are compared for the types of flow law, kinetic equation, evolutionary equation of the internal variables, and treatment of temperature dependence. The similarities and differences of these theories are outlined in terms of mathematical formulations and illustrated by comparisons of theoretical calculations with experimental results which include monotonic stress-strain curves, cyclic hysteresis loops, creep and stress relaxation rates, and thermomechanical loops. Numerical methods used for integrating these stiff time temperature dependent constitutive equations are reviewed.
Can the laws of physics be unified ?
Langacker, Paul
2017-01-01
The standard model of particle physics describes our current understanding of nature's fundamental particles and their interactions, yet gaps remain. For example, it does not include a quantum theory of gravity, nor does it explain the existence of dark matter. Once complete, however, the standard model could provide a unified description of the very building blocks of the universe. Researchers have been chasing this dream for decades, and many wonder whether such a dream can ever be made a reality. Can the Laws of Physics Be Unified? is a short introduction to this exciting frontier of physics. The book is accessibly written for students and researchers across the sciences, and for scientifically minded general readers. Paul Langacker begins with an overview of the key breakthroughs that have shaped the standard model, and then describes the fundamental particles, their interactions, and their role in cosmology. He goes on to explain field theory, internal symmetries, Yang-Mills theories, strong and electro...
Multi-planed unified switching topologies
Energy Technology Data Exchange (ETDEWEB)
Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka
2017-07-04
An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.
Unified viscoplastic constitutive equations and their applications
Lindholm, U. S.
1987-01-01
Unified constitutive equations for time- and temperature-dependent metallic plastic deformation have been applied in FEM simulations of forming processes; increasingly powerful computational tools and physical models are being used to numerically model complex engineering problems. Once confidence has been gained through adequate verification, these numerical models will increasingly replace experimental models. Attention is presently given to the contributions made by physical metallurgy, continuum mechanics, and computational mechanics.
Implementation of a Unified DSP Coprocessor
Directory of Open Access Journals (Sweden)
2012-01-01
Full Text Available Utilizing the DFT, the DHT, the DCT or the DST is an obvious choice in signal processing domain. This paper describes the implementation of a unified coprocessor of transform length '8' for the synchronous design in XC3S1400AN-4FG484 FPGA device of Xilinx Company. The operating frequency of 20 MHz is achieved. The paper presents the trade-offs involved in designing the architecture, the design for performance issues and the possibilities for future development.
Unifying Theories in Isabelle/HOL
Feliachi, Abderrahmane; Gaudel, Marie-Claude; Wolff, Burkhart
In this paper, we present various extensions of Isabelle/HOL by theories that are essential for several formal methods. First, we explain how we have developed an Isabelle/HOL theory for a part of the Unifying Theories of Programming (UTP). It contains the theories of alphabetized relations and designs. Then we explain how we have encoded first the theory of reactive processes and then the UTP theory for CSP. Our work takes advantage of the rich existing logical core of HOL.
Towards a unified theory of reciprocity.
Rosas, Alejandro
2012-02-01
In a unified theory of human reciprocity, the strong and weak forms are similar because neither is biologically altruistic and both require normative motivation to support cooperation. However, strong reciprocity is necessary to support cooperation in public goods games. It involves inflicting costs on defectors; and though the costs for punishers are recouped, recouping costs requires complex institutions that would not have emerged if weak reciprocity had been enough.
Unifying Ancient and Modern Geometries Through Octonions
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent
2016-01-01
We show the first unified description of some of the oldest known geometries such as the Pappus’ theorem with more modern ones like Desargues' theorem, Monge's theorem and Ceva's theorem, through octonions, the highest normed division algebra in eight dimensions. We also show important applications in hadronic physics, giving a full description of the algebra of color applicable to quark physics, and comment on further applications.
Unified sensor management in unknown dynamic clutter
Mahler, Ronald; El-Fallah, Adel
2010-04-01
In recent years the first author has developed a unified, computationally tractable approach to multisensor-multitarget sensor management. This approach consists of closed-loop recursion of a PHD or CPHD filter with maximization of a "natural" sensor management objective function called PENT (posterior expected number of targets). In this paper we extend this approach so that it can be used in unknown, dynamic clutter backgrounds.
Unifying physics of accelerators, lasers and plasma
Seryi, Andrei
2015-01-01
Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.
A unified architecture of transcriptional regulatory elements
DEFF Research Database (Denmark)
Andersson, Robin; Sandelin, Albin Gustav; Danko, Charles G.
2015-01-01
Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However...... and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements....
Unified QCD picture of hard diffraction
Navelet, H
2001-01-01
Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bjorken} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. In particular, we show that all three approaches give an unique and mutually compatible formula for the proton diffractive structure functions incorporating perturbative and non perturbative QCD features.
Unified Models of Inflation and Quintessence
González, A; Quirós, I; Gonzalez, Andro; Matos, Tonatiuh; Quiros, Israel
2004-01-01
We apply an extended version of the method developed in reference Int.J.Mod.Phys.D5(1996)71, to derive exact cosmological (flat) Friedmann-Robertson-Walker solutions in RS2 brane models with a perfect fluid of ordinary matter plus a scalar field fluid trapped on the brane. We found new exact solutions, that can serve to unify inflation and quintessence in a common theoretical framework.
Unified treatment of lifting atmospheric entry
Nachtsheim, P. R.; Lehman, L. L.
1980-01-01
This paper presents a unified treatment of the effect of lift on peak acceleration during atmospheric entry. Earlier studies were restricted to different regimes because of approximations invoked to solve the same transcendental equation. This paper shows the connection between the earlier studies by employing a general expression for the peak acceleration and obtains solutions to the transcendental equation without invoking the earlier approximations. Results are presented and compared with earlier studies where appropriate.
Image segmentation with a unified graphical model.
