WorldWideScience

Sample records for superheater boiler tube

  1. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  2. Overheating failure of superheater suspension tubes of a captive thermal power plant boiler

    International Nuclear Information System (INIS)

    Bhattacharya, Sova; Amir, Q.M.; Kannan, C.; Mahapatra, S.B.

    2000-01-01

    Failure of boiler tubes is the foremost cause of forced boiler outages. One of the predominant failure mechanism of boiler tubes is the stress rupture failure in the form of either short term overheating or long term overheating which are normally encountered in superheater and reheater sections working in the creep range. The strength of the boiler tube depends on the stress level as well on the temperature of exposure in the creep range. An increase in either can reduce the time to rupture. Time at the exposure temperature is an important factor based on which the failures are categorised as either short term or long term. Though there is no established time duration criteria demarcating the short or long term stress rupture failures, depending on the various manifestations on the failed samples, one can categorise the failure. This paper addresses one such stress rupture failure in the superheater section of a captive thermal power plant of a refinery. Multiple failures on the suspension coil of a superheater section was investigated for the cause of failure. Laboratory investigation of the failed sample involved visual inspection, dimensional measurements, chemical analysis of internal deposits and microstructural study. On the basis of these, the failure was attributed to deposition of trisodium phosphate carried over by the feed water into the superheater section resulting in chokage and increase in local operating hoop stresses of the tube. The ultimate failure was thus categorised as long term overheating failure. (author)

  3. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  4. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  5. The creep life of superheater and reheater tubes under varying pressure conditions in operational boilers

    International Nuclear Information System (INIS)

    Mizen, D.C.; Plastow, B.

    1975-01-01

    The first of each manufacturer's 500 MW boilers supplied to the CEGB (Central Electricity Generating Board) have been subjected to an extensive programme of tests for performance optimization and safe operation. Around 250 thermocouples on superheater and reheater tubes have in each case been monitored as part of the exercise. The readings are corrected and used to compute creep rupture damage based on internationally agreed stress rupture data and a simple cumulative damage concept. Comparison of the design creep rupture life and the cumulative life consumed has in several applications been invaluable in influencing operating procedures and arranging tube modifications or replacements, so that loss of generation by creep rupture failure is minimized. (author)

  6. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  7. Effects of Different Fuel Specifications and Operation Conditions on the Performance of Coated and Uncoated Superheater Tubes in Two Different Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Wu, Duoli; Dahl, Kristian V.; Madsen, Jesper L.

    2018-01-01

    Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates the corros......Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates...... the corrosion performance of coated tubes compared to uncoated Esshete 1250 and TP347H tubes, which were exposed in two different biomass-fired boilers for one year. Data on the fuel used, temperature of the boilers, and temperature fluctuations are compared for the two boilers, and how these factors influence...... deposit formation, corrosion, and the stability of the coatings is discussed. The coatings (Ni and Ni2Al3) showed protective behavior ina wood-fired plant where the outlet steam temperature was 520 °C. However, at the plant that fired straw with an outlet steam temperature of 540 °C and where severe...

  8. A thin-lip rupture of carbon steel superheater boiler tube

    International Nuclear Information System (INIS)

    Khalil, E.O.; Alzoye, K.S.; Elwaer, A.M.

    1993-01-01

    A ruptured A 42 medium carbon steel tube was collected by the engineering department in one of our steam power stations. Inspection of ruptured tube revealed a thin - lip fracture with brownish thin layer of oxide film on inner tube surfaces. There was no evidence of pitting, the outer surfaces of the tube exhibited a general oxidized conditions. A micro section taken near the fracture surface consists of ferrite and martensite, the amount of martensite decreased as we away from the fracture surface. Presence of martensite phase in the microstructure indicates that the tube material has been overheated. An erosion corrosion mechanism in conjunction with overheated. An erosion corrosion mechanism in conjunction with overheating resulted in strength deterioration with consequent premature failure. 4 fig., 1 tab

  9. Pressure tests to assess the significance of defects in boiler and superheater tubing

    International Nuclear Information System (INIS)

    Guest, J.C.; Hutchings, J.A.

    1975-01-01

    Internal pressure tests on 9 per cent Cr-1 per cent Mo steel tubing containing artificial defects demonstrated that the resultant loss of strength was less than a simple calculation based on the reduced tube thickness would suggest. Bursting tests on tubes containing longitudinal defects of varying length, depth and acuity showed notch strengthening at ambient temperature and at 550 0 C. A flow stress concept developed for simple bursting tests was shown to apply to creep conditions at 550 0 C. Results of creep and short-term bursting tests show that the length as well as the depth of the defect is an important factor affecting the life of bursting strength of the tubes. Defects less than 10 per cent of the tube thickness were found to have an insignificant effect. (author)

  10. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  11. High-Temperature Graphitization Failure of Primary Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  12. Research on the Superheater Material Properties for USC Boiler with 700°C Steam Parameter

    Science.gov (United States)

    Chongbin, Wang; Xueyuan, Xu; Yufeng, Zhu; Yongqiang, Jin; Hui, Tong; Yu, Wang; Xiaoli, Lu

    This paper discusses the materials' properties of superheater for 700°C USC boiler, including Sanicro25, HR6W, 617mod and 740H, and analyzes the range of applicable temperature of superheater made of different tubes, such as T91, T92, Super304H, TP310HCbN, Sanicro25, HR6W, 617Mod and 740H. In addition, some suggestions on the material selection have been proposed.

  13. Thermomechanical CSM analysis of a superheater tube in transient state

    Science.gov (United States)

    Taler, Dawid; Madejski, Paweł

    2011-12-01

    The paper presents a thermomechanical computational solid mechanics analysis (CSM) of a pipe "double omega", used in the steam superheaters in circulating fluidized bed (CFB) boilers. The complex cross-section shape of the "double omega" tubes requires more precise analysis in order to prevent from failure as a result of the excessive temperature and thermal stresses. The results have been obtained using the finite volume method for transient state of superheater. The calculation was carried out for the section of pipe made of low-alloy steel.

  14. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through

  15. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Frandsen, Flemming; Hansen, Jørn

    2004-01-01

    , mature superheater deposit samples were extracted from two straw-fired boilers, Masnedø and Ensted, with fuel inputs of 33 MWth and 100 MWth, respectively. SEM (scanning electron microscopy) images and EDX (energy dispersive X-ray) analyses were performed on the deposit samples. Different strategies...

  16. Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation

    International Nuclear Information System (INIS)

    Madejski, Paweł; Taler, Dawid

    2013-01-01

    Highlights: • The CFD simulation was used to calculate 3D steam and tube wall temperature distributions in the platen superheater. • The CFD results can be used in design of superheaters made of tubes with complex cross-section. • The CFD analysis enables the proper selection of the steel grade. • The transient temperature and stress distributions were calculated using Finite Volume Method. • The detailed analysis prevents superheater tubes from excessive stresses during sootblower or attemperator activation. - Abstract: Superheaters are characterized by high metal temperatures due to higher steam temperature and low heat transfer coefficients on the tube inner surfaces. Superheaters have especially difficult operating conditions, particularly during attemperator and sootblower activations, when temperature and steam flow rate as well as tube wall temperature change with time. A detailed thermo-mechanical analysis of the superheater tubes makes it possible to identify the cause of premature high-temperature failures and aids greatly in the changes in tubing arrangement and improving start-up technology. This paper presents a thermal and strength analysis of a tube “double omega”, used in the steam superheaters in CFB boilers

  17. Probabilistic approach to determining the optimum replacement of a superheater stage in 680 MW coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Robert; Star, Ruud van der [Nuon Power Generation, Amsterdam (Netherlands)

    2009-07-01

    The boiler of the NUON power plant HW08 that went into operation in 1993 is designed as Benson boiler and mainly fired with hard coal. A creep-related tube failure occurred in the tertiary superheater that had been due to increased wall temperature caused by steam side formation of oxide layers. The theoretical lifetime of the components was calculated with the aid of the results of steam side oxide measurements and condition evaluation of the tertiary superheater with the aid of tube samples. The objective is to establish an operation and maintenance schedule for the desired operating lifetime of 300,000 hours. (orig.)

  18. Review about corrosion of superheaters tubes in biomass plants

    International Nuclear Information System (INIS)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-01-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs

  19. CFD analysis of temperature imbalance in superheater/reheater region of tangentially coal-fired boiler

    Science.gov (United States)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-10-01

    This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.

  20. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    OpenAIRE

    Al Hajri, Mohammed; Malik, Anees U.; Meroufel, Abdelkader; Al-Muaili, Fahd

    2015-01-01

    Dissimilar metal weld (DMW) joint between alloyed steel (AS) and stainless steel (SS) failed at one of intermediate temperature superheater (ITSH) tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years) where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results o...

  1. Stress corrosion cracking in superheater and reheater austenitic tubing

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry [Structural Integrity Associates, Inc., Charlotte, NC (United States); Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This eights lesson is focused on Stress Corrosion Cracking in Superheater and Reheater Austenitic Tubing. (orig.)

  2. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation

    Directory of Open Access Journals (Sweden)

    Naď Martin

    2018-01-01

    Full Text Available Industrial boiler damage is a common phenomenon encountered in boiler operation which usually lasts several decades. Since boiler shutdown may be required because of localized failures, it is crucial to predict the most vulnerable parts. If damage occurs, it is necessary to perform root cause analysis and devise corrective measures (repairs, design modifications, etc.. Boiler tube bundles, such as those in superheaters, preheaters and reheaters, are the most exposed and often the most damaged boiler parts. Both short-term and long-term overheating are common causes of tube failures. In these cases, the design temperatures are exceeded, which often results in decrease of remaining creep life. Advanced models for damage evaluation require temperature history, which is available only in rare cases when it has been measured and recorded for the whole service life. However, in most cases it is necessary to estimate the temperature history from available operation history data (inlet and outlet pressures and temperatures etc.. The task may be very challenging because of the combination of complex flow behaviour in the flue gas domain and heat transfer phenomena. This paper focuses on estimating thermal load non-uniformity on superheater tubes via Computational Fluid Dynamics (CFD simulation of flue gas flow including heat transfer within the domain consisting of a furnace and a part of the first stage of the boiler.

  3. Remaining Life Estimation Of Secondary Superheater Outlet On Industrial Electrical Boiler

    International Nuclear Information System (INIS)

    Soedardjo; Andryansyah; Arhatari, B.D.; Natsir, Muhammad; Triyadi, Ari; Farokhi

    2001-01-01

    Remaining life estimation of secondary superheater header outlet (SSHO) on industrial electrical boiler has been carried out. Estimation conducted by the observation of microstructure cavitation development based on Neubauer and Wedel theory. The result is available for isolated cavitation development present yet. That Secondary Superheater Outlet component is in good condition after 14 years operated and predicted could be operated for 36 years again

  4. Lifetime evaluation of superheater tubes exposed to steam oxidation, high temperature corrosion and creep

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, N [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark); Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark)

    1996-12-01

    Advanced fossil fired plants operating at high steam temperatures require careful design of the superheaters. The German TRD design code normally used in Denmark is not precise enough for the design of superheaters with long lifetimes. The authors have developed a computer program to be used in the evaluation of superheater tube lifetime based on input related to tube dimensions, material, pressure, steam temperature, mass flux, heat flux and estimated corrosion rates. The program is described in the paper. As far as practically feasible, the model seems to give a true picture of the reality. For superheaters exposed to high heat fluxes or low internal heat transfer coefficients as is the case for superheaters located in fluidized bed environments or radiant environments, the program has been extremely useful for evaluation of surface temperature, oxide formation and lifetime. The total uncertainty of the method is mainly influenced by the uncertainty of the determination of the corrosion rate. More precise models describing the corrosion rate as a function of tube surface temperature, fuel parameters and boiler parameters need to be developed. (au) 21 refs.

  5. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  6. Can the lifetime of the superheater tubes be predicted according to the fuel analyses? Assessment from field and laboratory data

    Energy Technology Data Exchange (ETDEWEB)

    Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1998-12-31

    Lifetime of the superheaters in different power boilers is more or less still a mystery. This is especially true in firing biomass based fuels (biofuels), such as bark, forest residues, and straw. Due to the unhomogeneous nature of the biofuels, the lifetime of the superheaters may vary from case to case. Sometimes the lifetime is significantly shorter than originally expected, sometimes no corrosion even in the hottest tubes is observed. This is one of the main reasons why the boiler operators often demand for a better predictability on the corrosion resistance of the materials to avoid unscheduled shutdowns. (orig.) 9 refs.

  7. Can the lifetime of the superheater tubes be predicted according to the fuel analyses? Assessment from field and laboratory data

    Energy Technology Data Exchange (ETDEWEB)

    Salmenoja, K [Kvaerner Pulping Oy, Tampere (Finland)

    1999-12-31

    Lifetime of the superheaters in different power boilers is more or less still a mystery. This is especially true in firing biomass based fuels (biofuels), such as bark, forest residues, and straw. Due to the unhomogeneous nature of the biofuels, the lifetime of the superheaters may vary from case to case. Sometimes the lifetime is significantly shorter than originally expected, sometimes no corrosion even in the hottest tubes is observed. This is one of the main reasons why the boiler operators often demand for a better predictability on the corrosion resistance of the materials to avoid unscheduled shutdowns. (orig.) 9 refs.

  8. Improved superheater tubing material - Ti and Nb bearing austenitic steel

    International Nuclear Information System (INIS)

    Kinoshita, K.; Mimino, T.; Minegishi, I.

    1975-01-01

    A newly developed 18 Cr-8 Ni stainless steel modified with small amounts of Ti and Nb has considerably high stress-rupture strength and is considered to be suitable for superheater material for power boilers. Data for stress-rupture and creep for long times, the strength of welded joints, the changes of characteristics due to exposure to high temperatures, etc., are presented and discussed. Some investigations after trial services indicate that the experimental data are applicable to actual applications. (author)

  9. Degradation of superheater tubes made of austenitic T321H steel after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Hernas, Adam [Silesian Technical Univ., Katowice (Poland). Faculty of Material Science; Augustyniak, Boleslaw; Chmielewski, Marek [Gdansk Univ. of Technology (Poland). Mechanical Dept.; Sablik, M.J. [Applied Magnetic and Physical Modeling, LLC, San Antonio, TX (United States)

    2010-07-01

    There are presented results of complementary tests performed for the evaluation of creep damage in austenitic steel grade T321H exploited over 200,000 hours in the secondary superheater part of a power plant boiler. The following techniques have been applied: SEM microscopy, X-ray diffraction, tensile tests, hardness measurements and novel eddy current inspection. The novel eddy current inspection is proposed as a non-destructive method of estimating the creep damage stage of austenite steel boiler tubes after long-term service in power plants. We compare the results provided by the different techniques and discuss the correlations and also point out the problems which need to be addressed in order to elaborate the remaining life assessment of austenitic boiler tubes. (orig.)

  10. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  11. Soft Sensor for Oxide Scales on the Steam Side of Superheater Tubes under Uneven Circumferential Load

    Directory of Open Access Journals (Sweden)

    Qing Wei Li

    2015-01-01

    Full Text Available A soft sensor for oxide scales on the steam side of superheater tubes of utility boiler under uneven circumferential loading is proposed for the first time. First finite volume method is employed to simulate oxide scales growth temperature on the steam side of superheater tube. Then appropriate time and spatial intervals are selected to calculate oxide scales thickness along the circumferential direction. On the basis of the oxide scale thickness, the stress of oxide scales is calculated by the finite element method. At last, the oxide scale thickness and stress sensors are established on support vector machine (SMV optimized by particle swarm optimization (PSO with time and circumferential angles as inputs and oxide scale thickness and stress as outputs. Temperature and stress calculation methods are validated by the operation data and experimental data, respectively. The soft sensor is applied to the superheater tubes of some power plant. Results show that the soft sensor can give enough accurate results for oxide scale thickness and stress in reasonable time. The forecasting model provides a convenient way for the research of the oxide scale failure.

  12. Non-contact Measurement of Remaining Thickness of Corroding Superheater Tubes. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, Kjeld; Storesund, Jan

    2006-10-15

    Corrosion of superheaters has become a severe problem in many biomass boilers and incineration plants. This new situation calls for frequent tube wall thickness testing of the superheaters during very short shut-downs. To meet this demand Electro Magnetic Acoustic Transducer (EMAT) candidates as substitute for conventional manually operated contact UT-transducers. The EMAT can contactlessly generate an ultrasonic wave in the interphase between the external oxide and the metal. This means that measurements can be undertaken much quicker and with a much higher coverage simultaneously, without preceding blast operations. It is the aim of the project to demonstrate the usefulness of two simple EMAT systems, Panametrics and Sonatest, for fast and reliable tube thickness inspections in difficult-to-access superheater sections. The present Phase 1 of the project involves testing of the performance of the two systems in laboratory with the following results: 1. Both instruments work well on plate, tube, and pipe samples assuming the presence of an external oxide layer formed at a temperature above approximately 400 deg C. 2. Both instruments work well on all types of ferritic and martensitic steels but not on austenitic steels. 3. Both instruments work well independent of the thickness of the active oxide layer. 4. Both instruments work well independent of tube diameter, wall thickness, and sample width. 5. Both instruments work well over a very large range of wall thicknesses. Minimum tube wall thickness is less than 1.8 mm. 6. The tolerable lift-off (free distance between transducer and tube surface) is 2.4 - 3.0 mm for Panametrics system and 3.6 - 4.8 mm for Sonatest's system. The tolerable lift-off is a measure of the thickness of ash deposits, which can be tolerated on the tube surface as well as the misplacement, which can be tolerated in case of remote tube testing. 7. The tolerable off-set between tube axis and probe axis is very large for both instruments (10

  13. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  14. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    Directory of Open Access Journals (Sweden)

    Mohammed Al Hajri

    2015-04-01

    Full Text Available Dissimilar metal weld (DMW joint between alloyed steel (AS and stainless steel (SS failed at one of intermediate temperature superheater (ITSH tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results of the investigation point out the limitation of Carbides precipitation at the alloyed steel/welding interface. This is synonym of creep stage I involvement in the failure of ITSH. Improper post-welding operation and bending moment are considered as root causes of the premature failure.

  15. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  16. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  17. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  18. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  19. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    OpenAIRE

    Asnavandi, Majid; Kahram, Mohaddeseh; Rezaei, Milad; Rezakhani, Davar

    2017-01-01

    The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tu...

  20. Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    2012-01-01

    During long-term, high-temperature exposure of superheater tubes in thermal power plants, various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is investigated...... in laboratory experiments just mimicking the actual conditions in the power plant for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely investigated microscopically. The feasibility of X-ray diffraction for the characterization of steamside oxidation on real plant......-exposed superheater tubes was proven in the current work; the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the inner side of the tubes with concave surface curvature are discussed. Essential differences between the steamside oxides formed on two different steels...

  1. Some aspects of metallurgical assessment of boiler tubes-Basic principles and case studies

    International Nuclear Information System (INIS)

    Chaudhuri, Satyabrata

    2006-01-01

    Microstructural changes in boiler tubes during prolong operation at high temperature and pressure decrease load bearing capacity limiting their useful lives. When the load bearing capacity falls below a critical level depending on operating parameters and tube geometry, failure occurs. In order to avoid such failures mainly from the view point of economy and safety, this paper describes some basic principles behind remaining life assessment of service exposed components and also a few case studies related to failure of a reheater tube of 1.25Cr-0.5Mo steel, a carbon steel tube and final superheater tubes of 2.25Cr-1Mo steel and remaining creep life assessment of service exposed but unfailed platen superheater and reheater tubes of 2.25Cr-1Mo steel. Sticking of fly ash particles causing reduction in effective tube wall thickness is responsible for failure of reheater tubes. Decarburised metal containing intergranular cracks at the inner surface of the carbon steel tube exhibiting a brittle window fracture is an indicative of hydrogen embrittlement responsible for this failure. In contrast, final superheater tube showed that the failure took place due to short-term overheating. The influence of prolong service revealed that unfailed reheater tubes exhibit higher tensile properties than that of platen superheater tubes. In contrast both the tubes at 50 MPa meet the minimum creep rupture properties when compared with NRIM data. The remaining creep life of platen superheater tube as estimated at 50 MPa and 570 deg. C (1058 o F) is more than 10 years and that of reheater tube at 50 MPa and 580 deg. C (1076 o F) is 9 years

  2. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun-Lin; Zhou, Ke-Yi, E-mail: boiler@seu.edu.cn; Xu, Jian-Qun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province (China); Wang, Xin-Meng; Tu, Yi-You [School of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  3. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    Science.gov (United States)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  4. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    International Nuclear Information System (INIS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-01-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  5. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  6. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    Directory of Open Access Journals (Sweden)

    Majid Asnavandi

    2017-01-01

    Full Text Available The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tubes is not uniform which suggests that fire-side corrosion has happened on the tubes. Fire-side corrosion is caused by the reaction of combustion products with oxide layers on the tube surface resulting in metal loss and consequently tubes fracture. However, the tubes corrosion behaviour did not follow the conventional models of the fire-side corrosion. Given that, using the corrosion monitoring techniques for these boiler tubes seems essential. As a result, the thickness of the boiler tubes in different parts of the boiler has been recorded and critical points are selected accordingly. Such critical points are selected for installation of corrosion monitoring probes.

  7. Elevated temperature failures in boiler tubes - case studies

    International Nuclear Information System (INIS)

    Gowrisankar, I.; Bandyopadhyay, G.

    1989-01-01

    Metallurgical investigation of boiler tube failures enables identification of failure mechanisms and the underlying cause related to boiler conditions. Some case studies in short term overheating, prolonged overheating and low cycle fatigue failures in boiler tubes are discussed. (author)

  8. Review about corrosion of superheaters tubes in biomass plants; Revision sobre la corrosion de tubos sobrecalentadores en plantas de biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-07-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs.

  9. Non-contact Measurement of Remaining Thickness of Corroding Superheater Tubes. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, Kjeld; Storesund, Jan

    2007-12-15

    The Electro Magnetic Acoustic Transducer (EMAT) is a contactless thickness gauge for detection of corrosion on superheater tubes; it candidates as substitute for conventional manually operated contact UT transducers. It is the aim of the project to demonstrate the usefulness of two simple EMAT systems, Panametrics and Sonatest, for fast and reliable tube thickness inspections in difficult-to-access superheater sections. The present Phase 2 of the project involves testing of the systems on real compact superheaters in remote operation with the help of a mechanical manipulator designed and built for the purpose. The results are the following: - Both EMAT systems work well when tested in the field during handheld operation on tubes with a moderate thick layer of corrosion products and ash. The practical obtainable speed of cross-panel inspection of easily accessible panels is approximately 6 tubes per minute (6 thickness readings per minute). - The Sonatest system works well when tested in the field during remote operation on heavily corroded superheater tubes with thick ash layer. The Panametrics system was not found suitable for this type of field work. - The mechanical manipulator works well for cross-panel inspection of difficult-to-access superheater sections independent of the tube dimensions and the free space between the panels. In its present design it needs few improvements. - The practical obtainable speed of cross-panel inspection is 3 tubes per minute (3 thickness readings per minute). This speed is limited by the detection rate of the EMAT system and not by the travelling speed of the probe. - Scanning of tubes along their axis was never attempted, because the EMAT instruments were not capable of collecting data coming as a continuous stream. - It cannot be judged from visual alone and hardly from the service data, if a tube or a panel can be inspected by the magnetostrictive EMAT method or not. - The main contribution to failure of the EMAT inspection

  10. Diagnosis of Heat Exchanger Tube Failure in Fossil Fuel Boilers Through Estimation of Steady State Operating Conditions

    International Nuclear Information System (INIS)

    Herszage, A.; Toren, M.

    1998-01-01

    Estimation of operating conditions for fossil fuel boiler heat exchangers is often required due to changes in working conditions, design modifications and especially for monitoring performance and failure diagnosis. Regular heat exchangers in fossil fuel boilers are composed of tube banks through which water or steam flow, while hot combustion (flue) gases flow outside the tubes. This work presents a top-down approach to operating conditions estimation based on field measurements. An example for a 350 MW unit superheater is thoroughly discussed. Integral calculations based on measurements for all unit heat exchangers (reheaters, superheaters) were performed first. Based on these calculations a scheme of integral conservation equations (lumped parameter) was then formulated at the single tube level. Steady state temperatures of superheater tube walls were obtained as a main output, and were compared to the maximum allowable operating temperatures of the tubes material. A combined lumped parameter - CFD (Computational Fluid Dynamics, FLUENT code) approach constitutes an efficient tool in certain cases. A brief report of such a case is given for another unit superheater. We conclude that steady state evaluations based on both integral and detailed simulations are a valuable monitoring and diagnosis tool for the power generation industry

  11. Study of microstructural changes in boiler tubes and usage of time approach for determining of tube's failure

    International Nuclear Information System (INIS)

    Hemasi Taherabadi, L.; Raeiatpour, M.; Mehdizadeh, M.

    2001-01-01

    Operation condition of boilers such as corrosive media, high temperature and pressure has a pronounced effect on quality and performance of its components. Among these, the effect of temperature in microstructure and degradation of mechanical properties of boiler tubes is of most importance. Change in dimension, morphology, chemical composition and carbide spacing are the most important microstructural changes. Methods of study of such changes (through the investigation of composition, carbide spacing and thermal softening) are pointed in this article. Then, a number of failed super-heater tubes of a power plant were microlithography examined. Remaining life of tubes could be estimated by comparison of the results of metallographic and replication tests with microstructural standards

  12. Superheater fouling in a BFB boiler firing wood-based fuel blends

    NARCIS (Netherlands)

    Stam, A.F.; Haasnoot, K.; Brem, Gerrit

    2014-01-01

    Four different fuel blends have been fired in a 28 MWel BFB. Wood pellets (test 0) were not problematic for about ten years, contrary to a mixture of demolition wood, wood cuttings, compost overflow, paper sludge and roadside grass (test 1) which caused excessive fouling at a superheater bundle

  13. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  14. Microscopical investigation of steamside oxide on X20CrMoV121 superheater tubes

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, Anette Nørgaard; Jensen, Søren A.

    2011-01-01

    X20CrMoV121 is a 12%Cr martensitic steel which has been used in power plants in Europe for many decades. Superheater tubes exposed for various durations up to 135,000 hours in power plants in Denmark at steam temperatures varying from 450 to 575°C were investigated. Light optical and scanning ele...... electron microscopy was used to investigate steamside oxide morphologies. At all temperatures there is a double layered oxide, however, the inner:outer oxide thickness is not always equal. At the lower steam temperature range of...

