WorldWideScience

Sample records for superheated steam-turbine cycles

  1. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  2. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  3. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  4. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    Science.gov (United States)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  5. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    Directory of Open Access Journals (Sweden)

    Stachel Aleksander A.

    2015-03-01

    Full Text Available In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam in the upper cycle has been assessed as well as the type of working fluid in the lower cycle. The results of calculations have been referred to the single-cycle classical steam power plant operating at the same parameters of superheated steam and the same mass flow rate of water circulating in both cycles. On the basis of accomplished analysis it has been shown that the binary power plant shows a greater power with respect to the reference power plant.

  6. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  7. A process for superheating steam in a nuclear power station circuit and device for putting in operation this process

    International Nuclear Information System (INIS)

    Monteil, Marcel; Forestier, Jean; Leblanc, Bernard; Monteil, Pierre

    1975-01-01

    A process is described for superheating steam in a nuclear power station circuit, comprising a turbine with a high pressure chamber and a low pressure chamber. It consists in superheating the steam between the high and low pressure chambers of the turbine by using as heating fluid water under pressure at vaporisation temperature, directly taken from the recirculation or circulation flow water of the reactor or of the steam generators. The process is adapted to a pressurised water reactor using a once-through steam generator comprising in succession an economiser, a vaporiser and a superheater, the superheating water being taken at the vaporiser intake. It is also adapted for a boiling water reactor, in that the water is taken directly from the reactor vessel and at a suitable level in the recirculation water [fr

  8. Methods of increasing thermal efficiency of steam and gas turbine plants

    Science.gov (United States)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  9. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  10. Application of the Combined Cycle LWR-Gas Turbine to PWR for NPP Life Extension Safety Upgrade and Improving Economy

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.

    2006-01-01

    Currently, some of the most important problem for the nuclear industry are life extension, advance competitiveness and safety of aging LWR NPPs. Based on results of studies performed in the USA (Battelle Memorial Institute) and in Russia (NIKIET), a new power technology, using a combined cycle gas-turbine facility CCGT - LWR, so called TD-Cycle, can significantly help in resolution of some problems of nuclear power industry. The nuclear steam and gas topping cycle is used for re-powering a light water pressurized reactor of PWR or VVER type. An existing NPP is topped with a gas turbine facility with a heat recovery steam generator (HRSG) generating steam from waste heat. The superheated steam of high pressure (P=90-165 bar, T=500-550 C) generated in the HRSG, is expanded in a high pressure (HP) turbine for producing electricity. The HP turbine can work on one shaft with the the gas turbine or at one shaft with intermediate (IP) or low (LP) pressure parts of the main nuclear steam turbine, or with a separate electric generator. The exhausted steam from the HP turbine is injected into the steam mixer where it is mixed with the saturated steam from the NPP steam generator (SG). The mixer is intended to superheat the main nuclear steam and should be characterized by minimum losses during mixing superheated and saturated steam. Steam from the mixer superheated by 20-60 C directs to the existing IP turbine, and then, through a separator-reheater flows into the LP turbine. Feed water re-heaters of LP and HP are actually unchanged in this case. Feed water extraction to the HRSG is supplied after one of LP water heaters. This proposal is intended to re-power existing LWR NPPs. To minimize cost, the IP and LP turbines and electric generator would remain the same. The reactor thermal power and fast neutron flux to the reactor vessel would decrease by 30-50 percent of nominal values. The external peripheral row of fuel elements can be replaced with metal absorber rods to

  11. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  12. ORCENT-2, Full Load Steam Turbine Cycle Thermodynamics for LWR Power Plant

    International Nuclear Information System (INIS)

    Fuller, L.C.

    1979-01-01

    1 - Description of problem or function: ORCENT-2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine- generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram. 2 - Method of solution: The turbine performance calculations follow the procedures outlined in General Electric report GET-6020. ORCENT-2 utilizes the 1967 American Society of Mechanical Engineers (ASME) formulations and procedures for calculating the properties of steam, adapted for ORNL use by D.W. Altom. 3 - Restrictions on the complexity of the problem: Maxima of: 12 feed-water heaters, 5 moisture removal stages in the low-pressure turbine section. ORCENT-2 is limited to 1800-rpm tandem-compound turbine-generators with single- or double-flow high pressure sections and one, two, or three double-flow low-pressure turbine sections. Steam supply for LWR cycles should be between 900 and 1100 psia and slightly wet to 100 degrees F of initial superheat. Generator rating should be greater than 100 MVA

  13. Treating bituminous minerals. [use of superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    MacIvor, G

    1880-12-21

    In this new procedure, the superheated steam is the agent by which the heat is directly applied to the rock; the superheated steam is made to pass between the rocks and into the vessel or retort in which the rock is contained and where the extraction of the bitumen or the distillation of the mineral oils is carried out. The temperature of the heating apparatus in which the steam is superheated, is easily regulated at will in accord with the desired result. When one wishes to extract only bitumen, the temperature of the steam is raised to a point sufficiently high to loosen and separate the bitumen without permitting any condensation of water inside the retort. When it is desired to produce a mineral oil, the temperature is increased in such a way that all the volatile products are distilled from the rock and come into the condenser. By means of this process, any temperature up to a full red heat, can be maintained in the retort, making possible many variations in the kind of products obtainable from the rock.

  14. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  15. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  16. Construction for wet steam drying and further superheating of the dry steam

    International Nuclear Information System (INIS)

    1978-01-01

    The steam drying operates by a coarse- and a fine trap. The subsequent superheating occurs in a superheating tube nest. Everything is fixed in a cylindric container; the coarse trap is arranged on the bottom zone, and the superheating tubes are arranged along the container axis almost up to the container top around a pipe. (DG) [de

  17. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  18. STYLE, Steam Cycle Heat Balance for Turbine Blade Design in Marine Operation

    International Nuclear Information System (INIS)

    Love, J.B.; Dines, W.R.

    1970-01-01

    1 - Nature of physical problem solved: The programme carries out iterative steam cycle heat balance calculations for a wide variety of steam cycles including single reheat, live steam reheat and multistage moisture separation. Facilities are also available for including the steam-consuming auxiliaries associated with a marine installation. Though no attempt is made to carry out a detailed turbine blading design the programme is capable of automatically varying the blading efficiency from stage to stage according to local steam volume flow rate, dryness fraction and shaft speed. 2 - Method of solution: 3 - Restrictions on the complexity of the problem: Steam pressures to lie within range 0.2 to 5,000 lb/square inch abs steam temperatures to lie within range 50 to 1600 degrees F. Not more than 40 points per turbine expansion line; Not more than 10 expansion lines; Not more than 15 feed heaters. UNIVAC 1108 version received from FIAT Energia Nucleare, Torino, Italy

  19. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak

    Science.gov (United States)

    Choi, Yun-Sang; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Eun-Mi; Sung, Jung-Min; Kim, Hyun-Wook

    2016-01-01

    The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (pcooked chicken steak was lower than that in the other cooking treatments (pchicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak. PMID:27499656

  20. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  1. Evaluation of steam as a potential coolant for nonbreeding blanket designs

    International Nuclear Information System (INIS)

    Stevens, H.C.; Misra, B.; Youngdahl, C.K.

    1978-01-01

    A steam-cooled nonbreeding blanket design has been developed as an evolution of the Argonne Experimental Power Reactor (EPR) studies. This blanket concept complete with maintenance considerations is to function at temperatures up to 650 0 C utilizing nickel-based alloys such as Inconel 625. Thermo-mechanical analyses were carried out in conjunction with thermal hydraulic analysis to determine coolant chennel arrangements that permit delivery of superheated steam at 500 0 C directly to a modern fossil plant-type turbine. A dual-cycle system combining a pressurized water circuit coupled with a superheated steam circuit can produce turbine plant conversion efficiencies approaching 41.5%

  2. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  3. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    Science.gov (United States)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  4. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  5. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  6. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    International Nuclear Information System (INIS)

    Bennett, P.R.; St Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  8. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    Science.gov (United States)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  9. Performance and environment as objectives in multi-criterion optimization of steam injected gas turbine cycles

    International Nuclear Information System (INIS)

    Kayadelen, Hasan Kayhan; Ust, Yasin

    2014-01-01

    Rapidly growing demand for gas turbines promotes research on their performance improvement and reducing their exhaust pollutants. Even small increments in net power or thermal efficiency and small changes in pollutant emissions have become significant concerns for both new designs and cycle modifications. To fulfill these requirements an accurate performance evaluation method which enables to see the effects on the exhaust gas composition is an important necessity. To fill this gap, a thermo-ecologic performance evaluation approach for gas turbine cycles with chemical equilibrium approximation which enables performance and environmental aspects to be considered simultaneously, is presented in this work. Steam injection is an effective modification to boost power and limit NO x emissions for gas turbine systems. Steam injection also increases thermal efficiency so less fuel is burnt to maintain the same power output. Because of its performance related and environmental advantages, presented approach is applied on the steam injected gas turbine cycle and a precise multi-criterion optimization is carried out for varying steam injection, as well as equivalence and pressure ratios. Irreversibilities and pressure losses are also considered. Effects of each parameter on the net work and thermal efficiency as well as non-equilibrium NO x and CO emissions are demonstrated. Precision improvement of the presented thermo-ecological model is shown and two main concerns; constant turbine inlet condition for higher net work output and constant net work output condition for lower fuel consumption are compared. - Highlights: • A thermodynamically precise performance estimation tool for GT cycles is presented. • STIG application is provided to show its flexibility for any GT cycle and diluents. • Constant TIT and net work output conditions have been compared and discussed. • The model provides results to evaluate economic and environmental aspects together. • It provides a

  10. Steam turbines for PWR stations

    International Nuclear Information System (INIS)

    Muscroft, J.

    1989-01-01

    The thermodynamic cycle requirements and mechanical design features applying to modern GEC 3000 rev/min steam turbines for pressurised water reactor power stations are reviewed. The most recent developments include machines of 630 MW and 985 MW output which are currently under construction. The importance of service experience with nuclear wet steam turbines associated with a variety of types of water cooled reactor and its relevance to the design of modern 3000 rev/min turbines for pressurised water reactor applications is emphasised. (author)

  11. Fast power cycle for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Fillo, J.; Makowitz, H.

    1978-01-01

    The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures [1600 0 F to 3000 0 F (870 to 1650 0 C)], number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000 0 F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency

  12. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  13. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  14. Lifetime of superheated steam components

    International Nuclear Information System (INIS)

    Stoklossa, K.H.; Oude-Hengel, H.H.; Kraechter, H.J.

    1974-01-01

    The current evaluation schemes in use for judging the lifetime expectations of superheated steam components are compared with each other. The influence of pressure and temperature fluctuations, the differences in the strength of the wall, and the spread band of constant-strainrates are critically investigated. The distribution of these contributory effects are demonstrated in the hight of numerous measuring results. As an important supplement to these evaluation schemes a newly developed technique is introduced which is designed to calculate failure probabilities. (orig./RW) [de

  15. Design of large steam turbines for PWR power stations

    International Nuclear Information System (INIS)

    Hobson, G.; Muscroft, J.

    1983-01-01

    The thermodynamic cycle requirements for use with pressurized water reactors are reviewed and the manner in which thermal efficiency is maximised is outlined. The special nature of the wet steam cycle associated with turbines for this type of reactor is discussed. Machine and cycle parameters are optimised to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range of both full-speed turbines running at 3000 rpm on 50 Hz systems and half-speed turbines running at 1800 rpm on 60 Hz systems. The importance of service experience with nuclear wet steam turbines and its relevance to the design of modern turbines for pressurized water reactor applications is discussed. (author)

  16. Steam turbine generators for Sizewell 'B' nuclear power station

    International Nuclear Information System (INIS)

    Hesketh, J.A.; Muscroft, J.

    1990-01-01

    The thermodynamic cycle of the modern 3000 r/min steam turbine as applied at Sizewell 'B' is presented. Review is made of the factors affecting thermal efficiency including the special nature of the wet steam cycle and the use of moisture separation and steam reheating. Consideration is given to the optimization of the machine and cycle parameters, including particular attention to reheating and to the provision of feedheating, in order to achieve a high overall level of performance. A modular design approach has made available a family of machines suitable for the output range 600-1300 MW. The constructional features of the 630 MW Sizewell 'B' turbine generators from this range are described in detail. The importance of service experience with wet steam turbines and its influence on the design of modern turbines for pressurized water reactor (PWR) applications is discussed. (author)

  17. Technology of turbine plant operating with wet steam

    International Nuclear Information System (INIS)

    1989-01-01

    The technology of turbine plant operating with wet steam is a subject of continuing interest and importance, notably in view of the widespread use of wet steam cycles in nuclear power plants and the recent developments of advanced low pressure blading for both conventional and wet steam turbines. The nature of water formation in expanding steam has an important influence on the efficiency of turbine blading and on the integrity and safe operating life of blading and associated turbine and plant components. The subjects covered in this book include research, flow analysis and measurement, development and design of turbines and ancillary plant, selection of materials of construction, manufacturing methods and operating experience. (author)

  18. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Naradasu

    2007-01-01

    Full Text Available Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is aimed at optimal utilization of the flue gas recovery heat with different heat recovery steam generator configurations of single pressure and dual pressure. The combined cycle efficiency with different heat recovery steam generator configurations have been analyzed parametrically by using first law and second law of thermodynamics. It is observed that in the dual cycle high pressure steam turbine pressure must be high and low pressure steam turbine pressure must be low for better heat recovery from heat recovery steam generator.

  19. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  20. Optimum gas turbine cycle for combined cycle power plant

    International Nuclear Information System (INIS)

    Polyzakis, A.L.; Koroneos, C.; Xydis, G.

    2008-01-01

    The gas turbine based power plant is characterized by its relatively low capital cost compared with the steam power plant. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies, especially at part load. One of the technologies adopted nowadays for efficiency improvement is the 'combined cycle'. The combined cycle technology is now well established and offers superior efficiency to any of the competing gas turbine based systems that are likely to be available in the medium term for large scale power generation applications. This paper has as objective the optimization of a combined cycle power plant describing and comparing four different gas turbine cycles: simple cycle, intercooled cycle, reheated cycle and intercooled and reheated cycle. The proposed combined cycle plant would produce 300 MW of power (200 MW from the gas turbine and 100 MW from the steam turbine). The results showed that the reheated gas turbine is the most desirable overall, mainly because of its high turbine exhaust gas temperature and resulting high thermal efficiency of the bottoming steam cycle. The optimal gas turbine (GT) cycle will lead to a more efficient combined cycle power plant (CCPP), and this will result in great savings. The initial approach adopted is to investigate independently the four theoretically possible configurations of the gas plant. On the basis of combining these with a single pressure Rankine cycle, the optimum gas scheme is found. Once the gas turbine is selected, the next step is to investigate the impact of the steam cycle design and parameters on the overall performance of the plant, in order to choose the combined cycle offering the best fit with the objectives of the work as depicted above. Each alterative cycle was studied, aiming to find the best option from the standpoint of overall efficiency, installation and operational costs, maintainability and reliability for a combined power

  1. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  2. Wet steam turbines for nuclear generating stations -design and operating experience

    International Nuclear Information System (INIS)

    Usher, J.

    1977-01-01

    Lecture to the Institution of Nuclear Engineers, 11 Jan. 1977. The object of this lecture was to give an account of some design features of large wet steam turbines and to show by describing some recent operational experience how their design concepts were fulfilled. Headings are as follows: effects of wet steam cycle on turbine layout and operation (H.P. turbine, L.P. turbine); turbine control and operation; water separators; and steam reheaters. (U.K.)

  3. Design of large steam turbines for PWR power stations

    International Nuclear Information System (INIS)

    Hobson, G.

    1984-01-01

    The authors review the thermodynamic cycle requirements for use with pressurized-water reactors, outline the way thermal efficiency is maximized, and discuss the special nature of the wet-steam cycle associated with turbines for this type of reactor. Machine and cycle parameters are optimized to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range both of full-speed turbines running at 3000 rev/min on 50 Hz systems and of half-speed turbines running at 1800 rev/min on 60 Hz systems. The importance of service experience with nuclear wet-stream turbines, and its relevance to the design of modern turbines for PWR applications, is discussed. (author)

  4. Steam turbine of WWER-1000 unit

    International Nuclear Information System (INIS)

    Drahy, J.

    1986-01-01

    The manufacture was started by Skoda of a saturated steam, 1,000 MW, 3,000 rpm turbine designed for the Temelin nuclear power plant. The turbine provides steam for heating water for district heating, this either with an output of 893 MW for a three-stage water heating at 150/60 degC, or of 570 MW for a two-stage water heating at 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized with respect to the thermal efficiency of the cycle and to the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum through-flow of steam entering the turbine. This makes 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. 300 cold starts, 1,000 starts after shutdowns for 55 to 88 hours and 600 starts after shutdown for 8 hours are envisaged for the entire turbine service life. (Z.M.). 5 figs., 1 tab., 6 refs

  5. A steam superheater exchanger provided with two coaxial casings and an horizontal axis

    International Nuclear Information System (INIS)

    Marjollet, Jacques; Palacio, Gerard; Tondeur, Gerard.

    1976-01-01

    This invention concerns the general lay-out of an horizontal axis separator-superheater for supplying steam to a high power turbine, particularly for a nuclear power station. The invention significantly reduces the length of the pipework connecting the superheated steam outlet and its inlet to the turbine. For this, the outer casing is provided with a coaxial internal annular sleeve in which are housed, one above the other, the separator and the bundle of superheater tubes through which circulates the water emulsion to be separated and steam to be superheated. At the end of its treatment, the superheated steam spreads out in the space between the sleeve and the outer casing from whence it can be drawn off at any point of its periphery, thus making it possible to choose an extraction point as near as possible to the inlet of the turbine to be fed [fr

  6. Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi; Kato, Yasuyoshi; Nishio, Satoshi; Hayashi, Takumi; Nomoto, Yasunobu

    2008-01-01

    Power generation systems such as steam turbine cycle, helium turbine cycle and supercritical CO 2 (S-CO 2 ) turbine cycle are examined for the prototype nuclear fusion reactor. Their achievable cycle thermal efficiencies are revealed to be 40%, 34% and 42% levels for the heat source outlet coolant temperature of 480degC, respectively, if no other restriction is imposed. In the current technology, however, low temperature divertor heat source is included. In this actual case, the steam turbine system and the S-CO 2 turbine system were compared in the light of cycle efficiency and plant cost. The values of cycle efficiency were 37.7% and 36.4% for the steam cycle and S-CO 2 cycle, respectively. The construction cost was estimated by means of component volume. The volume became 16,590 m 3 and 7240 m 3 for the steam turbine system and S-CO 2 turbine system, respectively. In addition, separation of permeated tritium from the coolant is much easier in S-CO 2 than in H 2 O. Therefore, the S-CO 2 turbine system is recommended to the fusion reactor system than the steam turbine system. (author)

  7. User's instructions for ORCENT II: a digital computer program for the analysis of steam turbine cycles supplied by light-water-cooled reactors

    International Nuclear Information System (INIS)

    Fuller, L.C.