Zhang, Lei; Ji, Qiang
2010-08-01
We propose a unified graphical model that can represent both the causal and noncausal relationships among random variables and apply it to the image segmentation problem. Specifically, we first propose to employ Conditional Random Field (CRF) to model the spatial relationships among image superpixel regions and their measurements. We then introduce a multilayer Bayesian Network (BN) to model the causal dependencies that naturally exist among different image entities, including image regions, edges, and vertices. The CRF model and the BN model are then systematically and seamlessly combined through the theories of Factor Graph to form a unified probabilistic graphical model that captures the complex relationships among different image entities. Using the unified graphical model, image segmentation can be performed through a principled probabilistic inference. Experimental results on the Weizmann horse data set, on the VOC2006 cow data set, and on the MSRC2 multiclass data set demonstrate that our approach achieves favorable results compared to state-of-the-art approaches as well as those that use either the BN model or CRF model alone.
Unified strength theory and its applications
Yu, Mao-Hong
2004-01-01
This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...
Unifying theory for terrestrial research infrastructures
Mirtl, Michael
2016-04-01
The presentation will elaborate on basic steps needed for building a common theoretical base between Research Infrastructures focusing on terrestrial ecosystems. This theoretical base is needed for developing a better cooperation and integrating in the near future. An overview of different theories will be given and ways to a unifying approach explored. In the second step more practical implications of a theory-guided integration will be developed alongside the following guiding questions: • How do the existing and planned European environmental RIs map on a possible unifying theory on terrestrial ecosystems (covered structures and functions, scale; overlaps and gaps) • Can a unifying theory improve the consistent definition of RÍs scientific scope and focal science questions? • How could a division of tasks between RIs be organized in order to minimize parallel efforts? • Where concretely do existing and planned European environmental RIs need to interact to respond to overarching questions (top down component)? • What practical fora and mechanisms (across RIs) would be needed to bridge the gap between PI driven (bottom up) efforts and the centralistic RI design and operations?
Unified Gauge Field Theory and Topological Transitions
Patwardhan, A
2004-01-01
The search for a Unified description of all interactions has created many developments of mathematics and physics. The role of geometric effects in the Quantum Theory of particles and fields and spacetime has been an active topic of research. This paper attempts to obtain the conditions for a Unified Gauge Field Theory, including gravity. In the Yang Mills type of theories with compactifications from a 10 or 11 dimensional space to a spacetime of 4 dimensions, the Kaluza Klein and the Holonomy approach has been used. In the compactifications of Calabi Yau spaces and sub manifolds, the Euler number Topological Index is used to label the allowed states and the transitions. With a SU(2) or SL(2,C) connection for gravity and the U(1)*SU(2)*SU(3) or SU(5) gauge connection for the other interactions, a Unified gauge field theory is expressed in the 10 or 11 dimension space. Partition functions for the sum over all possible configurations of sub spaces labeled by the Euler number index and the Action for gauge and m...
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The unified solutions are presented for stresses and displacements around a circular tunnel subjected to a hydrostatic stress field.The rock mass is assumed to be elastic-brittle-plastic and governed by the Unified Strength Theory.The displacements are obtained accounting for three different definitions for elastic strains and different Young’s modulus in the plastic zone.The unified solutions obtained in this paper are especially versatile in reflecting the intermediate principal stress effect to different extents for different materials.The conventional solutions,based on the Mohr-Coulomb failure criterion and the Generalized Twin Shear Stress yield criterion,are special cases of the present unified solutions.The new unified solutions can compare with those computed by the latest generalized Hoek-Brown failure criterion.The results obtained demonstrate the importance of the intermediate principal stress influence for the stresses and displacements analysis.The effects of different definitions for elastic strains and different Young’s modulus in the plastic zone on the displacements are significant.
Unifying the Booch and OMT OO Development Methods Introduction to the Unified Method
Rumbaugh, James
1995-01-01
The Booch and OMT methods represent the two most mature and widely used approaches to object-oriented analysis and design.Since their introduction 6 years ago both have evolved and from other methods. This talk describes the unification of the Booch and OMT methods by Grady Booch and Jim Rumbaugh leading to the recent public release of over 100 pages of documentation describing the Unified Method models and notation.THE aUTHORS ARE NOW AWAITING PUBLIC FEEDBACK BEFORE COMPLETING A FINAL VERSION OF THE METHOD NEXT YEAR. Contents: The Drive to Unification - why and how it happened The Unified Metamodel - the formal description of the models The Unified Notation - the new notation based on Booch and OMT Future Work - open problems that we are working on Roadmap - how users can get involved
New aspects of flavour model building in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Spinrath, Martin
2010-05-19
We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan {beta}-enhanced threshold corrections which can be sizeable if tan {beta} is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y{sub {mu}}/y{sub s}=9/2 or 6 or y{sub {tau}}/y{sub b}=3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan {beta} where {theta}{sup u}{sub 13}={theta}{sup d}{sub 13}=0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases {delta}{sup u}{sub 12} and {delta}{sup d}{sub 12} and the right unitarity triangle angle {alpha} which suggests a simple phase structure for the quark mass matrices where
Las cinco grandes dimensiones de la personalidad
Jan ter Laak
1996-01-01
Este artículo revisa las distintas posiciones teóricas sobre las cinco grandes dimensiones de la personalidad, mostrando las semejanzas y diferencias entre las posturas teóricas. Esta contribución presenta lo siguiente: (a) la génesis del contenido y la estructura de las cinco dimensiones; (b) la fortaleza de las cinco dimensiones; (e) la relación de las cinco grandes dimensiones con otros constructos de personalidad; (d) discute el valor predictivo de las puntuaciones del perfil de las cinco...