  15. Estimation of residual life of boiler tubes using steamside oxide scale thickness

    International Nuclear Information System (INIS)

    Vikrant, K.S.N.; Ramareddy, G.V.; Pavan, A.H.V.; Singh, Kulvir

    2013-01-01

    In thermal power plants, remaining-life-estimation of boiler tubes is required at regular intervals for a safer and a better functionality of boilers. In this paper, a new method is proposed for the residual life estimation of service exposed boiler tubes using Non-Destructive Ultrasonic Oxide scale thickness measurements, average metal temperature and creep master curve. While steady state conduction heat transfer equations are solved to calculate the average metal temperature, creep master curve is generated from short term stress rupture data of rupture life less than 5000 h on a virgin material. In the present study, the residual life of T22 (2.25Cr-1Mo) service exposed Platen Superheater tube is estimated using two master creep curves, i.e. Larson-Miller Parametric (LMP) method of standard ASME T22 creep data and Wilshire approach of short term stress rupture data of T22. As the residual life is calculated from fundamental conduction heat transfer theory and creep rupture data, the proposed method can be applied for different grades of boiler materials. -- Highlights: ► Residual life is calculated from non-destructive oxide scale thickness, creep master curve and average metal temperature. ► A new method is proposed for calculating residual life using above parameters and from conduction heat transfer principles. ► The method can be applied to different boiler grades for estimating residual life and hence the method is generic

  16. Analisa Efisiensi Water Tube Boiler Berbahan Bakar Fiber, Cangkang Sawit dan Kulit Kayu Menggunakan Metode Langsung

    OpenAIRE

    Gaol, Dosma Putra Lumban

    2016-01-01

    Some of the factors that affect the efficiency of the boiler is a superheater pressure, water feed temperature, steam temperature, the amount of steam produced, the amount of fuel consumption and calorific value fuel combustion. Steamtab chemicallogic use companion software to calculate the value of enthalpy. The aim of this study is to get relations variations in pressure superheater with boiler efficiency, the relationship of variation of temperature feed water to the boiler efficiency, the...

  17. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Steven; Rapp, Robert

    2014-08-31

    coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  18. Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tube

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Nießen, Frank; Villa, Matteo

    2017-01-01

    In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission......-rich austenite phase to selective removal of Fe and Cr from the alloy, via a KCl-induced corrosion mechanism. Compositional variations were related to diffraction results and revealed a qualitative influence of the spinel cation concentration on the observed diffraction lines.......In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission...... geometry measuring with a small gauge volume from the sample surface through the corrosion product allowed depth-resolved phase identification and revealed the presence of (Fe,Cr)2O3 and FeCr2O4. This was supplemented by microstructural and elemental analysis correlating the additional presence of a Ni...

  19. Corrosion evaluation of heat recovery steam generator superheater tube in two methods of testing: Tafel polarization and electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Santoso, Rio Pudjidarma; Riastuti, Rini

    2018-05-01

    The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.

  20. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  1. A computational approach for thermomechanical fatigue life prediction of dissimilarly welded superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krishnasamy, Ram-Kumar; Seifert, Thomas; Siegele, Dieter [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    In this paper a computational approach for fatigue life prediction of dissimilarly welded superheater tubes is presented and applied to a dissimilar weld between tubes made of the nickel base alloy Alloy617 tube and the 12% chromium steel VM12. The approach comprises the calculation of the residual stresses in the welded tubes with a multi-pass dissimilar welding simulation, the relaxation of the residual stresses in a post weld heat treatment (PWHT) simulation and the fatigue life prediction using the remaining residual stresses as initial condition. A cyclic fiscoplasticity model is used to calculate the transient stresses and strains under thermocyclic service loadings. The fatigue life is predicted with a damage parameter which is based on fracture mechanics. The adjustable parameters of the model are determined based on LCF and TMF experiments. The simulations show, that the residual stresses that remain after PWHT further relax in the first loading cycles. The predicted fatigue lives depend on the residual stresses and, thus, on the choice of the loading cycle in which the damage parameter is evaluated. It the first loading cycle, where residual stresses are still present, is considered, lower fatigue lives are predicted compared to predictions considering loading cycles with relaxed residual stresses. (orig.)

  2. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  3. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  4. Comparison between two rheocasting processes of damper cooling tube method and low superheat casting

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoli

    2014-09-01

    Full Text Available To produce a high quality semisolid slurry that consists of fine primary particles uniformly suspended in the liquid matrix for rheoforming, chemical refining and electromagnetic or mechanical stirring are the two methods commonly used. But these two methods either contaminate the melt or incur high cost. In this study, the damper cooling tube (DCT method was designed to prepare semisolid slurry of A356 aluminum alloy, and was compared with the low superheat casting (LSC method - a conventional process used to produce casting slab with equiaxed dendrite microstructure for thixoforming route. A series of comparative experiments were performed at the pouring temperatures of 650 °C, 638 °C and 622 °C. Metallographic observations of the casting samples were carried out using an optical electron microscope with image analysis software. Results show that the microstructure of semisolid slurry produced by the DCT process consists of spherical primary α-Al grains, while equiaxed grains microstructure is found in the LSC process. The lower the pouring temperature, the smaller the grain size and the rounder the grain morphology in both methods. The copious nucleation, which could be generated in the DCT, owing to the cooling and stirring effect, is the key to producing high quality semisolid slurry. DCT method could produce rounder and smaller α-Al grains, which are suitable for semisolid processing; and the equivalent grain size is no more than 60 μm when the pouring temperature is 622 °C.

  5. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  6. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  7. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  8. SUS 321 HTB boiler tubing with fire grained internal surface resistant to steam-induced oxidation

    International Nuclear Information System (INIS)

    Kanero, Takahiro; Minami, Yuusuke; Kodera, Toshihide

    1981-01-01

    Considerable amount of scale is produced by high temperature steam on the austenitic stainless steel tubes used for the superheaters and reheaters of large boilers for power generation. The scale of outer layer separates off due to the thermal stress at the time of starting-up and stopping, and causes the blocking of pipes and the erosion of turbine blades. Following the increase of nuclear power generation, large boilers are used for medium load, accordingly it is expected that the troubles like these increase. In this paper, the manufacturing method and the properties of SUS 321 HTB with fine grain internal surface are reported, which was developed to reduce the rate of growth of scale and to prevent the separation of scale. In order to prevent the separation of scale from austenitic stainless steel tubes, the reduction of scale thickness, surface treatment such as chrome plating, the use of alloys with excellent oxidation resistance, the formation of chrome-rich film rapidly, the heat treatment of cold-worked tubes and so on were carried out. The nitrification of SUS 321 H steel brought about two-phase structure of the fine grain internal surface with excellent oxidation resistance and the rest of coarse grains with high creep strength. (Kako, I.)

  9. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  10. Creep analysis of boiler tubes by fem | Taye | Zede Journal

    African Journals Online (AJOL)

    In this paper an analysis is developed for the determination of creep deformation of an axisymmetric boiler tubes subjected to axisymmetric loads. The stresses and the permanent strains at a particular time and at the steady state condition, resulting from loading of the tube under constant internal pressure and elevated ...

  11. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  12. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  13. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  14. Oxygen pitting failure of a bagasse boiler tube

    CSIR Research Space (South Africa)

    Heyes, AM

    2001-04-01

    Full Text Available Examination of a failed roof tube from a bagasse boiler showed transverse through-cracks and extensive pitting. The pitting was typically oxygen induced pitting and numerous fatigue cracks had started within these pits. It is highly probable...

  15. Reliability of non-heated tube bends of boilers

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.

    1984-01-01

    Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures

  16. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    Science.gov (United States)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  17. A risk approach to the management of boiler tube thinning

    International Nuclear Information System (INIS)

    Noori, Soudabeh A.; Price, John W.H.

    2006-01-01

    A large set of industrial thickness inspection data covering four boiler units of a power station over a period of five years was made available to the authors. The measurements were made in regions of the boiler where corrosion/erosion was the major cause of failure of the boiler tubes. There were over 40,000 separately measured data points in the data and all were collected with some care and expense. In the development of maintenance strategies for equipment, this type of data is typical of the data that must be collected and assessed. This data thus represents an opportunity to evaluate the ability to generate a useful risk approach to the management of the tubing. An important example of a risk-based approach is the American Petroleum Institute (API) Risk Based Inspection ('RBI'), API 581. A variety of problems were encountered applying this to boiler tubes. The problems include irrelevant API 581 corrosion rate tables, lack of information on how to analyse inspection data, difficulty of dealing with multiple inspection categories and lack of suitable direction for programming inspection intervals

  18. Modelling of a one pass smoke tube boiler

    DEFF Research Database (Denmark)

    Karstensen, Claus M. S.; Sørensen, Kim

    2004-01-01

    A nonlinear state-space model with five states describing a one pass smoke tube boiler has been formulated. By means of mass- and energy-balance the model describes the dynamics of the Furnace, the Convection Zone and the Water/Steam Part and the three sub models are merged into an overall model....... The model is further linearized for use in a linear control design. The simulations have been carried out by means of MATLAB/SIMULINK and the models have been verified with measurements from a full scale boiler plant. Parameters in the model that are difficult to calculate have been estimated and the method...

  19. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  20. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  1. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie

    2017-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre......-oxidised Al and Ti-containing alloys (Kanthal APM and Nimonic 80A, respectively) was investigated under laboratory conditions mimicking biomass firing. The alloys were pre-oxidised at 900°C for 1 week. Afterwards, pre-oxidised samples, and virgin non-pre-oxidised samples as reference, were coated...... with a synthetic deposit of KCl and exposed at 560°C for 1 week to a gas mixture typical of biomass firing. Results show that pre-oxidation could hinder the corrosion attack; however, the relative success was different for the two alloys. While corrosion attack was observed on the pre-oxidised Kanthal APM, the pre...

  2. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  3. Thermal design of horizontal tube boilers: numerical and experimental investigation

    International Nuclear Information System (INIS)

    Roser, Robert

    1999-01-01

    This work concerns the thermal design of kettle re-boilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modelization of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author) [fr

  4. Oxidation rate in ferritic superheater materials

    International Nuclear Information System (INIS)

    Falk, I.

    1992-05-01

    On the steam side of superheater tubes, compact oxide layers are formed which have a tendency to crack and flake off (exfoliate). Oxide particles then travel with the steam and can give rise to erosion damage in valves and on turbine blades. In an evaluation of conditions in superheater tubes from Swedish power boilers, it was found that the exfoliation frequency for one material quality (SS 2218) was greater than for other qualities. Against this background, a literature study has been carried out in order to determine which mechanisms govern the build-up of oxide and the exfoliation phenomenon. The study reveals that the oxide morphology is similar on all ferritic steels with Cr contents up to 5%. and that the oxide properties can therefore be expected to be similar. The reason why the exfoliation frequency is greater for tubes of SS 2218 is probably that the tubes have been exposed to higher temperatures. SS 2218 (2.25 Cr) is normally used in a higher temperature range which is accompanied by improved strength data as compared with SS 2216 (1 Cr). The principal cause of the exfoliation is said to be stresses which arise in the oxide during the cooling-down process associated with shutdowns. The stresses give rise to longitudinal cracks in the oxide, and are formed as a result of differences in thermal expansion between the oxide and the tube material. In addition, accounts are presented of oxidation constants and growth velocities, and thickness and running time. These data constitute a valuable basis for practical estimates of the operating temperature in routine checks and investigations into damage in superheater tubes. (au)

  5. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  6. Boiler and HRSG tube failures. Lesson 4: Hydrogen damage

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry; Bursik, Albert

    2010-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This fourth lesson is focused on hydrogen damage of water-touched tubes in conventional boilers and in the high-pressure evaporators of heat recovery steam generators. (orig.)

  7. Boiler and HRSG tube failures. Lesson 5. Caustic gouging

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, Barry R.; Bursik, Albert

    2010-03-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This fifth lesson is focused on caustic gouging of water-touched tubes in conventional boilers and in the high-pressure evaporators of heat recovery steam generators. (orig.)

  8. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  9. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  10. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  11. A study on the leak monitoring of boiler tube in power plants

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2002-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. But the special equipments monitoring the operation status of these main facilities are still dependent upon foreign technology. Therefore, so as to develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, Acoustic Emission (AE) signal analysis and discrimination etc. As result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power plant facilities

  12. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  13. Tuning and performance evaluation of PID controller for superheater steam temperature control of 200 MW boiler using gain phase assignment algorithm

    Science.gov (United States)

    Begum, A. Yasmine; Gireesh, N.

    2018-04-01

    In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.

  14. High temperature corrosion investigations at AW2-bio. Final report; Biomass boiler

    Energy Technology Data Exchange (ETDEWEB)

    Borg, U.

    2011-01-15

    The measured corrosion rates in the test superheaters and ordinary superheaters of Avedoere 2 biomass boiler reveal that the corrosion rate increases with metal temperature and is significantly accelerated above steam temperatures of 540 deg. C. For the boiler with a live steam temperature of 540 deg. C, the measured corrosion rates in superheater 2 and 3 were up to 1mm pr. 10000 hours. It was observed that the flue gas temperature and heat flux had a significant effect on the corrosion rates through the surface metal temperature. Thus, the highest corrosion rates in the ordinary superheaters were not found at the position of the highest steam temperature in the outlet of superheater 3, but at the outlet of superheater 2. A steam temperature of approximately 580 deg. C at the outlet of one of the test superheater loops caused a tube fracture after a few months. A HVOF coating was applied to a section of superheater 2 and at a higher temperature in the test superheater loop. Analyses of the tube section after exposure showed that parts of the coating were not present and corrosion of the underlying TP347H FG was apparent. This indicates that the coating had spalled during operation. Furthermore, chlorine diffusion through the coating was observed causing attack at the coating-alloy interface. The project work has shown that it is not possible to increase the live steam temperature of the biomass fired boiler to more than 540 deg. C without a significant increase in superheater corrosion rates for the applied tube materials and coatings. (Author)

  15. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  16. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    International Nuclear Information System (INIS)

    Nicolas, G.; Mateo, M.P.; Yanez, A.

    2007-01-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits

  17. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Science.gov (United States)

    Nicolas, G.; Mateo, M. P.; Yañez, A.

    2007-12-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  18. Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared...... on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, deposit composition, sintering duration, and steel type...... on the adhesion strength....

  19. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  20. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  1. Experience gained from shifting a PK-19 boiler to operate with increased superheating and with a load higher than its rated value

    Science.gov (United States)

    Kholshchev, V. V.

    2011-08-01

    Failures of steam superheater tubes occurred after the boiler was shifted to operate with a steam temperature of 540°C. The operation of the steam superheater became more reliable after it had been subjected to retrofitting. The modernization scheme is described. An estimate is given to the temperature operating conditions of tubes taking into account the thermal-hydraulic nonuniformity of their heating.

  2. Identification of boiler tube leak in PHWR by measuring short lived radioisotope Iodine-134 in boiler water using gamma spectrometric techniques

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    The boiler tube made up of Monel-400 of RAPS-2 has failed on few occasions. Due to the failure of boiler tube, the active heavy water enters into boiler and feed water leading to contamination of radioactivity in secondary water circuit. The identification of boiler tube failure was done by measuring gamma ray activity of Iodine-134 in the boiler water with sample using gamma spectrometry with high purity germanium detector. In order to increase the sensitivity of the method 5 liters of Boiler water sample was passed through a plastic column containing 40 ml of anion resin and 10 ml of activated charcoal to capture the isotopes of Iodine in the anionic form and molecular form. Samples were collected from all 8 Boilers of RAPS-2. The activity of 134 I was shown only by Boiler - 5. No other boilers showed any activity of 134 I. This indicated that Boiler - 5 had leaky tubes. The leaky hairpin of boiler - 5 was identified by measuring Tritium and IP in the riser and down comer of all 10 HXs. On the basis of Tritium and IP result, HX-7 was identified as leaky hairpin. (author)

  3. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  4. Life Management Technique of Thermal Fatigue for SMST Boiler Tube at Different Heating Zone Using Smithy Furnace

    OpenAIRE

    Shekhar Pal,; Pradeep Suman

    2014-01-01

    This paper highlights on the evaluation of thermal fatigue failure for SMST (Salzgitter Mannesmann strain less boiler tube) DMV 304 HCu boiler tube using life management technique by using of smithy furnace. Boiler tubes are highly affected by operating conditions like, high temperature and high pressure. So it needs periodic checking for the purpose of safety and health assessment of the plant. So using this technique we can identify the degradation of tubes at microstructure...

  5. Hydrogen embrittlement corrosion failure of water wall tubes in large power station boilers

    International Nuclear Information System (INIS)

    Mathur, P.K.

    1981-01-01

    In the present paper, causes and mechanism of hydrogen embrittlement failure of water wall tubes in high pressure boilers have been discussed. A low pH boiler water environment, produced as a result of condenser leakage or some other type of system contamination and presence of internal metal oxide deposits, which permit boiler water solids to concentrate during the process of steam generation, have been ascribed to accelerate the formation of local corrosion cells conducive for acid attack resulting in hydrogen damage failure of water wall tubes. (author)

  6. Failure analysis of a boiler tube in USC coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, N.H.; Kim, S.; Choe, B.H.; Yoon, K.B.; Kwon, D.I. [Kangnung National University, Kangnung (Republic of Korea)

    2009-10-15

    This paper presents failure analysis of final superheater tube in ultra-supercritical (USC) coal power plant. Visual inspection was performed to find out the characteristics of fracture of the as-received material. And the micro-structural changes such as grain growth and carbide coarsening was examined by scanning electron microscope. Detailed microscopic studies were made to find out the behavior of the scale exfoliation on the waterside of tubes. From those investigations, the creep rupture may be caused by the softened structure induced by carbide coarsening and accelerated by the metal temperature increase by the impediment of heat transfer due to voids.

  7. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kisoo; Jeong, Kwon Seok [Korea Southern Power Corporation, Gimhae (Korea, Republic of)

    2012-06-15

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

  8. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Jeong, Kwon Seok

    2012-01-01

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated

  9. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo

    2001-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  10. Fracture analysis of tube boiler for physical explosion accident.

    Science.gov (United States)

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. ANALISA KEHILANGAN ENERGI PADA FIRE TUBE BOILER KAPASITAS 10 TON

    Directory of Open Access Journals (Sweden)

    Aditio Primayudi Aji Nugroho

    2015-06-01

    Full Text Available Tujuan dari penulisan ini adalah menghitung kinerja boiler dengan mengetahui kerugian energi pada saat produksi steam. Analisa teknis pada boiler sangat diperlukan, sebagai upaya peningkatan efisiensi dan mengetahui banyaknya energi yang terbuang sebagai kerugian. Faktorfaktor penyebab kehilangan panas/heat loss terbesar pada boiler antara lain : “kehilangan panas akibat gas buang kering, kandungan steam dalam gas buang, kandungan air dalam bahan bakar, kandungan air dalam suplai udara dan lain-lain”.Kehilangan panas/heat loss atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi efisiensi pada boiler.Untuk itu dilakukan studi analisa dengan perhitungan kehilangan panas dengan tujuan untuk mengetahui besarnya penurunan performance dan penyebab dari penurunan performance. Berdasarkan data dan analisa metode direct diketahui penurunan sebesar 21% pada kondisi normal (operasi 79% dan dari hasil perhitungan kehilangan panas indirect sebesar 16.68% efisiensi boiler sebesar 83.32% maka dari itu adanya kehilangan panas, perlu adanya perbaikan dalam control pengaturan bahan bakar dan udara yang masuk secara optimum dengan cara menggunakan Oxygen Trim Control yang berfungsi untuk mengukur konsentrasi oksigen pada cerobong dan secara otomatis mengatur oksigen pada udara yang masuk burner sehingga dihasilkan pembakaran dengan efisiensi yang optimal.dan dengan menggunakan economizer pada pemanasan awal suhu air umpan dapat menaikan efisiensi boiler.

  12. The mechanical design and validation of the helical tube boilers for Hartlepool and Heysham AGR stations

    International Nuclear Information System (INIS)

    Skinner, V.R.

    1983-01-01

    The 32 helically coiled once-through boiler units at Hartlepool and Heysham represent a major advance in the technologies of boiler design, manufacture and site construction. They are particularly complex in that they incorporate integral reheaters; they employ three different tubing materials and five different structural materials, each with operating temperature limitations; and they must fit compactly into pods in the reactor pressure vessel walls. A general description of the boilers is followed by a review of external factors which influenced the mechanical design and validation programme over 15 years. Against this background selected components are discussed in detail in terms of particular loading conditions and stress analysis. (author)

  13. Innovative coupling of cogeneration units with fire tube boilers: thermo-fluid dynamics of the fire tubes

    Science.gov (United States)

    Cioccolanti, L.; Arteconi, A.; Bartolini, C. M.; Polonara, F.

    2017-11-01

    Nowadays the thermal energy demand in the industrial sector is usually satisfied by means of fire tube boilers while electricity is supplied from the grid. Alternatively cogeneration units could be adopted for thermal and electrical energy self-production, whilst installing boilers only as back-up units. However, even when cogeneration is profitable, it is not widespread because industries are usually unwilling to accept cogeneration plants for reliability and high investment costs issues. In this work a system aimed at overcoming the above mentioned market difficulties is proposed. It consists of an innovative coupling of a combined heat and power unit with a modified fire tube boiler. In particular, a CFD analysis was carried out by the authors in order to address the most critical aspects related with the coupling of the two systems. More precisely, the following aspects were evaluated in detail: (i) pressure losses of the exhausts going from the prime mover to the boiler due to the sudden cross-section area variations; (ii) thermal power recoverable from the exhausts in the tubes of the boiler; (iii) dependence of the system on the final users’ specification.

  14. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  15. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    Science.gov (United States)

    Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  16. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  17. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler...

  18. Utilization of coal-water fuels in fire-tube boilers

    International Nuclear Information System (INIS)

    Sommer, T.M.; Melick, T.A.

    1991-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, has been awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. This paper reports on the program which consists of five tasks. Task 1 provides for the design and retrofit of the host boiler to fire coal-water slurry. Task 2 is a series of optimization tests that will determine the effects of adjustable parameters on boiler performance. Task 3 will perform about 1000 hours of proof-of-concept system tests. Task 4 will be a comprehensive review of the test data in order to evaluate the economics of slurry conversions. Task 5 will be the decommissioning of the test facility if required

  19. Analysis of Boiler Operational Variables Prior to Tube Leakage Fault by Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Al-Kayiem Hussain H.

    2014-07-01

    Full Text Available Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types.

  20. Numerical simulation of a 374 tons/h water-tube steam boiler following a feedwater line break

    International Nuclear Information System (INIS)

    Deghal Cheridi, Amina Lyria; Chaker, Abla; Loubar, Ahcène

    2016-01-01

    Highlights: • We simulate the behavior of a steam boiler during feed-water line break accident. • To perform accident analysis of the steam boiler, Relap5/Mod3.2 system code is used. • A Relap5 model of the boiler is developed and qualified at the steady state level. • A good agreement between Relap5 results and available experimental data. • The Relap5 model predicts well the main transient features of the boiler. - Abstract: To ensure the operational safety of an industrial water-tube steam boiler it is very important to assess various accident scenarios in real plant working conditions. One of the most challenging scenarios is the loss of feedwater to the steam boiler. In this paper, a simulation of the behavior of an industrial water-tube radiant steam boiler during feedwater line break accident is discussed. The simulation is carried out using the RELAP5 system code. The steam boiler is installed in an Algerian natural gas liquefaction complex. The simulation shows the capabilities of RELAP5 system code in predicting the behavior of the steam boiler at both steady state and transient working conditions. From another side, the behavior of the steam boiler following the accident shows how the control system can successfully mitigate the effects and consequences of such accident and how the evaporator tubes can undergo a severe damage due to an uncontrolled increase of the wall temperature in case of failure of this system.

  1. Modelling of thermal behaviour of iron oxide layers on boiler tubes

    Science.gov (United States)

    Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.

  2. Fire-tube boiler optimization criteria and efficiency indicators rational values defining

    Science.gov (United States)

    Batrakov, P. A.; Mikhailov, A. G.; Ignatov, V. Yu

    2018-01-01

    Technical and economic calculations problems solving with the aim of identifying the opportunity to recommend the project for industrial implementation are represented in the paper. One of the main determining factors impacting boiler energy efficiency is the exhaust gases temperature, as well as the furnace volume thermal stress. Fire-tube boilers with different types of furnaces are considered in the study. The fullest analysis of the boiler performance thermal and technical indicators for the following engineering problem: Q=idem, M=idem and evaluation according to η, B is presented. The furnace with the finned ellipse profile application results in the fuel consumption decrease due to a more efficient heat exchange surface of the furnace compared to other examined ones.

  3. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  4. Early tube leak detection system for steam boiler at KEV power plant

    Directory of Open Access Journals (Sweden)

    Ismail Firas B.

    2016-01-01

    Full Text Available Tube leakage in boilers has been a major contribution to trips which eventually leads to power plant shut downs. Training of network and developing artificial neural network (ANN models are essential in fault detection in critically large systems. This research focusses on the ANN modelling through training and validation of real data acquired from a sub-critical boiler unit. The artificial neural network (ANN was used to develop a compatible model and to evaluate the working properties and behaviour of boiler. The training and validation of real data has been applied using the feed-forward with back-propagation (BP. The right combination of number of neurons, number of hidden layers, training algorithms and training functions was run to achieve the best ANN model with lowest error. The ANN was trained and validated using real site data acquired from a coal fired power plant in Malaysia. The results showed that the Neural Network (NN with one hidden layers performed better than two hidden layer using feed-forward back-propagation network. The outcome from this study give us the best ANN model which eventually allows for early detection of boiler tube leakages, and forecast of a trip before the real shutdown. This will eventually reduce shutdowns in power plants.

  5. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...... Mn-, Cr- and/or Ni-containing oxides are observed, instead of pure Magnetite, underneath a pure Hematite surface layer. Oxides on the austenitic steel are under compressive stress or even stress-free....

  6. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  7. Investigation of Relative Time Constant Influence of Inertial Part of Superheater on Quality of Steam Temperature Control Behind Boiler in Broad Band of Loading Variations

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2008-01-01

    Full Text Available The paper is devoted to computational investigation of influence relative time constant of an object which changes in broad band on quality of steam temperature control behind a boiler with due account of value of regulating action in the system with PI- and PID- regulator. The simulation has been based on a single-loop automatic control system (ACS. It has been revealed that the less value of the relative time constant of an object leads to more integral control error in system with PID- regulator while operating external ACS perturbation. Decrease of numerical value of relative time constant of an object while operating external perturbation causes decrease of relative time concerning appearance of maximum dynamic control error from common relative control time.

  8. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  9. Application of composite tubes in power plants

    International Nuclear Information System (INIS)

    Toernblom, H.; Egnell, L.; Gullberg, R.

    1975-01-01

    Composite tubes with metallurgical bond are now being used on an industrial scale in recovery boilers. Service trials in power plants are viewed and the possibilities to solve fireside corrosion problems in the boiler and superheater sections are discussed. The present and potential future application in nuclear power plants is summarized. A brief presentation of the manufacture and fabrication of composite tubes is made and specific material properties are discussed. Composite tubes are concluded to be an established product and a useful means of meeting conflicting material requirements under severe service conditions. (author)

  10. EXPERIMENTAL INVESTIGATION OF NICKEL ALUMINIDE (NI3AL) NANOSTRUCTURED COATED ECONOMISER TUBE IN BOILER

    OpenAIRE

    * Gokulakannan A, Karuppasamy K

    2016-01-01

    Thermal Power Stations all over the world are facing the problem of boiler tube leakage frequently. The consequences of which affects the performance of power plant and huge amount of money loss. Hot corrosion and erosion are recognized as serious problems in coal based power generation plants in India. The maximum number of cause of failure in economizer unit is due to flue gas erosion. The corrosion resistant coatings used conventionally are having some limitations like degradation of the c...

  11. Investigations of the Failure in Boilers Economizer Tubes Used in Power Plants

    Science.gov (United States)

    Moakhar, Roozbeh Siavash; Mehdipour, Mehrad; Ghorbani, Mohammad; Mohebali, Milad; Koohbor, Behrad

    2013-09-01

    In this study, failure of a high pressure economizer tube of a boiler used in gas-Mazut combined cycle power plants was studied. Failure analysis of the tube was accomplished by taking into account visual inspection, thickness measurement, and hardness testing as well as microstructural observations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Optical microscopy images indicate that there is no phase transformation during service, and ferrite-pearlite remained. The results of XRD also revealed Iron sulfate (FeSO4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also detected on the outer surface of the tube by EDS analysis. Dew-point corrosion was found to be the principal reason for the failure of the examined tube while it has been left out-of-service.