    1979-02-01

    The ORCENT-II digital computer program will perform calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam characteristic of contemporary light-water reactors. Turbine performance calculations are based on a method published by the General Electric Company. Output includes all information normally shown on a turbine-cycle heat balance diagram. The program is written in FORTRAN IV for the IBM System 360 digital computers at the Oak Ridge National Laboratory

  8. Steam turbines of large output. Vol. 1, 2, 3

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 52 papers of which 14 have been inputted in INIS. They concern the development of high output turbines for power plants, the designing and testing of moisture separators, aerodynamics and vibrations of revolving parts of turbines, turbines suitable for heat extraction, the calculations and testing of steam flow characteristics, the mathematical model of thermodynamic cycles in wet steam, reliability, corrosion, and the questions of economics. (M.D.)

  9. Nuclear power plant and apparatus for superheating steam

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1983-01-01

    The invention consists of an apparatus for superheating steam, the apparatus comprising a horizontally disposed generally cylindrical elongate shell, inlet means in the shell for receiving steam, outlet means in the shell for discharching the steam, and a bundle of inclined tubes positioned in the flow path of the steam, each of the tubes having a length which is less than the diameter of the shell and opening into and extending in an upward direction from an outlet header to an inlet header, the inlet header beeing connected to a source of vapor, and the outlet header beeing connected to a condensate drain, characterised in that the test bundle comprises two banks of the tubes, the angle at which each of the tubes of one of the banks extends relative to a vertical longitudinal centerplane, the tubes of one of the banks terminate at and open into the inlet header, and the tubes of the other banks terminate at an open into another inlet header

  10. Optimal design of marine steam turbine

    International Nuclear Information System (INIS)

    Liu Chengyang; Yan Changqi; Wang Jianjun

    2012-01-01

    The marine steam turbine is one of the key equipment in marine power plant, and it tends to using high power steam turbine, which makes the steam turbine to be heavier and larger, it causes difficulties to the design and arrangement of the steam turbine, and the marine maneuverability is seriously influenced. Therefore, it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters. The math model of the marine steam turbine design calculation was established. The sensitivities of condenser pressure, power ratio of HP turbine with LP turbine, and the ratio of diameter with height at the end stage of LP turbine, which influence the weight of the marine steam turbine, were analyzed. The optimal design of the marine steam turbine, aiming at the weight minimization while satisfying the structure and performance constraints, was carried out with the hybrid particle swarm optimization algorithm. The results show that, steam turbine weight is reduced by 3.13% with the optimization scheme. Finally, the optimization results were analyzed, and the steam turbine optimization design direction was indicated. (authors)

  11. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  12. ORTURB, HTGR Steam Turbine Dynamic for FSV Reactor

    International Nuclear Information System (INIS)

    Conklin, J.C.

    2001-01-01

    1 - Description of program or function: ORTURB was written specifically to calculate the dynamic behavior of the Fort St. Vrain (FSV) High- Temperature Gas-Cooled Reactor (HTGR) steam turbines. The program is divided into three main parts: the driver subroutine; turbine subroutines to calculate the pressure-flow balance of the high-, intermediate-, and low-pressure turbines; and feedwater heater subroutines. 2 - Method of solution: The program uses a relationship derived for ideal gas flow in an iterative fashion that minimizes computational time to determine the pressure and flow in the FSV steam turbines as a function of plant transient operating conditions. An important computer modeling characteristic, unique to FSV, is that the high-pressure turbine exhaust steam is used to drive the reactor core coolant circulators prior to entering the reheater. A feedwater heater dynamic simulation model utilizing seven state variables for each of the five heaters is included in the ORTURB computer simulation of the regenerative Rankine cycle steam turbines. The seven temperature differential equations are solved at each time- step using a matrix exponential method. 3 - Restrictions on the complexity of the problem: The turbine shaft is assumed to rotate at a constant (rated) speed of 3600 rpm. Energy and mass storage of steam in the high-, intermediate-, and low-pressure turbines is assumed to be negligible. These limitations exclude the use of ORTURB during a turbine transient such as startup from zero power or very low turbine flows

  13. Evaluation of material integrity on electricity power steam generator cycles (turbine casing) component

    International Nuclear Information System (INIS)

    Histori; Benedicta; Farokhi; S A, Soedardjo; Triyadi, Ari; Natsir, M

    1999-01-01

    The evaluation of material integrity on power steam generator cycles component was done. The test was carried out on casing turbine which is made from Inconel 617. The tested material was taken from t anjung Priok plant . The evaluation was done by metallography analysis using microscope with magnification of 400. From the result, it is shown that the material grains are equiaxed

  14. A MATHEMATICAL MODEL OF THE ROASTING CHESTNUTS PROCESS BY SUPERHEATED STEAM

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2013-01-01

    Full Text Available The mathematic modeling for chestnuts roasting process by superheated steam is conducted. Diffusion and thermal diffusion coefficients are used for process description. Initial conditions and boundary conditions of the third kind for thermal conductivity and mass transfer equations are set.

  15. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  16. Cascade control of superheated steam temperature with neuro-PID controller.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  17. User's instructions for ORCENT II: a digital computer program for the analysis of steam turbine cycles supplied by light-water-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, L.C.

    1979-02-01

    The ORCENT-II digital computer program will perform calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam characteristic of contemporary light-water reactors. Turbine performance calculations are based on a method published by the General Electric Company. Output includes all information normally shown on a turbine-cycle heat balance diagram. The program is written in FORTRAN IV for the IBM System 360 digital computers at the Oak Ridge National Laboratory.

  18. Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater

    International Nuclear Information System (INIS)

    Luongo, M.C.

    1975-01-01

    An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

  19. 1000 MW steam turbine for nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1987-01-01

    Skoda Works started the manufacture of the 1000 MW steam turbine for the Temelin nuclear power plant. The turbine will use saturated steam at 3,000 r.p.m. It will allow steam supply to heat water for district heating, this of an output of 893 MW for a three-stage water heating at a temperature of 150/60 degC or of 570 MW for a two-stage heating at a temperature of 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized as concerns the thermal efficiency of the cycle and the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum flow rate of the steam entering the turbine. This is 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. It is expected that throughout the life of the turbine, there will be 300 cold starts, 1,000 starts following shutdown for 55 to 88 hours, and 600 starts following shutdown for 8 hours. (Z.M.). 8 figs., 1 ref

  20. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  1. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  2. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  3. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.

    1978-01-01

    Considered are the peculiarities of the design and operation of steam turbines, condensers and supplementary equipment of steam turbines for nuclear power plants; described are the processes of steam flow in humid-steam turbines, calculation and selection principles of main parameters of heat lines. Designs of the turbines installed at the Charkov turbine plant are described in detail as well as of those developed by leading foreign turbobuilding firms

  4. New safety experiments in decommissioned superheated steam reactor at Karlstein

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    This article gives a concise summary of the Status Report of the Superheated Steam Reactor Safety Program (PHDR) Project, held at KfK on Dec. 5, 1985. The results discussed dealt with fire experiments, shock tests simulating airplane crashes, temperature shocks in the reactor pressure vessel, studies of crack detection in pressure vessels and blasting experiments associated with nuclear plant decommissioning

  5. Service-cycle component-feature specimen TMF testing of steam turbine rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljevic, M.; Holdsworth, S.R. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Mazza, E. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland); Grossmann, P.; Ripamonti, L. [ALSTOM Power (Switzerland) Ltd., Baden (Switzerland)

    2010-07-01

    This paper reviews the methodology adopted in a Swiss Research Collaboration to devise a component-feature representative specimen geometry and the TMF cycle parameters necessary to closely simulate arduous steam turbine operating duty. Implementation of these service-like experimental conditions provides a practical indication of the effectiveness of deformation and crack initiation endurance predictions. Comprehensive post test inspection provides evidence to demonstrate the physical realism of the laboratory simulations in terms of the creep-fatigue damage generated during the benchmark tests. Mechanical response results and physical damage observations are presented and their practical implications discussed for the example of a 2%CrMoNiWV rotor service cycle. (orig.)

  6. Modeling of a combined cycle power plant

    International Nuclear Information System (INIS)

    Faridah Mohamad Idris

    2001-01-01

    The combined cycle power plant is a non-linear, closed loop system, which consists of high-pressure (HP) superheater, HP evaporator, HP economizer, low-pressure (LP) evaporator, HP drum, HP deaerator, condenser, HP and LP steam turbine and gas turbine. The two types of turbines in the plant for example the gas turbine and the HP and LP steam turbines operate concurrently to generate power to the plant. The exhaust gas which originate from the combustion chamber drives the gas turbine, after which it flows into the heat recovery steam generator (HRSG) to generate superheated steam to be used in driving the HP and LP steam turbines. In this thesis, the combined cycle power plant is modeled at component level using the physical method. Assuming that there is delay in transport, except for the gas turbine system, the mass and heat balances are applied on the components of the plant to derive the governing equations of the components. These time dependent equations, which are of first order differential types, are then solved for the mass and enthalpy of the components. The solutions were simulated using Matlab Simulink using measured plant data. Where necessary there is no plant data available, approximated data were used. The generalized regression neural networks are also used to generate extra sets of simulation data for the HRSG system. Comparisons of the simulation results with its corresponding plant data showed good agreements between the two and indicated that the models developed for the components could be used to represent the combined cycle power plant under study. (author)

  7. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  8. Separators/reheaters for nuclear turbines

    International Nuclear Information System (INIS)

    Guignard, S.

    1986-01-01

    During the past few years, the Nuclear Department of Stein Industrie has implemented a broad development programme for the design of superheating separators for nuclear power plant turbines. These units separate the water in the steam leaving the high-pressure section, and superheat the dry steam before expansion in the medium - and low - pressure sections. Thorough research, confirmed by tests, was conducted in different areas, and especially on problems of water and steam separation, and heat transfers in the tube bundle(s) required to superheat the steam. Special systems were designed to avoid processes detrimental to the operation of the units, such as vibrations, erosion/corrosion etc. Experimental feedback on the superheating separators of 900 MW nuclear power plants helped to substantiate the assumptions made for the thermal and hydraulic calculations, as well as the optimizations carried out on the different functions. These results confirmed the industrial application of the design methods to other superheating separators intended for 1300 MW nuclear power plants and for export [fr

  9. Possibilities for gas turbine and waste incinerator integration

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Jellema, P.; Hirs, Gerard

    1999-01-01

    The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that

  10. Energy analysis and design of mixed CO{sub 2}/steam gas turbine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Bram, S; De Ruyck, J [Vrije Universiteit Brussel, Brussels (Belgium). Dept. of Mechanics

    1995-06-01

    The capturing and disposal of CO{sub 2} from power plant exhaust gases is a possible route for reducing CO{sub 2} emissions. The present paper investigates the full recirculation of exhaust gases in a gas turbine cycle, combined with the injection of steam or water. Such recirculation leads to an exhaust gas with very high CO{sub 2} concentration (95% or more). Different regenerative cycle layouts are proposed and analyzed for efficiency, exergy destruction and technical feasibility. Pinch Technology methods are next applied to find the best configuration for heat regeneration and injection of water. From this analysis, dual pressure evaporation with water injection in the intercooler emerges as an interesting option. 3 refs., 2 figs., 1 tab.

  11. Cycle analysis of MCFC/gas turbine system

    Directory of Open Access Journals (Sweden)

    Musa Abdullatif

    2017-01-01

    Full Text Available High temperature fuel cells such as the solid oxide fuel cell (SOFC and the molten carbonate fuel cell (MCFC are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC performances is evaluated using validated model for the internally reformed (IR fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  12. Cycle analysis of MCFC/gas turbine system

    Science.gov (United States)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  13. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  14. Performance analysis of a small regenerative gas turbine system adopting steam injection and side-wall in finned tube evaporator

    International Nuclear Information System (INIS)

    Kang, Soo Young; Lee, Jong Jun; Kim, Tong Seop

    2009-01-01

    Small gas turbines in power range of several MWs are quite suitable for application in distributed generation as well as Community Energy Systems (CES). Humidification is an effective way to improve gas turbine performance, and steam injection is the most general and practically feasible method. This study intended to examine the effect of steam injection on the performance of several MW class gas turbines. A primary concern is given to the regenerative cycle gas turbine. The steam injection effect on the performance of a system without the regenerator (i.e. a simple cycle) is also examined. In addition, the influence of bypass of some of the exhaust gas on the performance of the gas turbine, especially the regenerative cycle gas turbine, is evaluated.

  15. Nuclear steam power plant cycle performance calculations supported by power plant monitoring and results computer

    International Nuclear Information System (INIS)

    Bettes, R.S.

    1984-01-01

    The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals

  16. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  17. Mathematical Modeling of Ultra-Superheated Steam Gasification

    Science.gov (United States)

    Xin, Fen

    Pure steam gasification has been of interest in hydrogen production, but with the challenge of supplying heat for endothermic reactions. Traditional solutions included either combusting feedstocks at the price of decreasing carbon conversion ratio, or using costly heating apparatus. Therefore, a distributed gasifier with an Ultra-Superheated-Steam (USS) generator was invented, satisfying the heat requirement and avoiding carbon combustion in steam gasification. This project developed the first version of the Ultra-Superheated-Steam-Fluidization-Model (USSFM V1.0) for the USS gasifier. A stand-alone equilibrium combustion model was firstly developed to calculate the USS mixture, which was the input to the USSFM V1.0. Model development of the USSFM V1.0 included assumptions, governing equations, boundary conditions, supporting equations and iterative schemes of guessed values. There were three nested loops in the dense bed and one loop in the freeboard. The USSFM V1.0 included one main routine and twenty-four subroutines. The USSFM V1.0 was validated with experimental data from the Enercon USS gasifier. The calculated USS mixture had a trace of oxygen, validating the initial expectation of creating an oxygen-free environment in the gasifier. Simulations showed that the USS mixture could satisfy the gasification heat requirement without partial carbon combustion. The USSFM V1.0 had good predictions on the H2% in all tests, and on other variables at a level of the lower oxygen feed. Provided with higher oxygen feed, the USSFM V1.0 simulated hotter temperatures, higher CO% and lower CO2%. Errors were explained by assumptions of equilibrium combustion, adiabatic reactors, reaction kinetics, etc. By investigating specific modeling data, gas-particle convective heat transfers were found to be critical in energy balance equations of both emulsion gas and particles, while bubble size controlled both the mass and energy balance equations of bubble gas. Parametric study

  18. A steam separator-superheater apparatus

    International Nuclear Information System (INIS)

    Androw, Jean; Bessouat, Roger; Peyrelongue, J.-P.

    1973-01-01

    Description is given of a separator-superheater apparatus comprising an outer enclosure containing a separating-unit and a steam superheating unit according to the main patent. The present addition relates to an improvement in that apparatus, characterized in that the separating unit and the superheating unit, mounted in two distinct portions of the outer enclosure, are divided into the same number of sub-units of each unit being identical and operating in parallel, and in that to each separator sub-unit is associated a superheater sub-unit, said sub-units being mounted in series and located in one in the other of the enclosure two portions, respectively. This can be applied to the treatment of the exhaust steam of a turbine high pressure body, prior to re-injecting said steam into the low pressure body [fr

  19. Improved algorithm based on equivalent enthalpy drop method of pressurized water reactor nuclear steam turbine

    International Nuclear Information System (INIS)

    Wang Hu; Qi Guangcai; Li Shaohua; Li Changjian

    2011-01-01

    Because it is difficulty to accurately determine the extraction steam turbine enthalpy and the exhaust enthalpy, the calculated result from the conventional equivalent enthalpy drop method of PWR nuclear steam turbine is not accurate. This paper presents the improved algorithm on the equivalent enthalpy drop method of PWR nuclear steam turbine to solve this problem and takes the secondary circuit thermal system calculation of 1000 MW PWR as an example. The results show that, comparing with the design value, the error of actual thermal efficiency of the steam turbine cycle obtained by the improved algorithm is within the allowable range. Since the improved method is based on the isentropic expansion process, the extraction steam turbine enthalpy and the exhaust enthalpy can be determined accurately, which is more reasonable and accurate compared to the traditional equivalent enthalpy drop method. (authors)

  20. Improvement of Steam Turbine Operational Performance and Reliability with using Modern Information Technologies

    Science.gov (United States)

    Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu

    2017-11-01

    The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.

  1. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  2. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  3. The Grand Quevilly thermal test station - the SMW sodium circuit with a generator of superheated steam at 545 deg

    International Nuclear Information System (INIS)

    Robin, M.G.

    1964-01-01

    A 5 MW installation is described which is a reduced model of the heat exchange system of a sodium-cooled reactor. This plant, which is situated at Grand Quevilly (near Rouen), consists of: 1 - A primary sodium loop made up of a sodium re-heater running on heavy diesel oil, a mechanical pump and an intermediate exchanger made up of clusters of tubes fitted with baffles. 2 - A NaK(56 per cent of K) secondary loop consisting mainly of a mechanical pump and a double-wall steam generator with forced circulation and complete vaporization. 3 - A tertiary water loop consisting of the inside of the steam generator pipes, a pressure-reducing valve which cools down the super-heated fluid and acts as a turbine, a condenser, a charge-pump and a supply pump for the boiler. The heat is given finally to a water-source flowing into the Seine. Two important points of the installation are: - The water treatment unit - The control and regulation system Apart from the general satisfactory operation of the installation which it is hoped to obtain, a careful study will be made of the heat transmission coefficients of the important equipment such as the intermediate exchanger and the steam generator. The construction was finished on April 28, 1964. (author) [fr

  4. Nuclear turbine efficiency improvement by wet steam study

    International Nuclear Information System (INIS)

    Nishikawa, Tsuyoshi; Morson, A.; Markytan, R.

    2000-01-01

    Most of the turbine used at the nuclear power plant are operated at environment of wet steam, which composes of a big factor of its inner loss in comparison with those of the thermal power plant. If an analytical method predictable on behavior of the wet steam is established, it could be upgraded efficiency of the turbine and also reliability against corrosion formed by moisture. This study, therefore, aims at understanding of physical property of the wet steam flow scarcely known at present, development of an optimum turbine cascade design tool reflected by the property, development of a turbine cascade design reducible of steam loss due to wet steam by using the tool, and development on a method of removing moisture in the turbine to its outer portion. For the tool, a new three dimensional flow numerical analysis is necessary to be developed, to aim at accurately and numerically understanding of the behavior of wet steam. As this study is in advancing now, by using a turbine cascade optimized on the wet steam flow and a developed moisture removing apparatus, about 0.6 % of upgrading in turbine efficiency can be predicted in comparison with that of the advanced aero-cascade of the GE Corporation. (G.K.)

  5. Thermodynamic investigation of an integrated gasification plant with solid oxide fuel cell and steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering, Thermal Energy System

    2012-07-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas was rather clean for feeding to the SOFC stacks after a simple cleaning step. Because all the fuel cannot be burned in the SOFC stacks, a burner was used to combust the remaining fuel. The off-gases from the burner were then used to produce steam for the bottoming steam cycle in a heat recovery steam generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system integration configurations are completely novel and have not been studied elsewhere. Plant efficiencies of 56% were achieved under normal operation which was considerably higher than the IGCC (Integrated Gasification Combined Cycle) in which a gasification plant is integrated with a gas turbine and a steam turbine. Furthermore, it is shown that under certain operating conditions, plant efficiency of about 62 is also possible to achieve. (orig.)