Particle physics models of inflation in supergravity and grand unification
Energy Technology Data Exchange (ETDEWEB)
Kostka, Philipp Manuel
2010-12-03
In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the {eta}-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the {eta}-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the
Yukawa Unified Supersymmetric SO(10) Model Cosmology, Rare Decays and Collider Searches
Baer, Howard W; Díaz, M A; Ferrandis, J; Mercadante, P G; Quintana, P; Tata, Xerxes; Baer, Howard; Brhlik, Michal; Diaz, Marco A.; Ferrandis, Javier; Mercadante, Pedro; Quintana, Pam; Tata, Xerxes
2001-01-01
It has recently been pointed out that viable sparticle mass spectra can be generated in Yukawa unified SO(10) supersymmetric grand unified models consistent with radiative breaking of electroweak symmetry. Model solutions are obtained only if $\\tan\\beta \\sim 50$, $\\mu <0$ and positive $D$-term contributions to scalar masses from SO(10) gauge symmetry breaking are used. In this paper, we attempt to systematize the parameter space regions where solutions are obtained. We go on to calculate the relic density of neutralinos as a function of parameter space. No regions of the parameter space explored were actually cosmologically excluded, and very reasonable relic densities were found in much of parameter space. Direct neutralino detection rates could exceed 1 event/kg/day for a $^{73}$Ge detector, for low values of GUT scale gaugino mass $m_{1/2}$. We also calculate the branching fraction for $b\\to s \\gamma$ decays, and find that it is beyond the 95% CL experimental limits in much, but not all, of the paramete...
Bounce inflation in f (T ) cosmology: A unified inflaton-quintessence field
Bamba, Kazuharu; Nashed, G. G. L.; El Hanafy, W.; Ibraheem, Sh. K.
2016-10-01
We investigate a bounce inflation model with a graceful exit into the Friedmann-Robertson-Walker (FRW) decelerated Universe within f (T )-gravity framework, where T is the torsion scalar in the teleparallelism. We study the cosmic thermal evolution, the model predicts a supercold universe during the precontraction phase, which is consistent with the requirements of the slow-roll models, while it performs a reheating period by the end of the contraction with a maximum temperature just below the grand unified theory (GUT) temperature. However, it matches the radiation temperature of the hot big bang at later stages. The equation-of-state due to the effective gravitational sector suggests that our Universe is self-accelerated by teleparallel gravity. We assume the matter component to be a canonical scalar field. We obtain the scalar field potential that is induced by the f (T ) theory. The power spectrum of the model is nearly scale invariant. In addition, we show that the model unifies inflaton and quintessence fields in a single model. Also, we revisited the primordial fluctuations in f (T ) bounce cosmology, to study the fluctuations that are produced at the precontraction phase.
Grand Forks - East Grand Forks Urban Water Resources Study. Wastewater Management Appendix.
1981-07-01
denitrification or clinoptilolite ion exchange is required to meet the ammonia and total nitrogen levels. The effluent from these unit processes would be filtered...32 45 Dissolved Oxygen (mg/1) At Grand Forks 6.0 7.0 8.6 i0.0 12.1 At East Grand Forks 6.5 7.4 9.0 11.4 12.7 Ammonia Nitrogen (mg/i) At Grand Forks...Concentration (mg/i) Total Solids 700 Dissolved Solids 500 Suspended Solids 200 BOD5 200 COD 500 Total Nitrogen 40 Organic Nitrogen 15 Ammonia Nitrogen
Leading gravitational corrections and a unified universe
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...
Principles for a Unified Picture of Fermions
Nishimura, Kimihide
2012-01-01
The principles and conceptual foundations required for a unified picture of fermions are clarified, which in turn suggest that the standard theory may be reducible in a far simpler form. The resultant three generation model describes quarks and leptons as quasi excitations of a single chiral doublet, while electromagnetic and strong interactions as secondary interactions mediated by Nambu-Goldstone bosons originated from spontaneous violations of global SU(2) and Lorentz symmetries. The model also provides an alternative scenario for baryon and lepton asymmetries of the Universe.
TOWARDS A UNIFIED VIEW OF METAHEURISTICS
Directory of Open Access Journals (Sweden)
El-Ghazali Talbi
2013-02-01
Full Text Available This talk provides a complete background on metaheuristics and presents in a unified view the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. The key search components of metaheuristics are considered as a toolbox for: - Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems for optimization problems. - Designing efficient metaheuristics for multi-objective optimization problems. - Designing hybrid, parallel and distributed metaheuristics. - Implementing metaheuristics on sequential and parallel machines.
Unified Framework for Finite Element Assembly
Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160
2012-01-01
At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.
Constraints on dissipative unified dark matter
Velten, Hermano
2011-01-01
Modern cosmology suggests that the Universe contains two dark components -- dark matter and dark energy -- both unkown in laboratory physics and both lacking direct evidence. Alternatively, a unified dark sector, described by a single fluid, has been proposed. Dissipation is a common phenomenon in nature and it thus seems natural to consider models dominated by a viscous dark fluid. We focus on the study of bulk viscosity, as isotropy and homogeneity at large scales implies the suppression of shear viscosity, heat flow and diffusion. The generic ansatz $\\xi \\propto \\rho^{\
Evolution of OO Methods: the unified case
Directory of Open Access Journals (Sweden)
Matti Rossi
1997-05-01
Full Text Available This paper takes an evaluative look into OO methods and especially the evolution of the new snified method from its ancestors, OMT and OODA. The paper ries to classify the components of the earlier ethods and identify the parts that have been taken into the Unified ethod. The research applies the method metrics approach. For the sake of compactness we limit ourselves to the class diagram technique of all methods. We make observations about the number of concepts in each variation and show how the metrics can be used to analyse the changes in the techniques.
Marinov, A; Kolb, D; Pape, A; Kashiv, Y; Brandt, R; Gentry, R V; Miller, H W
2008-01-01
Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance (1-10)x10^(-12) relative to 232Th has been found in a study of natural Th using inductively coupled plasma-sector field mass spectrometry. The measured mass matches the predictions [1,2] for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of t1/2 >= 10^8 y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.[3-6
Schury, P.; Wada, M.; Ito, Y.; Kaji, D.; Arai, F.; MacCormick, M.; Murray, I.; Haba, H.; Jeong, S.; Kimura, S.; Koura, H.; Miyatake, H.; Morimoto, K.; Morita, K.; Ozawa, A.; Rosenbusch, M.; Reponen, M.; Söderström, P.-A.; Takamine, A.; Tanaka, T.; Wollnik, H.