  12. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  13. Surface chemistry interventions to control boiler tube fouling

    International Nuclear Information System (INIS)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J.

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25 o C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both

  14. Surface chemistry interventions to control boiler tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25{sup o}C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both.

  15. An advanced maintenance advisory and surveillance system for boiler tubes - AMASS

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, A.B. [ERA Technology Ltd, Leatherhead (United Kingdom)

    1998-12-31

    In a recently completed European collaborative project, the aim was to address the issue of boiler tube failures and thereby plant availability. The reduction of forced outages due to component failures and the reduction of planned outages for preventative maintenance can both contribute in this respect. It has been possible to assess tube degradation due to erosion, corrosion and overheating through the use of on-line techniques (thin layer activation, corrosion probes and novel temperature sensors) and off-line techniques (cold air velocity measurements, laser shearography and measurements of steam side oxide) which have been developed in the project. These techniques have been demonstrated on an oil fired boiler in Portugal and a coal fired unit in Spain. The output from the monitoring techniques has been integrated in the AMASS maintenance advisory and surveillance system. This is a computerised system comprising a spatial database with add-on tools designed to assess data from individual monitors and to provide the user with information on tube life utilisation rates and the probability of tube failure occurring. A description of the monitoring techniques will be described along with some of the results of demonstrating them in the field. Also an overview of the computerized system and the way in which it works will be given along with examples of how it can be used to assist with preventative maintenance and to help avoid unplanned outages. (orig.) 10 refs.

  16. An advanced maintenance advisory and surveillance system for boiler tubes - AMASS

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, A B [ERA Technology Ltd, Leatherhead (United Kingdom)

    1999-12-31

    In a recently completed European collaborative project, the aim was to address the issue of boiler tube failures and thereby plant availability. The reduction of forced outages due to component failures and the reduction of planned outages for preventative maintenance can both contribute in this respect. It has been possible to assess tube degradation due to erosion, corrosion and overheating through the use of on-line techniques (thin layer activation, corrosion probes and novel temperature sensors) and off-line techniques (cold air velocity measurements, laser shearography and measurements of steam side oxide) which have been developed in the project. These techniques have been demonstrated on an oil fired boiler in Portugal and a coal fired unit in Spain. The output from the monitoring techniques has been integrated in the AMASS maintenance advisory and surveillance system. This is a computerised system comprising a spatial database with add-on tools designed to assess data from individual monitors and to provide the user with information on tube life utilisation rates and the probability of tube failure occurring. A description of the monitoring techniques will be described along with some of the results of demonstrating them in the field. Also an overview of the computerized system and the way in which it works will be given along with examples of how it can be used to assist with preventative maintenance and to help avoid unplanned outages. (orig.) 10 refs.

  17. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    Science.gov (United States)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  18. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    International Nuclear Information System (INIS)

    Srikanth, S.; Das, S.K.; Ravikumar, B.; Rao, D.S.; Nandakumar, K.; Vijayan, P.

    2004-01-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition

  19. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Rao, D.S. [National Metallurgical Laboratory Madras Centre, Chennai (India); Swapan, S.K.; Das, K.; Ravikumar, B. [National Metallurgical Laboratory, Jamshedpur (India). Materials Characterization Division; Nandakumar, K.; Vijayan, P. [Bharat Heavy Electricals Limited, Tiruchirappalli (India). Research and Development Section

    2004-10-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition. (author)

  20. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2011-01-01

    Highlights: → We examine tube deposits taken from boilers of municipal solid waste incinerators. → Literature survey is done on the corrosion mechanism of tube steels. → Chemical analyses, X-ray diffraction, DSC, and corrosion test were conducted. → Melting behavior of salt constituents affected the corrosiveness of the deposits. - Abstract: Twenty-three tube deposits taken from seven heat-recovery boilers of municipal solid waste incinerators were examined by chemical analyses and X-ray diffraction. These deposits were measured by Differential Scanning Calorimeter (DSC) in N 2 to investigate their melting characteristics. Sixteen deposits were used to evaluate their corrosiveness to carbon steel by high-temperature corrosion test conducted at 400 o C for 20 h in 1500 ppm HCl - 300 ppm SO 2 - 7.5%O 2 - 7.5%CO 2 - 20%H 2 O - N 2 . Total heat of endothermic reactions of the deposits taking place between 200 and 400 o C can be related to the corrosion rate of carbon steel at 400 o C. Corrosion initiated at temperatures when the deposits started to melt, became severe when fused salt constituents increased, and alleviated when the majority of the deposits became fused. The corrosion can be interpreted as fused salt corrosion caused by chloride and sulfate salts.

  1. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  2. Modificaciones en las calderas igneotubulares cubanas // Modifications in the Cuban boilers of fire tube

    Directory of Open Access Journals (Sweden)

    I. Pérez Mallea

    1998-01-01

    Full Text Available El objetivo de este trabajo es optimizar y diseñar las calderas igneotubulares nacionales, incluyendo las de inversión de llama yagua caliente. Con este fin se creo un software como soporte científico técnico que permite realizar los diferentes cálculosverificativos a través de los cuales se optimiza._________________________________________________________________________Abstract .The objective of this work is the optimizing and designing of the Cuban boilers of fire tube, including those of inverting offlame and hot water. A software have been developed as technical scientific supper for different calculations and optimizingprocess.

  3. Efficiency assessment of bi-radiated screens and improved convective set of tubes during the modernization of PTVM-100 tower hot-water boiler based on controlled all-mode mathematic models of boilers on Boiler Designer software

    Science.gov (United States)

    Orumbayev, R. K.; Kibarin, A. A.; Khodanova, T. V.; Korobkov, M. S.

    2018-03-01

    This work contains analysis of technical values of tower hot-water boiler PTVM-100 when operating on gas and oil residual. After the test it became clear that due to the construction deficiency during the combustion of oil residual, it is not possible to provide long-term production of heat. There is also given a short review on modernization of PTVM-100 hot-water boilers. With the help of calculations based on controlled all-mode mathematic modules of hot-water boilers in BOILER DESIGNER software, it was shown that boiler modernization by use of bi-radiated screens and new convective set of tubes allows decreasing sufficiently the temperature of combustor output gases and increase reliability of boiler operation. Constructive changes of boiler unit suggested by authors of this work, along with increase of boiler’s operation reliability also allow to improve it’s heat production rates and efficiency rate up to 90,5% when operating on fuel oil and outdoor installation option.

  4. Erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.; Bhagat, R. [Shaheed Bhagat Singh College of Engineering & Technology, Ferozepur (India)

    2009-04-15

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion-corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the service life of the boilers, especially for the new generation ultra-supercritical boilers. The aim of the present investigation is to evaluate the erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the temperature was around 900{sup o}C. The corrosion products have been characterized with respect to surface morphology, phase composition and element concentration using the combined techniques of X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro analyser (EPMA). The Superni-75 performed well in the coal-fired boiler environment, which has been attributed mainly to the formation of a thick band of chromium in scale due to selective oxidation of the chromium.

  5. Oxidation study by Moessbauer and optic microscopy of steels from boiler tubes used in sugar industry

    International Nuclear Information System (INIS)

    Fajardo, M.; Perez Alcazar, G.A.; Aguilar, Y.

    1998-01-01

    Optic microscopy and Moessbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Moessbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wuestite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O 2 -rich vapor atmosphere. The rusted products are stable at high temperatures

  6. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  7. IGA/SCC propagation rate measurements on alloy 600 steam generator tubing using a side stream model boiler

    International Nuclear Information System (INIS)

    Takamatsu, H.; Matsueda, K.; Matsunaga, T.; Kitera, T.; Arioka, K.; Tsuruta, T.; Okamoto, S.

    1993-01-01

    IGA/SCC crack propagation rate measurements using various types of IGA/SCC predefected ALloy 600 tubing were tested in model boilers, a side stream model boiler at Ohi Unit 1 and similar model boilers in the laboratory. Types of IGA/SCC predefects introduced from the outside of the tubing were as follows. (1) Actual IGA/SCC predefect introduced by high temperature caustic environments; (2) Longitudinal predefect by electrodischarge machining (EDM) method, and then crack tip fatigue was introduced to serve as the marker on the fractured surface (EDM slit + fatigue). IGA/SCC crack propagation rate was measured after the destructive examination by Cr concentration profile on fracture surface for (1), and observation of intergranular fractured surface propagated from the marked fatigue was employed for (2) and (3) after the model boiler tests. As for the water chemistry conditions, mainly AVT (high N 2 H 4 ) + boric acid (5-10ppm as B in SGs) treatment for both model boilers, and some of the tests for the model boiler in the laboratory employed AVT (high N 2 H 4 ) without boric acid. The results of IGA/SCC crack propagation rate measurements were compared with each other, and the three methods employed showed a good coincidence with the rate of ca. 1 x 10 -5 mm/Hr for AVT (high N 2 H 4 ) + boric acid treatment condition, in the case that crack tip boron intensity (B/O value by IMMA analysis) of more than 1 was observed

  8. Fire-side corrosion in power-station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, A J.B.; Flatley, T; Hay, K A

    1978-10-01

    The steel tubing of a modern power-station boiler operates at up to 650/sup 0/C (a dull red heat) in the very corrosive environment produced by the combustion gases and ash particles. Within the tubes, whose walls are around 5mm thick, 2000 tons of steam are generated per hour at temperatures up to 565/sup 0/C and pressures up to 170 bar. Several forms of metal corrosion may occur on the fireside surface of these tubes and on other boiler components. The designed 20-year operating life of the stainless-steel superheater and reheater tubes can be much reduced at temperatures above 600/sup 0/C by attack from molten salts formed beneath the deposited ash on the upstream tube surfaces. Mild steel evaporator tubes lining the furnace wall may suffer similarly if flame impingement allows the local release of volatile chlorine compounds from coal particles on the tube surface. Uncooled metal components supporting and aligning the boiler tubes may reach 1000/sup 0/C and are particularly susceptible to corrosion. CEGB research effort has been applied to quantify the rate of corrosion and to obtain an understanding of the complex corrosion mechanisms, so that ways of minimizing or preventing their occurrence may be found. These include the optimization of the combustion chemistry, design modifications such as shielding certain vulnerable tubes, and the selection of improved alloys and the use of ''co-extruded'' tubing.

  9. Firetube boiler with high efficiency for producing saturated or superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Carosso, V J; Carosso, J Y

    1976-10-07

    This boiler for producing saturated or super-heated steam is to be manufactured in one piece or in units which can be assembled at site without skilled workers, at the factory. It is to have a high efficiency and dimensions which permit the transport of the completely assembled boiler by road transport. The relatively small water-steam vessel lies across the longitudinal axis of the boiler in the rear boiler space over a battery of preheater tubes. By these measures and by a very detailed and appropriately described rational arrangement of other parts, such as convection bundles, primary and secondary superheater, evaporation tubes, which form an 'evaporation shield', upper and lower longitudinal chambers with vertical connecting pipes of different crossections, the above mentioned condition for space requirement is fulfilled and a high efficiency should be achieved, but with considerable expense.

  10. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  11. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  12. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  13. Corrosion/erosion detection of boiler tubes utilizing pulsed infrared imaging

    Science.gov (United States)

    Bales, Maurice J.; Bishop, Chip C.

    1995-05-01

    This paper discusses a new technique for locating and detecting wall thickness reduction in boiler tubes caused by erosion/corrosion. Traditional means for this type of defect detection utilizes ultrasonics (UT) to perform a point by point measurement at given intervals of the tube length, which requires extensive and costly shutdown or `outage' time to complete the inspection, and has led to thin areas going undetected simply because they were located in between the sampling points. Pulsed infrared imaging (PII) can provide nearly 100% inspection of the tubes in a fraction of the time needed for UT. The IR system and heat source used in this study do not require any special access or fixed scaffolding, and can be remotely operated from a distance of up to 100 feet. This technique has been tried experimentally in a laboratory environment and verified in an actual field application. Since PII is a non-contact technique, considerable time and cost savings should be realized as well as the ability to predict failures rather than repairing them once they have occurred.

  14. Superheat in magma oceans

    Science.gov (United States)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  15. The effect of water jet lancing on furnace wall tubes of high slagged deposit fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V V; Kovalevitch, I A; Maidanik, M N [All-Union Heat Engineering Institute, Siberian Branch, Krasnoyarsk (USSR)

    1990-01-01

    In this paper the results of investigating the effectiveness of water jet lancing on furnace wall tubes of slagged deposits fuels fired boilers type E-500, P-64, P-67 are given. The boilers of these types are designed to burn Jugoslavian lignites are Beresovo lignites of the Kansk-Achinsk deposits. Recommendations for usage of low retractable, long retractable and long-range water blowers, depending on the design, produced in the USSR, the furnace dimension and stability of deposits are given as well.

  16. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  17. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    International Nuclear Information System (INIS)

    Lee, Sang Bum; Roh, Seon Man

    2016-01-01

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB

  18. Chemical cleaning of AGR boilers

    International Nuclear Information System (INIS)

    Moore, S.V.; Moore, W.; Rantell, A.

    1978-01-01

    AGR boilers are likely to require post service chemical cleaning to remove accumulated oxides at intervals of 15 - 35 kh. The need to clean will be based on an assessment of such factors as the development of flow imbalances through parallel tubes induced by the formation of rough oxide surfaces, an increasing risk of localised corrosion as the growth of porous oxides proceeds and the risk of tube blockage caused by the exfoliation of steam-grown oxides. The study has shown what heterogeneous multilayer oxides possessing a range of physical and chemical properties form on the alloy steels. They include porous and compact magnetites, chromium spinels and sesquioxide. Ammoniated citric acid has been shown to remove deposited and water-grown magnetites from the carbon and alloy steels but will not necessarily remove the substituted spinels grown on the alloy steels or the potentially spalling steam-grown magnetite on the A1SI 316 superheater. Citric acid supplemented with the reducing agent glyoxal completely removes all oxides from the boiler except the protective inner spinel formed on the 316. Removal of the spinels and compact magnetites occurs more by undercutting and physical detachment than by the dissolution. (author)

  19. Release of Corrosive Species above the Grate in a Waste Boiler and the Implication for Improved Electrical Efficiency

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Dam-Johansen, Kim

    2010-01-01

    A relatively low electrical efficiency of 20−25% is obtained in typical west European waste boilers. Ash species released from the grate combustion zone form boiler deposits with high concentrations of Cl, Na, K, Zn, Pb, and S that cause corrosion of superheater tubes at high temperature....... The superheater steam temperature has to be limited to around 425 °C, and thereby, the electrical efficiency remains low compared to wood or coal-fired boilers. If a separate part of the flue gas from the grate has a low content of corrosive species, it may be used to superheat steam to a higher temperature......, and thereby, the electrical efficiency of the plant can be increased. In this study, the local temperature, the gas concentrations of CO, CO2, and O2, and the release of the volatile elements Cl, S, Na, K, Pb, Zn, Cu, and Sn were measured above the grate in a waste boiler to investigate if a selected fraction...

  20. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  1. Thermal design of horizontal tube boilers. Numerical and experimental investigation; Modelisation thermique de bouilleurs a tubes horizontaux. Etude numerique et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R.

    1999-11-26

    This work concerns the thermal design of kettle reboilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modeling of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author)

  2. Effect of Prolong Aging to the Microstructure and Mechanical Properties of Boiler Tube

    International Nuclear Information System (INIS)

    Norasiah Abdul Kasim; Mohd Harun; Muhamad Rawi Mohd Zin; Zaifol Samsu; Mahdi Ezwan Mahmoud; Zaiton Selamat; Shariff Satar

    2013-01-01

    Boiler or steam generator is a device used to create steam by applying heat energy to water. For industrial applications, most boilers are used under extreme conditions, which require them to operating continuously or in a batch. Therefore constant heating and cooling will result into certain material failure, or when the operation itself exhibit a few malfunctions, it will affected the boiler condition and contribute to its failure. Hence the main emphasis on this study is investigating the effect of aging, with the influence of temperature by heating it into a period of time. Focus on understanding the changes occurred during the operating hour of boiler by simulating a short term aging experiment. The boilers structure material, Carbon Steel BS3509 used in this experiment were heated on a furnace with 500 and 550 centigrade for 19, 49, 72 and 191 hours. After the heating process, the metal specimens will be observed its micro structural changes and the oxide layer. The hardness will also be tested and taken accounted for before and after heating. The results and insight from the observation have been analyzed and discussed. (author)

  3. Superheater fireside corrosion mechanisms in MSWI plants: Lab-scale study and on-site results

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, J.M.; Chaucherie, X.; Nicol, F. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Diop, I. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France); Rapin, C.; Vilasi, M. [Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France)

    2011-06-15

    Combustion of municipal waste generates highly corrosive gases (HCl, SO{sub 2}, NaCl, KCl, and heavy metals chlorides) and ashes containing alkaline chlorides and sulfates. Currently, corrosion phenomena are particularly observed on superheater's tubes. Corrosion rates depend mainly on installation design, operating conditions i.e., gas and steam temperature and velocity of the flue gas containing ashes. This paper presents the results obtained using an innovative laboratory-scale corrosion unit, which simulates MSWI (Municipal Solid Waste Incineration) boilers conditions characterized by a temperature gradient at the metal tube in the presence of corrosive gases and ashes. The presented corrosion tests were realized on carbon steel at fixed metal temperature (400 C). The influence of the flue gas temperature, synthetic ashes composition, and flue gas flow pattern were investigated. After corrosion test, cross sections of tube samples were characterized to evaluate thickness loss and estimate corrosion rate while the elements present in corrosion layers were analyzed. Corrosion tests were carried out twice in order to validate the accuracy and reproducibility of results. First results highlight the key role of molten phase related to the ash composition and flue gas temperature as well as the deposit morphology, related to the flue gas flow pattern, on the mechanisms and corrosion rates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2010-01-01

    Utilization of biomass as wood or straw in large suspension­fired boilers is an efficient method to reduce the use of fossil fuels consumption and to reduce the net CO2 formation. However, the presence of chlorine and alkali metals in biomass (straw) generate ash with a low melting point and induce...... large problems of ash deposit formation on the superheater tubes. Full scale studies on biomass ash deposition and removal had been done on biomass grate boilers, while only limited data is available from biomass suspension­firing. The aim of this study was to investigate deposit mass uptake, heat...... uptake reduction, fly ash and deposit characteristics, and deposit removal by using an advanced online deposit probe in a suspension­fired boiler using wood and straw pellets as fuel. The influence of fuel type and probe exposure time on the ash deposition rate, the heat uptake, the fly ash and deposit...

  5. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  6. Simulation of Working Processes in the Water-Tube Boiler Furnace with the Purpose of Reducing Emissions of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-04-01

    Full Text Available A significant number of domestic and industrial boilers are in operation in Ukraine. Nitrogen oxides are the most dangerous among all combustion products that pollute the atmosphere, therefore, one should take some measures for decreasing the formation of nitrogen oxides during combustion. The studies were carried out at the boilers of low power (100 kW with a tubular radiator and an open end. The studies in the furnaces of industrial steam boilers having a tubular radiator with a closed end have not been done. The numerical study results of the gaseous fuel combustion processes in the furnace of a DE-10/14 steam water-tube boiler are presented. The fuel-air mixture is formed by premixing the 15% part of the air with a primary burner twist factor n=2.4 and a secondary burner twist factor n=1.6, and an air excess factor αв=10. As a result of the studies, the temperature and velocity distributions of gases in the combustion chamber, the density of heat flows on the screen tubular surfaces, and the concentrations of the combustion components were determined. Flue gas recirculation in the volume of 80-100% is provided, and the reversible movement of combustion products towards the combustion front provides a reduction in the concentration of nitrogen oxides up to 123-125 mg/m3 at the furnace outlet. Disadvantages are the following: the formation of stagnant zones near the end of the secondary radiator. The optimum diameter of the tubular radiator equals to two burners diameters and tubular radiator is located at a distance of one meter from the burner cutoff.

  7. Oxidation study by Mössbauer and optic microscopy of steels from boiler tubes used in sugar industry

    Science.gov (United States)

    Fajardo, M.; Pérez Alcázar, G. A.; Aguilar, Y.

    1998-08-01

    Optic microscopy and Mössbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Mössbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wüstite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O2 -rich vapor atmosphere. The rusted products are stable at high temperatures.

  8. Determining the parameters at which burnout occurs in the waterwall tubes of drum boilers

    Energy Technology Data Exchange (ETDEWEB)

    I.I. Belyakov [Central Boiler-Turbine Institute Research and Production Association (OAO TsKTI), St. Petersburg (Russian Federation)

    2007-09-15

    Parameters at which burnout occurs are presented that were obtained by measuring the temperature and heat fluxes during experiments carried out directly on a boiler. The results of a comparison between the obtained values and the data of investigations on a test facility are given.

  9. Factors in the selection of broiler tube materials for a civil fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tyzack, C; Chitty, A

    1975-07-01

    This paper briefly considers some of the factors which must be balanced in the selection of a boiler tube material for a Civil Fast Reactor. The merits and possible demerits of low alloy ferritic steels and the austenitic Alloy 800 are compared with respect to waterside corrosion resistance, mechanical properties, fabrication and weldability and possible effects of exposure to the sodium environment under normal and fault conditions. It is pointed out that although there is operational experience of most of the materials in boiler superheater applications there is little or none in evaporative regimes. (author)

  10. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10. [CGD 95-028...

  11. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  12. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  13. Contamination prevention of superheaters and reheaters during initial startup and operation

    International Nuclear Information System (INIS)

    Gabrielli, F.; Sylvester, W.R.; Thimot, G.W.

    1976-01-01

    The general precautions that should be taken to minimize the potential for harmful contamination or oxygen corrosion of power plant superheaters and reheaters during the period from field storage through operation are discussed and summarized. Present boiler industry start-up and operating practices intended to minimize the introduction of solids to the superheater are, as proven by experience, adequate to avoid contamination-related problems. No basic changes to general industry practice are necessary. What is needed, however, is a continuing awareness of the potential for contamination-related problems so that in the specific application of these practices all likely sources of contamination will be considered

  14. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  15. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    Science.gov (United States)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  16. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  17. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    International Nuclear Information System (INIS)

    Kim, Seongil; Choi, Sangmin

    2017-01-01

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  18. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V

    1998-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  19. Design and implementation of a control system to improve the quality of the combustion gases in the fire-tube boiler of 5 BHP

    Directory of Open Access Journals (Sweden)

    Carlos Alfredo Pérez Albán

    2016-06-01

    Full Text Available The goal of this paper is the design and implementation of a system for controlling the quality of the combustion gases in a fire-tube boiler of 5 BHP. Based on the percentage of O2 present in the combustion gases, measured by a lambda sensor, the percentage of CO2 emitted into the atmosphere is determined. PID proportional control is responsible for the automatic regulation of the entry of air to the boiler by an actuator, according to the percentage of the oxygen concentration in the combustion gases. The control system has an HMI display and a modular PLC. The results achieved ensure pollutant gases emissions within the parameters established by current environmental standards, achieving the required quality of combustion gases and reducing the fuel consumption of the boiler.

  20. Sodium reflux pool-boiler solar receiver on-sun test results

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  1. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    Science.gov (United States)

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Relaxation and corrosion resistance of alloy 800 used for steam generator tubes of ship borne boilers

    International Nuclear Information System (INIS)

    Corrieu, J.M.; Cortial, F.; Maillard, J.L.; Vernot-Loier, C.; Lebeau, M.

    1994-01-01

    The INCO ''INCOLOY 800'' trademark groups the Fe-Cr-Ni alloys containing 30 to 35% nickel, 19 to 23% chromium, 0,15 to 0,60% aluminium, 0,15 to 0,60% titanium and less than 0,10% carbon contents, used as construction materials for condenser and heat exchanger tubes. In parallel with water chemistry control and studies aimed at reducing the residual stresses resulting from tube expansion, studies have been conducted to a better understanding of this alloy, its metallurgy and its corrosion behaviour under accurately defined fabrication and heat treatment conditions. The purpose of this paper is to present the results of a behaviour study of INDRET alloy 800 concerning isothermal relaxation and effects of the said relaxation heat treatments on alloy microstructure studied with a transmission electron-chemical method to determine the sensitiveness to intergranular corrosion, and by electrochemistry in pressurized hot water. (authors). 4 figs., 5 tabs., 7 refs

  3. Long term testing of materials for tube shielding, stage 2; Laangtidsprovning av tubskyddsmaterial, etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Norling, Rikard; Hjoernhede, Anders; Mattsson, Mattias

    2012-02-15

    Circulating Fluidized Bed (CFB) boilers are commonly used for combustion of biomass and are used to some extent for Waste-to-Energy (WtE) plants as well. The superheaters of the latter are for obvious reasons more prone to suffer from high temperature corrosion caused by the corrosive species in the fuel, mainly chlorides. Frequently the final (hottest) superheater is positioned in the loop seal, where the circulating bed material is returned to the furnace after being separated from the flue gas by a cyclone. The environment in the loop seal is relatively free of chlorides, since these primarily follow the flue gas into the convection pass. Hence, higher steam temperature can be allowed without excessive damage to the final superheater. On the other hand the superheaters, which are located in the convection pass, are more exposed to the corrosive species of the flue gas. Further, they are eroded by particles entrained in the gas flow. Particles and condensing gaseous species are to a large extent deposited on the superheaters, which limits the heat transfer and promotes corrosion. The deposits are regularly removed e.g. by soot blowers. The pressurized steam from soot blowers causes additional erosion damage to that caused by entrained particles. It shall be noted that the actual damage is caused by a combined mechanism of erosion and corrosion denoted erosion-corrosion, which usually results in dramatically accelerated wear. To avoid excessive erosion damage on the superheater tubes the first tube row of each bundle is protected by tube shielding. In its simplest form the shields are made from a steel sheet that has been bent into a semi-circular half-cylinder shell. These shields are attached onto the wind-side of the tubes by hangers. A typical material for tube shielding is the austenitic high temperature resistant stainless steel 253MA. Life of tube shielding depends on numerous factors such as boiler design, superheater location, fuel and operating

  4. A study on the concentration of CO by the length and the variation of the bent tube of the exhaust pipe for a household gas boiler

    International Nuclear Information System (INIS)

    Leem, Sa Hwan; Huh, Yong Jeong; Lee, Jong Rark

    2008-01-01

    Energy and environment become increasingly serious after the industrial revolution. The demand for gas as an ecofriendly energy source is also increasing. With the demand, the installation and the use of gas boilers have also increased, so the damage to human life by the waste gas (CO and CO 2 ) continues increasing every year. Hence, the aim of this study was to investigate the concentration of CO (Carbon Monoxide) by the length and the variation of the bent tube of the exhaust pipe by installing a boiler with the same method as a household boiler and to discover the harm to humans. For the effect of the length, the allowable concentration of CO is 50ppm, and the 3m of the once bent tube starts exceeding the allowable concentration of CO after 5 minutes, and the 4m and 5m starts exceeding after 3 minutes. In addition, the 1m of three times bent tube starts exceeding the allowable concentration of CO after 3 minutes

  5. Generalization of experimental data and development of recommendations for calculating heat transfer of a staggered tube bank with helical and ring extended-surface tubes in a perpendicular gas stream (for new formulation of standard method for boiler heat analyses)

    Energy Technology Data Exchange (ETDEWEB)

    Fomina, V N; Titova, E Ya; Migai, V K; Bystrov, P G; Pis' mennyi, E N [Vsesoyuznyi Teplotekhnicheskii Institut (USSR)

    1991-06-01

    Comparatively evaluates methods for determination of optimum design of extended-surface tubes used in water walls of boilers fired with coal and other fuels in commercial power plants in the USSR. The standard calculation methods introduced in 1973 and other methods developed and tested by individual research institutes of the USSR are described. New and original formulae based on the results of physical and mathematical modeling are evaluated. Heat transfer from flue gases to water walls is analyzed. Arrangement of tube banks, design of extended-surface tubes and other factors that influence heat transfer are considered. Evaluations show that from among the analyzed calculation methods the method developed by the KPI institute is superior to others (it is most accurate and universal). Investigations show that the coefficient of thermal efficiency of the economizers (1st and 2nd stage) of boilers fired with coal amounts to about 0.85. The coefficient considers effects of buildup on the economizer tubes. Use of the method is explained on example of boilers fired with black coal from the Ehkibastuz. 13 refs.