  6. Performance analysis of a potassium-steam two stage vapour cycle

    International Nuclear Information System (INIS)

    Mitachi, Kohshi; Saito, Takeshi

    1983-01-01

    It is an important subject to raise the thermal efficiency in thermal power plants. In present thermal power plants which use steam cycle, the plant thermal efficiency has already reached 41 to 42 %, steam temperature being 839 K, and steam pressure being 24.2 MPa. That is, the thermal efficiency in a steam cycle is facing a limit. In this study, analysis was made on the performance of metal vapour/steam two-stage Rankine cycle obtained by combining a metal vapour cycle with a present steam cycle. Three different combinations using high temperature potassium regenerative cycle and low temperature steam regenerative cycle, potassium regenerative cycle and steam reheat and regenerative cycle, and potassium bleed cycle and steam reheat and regenerative cycle were systematically analyzed for the overall thermal efficiency, the output ratio and the flow rate ratio, when the inlet temperature of a potassium turbine, the temperature of a potassium condenser, and others were varied. Though the overall thermal efficiency was improved by lowering the condensing temperature of potassium vapour, it is limited by the construction because the specific volume of potassium in low pressure section increases greatly. In the combinatipn of potassium vapour regenerative cycle with steam regenerative cycle, the overall thermal efficiency can be 58.5 %, and also 60.2 % if steam reheat and regenerative cycle is employed. If a cycle to heat steam with the bled vapor out of a potassium vapour cycle is adopted, the overall thermal efficiency of 63.3 % is expected. (Wakatsuki, Y.)

  7. Risk-based and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, K.; Nagai, S.; Akikuni, Y.; Fujiwara, T.; Furuya, K.; Matsumoto, S.; Takagi, K.; Kawabata, T.

    2003-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants. (orig.)

  8. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Stastny, M.

    1983-01-01

    A three-cylinder 220 MW saturated steam turbine was developed for WWER reactors by the Skoda concern. Twenty four of these turbines are currently in operation, in production or have been ordered. A 1000 MW four-cylinder turbine is being developed. The disign of the turbines has had to overcome difficulties connected with the unfavourable effects of wet steam at extreme power values. Great attention had to be devoted to the aerodynamics of control valves and to the prevention of flow separation areas. The problem of corrosion-erosion in guide wheels and the high pressure section was resolved by the use of ferritic stainless steels. For the low pressure section it was necessary to separate the moisture and to reheat the steam in the separator-reheater. Difficulties caused by the generation of wet steam in the low pressure section by spontaneous condensation were removed. Also limited was the erosion caused by droplets resulting from the disintegration of water films on the trailing edges. (A.K.)

  9. Vapor bubble growth in highly superheated liquid

    International Nuclear Information System (INIS)

    Pavlov, P.A.

    1981-01-01

    Dynamics of the bubble growth in the volume of the uniformally superheated liquid is considered. It is supposed that its growth is hampered by heat transfer. An asymptotic expression for the bubble growth rate at high superheatings when heat hold by liquid is comparable with heat of steam formation, is found by the automodel solution of the heat transfer equation. Writing the radius square in the form of a functional applicable for the calculation of steam formation at the pressure change in superheated liquid is suggested for eveluation calculations [ru

  10. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  11. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  12. Steam generators in indirect-cycle water-cooled reactors

    International Nuclear Information System (INIS)

    Fajeau, M.

    1976-01-01

    In the indirect cycle water-cooled nuclear reactors, the steam generators are placed between the primary circuit and the turbine. They act both as an energy transmitter and as a leaktigh barrier against fission or corrosion products. Their study is thus very important from a performance and reliability point of view. Two main types are presented here: the U-tube and the once-through steam generators [fr

  13. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  14. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  15. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  16. Design of H2/H∞ RMPC for Boiler Superheated Steam Temperature Based on Memoryless Feedback Multistep Strategy

    Directory of Open Access Journals (Sweden)

    Pu Han

    2017-01-01

    Full Text Available The collection of superheated steam temperature models of a thermal power plant under different loads can be approximated to “multimodel” linear uncertain systems. After transformation, the tracking system was obtained from “multimodel” linear uncertain systems. For this tracking uncertain system, a mixed H2/H∞ robust model predictive control (HRMPC based on a memoryless feedback multistep strategy is proposed. A multistep control strategy combines the advantages of predictive control rolling optimization with memoryless feedback control thoughts. It could effectively decrease the controller optimization parameter and ensure closed-loop system stability, and, at the same time, it also achieved acceptable control performance. Successful application to the superheated steam temperature system of a 300 MW thermal power plant verified the study of the HRMPC-P cascade controller design scheme in terms of feasibility and effectiveness.

  17. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  18. Integration of steam injection and inlet air cooling for a gas turbine generation system

    International Nuclear Information System (INIS)

    Wang, F.J.; Chiou, J.S.

    2004-01-01

    The temperature of exhaust gases from simple cycle gas turbine generation sets (GENSETs) is usually very high (around 500 deg. C), and a heat recovery steam generator (HRSG) is often used to recover the energy from the exhaust gases and generate steam. The generated steams can be either used for many useful processes (heating, drying, separation etc.) or used back in the power generation system for enhancing power generation capacity and efficiency. Two well-proven techniques, namely steam injection gas turbine (STIG) and inlet air cooling (IAC) are very effective features that can use the generated steam to improve the power generation capacity and efficiency. Since the energy level of the generated steam needed for steam injection is different from that needed by an absorption chiller to cool the inlet air, a proper arrangement is required to implement both the STIG and the IAC features into the simple cycle GENSET. In this study, a computer code was developed to simulate a Tai power's Frame 7B simple cycle GENSET. Under the condition of local summer weather, the benefits obtained from the system implementing both STIG and IAC features are more than a 70% boost in power and 20.4% improvement in heat rate

  19. Firetube boiler with high efficiency for producing saturated or superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Carosso, V J; Carosso, J Y

    1976-10-07

    This boiler for producing saturated or super-heated steam is to be manufactured in one piece or in units which can be assembled at site without skilled workers, at the factory. It is to have a high efficiency and dimensions which permit the transport of the completely assembled boiler by road transport. The relatively small water-steam vessel lies across the longitudinal axis of the boiler in the rear boiler space over a battery of preheater tubes. By these measures and by a very detailed and appropriately described rational arrangement of other parts, such as convection bundles, primary and secondary superheater, evaporation tubes, which form an 'evaporation shield', upper and lower longitudinal chambers with vertical connecting pipes of different crossections, the above mentioned condition for space requirement is fulfilled and a high efficiency should be achieved, but with considerable expense.

  20. Optimized Application of MSR and Steam Turbine Retrofits in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, Robert; McCoach, John [ALSTOM Power, Willans Works, Newbold Road, Rugby, Warwickshire CV21 2NH (United Kingdom); Gagelin, Jean-Philippe [ALSTOM Power Heat Exchange, 19-21 avenue Morane-Saulnier, BP 65, 78143 Velizy Cedex (France)

    2004-07-01

    The benefit to a nuclear power plant from a steam turbine retrofit has often been clearly demonstrated in recent years but, for light water nuclear plants, the Moisture Separator Reheaters (MSRs) are also of prime importance. This paper describes how refurbishment of these crucial components can only provide full potential performance benefit when made in conjunction with a steam turbine retrofit (although in practice these activities are frequently separated). Examples are given to show how combined application is best handled within a single organization to ensure optimized integration into the thermal cycle. (authors)

  1. Optimized Application of MSR and Steam Turbine Retrofits in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Crossland, Robert; McCoach, John; Gagelin, Jean-Philippe

    2004-01-01

    The benefit to a nuclear power plant from a steam turbine retrofit has often been clearly demonstrated in recent years but, for light water nuclear plants, the Moisture Separator Reheaters (MSRs) are also of prime importance. This paper describes how refurbishment of these crucial components can only provide full potential performance benefit when made in conjunction with a steam turbine retrofit (although in practice these activities are frequently separated). Examples are given to show how combined application is best handled within a single organization to ensure optimized integration into the thermal cycle. (authors)

  2. Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

    International Nuclear Information System (INIS)

    Silveira, Jose Luz; de Carvalho, Joao Andrade; de Castro Villela, Iraides Aparecida

    2007-01-01

    The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO 2 ), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ). (author)

  3. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove...

  4. Influences of superheated steam roasting on changes in sugar, amino acid and flavour active components of cocoa bean (Theobroma cacao).

    Science.gov (United States)

    Zzaman, Wahidu; Bhat, Rajeev; Yang, Tajul Aris; Easa, Azhar Mat

    2017-10-01

    Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated. The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg -1 ) at 200°C for 10 min. The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Moisture separators and reheaters for wet steam turbines

    International Nuclear Information System (INIS)

    Gibbins, J.

    1979-01-01

    Moisture separator reheater (M.S.R.) units are now a well established feature of the wet steam cycle as associated with the various types of water cooled reactor. This paper describes the development of M.S.Rs. as supplied by GEC for turbine generators of up to 1200 MW ratings covering the design procedures used and the features required to ensure efficient and reliable operation. In addition to details of the M.S.R. design, the desirable features of the steam supply, venting and drain control systems are also discussed. The recent developments, as provided on current projects, are described. (author)

  6. Risk-based inspection and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, Kazunari; Nagai, Satoshi; Akikuni, Yasunari; Fujiwara, Toshihiro; Furuya, Kenichiro; Matsumoto, Shigeru; Takagi, Kentaro; Kawabata, Taro

    2004-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants

  7. Specific features of steam turbine design at LMZ

    International Nuclear Information System (INIS)

    Pichugin, I.I.; Tsvetkov, A.M.; Simkin, M.S.

    1993-01-01

    General structural layouts of the condensation steam turbines produced by the Leningrad metalworks (LM) are considered. Currently LM produced 50 types and modifications of steam turbines with the capacity from 30 up to 1200 MW. Problems of turbine efficiency and ways of the flow section improvement are discussed

  8. Large nuclear steam turbine plants

    International Nuclear Information System (INIS)

    Urushidani, Haruo; Moriya, Shin-ichi; Tsuji, Kunio; Fujita, Isao; Ebata, Sakae; Nagai, Yoji.

    1986-01-01

    The technical development of the large capacity steam turbines for ABWR plants was partially completed, and that in progress is expected to be completed soon. In this report, the outline of those new technologies is described. As the technologies for increasing the capacity and heightening the efficiency, 52 in long blades and moisture separating heaters are explained. Besides, in the large bore butterfly valves developed for making the layout compact, the effect of thermal efficiency rise due to the reduction of pressure loss can be expected. As the new technology on the system side, the simplification of the turbine system and the effect of heightening the thermal efficiency by high pressure and low pressure drain pumping-up method based on the recent improvement of feed water quality are discussed. As for nuclear steam turbines, the actual records of performance of 1100 MW class, the largest output at present, have been obtained, and as a next large capacity machine, the development of a steam turbine of 1300 MWe class for an ABWR plant is in progress. It can be expected that by the introduction of those new technologies, the plants having high economical efficiency are realized. (Kako, I.)

  9. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Ganjehkaviri, Abdolsaeid; Wahid, Mazlan Abdul; Mohd Jaafar, M.N.

    2017-01-01

    Highlights: • Using flameless burner as a supplementary firing system after gas turbine is modeled. • Thermodynamic, economic and environmental analyses of this model are performed. • Efficiency of the plant increases about 6% and CO_2 emission decreases up to 5.63% in this design. • Available exergy for work production in both gas cycle and steam cycle increases in this model. - Abstract: To have an optimum condition for the performance of a combined cycle power generation, using supplementary firing system after gas turbine was investigated by various researchers. Since the temperature of turbine exhaust is higher than auto-ignition temperature of the fuel in optimum condition, using flameless burner is modelled in this paper. Flameless burner is installed between gas turbine cycle and Rankine cycle of a combined cycle power plant which one end is connected to the outlet of gas turbine (as primary combustion oxidizer) and the other end opened to the heat recovery steam generator. Then, the exergoeconomic-environmental analysis of the proposed model is evaluated. Results demonstrate that efficiency of the combined cycle power plant increases about 6% and CO_2 emission reduces up to 5.63% in this proposed model. It is found that the variation in the cost is less than 1% due to the fact that a cost constraint is implemented to be equal or lower than the design point cost. Moreover, exergy of flow gases increases in all points except in heat recovery steam generator. Hence, available exergy for work production in both gas cycle and steam cycle will increase in new model.

  10. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  11. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  12. Advanced gas turbine cycles a brief review of power generation thermodynamics

    CERN Document Server

    Horlock, JH

    2003-01-01

    Primarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple ""open circuit"" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be d

  13. Steam turbines of large output especially for nuclear power stations. Part 1

    International Nuclear Information System (INIS)

    Drahny, J.; Stasny, M.

    1986-01-01

    At the international conference, 53 papers were presented in 3 sessions dealing with the design of large output steam turbines, with problems of flow in steam turbines, and with the reliability and service life of steam turbines. Part 1 of the conference proceedings contains two introductory papers, one reviewing the 100 years history of steam turbines (not included in INIS), the other giving an overview of the development of steam turbines in the eighties; and the 13 papers heard in the session on steam turbine design, all inputted in INIS. (A.K.)

  14. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  15. Flow characteristics in nuclear steam turbine blade passage

    International Nuclear Information System (INIS)

    Ahn, H.J.; Yoon, W.H.; Kwon, S.B.

    1995-01-01

    The rapid expansion of condensable gas such as moist air or steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the nuclear steam turbine blade passage, the entropy of the flow increases, and the efficiency of the turbine decreases. In the present study, in order to investigate the flow characteristics of moist air in two-dimensional turbine blade passage which is made from the configuration of the last stage tip section of the actual nuclear steam turbine moving blade, the static pressures along both pressure and suction sides of blade are measured by static pressure taps and the distribution of Mach number on both sides of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a Schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in the two dimensional steam turbine blade passage are clearly identified

  16. Performance Modelling of Steam Turbine Performance using Fuzzy ...

    African Journals Online (AJOL)

    Performance Modelling of Steam Turbine Performance using Fuzzy Logic ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES. Journal of Applied Sciences and Environmental Management ... A Fuzzy Inference System for predicting the performance of steam turbine

  17. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  18. A non-conventional interpretation of thermal regeneration in steam cycles

    International Nuclear Information System (INIS)

    Bracco, Stefano; Damiani, Lorenzo

    2012-01-01

    Highlights: ► A better understanding of the concept of thermal regeneration in steam cycles. ► Use of a system composed by a non-regenerative cycle and several reverse cycles. ► Calculation of the heat pumps coefficients of performance. ► New interesting formulations of the regenerative cycle efficiency. -- Abstract: The paper aims to contribute to a better understanding of the thermodynamic concept of heat regeneration in steam power plants with a finite number of bleedings. A regenerative Rankine cycle is compared to a complex system (CHC – complete hybrid cycle) composed by one non-regenerative Rankine cycle (HEC – hybrid engine cycle) and more reverse cycles (RCs – reverse cycles), as many as the number of the bleedings, able to pump heat from the condenser to a series of surface feedwater heaters, disposed upstream of the steam plant boiler. The COPs (coefficients of performance) of the heat pumps are evaluated, and new interesting formulations of the efficiency of the regenerative steam cycle are proposed. In particular a steam cycle with two bleedings is analyzed, neglecting heat losses and pressure drops in the boiler and considering irreversibility only along the expansion line of the steam turbine and into the feedwater heaters. The efficiency and the work of the regenerative cycle are compared to the analogous values of the CHC cycle composed by one simple steam cycle (HEC) and two heat pump cycles (RCs), with steam as the working fluid. The two reverse cycles are considered completely reversible and raising heat from the condenser temperature to the bled steam condensing temperature. The paper shows the most significant results of the study in order to analyze the regenerative cycle and the CHC cycle in comparison with the non-regenerative Rankine cycle; in particular, the analysis is focused on the evaluation of the useful work, the heat supplied and the heat rejected for the examined cycles.

  19. Steam condensation process in a power production cycle and heat exchanger for it

    International Nuclear Information System (INIS)

    Tondeur, Gerard; Andro, Jean; Marjollet, Jacques; Pouderoux, Pierre.

    1982-01-01

    Steam condensation process in a power production cycle by expansion in turbines, characterized by the fact that this condensation is performed by the vaporization of a coolant with a vaporization temperature at atmospheric pressure lower than that of water, and that the vaporized coolant fluid is expanded in a turbine and then condensed by heat exchange with cold water being heated, while the liquefied coolant is recompressed and used for heat exchange with the steam to be condensed [fr

  20. Thermochemical recuperative combined cycle with methane-steam reforming combustion; Tennengasu kaishitsu nensho ni yoru konbaindo saikuru hatsuden no kokoritsuka oyobi denryoku fuka heijunka taio

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, R.; Essaki, K.; Tsutsumi, A. [The University of Tokyo, Tokyo (Japan). Dept. of Chemical System Engineering; Kaganoi, S.; Kurimura, H. [Teikoku Sekiyu Co., Tokyo (Japan); Sasaki, T.; Ogawa, T. [Toshiba Co., Tokyo (Japan)

    2000-03-10

    Thermochemical recuperative combined cycles with methane-steam reforming are proposed for improving their thermal efficiency and for peak-load leveling. For targeting higher thermal efficiency, a cycle with methane-steam reforming reaction heated by gas turbine exhaust was analyzed. The inlet temperature of gas turbine was set at 1,350 degree C. Low-pressure steam extracted from a steam turbine is mixed with methane, and then this mixture is heated by part of the gas turbine exhaust to promote a reforming reaction. The rest of the exhaust heat is used to produce steam, which drives steam turbines to generate electricity. The effect of steam-to-methane ratio (S/C) on thermal efficiency of the cycle, as well as on methane conversion, is investigated by using the ASPEN Plus process simulator. The methane feed rate was fixed at constant and S/C ratio was varied from 2.25 to 4.75. Methane conversion shows an increasing trend toward the ratio and has a maximum value of 17.9 % at S/C=4.0. Thermal efficiency for the system is about 51 % higher than that calculated for a conventional 1,300 degree C class combined cycle under similar conditions. A thermochemical recuperative combined cycle is designed for peak-load leveling. In night-time operation from 20 : 00 to 8 : 00 it stores hydrogen produced by methane steam reforming at S/C=3.9 to save power generation. The gas turbine inlet temperature is 1,330 degree C. In daytime operation from 8 : 00 to 20 : 00 the chemically recuperated combined cycle operated at S/C=2.0 is driven by the mixture of a combined cycle operated at constant load with the same methane feed rate, whereas daytime operation generated power 1.26 times larger than that of the combined cycle. (author)

  1. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  2. Structural integrity analysis of a steam turbine

    International Nuclear Information System (INIS)

    Villagarcia, Maria P.