2017-01-01
Using a multireflection time-of-flight mass spectrograph located after a gas cell coupled with the gas-filled recoil ion separator GARIS-II, the masses of several α -decaying heavy nuclei were directly and precisely measured. The nuclei were produced via fusion-evaporation reactions and separated from projectilelike and targetlike particles using GARIS-II before being stopped in a helium-filled gas cell. Time-of-flight spectra for three isobar chains, 204Fr-204Rn-204At-204Po , 205Fr-205Rn-205At-205Po-205Bi , and 206Fr-206Rn-206At , were observed. Precision atomic mass values were determined for Fr-206204, Rn,205204, and At,205204. Identifications of 205Bi, Po,205204, 206Rn, and 206At were made with N ≲10 detected ions, representing the next step toward use of mass spectrometry to identify exceedingly low-yield species such as superheavy element ions.
Veselsky, Martin; Ma, Yu-Gang; Souliotis, Georgios A
2016-01-01
The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter $K_0 = 240 - 260$ MeV is obtained while the stiff density-dependences of the symmetry energy ($\\gamma>1.$) are rejected.
Plasma nanoscience: setting directions, tackling grand challenges
(Ken Ostrikov, Kostya; Cvelbar, Uros; Murphy, Anthony B.
2011-05-01
This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma-liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.
"Teine" võitis Prantsusmaal Grand Prix'
2006-01-01
Prantsusmaal Essonne'is toimuval 8. Euroopa filmifestivalil Cinessonne sai üliõpilaste žürii grand prix rahvusvahelises ühistöös valminud tantsufilm "Teine" ("Another") : režissöör Rene Vilbre. Ka teistest festivalidest, kus film osalenud
Youth Voice and the Llano Grande Center
Guajardo, Francisco; Perez, Delia; Guajardo, Miguel A.; Davila, Eric; Ozuna, Juan; Saenz, Maribel; Casaperalta, Nadia
2006-01-01
The Llano Grande Center is a non-profit education and community development organization founded in the mid-1990s by youth and teachers out of a public high school classroom in a rural South Texas (USA) community. The Center was created, in large part, to cultivate youth voices as important elements of curriculum development and teacher training…
Summer Grand Summons Ceremony in Tashilhungpo Monastery
Institute of Scientific and Technical Information of China (English)
XILHU
2003-01-01
Every year, Tashilhungpo Monastery celebrates the Summer Grand Summons Ceremony (called Ximoqenbo in Tibetan) in the eighth month of the Tibetan calendar. All the monks and lay people of the Xigaze area get together to watch Chammo, which is a kind of sorcerer's dance. It is also a Tantric ritual
Substance Abuse in the Rio Grande Valley.
Zavaleta, Anthony N.
1979-01-01
In the Mexican American barrios of Texas' Lower Rio Grande Valley, existence is complicated by the interactive forces of culture, society, and economy. These three factors act in unison to create an etiology of alcohol and drug use and abuse which is poorly understood by persons outside the barrio's grasp. (Author/NQ)
Salinity management in the Rio Grande Bosque
Jan M. H. Hendrickx; J. Bruce J. Harrison; Jelle Beekma; Graciela Rodriguez-Marin
1999-01-01
This paper discusses management options for salinity control in the Rio Grande Bosque. First, salt sources are identified and quantified. Capillary rise of ground water is the most important cause for soil salinization in the bosque. Next, a riparian salt balance is presented to explain the different mechanisms for soil salinization. Finally, the advantages and...
Reisipakkumine - Grand Tour Itaalias / Mai Levin
Levin, Mai, 1942-
2009-01-01
Tiina Abeli koostatud ja Urmas Viigi kujundatud näitus "Grand Tour. Eesti kunstnikud Itaalias" Kumu Kunstimuuseumis 05. aprillini. Loetletud eksponeeritud tööde autoreid. Näitus annab ülevaate, kes siinsetest kunstnikest 19. sajandi algusest kuni 1930ndate aastateni Itaalias käisid ja kuidas see nende loomingut mõjutas
The Virtual Grand Tour as Educational Paradigm
DEFF Research Database (Denmark)
Hansen, Per Skafte; Mouritsen, Lars
2001-01-01
The Virtual Grand Tour as defined here bears some resemblance to its 18th century ancestor: a wide range of individual topics are treated as a whole; a tutor, whether real or simulated, present or remote, is provided; a set of problem solving tools forms an integrated part of the "traveller's" eq...
The Virtual Grand Tour as Educational Paradigm
DEFF Research Database (Denmark)
Hansen, Per Skafte; Mouritsen, Lars
2001-01-01
The Virtual Grand Tour as defined here bears some resemblance to its 18th century ancestor: a wide range of individual topics are treated as a whole; a tutor, whether real or simulated, present or remote, is provided; a set of problem solving tools forms an integrated part of the "traveller...
Reisipakkumine - Grand Tour Itaalias / Mai Levin
Levin, Mai, 1942-
2009-01-01
Tiina Abeli koostatud ja Urmas Viigi kujundatud näitus "Grand Tour. Eesti kunstnikud Itaalias" Kumu Kunstimuuseumis 05. aprillini. Loetletud eksponeeritud tööde autoreid. Näitus annab ülevaate, kes siinsetest kunstnikest 19. sajandi algusest kuni 1930ndate aastateni Itaalias käisid ja kuidas see nende loomingut mõjutas
Grand Canyon Humpback Chub Population Improving
Andersen, Matthew E.
2007-01-01
The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.