  6. A numerical study on thermal behavior of a D-type water-cooled steam boiler

    International Nuclear Information System (INIS)

    Moghari, M.; Hosseini, S.; Shokouhmand, H.; Sharifi, H.; Izadpanah, S.

    2012-01-01

    To achieve a precise assessment on thermal performance of a D-type water-cooled natural gas-fired boiler the present paper was aimed at determining temperature distribution of water and flue gas flows in its different heat exchange equipment. Using the zonal method to predict thermal radiation treatment in the boiler furnace and a numerical iterative approach, in which heat and fluid flow relations associated with different heat surfaces in the boiler convective zone were employed to estimate heat transfer characteristics, enabled this numerical study to obtain results in good agreement with experimental data measured in the utility site during steady state operation. A constant flow rate for a natural gas fuel of specified chemical composition was assumed to be mixed with a given excess ratio of air flow at a full boiler load. Significant results attributed to distribution of heat flux on different furnace walls and that of flue gas and water/steam temperature in different convective stages including superheater, evaporating risers and downcomers modules, and economizer were obtained. Besides the rate of heat absorption in every stage and other essential parameters in the boiler design too, inherent thermal characteristics like radiative and convective heat transfer coefficients as well as overall heat transfer conductance and effectiveness of convective stages considered as cross-flow heat exchangers were eventually presented for the given operating condition. - Highlights: ► Detailed distribution of heat flux on all of the boiler furnace walls was obtained. ► Flue gas and water thermal behaviors in different heating sections were evaluated. ► A good agreement was made between numerical results and experimental data. ► Contribution of the boiler furnace to the total thermal absorption was 39%. ► Contribution of the boiler tube banks to the total thermal absorption was 61%.

  7. Inelastic behaviour of solar boiler tubes subjected to cyclic thermal loading

    International Nuclear Information System (INIS)

    Gamby, D.; Pietri, P.; Bourdillon, H.

    1981-01-01

    Relying upon three-dimensional results previously obtained in the elastic range, we propose a simplified theory according to which each fiber of the tube portion undergoes either an uniaxial stress state (taking into account plastic flow with linear isotropic strain-hardening, possibly with creep) or a plane stress state in order to account for the ratchet phenomenon due to the inner fluid pressure. This approach allows to display and individualize the respective roles of strain-hardening, creep, fluid pressure and end-conditions; it also permits to calculate (most often in closed form) the deformations and stresses after a large number of cycles, which is not possible with more refined theories. Its accuracy has been assessed by computing the stresses and strains in the same situations for the first cycle by using an elasto-plastic shell theory (also taking into account creep influence), which revealed that in most cases our approach could give a good understanding of the phenomenon as well as a simple tool for actually calculating the mechanical quantities after a large number of cycles, in order to estimate the structure life-time. (orig./HP)

  8. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  9. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2003-01-01

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  10. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  11. Detailed investigation of Cl-corrosion initiated by deposits formed in biomass-fired boilers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Flemming J.; Lith, S. van

    2009-10-15

    The aim was to investigate deposit-induced Cl-corrosion under well-controlled laboratory conditions, simulating the conditions in biomass-fired boilers. This has been done by exposing pieces of superheater tubes, covered by synthetic salts, at temperatures and gas mixtures simulating biomass-fired conditions. The corroded specimens have been studied in detail using a Scanning Electron Microscope (SEM), in order to determine the corrosion rate, and to investigate the chemistry and morphology of the corrosive attack. The project has been divided into four activities: A1: Relationship between the Cl-concentration in the deposit, and the corrosion rate. A2: Influence of cation type (K+ and Na+) on the mobility of Cl in the deposit. A3: Influence of metal temperature on the corrosion rate. A4: Critical evaluation of the existing experience for minimizing corrosion in full-scale boilers firing totally or partly with biomass. (LN)

  12. The CP 1 type separators-superheaters

    International Nuclear Information System (INIS)

    Palacio, G.

    1984-01-01

    Analysis of the functionnement of the separators superheaters in the first French 900 MW PWR units (Fessenhein 1-2 and Bugey 2-3-4-5) and in the program CP 1 units: localization of the separators superheaters, design, tests and choice of the materials, description of the separators superheaters (shells, separators, superheater bundles, internal lagging, purging tank and condensate stank, steam line equipments); study of the various operation modes (nominals, transients, malfunctions, conservation during shutdowns) and the in service behaviour of the components; study of the modifications on the CP 1 equipments and their behaviour; description of the measures, tests and on site controls (controls during planned shutdowns and controls during service) [fr

  13. Critical superheats upon boiling of dissociating liquids

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Solov'ev, V.N.

    1985-01-01

    The experimental data on critical superheats of dissociating liquids, i.e. nitrogen tetroxide and nitrine are presented (nitrine is the solution of nitrogen oxide in nitrogen tetroxide). The experiments with boiling N 2 O 4 have been carried out in the pressure range 0.1-3.0 MPa and with boiling nitrine within the pressure range 0.2-9.0 MPa. The experiments have revealed an anomalous dependence of critical superheats on pressure P, thus at P>=2.5 MPa the critical superheat values exceed the limiting ones, and at P=4.5 MPa this excess amounts to more than 16 K, essentially exceeding the errors of the experiments. The results for N 2 O 4 critical superheats agree with experimental data of other authors. Complex phenomena observed upon boiling of dissociating liquids require further theoretical and experimental studies

  14. Extensive feedwater quality control and monitoring concept for preventing chemistry-related failures of boiler tubes in a subcritical thermal power plant

    International Nuclear Information System (INIS)

    Vidojkovic, Sonja; Onjia, Antonije; Matovic, Branko; Grahovac, Nebojsa; Maksimovic, Vesna; Nastasovic, Aleksandra

    2013-01-01

    Prevention and minimizing corrosion processes on steam generating equipment is highly important in the thermal power industry. The maintenance of feedwater quality at a level corresponding to the standards of technological designing, followed by timely respond to the fluctuation of measured parameters, has a decisive role in corrosion prevention. In this study, the comprehensive chemical control of feedwater quality in 210 MW Thermal Power Plant (TPP) was carried out in order to evaluate its potentiality to assure reliable function of the boiler and discover possible irregularity that might be responsible for frequent boiler tube failures. Sensitive on-line and off-line analytical instruments were used for measuring key and diagnostic parameters considered to be crucial for boiler safety and performances. Obtained results provided evidences for exceeded levels of oxygen, silica, sodium, chloride, sulfate, copper, and conductivity what distinctly demonstrated necessity of feedwater control improvement. Consequently, more effective feedwater quality monitoring concept was recommended. In this paper, the explanation of presumable root causes of corrosive contaminants was given including basic directions for their maintenance in proscribed limits. -- Highlights: • Feedwater quality monitoring practice in a thermal power plant has been evaluated. • The more efficient feedwater quality control have been applied. • Analysis of feedwater quality parameters has been performed. • Exceeded levels of corrosive contaminants were found. • Recommendations for their maintenance at proscribed values were given

  15. Detection and Repair of Ligament Cracks in a 109mm Thick Superheater Outlet Header

    International Nuclear Information System (INIS)

    Day, Peter

    2006-01-01

    Conventional thermal power station boilers are constructed of drums and a series of headers which are interconnected with many hundreds of tubes. Typically feed water enters the boiler at about 250 deg C at a pressure of around 250 bar with steam outlet temperatures of 540 deg C and a pressure of 170 bar. Superheater outlet headers may be subjected to quite arduous conditions during service. Not only are they exposed to high pressure stresses but also to high thermal stresses due to varying thermal gradients through the section thickness particularly at start up and during two shift operation. The area that is exposed to the greatest thermal gradients is the narrow ligament that exists between the tube hole penetrations in the header bore. In the mid the 1980's industry wide surveys found cracking in a large percentage (25-50%) of headers after 15 years of service. Detection and sizing of ligament cracking and estimates of the rate of growth are therefore a major consideration especially in plant that is two shifted. In order to manage the risk both remote visual and ultrasonic inspection are performed during each major unit overhaul. Conclusion: Ultrasonic techniques used for this inspection need to be carefully evaluated with respect to their effectiveness. Conventional pulse echo is capable of detection but using for example a technique such as AS2207 level 1 will not show the defect size. Time of flight diffraction has shown itself to be effective in accurately sizing ligament cracking. However the complex geometry of header ligaments appears to cause a narrowing of the beam with the effect that crack tip responses can be concentrated at the centre of the ligament. Therefore great care needs to be taken during data interrogation because errors in sizing can occur. Wherever possible both 'B' and 'D' scan data should be collected. It appears that the greatest accuracy is obtained with respect to defect growth from the B scan image. With respect to the welding a

  16. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  17. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  18. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  19. A steam separator-superheater apparatus

    International Nuclear Information System (INIS)

    Androw, Jean; Bessouat, Roger; Peyrelongue, J.-P.

    1973-01-01

    Description is given of a separator-superheater apparatus comprising an outer enclosure containing a separating-unit and a steam superheating unit according to the main patent. The present addition relates to an improvement in that apparatus, characterized in that the separating unit and the superheating unit, mounted in two distinct portions of the outer enclosure, are divided into the same number of sub-units of each unit being identical and operating in parallel, and in that to each separator sub-unit is associated a superheater sub-unit, said sub-units being mounted in series and located in one in the other of the enclosure two portions, respectively. This can be applied to the treatment of the exhaust steam of a turbine high pressure body, prior to re-injecting said steam into the low pressure body [fr

  20. EFFICIENCY IMPROVEMENT IN INDUSTRIAL BOILER BY FLUE GAS DUCT INSULATION

    OpenAIRE

    Sanjay H. Zala

    2017-01-01

    Now a days in industry major losses are find out so here we calculate these losses and find out efficiency of boiler. Boiler efficiency and energy losses from boiler are important parameter for any industry using boiler. In this work a detailed analysis was carried out for boiler at Anish Chemicals Bhavnagar. It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat ...

  1. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  2. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    -fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw...... with temperature. The mechanism of attack was grain boundary attack as a precursor to selective chromium depletion of the alloy. In addition welds coupling various tubes sections were also investigated. It was seen that there was preferential attack around those welds that had a high nickel content. The welds...

  3. A steam superheater exchanger provided with two coaxial casings and an horizontal axis

    International Nuclear Information System (INIS)

    Marjollet, Jacques; Palacio, Gerard; Tondeur, Gerard.

    1976-01-01

    This invention concerns the general lay-out of an horizontal axis separator-superheater for supplying steam to a high power turbine, particularly for a nuclear power station. The invention significantly reduces the length of the pipework connecting the superheated steam outlet and its inlet to the turbine. For this, the outer casing is provided with a coaxial internal annular sleeve in which are housed, one above the other, the separator and the bundle of superheater tubes through which circulates the water emulsion to be separated and steam to be superheated. At the end of its treatment, the superheated steam spreads out in the space between the sleeve and the outer casing from whence it can be drawn off at any point of its periphery, thus making it possible to choose an extraction point as near as possible to the inlet of the turbine to be fed [fr

  4. Long term properties and microstructural evolution of 18Cr-10Ni-3Cu-Ti-Nb austenitic stainless steel for boiler tube application

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Y.; Fukui, T.; Ono, T. [TenarisNKK Tubes, Kawasaki, Kanagawa (Japan); Caminada, S. [TenarisDalmine, Dalmine, BG (Italy)

    2010-07-01

    The allowable tensile stress of 0.1C-18Cr-10Ni-3Cu-Ti-Nb steel (TEMPALOY AA-1; ASME C.C. 2512) is more than 30% higher compared with that of ASME SA-213 Grade TP347H in the temperature range 600-700 C. This high creep rupture strength is obtained by the precipitation of MC and M{sub 23}C{sub 6} carbides, and Cu-rich phase. Long term creep rupture tests over 10{sup 5}h enabled to verify the superior creep rupture strength of this steel. The investigation of microstructural evolution on the creep ruptured and aged specimens has shown the high structural stability of this material. Hardness and impact properties after high temperature aging reveal similar performance as conventional 18-8 stainless steels. Excellent steam oxidation resistance can be achieved by a shot-blasting method. The scale thickness of shot-blasted tube after 1000h at 750 C is below a few micron meters. These results have revealed that the mechanical properties and environmental resistance of this steel enable the use of TEMPALOY AA-1 in the latest generation of advanced USC boiler. (orig.)

  5. Nonlinear Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The main idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... of a nonlinear controller. The proposed method is validated by experimental results....

  6. Automatic Tuning of the Superheat Controller in a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes an automatic tuning of the superheat control in a refrigeration system using a relay method. By means of a simple evaporator model that captures the important dynamics and non-linearities of the superheat a gain-scheduling that compensates for the variation of the process gain...

  7. Modelling of limestone injection for SO2 capture in a coal fired utility boiler

    International Nuclear Information System (INIS)

    Kovacik, G.J.; Reid, K.; McDonald, M.M.; Knill, K.

    1997-01-01

    A computer model was developed for simulating furnace sorbent injection for SO 2 capture in a full scale utility boiler using TASCFlow TM computational fluid dynamics (CFD) software. The model makes use of a computational grid of the superheater section of a tangentially fired utility boiler. The computer simulations are three dimensional so that the temperature and residence time distribution in the boiler could be realistically represented. Results of calculations of simulated sulphur capture performance of limestone injection in a typical utility boiler operation were presented

  8. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  9. Adaptive Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. This gives a highly nonlinear transfer operator from compressor speed input to the superheat output....... A new low order nonlinear model of the evaporator is developed and used in a backstepping design of an adaptive nonlinear controller.  The stability of the proposed method is validated theoretically by Lyapunov analysis and experimental results shows the performance of the system for a wide range...

  10. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1998-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  11. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1999-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  12. HR boiler

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    A number of manufacturers of central heating boilers in the Netherlands have produced high-efficiency boilers, all carrying the GIVEG-HR seal of approval (GIVEG is the manufacturers' association in the Netherlands, and HR stands for 'hoog rendement': high efficiency). Efficiences were considerably improved by reducing flue, idling and radiation losses. Control and safety, discharges of flue gases and condensate need special attention. Whether installation of a GIVEG-HR boiler is profitable in view of the cost/profit ratio, will have to be determined from case to case. N.V. Nederlandse Gasunie felt it was time to present the facts so far in a way specially aimed at the construction industry. This special edition of 'Gas and Architecture' answers a number of questions which the architect or consultant engineer might have in particular before advising on the installation of the new boiler in houses and other buildings in the interests of energy saving. A technical description of the HR boiler covers the backgrounds of its development and considers the role of the Netherlands government as regards to the introduction of the boiler.

  13. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw-fired...... and woodchip fired boilers are discussed....

  14. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  15. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent...... of the working point. The model also gives a method for control of the evaporation temperature. The proposed method is validated by experimental results....

  16. Efficient boiler operations sourcebook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.W. (comp.)

    1985-01-01

    This book emphasizes the practical aspects of industrial and commercial boiler operations. It starts with a comprehensive review of general combustion and boiler fundamentals and then deals with specific efficiency improvement methods, and the cost savings which result. The book has the following chapter headings: boiler combustion fundamentals; boiler efficiency goals; major factors controlling boiler efficiency; boiler efficiency calculations; heat loss; graphical solutions; preparation for boiler testing; boiler test procedures; efficiency-related boiler maintenance procedures; boiler tune-up; boiler operational modifications; effect of water side and gas side scale deposits; load management; auxillary equipment to increase boiler efficiency; air preheaters and economizers; other types of auxillary equipment; combustion control systems and instrumentation; boiler O/sub 2/ trim controls; should you purchase a new boiler.; financial evaluation procedures; case studies. The last chapter includes a case study of a boiler burning pulverized coal and a case study of stoker-fired coal.

  17. DYNAM, Once Through Boiling Flow with Steam Superheat, Laplace Transformation

    International Nuclear Information System (INIS)

    Schlueter, G.; Efferding, L.E.

    1973-01-01

    1 - Description of problem or function: DYNAM performs a dynamic analysis of once-through boiling flow oscillations with steam superheat. The model describing the superheat regime (single- phase, variable density fluid) for subcritical pressure operation is also applicable to the study of once-through operation using supercritical pressure water. 2 - Method of solution: Linearized partial differential conservation equations are solved using Laplace transformation of the temporal terms and integration of the spatial variations. DYNAM is written in complex variable notation. 3 - Restrictions on the complexity of the problem - Maxima of: 30 intervals used to describe the power distribution in the non-boiling and boiling regions, 29 boiling nodes, 7 intervals and corresponding friction multipliers read in per case, 14 exit qualities read in per case, 40 superheat nodes, 10 coefficients read in for the phi 2 vs, x-polynomial fit, 48 frequencies at which open-loop frequency response is desired, 48 frequencies at which signal output is desired

  18. Life cycle assessment for spray coatings applied to the heating tubes of PFBC boiler; Kaatsu ryudoso boiler sonai kan e tekiyosareru yosha coating no life cycle assessment (LCA hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Sonoya, K; Kihara, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1996-12-25

    LCA (Life cycle assessment) is a systematic process used to calculate and evaluate the environmental impacts of products. Because boiler components are now exposed a more severe erosion/corrosion environment by, improving efficiency of thermal power plant, it is expected that the use of thermal spray coatings will increase. The LCA method was attempted to apply to various thermal spray coatings for PFBC (Pressurized Fluidized Bed Combustion) and evaluate the eco-friendly, coatings. The result was gained that all the alumina coatings have good characteristics. In fact the Al2O3-40%ZrO2 coating by APS has the lowest environmental impact and the best erosion resistance, it may be considered the most effective coating. 4 refs., 12 figs., 1 tab.

  19. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  20. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  1. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    , based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...

  2. Current Status of Superheat Spray Modeling With NCC

    Science.gov (United States)

    Raju, M. S.; Bulzan, Dan L.

    2012-01-01

    An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

  3. Nonlinear superheat and capacity control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. A new low order nonlinear model of the evaporator is developed and used in a backstepping design of a nonlinear controller. The stability of the proposed method is validated theoretically by Lyapunov...

  4. Biomass boiler energy conversion system analysis with the aid of exergy-based methods

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Donaldson, Burl

    2015-01-01

    Highlights: • Conventional exergy analysis and advanced exergy analysis are performed. • The combustion process dominates the exergy destruction. • Increase excess air will decrease the overall boiler exergy efficiency. • Increase the SH temperatures will increase the overall boiler exergy efficiency. • The avoidable exergy destructions in the air heaters are very small. - Abstract: The objective of this paper is to establish a theoretical framework for the exergy analysis and advanced exergy analysis of a real biomass boiler. These analyses can be used for both the diagnosis and optimization of a biomass boiler as well as for the design of a new biomass boiler. Conventional exergy analysis is performed to recognize the source(s) of inefficiency and irreversibility and identify exergy destruction in different components of the biomass boiler. An advanced exergy analysis is performed to provide comprehensive information about the avoidable exergy destruction and real fuel-saving potential for each component, as well as the overall system. Sensitivity studies of several design parameters including the excess air, biomass moisture and steam parameters were evaluated. The results show that the maximum exergy destruction occurs in the combustion process, followed by the Water Walls (WW) & Radiant Superheater (RSH) and the Low Temperature Superheater (LTSH). The fuel-saving and exergy efficiency improvement strategies for different components are discussed in this paper

  5. Failure evaluation on a high-strength alloy SA213-T91 super heater tube of a power generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.; Ahmad, A. [University of Tenaga Nas, Kajang (Malaysia). Dept. of Mechanical Engineering

    2010-07-01

    This article presents failure investigation on a high-strength alloy SA213-T91 superheater tube. This failure is the first occurrence involving the material in Kapar Power Station Malaysia. The investigation includes visual inspections, hardness measurements, and microscopic examinations. The failed super-heater tube shows a wide open rupture with thin and blunt edges. Hardness readings on all the as-received tubes are used for estimating the operating metal temperature of the super-heater tubes. Microstructures of the failed tube show numerous creep cavities consisting of individual pores and chain of pores which form micro-and macro-cracks. The findings confirmed that the super-heater tube is failed by short-term overheating. Higher temperatures of the flue gas due to the inconsistent feeding of pulverized fuels into the burner is identified to cause overheating of the failed tube.

  6. DBSSP - A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior

    International Nuclear Information System (INIS)

    Li Bin; Chen Tingkuan; Yang Dong

    2005-01-01

    In this paper, a computer program, Drum Boiler Start-up Simulation Program (DBSSP), is developed for simulating the start up behavior of controlled circulation and natural circulation boilers. The mathematical model developed here is based on the first principles of mass, energy and momentum conservations. In the boiler model, heat transfer in the waterwall, the superheater, the reheater and the economizer is simulated by the distributing parameter method, while heat transfer in the drum and the downcomer is simulated by lumped parameter analysis. The program can provide detailed flow and thermodynamic characteristics of the boiler components. The development of this program is based only on design data, so it can be used for any subcritical, controlled or natural circulation boiler. The simulation results were compared with experimental measurements, and good agreements between them were found. This program is expected to be useful for predicting the characteristics and the performance of controlled circulation and natural circulation boilers during the start up process. It also can be used to optimize a start up system for minimum start up time

  7. Re-evaluation of superheat conditions postulated in NRC Information Notice 84-90

    International Nuclear Information System (INIS)

    Alsammarae, A.; Kruger, D.; Beutel, D.; Spisak, M.

    1994-01-01

    Information Notice 84-90, ''Main Steam Line Break Effect on Environmental Qualification of Equipment,'' describes a potential problem regarding existing plant analyses and Equipment Qualification (EQ) related to a postulated Main Steam Line Break (MSLB) with releases of superheated stream. This notice states that certain methodologies for computing mass and energy releases for a postulated MSLB did not account for heat transfer from the steam generator tube bundles if they were uncovered. Due to this potential change in the original environmental analysis, the EQ of various components may not consider the thermal environment which could result from superheated steam. Subsequent technical assessments may determine that the existing qualification basis for equipment/components does not envelop the postulated superheat condition. Corrective actions need to be taken to demonstrate that the affected equipment is qualified

  8. A novel design for a cheap high temperature solar collector: The rotating solar boiler

    NARCIS (Netherlands)

    Luijtelaer, van J.P.H.; Kroon, M.C.

    2009-01-01

    In this work a novel type of high temperature solar collector is designed: the rotating solar boiler. This rotating solar boiler consists of two concentric tubes. The inner tube, called absorber, absorbs sunlight and boils water. The outer transparent tube, called cover, is filled with air. The

  9. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  10. On-line monitoring system for utility boiler diagnostics

    International Nuclear Information System (INIS)

    Radovanovic, P.M.; Afgan, N.H.; Caralho, M.G.

    1997-01-01

    The paper deals with the new developed modular type Monitoring System for Utility Boiler Diagnostics. Each module is intended to assess the specific process and can be used as a stand alone application. Four modules are developed, namely: LTC - module for the on-line monitoring of parameters related to the life-time consumption of selected boiler components; TRD - module for the tube rupture detection by the position and working fluid Ieakage quantity; FAM - module for the boiler surfaces fouling (slagging) assessment and FLAP - module for visualization of the boiler furnace flame position. All four modules are tested on respective pilot plants built oil the 200 and 300 MWe utility boilers. Monitoring System is commercially available and can be realized in any combination of its modules depending on demands induced by the operational problems of specific boiler. Further development of Monitoring System is performed in accordance with the respective EU project on development of Boiler Expert System. (Author)

  11. Prevention of superheater corrosion caused by chlorine; Tulistimien kloorikorroosion estaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Roppo, J. [Kvaerner Power Oy, Tampere (Finland)

    2006-12-19

    Combustion of CO{sub 2}-neutral fuels is becoming more attractive and common method to decrease CO2 emissions of energy production. Also well managed and controlled combustion of waste fractions compared to their landfilling produces much less greenhouse gas emissions. In combustion of these fuels in high efficiency power plants notably increased superheater corrosion risk is prevailing, mainly caused by chlorine. Typical such fuels are forest, agricultural and household residues, biological sludge's of pulp and paper industry and RDF made from separated municipal and industrial solid waste. The goal of the project is to develop clearly cheaper and more effective method to protect superheaters, which enables combustion of biomass and waste fuels with higher energy shares. Tests in pilot and full scale power plants will reveal the potential and applicability of the developed method for commercial use. (orig.)

  12. Preventing superheater corrosion by additives; Tulistimien kloorikorroosion estaeminen lisaeainein

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Vainikka, P. [VTT, Espoo (Finland); Skrifvars, B.J.; Yrjas, P. [Aabo Akademi, Process Chemistry, Turku (Finland)

    2006-12-19

    The new superheater protection methods enable combustion of demanding biomass with higher portions than at present. This benefit reduces CO{sub 2} emissions from energy production and the use of demanding biomass in energy production will extend replacing biowaste landfilling with strong CH{sub 4} formation. The results assist also to meet the goals of the use of logging residues in energy production in Finland. (orig.)

  13. A rule-based industrial boiler selection system

    NARCIS (Netherlands)

    Tan, C.F.; Khalil, S.N.; Karjanto, J.; Tee, B.T.; Wahidin, L.S.; Chen, W.; Rauterberg, G.W.M.; Sivarao, S.; Lim, T.L.

    2015-01-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes,

  14. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  15. Water side corrosion prevention in boilers

    International Nuclear Information System (INIS)

    Zeid, A.

    1993-01-01

    Corrosion may be defined as a naturally occurring physical and chemical deterioration of a material due to reaction with the environment or surrounding atmosphere. In boilers the material is subjected on both sides to two different media which may cause severe corrosion. At the water side the content of O 2 considered one of the principal factors which determine the extent of corrosion in the boiler tubes. This paper deals with certain conditions that result in the increase of O 2 in the boiler water and hence increase the corrosion rate, to minimize the effect of these conditions a chemical treatment was carried out the results obtained indicated the success of the treatment procedure in corrosion prevention and boiler material protection. The treatment is traditional. But the study indicates how a simple mean could be applied to solve a serious problem. 4 tab

  16. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  17. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analys...

  18. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2018-05-31

    In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).

  19. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    OpenAIRE

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of F...

  20. Single Temperature Sensor Superheat Control Using a Novel Maximum Slope-seeking Method

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2013-01-01

    Superheating of refrigerant in the evaporator is an important aspect of safe operation of refrigeration systems. The level of superheat is typically controlled by adjusting the flow of refrigerant using an electronic expansion valve, where the superheat is calculated using measurements from...