    1997-01-01

    One of the most critical components of a power utility is the rotor of the steam turbine. Catastrophic failures of the last decades have promoted the development of life assessment procedures for rotors. The present study requires the knowledge of operating conditions, component geometry, the properties of materials, history of the component, size, location and nature of the existing flaws. The aim of the present work is the obtention of a structural integrity analysis procedure for a steam turbine rotor, taking into account the above-mentioned parameters. In this procedure, a stress thermal analysis by finite elements is performed initially, in order to obtain the temperature and stress distribution for a subsequent analysis by fracture mechanics. The risk of a fast fracture due to flaws in the central zone of the rotor is analyzed. The procedure is applied to an operating turbine: the main steam turbine of the Atucha I nuclear power utility. (author)

  3. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    Science.gov (United States)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  4. Using neuro-fuzzy based method to develop nuclear turbine cycle model

    International Nuclear Information System (INIS)

    Chan Yeakuang; Chang Chinjang

    2009-01-01

    The purpose of this study is to describe a hybrid soft-computing modeling technique used to develop the steam turbine cycle model for nuclear power plants. The technique uses neuro-fuzzy model to predict the generator output. Firstly, the plant past three fuel cycles operating data above 95% load were collected and validated as the baseline performance data set. Then the signal errors for new operating data were detected by comparison with the baseline data set and their allowable range of variations. Finally, the most important parameters were selected as an input of the neuro-fuzzy based steam turbine cycle model. After training and testing with key parameters (i.e. throttle pressure, condenser backpressure, feedwater flow rate, and final feedwater temperature), the proposed model can be used to predict the generator output. The analysis results show this neuro-fuzzy based turbine cycle model can be used to predict the generator output with a good agreement. Moreover, the achievement of this study provides an alternative approach in thermal performance evaluation for nuclear power plants. (author)

  5. A detection of the coarse water droplets in steam turbines

    Directory of Open Access Journals (Sweden)

    Bartoš Ondřej

    2014-03-01

    Full Text Available The aim of this paper is to introduce a novel method for the detection of coarse water droplets in a low pressure part of steam turbines. The photogrammetry method has been applied for the measurement of coarse droplets in the low-pressure part of a steam turbine. A new probe based on this measurement technique was developed and tested in the laboratory and in a steam turbine in the Počerady power-plant. The probe was equipped with state-of-the-art instrumentation. The paper contains results from laboratory tests and the first preliminary measurements in a steam turbine. Possible applications of this method have been examined.

  6. A condenser for very high power steam turbines

    International Nuclear Information System (INIS)

    Gardey, Robert.

    1973-01-01

    The invention relates to a condenser for very high power steam turbines under the masonry-block supporting the low-pressure stages of the turbine, that condenser comprises two horizontal aligned water-tube bundles passing through the steam-exhaust sleeves of the low-pressure stages, on both sides of a common inlet water box. The invention can be applied in particular to the 1000-2000 MW turbines of light water nuclear power stations [fr

  7. Steam temperature variation behind a turbine steam separator-superheater during NPP start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    1979-01-01

    To determine necessary parameters of the steam temperature automatic regulator behind the steam separator-rheater supe (SSS) of an NPP turbine the static and dynamic characteristics of the temperature change behind the SSS were studied experimentally. The measurements were carried out at the K-220-44 turbine of the Kolskaja NPP in the case of both varying turbine loads and the flow rate of the heating vapor. Disturbances caused by the opening of the regulating valve at the inlet of the heating vapor are investigated as well. It is found that due to a relatively high inertiality of the SSS a rather simple structure of the start-up steam temperature regulators behind the SSS in composition with automatated driving systems of the turbine start-up without regard for the change of the dynamic characteristics can be used

  8. Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas–steam combined cycle under off-design condition

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • An off-design performance simulation of triple-pressure reheat HRSG is executed. • The bottoming cycle characteristics of energy transfer/conversion are analyzed. • Concise formulas for the off-design performance of bottoming cycle are proposed. • The accuracy of the formulas is verified under different load control strategies. • The errors of the formulas are generally within 1% at a load of 100–50%. - Abstract: Concise semi-theoretical, semi-empirical formulas are developed in this study to predict the off-design performance of the bottoming cycle of the gas–steam turbine combined cycle. The formulas merely refer to the key thermodynamic design parameters (full load parameters) of the bottoming cycle and off-design gas turbine exhaust temperature and flow, which are convenient in determining the overall performance of the bottoming cycle. First, a triple-pressure reheat heat recovery steam generator (HRSG) is modeled, and thermodynamic analysis is performed. Second, concise semi-theoretical, semi-empirical performance prediction formulas for the bottoming cycle are proposed through a comprehensive analysis of the heat transfer characteristics of the HRSG and the energy conversion characteristics of the steam turbine under the off-design condition. The concise formulas are found to be effective, i.e., fast, simple, and precise in obtaining the thermodynamic parameters for bottoming cycle efficiency, HRSG heat transfer capacity, HRSG efficiency, steam turbine power output, and steam turbine efficiency under the off-design condition. Accuracy is verified by comparing the concise formulas’ calculation results with the simulation results and practical operation data under different load control strategies. The calculation errors are within 1.5% (mainly less than 1% for both simulation and actual operation data) under combined cycle load (gas turbine load) ranging from 50% to 100%. However, accuracy declines sharply when the turbine

  9. Time program using in automatization of steam turbines start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    Examples and arguments for developing time programs of changing basic parameters of automated start-up of TPP and NPP high-power steam turbines are considered. Basic parameters subject to controlled changing at automatization of turbine start-up are rotation frequency, loading and temperature of steam supplied to the turbine. Principle facility schemes of program regulation of steam temperature at the start-up are presented. The facility scheme of loading the NPP wet steam turbine is given. The principles of developing time programs, of changing basic parameters of automated start-up enable realizing transient processes close to theoretically optimum processes at arbitrary prestart-up state of the turbine by means of rather simple autatic facilities. In particular, for automated temperature increase of steam supplied to the turbine of TES power units and AES turbine loading, it is advisable to use programs in the form of linear dependence of velocity of changing the controlled parameter on the given value, the initial level, from which the parameter increase with a regulated velocity is realized, is given in the form of analogue dependence on the turbine prestart-up state. The programs described and the schemes of their realization have been approved at the automatization of 300 MW power unit starts up with the K-300-240 turbine and K-220-44 turbine as well as used when creating control system for turbines of 500 MW and higher for designed TPP and NPP power units

  10. QA practice for online analyzers in water steam cycles

    International Nuclear Information System (INIS)

    Staub, L.

    2010-01-01

    The liberalization of power markets throughout the world has resulted in more and more power stations being operated in cycling mode, with frequent load changes and multiple daily start-up and shut-down cycles. This more flexible operation also calls for better automation and poses new challenges to water chemistry in water steam cycles, to avoid subsequent damage to vital plant components such as turbines, boilers or condensers. But automation for the most important chemistry control tool, the sampling and online analyzer system, is only possible if chemists can rely on their online analysis equipment. Proof of plausibility as well as reliability and availability of online analysis results becomes a major focus. While SOP and standard QA procedures for laboratory equipment are well established and daily practice, such measures are widely neglected for online process analyzers. This paper is aiming to establish a roadmap for the implementation of SOP and QA/QC procedures for online instruments in water steam cycles, leading to reliable chemical information that is trustworthy for process automation and chemistry control in water steam cycles. (author)

  11. QA practice for online analyzers in water steam cycles

    International Nuclear Information System (INIS)

    Staub Lukas

    2009-01-01

    The liberalization of power markets throughout the world has resulted in more and more power stations being operated in cycling mode, with frequent load changes and multiple daily start-up and shut-down cycles. This more flexible operation also calls for better automation and poses new challenges to water chemistry in water steam cycles, to avoid subsequent damage to vital plant components such as turbines, boilers or condensers. But automation for the most important chemistry control tool, the sampling and online analyzer system, is only possible if chemists can rely on their online analysis equipment. Proof of plausibility as well as reliability and availability of online analysis results becomes a major focus. While SOP and standard QA procedures for laboratory equipment are well established and daily practice, such measures are widely neglected for online process analyzers. This paper is aiming to establish a roadmap for the implementation of SOP and QA/QC procedures for online instruments in water steam cycles, leading to reliable chemical information that is trustworthy for process automation and chemistry control in water steam cycles. (author)

  12. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Hong, Seung Mo; Watanabe, Yutaka

    2014-01-01

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr 2 O 3 layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr 2 O 3 layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr 2 O 3 layer has to be carefully examined to predict the oxidation kinetics after long-term exposure

  13. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroshi, E-mail: hiroshi.abe@qse.tohoku.ac.jp; Hong, Seung Mo; Watanabe, Yutaka

    2014-12-15

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr{sub 2}O{sub 3} layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr{sub 2}O{sub 3} layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr{sub 2}O{sub 3} layer has to be carefully examined to predict the oxidation kinetics after long-term exposure.

  14. Main trends of upgrading the 1000 MW steam turbine

    International Nuclear Information System (INIS)

    Drahy, J.

    1990-01-01

    Parameters are compared for the 1000 MW steam turbine manufactured by the Skoda Works, Czechoslovakia, and turbines in the same power range by other manufacturers, viz. ABB, Siemens/KWU, GEC and LMZ. The Skoda turbine compares well with the other turbines with respect to all design parameters, and moreover, enables the most extensive heat extraction for district heating purposes. The main trends in upgrading this turbine are outlined; in particular, they include an additional increase in the heat extraction, which is made possible by a new design of the low-pressure section or by using a ''satellite'' turbine. The studies performed also indicate that the output of the full-speed saturated steam turbine can be increased to 1300 MW. An experimental turbine representing one flow of the high-pressure part of the 1000 MW turbine is being built on the 1:1 scale. It will serve to verify the methods of calculation of the wet steam flow and to experimentally test the high-pressure part over a wide span of the parameters. (Z.M.). 1 tab., 3 figs., 7 refs

  15. Liquid-phase problems in steam turbine LP stages

    International Nuclear Information System (INIS)

    Blanc-Feraud, P.

    1978-01-01

    Wet steam formation owing to incipient condensation in final steam turbine pressure stages results in a loss of efficiency and possible rotor blading erosion. The effects of erosion are now clearly understood and quite easily counteracted, but loss of thermodynamics, mechanical and aerodynamic efficiency is still a problem. Only the final LP stages of conventional power station plant operate with wet steam, whereas nuclear plant turbines use it to produce most of their total output [fr

  16. Technical diagnostics of steam turbines

    International Nuclear Information System (INIS)

    Vlckova, B.; Drahy, J.

    1987-01-01

    This paper deals with practical experience in application of technical diagnostics methods to steam turbines, in particular using pedestal and shaft vibration measurements as well as estimation of bearing metal temperature and ultrasound emission signals. An estimation of effectiveness of the diagnostics methods used is given on the basis of experimental investigations made on a 30-MW turbine. (author)

  17. Improvements to thermal plants for generating energy

    International Nuclear Information System (INIS)

    Pacault, P.H.

    1975-01-01

    Said invention relates to a procedure for superheating steam intended for steam cycled thermal plants of energy production, and particularly nuclear power plants. Said procedure combines two different working modes. According to the first working mode, the live steam is taken from the steam generator, mechanically compressed and the heat is partly transferred to the working fluid. According to the second working mode the heat is taken from an auxiliary fluid heated by an independent thermal source, distinct from the principal thermal source of the plant and this heat is partly transferred to the working fluid. A combination of both working modes enables the superheating of the working fluid to be obtained before it inflows the turbine and/or between two stages of said turbine [fr

  18. Quantitative indexes of gas-steam thermo electrical power plants thermodynamical cycles; Indices quantitativos de ciclos termodinamicos de centrais termoeletricas de gas-vapor

    Energy Technology Data Exchange (ETDEWEB)

    Vlassov, D.; Vargas, J.V.C. [Parana Univ., Curitiba, PR (Brazil). Dept. de Engenharia Mecanica]. E-mails: vlassov@demec.ufpr.br; jvargas@demec.ufpr.br

    2002-07-01

    This paper analyses various thermal schemes of the world wide most used cycles in gas-steam thermoelectric power plants. The combination of gas turbine cycle with the steam-gas cycle in thermoelectric power plants is performed in several ways, resulting in different thermal schemes, used equipment and operation plant basic characteristics. The thermal scheme of a gas-steam power plant is a determinant factor for the definition of energetic, economic and ecological characteristics. For the comparative analysis various quantitative indexes are presented, as for example: the heat fraction supplied to the gas turbine cycle and the cycle binary rate.

  19. Promising Direction of Perfection of the Utilization Combine Cycle Gas Turbine Units

    Directory of Open Access Journals (Sweden)

    Gabdullina Albina I.

    2017-01-01

    Full Text Available Issues of improving the efficiency of combined cycle gas turbines (CCGT recovery type have been presented. Efficiency gas turbine plant reaches values of 45 % due to rise in temperature to a gas turbine to 1700 °C. Modern technologies for improving the cooling gas turbine components and reducing the excess air ratio leads to a further increase of the efficiency by 1-2 %. Based on research conducted at the Tomsk Polytechnic University, it shows that the CCGT efficiency can be increased by 2-3 % in the winter time due to the use of organic Rankine cycle, low-boiling substances, and air-cooled condensers (ACC. It is necessary to apply the waste heat recovery with condensation of water vapor from the flue gas, it will enhance the efficiency of the CCGT by 2-3 % to increase the efficiency of the heat recovery steam boiler (HRSB to 10-12 %. Replacing electric pumps gas turbine engine (GTE helps to reduce electricity consumption for auxiliary needs CCGT by 0.5-1.5 %. At the same time the heat of flue gas turbine engine may be useful used in HRSB, thus will increase the capacity and efficiency of the steam turbine.

  20. Molten salt fueled nuclear facility with steam-and gas turbine cycles of heat transformation

    International Nuclear Information System (INIS)

    Ananich, P.I.; Bunin, E.N.; Kazazyan, V.T.; Nemtsev, V.A.; Sikorin, S.N.

    2001-01-01

    The molten salt fueled nuclear facilities with fuel circulating in the primary circuit have a series of the potential advantages in comparison with the traditional thermal and fast reactors with solid fuel elements. These advantages are ensured by the possibility to receive effective neutron balance in the core, minimum margin reactivity, more deep fuel burnup, unbroken correctness of the fuel physical and chemical properties and by low prices of the fuel cycle. The neutron and thermal-physical calculations of the various variants of the MSFNF with steam-water and gas turbine power circuits and their technical and economical comparison are carried out in this article. Calculations of molten salt nuclear power plant with gas turbine power circuit have been carried out using chemically reacting working body ''nitrin'' (N304 + 1%NO). The molten salt fueled reactors with the thermal power near of 2300 MW with two fuel compositions have been considered. The base variant has been taken the design of NPP with VVER NP-1000 when comparing the results of the calculations. Its economical performances are presented in prices of 1990. The results of the calculations show that it is difficult to determine the advantages of any one of the variants considered in a unique fashion. But NPP with MSR possesses large reserves in the process of optimization of cycle and energy equipment parameters that can improve its technical and economical performances sufficiently. (author)

  1. Influence of geological variations on lignite drying kinetics in superheated steam atmosphere for Belchatow deposit located in the central Poland

    Directory of Open Access Journals (Sweden)

    Sciazko Anna

    2016-01-01

    Full Text Available Lignite-fired coal power plants suffer from a significant heat loss due to the high moisture content in this energy carrier. Water removal from fuel is an indispensable treatment for improving the combustion process, which will foster the efficient utilization of lignite. Superheated steam fluidized bed drying is expected for this purpose in a power generation sector. Understanding drying kinetics of lignite will greatly reinforce design process of a dryer. Physical features as well as the drying behaviour may be divergent among the lignite originated from different depths and positions in a certain mine. To reveal and clarify the influence of the geological features, the drying characteristics of several grades of lignite from the Belchatow mine in Poland were investigated. The attempts to clarify the influence of the divergent properties of the investigated samples on the drying kinetics in superheated steam were presented in this paper.

  2. Wet steam turbines for CANDU-Reactors

    International Nuclear Information System (INIS)

    Westmacott, C.H.L.

    1977-01-01

    The technical characteristics of 4 wet steam turbine aggregates used in the Pickering nuclear power station are reported on along with operational experience. So far, the general experience was positive. Furthermore, plans are mentioned to use this type of turbines in other CANDU reactors. (UA) [de

  3. Data Reconciliation in the Steam-Turbine Cycle of a Boiling Water Reactor

    International Nuclear Information System (INIS)

    Sunde, Svein; Berg, Oivind; Dahlberg, Lennart; Fridqvist, Nils-Olof

    2003-01-01

    A mathematical model for a boiling water reactor steam-turbine cycle was assembled by means of a configurable, steady-state modeling tool TEMPO. The model was connected to live plant data and intermittently fitted to these by minimization of a weighted least-squares object function. The improvement in precision achieved by this reconciliation was assessed from quantities calculated from the model equations linearized around the minimum and from Monte Carlo simulations. It was found that the inclusion of the flow-passing characteristics of the turbines in the model equations significantly improved the precision as compared to simple mass and energy balances, whereas heat transfer calculations in feedwater heaters did not. Under the assumption of linear model equations, the quality of the fit can also be expressed as a goodness-of-fit Q. Typical values for Q were in the order of 0.9. For a validated model Q may be used as a fault detection indicator, and Q dropped to very low values in known cases of disagreement between the model and the plant state. The sensitivity of Q toward measurement faults is discussed in relation to redundancy. The results of the linearized theory and Monte Carlo simulations differed somewhat, and if a more accurate analysis is required, this is better based on the latter. In practical application of the presently employed techniques, however, assessment of uncertainties in raw data is an important prerequisite

  4. Methods for calculating the speed-up characteristics of steam-water turbines

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1981-01-01

    The methods of approximate and specified calculations of speed- up characteristics of steam-water turbines are considered. The specified non-linear method takes into account change of thermal efficiency, heat drop and losses in the turbine as well as vacuum break-up the condenser. Speed-up characteristics of the K-1000-60-1500 turbine are presented. The calculational results obtained by the non-linear method are compared with the calculations conducted by the approximate linearized method. Differences in the frequency speed up of the turbine rotor rotation calculated by the two methods constitute only 0.5-2.0%. That is why it is necessary to take into account in the specified calculations first of all the most important factors following the rotor speed- up in the following consequence: valve shift of the high pressure cylinder (HPC); steam volume in front of the HPC; shift of the valves behind the separator-steam superheater (SSS); steam volumes and moisture boiling in the SSS; steam consumption for regenerating heating of feed water, steam volumes at the intermediate elements of the turbine, losses in the turbine, heat drop and thermal efficiency [ru

  5. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  6. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  7. A mathematical model of steam-drum dynamics

    International Nuclear Information System (INIS)

    Moeck, E.O.; Hinds, H.W.