Plasma nanoscience: setting directions, tackling grand challenges
Energy Technology Data Exchange (ETDEWEB)
Ostrikov, Kostya [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); Cvelbar, Uros [Jozef Stefan Institute, 39 Jamova cesta, Ljubljana, SI-1000 (Slovenia); Murphy, Anthony B, E-mail: Kostya.Ostrikov@csiro.au, E-mail: Uros.Cvelbar@ijs.si, E-mail: Tony.Murphy@csiro.au [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)
2011-05-04
This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma-liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.
Feature selection with the image grand tour
Marchette, David J.; Solka, Jeffrey L.
2000-08-01
The grand tour is a method for visualizing high dimensional data by presenting the user with a set of projections and the projected data. This idea was extended to multispectral images by viewing each pixel as a multidimensional value, and viewing the projections of the grand tour as an image. The user then looks for projections which provide a useful interpretation of the image, for example, separating targets from clutter. We discuss a modification of this which allows the user to select convolution kernels which provide useful discriminant ability, both in an unsupervised manner as in the image grand tour, or in a supervised manner using training data. This approach is extended to other window-based features. For example, one can define a generalization of the median filter as a linear combination of the order statistics within a window. Thus the median filter is that projection containing zeros everywhere except for the middle value, which contains a one. Using the convolution grand tour one can select projections on these order statistics to obtain new nonlinear filters.
Rio Branco, grand strategy and naval power
Directory of Open Access Journals (Sweden)
João Paulo Alsina Jr.
2014-12-01
Full Text Available This article addresses Baron of Rio Branco's grand strategy and the role played by the naval reorganization program (1904-1910 in this context. The ensuing case study determined the domestic and international constraints that affected the program, as well as the worldview of the patron of Brazilian diplomacy regarding military power's instrumentality to foreign policy.
Liliani, N.; Nugraha, A. M.; Diningrum, J. P.; Sulaksono, A.
2016-05-01
We have studied the effects of tensor coupling of ω and ρ meson terms, the Coulomb exchange term in local density approximation, and various isoscalar-isovector coupling terms of relativistic mean-field model on the properties of nuclear matter, finite nuclei, and superheavy nuclei. We found that for the same fixed value of symmetry energy J or its slope L the presence of tensor coupling of ω and ρ meson terms and the Coulomb exchange term yields thicker neutron skin thickness of 208Pb. We also found that the roles of tensor coupling of ω and ρ meson terms, the Coulomb-exchange term in local density approximation, and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei vary depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range, especially in binding energies. We also observed that for some particular nuclei, the corresponding experimental data of binding energies are rather less compatible with the presence of the Coulomb-exchange term in local density approximation and they tend to disfavor the presence of isoscalar-isovector coupling term with too-high Λ value. Furthermore, we have found that these terms influence the detail properties of 292120 superheavy nucleus such as binding energies, the magnitude of two-nucleon gaps, single-particle spectra, neutron densities, neutron skin thicknesses, and mean-square charge radii. However, the shell-closure predictions of 208Pb and 292120 nuclei are not affected by the presence of these terms.
Control of a Unified Chaotic System via Single Variable Feedback
Guo, Rong-Wei; Vincent E., U.
2009-09-01
Based on the LaSalle invariance principle, we propose a simple adaptive-feedback for controlling the unified chaotic system. We show explicitly with numerical proofs that our method can easily achieve the control of chaos in the unified chaotic system using only a single variable feedback. The present controller, to our knowledge, is the simplest control scheme for controlling a unified chaotic system.
Circuit realization of the fractional-order unified chaotic system
Institute of Scientific and Technical Information of China (English)
Chen Xiang-Rong; Liu Chong-Xin; Wang Fa-Qiang
2008-01-01
This paper studies the chaotic behaviours of the fractional-order unified chaotic system.Based on the approximation method in frequency domain,it proposes an electronic circuit model of tree shape to realize the fractional-order operator.According to the tree shape model,an electronic circuit is designed to realize the 2.7-order unified chaotic system.Numerical simulations and circuit experiments have verified the existence of chaos in the fraction-order unified system.
Creationism in the Grand Canyon, Texas Textbooks
Folger, Peter
2004-01-01
AGU President Bob Dickinson, together with presidents of six other scientific societies, have written to Joseph Alston, Superintendent of Grand Canyon National Park, pointing out that a creationist book, The Grand Canyon: A Different View, is being sold in bookstores within the borders of the park as a scientific explanation about Grand Canyon geologic history. President Dickinson's 16 December letter urges that Alston clearly separate The Grand Canyon: A Different View from books and materials that discuss the legitimate scientific understanding of the origin of the Grand Canyon. The letter warns the Park Service against giving the impression that it approves of the anti-science movement known as young-Earth creationism, or that it endorses the advancement of religious tenets disguised as science. The text of the letter is on AGU's Web site http://www.agu.org/sci_soc/policy/sci_pol.html. Also, this fall, AGU sent an alert to Texas members about efforts by intelligent design creationists aimed at weakening the teaching of biological evolution in textbooks used in Texas schools. The alert pointed scientists to a letter, drafted by AGU, together with the American Institute of Physics, the American Physical Society, the Optical Society of America, and the American Astronomical Society, that urged the Texas State Board of Education to adopt textbooks that presented only accepted, peer-reviewed science and pedagogical expertise. Over 550 scientists in Texas added their names to the letter (http://www.agu.org/sci_soc/policy/texas_textbooks.pdf ), sent to the Board of Education on 1 November prior to their vote to adopt a slate of new science textbooks. The Board voted 11-5 in favor of keeping the textbooks free of changes advocated by groups supporting intelligent design creationism.
Accidental permutation symmetries as a test for Grand Unification: the supersymmetric $SU(5)$ case
Fichet, Sylvain
2016-01-01
Unification of matter fields implies the existence of accidental permutation symmetries, which potentially remain immune to large quantum corrections up to the TeV scale. We investigate the case of a supersymmetric $SU(5)$ grand unified theory, where such a permutation symmetry is present in the up-type squark sector. We present a variety of tests allowing to challenge the $SU(5)$ hypothesis based on the observation of squarks at the LHC. These tests appear as relations among observables involving flavour-violating or chirality-flipping decays of squarks. Moreover, they rely on top-polarimetry and charm-tagging. As an example, we discuss the application to the scenario of Natural Supersymmetry, while more examples can be found in the related journal publications.