  1. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  2. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  3. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  4. Influence of Deposit Formation on Corrosion at a Straw Fired boiler

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Michelsen, Hanne Philbert; Frandsen, Flemming

    2000-01-01

    Straw-fired boilers generally experience severe problems with deposit formation and are expected to suffer from severe superheater corrosion at high steam temperatures due to the large alkali and chlorine content in straw. In this study, deposits collected (1) on air-cooled probes and (2) directly...... at the existing heat transfer surfaces of a straw-fired boiler have been examined. Deposits collected on air-cooled probes were found to consist of an inner layer of KCl and an outer layer of sintered fly ash. Ash deposits formed on the heat transfer surfaces all had a characteristic layered structure......, with a dense layer of K2SO4 present adjacent to the metal surface. It is argued that the K2SO4 layer present adjacent to the metal surface may lead to reduced corrosion rates at this boiler. A discussion of the deposit structure, the K2SO4 layer formation mechanism, and the influence of the inner layer...

  5. Thermo hydraulics of a steam boiler forced circulation

    International Nuclear Information System (INIS)

    Tucakovic, Dragan; Zivanovic, Titoslav; Stevanovic, Vladimir

    2006-01-01

    In order to minimize the dryout at the steam boiler furnace in the Thermal Power Plant Kolubara B, designed are inner rifled wall tubes. This type of tubes, with many spiral grooves cut into the bore, prevents film boiling and enables the nucleate boiling be still maintained under the condition of vapour quality being app. 1. To verify the choice of the rifled tubes instead of the cheaper, smooth tubes type being justified, analyzed is the change of the actual and critical vapour quality with the furnace height, under uniform and non-uniform heat flu through evaporator walls. Furthermore, made are hydraulic calculations for various steam boiler loads, in case of both rifled and smooth tubes types, with the purpose to check the rifles influence to pressure drop increase in comparison with the smooth tubes. Also, checked is the selection of the circulation pump. Key words: evaporator, forced circulation, rifled tubes, critical vapour quality, pressure drop

  6. Boiler water regime

    Science.gov (United States)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  7. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  8. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  9. Properties of thick welded joints on superheater collectors made from new generation high alloy martensitic creep-resisting steels for supercritical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, Janusz; Zielinski, Adam [Institute for Ferrous Metallurgy, Gliwice (Poland); Pasternak, Jerzy [Boiler Engineering Company RAFAKO S.A., Raciborz (Poland)

    2010-07-01

    The continuously developing power generation sector, including boilers with supercritical parameters, requires applications of new creep-resistant steel grades for construction of boilers steam superheater components. This paper presents selected information, experience within the field of research and implementation of a new group of creep-resistant as X10CrMoVNb9-1(P91), X10CrWMoVNb9-2(P92) and X12CrCoWVNb12-2-2(VM12) grades, containing 9-12%Cr. During welding and examination process the results of mechanical properties, requested level for base material and welded joints, as well as: tensile strength, impact strength and technological properties have been evaluated. Additional destructive examinations, with evaluation of structure stability, hardness distribution, for base material and welded joints after welding, heat treatment, again process have been determined. Recommendations due to the implementation influence of operating parameters of the main boiler components are part of this paper. (orig.)

  10. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  11. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  12. CANDU steam generator tubing material service experience and allied development

    International Nuclear Information System (INIS)

    Hart, A.E.; Lesurf, J.E.

    1976-01-01

    This paper covers the following aspects for the tube materials in CANDU-PHW steam generators: inservice performance with respect to tube leaks and coolant activity attributable to boiler tube corrosion, selection of tube materials for use with non-boiling and boiling primary coolants, supporting development on corrosion, vibration, fretting wear, tube inspection, leak detection and plugging of defective tubes. (author)

  13. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    Directory of Open Access Journals (Sweden)

    J. O. ODIGURE

    2005-06-01

    Full Text Available This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

  14. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed....... This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  15. High gradient magnetic filters for boiler water treatment

    International Nuclear Information System (INIS)

    Harland, J.R.; Nichols, R.M.

    1977-01-01

    Heavy metal oxide suspended solids in those steam condensates recycled to the boilers produce buildup within the boiler tubes which can lead to unequal and reduced heat transfer efficiency, and indirectly, to boiler tube failures. Recommended reductions in such suspended solids in feedwater to the economizers of modern high pressure boilers to levels of under 10 ppb have been published. The industrially-available SALA-HGMF magnetic filter has achieved these desired suspended solids levels in treating steam condensates. The high gradient magnetic filter has been shown in pilot tests to achieve and even exceed the recommended low level suspended solids in a practical and efficient industrial system. Such electromagnetic filters, when combined with good system chemistry, have achieved low single number parts per billion levels of several heavy metals with very high single-pass efficiencies

  16. Tube to tube excursive instability - sensitivities and transients

    International Nuclear Information System (INIS)

    Brown, M.; Layland, M.W.

    1980-01-01

    A simple basic analysis of excursive instability in a boiler tube shows how it depends upon operating conditions and physical properties. A detailed mathematical model of an AGR boiler is used to conduct a steady state parameter sensitivity survey. It is possible from this basis to anticipate the effects of changes in operating conditions and changes in design parameters upon tube to tube stability. Dynamic responses of tubes operating near the stability threshold are examined using a mathematical model. Simulated excursions are triggered by imparting small abrupt pressure changes on the boiler inlet pressure. The influences of the magnitude of the pressure change, waterside friction factor and gas side coupling between tubes are examined. (author)

  17. Electric utility CFB boilers

    International Nuclear Information System (INIS)

    Fairbanks, D.A.

    1991-01-01

    This paper reports on Circulating Fluidized Bed (CFB) boiler technology which caught the attention of boiler users: first for its technical advantages of reduced air emissions and low grade fuel tolerance, then later for its problems in becoming a reliable process. Refractory longevity and fuel feed reliability plagued a number of new installations. The efficacy of CFB technology is now more assured with the recent success of Texas-New Mexico Power Company's 160 MWe CFB based units, the world's largest operating CFB boilers. Most of the more notable CFB development problems have been successfully addressed by these units. The TNP units have demonstrated that CFB's can reliable produce high capacity factors at low emission rates using a fuel that has traditionally hampered the operation of pulverized coal (PC) boilers and without the attendant problems associated with sulfur scrubbers required by PC boilers

  18. Raising the Reliability, Efficiency, and Ecological Safety of Operation of the BKZ-210-140F Boiler Transferred to Stage Firing of Kuznetsk Coal in a U-Shape Flame

    International Nuclear Information System (INIS)

    Vagner, A. A.

    2004-01-01

    The BKZ-210-140F boiler of the West-Siberian Cogeneration Plant was equipped initially with four uniflow tangentially oriented burners and tertiary air nozzles. In order to raise the efficiency of operation and lower harmful emissions the boiler was reconstructed. U-shape aerodynamics was organized in the furnace by mounting 8 burners, 8 secondary air nozzles, and 8 tertiary air nozzles on the front and rear walls of the furnace. The reconstruction ensured higher stability of ignition of pulverized coal without flame division and rated temperatures of the superheater metal, lowered the optimum excess air factor at the outlet from the superheater to 1.2 - 1.25, decreased the concentration of nitrogen oxides in the combustion products to 360 - 380 mg/m 3 , and increased the gross efficiency of the boiler to 91.5 - 91.7%

  19. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART II. ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G. T.

    1963-11-15

    Critical and subcritical reactivity measurements on an EVESR-type core, using EVESR UO/sub 2/ superheat fuel elements, are analyzed in order to obtain a physics design model for use in the EVESR. (T.F.H.)

  20. High temperature corrosion in biomass- and waste fired boilers. A status report; Kunskapslaeget betraeffande hoegtemperaturkorrosion i aangpannor foer biobraensle och avfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, P; Ifwer, K; Staalenheim, A; Montgomery, M; Hoegberg, J; Hjoernhede, A

    2006-12-15

    Many biomass- or waste-fired plants have problems with high temperature corrosion on the furnace walls or at the superheaters, especially if the steam temperature is greater than 500 deg C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest from plant owners to reduce the costs associated with high temperature corrosion. At the same time there exists a considerable driving force towards improving the electrical efficiency of a plant by the use of more advanced steam data. The purpose of the work presented here was to answer three main questions: What can be done to reduce high temperature corrosion with current fuel blends and steam temperatures? How can more waste fuels be burnt without an increased risk for corrosion? What needs to be done to reach higher steam temperatures in the future? The level of knowledge of high temperature corrosion in biomass- and waste-fired boilers has been described and summarised. The following measures are recommended to reduce corrosion in existing plant: Make sure that the fuel is well mixed and improve fuel feeding to obtain a more even spread of the fuel over the cross-section of the boiler. Use combustion technology methods to stabilize the oxygen content of the flue gases near the membrane walls and other heat transfer surfaces. Experiment with additives and/or supplementary fuels which contain sulphur in some form, for example peat. Reduce the flue gas temperature at the superheaters. Review soot-blowing procedures or protect heat transfer surfaces from soot blowers. Evaluate coated membrane wall panels in parts of the furnace that experience the worst corrosion. Test more highly alloyed steels suitable for superheaters and when replacing a superheater change to a more highly alloyed steel. For the future, the following should be considered: The role of sulphur needs to be investigated more and other additives should be investigated

  1. Solved and unsolved problems in boiler systems. Learning from accidents

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2000-01-01

    This paper begins with a brief review on the similarity law of conventional fossil-fuel-fired boilers. The concept is based on the fact that the heat release due to combustion in the furnace is restricted by the furnace volume but the heat absorption is restricted by the heat transfer surface area. This means that a small-capacity boiler has relatively high specific furnace heat release rate, about 10 MW/m 3 , and on the contrary a large-capacity boiler has lower value. The surface-heat-flux limit is mainly dominated by the CHF inside the water-wall tubes of the boiler furnace, about 350 kW/m 2 . This heat-flux limit is almost the same order independently on the capacity of boilers. For the safety of water-walls, it is essential to retain suitable water circulation, i.e. circulation ratio and velocity of water. This principle is a common knowledge of boiler designer, but actual situation is not the case. Newly designed boilers often suffer from similar accidents, especially burnout due to circulation problems. This paper demonstrates recent accidents encountered in practical boilers, and raises problems of rather classical but important two-phase flow and heat transfer. (author)

  2. Survey of the current state of knowledge of incipient boiling superheat in sodium

    International Nuclear Information System (INIS)

    Greer, B.

    1979-01-01

    Superheat data obtained by various investigators indicate that many parameters affect this phenomenon. Controlling parameters appear to be inert gas concentration, oxide concentration, system pressure, pressure-temperature history, rate of temperature rise, heat flux, flow rate, operating time on the system, surface conditions, and radiation. Of these, the two believed most influential in controlling incipient boiling superheat are the inert gas concentration and oxide concentration. Experimental results for the heat flux and rate of temperature rise appear to be the most inconsistent

  3. Fireside corrosion of superheaters/reheaters in advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Syed, A.U.; Simms, N.J.; Oakey, J.E. [Cranfield Univ. (United Kingdom). Energy Technology Centre

    2010-07-01

    The generation of increasing amounts of electricity while simultaneously reducing environmental emissions (CO{sub 2}, SO{sub 2}, NO{sub x} particles, etc) has become a goal for the power industry worldwide. Co-firing biomass and coal in new advanced pulverised fuel power plants is one route to address this issue, since biomass is regarded as a CO{sub 2} neutral fuel (i.e. CO{sub 2} uptake during its growth equals the CO{sub 2} emissions produced during its combustion) and such new advanced power plants operate at higher efficiencies than current plants as a result of using steam systems with high temperatures and pressures. However, co-firing has the potential to cause significant operational challenges for such power plants as amongst other issues, it will significantly change the chemistry of the deposits on the heat exchanger surfaces and the surrounding gas compositions. As a result these critical components can experience higher corrosion rates, and so shorter lives, causing increased operational costs, unless the most appropriate materials are selected for their construction. This paper reports the results of a series of 1000 hour laboratory corrosion tests that have been carried out in controlled atmosphere furnaces, to assess the effect of biomass/coal co-firing on the fireside corrosion of superheaters/reheaters. The materials used for the tests were one ferritic alloy (T92), two austenitic alloys (347HFG and HR3C) and one nickel based alloy (alloy 625). Temperatures of 600 and 650 C were used to represent the metal temperatures in advanced power plants. During these exposures, traditional mass change data were recorded as the samples were recoated with the simulated deposits. After these exposures, cross-sections through samples were prepared using standard metallographic techniques and then analysed using SEM/EDX. Pre-exposure micrometer and post-exposure image analyser measurements were used so that the metal wastage could be calculated. These data are

  4. DYMEL code for prediction of dynamic stability limits in boilers

    International Nuclear Information System (INIS)

    Deam, R.T.

    1980-01-01

    Theoretical and experimental studies of Hydrodynamic Instability in boilers were undertaken to resolve the uncertainties of the existing predictive methods at the time the first Advanced Gas Cooled Reactor (AGR) plant was commissioned. The experiments were conducted on a full scale electrical simulation of an AGR boiler and revealed inadequacies in existing methods. As a result a new computer code called DYMEL was developed based on linearisation and Fourier/Laplace Transformation of the one-dimensional boiler equations in both time and space. Beside giving good agreement with local experimental data, the DYMEL code has since shown agreement with stability data from the plant, sodium heated helical tubes, a gas heated helical tube and an electrically heated U-tube. The code is now used widely within the U.K. (author)

  5. CECIL lances Bruce's boilers

    International Nuclear Information System (INIS)

    Malaugh, J.; Monaghan, D.

    1994-01-01

    Over the past few years Ontario Hydro has become increasingly concerned about accumulations of sludge in its nuclear plant boilers, so a comprehensive sludge management programme has been instituted to combat build-up. This included developing the tele-operated robot CECIL (Consolidated Edison Combined Inspection and Lancing) equipment, originally designed for work in PWRs, for CANDU boilers. This required a significantly reconfigured robotic system as well as modifications to the boilers themselves. Work on the Bruce A reactor is described. (4 figures). (author)

  6. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  7. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  8. Charting the boiler market

    International Nuclear Information System (INIS)

    2003-01-01

    The ''boiler market'' of electricity, sometimes called unsecured transmission, is electric power consumption that in public statistics is restricted by the obligation of the customers to cut their consumption at short notice and therefore are granted some discount on the network lease. The present document is part of a project that aims to provide a better understanding of the flexibility in the Norwegian power market, limited by the power-intensive industry and the boiler market. It discusses the boiler market. It begins with a discusses of the available statistics, where different sources show very dissimilar consumption figures. Then it examines how the consumption in the boiler market developed during the winter 2002/2003. Finally, there is a description of the regulations of unsecured transmission and how the various network owners adapt to the regulations.

  9. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  10. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  11. Millwright Apprenticeship. Related Training Modules. 7.1-7.9 Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains nine modules covering boilers. The modules provide information on the following topics: fire and water tube types of boilers, construction, fittings, operation, cleaning, heat recovery systems, instruments and controls, and…

  12. The impact of feedwater and condensate return excursions on boiler system component failures

    Energy Technology Data Exchange (ETDEWEB)

    Esmacher, Mel J. [GE Water and Process Technologies, The Woodlands, TX (United States); Rossi, Anthony [GE Water and Process Technologies, Trevose, PA (United States)

    2010-02-15

    During boiler operation, the transport of contaminants in boiler feedwater or condensate return via hardness excursions or transport of metal oxides due to corrosion can cause fouling and subsequent tube failure due to under-deposit corrosion or overheating. Case histories are reviewed and suitable corrective actions discussed. (orig.)

  13. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  14. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  15. Alkali chloride induced corrosion of superheaters under biomass firing conditions: Improved insights from laboratory scale studies

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    One of the major operational challenges experienced by power plants firing biomass is the high corrosion rate of superheaters. This limits the outlet steam temperature of the superheaters and consequently, the efficiency of the power plants. The high corrosion rates have been attributed to the fo......One of the major operational challenges experienced by power plants firing biomass is the high corrosion rate of superheaters. This limits the outlet steam temperature of the superheaters and consequently, the efficiency of the power plants. The high corrosion rates have been attributed......, [1–3]). However, complete understanding of the corrosion mechanism under biomass-firing conditions has not yet been achieved. This is attributed partly to the complex nature of the corrosion process since there are many species produced from fuel combustion which can interact with one another...... and the steel surface. Many studies have focused on specific parameters such as, deposit composition (KCl, K2SO4, K2CO3, etc.) or gas species such as HCl, SO2, H2O [4–6], however, more research is necessary to understand the interaction of deposits and gas mixtures with each other and metallic superheater...

  16. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  17. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  18. Application of the decree 2910 for coal fired boilers; Application de l`arrete 2910 aux chaudieres a charbon

    Energy Technology Data Exchange (ETDEWEB)

    Hing, K. [CDF Energie, Charbonnages de France, 92 - Rueil-Malmaison (France)

    1997-12-31

    The impacts of the new French decree 2910 concerning the classification of all combustion equipment with regards to their energy sources, energy efficiency and pollution control, on 2 to 20 MW coal-fired boilers, are discussed, with emphasis on their pollutant emissions (SO{sub 2}, NO{sub x} and ashes). The compositions of several coals is presented and the various types of coal-fired boilers adapted to the new decree are presented: automatic boilers, dense fluidized bed boilers, vibrating and chain grids with fume tubes and water tubes

  19. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...... and to verify whether nonlinear control is needed. Finally a controller based on single loop theory is used to analyse if input constraints become active when rejecting transient behaviour from the disturbance steam flow. The model analysis shows large variations in system gains at steady state as function...

  20. The experimental and engineering programmes to support the PFR Safety Case following the Superheater 2 under sodium leak: In particular, large scale experiments in the Super Noah Rig at Dounreay

    International Nuclear Information System (INIS)

    Currie, R.; Henderson, J.D.C.

    1990-01-01

    The original safety Case for the Prototype Fast Reactor (PFR) at Dounreay was based on the Double-ended-guillotine failure (DEGF) of one tube followed by six more DEGFs spread out at 3s intervals. Because the DEGF flowrate in the Evaporator units was considerably greater than those for the Superheater and Reheater units, pressure loading predictions were based on a leak incident in the Evaporator. As data became available from sodium-water reaction experiments, this Design Basis Accident (DBA) was revised to be the failure of a single tube (1DEGF). Pressure loadings for the plant were still based on the Evaporator. The plant was, however, designed against the original DBA of 1+6 DEGFs. The under sodium leak in Superheater 2, in which a total of 40 DEGFs occurred in a short period of time, cast doubt on the choice of DBA for PFR and it was obvious that multiple tube failure incidents had to be considered. A revised Safety Case for PFR was constructed based on an event tree and is presented in this paper. Also, in this paper the engineering work carried out on the plant in order to reduce the frequency of occurrence of multiple tube failures and the R and D programme initiated to remove unnecessary pessimism from the postulated multiple tube failure incidents are described. (author). 2 refs, 16 figs, 1 tab

  1. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  2. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  3. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  4. Preliminary thermal/hydraulic sizing calculations for duplex tube evaporator/superheater (interchangeable units). Revision 1

    International Nuclear Information System (INIS)

    Waszink, R.P.; Hwang, J.Y.; Efferding, L.E.

    1974-06-01

    This is a preliminry thermal/hydraulic report reflecting work under Subtask 6.2 of Ref. 1.1. This report is an extension of the previous thermal/hydraulic design report. Parts of this report have been transmitted to GE. The detailed design basis, listed by source, is given. Additional details are discussed

  5. Wylfa nuclear boiler repair. How a major problem was solved

    International Nuclear Information System (INIS)

    1977-09-01

    The CEGB has published a booklet, with coloured illustrations, that describes in detail the story of an unusually difficult boiler repair on a Magnox reactor at Wylfa nuclear power station. Boiler leaks affected the operation of No. 2 reactor in 1972, and persisted during 1973. A special procedure was developed for plugging the leaks using a remote welding machine but with the incidence of leaks continuing attempts were made to obtain a specimen of leaking tube by cutting through the boiler support tank to gain access. Eventually the fault was then traced to excessive relative motion between the tubes and support clips. Remedial work took seven months and was completed in December 1975. The start of the problem and the method of plugging the leaks is described. Details are given of the investigation leading to the obtaining and examination of a sample of leaking tube and the determination of the fault. Establishment of the cause as an unusual form of resonant vibration causing wear and fretting in clip-to-tube positions in the economiser region of the boiler is described in detail. The difficulties and accomplishments of the repair work are detailed. Finally the operation is looked at in retrospect and the experiences gained are summarised. (UK)

  6. Analisis Safety System dan Manajemen Risiko pada Steam Boiler PLTU di Unit 5 Pembangkitan Paiton, PT. YTL

    Directory of Open Access Journals (Sweden)

    Luluk Kristianingsih

    2013-09-01

    Full Text Available Pembangkit listrik tenaga uap (PLTU merupakan pembangkit listrik yang banyak digunakan di Indonesia. Salah satu bagian dari sistem PLTU yang memiliki risiko bahaya tinggi adalah boiler, oleh karena itu diperlukan adanya analisis bahaya dan safety system sebagai langkah pencegahan bahaya pada boiler. Analisis bahaya dalam penelitian ini dilakukan menggunakan metode HAZOP. Node yang dipakai adalah economizer, steam drum, superheater, dan reheater yang merupakan komponen utama penyusun boiler. Guide word dan deviasi ditentukan berdasarkan control chart yang dibentuk oleh data proses masing-masing komponen selama bulan Maret 2013. Estimasi likelihood dilakukan berdasarkan data maintenance dari work order PT YTL selama 5 tahun, sedangkan estimasi consequences dilakukan berdasarkan kriteria risiko yang ditimbulkan serta berdasarkan control chart. Hasil perkalian likelihood dan consequences dengan risk matrix menghasilkan kriteria risiko dari komponen. Berdasarkan hasil analisis, diperoleh hasil bahwa komponen yang memiliki risiko bahaya paling besar adalah level transmitter steam drum dengan deviasi berupa less level, yaitu dengan kriteria likelihood adalah A dan consequences 4, sehingga risiko bernilai extreme. Selain itu, risiko extreme juga terdapat pada pressure transmitter outlet superheater, dengan likelihood B dan consequences 4. Untuk menurunkan risiko, maka dilakukan perawatan dan kalibrasi secara rutin, serta penambahan redundant transmitter. Bahaya paling besar pada seluruh node adalah adanya kebakaran. Oleh karena itu, dilakukan analisis emergency response plan untuk kebakaran yang mencakup peta evakuasi, tugas dan tanggungjawab tiap personel, langkah pencegahan, serta langkah penanganan.

  7. Water-pirotube boiler: influence of its design in fabrication cost. Calderas de vapor pirotubulares: influencia del diseo en el coste de fabricacion

    Energy Technology Data Exchange (ETDEWEB)

    Latre Durso, F.

    1993-01-01

    Design of water-tube boiler and its cost is analyzed. Adequated combination of gases velocity, size of tubes, gases temperature, geometric configuration, etc will give a best product with quality prize relation. (Author)

  8. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  9. Effect of Chlorine and Sulphur on Stainless Steel (AISI 310) Due To High Temperature Corrosion.

    OpenAIRE

    Onaivi Daniel Azamata; Titus Yusuf Jibatswen; Odinize C. Michael

    2016-01-01

    In a power station boiler, there are temperature of regimes of corrosion which occurs mainly in the economizer, boiler steam generation tubes, super-heater tubes and air tubes. The specific gas temperatures in degrees centigrade for the following include: 150 – 370oC for the economizer, 1000 – 1650oC for the boiler steam generation tubes, 650 – 1000oC for super-heater tubes and 1000 – 1200oC for air tubes. For power station boilers that burn coal as the source of fuel it is recommended that a...

  10. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  11. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  12. Irradiation of Superheater Test Fuel Elements in the Steam Loop of the R2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ravndal, F

    1967-12-15

    The design, fabrication, irradiation results, and post-irradiation examination for three superheater test fuel elements are described. During the spring of 1966 these clusters, each consisting of six fuel rods, were successfully exposed in the superheater loop No. 5 in the R2 reactor for a maximum of 24 days at a maximum outer cladding surface temperature of {approx} 650 deg C. During irradiation the linear heat rating of the rods was in the range 400-535 W/cm. The diameter of the UO{sub 2} pellets was 11.5 and 13.0 mm; the wall thickness of the 20/25 Nb and 20/35 cladding was in every case 0.4 mm. The diametrical gap between fuel and cladding was one of the main parameters and was chosen to be 0.05, 0.07 and 0.10 mm. These experiments, to be followed by one high cladding temperature irradiation ({approx} 750 deg C) and one long time irradiation ({approx} 6000 MWd/tU), were carried out to demonstrate the operational capability of short superheater test fuel rods at steady and transient operational environments for the Marviken superheater fuel elements and also to provide confirmation of design criteria for the same fuel elements.

  13. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  14. Installations of SNCR on bark-fired boilers

    International Nuclear Information System (INIS)

    Hjalmarsson, A.K.; Hedin, K.; Andersson, Lars

    1997-01-01

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NO x reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO 2 /MJ fuel input and the NO x reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  15. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  16. Experience of implementation of in-furnace methods of decreasing NO x in E-320-13.8-560GM boilers: Problems and ways for their solution

    Science.gov (United States)

    Tugov, A. N.; Supranov, V. M.; Izyumov, M. A.; Vereshchetin, V. A.; Usman, Yu. M.; Natal'in, A. S.

    2017-12-01

    During natural gas combustion, the content of nitrogen oxides in combustion products is approximately 450 mg/m3 in many E-320-13.8-560GM boilers in service, which is more than 3.5 times higher than the established maximum NO x concentrations in flue gases for such boilers. Estimates according to the existing techniques have shown that gas combustion on the basis of in-furnace techniques (the feeding of combustion products to burners together with air in the volume of 15% and two-stage combustion with 20% air feeding through the nozzles upstream of the burners) enables one to decrease NO x emissions to the level of concentrations of less than 100 mg/m3, which is lower than the maximum allowable values. However, the application of any of the proposed measures with respect to a boiler makes its operation under normal load significantly difficult, since the thermal capacity of the superheater is higher in both cases, which leads to an increase in the temperature of superheated steam above the maximum allowable temperature. On the basis of the developed adapted boiler model, which was created using the Boiler Designer software, we performed numerical studies to determine the required boiler reconstruction volume; the implementation of this reconstruction will provide reliable boiler operation at all working loads and ensure the normative values of NO x emissions. According to the results of thermal calculations, it was proposed to reduce the surface of the cold stage of the superheater circuit and increase the size of the economizer. It is noted that the implementation of environmental protection measures usually decreases the boiler efficiency. At the same time, it has been established that the technical and economic performance of the E-320-13.8-560GM boiler does not decrease owing to an increase in the economizer surface and a decrease in air inflows and overflows in regenerative air heaters and remains at the same level if the air inflow volume decreases from the

  17. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  18. Mod increases AGR boiler output

    International Nuclear Information System (INIS)

    Jones, W.K.C.; Rider, G.; Taylor, D.E.

    1986-01-01

    During the commissioning runs of the first reactor units at Heysham I and Hartlepool Advanced Gas-cooled Reactors (AGRs), non-uniform temperature distributions were observed across individual boiler units which were more severe than those predicted from the design analysis. This article describes the re-orificing (referruling) of the boilers to overcome this problem. The referruling has reduced boiler sensitivity and resulted in an increase of load of 7 or 8%. (U.K.)