    1976-12-01

    Mathematical equations describing the dynamic behaviour of pressure, water mass, etc. in a steam drum are derived from basic principles. The resultant model includes such effects as steam superheating and water subcooling as well as spontaneous flashing of liquid and condensation of vapour. Experimental data from a pressurizer are adequately predicted by the model. The pressure rise following a turbine trip can be predicted by the isentropic-compression model but not by the thermodynamic-equilibrium model. The equations are individually linearized and implemented on an analog computer in such a way that their non-linear behaviour is retained for small-perturbation studies. (author)

  8. Wet-steam erosion of steam turbine disks and shafts

    International Nuclear Information System (INIS)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-01

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  9. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  10. One-dimensional simulation for attemperator based on commissioning data of coal-fired steam power plant

    International Nuclear Information System (INIS)

    Cho, Baekhyun; Choi, Geunwon; Uruno, Yumi; Kim, Hyunseo; Chung, Jaewon; Kim, Hyojun; Lee, Kihyun

    2017-01-01

    Highlights: • An attemperator is a device to spray water into the superheated steam. • The evaporation was analyzed using the enthalpy balance from the commissioning data. • The spray atomization and its concurrent evaporation in an attemperator were physically modeled. • A simple one-dimensional simulation was conducted to verify the commissioning results. - Abstract: An attemperator is a device that is used to spray water into the superheated steam between the primary, platen, and final superheaters and the reheat lines. The goal of the attemperator is to control the temperature of the superheated steam in accordance with desired turbine-inlet temperature during both steady-state and transient operation. Because the thermowell installed at the attemperator outlet is tied back to the feedback control of the spray water, the spray water should evaporate ahead of the thermowell for accurate control of the steam temperature. In this work, the completion of the evaporation ahead of the thermowell was analyzed using the enthalpy balance from the start-up commissioning data of an 800-MW coal-fired steam power plant. In addition, the phenomena of the spray atomization and its concurrent evaporation in an attemperator were physically modeled, and a simple one-dimensional simulation was conducted to verify the analysis of the commissioning data.

  11. Superheated steam annealing of pressurized water reactor vessel

    International Nuclear Information System (INIS)

    Porowski, J.S.

    1993-01-01

    Thermal annealing of an embrittled Reactor Pressure Shell is the only recognized means for recovering material properties lost due to long-term exposure of the reactor walls to radiation. Reduced toughness of the material during operation is a major concern in evaluations of structural integrity of older reactors. Extensive studies performed within programs related to life extension of nuclear plants have confirmed that the thermal treatment of 850 deg. F for 168 hours on irradiated material essentially recovers material properties lost due to neutron exposure. Dry and wet annealing methods have been considered. Wet annealing involves operating the reactor at near design temperatures and pressures. Since the temperature of wet annealing must be limited to vessel design temperature of 650 deg. F, only partial recovery of the lost properties is achieved. Thus dry annealing was selected as an alternative for future development and industrial implementation to extend the safe life of reactors. Dry thermal annealing consists of heating portions of the reactor vessel at a specific temperature for a given period of time using a high temperature heat source. The use of spent fuel assemblies, induction heating and resistance heating elements as well as the circulation of heated fluid were investigated as potential candidate methods. To date the use of resistance heating elements which are lowered into a dry empty reactor was considered to be the preferred method. In-depth research in the United States and practical applications of such a method in Russia have confirmed feasibility of the method. The method of using circulating superheated steam to anneal the vessel at 850 deg. F without complete removal of the reactor internals is described herein. After removing the reactor head and fuel, the core barrel along with the upper and lower core in PWRs is lifted to open an annular space between the reactor shell flange and the core barrel flange. The thermal shield can remain

  12. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  13. Corrosion cracking of rotor steels of steam turbines

    International Nuclear Information System (INIS)

    Melekhov, R.K.; Litvintseva, E.N.

    1994-01-01

    Results of investigation of stress corrosion cracking of steam turbine materials in nuclear, fossil and geothermal power plants have been analysed. The role of factors that cause damage to rotor discs, mono block and welding rotors of steam turbines has been shown. These are yield stress and steel composition, stress intensity coefficient and crack growth rate, composition and temperature of the condensed steam and water, electrochemical conditions. The conclusion has been made about the state of stress corrosion cracking of the rotors materials, and main investigation trends which are necessary to solve this problem have been listed

  14. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  15. Energetic and exergetic Improvement of geothermal single flash cycle

    Directory of Open Access Journals (Sweden)

    Navid Nazari

    2016-08-01

    Full Text Available This paper presents a detailed analysis of a new method for improving energetic and exergetic efficiencies of single flash cycle. The thermodynamic process of the new method consists of extracting a fraction of hot wellhead geothermal brine for the purpose of superheating saturated steam entering the turbine. Computer programming scripts were developed and optimized based on mathematical proposed models for the different components of the systems. The operating parameters such as separator temperature, geofluid wellhead enthalpy and geothermal source temperature are varied to investigate their effects on both net power output and turbine exhaust quality of the systems. Also, full exergy assessment was performed for the new design. The results of separator temperature optimization revealed that specific net power output of the new design can be boosted up to 8% and turbine exhaust quality can be diminished up to 50% as compared to common single flash cycle. In addition, for wells with higher discharge enthalpy, superheating process improve specific net power output even up to 10%. Finally, it was observed that the overall system exergy efficiency was approximately raised 3%. Article History: Received January 5th 2016; Received in revised form June 25th 2016; Accepted July 3rd 2016; Available online How to Cite This Article: Nazari, N. and Porkhial, S. (2016. Energetic and Exergetic Improvement of Geothermal Single Flash Cycle. Int. Journal of Renewable Energy Development, 5(2,129-138. http://dx.doi.org/10.14710/ijred.5.2.129-138 

  16. Study on the behavior of moisture droplets in low pressure steam turbines

    International Nuclear Information System (INIS)

    Kimura, Y.; Kuramoto, Y.; Yoshida, K.; Etsu, M.

    1978-01-01

    Low pressure stages of fossil turbines and almost all stages of nuclear and geothermal turbines operate on wet steam. Turbine operating on wet steam have the following two disadvantages: decrease of efficiency and erosion of blades. Decrease of efficiency results from an increase in profile loss caused by water films on the blade surface; loss of steam energy in breaking up the films and accelerating moisture droplets; undercooling and condensation shocks associated with it; velocity difference between water and steam phases and consequent decelerating action of moisture droplets in the rotating blades, etc. Impingement of moisture droplets on the rotating blades also causes quick erosion of the blades. In this paper, the behavior of moisture droplets in wet steam flow is described and the correlation between their behavior and the abovementioned two disadvantages of turbines operating on wet steam is clarified. (author)

  17. Combined gas and steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D T; Davis, J P

    1977-06-02

    The invention concerns a combination of internal combustion engine and steam turbine, where not only the heat of the hot exhaust gases of the internal combustion engine, but also the heat in the coolant of the internal combustion engine is used for power generation. The working fluid of the steam turbine is an organic fluid of low boiling point. A mixture of 85 mol% of tri-fluoro ethanol and 15 mol% of water is the most suitable fluid. The combustion engine (a Diesel engine is the most suitable), drives a working machine, e.g. a generator. The hot combustion exhaust gases produce evaporation of the working fluid in an HP evaporator. The superheated steam gives up its energy in the HP turbine stage, flows through the feed preheater of the fluid, and is condensed in the condenser. A pump pumps the fluid via control valve to heat the feed preheater of the fluid, from which it returns to the HP evaporator. At the same time evaporated coolant flows into an LP evaporator in counter-flow to the working fluid, condenses, and is returned to the cooling circuit of the combustion engine. The working fluid in the LP evaporator is heated to its boiling point, gives up its energy in the LP stage of the steam turbine is condensed, pumped to the preheater and returns to the LP evaporator. The two rotors of the turbine stages (HP and LP stages) are mounted on the same shaft, which drives a working machine or a generator.

  18. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  19. Exergetic optimization of the part-flow evaporative gas turbine cycles. Paper no. IGEC-1-ID23

    International Nuclear Information System (INIS)

    Yari, M.; Sarabch, K.

    2005-01-01

    The evaporative gas turbine cycle is a new high efficiency power cycle that has reached the pilot plant testing stage. The latest configuration proposed for this cycle is known as part flow evaporative gas turbine cycle (PEvGT) in which humidification is combined with steam injection. Having advantages of both steam injected and humid air cycles, it is regarded as a very desirable plant for future. In this paper the exergy equations have been added to the mathematical model. Then exergy analysis and optimization of the PEvGT cycles: PEvGT and PEvGT-IC have been done. This study show that the maximum exergy destruction rate related to combustion chamber in both cycles. The exergetic optimization shows, the maximum first and second efficiency occur in the highest values of part-flow humidification rate. (author)

  20. Steam feeding redundancy for turbine-drives of feed pumps at WWER-1000 NPP

    International Nuclear Information System (INIS)

    Nesterov, Yu.V.; Shmukler, B.I.

    1987-01-01

    The system of steam supply for feed pump driving turbines (T) at the South Ukrainian Unit 1 according to the centralized redundancy principle is described. T is feeded through the collector of water auxiliary sytem (CWAS) to which steam from the third steam extraction line of turbine is supplied under thenormal regime. Under the reduction of turbine load, live steam from the steam generator is supplied to CWAS through the pressure regulator, possesing 10 s speed of responce. In this case the level reduction in the steam generator makes up 170 mm

  1. The influence of selected design and operating parameters on the dynamics of the steam micro-turbine

    Science.gov (United States)

    Żywica, Grzegorz; Kiciński, Jan

    2015-10-01

    The topic of the article is the analysis of the influence of selected design parameters and operating conditions on the radial steam micro-turbine, which was adapted to operate with low-boiling agent in the Organic Rankine Cycle (ORC). In the following parts of this article the results of the thermal load analysis, the residual unbalance and the stiffness of bearing supports are discussed. Advanced computational methods and numerical models have been used. Computational analysis showed that the steam micro-turbine is characterized by very good dynamic properties and is resistant to extreme operating conditions. The prototype of micro-turbine has passed a series of test calculations. It has been found that it can be subjected to experimental research in the micro combined heat and power system.

  2. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines into an exi......Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines...... into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC). High temperature fuel cells (such as solid oxide fuel cell (SOFC)) could also be used as a topping cycle, achieving even higher global plant efficiency and even lower specific CO2 emissions....... Decreasing the operating temperature in a SOFC allows the use of less complex materials and construction methods, consequently reducing plant and the electricity costs. A lower working temperature makes it also suitable for topping an existing steam cycle, instead of gas turbines. This is also the target...

  3. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  4. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  5. Method for extending the unrestricted operating range of condensing steam turbines

    International Nuclear Information System (INIS)

    Csaba, G.; Bannerth, Cs.

    2009-01-01

    The allowed condenser temperature of the condensing steam turbines is determined by the design parameters of the steam turbine (casing geometry, exhaust area, blade length, blade angle, blade profile etc.). The fluctuations of condenser temperature may lead to reduced power output of the condensing steam turbine. Solutions where the low pressure turbine casings have the same exhaust area can be kept in operation at narrow condenser temperature range without restrictions. Exceeding the mentioned temperature range the exhaust hood temperature restriction, undergoing the temperature range choking point restriction appears causing increased operation cost. The aim of the paper is to present a condensing steam turbine - direct-contact condenser system that can extend the unrestricted operating range. The examined system consists of more parallelly connected low pressure turbine casings so-called diabolo that having at least two exhausts separated at the steam side. The exhausts, utilizing varying input-temperature coolant, are connected to the condensers that are separated at the steam side and serially connected at the coolant side. The casings have the same inlet areas while the exhausts have different areas resulting different volume flows and temperature operating range. The economic advantage of this solution approaches the savings between the serially connected direct-contact condensers and condensers in parallel of a dry cooling system. It can be proven by a simple calculation using the ambient air temperature duration diagram that is presented in the paper. (author)

  6. Thermo-economic assessment of the integration of steam cycles on offshore platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    thermodynamic and economic performance indicators. The results illustrate the benefits of converting the gas turbines into a combined cycle. Using seawater results in smaller power generation and greater CO2-emissions than using process water, as the additional power generation in the combined cycle......The integration of steam bottoming cycles on oil platforms is often seen as a possible route to mitigate the CO2-emissions offshore. In this paper, a North Sea platform and its energy requirements are systematically analysed. The site-scale integration of steam networks is assessed by using...... is compensated by the significant pumping demand. This work emphasises that energy improvement efforts should be analysed at the scale of the overall site and not solely at the level of the combined cycle....

  7. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell CycleSteam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  8. Saturated steam turbines for power reactors of WWER-type

    International Nuclear Information System (INIS)

    Czwiertnia, K.

    1978-01-01

    The publication deals with design problems of large turbines for saturated steam and with problem of output limitations of single shaft normal speed units. The possibility of unification of conventional and nuclear turbines, which creates the economic basis for production of both types of turbines by one manufacturer based on standarized elements and assemblies is underlined. As separate problems the distribution of nuclear district heating power systems are considered. The choice of heat diagram for district heating saturated steam turbines, the advantages of different diagrams and evaluaton for further development are presented. On this basis a program of unified turbines both condensing and district heating type suitable for Soviet reactors of WWER-440 and WWER-1000 type for planned development of nuclear power in Poland is proposed. (author)

  9. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    International Nuclear Information System (INIS)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I.; Naterer, G.; Gabriel, K.

    2009-01-01

    includes a 'nuclear' steam-reheat stage, the SCWR is based on a pressure tube design. However, the single-reheat cycle requires a nuclear steam-reheat, thus increasing the complexity of the reactor core design. The major technical challenge associated with a SC no-reheat turbine is the high moisture content in the LP turbine exhaust. A thermal-performance simulation reveals that the steam quality at the exhaust from the LP turbine is approximately 81%. However, the moisture can be reduced by implementation of contoured channels in the inner casing for draining water and moisture removal stages. The overall thermal efficiency of the two cycles was determined to be about 50% (assumptions are made to account for turbine and pump efficiency losses). This paper also identifies locations of high-temperature heat extractions from the proposed SCW NPP cycles that can be used to heat water / steam in the hydrogen co-generation loop. Heat exchangers of a recuperator-type would be used for this purpose. To design such heat exchangers two heat-transfer correlations for bare tubes were identified: one for supercritical water and another for superheated steam. (author)

  10. Annual energy and environment analysis of solarized steam injection gas turbine (STIG) cycle for Indian regions

    International Nuclear Information System (INIS)

    Selwynraj, A. Immanuel; Iniyan, S.; Suganthi, L.; Livshits, Maya; Polonsky, Guy; Kribus, Abraham

    2016-01-01

    Highlights: • Study on the influence of local climatic conditions on solar STIG cycle is presented. • The annual solar to electricity efficiency ranges between 11.2 and 17.1% and the solar fraction ranges 9.3–41.7%. • The range of annual specific CO_2 emission is 312–408 kg/MWh and incremental CO_2 avoidance is 4.2–104 kg/MWh. • The levelized tariff (LT) is 0.2–0.23 $/kWh, and the solar levelized tariff (SLT) ranges from 0.11 to 0.27 $/kWh. - Abstract: The solarized steam injection gas turbine (STIG) cycle uses both the fuel and solar heat simultaneously for power generation. The annual thermodynamic performances of the cycle for sites in India with local climatic conditions such as ambient temperature, relative humidity and availability of direct normal irradiance (DNI) to the solar concentrators under two modes of constant and variable power are presented in this paper. The results reveal that the solar to electricity efficiency of solar hybrid STIG plant with a simple parabolic trough collector (PTC) is similar to existing solar thermal technologies, and also higher solar share is obtained. The study also reveals that the annual CO_2 emission is similar to combined cycle plants and lower than gas turbine technologies. The incremental CO_2 avoidance is also computed due to solar participation. The annual values of exergetic solar fraction and exergetic efficiency at Indore are higher than Jaipur. Results of an improved economic assessment show that the levelized tariff (LT) of solar hybrid STIG plant is 0.2–0.23 $/kWh and the levelized tariff (solar only) or solar levelized tariff (SLT) of solar STIG plant ranges from 0.11 to 0.27 $/kWh for both constant and variable power scenarios.

  11. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2010-01-01

    The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part...... of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part......-load performance for the two-shaft gas turbine. Reducing the load this way is accompanied by a much larger decrease in exhaust gas temperature for the single-shaft gas turbine than for the two-shaft configuration. As used here, the results suggest that variable geometry generally deteriorates the gas turbine part...

  12. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  13. Operating results of 220 MW SKODA saturated steam turbines

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    One of the steam turbines produced by the SKODA Works, the 220 MW steam turbine for saturated admission steam of a speed of 3000 r.p.m. is described; it is used in nuclear power plants with 400 MW PWR type reactors. 16 units of 8 turbines each have been in operation in the Jaslovske Bohunice and Dukovany power plants with the total period of operation of all machines exceeding 750,000 hours. The 220 MW steam turbine consists of a two-flow high-pressure section and of two identical two-flow low-pressure sections. The pressure of saturated steam at the inlet of the high-pressure section is 4.32 MPa (the corresponding temperature of the saturation limit being 255 degC) and during the expansion in the high-pressure section it drops to 0.6 MPa; steam moisture reaches 12%. In a separator and two-stage reheater using blend steam, the steam is freed of the moisture and is reheated to a temperature of 217 degC. Some operational problems are discussed, as are the loss of the material of the stator parts of the high-pressure section due to corrosion-erosion wear and corrosion-erosion wear of the guide wheels of the high-pressure section, and measures are presented carried out for the reduction of the corrosion-erosion effects of wet steam. One of the serious problems were the fatigue fractures of the blades of the 4th high-pressure stage, which appeared after 20 000 to 24 000 hours of operation in the dented tee-root. The guide wheels of the 4th stage were substituted by new guide wheels with uniform pitch of the channels and with increased number of guide blades. Also discussed are the dynamic behavior of the low-pressure section of the bridge structure, the operating reliability and the heat off-take for water heating of long-distance heating systems. (Z.S.) 9 figs

  14. Analysis of flow instability in steam turbine control valves

    International Nuclear Information System (INIS)

    Pluviose, M.

    1981-01-01

    With the sponsorship of Electricite de France and the French steam turbine manufacturers, the Gas Turbine Laboratory of CETIM has started a research about the unsteady phenomena of flow in control valves of steam turbines. The existence of unsteady embossment in the valve cone at rise has been as certained, and a conventional computing procedure has been applied to locate the shock waves in the valve. These shock waves may suddenly arise at some valve lifts and give way to fluttering. Valve geometries attenuating instability of flow and increasing therefore the reliability of such equipment are proposed [fr

  15. Economic evaluation of externally fired gas turbine cycles for small-scale biomass cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    In this conceptual study, externally fired gas turbine (EFGT) cycles in combination with a biomass-fueled, atmospheric circulating fluidized bed (CFB) furnace are investigated for small scale heat and power production ({approx} 8 MW fuel input). Three cycle configurations are considered: closed cycle, with nitrogen, helium, and a helium/carbon dioxide mixture as working fluids; open cycle operating in parallel to the CFB system; and open cycle with a series connection to the CFB system. Intercooling, postcooling, and recuperation are employed with the goal of maximizing efficiency. Aside from a thermodynamic performance analysis, the study includes an economic analysis of both the closed and open externally fired gas turbine configurations, and comparisons are made with existing and emerging alternatives for small-scale biomass cogeneration. Simulation results show that thermodynamic performance varies slightly between the different configurations and working fluids, with electrical efficiencies of 31-38% (LHV) and total efficiency of 85-106% (LHV). The economic evaluation shows that the turbomachinery and the CFB furnace dominate the total plant cost, with each contributing about 1/3 of the total installed equipment cost. The specific capital cost for installation in Sweden in 1998 currency is calculated as 26-31 kSEK/kW{sub e} which is equivalent to 3 200-3 900 USD/kW{sub e} or 2 700-3 300 EUR/kW{sub e} .The cost of electricity, COE, is estimated to 590-670 SEK/MWh{sub e} (equivalent to 73-84 USD/MWh{sub e} or 62-71 EUR/MWh{sub e}) for 4 000 full load hours per year in a cogeneration application. Comparing the economic results for the externally fired gas turbine cycles in a slightly larger scale (40-50 MW{sub f}) to the economics of conventional biomass fired steam turbine cycles shows that the cost of electricity for the two plant configurations are roughly the same with a COE of 300-350 SEK/MWh{sub e}. It is believed that the economic performance of the EFGT

  16. Effect of a high heat flux on the corrosion of 2 1/4 Cr-1 Mo steel in superheated steam

    International Nuclear Information System (INIS)

    Griess, J.C.; DeVan, J.H.; Maxwell, W.A.