Cascade adaptive control of uncertain unified chaotic systems
Institute of Scientific and Technical Information of China (English)
Wei Wei; Li Dong-Hai; Wang Jing
2011-01-01
The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point.Since an adaptive controller based on dynamic compensation mechanism is employed, the exact model of the unified chaotic system is not necessarily required.By choosing appropriate controller parameters, chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.
A Unified Evolution of the Universe
Codello, Alessandro
2016-01-01
We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction $R^2$ and the leading non-local term $R\\frac{1}{\\square^2}R$ to the classical gravitational action. We find that the inflationary phase driven by $R^2$ term gracefully exits in a transitory regime characterized by coherent oscillations of the Hubble parameter. The universe then naturally enters into a radiation dominated epoch followed by a matter dominated era. At sufficiently late times after radiation-matter equality, the non-local term starts to dominate inducing an accelerated expansion of the universe at the present epoch. We further exhibit the fact that both the leading local and non-local terms can be obtained within the covariant effective field theory of gravity. Our scenario thus provides a unified picture of inflation and dark energy in a single framework by means of a purely gravitational action without the usual need of a scalar field.
A Unified Theoretical Framework for Cognitive Sequencing.
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.
Simplification of the unified gas kinetic scheme
Chen, Songze; Guo, Zhaoli; Xu, Kun
2016-08-01
The unified gas kinetic scheme (UGKS) is an asymptotic preserving (AP) scheme for kinetic equations. It is superior for transition flow simulation and has been validated in the past years. However, compared to the well-known discrete ordinate method (DOM), which is a classical numerical method solving the kinetic equations, the UGKS needs more computational resources. In this study, we propose a simplification of the unified gas kinetic scheme. It allows almost identical numerical cost as the DOM, but predicts numerical results as accurate as the UGKS. In the simplified scheme, the numerical flux for the velocity distribution function and the numerical flux for the macroscopic conservative quantities are evaluated separately. The equilibrium part of the UGKS flux is calculated by analytical solution instead of the numerical quadrature in velocity space. The simplification is equivalent to a flux hybridization of the gas kinetic scheme for the Navier-Stokes (NS) equations and the conventional discrete ordinate method. Several simplification strategies are tested, through which we can identify the key ingredient of the Navier-Stokes asymptotic preserving property. Numerical tests show that, as long as the collision effect is built into the macroscopic numerical flux, the numerical scheme is Navier-Stokes asymptotic preserving, regardless the accuracy of the microscopic numerical flux for the velocity distribution function.
A Unified Theoretical Framework for Cognitive Sequencing
Directory of Open Access Journals (Sweden)
Tejas Savalia
2016-11-01
Full Text Available The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit versus explicit and goal-directed versus habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops ─ basal ganglia-frontal cortex and hippocampus-frontal cortex loops ─ mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI on developing awareness in implicit learning tasks.
Towards a Unified Global ICT Infrastructure
DEFF Research Database (Denmark)
Madsen, Ole Brun
2006-01-01
A successful evolution towards a unified global WAN platform allowing for the coexistence and interoperability of all kind of services requires careful planning of the next generation global cooperative wired and wireless information infrastructure. The absence of commonly agreed upon and adopted...... to be solved can be found in the interrelation between communication, connectivity and convergence. This paper will focus on steps to be taken in planning the physical infrastructure as a prerequisite for a successful evolution.......A successful evolution towards a unified global WAN platform allowing for the coexistence and interoperability of all kind of services requires careful planning of the next generation global cooperative wired and wireless information infrastructure. The absence of commonly agreed upon and adopted...... design principles, allowing for smooth and cost efficient scalability without loss of control over the structurally based properties may prevent or seriously delay this evolution and as consequence be a barrier for introduction of new foreseen types of demanding services. Some of the key problems...
DataSpread: Unifying Databases and Spreadsheets.
Bendre, Mangesh; Sun, Bofan; Zhang, Ding; Zhou, Xinyan; Chang, Kevin ChenChuan; Parameswaran, Aditya
2015-08-01
Spreadsheet software is often the tool of choice for ad-hoc tabular data management, processing, and visualization, especially on tiny data sets. On the other hand, relational database systems offer significant power, expressivity, and efficiency over spreadsheet software for data management, while lacking in the ease of use and ad-hoc analysis capabilities. We demonstrate DataSpread, a data exploration tool that holistically unifies databases and spreadsheets. It continues to offer a Microsoft Excel-based spreadsheet front-end, while in parallel managing all the data in a back-end database, specifically, PostgreSQL. DataSpread retains all the advantages of spreadsheets, including ease of use, ad-hoc analysis and visualization capabilities, and a schema-free nature, while also adding the advantages of traditional relational databases, such as scalability and the ability to use arbitrary SQL to import, filter, or join external or internal tables and have the results appear in the spreadsheet. DataSpread needs to reason about and reconcile differences in the notions of schema, addressing of cells and tuples, and the current "pane" (which exists in spreadsheets but not in traditional databases), and support data modifications at both the front-end and the back-end. Our demonstration will center on our first and early prototype of the DataSpread, and will give the attendees a sense for the enormous data exploration capabilities offered by unifying spreadsheets and databases.
A unified view of "how allostery works".