  19. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  20. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  1. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  2. Combustion of a fuel mix containing animal waste, industry and household waste in FB-boilers; Foerbraenning av en braenslemix bestaaende av animaliskt avfall, industri- och hushaallsavfall i FB-pannor

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Anita; Herstad Svaerd, Solvie; Moradian, Farzad

    2012-11-01

    -phosphates influenced to some extent the sand/ash flows were the largest change was an increase in the amount of phosphorus and calcium. In addition a decrease of the amount of lead was seen in all ash flows. The calcium-phosphates were stable during combustion and no reactions of phosphorus with other elements were detected. The results from the trials in this project show that co-combustion of biomal had the following positive effects on the boiler performance: 1. The bottom bed temperature decreased, but > 20 % biomal is needed to reach 750 deg C. 2. The risk for bed agglomeration was decreased. 3. The NO{sub x} emission was reduced at the same time as the addition of ammonia was reduced. 4. The deposition rate of the deposits collected on the test probe was reduced, thus no increased risk in deposit formation on the superheater tubes. The conclusion is that the boiler could be operated in a safe way with addition of biomal.

  3. Workshop proceedings: U-bend tube cracking in steam generators

    Science.gov (United States)

    Shoemaker, C. E.

    1981-06-01

    A design to reduce the rate of tube failure in high pressure feedwater heaters, a number of failed drawn and stress relieved Monel 400 U-bend tubes removed from three high pressure feedwater heaters was examined. Steam extracted from the turbine is used to preheat the boiler feedwater in fossil fuel fired steam plants to improve thermal efficiency. This is accomplished in a series of heaters between the condenser hot well and the boiler. The heaters closest to the boiler handle water at high pressure and temperature. Because of the severe service conditions, high pressure feedwater heaters are frequently tubed with drawn and stress relieved Monel 400.

  4. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler...

  5. Externally finned circular tube immerse in a phase-change material

    International Nuclear Information System (INIS)

    Alves, C.L.F.; Ismail, K.A.R.

    1985-01-01

    In an attempt to increase the heat transfer rate and reduce the convective currents during the freezing of phase change materials (PCM) in storage tanks, externally finned circular tubes are studied experimentally. The parameters analysed in this work include number of fins, fin length, initial degree of superheat and freezing time

  6. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Coe, D.R. [LG& E Power Systems, Inc., Irvine, CA (United States)

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  7. A Stochastic mesoscopic model for predicting the globular grain structure and solute redistribution in cast alloys at low superheat

    International Nuclear Information System (INIS)

    Nastac, Laurentiu; El Kaddah, Nagy

    2012-01-01

    It is well known that casting at low superheat has a strong influence on the solidification morphology and macro- and microstructures of the cast alloy. This paper describes a stochastic mesoscopic solidification model for predicting the grain structure and segregation in cast alloy at low superheat. This model was applied to predict the globular solidification morphology and size as well as solute redistribution of Al in cast Mg AZ31B alloy at superheat of 5°C produced by the Magnetic Suspension Melting (MSM) process, which is an integrated containerless induction melting and casting process. The castings produced at this low superheat have fine globular grain structure, with an average grain size of 80 μm, which is about 3 times smaller than that obtained by conventional casting techniques. The stochastic model was found to reasonably predict the observed grain structure and Al microsegregation. This makes the model a useful tool for controlling the structure of cast magnesium alloys.

  8. Improved nuclear boiler

    International Nuclear Information System (INIS)

    Pierart, Robert.

    1980-01-01

    The improved nuclear boiler concerned in this invention is of the kind comprising, inter alia, a nuclear reactor supported by a metallic structure and of which the vessel is at least enclosed in part by a casing acting as a protective containment integrated in this structure. It is essentially characterized in that this casing is fitted into and maintained in position in the metallic structure by removable locking devices which enable the casing to be withdrawn from the remainder of the structure. Hence, after the casing has been withdrawn or removed from the metallic structure, access to the reactor vessel is readily obtained for inspection and/or testing from without [fr

  9. Numerical simulation of a small-scale biomass boiler

    International Nuclear Information System (INIS)

    Collazo, J.; Porteiro, J.; Míguez, J.L.; Granada, E.; Gómez, M.A.

    2012-01-01

    Highlights: ► Simplified model for biomass combustion was developed. ► Porous zone conditions are used in the bed. ► Model is fully integrated in a commercial CFD code to simulate a small scale pellet boiler. ► Pollutant emissions are well predicted. ► Simulation provides extensive information about the behaviour of the boiler. - Abstract: This paper presents a computational fluid dynamic simulation of a domestic pellet boiler. Combustion of the solid fuel in the burner is an important issue when discussing the simulation of this type of system. A simplified method based on a thermal balance was developed in this work to introduce the effects provoked by pellet combustion in the boiler simulation. The model predictions were compared with the experimental measurements, and a good agreement was found. The results of the boiler analysis show that the position of the water tubes, the distribution of the air inlets and the air infiltrations are the key factors leading to the high emission levels present in this type of system.

  10. Dynamic performances of wet turbine and steam-separator-superheater and their mathematical simulation as objects of temperature control

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1985-01-01

    A mathematical model of a turbine and steam-separator-superheater (SSS) as applied to solution of the tasks of steam temperature regulaton after SSS has been developed. SSS as objects of steam temperature control are considerably less inertial, than intermediate superheaters (IS) of power units in thermal power plants, since for typical SSS and IS considered the duration of transition process according to steam temperature after SSS is 5-10 times loweA than for IS

  11. The Phenomenon of Superheat of Liquids: In Memory of Vladimir P. Skripov

    Science.gov (United States)

    Skripov, P. V.; Skripov, A. P.

    2010-05-01

    This article is devoted to the memory of Vladimir P. Skripov (1927-2006). He has received worldwide recognition for his monograph on metastable liquids published in 1972 (the English edition was published in 1974). We briefly discuss some studies deal with the phenomenon of attainable superheat of liquids and with measurements of thermophysical properties of liquids under conditions of a moderate degree of superheat. Main attention is paid to the studies performed by V.P. Skripov and his research group in the 1960s and 1970s. Experimental methods which provided break-throughs in research on both spontaneous boiling-up kinetics and substance properties (the specific volume, isobaric heat capacity, ultrasound speed, and viscosity) in super-heated states are presented.

  12. Data for modern boilers used in co-combustion; Moderna panndata inom samfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Ola [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-04-01

    This project is a survey and a description of today's technical status and future development trends in the field of co-combustion. The survey is done from an energy production company's point of view and two technical questions have been studied; the possibilities for high steam data and the possibilities for a wide load range. These parameters are limited by the corrosive properties of the fuel and the environmental requirements in the EU directive for combustion of waste. In the report following issues are discussed: Examples of and experiences from co-combustion plants and plants that combust problematic fuels and have high steam data. A future prospect of high steam data in co-combustion plants by the usage of modern technical solutions and a description of these solutions. Important research and development results from combustion of problematic fuels in combination with high steam data. Choice of firing technology, boiler design and auxiliary systems and its affection on the load range in a boiler for co-combustion. A literature survey has been done to get the latest results from combustion of problematic fuels. Then a number of interesting plants have been identified and facts about them have been collected by contacts with plant owners, suppliers and professional researchers and also through publications. The report shows that Sweden, Finland and Denmark are in the front line of using high steam data for co-combustion of biomass and waste fuels. There are/have been problems with superheater corrosion in many of these plants but a number of ways how to handle high steam data have been identified: Adjust the fuel mix or add additives; Use high alloy materials; Consider the final super heater as a part that is worn out by time; Place the final super heater in the particle loop seal/sand locker; Use an external separate fired super heater; Gasification and then co-combustion of the pyrolysis gas in a conventional existing boiler; Place the

  13. Evaporator Superheat Control With One Temperature Sensor Using Qualitative System Knowledge

    DEFF Research Database (Denmark)

    Vinther, Kasper; Hillerup Lyhne, Casper; Baasch Sørensen, Erik

    2012-01-01

    This paper proposes a novel method for superheat control using only a single temperature sensor at the outlet of the evaporator, while eliminating the need for a pressure sensor. An inner loop controls the outlet temperature and an outer control loop provides a reference set point, which is based...... filling of the evaporator, with only one temperature sensor. No a priori model knowledge was used and it is anticipated that the method is applicable on a wide variety of refrigeration systems....

  14. Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters

    Energy Technology Data Exchange (ETDEWEB)

    Martti Aho; Pasi Vainikka; Raili Taipale; Patrik Yrjas [VTT, Jyvaeskylae (Finland)

    2008-05-15

    Firing or co-firing of biomass in efficient power plants can lead to high-temperature corrosion of superheaters due to condensation of alkali chlorides into superheater deposits. Corrosion can be prevented if a significant portion of the alkali chlorides present in the flue gases is destroyed before reaching the superheaters. The alkali capturing power of aluminium and ferric sulphates was determined in a pilot-scale fluidised bed (FB) reactor. The reagents were added in solution, through a spraying nozzle, to the upper part of the freeboard. Both reagents, at economical dosages, fast and effectively destroyed the alkali chlorides by producing sufficient SO{sub 3} for the sulphation. Both the mass flow rate and type of sulphate affected the sulphation ability. Thus, the cation, too, plays a role in the reaction. The required chemical dosage is not directly proportional to the S{sub reagent}/Cl{sub 2fuel} ratio because alkali chlorides must compete with calcium and magnesium oxides and probably also with alkali oxides for the available SO{sub 3}. 17 refs., 16 figs., 1 tab.

  15. High-Speed Imaging of Explosive Droplet Boiling at the Superheat Limit

    Science.gov (United States)

    Ferris, F. Robert; Hermanson, Jim; Asadollahi, Arash; Esmaeeli, Asghar

    2017-11-01

    The explosive boiling processes of droplets of diethyl ether (1-2 mm in diameter) at the superheat limit were examined both experimentally and computationally. Experimentally, droplet explosion was studied using a heated bubble column to bring the test droplet to the superheat limit. The droplet fluid was diethyl ether (superheat limit 147 C at 1 bar) with immiscible glycerol employed as the heated host fluid. Tests were carried out at pressures between 0.5 and 4 bar absolute. The pressure rise associated with the explosive boiling event was captured using a piezoelectric quartz pressure transducer with a 1 MHz DAQ system. High-speed imaging of the interfacial behavior during explosive boiling was performed using a Phantom v12.1 camera at a frame rate of up to one million frames per second with the droplets illuminated by diffuse back-lighting. The imaging reveals features of the Rayleigh-Taylor instability at the vapor-liquid interface resulting from the unstable boiling process. Computationally, Direct Numerical Simulations are performed at Southern Illinois University Carbondale to compliment the experimental tests. NSF Award Number 1511152.

  16. Construction and commissioning of the Hinkley Point 'B' and Hunterston 'B' boilers

    International Nuclear Information System (INIS)

    White, D.C.; Holmes, R.L.

    1977-01-01

    Prior to construction and erection of the reactor boiler units, within the concrete pressure vessel, the units were received from the manufacturing works, and stored in clean and humidity controlled conditions. Because of the loading facilities into the reactor pressure vessel, a very precise erection procedure had to be adhered to. The activities associated with construction of feedwater inlet, superheater steam, and reheated steam inlet and outlet penetrations had to be programmed accordingly. By the very nature of the work load, the time scale involved, and the prime need to maintain the boiler unit materials free of deterioration from atmospheric corrosion after erection, early commissioning of storage systems were implemented; providing wet or dry storage conditions as dictated by the two Generating Boards. Pre-operational commissioning also covered the work of setting up all the steam and water controls, isolating valve systems and the automatic and sequence equipment associated with the feed water controls which are a major design feature of the once through boiler operation. (author)

  17. A study by simulation of dynamic instability in boilers using the NUMEL/DYMEL suite of programmes

    International Nuclear Information System (INIS)

    Jeffries, T.O.

    1985-01-01

    Tube-to-tube instability in a once through sodium heated boiler has been studied using the finite difference model developed by the CEGB and embodied in the NUMEL and DYMEL compute codes. The method used was to simulate the boiler and then carry out frequency response tests, as one would on a real boiler. The advantages of using the simulation model compared with using the real system are the ease with which experiments may be performed and the ease of access to a wide range of parameters which could only be obtained approximately, if at all, from a real boiler. The advantage is that validation of the model is only approximate though in the case of sodium heated boilers, conditions are similar to those in electrically heated rigs used for validation. The study led to an understanding of how such a boiler should be operated to avoid tube-to-tube instability and with the detailed temperature profiles available from NUMEL it was possible to develop existing theory to predict boiler transfer functions similar to those observed in the frequency response tests. (author)

  18. B and W model boiler tests: effect of temperature on IGA rate. Initial and post-1878 operating conditions of the model boilers

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Babcock and Wilcox (B and W) model boiler operated with 10 ppm weekly injections of NaOH for 41,900 hours (4.8 years). The model boiler operating conditions are given. Tube No. 24 failed by caustic intergranular attack/stress corrosion cracking (IGA/SCC) at the steam-water zone. IGA defect depths on tube 24 is compared at different locations, which also have different temperature conditions. The specific locations are: steam/water zone, drilled baffle plate, and lower tube sheet crevice. In all locations caustic will concentrate (although to different concentration levels). Nevertheless, an effect of temperature on IGA rate can be estimated. The degree of attack relative to the location and environment is shown. SEM fractographs illustrate the completely intergranular failure of Tube 24. A summary of the estimated results is presented. These results show the estimated IGA rate as a function of primary/secondary temperature and estimated caustic concentration. Details of the failure analysis of the model boiler can be found in the final report Destructive Examination of Babcock and Wilcox's Model Boiler for Intergranular Attack (IGA) on Tubes, EPRI S302-6, J.L.; Barna and L.W. Sarver

  19. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  20. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  1. Occurrence and prevention of enhanced oxide deposition in boiler flow control orifices

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Thomas, D.M.; Garbett, K.; Bignold, G.J.

    1989-10-01

    Once-through boilers, such as those of the AGRs, incorporate flow control orifices at the boiler inlet to ensure a satisfactory flow distribution and stability in the parallel flow paths of the boiler. Deposition of corrosion products in the flow control orifice leads to changes in the orifice pressure loss characteristics, which could lead to problems of flow maldistribution within the boiler, and any adverse consequences resulting from this, such as tube overheating. To date, AGR boiler inlet orifices have not suffered significant fouling due to corrosion products in the boiler feedwater. However, oxide deposition in orifices has been observed in other plants, and in experimental loops operating under conditions very similar to those at inlet to AGR boilers. The lack of deposition in AGR flow control orifices is therefore somewhat surprising. This Report describes studies carried out to examine the factors controlling oxide deposition in flow control orifices, the intention of the work being to explain why deposition has not occurred in AGR boilers to date, and to provide means of preventing deposition in the future should this prove necessary. (author)

  2. CCD camera eases the control of a soda recovery boiler; CCD-kamera helpottaa soodakattilan valvontaa

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    2001-07-01

    Fortum Technology has developed a CCD firebox camera, based on semiconductor technology, enduring hard conditions of soda recovery boiler longer than traditional cameras. The firebox camera air- cooled and the same air is pressed over the main lens so it remains clean despite of the alkaline liquor splashing around in the boiler. The image of the boiler is transferred through the main lens, image transfer lens and a special filter, mounted inside the camera tube, into the CCD camera. The first CCD camera system has been in use since 1999 in Sunila pulp mill in Kotka, owned by Myllykoski Oy and Enso Oyj. The mill has two medium-sized soda recovery boilers. The amount of black liquor, formed daily, is about 2000 tons DS, which is more than enough for the heat generation. Even electric power generation exceeds sometimes the demand, so the surplus power can be sold out. Black liquor is sprayed inside the soda recovery boiler with high pressure. The liquor form droplets in the boiler, the temperature of which is over 1000 deg C. A full-hot pile is formed at the bottom of the boiler after burning. The size and shape of the pile effect on the efficiency and the emissions of the boiler. The camera has operated well.

  3. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  4. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known, shall...

  5. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with automatic...

  6. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 56.13030 Section 56.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure gauges...

  7. 30 CFR 57.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 57.13030 Section 57.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure...

  8. Two phase flow problems in power station boilers

    International Nuclear Information System (INIS)

    Firman, E.C.

    1974-01-01

    The paper outlines some of the waterside thermal and hydrodynamic phenomena relating to design and operation of large boilers in central power stations. The associated programme of work is described with an outline of some results already obtained. By way of introduction, the principal features of conventional and nuclear drum boilers and once-through nuclear heat exchangers are described in so far as they pertain to this area of work. This is followed by discussion of the relevant physical phenomena and problems which arise. For example, the problem of steam entrainment from the drum into the tubes connecting it to the furnace wall tubes is related to its effects on circulation and possible mechanisms of tube failure. Other problems concern the transient associated with start-up or low load operation of plant. The requirement for improved mathematical representation of steady and dynamic performance is mentioned together with the corresponding need for data on heat transfer, pressure loss, hydrodynamic stability, consequences of deposits, etc. The paper concludes with reference to the work being carried out within the C.E.G.B. in relation to the above problems. The facilities employed and the specific studies being made on them are described: these range from field trials on operational boilers to small scale laboratory investigations of underlying two phase flow mechanisms and include high pressure water rigs and a freon rig for simulation studies

  9. CFB boilers in multifuel application

    International Nuclear Information System (INIS)

    Goral, D.; Krzton, B.

    2007-01-01

    Fuel flexibility characteristic for CFB boilers plays an important rule in industrial and utility size applications. Possibility to use wider range of fuels that has been long time considered as by-products or wastes and possibility to design boilers able to operate with alternative fuels is an important factor that improves fuel delivery security and plant economy. Presented article is based on similar publications that present Foster Wheeler's experience in design and delivery of the CFB boilers for wide range of coals and cofiring by- products of crude oil refining and coal processing. Aspects of biomass cofiring will be also presented. (author)

  10. Erosion–corrosion behaviour of Ni-based superalloy Superni-75

    Indian Academy of Sciences (India)

    The super-heater and re-heater tubes of the boilers used in thermal power plants are ... mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the ...

  11. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  12. Hybrid model of steam boiler

    International Nuclear Information System (INIS)

    Rusinowski, Henryk; Stanek, Wojciech

    2010-01-01

    In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.

  13. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  14. 77 FR 32508 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Notice of Preliminary Results of...

    Science.gov (United States)

    2012-06-01

    ... pipe, oil country tubular goods, boiler tubing, cold- drawn or cold-rolled mechanical tubing, pipe and... in the marketing process and selling functions along the chain of distribution between the producer...

  15. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  16. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    Highlights: • Non-linear model of supercritical CFB boiler with annular furnace is developed. • Many empirical correlations are used to solve the model. • The thermal–hydraulic characteristics of boiler are analyzed. • The results show that the design of the annular furnace is reasonable. - Abstract: The development of supercritical Circulating Fluidized Bed (CFB) boiler has great economic and environmental value. An entirely new annular furnace structure with outer and inner ring sidewalls for supercritical CFB boiler has been put forward by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences and Dongfang Boiler Group Co., Ltd. (DBC). Its outer and inner ring furnace structure makes more water walls arranged and reduces furnace height availably. In addition, compared with other additional evaporating heating surface structures such as mid-partition and water-cooled panels, the integrative structure can effectively avoid the bed-inventory overturn and improve the penetrability of secondary air. The conditions of the 600 MW supercritical CFB boiler including capability, pressure and mass flux are harsh. In order to insure the safety of boiler operation, it is very necessary to analyze the thermal–hydraulic characteristics of water-wall system. The water-wall system with complicated pipe arrangement is regarded as a network consisting of series-parallel circuits, pressure nodes and linking circuits, which represent vertical water-wall tubes, different headers and linking tubes, respectively. Based on the mass, momentum and energy conservation, a mathematical model is built, which consists of some simultaneous nonlinear equations. The mass flux in circuits, pressure drop between headers, outer vapor temperature of water-wall system and metal temperature data of tubes at the boiler maximum continuous rating (BMCR), 75% BMCR and 30% BMCR loads are obtained by solving the mathematical model. The results show that the vertical water

  17. Determination of the concentration profile of chemical elements in superheater pipes

    International Nuclear Information System (INIS)

    Aldape U, F.; Aspiazu F, J.

    1986-05-01

    This work has for object to determine the profile of concentration of chemical elements at trace level in a superheater pipe of Thermoelectric Plants using the X-ray emission spectroscopy technique induced by protons coming from the Accelerator of the Nuclear Center. In the X-ray detection, a Si Li detector was used. The technique was chosen because it allows a multielemental analysis, of high sensitivity and precision. The results can help to understand the problems that are had in the change of flexibility or of corrosion. This will be from utility to the Federal Electricity Commission (CFE). (Author)

  18. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  19. Chemical and hydrothermal studies on once through boilers using a full scale replica

    International Nuclear Information System (INIS)

    Penfold, D.; Gill, G.M.; Greene, J.C.; Harrison, G.S.; Walker, M.A.

    1987-01-01

    The paper describes the scope of research work carried out on once through boilers on the test rig at Wythenshawe, United Kingdom. The latter rig was designed and built to replicate the chemical, metallurgical and hydrothermal conditions on single tube test sections of Heysham 1 (AGR) and Wylfa (Magnox) boilers. A description is given of the rig, along with the facilities for obtaining the research data. Research studies on the once through boilers include: Heysham 1 boiler inlet, oxygen stress corrosion risk in post trip operation, Wylfa two phase erosion-corrosion risk in post trip operation, Wylfa two phase erosion-corrosion, dryout phenomena in a helical coil, and heat transfer co-efficients. (UK)

  20. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  1. The early operation of the helical once-through boilers at Heysham 1 and Hartlepool

    International Nuclear Information System (INIS)

    Mathews, A.J.

    1988-01-01

    The Heysham 1 and Hartlepool AGR Reactors are equipped with 'pod' boilers set into the walls of the Pre-stressed Concrete Pressure Vessel. Each Reactor unit has eight pod boilers, which are of a somewhat unique single pressure, once through, helically wound type incorporating a reheater. The pods are provided with a limited amount of strain gauge and thermocouple instrumentation concentrated mainly in two specially instrumented boilers at each site. During Commissioning prior to power raising, extensive noise and vibration tests utilising the special attain gauge instrumented boilers, gave encouraging results. This has led to an increase in coolant gas mass flow of 5% above the design level. Following power raising in 1983 and 1984, detailed boiler performance testing, mainly using the special thermocouple instrumented boilers, showed that the actual behaviour differed from the computer design predictions. A major temperature tilt existed across the boiler tubes resulting in higher than predicted temperatures in the outer radius rows of tubes and the reverse situation in the inner tubes. The effect differed in magnitude between Hartlepool Reactor 1 and the other three Reactors probably due to construction differences. As a result output was initially limited to approximately 58% of design (380 MW (Generated)). A major programme of altering the flow control ferrules was carried out during the first statutory overhauls in 1985 and 1986. The initial results from Heysham 1 were not very encouraging (a gain of 70 MW(e)) but further computer model correlations led to revised patterns in Heysham and Hartlepool Reactor 2 which have since yielded improvements in output potential of up to 200 MW(e). The paper discusses the commissioning test results described above and describes the details of the extensive work carried out to achieve higher output. (author)

  2. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  3. The application of TIG-welding to the manufacture of modern boiler units. Chapter 3

    International Nuclear Information System (INIS)

    Dick, N.T.

    1978-01-01

    Stringent weld acceptance standards are necessary in nuclear installations. Mechanised TIG-welding is being used exclusively in the manufacture of the boiler pods for the Hartlepool and Heysham nuclear generating stations. The choice of a TIG welding process is discussed. Reliability, access, welding position, tube dimensions and weld profile were important as was the desirability of having ferrite control because in the austenitic stainless steel used, the acceptance standard does not permit microfissuring. Development of the technique and production equipment and conditions are given for tube butt welding, tube-to-tubeplate bore welding and tube-to-tubeplate face welding in AGR applications. (U.K.)

  4. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.

    2004-01-01

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  5. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Diebel, M.E.

    1991-01-01

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  6. FY 1999 achievement report on the development of high performance boilers. R and D on high performance industrial furnaces, etc.; 1999 nendo koseino boiler no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project started in FY 1993 to survey the actual state of industrial use boilers. Based on the results of the survey, in fiscal 1995, 1996 and 1997, no improvement of the present technology which has limits, but the development was made of the oxygen combustion and element technology which are factors for heightening boiler performance with a new idea first in the world. In fiscal 1998, a target for the overall thermal efficiency of 105% was settled by testing a pilot plant where the element technology was integrated into the small once-through boiler, flue/smoke tube boiler, water tube boiler, etc. In fiscal 1999, the target of the overall thermal efficiency of boiler was reached by a pilot plant test to clarify combustion characteristics, heat transfer characteristics, environmental characteristics, etc. Further, effects of energy saving were increased by the adoption method of oxygen supply equipment. Concretely, an overall boiler efficiency of 105.73% exceeding the targeted value of 105% was achieved at a pilot plant of actual scale, by concentrating the results of each of the element technologies such as 'oxygen combustion,' 'condensation type flue gas heat exchanger,' 'high performance combustion control device,' and 'rapid rotating auxiliary machine.' (NEDO)

  7. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  8. Optimizing the Integrated Design of Boilers - Simulation

    DEFF Research Database (Denmark)

    Sørensen, K.; Karstensen, C.; Condra, T.

    2004-01-01

    Boilers can be considered as consisting of three main components: (i) the pressure part, (ii) the burner and (iii) the control system. To be able to develop the boilers of the future (i.e. the boilers with the lowest emissions, the highest efciency, the best dynamic performance etc.) it is import...

  9. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  10. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    OpenAIRE

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  11. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  12. On-line Auto-Tuning of PI Control of the Superheat for a Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Andersen, Casper; Izadi-Zamanabadi, Roozbeh

    2011-01-01

    An online PI auto-tuning method is proposed for superheat control for a type of supermarket refrigeration systems. The proposed procedure consists of three serial steps: Step-One uses one of the two proposed empirical methods, namely multi-step method and relay method, for modeling initialization...

  13. Application of zonal combustion model for on-line furnace analysis of 575MW tangential coal firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Karasina, E.; Livshits, B.; Talanker, A. [Israel Electric Corporation (Israel). Engineering Division

    1999-07-01

    An advanced code for calculating heat transfer in the boiler of furnaces is considered. The code can be used to compute the flue gas temperature in the furnace volume and the absorbed and incident heat fluxes. The number of zones in the furnace, the points of the injection of the fuel, air and flue gas recirculation (if applicable), the radiative heat transfer properties of the flue gases as well as all the factors determining performance are taken into account in the calculation. The code also predicts water wall and superheater temperature and NO{sub x} emission. The validity of the proposed model was confirmed by comparison between calculated and measured values. The predicted results show good agreement with the experimental data. The code developed is for engineers using advanced PCS at the stage of designing new boilers as well as when retrofitting and adjusting boilers already in operation. In comparison with existing complex computational models the proposed system can be used in modern monitoring systems for the furnace diagnostic problems including NO{sub x} emission. 7 refs., 11 figs.

  14. Tube leak detector

    International Nuclear Information System (INIS)

    Morita, Bunji; Takamura, Koichi; Matsuda, Shigehiro; Kiyosawa, Shun-ichi; Asami, Toru; Yamada, Hiroshi; Naruse, Shin-ichi.