    1977-01-01

    A series of corrosion tests was conducted to determine the effect of heat flux on the corrosion of 2 1 / 4 Cr-1 Mo steel in superheated steam. The tests were conducted with a constant heat flux of (126 kW/m 2 ) 40,000 Btu hr -1 ft -2 and surface temperatures varying from 950 to 1000 0 F (510 to 541 0 C) on each specimen. Specimens were exposed for varying lengths of time, ranging from 500 to 6000 hr. Essentially all the corrosion product oxide remained on the steel during the first 2000 hr, but after that time, exfoliation of the oxide began. The percentage of corrosion product oxide lost from the specimen increased with exposure time; about 33 percent was missing after 6000 hr. After an initial period of rapid corrosion, the average corrosion rate was constant at 1.8 mils/year (45 μm/year). In contrast, isothermal specimens exposed to superheated steam at 930 0 F (499 0 C) in the same test facility corroded at a decreasing rate throughout the test. Metallographic sections showed that, with heat transfer across the specimen-steam interface, both cracks and porosity developed in the oxide, even on short exposure, a face that was undoubtedly responsible for the early exfoliation of the oxide and the constant corrosion rate

  17. Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1977-01-01

    A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

  18. Statistical evaluations concerning the failure behaviour of formed parts with superheated steam flow. Pt. 1

    International Nuclear Information System (INIS)

    Oude-Hengel, H.H.; Vorwerk, K.; Heuser, F.W.; Boesebeck, K.

    1976-01-01

    Statistical evaluations concerning the failure behaviour of formed parts with superheated-steam flow were carried out using data from VdTUEV inventory and failure statistics. Due to the great number of results, the findings will be published in two volumes. This first part will describe and classify the stock of data and will make preliminary quantitative statements on failure behaviour. More differentiated statements are made possible by including the operation time and the number of start-ups per failed part. On the basis of time-constant failure rates some materials-specific statements are given. (orig./ORU) [de

  19. Control device for steam turbine

    International Nuclear Information System (INIS)

    Hoshi, Hiroyuki.

    1993-01-01

    A power load imbalance detection circuit detects a power load imbalance when a load variation coefficient is large and output-load deviation is great. Then, it self-holds and causes a timer to start counting up and releases the self-holding after the elapse of a certain period of time. Upon load separation caused by system accidents, the power load imbalance detection circuit operates along with the increase of turbine rpm, to operate the control valve abrupt closing circuit and a bypassing value abrupt opening circuit. Then, self-holding of the power load imbalance detection circuit is released and, subsequently, a steam control value and a bypass valve are controlled by a control valve flow rate demand signal and a bypass flow rate demand signal determined by an entire main steam flow rate signal and a speed/load control signal. Accordingly, the turbine rpm is settled to about a rated rpm. This enables to avoid reactor shutdown upon occurrence of load interruption. (I.N.)

  20. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  1. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  2. Compatibility of gas turbine materials with steam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Desai, V.; Tamboli, D.; Patel, Y. [Univ. of Central Florida, Orlando, FL (United States)

    1995-10-01

    Gas turbines had been traditionally used for peak load plants and remote locations as they offer advantage of low installation costs and quick start up time. Their use as a base load generator had not been feasible owing to their poor efficiency. However, with the advent of gas turbines based combined cycle plants (CCPs), continued advances in efficiency are being made. Coupled with ultra low NO{sub x} emissions, coal compatibility and higher unit output, gas turbines are now competing with conventional power plants for base load power generation. Currently, the turbines are designed with TIT of 2300{degrees}F and metal temperatures are maintained around 1700{degrees}F by using air cooling. New higher efficiency ATS turbines will have TIT as high as 2700{degrees}F. To withstand this high temperature improved materials, coatings, and advances in cooling system and design are warranted. Development of advanced materials with better capabilities specifically for land base applications are time consuming and may not be available by ATS time frame or may prove costly for the first generation ATS gas turbines. Therefore improvement in the cooling system of hot components, which can take place in a relatively shorter time frame, is important. One way to improve cooling efficiency is to use better cooling agent. Steam as an alternate cooling agent offers attractive advantages because of its higher specific heat (almost twice that of air) and lower viscosity.

  3. Studies and solutions of steam turbines for nuclear heating power stations

    International Nuclear Information System (INIS)

    Drahy, J.

    1979-01-01

    The possibilities of combined generation of heat and electric power and special features of the corresponding equipment for WWER type reactors are considered. Condensing steam turbines with bled steam points and the constructional solution of bled points are presented for heating the network water to 110 0 C, 120 0 C, and 160 0 C, respectively. The dimensions of the low pressure final stage of the turbine are given. Problems concerning condensing and bleeding turbines and combination types of back-pressure and condensing turbines as well as solutions to the design of 250 MW and 500 MW turbines are discussed

  4. Dual turbine power plant and a reheat steam bypass flow control system for use therein

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1977-01-01

    An electric power plant having dual turbine-generators connected to a steam source that includes a high temperature gas cooled nuclear reactor is described. Each turbine comprises a high pressure portion operated by superheat steam and an intermediate-low pressure portion operated by reheat steam; a bypass line is connected across each turbine portion to permit a desired minimum flow of steam from the source at times when the combined flow of steam through the turbine is less than the minimum. Coolant gas is propelled through the reactor by a circulator which is driven by an auxiliary turbine which uses steam exhausted from the high pressure portions and their bypass lines. The pressure of the reheat steam is controlled by a single proportional-plus-integral controller which governs the steam flow through the bypass lines associated with the intermediate-low pressure portions. At times when the controller is not in use its output signal is limited to a value that permits an unbiased response when pressure control is resumed, as in event of a turbine trip. 25 claims, 2 figures

  5. Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.

    2017-11-01

    The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.

  6. Evaporative gas turbine cycles. A thermodynamic evaluation of their potential

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, P M

    1993-03-01

    The report presents a systematic method of thermodynamically evaluating different gas turbine cycles, treating the working fluids as ideal gases (c{sub p}=c{sub p}(T)). All models used to simulate different components in the cycles are presented in the report in detail and then connected in a computer program fully developed by the author. The report focuses on the theme of evaporative gas turbine cycles, in which low level heat is used to evaporate water into the compressed air stream between the compressor and recuperator. This leads to efficiency levels close to a comparable combined cycle but without the steam bottoming cycle. A parametric analysis has been conducted with the aim of deciding the best configuration of an evaporative cycle both for an uncooled expander and for a cooled expander. The model proposed to simulate the cooled expander is a combination between two existing models. (121 refs., 35 figs.,).

  7. Postfact phenomena of the wet-steam flow electrization in turbines

    Science.gov (United States)

    Tarelin, A. A.

    2017-11-01

    Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.

  8. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  9. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part I: Background and design

    International Nuclear Information System (INIS)

    Haglind, Fredrik

    2008-01-01

    The aim of the present paper is to review the prospects of using combined cycles as prime movers for large ships, like, container ships, tankers and bulk carriers. The paper is divided into three parts of which this paper constitutes Part I. Here, the environmental and human health concerns of international shipping are outlined. The regulatory framework relevant for shipping and the design of combined cycles are discussed. In Part II, previous work and experience are reviewed, and an overview of the implications of introducing combined cycles as prime movers is included. In Part III, marine fuels are discussed and the pollutant emissions of gas turbines are compared with those of two-stroke, slow-speed diesel engines. Environmental effects of shipping include contributions to the formation of ground-level ozone, acidification, eutrophication and climate impact. Tightening environmental regulations limit the fuel sulphur content and pollutant emissions. For moderate live steam pressures, a vertical HRSG of drum-type mounted directly over the gas turbine, is suggested to be a viable configuration that minimizes ground floor and space requirements

  10. Redesign of steam turbine rotor blades and rotor packages – Environmental analysis within systematic eco-design approach

    International Nuclear Information System (INIS)

    Baran, Jolanta

    2016-01-01

    Highlights: • Systematic approach to eco-design of steam turbine rotor blades was applied. • Eco-innovative solutions are based on structural and technological change. • At the stage of detailed design the variants were analyzed using LCA. • Main achieved benefits: energy and material savings, lower environmental impact. • Benefits related to the possible scale of the solution practical application. - Abstract: Eco-design of steam turbine blades could be one of the possibilities of decreasing the environmental impact of energy systems based on turbines. The paper investigates the eco-design approach to elaboration of the rotor blades and packages. The purpose is to present the course of eco-design of the rotor blades and the rotor packages taking account of eco-design assumptions, solutions and the concept itself. The following eco-design variants of the rotor blades and the rotor packages are considered: elements of the rotor blades made separately (baseline variant of the rotor blades); elements of the rotor blades made of one piece of material; blades in packages made separately and welded (baseline variant of the rotor packages); packages milled as integral elements. At the stage of detailed design, the Life Cycle Assessment (LCA) is performed in relation to a functional unit – the rotor blades and packages ready for installation in a steam turbine, which is the stage of the turbine. The obtained results indicate that eco-innovative solutions for the turbine blades and packages could be achieved through structural and technological changes. Applying new solutions of the rotor blades may produce the following main benefits: 3.3% lower use of materials, 29.4% decrease in energy consumption at the manufacturing stage, 7.7% decrease in the environmental impact in the life cycle. In relation to the rotor packages, the following main benefits may be achieved: 20.5% lower use of materials, 25.0% decrease in energy consumption at the production stage, 16

  11. Steam Turbine Flow Path Seals (a Review)

    Science.gov (United States)

    Neuimin, V. M.

    2018-03-01

    Various types of shroud, diaphragm, and end seals preventing idle leak of working steam are installed in the flow paths of steam turbine cylinders for improving their efficiency. Widely known labyrinth seals are most extensively used in the Russian turbine construction industry. The category of labyrinth seals also includes seals with honeycomb inserts. The developers of seals with honeycomb inserts state that the use of such seals makes it possible to achieve certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor rotating parts may rub against the stator elements. However, a positive effect can only be achieved if the optimal design parameters of the honeycomb structure are fulfilled with due regard to the specific features of its manufacturing technology and provided that this structure is applied in a goal-seeking manner in the seals of steam and gas turbines and compressors without degrading their vibration stability. Calculated and preliminary assessments made by experts testify that the replacement of conventional labyrinth seals by seals with honeycomb inserts alone, due to which the radial gaps in the shroud seal can be decreased from 1.5 to 0.5 mm, allows the turbine cylinder efficiency to be increased at the initial stage by approximately 1% with the corresponding gain in the turbine set power output. The use of rectangular-cellular seals may result, according to estimates made by their developers, in a further improvement of turbine efficiency by 0.5-1.0%. The labor input required to fabricate such seals is six to eight times smaller than that to fabricate labyrinth seals with honeycomb inserts. Recent years have seen the turbine construction companies of the United States and Germany advertising the use of abradable (sealing) coatings (borrowed from the gas turbine construction technology) in the turbine designs instead of labyrinth seals. The most efficient performance of

  12. The Effect of Condensing Steam Turbine Exhaust Hood Body Geometry on Exhaust Performance Efficiency

    Science.gov (United States)

    Gribin, V. G.; Paramonov, A. N.; Mitrokhova, O. M.

    2018-06-01

    The article presents data from combined numerical and experimental investigations of the effect that the overall dimensions of the exhaust hood of a steam turbine with an underslung condenser has on the aerodynamic losses in the hood. Owing to the properly selected minimum permissible overall dimensions of the exhaust hood, more efficient operation of this turbine component is achieved, better vibration stability of the turbine set shaft line is obtained, and lower costs are required for arranging the steam turbine plant in the turbine building. Experiments have shown that the main overall dimensions of the hood body have a determining effect on the exhaust hood flow path profile and on its aerodynamic performance. Owing to properly selected ratios between the exhaust hood body main sizes without a diffuser, a total loss coefficient equal to approximately unity has been obtained. By using an axial-radial diffuser, the energy loss can be decreased by 30-40% depending on the geometrical parameters and level of velocities in the inlet section of a hood having the optimal overall dimensions. By using the obtained results, it becomes possible to evaluate the overall dimensions necessary for achieving the maximal aerodynamic hood efficiency and, as a consequence, to obtain better technical and economic indicators of the turbine plant as a whole already at the initial stage of its designing. If a need arises to select overall dimensions smaller than their optimal values, the increase of energy loss can be estimated using the presented dependences. The cycle of investigations was carried out on the experimental setups available in the fundamental research laboratory of the Moscow Power Engineering Institute National University's Department of Steam and Gas Turbines with due regard to the operating parameters and similarity criteria.

  13. Power generation from a 7700C heat source by means of a main steam cycle, a topping closed gas cycle and a ammonia bottoming cycle

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1981-03-01

    For power generation, steam cycles make an efficient use of medium temperature heat sources. They can be adapted to dry cooling, higher power ratings and output increase in winter by addition of an ammonia bottoming cycle. Active development is carried out in this field by 'Electricite de France'. As far as heat sources at higher temperatures are concerned, particularly related to coal-fired or nuclear power plants, a more efficient way of converting energy is at first to expand a hot working fluid through a gas turbine. It is shown in this paper that a satisfactory result, for heat sources of about 770 0 C, is obtained with a topping closed gas cycle of moderate power rating, rejecting its waste heat into the main steam cycle. Attention has to be paid to this gas cycle waste heat recovery and to the coupling of the gas and steam cycles. This concept drastically reduces the importance of new technology components. The use and the significance of an ammonia bottoming cycle in this case are investigated

  14. Environment-friendly type energy and coordinated community development project. Feasibility study for industrialization of high efficiency waste-fired power generation system (industrial refuse derived fuel and gas turbine combined type); Kankyo chowagata energy community keisei sokushin. Kokoritsu haikibutsu hatsuden (sangyo RDF GT fukugogata) jigyoka FS chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    High efficiency power generation, which is useful for promoting the environment-friendly type energy and coordinated community, is investigated by combining a steam turbine power generation system using the PS-RDF (paper sludge-refuse derived fuel) and a gas turbine (GT) combined cycle. Industrialization plan for processing PS in low cost has been made to ensure the profitability by participating the wholesale power supply under the law of electric power industry. This combined system is similar to the so-called super power generation using municipal garbage, but the lower temperature of steam from GT waste heat boilers (WHB) is super-heated by the flue gas from RDF boiler, which is called advanced power generation system (A.S.S.). The total power generation capacity is 149,000 kW, which consists of three 35,000 kW units of GT and one 44,000 kW unit of steam turbine. When comparing the combined system (A.S.S.) and usual one with the independent installation of the RDF steam power generation system and a GT combined cycle, the A.S.S. provides the repowering efficiency of 7,600 kW output with exactly the same quantity of fuel input as usual one. 71 figs., 31 tabs.

  15. Technical and economical feasibility of the Rankine compression gas turbine (RCG)

    NARCIS (Netherlands)

    Ouwerkerk, H.; Lange, de H.C.

    2006-01-01

    The Rankine compression gas turbine (RCG) is a new type of combined cycle, i.e. combined steam and gas turbine installation, that returns all shaft power on one free power turbine. The novelty of the RCG is that the steam turbine drives the compressor of the gas turbine cycle. This way, the turbine

  16. Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan

    International Nuclear Information System (INIS)

    Aminov, Zarif; Nakagoshi, Nobukazu; Xuan, Tran Dang; Higashi, Osamu; Alikulov, Khusniddin

    2016-01-01

    Highlights: • The combined cycle power plant (CCPP) has a steam turbine and a gas turbine. • Fossil fuel savings and reduction of the CCGT of was evaluated. • The performance of a three pressure CCGT is modelled under different modes. • Energy efficiency of the combined cycle was 58.28%. • An annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum can be achieved. - Abstract: The power generation of Tashkent Thermal Power Plant (TPP) is based on conventional power units. Moreover, the facility suffers from limited efficiency in electricity generation. The plant was constructed during the Soviet era. Furthermore, the power plant is being used for inter-hour power generation regulation. As a result, the efficiency can be reduced by increasing specific fuel consumption. This research focuses on the evaluation of the energy efficiency of the combined cycle gas turbine (CCGT) for the Tashkent TPP. Specifically, the objective is an evaluation of fossil fuel savings and reduction of CO_2 and NO_x emissions with the using CCGT technology at conventional power plant. The proposed combined cycle power plant (CCPP) includes an existing steam turbine (ST) with 160 MW capacity, heat recovery steam generator (HRSG), and gas turbine (GT) technology with 300 MW capacity. The performance of a three pressure CCGT is modelled under different modes. As a result, the efficiency of the combined cycle was evaluated at 58.28%, while the conventional cycle had an efficiency of 34.5%. We can achieve an annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum.

  17. Calculations of the nozzle coefficient of discharge of wet steam turbine stages

    International Nuclear Information System (INIS)

    Jinling, Z.; Yinian, C.

    1989-01-01

    A method is presented for calculating the coefficient of discharge of wet steam turbine nozzles. The theoretical formulation of the problem is rigorously in accordance with the theory of two-phase wet steam expansion flow through steam turbine nozzles. The computational values are plotted as sets of curves in accordance with orthogonality test principles. They agree satisfactorily both with historical empirical data and the most recent experimental data obtained in the wet steam two-phase flow laboratory of Xian Jiaotong University. (author)

  18. Two different modelling methods of the saturated steam turbine load rejection

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Oprea, Ion

    1999-01-01

    One of the most difficult operation regimes of a steam turbine is the load rejection. It happens usually when the main switchgear of the unit closes unexpectedly due to some external or internal causes. In this moment, the rotor balance collapses: the motor momentum is positive, the resistant momentum is zero and the rotation velocity increases rapidly. When this process occurs, the over-speed protection should activate the emergency stop valves and the control and intercept valves in order to stop the steam admission into the turbine. The paper presents two differential approaches of the fluid dynamic processes from the flow sections of the saturated steam turbine of the NPP, where the laws of mass and energy conservation are applied. In this manner, the 'power and speed versus time' diagrams can be drawn. The main parameters of such technical problem are the closure low of the valves, the large volume of internal cavities, the huge inertial momentum of the rotor and especially the moisture of the steam that evaporates when the pressure decreases and generates an extra power in the turbine. (authors)

  19. Development of 52 inch last stage blade for steam turbine

    International Nuclear Information System (INIS)

    Kadoya, Yoshiki; Harada, Masakatsu; Watanabe, Eiichiro

    1985-01-01

    Mitsubishi Heavy Industries, Ltd. has developed the last stage blades with 1320 mm length for a 1800 rpm LP turbine, and the verification by rotating vibration test using actual blades was finished, thus the blades were completed. In a nuclear power plant with an A-PWR of 3800 MW thermal output, the 1350 MW steam turbine has one HP turbine and three LP turbines coupled in tandem, and the optimum last stage blades for the LP turbines became the 1320 mm blades. The completion of these blades largely contributes to the improvement of thermal efficiency and the increase of generator output in large nuclear power plants, and has the possibility to decrease three LP turbines to two in 900 MW plants, which reduces the construction cost. The velocity energy of steam coming out of last stage blades is abandoned as exhaust loss in a condenser, which is the largest loss in a turbine. The increase of exhaust area using long blades reduces this loss. The economy of the 1320 mm blades, the features of the 1320 mm blades, the aerodynamic design and its verification, the prevention of the erosion of the 1320 mm blades due to wet steam, the strength design, the anti-vibration design and its verification, and the CAD/CAM system are reported. (Kako, I.)