Directory of Open Access Journals (Sweden)
Chung-Jung Tsai
2014-02-01
Full Text Available The question of how allostery works was posed almost 50 years ago. Since then it has been the focus of much effort. This is for two reasons: first, the intellectual curiosity of basic science and the desire to understand fundamental phenomena, and second, its vast practical importance. Allostery is at play in all processes in the living cell, and increasingly in drug discovery. Many models have been successfully formulated, and are able to describe allostery even in the absence of a detailed structural mechanism. However, conceptual schemes designed to qualitatively explain allosteric mechanisms usually lack a quantitative mathematical model, and are unable to link its thermodynamic and structural foundations. This hampers insight into oncogenic mutations in cancer progression and biased agonists' actions. Here, we describe how allostery works from three different standpoints: thermodynamics, free energy landscape of population shift, and structure; all with exactly the same allosteric descriptors. This results in a unified view which not only clarifies the elusive allosteric mechanism but also provides structural grasp of agonist-mediated signaling pathways, and guides allosteric drug discovery. Of note, the unified view reasons that allosteric coupling (or communication does not determine the allosteric efficacy; however, a communication channel is what makes potential binding sites allosteric.
Inelastic mechanics: A unifying principle in biomechanics.
Gralka, Matti; Kroy, Klaus
2015-11-01
Many soft materials are classified as viscoelastic. They behave mechanically neither quite fluid-like nor quite solid-like - rather a bit of both. Biomaterials are often said to fall into this class. Here, we argue that this misses a crucial aspect, and that biomechanics is essentially damage mechanics, at heart. When deforming an animal cell or tissue, one can hardly avoid inducing the unfolding of protein domains, the unbinding of cytoskeletal crosslinkers, the breaking of weak sacrificial bonds, and the disruption of transient adhesions. We classify these activated structural changes as inelastic. They are often to a large degree reversible and are therefore not plastic in the proper sense, but they dissipate substantial amounts of elastic energy by structural damping. We review recent experiments involving biological materials on all scales, from single biopolymers over cells to model tissues, to illustrate the unifying power of this paradigm. A deliberately minimalistic yet phenomenologically very rich mathematical modeling framework for inelastic biomechanics is proposed. It transcends the conventional viscoelastic paradigm and suggests itself as a promising candidate for a unified description and interpretation of a wide range of experimental data. This article is part of a Special Issue entitled: Mechanobiology.
Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate
Myers, J. D.
2012-12-01
GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are
Nucleon Decay and Neutrino Properties in a Mass Model based on an SO(10) Grand Unified Theory
Merten, C
2000-01-01
In this work a mass model based on a SO(10) GUT with a global U(1) familysymmetry is discussed which leads to an asymmetric Nearest NeighbourInteraction structure for the fermionic mass matrices. As a result of theanalysis one gets three solutions of the model which include several largeleft- and right-handed fermion mixings. Those mixings are not observable in theSM where only the CKM quark mixing matrix can be measured, but they havetestable effects on the branching ratios of nucleon decays in theories beyondthe SM. One finds that decay channels with positrons in the final state aresuppressed while channels with antimuons and antineutrinos are enhancedcompared to models with small mixings. The total nucleon lifetimes obtainedshould be observable by future experiments. The SO(10) model also predicts themasses and mixings of the light neutrinos. They are in the right range toexplain the anomalies of solar and atmospheric neutrinos by means ofoscillations, preferring the small angle MSW solution for the solar ...
78 FR 39998 - Safety Zone; Grand Haven 4th of July Fireworks; Grand River; Grand Haven, MI
2013-07-03
... , type the docket number in the ``SEARCH'' box and click ``SEARCH.'' Click on Open Docket Folder on the... arc of a circle with an 800 foot radius with a center in position 43 3' 55.7'' N and 86 14' 13.8'' W...) Location. All waters of the Grand River within the arc of a circle with an 800 foot radius with a center...
The Grand Tack model: a critical review
Raymond, Sean N
2014-01-01
The `Grand Tack' model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or "tack" point was at ~1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System. Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies -- including ...
Status of the KASCADE-Grande experiment
Energy Technology Data Exchange (ETDEWEB)
Ulrich, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)], E-mail: ulrich@ik.fzk.de; Apel, W.D.; Arteaga, J.C.; Badea, A.F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bercuci, A. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Doll, P.; Engel, R.; Engler, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Finger, M. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany)] (and others)
2008-01-15
The KASCADE-Grande experiment measures extensive air showers induced by cosmic rays in the energy range between 0.5 PeV and 1 EeV - the so-called knee region. Principal task of the experiment is to measure with high accuracy the energy and composition of primary cosmic rays to shed light on the nature of the knee. The data of the former KASCADE experiment have been used in a composition analysis showing the knee at 3-5 PeV to be caused by a steepening in the light-element spectra. In the following, an update on these analyses will be given. In addition, the status of the experimental extension - the Grande array - together with first results will be briefly discussed.
A Unified ASrchitecture Model of Web Applications
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
With the increasing popularity,scale and complexity of web applications,design and development of web applications are becoming more and more difficult,However,the current state of their design and development is characterized by anarchy and ad hoc methodologies,One of the causes of this chaotic situation is that different researchers and designers have different understanding of web applications.In this paper,based on an explicit understanding of web applications,we present a unified architecture model of wed applications,the four-view model,which addresses the analysis and design issues of web applications from four perspectives,namely,logical view,data view,navigation view and presentation view,each addrssing a specific set of concerns of web applications,the purpose of the model is to provide a clear picture of web applications to alleviate the chaotic situation and facilitate its analysis,design and implementation.
A Model of Unified Gauge Interactions
Lindesay, James
2016-01-01
Linear spinor fields are a generalization of the Dirac field that have direct correspondence with the known physics of fermions, inherent causality properties in their most fundamental constructions, and positive mass eigenvalues for all particle types. The algebra of the generators for infinitesimal transformations of these fields directly constructs the Minkowski metric \\emph{within} the internal group space as a consequence of non-vanishing commutation relations between generators that carry space-time indexes. In addition, the generators have a fundamental matrix representation that includes Lorentz transformations within a group that unifies internal gauge symmetries generated by a set of hermitian generators for SU(3)$\\times$SU(2)$\\times$U(1), and nothing else. The construction of linearly independent internal SU(3) and SU(2) symmetry groups necessarily involves the mixing of three generations of the mass eigenstates labeling the (massive) representations of the linear spinor fields. The group algebra a...