    1995-01-01

    The device of the present invention detects occurrence of leakage in a steam generator, a steam heating tube, or a heat exchanger of a nuclear power plant. Namely, an vibration sensor is disposed at the rear end of a rod-like supersonic resonance member. A node portion for the vibrations of the resonance member is held by a holding member and attached to a wall surface of a can such as a boiler. With such a constitution, the resonance member is resonated by supersonic waves generated upon leakage of the tube. The vibrations are measured by the vibration sensor at the rear end. Presence of leakage is detected by utilizing one or more of resonance frequencies. Since the device adopts a resonance phenomenon, a conduction efficiency of the vibrations is high, thereby enabling to detect leakage at high sensitivity. In addition, the supersonic wave resonance member has its top end directly protruded into a pressure vessel such as a boiler by using a metal or a ceramic which is excellent in heat and pressure resistance. Accordingly, the sound of leak can be detected efficiently. (I.S.)

  15. Design of a small scale boiler package for testing high moisture content biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, Andrew

    2005-07-01

    This report presents the results of a project to design a prototype, small-scale boiler (0.88 MWth output) to enable clean and efficient combustion of high moisture content (>30%) biomass fuels. The boiler was based on an open bottom smoke tube design, modified to incorporate water tubes in the combustion chamber running from front to back. These were added to support refractory bricks to create an extra pass in the boiler combustion chamber such that the reflected heat from the refractory increased the rate of evaporation of moisture from the fuel. A chain grate stoker was employed. The combustion tests involved three biofuels: wood pellets with a low moisture content (8-10%) (to provide combustion rates for a commercially proven biofuel); wood chips from forestry waste with a 30-40% moisture content; and spent mushroom compost with 70-75% moisture. The tests on the wood chips required a number of modifications to the fuel feeding system and to the boiler in order to achieve limited success and the tests with the mushroom compost were unsuccessful due to the combination of the high moisture content and the fuel's low calorific value. Experience gained with the wood chips suggested a number of improvements for a future boiler design. As well as describing the experimental work and test results, the report offers an economic analysis (capital costs, fuel costs, running costs) of the scheme.

  16. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yongxiang, Yang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  17. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  18. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Liu, Xingrang; Bansal, R.C.

    2014-01-01

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  19. Biomass boiler still best choice

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    Full text: The City of Mount Gambier upgraded its boiler in September after analysis showed that biomass was still the optimal energy option. The Mount Gambier Aquatic Centre was built by the local city council in the 1980s as an outdoor pool facility for the public. The complex has three pools — an Olympic-sized, toddler and a learner pool — for a total volume of 1.38ML (including balance tanks). The large pool is heated to 27-28°C, the smaller one 30-32°C. From the very beginning, the pool water was heated by a biomass boiler, and via two heat exchangers whose combined capacity is 520 kW. The original biomass boiler ran on fresh sawdust from a local timber mill. After thirty years of dedicated service the original boiler had become unreliable and difficult to operate. Replacement options were investigated and included a straight gas boiler, a combined solar hot water and gas option, and biomass boilers. The boiler only produces heat, not electricity. All options were subjected to a triple bottom line assessment, which included potential capital costs, operating costs, community and environmental benefits and costs. The project was also assessed using a tool developed by Mount Gambier City Council that considers the holistic benefits — the CHAT Tool, which stands for Comprehensive Holistic Assessment Tool. “Basically it is a survey that covers environmental, social, economic and governance factors,” the council's environmental sustainability officer, Aaron Izzard told WME. In relation to environmental considerations, the kinds of questions explored by the CHAT Tool included: Sustainable use of resources — objective is to reduce council's dependence on non-renewable resources; Greenhouse emissions — objective is to reduce council's contribution of GHG into the atmosphere; Air quality — objective is to improve local air quality. The conclusion of these analyses was that while a biomass boiler would have a higher capital cost than a straight gas

  20. Installations of SNCR on bark-fired boilers; Uppfoeljning av SNCR-installationer paa barkpannor

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarsson, A.K.; Hedin, K. [AaF-Energikonsult, Stockholm (Sweden); Andersson, Lars [AaF-IPK (Sweden)

    1997-01-01

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NO{sub x} reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO{sub 2}/MJ fuel input and the NO{sub x} reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  1. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  2. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000 Btu/hr...

  3. Fluidized bed boiler feed system

    Science.gov (United States)

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  4. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    ). The shedding investigation was also made when the nearby plant sootblower (4m below) was working. It was identified that the mass uptake signal remained stable and the deposits in small pieces were continuously removed during 35% and 65% straw-firing. Previous findings of Vattenfall indicated that a mixture...... was limited to two weeks when 100% straw was fired due to ash deposition in the superheater region that has tube spacing specified for coal-firing (113mm). A series of 3-5 days deposit probe experiments were conducted utilizing 35 to 100% straw with wood on mass basis. The applied deposit probe was water...... two hours deposit mass uptake rate was 52.8 (g/m2/h), while it was 353.8 (g/m2/h) during 100% straw-firing. All tests in the superheater region for all applied straw shares indicated that with increase in straw share, final deposit mass uptake increased. The comparison of current and previous full...

  5. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  6. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  7. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  8. The Technology Introduction of Chain Boiler Energy Conservation Transformation

    Science.gov (United States)

    Li, Henan; Liu, Xiwen; Yuan, Hong; Lin, Jiadai; Zhang, Yu

    2017-12-01

    Introduced the present status of chain boiler efficiency is low, the system analysis of the chain boiler optimization and upgrading of technology, for the whole progress of chain boiler to provide some ideas and reference.

  9. Advanced technique for computing fuel combustion properties in pulverized-fuel fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (Russian Federation))

    1992-03-01

    Reviews foreign technical reports on advanced techniques for computing fuel combustion properties in pulverized-fuel fired boilers and analyzes a technique developed by Combustion Engineering, Inc. (USA). Characteristics of 25 fuel types, including 19 grades of coal, are listed along with a diagram of an installation with a drop tube furnace. Characteristics include burn-out intensity curves obtained using thermogravimetric analysis for high-volatile bituminous, semi-bituminous and coking coal. The patented LFP-SKM mathematical model is used to model combustion of a particular fuel under given conditions. The model allows for fuel particle size, air surplus, load, flame height, and portion of air supplied as tertiary blast. Good agreement between computational and experimental data was observed. The method is employed in designing new boilers as well as converting operating boilers to alternative types of fuel. 3 refs.

  10. Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2017-01-01

    Ash deposition on boiler surfaces is a major problem encountered in biomass combustion. Timely removal of ash deposits is essentialfor optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the adhesion strength of biomass ash from...... off by an electrically controlled arm, and the corresponding adhesion strength was measured. The effect of sintering temperature, sintering time, deposit composition, thermal shocks on the deposit, and steel type was investigated. The results reveal that the adhesion strength of ash deposits...... is dependent on two factors: ash melt fraction, and corrosion occurring at the deposit–tube interface. Adhesion strength increases with increasing sintering temperature, sharply increasing at the ash deformation temperature. However, sintering time, as well as the type of steel used, does not have...

  11. A two-parameter preliminary optimization study for a fluidized-bed boiler through a comprehensive mathematical simulator

    Energy Technology Data Exchange (ETDEWEB)

    Rabi, Jose A.; Souza-Santos, Marcio L. de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: jrabi@fem.unicamp.br; dss@fem.unicamp.br

    2000-07-01

    Modeling and simulation of fluidized-bed equipment have demonstrated their importance as a tool for design and optimization of industrial equipment. Accordingly, this work carries on an optimization study of a fluidized-bed boiler with the aid of a comprehensive mathematical simulator. The configuration data of the boiler are based on a particular Babcock and Wilcox Co. (USA) test unit. Due to their importance, the number of tubes in the bed section and the air excess are chosen as the parameters upon which the optimization study is based. On their turn, the fixed-carbon conversion factor and the boiler efficiency are chosen as two distinct optimization objectives. The results from both preliminary searches are compared. The present work is intended to be just a study on possible routes for future optimization of larger boilers. Nonetheless, the present discussion might give some insight on the equipment behavior. (author)

  12. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  13. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers; TOPICAL

    International Nuclear Information System (INIS)

    Keiser, J.R.

    2001-01-01

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining

  14. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    Chong, W.C.; Rashid, M.; Ramli, M.; Zainura, Z.N.; NorRuwaida, J.

    2010-01-01

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm 3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm 3 (at 7 % O 2 ) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm 3 , the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  15. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    , and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  16. Wood fuelled boiler operating costs

    International Nuclear Information System (INIS)

    Sandars, D.L.

    1995-01-01

    This report is a management study into the operating costs of wood-fired boilers. Data obtained from existing wood-fired plant has been analysed and interpreted using the principles of machinery management and the science that underlies the key differences between this fuel and any other. A set of budgeting principles has been developed for the key areas of labour requirement, insurance, maintenance and repair and electricity consumption. Other lesser cost centres such as the provision of shelter and the effects of neglect and accidents have also been considered, and a model constructed. (author)

  17. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    Science.gov (United States)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  18. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  19. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  20. Slagging and fouling evaluation of PC-fired boilers using AshPro{sup SM}

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhanhua; Iman, Felicia; Lu, Pisi [SmartBurn, LLC, Madison, WI (United States)

    2013-07-01

    SmartBurn {sup registered} applied AshPro{sup SM} model to two 512 MW Tangential-fired (T-fired) boilers firing US western sub- bituminous coals to evaluate the boiler slagging behaviors with different operating conditions and OFA. The boiler convective pass fouling behaviors with three different coals were also evaluated. The slagging evaluation results indicate that the OFA configuration and air flow distribution have dramatically impacts on the ash impaction rates and slagging patterns on the furnace walls. Deposit growth and strength vary at the different regions of the furnace walls. The fouling evaluation reveals that the tube bank configuration, the amount of incoming ash, the profiles of flue gas temperature, velocity, and species all have significant impacts on fouling deposit formation, growth, and strength development. In addition, the varying ash particle sizes and chemical compositions from different coals also play important roles on the fouling deposit strength development and removal. The investigation demonstrated that AshPro{sup SM} model can be used to evaluate localized slagging and fouling problems that are related to specific boiler configuration and operating conditions. It can be used to identify the major causes of ash deposition and can guide changes in boiler operation.

  1. Economic evaluation of a coal fired boiler

    International Nuclear Information System (INIS)

    Briem, J.J.

    1983-01-01

    This paper provides basic information on boiler economics which will assist steam users in analyzing the feasibility of using coal to generate steam - in either new or existing facilities. The information presented covers boilers ranging in size from 10,000 to 100,000 pounds per hour steaming capacity

  2. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  3. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.162 Ship's boilers. (a) Before...

  4. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  5. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  6. Bio boiler - Control conditions. Part 1: Model development and analysis of operating conditions; Biokedel - Reguleringsmaessige forhold. Del 1: Modeludvikling og analyse af dynamiske driftsforhold

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Christensen, Torkild; Mortensen, Jan; Runge Kristoffersen, J.; Kristmundsson, E. [Tech-wise A/S (Denmark); Moekbak, T.; Mortensen, Hans Peter [Elsam A/S (Denmark)

    2002-12-15

    This report focuses on the model-building part of the PSO project, 'Control Conditions Bio-boiler'. In the project, which treats dynamic simulation of biomass fired power plants via the MMS software, a certain number of straw/wood chip modules have been built, together with a combustion module which, when connected to the existing MMS modules, can be used for dynamic simulation. Furthermore, a certain number of continuous and discrete components have been built which, together with the remaining MMS modules will create a complete model of the active part of the control structure under the most common operation conditions. By means of the developed straw, combustion and control modules, a model of Enstedvaerket's bio-boiler is built (without wood chip super-heater), including practically all auxiliary control mechanisms. In the report the primary problems caused by the development of the model are discussed, typically numerical problems. First of all it is discussed how a steady state condition can be reached from a nonphysical condition at the start-up of the simulation. After reaching a steady state condition at full load, the boiler load is reduced by adjusting the desired live steam flow setpoint value and the load gradient (as it would be done from the control room). While reducing to part load, one straw line is closed down, as it would be done in 'real life'. From part load, the boiler load is once again in the same way increased to full. (BA) The simulation results are then compared to measurements made on the same boiler during load reduction and load increase.

  7. LMFBR steam generator development: duplex bayonet tube steam generator. Volume II

    International Nuclear Information System (INIS)

    DeFur, D.D.

    1975-04-01

    This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop)

  8. 78 FR 286 - Circular Welded Carbon Steel Pipes and Tubes From Turkey; Amended Final Results of Antidumping...

    Science.gov (United States)

    2013-01-03

    ... the scope of this order, except for line pipe, oil country tubular goods, boiler tubing, cold-drawn or... order (``APO'') of their responsibility concerning the disposition of proprietary information disclosed...

  9. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires to...

  10. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a) Construction...

  11. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  12. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  13. Dynamic model of a natural water circulation boiler suitable for on-line monitoring of fossil/alternative fuel plants

    International Nuclear Information System (INIS)

    Sedić, Almir; Katulić, Stjepko; Pavković, Danijel

    2014-01-01

    Highlights: • Derivation of dynamic model of a natural water circulation boiler is presented. • Model is derived by employing basic laws of conservation of mass, energy and momentum. • Thus obtained boiler model does not include empirical relationships. • Model is validated against experimental data related to an external disturbance event. • The final model is used for simulation analysis/assessment of key boiler quantities. - Abstract: The environmental protection policies and legal obligations motivate process industries to implement new low-emission and high-efficiency technologies. For the purpose of production process optimization and related control system design it is worthwhile to first build an appropriate process model. Apart from favorable execution speed, accuracy, and reliability features, the model also needs to be straightforward and only include the physical and design characteristics of the overall plant and its individual components, instead of relying on empirical relationships. To this end, this paper presents a nonlinear dynamic model of the single-drum natural-circulation steam boiler evaporator circuit, based exclusively on the fundamental physical laws of conservation of mass, energy and momentum, wherein the reliance upon empirical relationships has been entirely avoided. The presented boiler system modeling approach is based on the analysis of the physical phenomena within the boiler drum, as well as within downcomer and furnace tubes, and it also takes into account the boiler system design-specific features such as cyclone steam separators, thus facilitating the derivation of a fully-physical process model. Due to the straightforwardness of the derived process model, it should also be useful for the analysis of similar steam boiler facilities, requiring only adjustments of key operational and design parameters such as operating pressure, temperature, steam capacity and characteristics of ancillary equipment such as pumps. To

  14. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  15. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  16. Statistical modeling of an integrated boiler for coal fired thermal power plant

    Directory of Open Access Journals (Sweden)

    Sreepradha Chandrasekharan

    2017-06-01

    Full Text Available The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R2 analysis and ANOVA (Analysis of Variance. The dependability of the process variable (temperature on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM supported by DOE (design of experiments are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant. Keywords: Chemical engineering, Applied mathematics

  17. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  18. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    Science.gov (United States)

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  19. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  20. Techniques for measurement of heat flux in furnace waterwalls of boilers and prediction of heat flux – A review

    International Nuclear Information System (INIS)

    Sankar, G.; Chandrasekhara Rao, A.; Seshadri, P.S.; Balasubramanian, K.R.

    2016-01-01

    Highlights: • Heat flux measurement techniques applicable to boiler water wall are elaborated. • Applications involving heat flux measurement in boiler water wall are discussed. • Appropriate technique for usage in high ash Indian coal fired boilers is required. • Usage of chordal thermocouple is suggested for large scale heat flux measurements. - Abstract: Computation of metal temperatures in a furnace waterwall of a boiler is necessary for the proper selection of tube material and thickness. An adequate knowledge of the heat flux distribution in the furnace walls is a prerequisite for the computation of metal temperatures. Hence, the measurement of heat flux in a boiler waterwall is necessary to arrive at an optimum furnace design, especially for high ash Indian coal fired boilers. Also, a thoroughly validated furnace model will result in a considerable reduction of the quantum of experimentation to be carried out. In view of the above mentioned scenario, this paper reviews the research work carried out by various researchers by experimentation and numerical simulation in the below mentioned areas: (i) furnace modeling and heat flux prediction, (ii) heat flux measurement techniques and (iii) applications of heat flux measurements.

  1. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    Key, G.L.; Helyer, M.H.

    1981-04-01

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  2. Investigation of thermodynamic cycle for generic 1200 MW{sub el} pressure channel reactor with nuclear steam superheat

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, A.; Sidawi, K.; Abdullah, R.; Baldock, M.; Saltanov, E.; Pioro, I., E-mail: andrei.vincze@uoit.net, E-mail: khalil.sidawi@uoit.net, E-mail: rand.abdullah@uoit.net, E-mail: matthew.baldock@uoit.net, E-mail: eugene.saltanov@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    Current Nuclear Power Plants (NPPs) play a significant role in energy production around the world. All NPPs operating today employ a Rankine steam cycle for the conversion of thermal power to electricity. This paper will examine the steam cycle arrangement an experimental pressure channel reactor using Nuclear Steam Superheat (NSS) and compare it to two advanced reactor designs, the Advanced CANDU Reactor 1000 (ACR-1000) and the Advanced Boiling Water Reactor (ABWR) designs. The thermodynamic cycle layout and thermal efficiencies of the three reactor types will be discussed. (author)

  3. Damage distribution and remnant life assessment of a super-heater outlet header used for long time

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki, Okamura [Science Univ. of Tokyo (Japan); Ryuichi, Ohotani [Kyoto Univ. (Japan); Kazuya, Fujii [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Masashi, Nakashiro; Fumio, Takemasa; Hideo, Umaki; Tomiyasu, Masumura [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-11-01

    This paper presents the results of investigation on evaluating damage distribution to base metals and welded joints in the thickness direction and evaluate damage on ligaments. Thick wall tested sample was the superheater outlet header component long term serviced in high pressure and temperature condition in thermal power plant. The simulate unused steel of component material was made from sample by suitable heat treatment, and the extent of damage was assessed based on a comparison of nondestructive and destructive test results between simulate unused and aged samples. Damage evaluation was also made by FEM structural stress analysis. (orig./MM)

  4. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  5. Study of immersed heat exchange surface for high efficiency heat recovery from wire rim tires in a fluidized bed boiler; Hai tire nado kara no kokoritsu netsukaishuyo ryudosho boiler no sonai dennetsukan no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Oshita, T; Nagato, S; Miyoshi, N; Hosoda, S [Ebara Corp., Tokyo (Japan)

    1996-07-10

    In an ICFB boiler, the fluidized bed is separated by a partition into the main combustion and the heat recovery chambers. The flows in these chambers are generated by using silica sand as the fluidizing medium. To determine the overall heat transfer coefficient (HTC) of the boiler`s panel type immersed heat transfer tulles, combustion tests were performed with wire rim tires. The overall HTC of a panel tube array was lower than that of a zigzag tube arrangement. In practice, the heat absorbed by the fins makes the coefficients of either type of tube array almost identical. The air flow rate in the circulating bed at the loot Tom of the heat recovery chamber can be changed to control the overall HTC to a value virtually identical with that of a zigzag tube array. The combustion of wire rim tires leads to a buildup of wires in the zigzag array hampering the transfer of heat. Yet, the panel type array showed no buildup so that it was possible to maintain steady operation with this type of tube arrangement. 8 refs., 10 figs., 2 tabs.

  6. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  7. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  8. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  9. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  10. Pirotubular boilers design. Diseno de calderas pirotubulares

    Energy Technology Data Exchange (ETDEWEB)

    Latre Durso, F. (Geval S.A. (Spain))

    1994-01-01

    This article describes the conceptual design of Pirotubular boilers from the valuable thermal point of view, to the dimensional. This topic is a very tool valuable for professionals of design and for maintenance and operation equipment.

  11. Chemical, radiochemical and structural properties of corrosion products on CANDU monel-400 boiler surfaces

    International Nuclear Information System (INIS)

    Rummery, T.E.; Scott, G.A.; Owen, D.G.; Tremaine, R.

    1980-09-01

    The surface of the primary-coolant side of a complete Monel-400 boiler tube removed from Douglas Point Nuclear Generating Station was subjected to a detailed analysis by scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction and chemical analysis. The tube had been in operation for 420 effective full-power days. The major deposits found were metallic Cu and Ni with significant amounts of NiO, and the mixed cation spinel Ni sub(x) Fe sub(3-x) O 4 . The phase compostion, 60 Co activity, and distribution of deposits in the tube are consistent with changes in the degree of supersaturation due to the temperature gradient along the tube and with the thermodynamic stability of observed phases. The morphology of the deposit is controlled by hydrodynamic effects. (auth)

  12. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  13. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  14. Ecological boiler modernization, feasible energy solutions

    International Nuclear Information System (INIS)

    Krcek, F.; Matev, M.; Sykora, J.; Chladek, J.

    2005-01-01

    Alstom Power, s.r.o., ALSTOM GROUP in Brno, Czech Republic is a successor of PBS (First Brno Machine Works). PBS was a well-known company in Bulgaria - mainly as Heating Power Plant (HPP) and Industrial Plant supplier of boilers, industrial steam turbines, milling systems, heat exchangers Btc. PBS has been privatised in two stages starting at1993 year. Alstom recently deals with boiler and heat exchanger products. Industrial turbine but has been sold to Siemens in 2004

  15. Gas fired boilers and atmospheric pollution

    International Nuclear Information System (INIS)

    Chiaranello, J.M.

    1991-01-01

    A general analysis concerning atmospheric pollution is presented: chemical composition and vertical distribution of atmosphere and pollutants, chemical reactions, ozone destruction and production cycles, COx, NOx and SOx pollutions. The gas fired boiler number and repartition in France are presented and the associated pollution is analyzed (CO2, CO, NOx) and quantified. Various pollution control technics concerning gas fired boiler pollutants are described and a pollution criterion for clean gas fired generators is proposed

  16. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  17. Boiler referruling on the Hartlepool and Heysham 1 advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Newell, J.E.

    1988-01-01

    The Hartlepool and Heysham I reactors each use eight cylindrical boilers having nineteen rows of helical tubes. The advantages of this design are partially offset by the relatively poor radial gas mixing. Some rows of tubing may have an imbalance between heat input from the gas and the flow of feedwater. causing a temperature profile at the upper transition joints. The thermal/hydraulic behaviour meant that the metallurgical constraints limited output. Analysis of the behaviour of these boilers required a new two-dimensional mathematical model, known as PODMIX. This describes the thermal hydraulics in each of the rows of tubing and also in the gas between the rows. Not all of the parameters for the model can be determined from first principles. However, two out of the thirty two pods have thermocouples at some of the upper transition joints and these made back calculation possible. In order to translate this model to other boiler pods, a novel thermocouple rake system was designed for sampling superheated steam temperatures in selected tubes. A result of this analysis was to show that different, individual ferrule patterns were needed for each pod. The characteristics could, in general, best be met using twin orifice ferrules. Unfortunately, the installed system did not permit the replacement of orifices, so that a completely new system had to be developed. In the course of designing this, the opportunity was taken to over come susceptibilities to erosion/corrosion and crevice corrosion. Removal of the old ferrules and replacement with the new ones necessitated the development of high precision, programmable machines to operate under difficult site conditions. These carried out drilling, boring, grinding and polishing operations as well as making face welds and tube bore welds. Modifications have already achieved substantial improvements in performance and output, but an extended, iterative programme still lies ahead. (author)

  18. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Directory of Open Access Journals (Sweden)

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  19. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  20. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  1. Initial study of a method for IR measurements in boilers; Inledande studie av metod foer IR-maetning i aangpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Martin; Joensson, Magnus; Lundin, Leif [Swedish National Testing and Research Inst., Boraas (Sweden)

    1999-10-01

    The tubes in steam boilers are required to be regularly inspected, in order to find water-side deposits, thinning of walls or material defects. This is for safety, problem-free operation and high availability. No non-destructive method of inspection is available today for finding deposits on the insides of boiler tubes. Nor is there any method that can not only detect deposits on the insides of the tubes but also monitor the tubes' wall thicknesses. A suitable method - reliable, safe, easy to use and cost-efficient - is therefore needed. One such method is to measure the surface temperature of a larger area of the diaphragm wall, using a non-contact method, and from the resulting information to assess the material thickness and possible water-side or steam-side deposits. An IR camera is used for non-contact measurement of the radiated energy from several adjacent surface elements, and thus also of their temperature. The temperature is displayed on the camera's screen to produce a picture of the temperature distribution. This is a well-established method today, and is used in applications such as the steel industry, the electricity industry, electronics and health care. The surface temperatures of the tube walls can be measured by inserting an IR camera on an arm into the combustion chamber, without anyone having to get inside the boiler. The combustion chamber is the part of the boiler that is of main interest for inspection, as it is the easiest to reach. Measurements are facilitated by higher temperatures and thus higher heat fluxes through the tube walls. Diaphragm wall temperatures can be measured quickly and rationally over large areas. Points of interest in inspections include determining where there are water-side deposits in the tubes, where tubes are thin, where flow is obstructed and where there might be material defects. With the exception of material defects, all of these mechanisms result in changes in the surface temperature, which in many

  2. Pelly Crossing wood chip boiler

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-11

    The Pelly wood chip project has demonstrated that wood chips are a successful fuel for space and domestic water heating in a northern climate. Pelly Crossing was chosen as a demonstration site for the following reasons: its extreme temperatures, an abundant local supply of resource material, the high cost of fuel oil heating and a lack of local employment. The major obstacle to the smooth operation of the boiler system was the poor quality of the chip supply. The production of poor quality chips has been caused by inadequate operation and maintenance of the chipper. Dull knives and faulty anvil adjustments produced chips and splinters far in excess of the one centimetre size specified for the system's design. Unanticipated complications have caused costs of the system to be higher than expected by approximately $15,000. The actual cost of the project was approximately $165,000. The first year of the system's operation was expected to accrue $11,600 in heating cost savings. This estimate was impossible to confirm given the system's irregular operation and incremental costs. Consistent operation of the system for a period of at least one year plus the installation of monitoring devices will allow the cost effectiveness to be calculated. The wood chip system's impact on the environment was estimated to be minimal. Wood chip burning was considered cleaner and safer than cordwood burning. 9 refs., 6 figs., 6 tabs.

  3. Preliminary design study of removable integral steam generator units of the multiple helically wound tube type for a 1250 MW(th) H.T.G.C. reactor

    International Nuclear Information System (INIS)

    Gilli, P.V.; Fritz, K.; Lippitsch, J.; Sandri, A.H.; Weiss, B.

    1965-11-01

    The possibilities of designing a multiple steam generator for a 1250 MW(th) High Temperature Gas-Cooled Reactor, consisting of 18 units which are able to pass through 5 ft diam. holes in the integral prestressed concrete pressure vessel are investigated. A lay-out and design with bundles of multi-start helical tubes is evolved, particular attention being paid to the questions of tube blanking and removal of the unit, and of selection of materials for superheater and reheater tubes. Thermal and stress calculations have been carried out, using the Waagner-Biro Computer Code ADURHELIX. (author)

  4. The effect of water quality on reliability of boiler plants performance

    Directory of Open Access Journals (Sweden)

    Gajić Anto S.

    2010-01-01

    Full Text Available This paper presents sources and types of corrosion processes of boiler tube system of the Thermal Power Plant "Ugljevik". The main goal in the electric power production is to achieve lower prices, which can only be done by providing low maintenance costs. While it is not possible to completely stop corrosion, it could be slowed down and it's effects could be reduced. In order to reduce corrosion to a minimum on thermal power plants' vital equipment, particularly boilers, it is necessary to determine in each particular case the acting mechanism of corrosion and agents that cause it. Damages and failures on thermal power plants are largely caused by the development of various types of corrosion processes. Special attention is given to the preparation of water, considering its importance to the occurrence of corrosion. The following types of corrosion were detected on the screen tube boiler by visual examination on the side of water and steam: erosive, pitting and impact corrosion. The inner surface of screen pipes, from which the scale layer was removed, indicates that the erosive corrosion with the thinning of pipe walls occurs. Perforation of the welded screen pipes shows that stress corrosion occurred on the screen pipe with formation of cracks and that pipe exploded. Pits on the inner surface of the screen pipes, visible after the removal of scale and corrosion products, are proof that pitting corrosion occurred. The causes of corrosion were discovered and proposed measures for their elimination were given.