  20. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Mohammadkhani, F.; Shokati, N.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A.

    2014-01-01

    An exergoeconomic analysis is reported for a combined system with a net electrical output of 299 MW in which waste heat from a Gas Turbine-Modular Helium Reactor (GT-MHR) is utilized by two Organic Rankine Cycles (ORCs). A parametric study is also done to reveal the effects on the exergoeconomic performance of the combined system of such significant parameters as compressor pressure ratio, turbine inlet temperature, temperatures of evaporators, pinch point temperature difference in the evaporators and degree of superheat at the ORC (Organic Rankine Cycle) turbines inlet. Finally the combined cycle performance is optimized from the viewpoint of exergoeconomics. The results show that the precooler, the intercooler and the ORC condensers exhibit the worst exergoeconomic performance. For the overall system, the exergoeconomic factor, the capital cost rate and the exergy destruction cost rate are determined to be 37.95%, 6876 $/h and 11,242 $/h, respectively. Also, it is observed that the unit cost of electricity produced by the GT-MHR turbine increases with increasing GT-MHR turbine inlet temperature but decreases as the other above mentioned parameters increase. - Highlights: • An exergoeconomic analysis is performed for the GT-MHR/ORC (Organic Rankine Cycle) combined cycle. • The effects of decision parameters on the exergoeconomic performance are studied. • The highest exergy destructions occur in the precooler, intercooler and condenser. • Superheating the working fluid at the ORC turbine inlet is not necessary. • Thermodynamic and exergoeconomic optimal conditions differ from each other

  1. Endoscopic inspection of steam turbines

    International Nuclear Information System (INIS)

    Maliniemi, H.; Muukka, E.

    1990-01-01

    For over ten years, Imatran Voima Oy (IVO) has developed, complementary inspection methods for steam turbine condition monitoring, which can be applied both during operation and shutdown. One important method used periodically during outages is endoscopic inspection. The inspection is based on the method where the internal parts of the turbine is inspected through access borings with endoscope and where the magnified figures of the internal parts is seen on video screen. To improve inspection assurance, an image-processing based pattern recognition method for cracks has been developed for the endoscopic inspection of turbine blades. It is based on the deduction conditions derived from the crack shape. The computer gives an alarm of a crack detection and prints a simulated image of the crack, which is then checked manually

  2. AFB/open cycle gas turbine conceptual design study

    Science.gov (United States)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  3. Investigation of brush seals for application in steam turbines

    International Nuclear Information System (INIS)

    Zorn, Peter

    2012-01-01

    Brush seals have high potential for efficiency increase compared to conventional labyrinth seals in steam turbines. Due to less experience in operation today there is a lot of scepticism with customers of steam turbine manufacturers. Therefore this thesis is investigating characteristics of this type of seal. Experiments and numerical models will be presented, which lead to better knowledge about leakages and influence of flow through seal onto dynamics of rotor in comparison to labyrinth seals. This thesis is increasing area of experience and one more positive reference.

  4. Boresonic inspection of steam turbine and generator spindles with the Tomoscan

    International Nuclear Information System (INIS)

    Dube, N.; Bertholotti, D.; Yates, D.

    1990-01-01

    Steam turbine rotors in power utility plants can generate cracks and ultimately fail after long period of use. The inspection of rotors is done on a regular basis and particular attention is paid to areas near bore holes. An automated ultrasound system has been developed to control and ensure the quality of rotor bore holes of steam turbine rotors

  5. Dynamic computer simulation of the Fort St. Vrain steam turbines

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1983-01-01

    A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement

  6. Actual characteristics study on HTR-10GT coupling with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Peng Xuechuang; Zhu Shutang; Wang Jie

    2005-01-01

    Compared with a plant of steam turbine cycle, a HTGR plant with direct gas turbine cycle has a higher thermal efficiency. A lot of investigations on the characteristics of HTR-10GT, which is the reactor studying project of Tsinghua University, have been carried out, however, all of them are based on the theoretical Brayton Cycle which neglects many actual conditions, such as leakage, pressure loss and so on. For engineering practices, leakage is an unavoidable problem. The difference of the location and capacity of leakage will directly influence the working medium's thermoparameters and lead to fall of the cycle efficiency. The present study is focused on the performance of an actual Brayton cycle with practical conditions of leakage. The present study which based on building the physical and mathematical model of the leakage, aims to study the actual characteristics of the direct gas turbine circle. (authors)

  7. Recent technology for BWR nuclear steam turbine unit

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Masuda, Toyohiko; Kashiwabara, Katsuto; Oshima, Yoshikuni

    1990-01-01

    As to the ABWR plants which is the third improvement standard boiling water reactor type plants, already the construction of a plant of 1356 MWe class for 50 Hz is planned. Hitachi Ltd. has accumulated the technology for the home manufacture of a whole ABWR plant including a turbine. As the results, the application of a butterfly type combination intermediate valve to No.5 plant in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc., which began the commercial operation recently and later plants, the application of a moisture separating heater to No.4 plant in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is manufactured at present and later plants and so on were carried out. As to the steam turbine facilities for nuclear power generation manufactured by Hitachi Ltd., three turbines of 1100 MWe class for 50 Hz and one turbine for 60 Hz are in operation. As the new technologies for the steam turbines, the development of 52 in long last stage blades, the new design techniques for the rotor system, the moisture separating heater, the butterfly type combination intermediate valve, cross-around pipes and condensate and feedwater system are reported. (K.I.)

  8. Performance study of ejector cooling cycle at critical mode under superheated primary flow

    International Nuclear Information System (INIS)

    Tashtoush, Bourhan; Alshare, Aiman; Al-Rifai, Saja

    2015-01-01

    Highlights: • The ECC is modeled using EES Software and it is validated with published data. • Detailed analysis of the ECC with different refrigerants is conducted. • The constant pressure mixing is better than constant area mixing ejectors. • R134a is the selected refrigerant for the best cooling cycle performance. • The superheated primary flow at critical mode is achieved with EJ2 ejector used. - Abstract: In this work the performance of the ejector cooling cycle is investigated at critical mode, where, the effects of ejector geometry, refrigerant type, and operating condition are studied. The ejector cooling cycle is modeled with EES Software. The mass, momentum, and energy conservation principles are applied to the secondary and primary flows to investigate the performance of the ejector cooling cycle under superheated primary flow. The refrigerant R134 a is selected based on the merit of its environmental and performance characteristics. The primary working fluid in the refrigeration cycle is maintained at superheated conditions for optimal ejector performance. The solar generator temperature ranges are 80–100 °C. The operating temperature of evaporator range is 8–12 °C and the optimal condensation temperature is in the range of 28–40 °C. It is found that constant-pressure mixing ejector generates higher backpressure than constant-area mixing ejector for the same entrainment ratio and COP. The type of ejector is selected based on the performance criteria of the critical backpressure and choking condition of the primary flow, the so called EJ2 type ejector meets the criteria. The COP is found to be in the range of 0.59–0.67 at condenser backpressure of 24 bar due to higher critical condenser pressure and higher generator temperature

  9. Multi-layer casing of a steam turbine for high steam pressures and temperatures

    International Nuclear Information System (INIS)

    Remberg, A.

    1978-01-01

    In previous turbine casings there is no sealing provided between the inner layer and the outer layer, so that the steam pressure acts fully on the casing top and on the shaft seal housing situated there. To reduce the displacement which occurs there due to pressure differences in the various steam spaces, the normal inner casing is made with the shaft sealing housing in an inner layer, which cannot be divided in the axial direction. The inner layer can be inserted from the high pressure side into the unit outer casing. A horizontal section through the turbine in the attached drawing makes the construction and operation of the invention clear. (GL) [de

  10. Influence of precooling cooling air on the performance of a gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ik Hwan; Kang, Do Won; Kang, Soo Young; Kim, Tong Seop [Inha Univ., Incheon (Korea, Republic of)

    2012-02-15

    Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state of the art F class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

  11. PORST: a computer code to analyze the performance of retrofitted steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Hwang, I.T.

    1980-09-01

    The computer code PORST was developed to analyze the performance of a retrofitted steam turbine that is converted from a single generating to a cogenerating unit for purposes of district heating. Two retrofit schemes are considered: one converts a condensing turbine to a backpressure unit; the other allows the crossover extraction of steam between turbine cylinders. The code can analyze the performance of a turbine operating at: (1) valve-wide-open condition before retrofit, (2) partial load before retrofit, (3) valve-wide-open after retrofit, and (4) partial load after retrofit.

  12. Variable electricity and steam from salt, helium and sodium cooled base-load reactors with gas turbines and heat storage - 15115

    International Nuclear Information System (INIS)

    Forsberg, C.; McDaniel, P.; Zohuri, B.

    2015-01-01

    Advances in utility natural-gas-fired air-Brayton combed cycle technology is creating the option of coupling salt-, helium-, and sodium-cooled nuclear reactors to Nuclear air-Brayton Combined Cycle (NACC) power systems. NACC may enable a zero-carbon electricity grid and improve nuclear power economics by enabling variable electricity output with base-load nuclear reactor operations. Variable electricity output enables selling more electricity at times of high prices that increases plant revenue. Peak power is achieved using stored heat or auxiliary fuel (natural gas, bio-fuels, hydrogen). A typical NACC cycle includes air compression, heating compressed air using nuclear heat and a heat exchanger, sending air through a turbine to produce electricity, reheating compressed air, sending air through a second turbine, and exhausting to a heat recovery steam generator (HRSG). In the HRSG, warm air produces steam that is used to produce added electricity. For peak power production, auxiliary heat (natural gas, stored heat) is added before the air enters the second turbine to raise air temperatures and power output. Like all combined cycle plants, water cooling requirements are dramatically reduced relative to other power cycles because much of the heat rejection is in the form of hot air. (authors)

  13. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    Science.gov (United States)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  14. Preliminary study of Friction disk type turbine for S-CO_2 cycle application (2016 Autumn Meeting of the KNS)

    International Nuclear Information System (INIS)

    Baik, Seungjoon; Heo, Jin Young; Kwon, Jinsu; Lee, Jeong Ik

    2016-01-01

    Among the next generation reactors, a sodium-cooled fast reactor (SFR) with the supercritical carbon dioxide (S-CO_2) Brayton cycle has been suggested as the advanced energy solution. The S-CO_2 power conversion system can achieve high efficiency with the SFR core thermal condition (450-550℃) and also can reduce the total cycle footprint due to high density of the working fluid. Moreover, the S-CO_2 power cycle can reduce the accident consequence compared to the steam Rankine cycle due to the mild sodium-CO_2 interaction. The S-CO_2 power cycle has different characteristic compare to the conventional steam Rankine cycle or gas Brayton cycle. For the turbine section, the expansion ratio is much smaller than the other cycles. Thus, different type of turbine should be evaluated for the advanced S-CO_2 technology and the KAIST research team considered a friction disk type turbine (Tesla turbine) concept for the S-CO_2 cycle applications. In this paper, the test result and analysis of a lab-scale Tesla turbine in the KAIST S-CO_2 experimental facility (S-CO_2PE) are briefly discussed. The KAIST research team investigated a friction disk type turbine, named as Tesla turbine, for the S-CO_2 power cycle applications. The preliminary test of a lab-scale Tesla turbine was conducted with compressed air. The generator, nozzle angle and bearing performances are tested. With the best performing nozzle angle and bearing, the Tesla turbine was tested under various S-CO_2 conditions. As a result, the S-CO_2PE facility generated electricity (0.5-5W). The isentropic efficiency was relatively low (0.8-1.3%). It seemed that, the authors need further study to understand the main mechanism and maximize the efficiency. After developing the design methodology, the design optimization will be conducted to show the applicability of the friction disk type turbine for the S-CO_2 power cycle

  15. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  16. AREVA Modular Steam Cycle – High Temperature Gas-Cooled Reactor Development Progress

    International Nuclear Information System (INIS)

    Lommers, L.; Shahrokhi, F.; Southworth, F.; Mayer, J. III

    2014-01-01

    The AREVA Steam Cycle – High Temperature Gas-Cooled Reactor (SCHTGR) is a modular graphite-moderated gas-cooled reactor currently being developed to support a wide variety of applications including industrial process heat, high efficiency electricity generation, and cogeneration. It produces high temperature superheated steam which makes it a good match for many markets currently dependent on fossil fuels for process heat. Moreover, the intrinsic safety characteristics of the SC-HTGR make it uniquely qualified for collocation with large industrial process heat users which is necessary for serving these markets. The NGNP Industry Alliance has selected the AREVA SC-HTGR as the basis for future development work to support commercial HTGR deployment. This paper provides a concise description of the SC-HTGR concept, followed by a summary of recent development activities. Since this concept was introduced, ongoing design activities have focused primarily on confirming key system capabilities and the suitability for potential future markets. These evaluations continue to confirm the suitability of the SC-HTGR for a variety of potential applications that are currently dependent on fossil fuels. (author)

  17. Bifuel coal-gas combined cycles

    International Nuclear Information System (INIS)

    Chmielniak, Tadeusz; Kotowicz, Janusz; Lyczko, Jacek

    1997-01-01

    This paper describes basic ways of realization of bi fuel cool-gas combined cycles. The criterion of classification of the systems specification is a joint of the gas pail with the steam part: a) The gas turbine flue gases are introduced into the steam boiler combustion chamber (the serial, hot wind box). b) Bypass of the beat exchangers at the steam turbine unit and/or the steam boiler, by use the waste heat exchangers, or waste boiler at the gas turbine unit (the parallel-coupled). c) The mixed, it's a combination of the two upper. The analysis of the parallel system has been specially presented. In derived formulas for the total efficiency of the bi fuel parallel combined cycle balance equations have been used. This formulas can be used for planning new combined cycle power plants and for modernization existing steam power plants. It was made a discussion about influence of the ratio the gas and the steam turbine electric power on the cycle efficiency in care of the full and the part load of the bi fuel combined cycle power plant. The various systems of the joint of the gas part with the steam part have been examined. The selected results of the calculations have been attached. The models and the numerical simulations have been based on data from the existing steam power plants and real gas turbine units. (Author)

  18. Efficiency calculation on 10 MW experimental steam turbine

    Directory of Open Access Journals (Sweden)

    Hoznedl Michal

    2018-01-01

    Full Text Available The paper deals with defining flow path efficiency of an experimental steam turbine by using measurement of flow, torque, pressures and temperatures. The configuration of the steam turbine flow path is briefly described. Measuring points and devices are defined. The paper indicates the advantages as well as disadvantages of flow path efficiency measurement using enthalpy and torque on the shaft. The efficiency evaluation by the help pressure and temperature measurement is influenced by flow parameter distribution and can provide different values of flow path efficiency. The efficiency determination by using of torque and mass flow measurement is more accurate and it is recommended for using. The disadvantage is relatively very complicated and expensive measuring system.

  19. Cycle improvement for nuclear steam power plant

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1976-01-01

    A pressure-increasig ejector element is disposed in an extraction line intermediate to a high pressure turbine element and a feedwater heater. The ejector utilizes high pressure fluid from a reheater drain as the motive fluid to increase the pressure at which the extraction steam is introduced into the feedwater heater. The increase in pressure of the extraction steam entering the feedwater heater due to the steam passage through the ejector increases the heat exchange capability of the extraction steam thus increasing the overall steam power plant efficiency

  20. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  1. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  2. Indirect-fired gas turbine bottomed with fuel cell

    Science.gov (United States)

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  3. Development of 1800 rpm, 43in. blade for large steam turbine

    International Nuclear Information System (INIS)

    Kuroda, Michio; Yamazaki, Yoshiaki; Namura, Kiyoshi; Taki, Takamitsu; Ninomiya, Satoshi.

    1978-01-01

    In the turbines for nuclear power generation, the inlet conditions of steam is low pressure and low temperature as compared with the turbines for thermal power generation, therefore generally the required steam flow rate is much more. It is the main problem to cope with this steam of large flow rate effectively with long final stage blades and to make a turbine compact. This newly developed blade aims at the turbines from 1100 to 1300 MW class for nuclear power generation and those of 1000 MW class for thermal power generation, and it is the first low revolution, long blade in Japan used for large capacity machines of 60 Hz. Hereinafter, the outline of various examinations carried out at the time of the tests on this blade and the features of this blade are described. There is large margin in the exhaust area with this blade, therefore the turbines with large power output and good performance can be produced. The loss of exhaust energy at turbine exit can be reduced, and thermal efficiency can be raised. Large capacity machines from 1100 to 1300 MW class can be manufactured with six-flow exhaust, tandem compound turbines. In order to confirm the reliability, the vibration characteristics of the blade were investigated in the test of this time, and also the overspeed test and endurance test were carried out. (Kako, I.)

  4. Preliminary study of Friction disk type turbine for S-CO{sub 2} cycle application (2016 Autumn Meeting of the KNS)

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Heo, Jin Young; Kwon, Jinsu; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Among the next generation reactors, a sodium-cooled fast reactor (SFR) with the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been suggested as the advanced energy solution. The S-CO{sub 2} power conversion system can achieve high efficiency with the SFR core thermal condition (450-550℃) and also can reduce the total cycle footprint due to high density of the working fluid. Moreover, the S-CO{sub 2} power cycle can reduce the accident consequence compared to the steam Rankine cycle due to the mild sodium-CO{sub 2} interaction. The S-CO{sub 2} power cycle has different characteristic compare to the conventional steam Rankine cycle or gas Brayton cycle. For the turbine section, the expansion ratio is much smaller than the other cycles. Thus, different type of turbine should be evaluated for the advanced S-CO{sub 2} technology and the KAIST research team considered a friction disk type turbine (Tesla turbine) concept for the S-CO{sub 2} cycle applications. In this paper, the test result and analysis of a lab-scale Tesla turbine in the KAIST S-CO{sub 2} experimental facility (S-CO{sub 2}PE) are briefly discussed. The KAIST research team investigated a friction disk type turbine, named as Tesla turbine, for the S-CO{sub 2} power cycle applications. The preliminary test of a lab-scale Tesla turbine was conducted with compressed air. The generator, nozzle angle and bearing performances are tested. With the best performing nozzle angle and bearing, the Tesla turbine was tested under various S-CO{sub 2} conditions. As a result, the S-CO{sub 2}PE facility generated electricity (0.5-5W). The isentropic efficiency was relatively low (0.8-1.3%). It seemed that, the authors need further study to understand the main mechanism and maximize the efficiency. After developing the design methodology, the design optimization will be conducted to show the applicability of the friction disk type turbine for the S-CO{sub 2} power cycle.