Towards unifying inheritance and automatic program specialization
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh
2002-01-01
Inheritance allows a class to be specialized and its attributes refined, but implementation specialization can only take place by overriding with manually implemented methods. Automatic program specialization can generate a specialized, effcient implementation. However, specialization of programs...... and specialization of classes (inheritance) are considered different abstractions. We present a new programming language, Lapis, that unifies inheritance and program specialization at the conceptual, syntactic, and semantic levels. This paper presents the initial development of Lapis, which uses inheritance...... with covariant specialization to control the automatic application of program specialization to class members. Lapis integrates object-oriented concepts, block structure, and techniques from automatic program specialization to provide both a language where object-oriented designs can be e#ciently implemented...
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
A unified theory of coronal heating
Ionson, J. A.
1985-01-01
Solar coronal heating mechanisms are analyzed within the framework of a unified theory of heating processes. The theory is based on the standing wave equation of Ionson (1982) for the global current driven by emfs from the convection Beta less than 1. The equation has the same form as a driven LRC equation in which the equivalent inductance is scaled with the coronal loop length. The theory is used to classify various heating mechanisms inside the coronal loops. It is shown that the total global current can be obtained from an integration of the local currents, the degree of coherency between local currents being the dominant factor governing the global current amplitude. Active region loops appear to be heated by electrodynamic coupling to p-mode oscillations in the convection Beta less than 1.
A unified innovation approach to emerging markets
DEFF Research Database (Denmark)
Agarwal, Nivedita; Brem, Alexander; Grottke, Michael
2014-01-01
Previous research shows a plethora of overlapping and interrelated innovation approaches to understand the bottom of the pyramid customer needs and markets specifications. This research attempts to (1) identify the key factors that make a product relevant to be considered as an innovation...... for emerging markets (2) and establish relative importance of key factors for product managers while conceptualizing a new product for emerging markets. In the first part, the study assembles the list of characteristics from the selected innovation theories revolving around emerging markets. Subsequently...... the identified characteristics are clustered into eight key factors using semantic similarities scores and Ward’s clustering method. An analytical hierarchy process method is employed to obtain the priorities of these eight key factors. The study concludes with a Unified Innovation Framework which presents...
A UNIFIED MODEL FOR SOLAR FLARES
Institute of Scientific and Technical Information of China (English)
ChenPengfei; FangCheng; DingMingde; TangYuhua
1999-01-01
We performed 2.5 - dimensional numerical simulation for two cases, one with the the reconnection point at a high altitude, the other with the reconnection point at a low altitude, in the high-altitude case, the bright loop appears to rise for a long time, with its two footpoints separating and the field lines below the bright loop shrinking,which are all typical features of two - ribbon flares. In the low- altitude case, the bright loops cease rising only a short time after the impulsive phase of the reconnection and then become rather stable, which shows a large similarity to the compact flares. The results imply that the two types of solar flares, i. e., the two - ribbon flares and the compact ones, might be unified into the same magnetic reconnection model, where the height of the reconnection point leads to the bifurcation.
Inflationary spectra in generalized gravity Unified forms
Noh, H
2001-01-01
The classical evolution and the quantum generation processes of the scalar- and tensor-type cosmological perturbations in the context of a broad class of generalized gravity theories are presented in unified forms. The exact forms of final spectra of the two types of structures generated during a generalized slow-roll inflation are derived. Results in generalized gravity are characterized by two additional parameters which are the coupling between gravity and field, and the nonminimal coupling in the kinetic part of the field. Our general results include widely studied gravity theories and inflation models as special cases, and show how the well known consistency relation and spectra in ordinary Einstein gravity inflation models are affected by the generalized nature of the gravity theories.
A unifying conceptual model of entrepreneurial management
DEFF Research Database (Denmark)
Senderovitz, Martin
This article offers a systematic analysis and synthesis of the area of entrepreneurial management. Through a presentation of two main perspectives on entrepreneurial management and a newly developed unifying conceptual entrepreneurial management model, the paper discusses a number of theoretical...... disagreements, managerial dilemmas and paradoxes. On the basis of the findings and conclusions of the study, the article contributes with and overview of the entrepreneurial management field, and offers an answer to the overall research question: What constitutes the most essential areas and challenges...... of entrepreneurial management? The paper builts on the seminal work by Stevenson (1983, 1990) and proposes a discussion and elaboration of the understanding and definition of entrepreneurial management in terms of the relationship between entrepreneurial opportunities and firm resources....
Passivity-Based Synchronization of Unified Chaotic System
Directory of Open Access Journals (Sweden)
K. Kemih
2008-01-01
Full Text Available This letter further improves and extends the work of Kemih et al. In detail, feedback passivity synchronization with only one controller for a unified chaotic system is discussed here. It is noticed that the unified system contains the noted Lorenz, Lu, and Chen systems. Numerical simulations are given to show the effectiveness of these methods.
Supporting Teachers, Principals--and Students--through Unified Discipline.
Algozzine, Bob; Audette, Bob; Ellis, Edward; Marr, Mary Beth; White, Richard
2000-01-01
This article profiles Unified Discipline, a schoolwide systemic model of discipline that incorporates factors associated with best practices in teaching behavior and improving discipline. The four components of the program are described and include unified attitudes, expectations, correction, and team roles. Implications for practice are…
Unified symmetry of non-holonomic singular systems
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, the unified symmetry of non-holonomic singular systems is studied. The differential equations of motion of the systems are given. The definition and the criterion of the unified symmetry for the systems are presented. The Noether conserved quantity, the Hojman conserved quantity and the Mei conserved quantity are obtained. An example is given to illustrate the application of the results.
A Unified Scaling Law in Spiral Galaxies.
Koda; Sofue; Wada
2000-03-01
We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.