  5. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  6. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  7. Strategies to reduce gaseous KCl and chlorine in deposits during combustion of biomass in fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan

    2012-11-01

    Combustion of a biomass with an enhanced content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. In this work, measures were investigated in order to decrease the risk of superheater corrosion by reducing gaseous KCl and the content of chlorine in deposits. The strategies applied were sulphation of KCl by sulphur/sulphate containing additives (i.e. elemental sulphur (S) and ammonium sulphate (AS)) and co-combustion with peat. Both sulphation of KCl and capture of potassium (K) in ash components can be of importance when peat is used. The experiments were mainly performed in a 12 MW circulation fluidised bed (CFB) boiler equipped for research purposes but also in a full-scale CFB boiler. The results were evaluated by means of IACM (on-line measurements of gaseous KCl), conventional gas analysis, deposit and corrosion probe measurements and ash analysis. Ammonium sulphate performed significantly better than elemental sulphur. Thus the presence of SO{sub 3} (i.e. AS) is of greater importance than that of SO{sub 2} (i.e. S) for sulphation of gaseous KCl and reduction of chlorine in deposits. Only a minor reduction of gaseous KCl was obtained during co-combustion with peat although chlorine in the deposits was greatly reduced. This reduction was supposedly due to capture of K by reactive components from the peat ash in parallel to sulphation of KCl. These compounds remained unidentified. The effect of volatile combustibles on the sulphation of gaseous KCl was investigated. The poorest sulphation was attained during injection of ammonium sulphate in the upper part of the combustion chamber during the lowest air excess ratio. The explanation for this is that SO{sub 3} was partly consumed by side reactions due to the presence of combustibles. These experimental results were supported by modelling, although the

  8. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  9. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  10. The load structure of electro boilers

    International Nuclear Information System (INIS)

    Feilberg, N.; Livik, K.

    1995-01-01

    Load measurements have been performed on 24 electro boilers with a time resolution of one hour throughout a period of one year. The boilers are used for space heating and heating of tap water in office buildings, shopping centres and apartment buildings. All boilers have tariffs with disconnection agreements. This report presents load analyses of the measurements from each boiler, and typical load profiles are calculated and presented. It also analyses how boilers are used in relation to the outdoor temperature and the power price on the spot market. All the measurements are performed in Bergen, Norway, in the period August 1993 - August 1994. Typical load profiles are shown, both annual and daily, as well as specific load parameters in addition to key figures used in calculating the total power load on the distribution network. The climate impact on energy and power load is evaluated. The report also shows examples of how the results may be applied in various special fields. 8 figs., 9 tabs

  11. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  12. Safety issues arising from the corrosion-fatigue of waterwall tubes

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J. M.; Jarvis, P. (Stress Engineering Services (Europe) Limited, Chichester (United Kingdom)); Scully, S. (Electricity Supply Board, Dublin (Ireland))

    2010-05-15

    An incidence of waterwall tube failures, one leading to a significant steam release external to the boiler, has highlighted the need for rigorous risk assessment of such events. Initial review of the utility's experience revealed one of their boiler designs as having had a greater incidence of corrosion-fatigue issues in waterwall tubing than the others. These units were treated as a priority. To address failure likelihood, fracture mechanics calculations were performed. These studies defined the necessary inspection coverage and sensitivity required to underwrite safe operation at various potential loads. Personnel safety was considered the most important consequence of failure. Accordingly, potential steam releases were modelled to define safe exclusion zones within the boiler house. Standard calculations were found to be nonconservative; more exact formulae were needed to give realistic results. Using the results of these studies, the utility was able to draw up a realistic inspection plan. Safe operating pressures and appropriate exclusion zones were defined for each boiler, and for a range of operational scenarios. These tactics have allowed the utility to inspect the boilers in turn and to repair all significant defects in the waterwall tubes, whilst maintaining a good overall power output. In parallel, a root-cause investigation was performed to identify the factors contributing to the failures. Where possible, causative influences were reduced or mitigated so as to reduce the likelihood of failure whilst allowing increased flexibility of boiler operation. (orig.)

  13. ENVIRONMENTAL ASPECTS OF MODERNIZATION OF HIGH POWER WATER-HEATING BOILERS

    Directory of Open Access Journals (Sweden)

    P. M. Glamazdin

    2016-01-01

    Full Text Available Boilers of KVGM and PTVM series are characterized by high values of NOx and CO content in the combustion products. Reduction of NOx and CO content can be achieved by two ways: by installing the condensing heat recovery unit at the boiler outlet and by improving the heat and mass transfer processes in boiler furnaces. Application of the condensing heat recovery units causes pollution of resulting condensate by low-concentration acids. The authors conducted a study in order to determine the effectiveness of the previously applied methods of suppressing the emission of nitrogen oxides in the boilers of these types. Equalization of the temperature field and, consequently, enhancement of heat transfer in the furnace by substitution the used burners by the more advanced ones, the design of which facilitates reduction the emission of nitrogen oxides, were applied to all the upgraded facilities. The studies fulfilled demonstrate that a reduction of NOx emissions in water-heating high power boilers is fairly possible by means of modernization of the latter. The authors have developed the project of the PTVM-30 boiler modernization, which was implemented at a large boiler plant in the city of Vinnitsa (Ukraine. The project included a number of technical solutions. Six burners were replaced by the two ones that were located in the hearth; also the hearth screen was dismantled. At the same time, reducing the total surface area of the heating caused by the exclusion of hearth screen was compensated by filling the locations of the six embrasures of staff burners on the side screens with straightened furnace tubes. Installing the burners separate from the screen made it possible to eliminate the transfer of vibration to the furnace tubes, and – via them – to the boilers setting. Automation provided “associated regulations”. Draught machines were equipped with frequency regulators. During commissioning of the boiler the studies were carried out that

  14. 46 CFR 52.25-5 - Miniature boilers (modifies PMB-1 through PMB-21).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Miniature boilers (modifies PMB-1 through PMB-21). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-5 Miniature boilers (modifies PMB-1 through PMB-21). Miniature boilers must meet the applicable provisions in this part for the boiler type involved and the...

  15. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  16. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    Science.gov (United States)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  17. Testing Header Component of Electricity Power Industry Boiler

    International Nuclear Information System (INIS)

    Soedardjo, S.A; Andryansyah, B; Artahari, Dewi; Natsir, Muhammad; Triyadi, Ari; Farokhi

    2000-01-01

    Testing of header component of Suralaya Unit II electricity power by replication method has been carried out. That header component is cross over pipe which interconnection between Primary and Superheater Outlet Header Secondary Superheater Outlet Header with the operation time over 14 years. The main composition of cross over pipe is 2 1/4 Cr 1 Mo or frequently specified as ferritique steel. The replication testing shown that the damage classification on those cross over pipe in A class based on failure classification from Neubauer and Wedel. Simple calculation in favor of cross over pipe remaining lifetime is about 16.5 years moreover

  18. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  19. Improvement of efficiency by proportional and integral control for compact boiler; Shoyoryo boiler no renzoku seigyo (P.I seigyo) ni yoru seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, T. [Kawasaki Thermal Engineering Co. Ltd., Shiga (Japan)

    1998-10-01

    Efficiency of a compact boiler is improved by the introduction of a continuous P.I. control. It is controlled by the following procedure. The proportional control, which controls magnitude of combustion in proportion to a load requirement, is combined with an integral control function which keeps steam pressure at a given level, in order to stabilize steam pressure at a level comparable to that of a large, water-tube type boiler. A stable steam pressure is realized by including control of make-up water supply, to minimize the effects of water supply on steam pressure. The effects of characteristics of the combustion valve on control are relaxed by programming. In addition to the above, rotational speed of the motor for the forced draft fan is controlled for each load level, to reduce power consumption. These bring improved quality of steam, i.e., stabilized steam pressure, improved follow-up characteristics of the steam and secured dryness of the steam. Energy-saving is also achieved, i.e., reduction of noise and power consumption at a low combustion load are achieved by improved real boiler efficiency and inverter-aided control of the forced draft fan. Low-NOx burners are adopted, to abate NOx content to 60ppm or less at any load. 16 figs.

  20. Failure problems in superheater spacers of steam generators; Problematica de fallas en espaciadores de sobrecalentadores de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G; Martinez Villafane, Alberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Mojica Calderon, Cecilio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    In this article the general aspects of the steam generator superheater fixed spacers failures are analyzed, emphasis is made on the influence several aspects such as the operation of the unit have, the appropriate execution of welds and the selection of binding materials. Likewise several recommendations are made to bring the failures to a minimum. [Espanol] En este articulo se analizan aspectos generales de fallas en espaciadores fijos de sobrecalentadores de generadores de vapor, y se hace hincapie en la influencia que tienen diversos aspectos tales como la operacion de la unidad, la adecuada ejecucion de soldaduras y la seleccion del material de aporte. Asimismo, se proponen algunas recomendaciones para reducir al minimo las fallas.

  1. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  2. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  3. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  4. Developing trends with boiler operation and management

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.M. [Occupational Safety and Health Service, Wellington (New Zealand). Dept. of Labour, Engineering Safety Branch

    1993-12-31

    Over recent years there have been many improvements in boiler control and safety management systems. Technology has made major advances and is now regarded as being well proven in Australia, Europe and the United Kingdom and these changes have been examined by a project committee, convened for the purpose, to establish whether they are equally applicable in New Zealand. The result of the committee`s findings and experience is contained in the `Draft Code of Practice`. This paper explains the development of the `Code of Practice`, the reasoning behind some of the decisions taken and the implications of these changes to boiler owners.

  5. Optimal load allocation of multiple fuel boilers.

    Science.gov (United States)

    Dunn, Alex C; Du, Yan Yi

    2009-04-01

    This paper presents a new methodology for optimally allocating a set of multiple industrial boilers that each simultaneously consumes multiple fuel types. Unlike recent similar approaches in the utility industry that use soft computing techniques, this approach is based on a second-order gradient search method that is easy to implement without any specialized optimization software. The algorithm converges rapidly and the application yields significant savings benefits, up to 3% of the overall operating cost of industrial boiler systems in the examples given and potentially higher in other cases, depending on the plant circumstances. Given today's energy prices, this can yield significant savings benefits to manufacturers that raise steam for plant operations.

  6. Firewood boiler operators and heat exposure

    Directory of Open Access Journals (Sweden)

    Vilson Bernardo Stollmeier

    2017-12-01

    Full Text Available This article presents an analysis of heat exposure work in boiler industry wood from a company in the industrial sector, focusing on the analysis of the environmental burden of the activity. Therefore, the methodological procedures consisted of document analysis, interviews, filming, evaluation problems of the effects of the hot environment and its prevention. The results show that the fuel to the boiler operators are exposed to heat and need guidance on their daily activities with prevention of diseases affected by excessive heat. Are also suggested training in technical and health to improve working conditions and the operator's health.

  7. Boiler inspection manipulator for Torness Power Station

    International Nuclear Information System (INIS)

    Carrey, R.T.A.; Yule, I.Y.; Sibson, S.; Playle, M.J.

    1996-01-01

    The Advanced Gas-cooled Reactors at Torness and Heysham 2 are provided with dedicated access for remote inspection equipment. These in-service inspection (ISI) accesses comprise 12 penetrations above the core for inspection of the above core area and boilers, 12 below core penetrations for inspection of the lower boiler area and access through any of the 8 gas circulator penetrations for inspection of the sub-diagrid area. This paper describes a manipulator which will access the reactor from above the core via any of the 8 peripheral penetrations. (UK)

  8. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  9. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted with...

  10. Biomass boiler conversion potential in the eastern United States

    Science.gov (United States)

    Charles D. Ray; Li Ma; Thomas Wilson; Daniel Wilson; Lew McCreery; Janice K. Wiedenbeck

    2013-01-01

    The U.S. is the world's leading consumer of primary energy. A large fraction of this energy is used in boiler installations to generate steam and hot water for heating applications. It is estimated there are total 163,000 industrial and commercial boilers in use in the United States of all sizes. This paper characterizes the commercial and industrial boilers in...

  11. New materials for boilers in USC power plants

    International Nuclear Information System (INIS)

    Hong, Sung Ho; Hong, Seok Joo

    2003-01-01

    The efficiency of boiler in fossil power plants is a strong function of steam temperature and pressure. Thus, the main technology of increasing boiler efficiency is the development of stronger high temperature materials, capable of operating under high stresses at ever increasing temperature. This paper will presents the new material relating to boiler of USC power plant

  12. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  13. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  14. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall inspect...

  15. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  16. Aspects of new material application for boilers construction

    International Nuclear Information System (INIS)

    Czerniawski, R.

    1996-01-01

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab

  17. Lower price for solar boilers must improve market penetration

    International Nuclear Information System (INIS)

    Koevoet, J.B.J.

    1999-01-01

    The Dutch government aims at 1.7 PJ thermal energy for the year 2007 to be supplied by solar water heaters. For that target the number of installed solar boilers must increase seven times the number of installed solar boilers in 1998. This can be stimulated by a considerable reduction of the market price for such boilers

  18. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... gases. Manufacturer of a commercial packaged boiler means any person who manufactures, produces... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers. 431.82... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...

  19. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the following...

  20. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... to any hydrostatic pressure. Hydrostatic testing required by these rules shall be conducted at 25...

  1. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  2. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  3. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  4. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  5. Boiler and steam generator corrosion: Nuclear power plants. (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in nuclear powered steam generators. Pitting, stress corrosion cracking, and crevice corrosion studies performed on the water side and hot gas side of the heat exchanger tubes and support structures are presented. Water treatment, corrosion monitoring, chemical cleaning, and descaling methods are considered. Fossil fuel fired boilers are examined in a separate bibliography. (Contains a minimum of 138 citations and includes a subject term index and title list.)

  6. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  7. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  8. The investigation of the locomotive boiler material

    International Nuclear Information System (INIS)

    Tucholski, Z.; Wasiak, J.; Bilous, W.; Hajewska, E.

    2006-01-01

    In the paper, the history of narrow-gauge railway system is described. The other information about the steam locomotive construction, as well as the technical regulations of its construction and exploitation are also done. The results of the studies of the locomotive boiler material are presented. (authors)

  9. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  10. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1994-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  11. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    While fluid bed and grate fired boilers initially was the choice of boilers used for power production from both wood and herbaceous biomass, in recent years suspension fired boilers have been increasingly used for biomass based power production. In Denmark several large pulverized fuel boilers have...... been converted from coal to biomass combustion in the last 15 years. This have included co-firing of coal and straw, up to 100% firing of wood or straw andthe use of coal ash as an additive to remedy problems with wood firing. In parallel to the commercialization of the pulverized biomass firing...... technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation...

  12. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  13. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster Univ., Dept. of Engineering Physics, Hamilton, Ontario (Canada)

    2008-07-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  14. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  15. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  16. Influence of surface roughness and melt superheat on HDA process to form a tritium permeation barrier on RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Purushothaman, J. [B.S. Abdur Rahman University, Chennai 600048 (India); MTD, MMG, IGCAR, Kalpakkam 603102 (India); Ramaseshan, R., E-mail: seshan@igcar.gov.in [TFCS, SND, MSG, IGCAR, Kalpakkam 603102 (India); Albert, S.K. [MTD, MMG, IGCAR, Kalpakkam 603102 (India); Rajendran, R. [B.S. Abdur Rahman University, Chennai 600048 (India); Gowrishankar, N. [IP Rings Ltd., Maraimalainagar, Chennai 603209 (India); Ramasubbu, V. [MTD, MMG, IGCAR, Kalpakkam 603102 (India); Murugesan, S.; Dasgupta, Arup [PMG, MMG, IGCAR, Kalpakkam 603102 (India); Jayakumar, T. [MTD, MMG, IGCAR, Kalpakkam 603102 (India)

    2015-12-15

    Highlights: • Surface modified RAFMS samples were subjected to HDA and thermal oxidation. • Sample modified by SB process showed better coating and interface morphology. • Aluminized samples at 740 °C for 2 min showed Fe{sub 2}Al{sub 9}Si{sub 2} intermetallic phase. • Oxidized samples showed Fe{sub 2}Al{sub 8}Si, Fe{sub 2}Al{sub 3}Si{sub 3} and Fe{sub 3}Al{sub 2}Si{sub 3} intermetallic phases. • A uniform permeation barrier Al{sub 2}O{sub 3} was formed on the coating of oxidized HDA samples. - Abstract: The most optimal candidate material for fabrication of Test Blanket Module (TBM) in the installation of ITER and future fusion reactors is Reduced Activation Ferritic Martensitic (RAFM) steel, yet one of the major challenges that need to be addressed with RAFM is minimizing the loss of tritium in a reactor environment through the formation of tritium permeation barrier. One of the most promising methods for the tritium permeation barrier is through duplex coating with Al{sub 2}O{sub 3}/Fe–Al which is well known to reduce tritium permeation rate by several orders of magnitude. The present work aims to form an alumina layer on RAFM steel by a two-step method, which consists of (i) Hot Dip Aluminizing (HDA) and (ii) conversion of Al into alumina by a subsequent oxidation process. In addition, the influence of surface roughness of the substrate, superheat condition of the Al alloy melt and its composition on microstructural properties of coating before and after oxidation were investigated using OM, SEM–EDS, XRD, indentation micro hardness and scratch test. The experimental results confirmed the formation of alumina layer on RAFM steel after the HDA and oxidation process. Moreover, the surface roughness of the substrate, melt superheat of Al alloy and its composition are found to have a significant influence on the microstructure, thickness, micro-hardness, nature of intermetallic compounds formed and adhesion strength of the coating.

  17. Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

    2011-06-21

    Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al

  18. Medium pressure boiler water chemistry optimization using neutralizing amines mixture reagent AMINAT™ PK-2 at CEPP “Borovichi Refractories Plant” of JSC “BKO”

    Science.gov (United States)

    Guseva, O. V.; Butakova, M. V.; Orlov, K. A.; Vinogradov, S. V.; Pavlenko, L. S.

    2017-11-01

    An overview of the neutralizing amine based reagent AMINAT PK-2 usage for water chemistry of steam boilers for medium pressure boiler was given. Long term experiment showed that new reagent allows to decrease corrosion rate comparing with old water chemistry based on ammonia only. Two dosage schemes in different cycle places discussed. Scheme with two points on injection showed better results. Results of corrosion rates experiments and photos of tubes inner surfaces are presented. Based on fuel savings due to reducing scale formation the total annual economy for last year was 5.1 million Russian roubles.

  19. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  20. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.

    1999-07-01

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  1. Maximising safety in the boiler house.

    Science.gov (United States)

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation.

  2. Recovery boiler model; Soodakattilan kehitystyoe III

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Ylitalo, M.; Sundstroem, K.; Helke, R.; Heinola, M. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-10-01

    The recovery boiler model was further tested and developed. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. During 1996 the formation of CH{sub 4} during pyrolysis and release of sulfur was included to the model. Further the formation of NO from fuel nitrogen and formation of thermal- NO were included to the model using Arrhenius type reaction rate equations. The calculated results are realistic and the model is used as a tool to find out methods to increase the efficiency and availability and decrease the emissions. Analysing the results of the earlier field study of 8 boilers showed that the furnace heat load, fuming rate, find the black liquor composition have influence on the enrichment of the potassium to the fly ash. (orig.)

  3. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  4. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  5. 46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the...

  6. Intelligent soot blowing for boilers co-firing waste and biofuel; Behovsstyrd sotblaasning foer bio- och avfallseldade pannor - inventering och teknikval

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    To achieve optimum boiler operation and performance it is necessary to control the cleanliness and limit the fouling of the heat transfer surfaces. Historically, the heating surfaces in boilers firing biomass and waste are cleaned by steamblowing soot blowers on scheduled time-based and/or parameter-based intervals or by mechanical methods. With the advent of fuel switching strategies and use of mixed-in industrial waste, the control of heating surface cleanliness has become even more crucial for these boilers. Scheduled and/or parameter based approaches do not easily address operational changes. As plant operators push to achieve greater efficiency and performance from their boilers, the ability to more effectively optimize cleaning cycles has become increasingly important. If soot blowing is done only when and where it is required rather than at set intervals, unit performance can be maintained with reduced blowing, which saves steam. Two philosophical approaches toward intelligent soot blowing are currently being applied in the industry. One incorporates heat flux monitors to gather real-time heat transfer data to determine which areas of the furnace need cleaning. The other uses indirect temperature and pressure data to infer locations where soot blowing is needed, and is mainly applied for controlling soot blowers in the superheater and economiser area. The heat flux monitors are so fare used for control of the furnace wall blowers. A system using temperature, pressure and flow data does not require much additional instrumentation as compared with what is available on a standard boiler. However the blower control system must be capable of operating blowers on an individual basis. For advanced options it should also be possible to adjust the speed of the soot blower and the steam pressure. The control program could be more or less advanced but the ability to model heating surfaces and determine real-time cleanliness is crucial for an intelligent soot blowing

  7. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  8. Chromate dermatitis from a boiler lining.

    Science.gov (United States)

    Rycroft, R J; Calnan, C D

    1977-08-01

    Chromate dermatitis is described in a mechanical fitter working inside boiler combustion chambers. A source of hexavalent chromate is traced to the action of the heat and alkaline fuel ash on trivalent chrome ore in parts of the refractory lining. Removal of the patient from this contact has resulted in almost complete clearing of his dermatitis, without any relapse, during a 9-month follow-up period.

  9. Husk energy for boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Deven, M.

    1985-10-01

    In view of the technical feasibility and economic viability, industries located in rice, coconut, and cotton growing areas, can easily switch over from oil/coal fired furnace/boilers to husk fired ones and thereby effect fuel economy. The banks and financial institutions will readily agree to provide finance as per directions of the governments and in some cases they also offer subsidy for development and utilization of energy saving devices.

  10. Additive for reducing operational problems in waste fired grate boilers; Additiv foer att minska driftproblem vid rostfoerbraenning av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Hermansson, Sven; Liske, Jesper; Larsson, Erik; Jonsson, Torbjoern; Zhao, Dongmei

    2013-09-01

    interface between the steel and the metal oxide. This weakens the adhesion of the oxide to the steel surface and thus increases the corrosion rate. By addition of sewage sludge or sulphur the initial corrosion was decreased on both the low-alloyed steel T22 and the stainless steel 304L; sewage sludge being a little better than sulphur. Qualitatively, the corrosion attack firing SLF was similar to that firing ordinary waste, but the attack was stronger. At material temperatures of 500 deg C and 420 deg C - corresponding to superheaters - alkali chloride corrosion dominated, while at 280 deg C - corresponding to furnace walls - a melt of KCl/ZnCl2 is likely to have accelerated the corrosion. This difference between different material temperatures was especially pronounced in the 'Avfall and the SLF' cases. Higher zinc content in the fuel can therefore increase risk of corrosion. The higher content of iron, lead, copper and zink in the ash from the SLF case corresponds to the content of SLF compared with ordinary waste. Comparing the present tests with similar tests in fludised beds, grate firing resulted in higher deposit rate on the exposed test rings. This can at least partly be attributed to the lack of empty pass in the present grate boiler and to some differences in fuel composition: more chlorine and less sulphur in the waste used in this project. However, the effect of adding sludge was similar but not as strong as in the fluidised bed tests. To summarise, the results show that co-firing SLF with sludge can be advantageous also in a grate-fired boiler. Because of the high heating value of SLF, this combination also makes it possible to add a high fraction of moist sewage sludge.

  11. Evaluation of internal boiler components and gases using a high-temperature infrared (IR) lens

    Science.gov (United States)

    Hammaker, Robert G.; Colsher, Richard J.; Miles, Jonathan J.; Madding, Robert P.

    1996-03-01

    Fuel accounts for an average of seventy percent of the yearly operational and maintenance costs of all the fossil stations in the United States. This amounts to 30 billion dollars spent for fuel each year. In addition, federal and state environmental codes have been enforcing stricter regulations that demand cleaner environments, such as the reduction of nitrogen oxides (NOx), which are a by-product of the fossil fuel flame. If the burn of the flame inside a boiler could be optimized, the usage of fuel and the amounts of pollution produced would be significantly reduced, and many of the common boiler tube failures can be avoided. This would result in a major dollar savings to the utility industry, and would provide a cleaner environment. Accomplishing these goals will require a major effort from the designers and operators that manufacture, operate, and maintain the fossil stations. Over the past few years re-designed burners have been installed in many boilers to help control the temperatures and shape of the flame for better performance and NOx reduction. However, the measurement of the processes and components inside the furnace, that could assist in determining the desired conditions, can at times be very difficult due to the hostile hot environment. In an attempt to resolve these problems, the EPRI M&D Center and a core group of EPRI member utilities have undertaken a two-year project with various optical manufacturers, IR manufacturers, and IR specialists, to fully develop an optical lens that will withstand the high furnace temperatures. The purpose of the lens is to explore the possibilities of making accurate high temperature measurements of the furnace processes and components in an ever-changing harsh environment. This paper provides an introduction to EPRI's internal boiler investigation using an IR high temperature lens (HTL). The paper describes the objectives, approach, benefits, and project progress.

  12. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  13. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  14. Boiler systems for nuclear powered reactors

    International Nuclear Information System (INIS)

    Cook, R.K.; George, B.V.

    1979-01-01

    A power generating plant which comprises a heat source, at least one main steam turbine and at least one main boiler heated by heat from the heat source and providing the steam to drive the turbine, comprises additionally at least one further steam turbine, smaller than the main turbine, and at least one further boiler, of lower capacity than the main boiler, and heated from the same heat source and providing steam for the further turbine. Particularly advantageous in nuclear power stations, where the heat source is a nuclear reactor, the invention enables peak loads, above the normal continuous rating of the main generators driven by the main turbines, to be met by the further turbine(s) and one or more further generators driven thereby. This enables the main turbines to be freed from the thermal stresses of rapid load changes, which stresses are more easily accommodated by the smaller and thus more tolerant further turbine(s). Thus auxiliary diesel-driven or other independent power plant may be made partly or wholly unnecessary. Further, low-load running which would be inefficient if achieved by means of the main turbine(s), can be more efficiently effected by shutting them down and using the smaller further turbine(s) instead. These latter may also be used to provide independent power for servicing the generating plant during normal operation or during emergency or other shutdown, and in this latter case may also serve as a heat sink for the shutdown reactor

  15. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  16. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  17. High temperature oxidation in boiler environment of chromized steel

    Science.gov (United States)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  18. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  19. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  20. Behavioral study solar boilers 1994. Summary. Part 2 (households)

    International Nuclear Information System (INIS)

    Visser, J.M.

    1995-04-01

    The aim of the Dutch national solar boiler campaign of NOVEM and Holland Solar is to realize the installation of 300,000 solar boilers in the Netherlands in the year 2010. In 1995 10,000 boilers were installed. More knowledge of the decision making process and the backgrounds and motives of (potential) buyers is required. From September 1994 to March 1995 a survey has been carried out of the decision making processes in households and housing corporations. The most important results, conclusions and recommendations of the survey are summarized in this report. The parameters that can influence the decision whether to purchase a solar boiler or not are knowledge about the solar boiler, the attitude towards the solar boiler and towards the use of energy and the environment, risk perception, social aspects, information retrieval behavior, constraints, and socio-economic aspects. 44 tabs