  5. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  6. Preliminary Test of Friction disk type turbine for S-CO{sub 2} cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Hyeon Tae; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Due to the relatively mild sodium-CO{sub 2} interaction, the S-CO{sub 2} Brayton cycle can reduce the accident consequence compared to the steam Rankine cycle. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency for SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce the total cycle footprint due to high density of the working fluid. However, the high pressure operating condition and low viscosity of the fluid cause difficulties in designing appropriate seals and multi-stage turbo machineries. To solve the problem for designing turbo machineries in a creative way, KAIST research team tested a friction disk type turbine concept for the S-CO{sub 2} cycle application. In this paper, the investigation of the Tesla turbine and preliminary test results with compressed air are covered. The KAIST research team investigated a friction disk type turbine, named as Tesla turbine, for the S-CO{sub 2} power cycle applications. Due to the robust design of the fiction disk type, the Tesla turbine technology can be utilized not only for S-CO{sub 2} turbo machinery but also for the multi-phase or sludge flow turbo machinery. The preliminary test of lab-scale Tesla turbine with compressed air was conducted. The high pressure vessel was manufactured for the S-CO{sub 2} operating condition. The test will be concentrated on the turbine efficiency measurement under various conditions and development of the design methodology.

  7. Elimination of feedwater heaters in steam turbines: Prospects for substantial energy savings

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    This paper re-proposes the theory that thermal regeneration (RT) in steam turbine plants decreases thermodynamic efficiency. This theory is supported by the criterion of maximization of variation of exergy in the steam generator (CMVEG) and by an mathematical argumentation based on the first law of thermodynamics. Consequences of great importance are deduced: plant operating costs reductions and a new possibility for cogeneration, that indicates exceptional advantages for the whole power industry, since steam turbine plants are responsible for the greater part of global electric power production

  8. Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

    OpenAIRE

    Sanjay Kr. Singh; D. Boolchandani; S.G. Modani; Nitish Katal

    2014-01-01

    This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II) against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine...

  9. Development of 52 inches last stage blade for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao

    1986-01-01

    The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)

  10. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  11. Optimization of Design of Steam Turbine Exhaust Conduits

    Directory of Open Access Journals (Sweden)

    A. S. Goldin

    2014-01-01

    Full Text Available Improving effectiveness turbine was and remains a key issue for today. In order to improve the efficiency of the turbine is necessary to reduce losses in the steam turbine exhaust conduit.This paper presents the design optimization exhaust conduit steam turbine K-27-2.9 produced by JSC «KTW» at the design stage. The aims of optimizing the design were: decreasing hydraulic resistance of the conduit, reduction of non-uniformity of the flow at the outlet of the conduit, equalizing steam flow ahead of the condenser tube bundle.The conduit models were made and flows in it were simulated in environment of the Solid Works and its application COSMOS Flo Works.As the initial conduit model was selected exhaust conduit of turbine PT-25/34-3.4 produced by JSC «KTW». Was obtained by the calculated velocity field at the outlet of the conduit. The analysis of the calculation results revealed the necessity of changes to the initial design of the conduit. The changes were accompanied by calculating currents flow in the conduit, and assessed the impact of design changes on the nature of the course. Further transformation of the construction of the conduit was held on the results of these calculations. Construction changes are not touched by the outer geometry of the conduit, and were introduced to meet technological.According to calculation results, conclusions were drawn and selected three versions of the conduit.Given are the research results for the initial conduit model and modified design versions. In order to evaluate the flow degree of irregularity the momentum factor (Bussinesku factor for outlet crosssection of the selected conduit design version. Analysis of the research results made it possible to determine optimum design of the exhaust conduit.Introducing the suggested alterations in the conduit design will result in improvement of heat exchange in the condenser, an increase in reliability of the tube bundle operation, a decrease in noise and

  12. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  13. Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory

    International Nuclear Information System (INIS)

    Hafdhi, Fathia; Khir, Tahar; Ben Yahyia, Ali; Ben Brahim, Ammar

    2015-01-01

    Highlights: • The operating mode of the factory and the power supply streams are presented. • Energetic Analysis of steam turbine power plant of an existing phosphoric acid factory. • Exergetic Analysis of each component of steam turbine power plant and the different heat recovery system. • Energy, exergy efficiency and irreversibility rates for the main components are determined. • The effect of the operating parameters on the plant performance are analyzed. - Abstract: An energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in the different parts of the plant are also considered in the study. Mass, energy and exergy balances are established on the main compounds of the plant. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis considering real variation ranges of the main operating parameters such as pressure, temperature and mass flow rate. The effects of theses parameters on the system performances are investigated. The main sources of irreversibility are the melters, followed by the heat exchangers, the steam turbine generator and the pumps. The maximum energy efficiency is obtained for the blower followed by the heat exchangers, the deaerator and the steam turbine generator. The exergy efficiency obtained for the heat exchanger, the steam turbine generator, the deaerator and the blower are 88%, 74%, 72% and 66% respectively. The effects of High Pressure steam temperature and pressure on the steam turbine generator energy and exergy efficiencies are investigated.

  14. Nanoparticles found in superheated steam: a quantitative analysis of possible heterogeneous condensation nuclei

    Czech Academy of Sciences Publication Activity Database

    Kolovratník, M.; Hrubý, Jan; Ždímal, Vladimír; Bartoš, Ondřej; Jiříček, I.; Moravec, Pavel; Zíková, Naděžda

    2014-01-01

    Roč. 228, č. 2 (2014), s. 186-193 ISSN 0957-6509 R&D Projects: GA ČR GA101/09/1633 Institutional support: RVO:61388998 ; RVO:67985858 Keywords : heterogeneous nucleation * steam turbine * ultrafine aerosol particles Subject RIV: BJ - Thermodynamics; CF - Physical ; Theoretical Chemistry (UCHP-M) Impact factor: 0.645, year: 2014 http://pia.sagepub.com/content/early/2013/12/10/0957650913512816

  15. Modeling and optimization of a utility system containing multiple extractions steam turbines

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2011-01-01

    Complex turbines with multiple controlled and/or uncontrolled extractions are popularly used in the processing industry and cogeneration plants to provide steam of different levels, electric power, and driving power. To characterize thermodynamic behavior under varying conditions, nonlinear mathematical models are developed based on energy balance, thermodynamic principles, and semi-empirical equations. First, the complex turbine is decomposed into several simple turbines from the controlled extraction stages and modeled in series. THM (The turbine hardware model) developing concept is applied to predict the isentropic efficiency of the decomposed simple turbines. Stodola's formulation is also used to simulate the uncontrolled extraction steam parameters. The thermodynamic properties of steam and water are regressed through linearization or piece-wise linearization. Second, comparison between the simulated results using the proposed model and the data in the working condition diagram provided by the manufacturer is conducted over a wide range of operations. The simulation results yield small deviation from the data in the working condition diagram where the maximum modeling error is 0.87% among the compared seven operation conditions. Last, the optimization model of a utility system containing multiple extraction turbines is established and a detailed case is analyzed. Compared with the conventional operation strategy, a maximum of 5.47% of the total operation cost is saved using the proposed optimization model. -- Highlights: → We develop a complete simulation model for steam turbine with multiple extractions. → We test the simulation model using the performance data of commercial turbines. → The simulation error of electric power generation is no more than 0.87%. → We establish a utility system operational optimization model. → The optimal industrial operation scheme featured with 5.47% of cost saving.

  16. Why extraction lines and heaters in the turbine-condenser steam space should be lagged

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.M.; Haynes, C.J.

    1998-07-01

    Deregulated utilities face conditions today that necessitate their nuclear and fossil steam plants have the best possible heat rates. The low pressure turbine exhaust and condenser areas are known to be particularly sensitive to betterment. One relatively modest but cost effective heat rate improvement and one whose function and design is often misunderstood is the insulation of the extraction lines and heaters that are located within the turbine-condenser steam space. This paper discusses the dynamic environment of that turbine exhaust region and quantifies the application and benefit of stainless steel lagging to the extraction lines and heater shells within. The paper first focuses on the high energy, non-uniform steam flows of the turbine exhaust and how that impacts the heat losses, mechanical design and support of any components located inside that space. It then examines and quantifies the varieties of heat transfer from the heaters and extraction lines to the passing lower temperature, moist, high velocity turbine exhaust steam as it travels to the condenser. A new relationship is developed that defines the predominantly evaporative heat transfer mechanism on the exterior surfaces in contact with the exhaust steam. For a typical 630 MW fossil plant with three heater of different temperature levels in the steam space as exemplified by the US Generation fossil fired Brayton Point 3, the paper determined the additional condenser heat load and extra extraction steam. The paper lastly concluded that in this case, lagging the larger diameter lines of the lowest pressure heater and the heater itself is likely not cost-effective.

  17. The fracture mechanics of steam turbine electron beam welded rotors

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1987-01-01

    Increased steam turbine unit ratings presupposes that steelmakers are capable of manufacturing larger and larger rotor components. However, there are few steelmakers in the world capable of manufacturing monobloc rotors for high rated turbines, which limits the choice of supplier. Most nuclear turbine rotors have a composite arrangement and are made either by shrinking discs on a shaft or using elements welded together. Those in favour of welding have applied a classical socalled ''submerged'' method using a filler metal. However welding can also be performed by using an Electron Beam in a vacuum room without a filler metal. This technique has many advantages: mechanical characteristics of the joint are identical to those of the base material after tempering without heat affected zones. Moreover, parts are only very slightly deformed during welding. Two steam turbine rotors have been produced in this way. This paper described the destructive tests carried out in the four Electron Beam (EB) welds (two on each rotor)

  18. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  19. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  20. Modification of Oil Palm Mesocarp Fiber Characteristics Using Superheated Steam Treatment

    Directory of Open Access Journals (Sweden)

    Subbian Karuppuchamy

    2013-07-01

    Full Text Available In this study, oil palm mesocarp fiber (OPMF was treated with superheated steam (SHS in order to modify its characteristics for biocomposite applications. Treatment was conducted at temperatures 190–230 °C for 1, 2 and 3 h. SHS-treated OPMF was evaluated for its chemical composition, thermal stability, morphology and crystallinity. OPMF treated at 230 °C exhibited lower hemicellulose content (9% compared to the untreated OPMF (33%. Improved thermal stability of OPMF was found after the SHS treatment. Moreover, SEM and ICP analyses of SHS-treated OPMF showed that silica bodies were removed from OPMF after the SHS treatment. XRD results exhibited that OPMF crystallinity increased after SHS treatment, indicating tougher fiber properties. Hemicellulose removal makes the fiber surface more hydrophobic, whereby silica removal increases the surface roughness of the fiber. Overall, the results obtained herewith suggested that SHS is an effective treatment method for surface modification and subsequently improving the characteristics of the natural fiber. Most importantly, the use of novel, eco-friendly SHS may contribute to the green and sustainable treatment for surface modification of natural fiber.

  1. Power Plants, Steam and Gas Turbines WebQuest

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2012-10-01

    Full Text Available A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled “Power Generation Plants: Steam and Gas Turbines.” This is one of the topics covered in the course “Thermodynamics and Heat Transfer,” which is offered in the second year of Mechanical Engineering at the Defense University Center at the Naval Academy in Vigo, Spain. While participating in the activity, students will be divided into groups of no more than 10 for seminars. The groups will create PowerPoint presentations that include all of the analyzed aspects. The topics to be discussed during the workshop on power plant turbines are the: (1 principles of operation; (2 processes involved; (3 advantages and disadvantages; (4 efficiency; (5 combined cycle; and (6 transversal competences, such as teamwork, oral and written presentations, and analysis and synthesis of information. This paper presents the use of Google Sites as a guide to the WebQuest so that students can access all information online, including instructions, summaries, resources, and information on qualifications.

  2. Large steam turbines for nuclear power stations. Output growth prospects

    International Nuclear Information System (INIS)

    Riollet, G.; Widmer, M.; Tessier, J.

    1975-01-01

    The rapid growth of the output of nuclear reactors, even if temporary settlement occurs, leads the manufacturer to evaluate, at a given time, technological limitations encountered. The problems dealing with the main components of turbines: steam path, rotors and stators steam valves, controle devices, shafts and bearings, are reviewed [fr

  3. Critical review of use of high pressure saturated steam turbine economizers in nuclear power plants

    International Nuclear Information System (INIS)

    Urbanek, J.

    1981-01-01

    In the high-pressure part of the turbine drops of moisture condensate, which causes erosion and has negative impact on the service-life of the turbine and on its thermodynamic efficiency. Various designs have been put forward to eliminate moisture. A good combination is moisture separation combined with the offtake of steam for the regeneration of feed water or for the steam re-heater. As concerns the high-pressure component of the turbine it is best to offtake steam for the feed water heater and for heating the steam between the high- and low-pressure components of the turbine. The connections of the heater and re-heater in diagrams of various manufacturers are evaluated and compared. It appears to be uneconomical to use the heater in cases where feed water would be heated to temperature considerably below its optimal value. (M.D.)

  4. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  5. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  6. Monitoring of large steam turbines, as seen by the constructor and the operator

    International Nuclear Information System (INIS)

    Blanchet, J.M.; Bourcier, P.B.; Malherbe, C.

    1986-01-01

    The electricity in France is produced by large steam turbines in the range of 125 000 kW to 1 300 000 kW in nuclear power plants. Some operation problems are encountered on these large machines. The aim of this study is to justify and to describe the monitoring process implemented on the large steam turbines. This short study is divided into three parts: the monitoring justification during the start-up period, one example of a monitoring system, the turbine monitoring during the operation period [fr

  7. Prospects of power conversion technology of direct-cycle helium gas turbine for MHTGR

    International Nuclear Information System (INIS)

    Li Yong; Zhang Zuoyi

    1999-01-01

    The modular high temperature gas cooled reactor (MHTGR) is a modern passively safe reactor. The reactor and helium gas turbine may be combined for high efficiency's power conversion, because MHTGR has high outlet temperature up to 950 degree C. Two different schemes are planed separately by USA and South Africa. the helium gas turbine methodologies adopted by them are mainly based on the developed heavy duty industrial and aviation gas turbine technology. The author introduces the differences of two technologies and some design issues in the design and manufacture. Moreover, the author conclude that directly coupling a closed Brayton cycle gas turbine concept to the passively safe MHTGR is the developing direction of MHTGR due to its efficiency which is much higher than that of using steam turbine

  8. Remote inspection of steam turbine blades

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    During the past five years Reinhart and Associates, Inc. has been involved in remote examination of L-0 and L-1 steam turbine blade rows of in-place LP turbines using visual and eddy current techniques. These tests have concentrated on the trailing edge and blade-to-rotor attachment (Christmas tree) areas. These remote nondestructive examinations were performed through hand access ports of the inner shell. Since the remote scanning system was in a prototype configuration, the inspection was highly operator-dependent. Refinement of the scanning equipment would considerably improve the efficiency of the test; however, the feasibility of remote in-place inspection of turbine blades was established. To further improve this technology, and to provide for remote inspection of other areas of the blade and additional turbine designs, EPRI is funding a one-year project with Reinhart and Associates, Inc. This project will develop a new system that employs state-of-the-art multifrequency eddy current techniques, a miniature charged coupled device (CCD) television camera, and remote positioning equipment. Project results from the first six months are presented

  9. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the proposed centrifugal steam turbine. The results exhibit reasonable flow field and smooth streamline; the aerodynamic performance of the designed turbine meets our initial expectations. These results indicate that the one-dimensional aerodynamic design program is reliable and effective. The off-design aerodynamic performance of centrifugal steam turbine was analyzed, and the results show that the mass flow increases with the decrease of the pressure ratio at a constant speed, until the critical mass flow is reached. The efficiency curve with the pressure ratio has an optimum efficiency point. And the pressure ratio of the optimum efficiency agrees well with that of the one-dimensional design. The shaft power decreases as the pressure ratio increases at a constant speed. Overall, the centrifugal turbine has a wide range and good off-design aerodynamic performance.

  10. Nuclear steam turbines for power production in combination with heating

    International Nuclear Information System (INIS)

    Frilund, B.; Knudsen, K.

    1977-01-01

    The general operating conditions for nuclear steam turbines in district heating system are briefly outlined. The turbine plant can consist of essentially the same types of machines as in conventional district heating systems. Some possible arrangements of back-pressure turbines, back-pressure turbines with condensing tails, or condensing turbines with heat extraction are considered for nuclear power and heat stations. Principles of control for hot water temperature and electrical output are described. Optimization of the plant, considering parallel variations during the year between heat load, cooling water temperature, and required outgoing temperature is discussed. (U.K.)

  11. Development of High-Powered Steam Turbines by OAO NPO Central Research and Design Institute for Boilers and Turbines

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Kovalev, I. A.

    2018-01-01

    The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder's flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting-cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal's working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture-steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric

  12. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  13. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  14. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    International Nuclear Information System (INIS)

    Ehrhardt, F.

    2014-01-01

    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  15. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, F.

    2014-07-01

    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  16. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  17. Research and development of ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [National Aerospace Laboratory, Chofu-shi, Tokyo (Japan)

    1993-12-31

    The CO{sub 2} caused by the consumption of hydrocarbon fuel is one of the main gases which affect the global climate. In order to reduce the formation of CO{sub 2}, it is necessary to conserve energy as effectively as possible. Therefore the heat energy provided by the fuel should be utilized in multi-cascades. The energy at the high temperature should be used for the generation of electric power and the energy at low temperature could be used for making the steam and the hot water. The gas turbine is preferable for this purpose. The heat energy of exhaust gas can be reused more easily. The two systems are proposed by using the gas turbine as the high temperature stage. One is the cogeneration system and the other is the combined cycle. The former generates electric power by the gas turbine and make steam or hot water in the exhaust gas. The latter employs the gas turbine as the high temperature cycle and the steam turbine as the low temperature cycle.

  18. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle

    International Nuclear Information System (INIS)

    Sanjay; Singh, Onkar; Prasad, B.N.

    2008-01-01

    A comparative study of the influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle power plant is presented. Seven schemes involving air and steam as coolants under open and closed loop cooling techniques have been studied. The open loop incorporates the internal convection, film and transpiration cooling techniques. Closed loop cooling includes only internal convection cooling. It has been found that closed loop steam cooling offers more specific work and consequently gives higher value of plant efficiency of about 60%, whereas open loop transpiration steam cooling, open loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air, and internal convection air cooling have been found to yield lower values of plant efficiency in decreasing order as compared to closed loop steam cooling

  19. Analysis of the Instability Phenomena Caused by Steam in High-Pressure Turbines

    Directory of Open Access Journals (Sweden)

    Paolo Pennacchi

    2011-01-01

    Full Text Available Instability phenomena in steam turbines may happen as a consequence of certain characteristics of the steam flow as well as of the mechanical and geometrical properties of the seals. This phenomenon can be modeled and the raise of the steam flow and pressure causes the increase of the cross coupled coefficients used to model the seal stiffness. As a consequence, the eigenvalues and eigenmodes of the mathematical model of the machine change. The real part of the eigenvalue associated with the first flexural normal mode of the turbine shaft may become positive causing the conditions for unstable vibrations. The original contribution of the paper is the application of a model-based analysis of the dynamic behavior of a large power unit, affected by steam-whirl instability phenomena. The model proposed by the authors allows studying successfully the experimental case. The threshold level of the steam flow that causes instability conditions is analyzed and used to define the stability margin of the power unit.

  20. Mechanical problems in turbomachines, steam and gas turbines. Large steam turbine manufacturing requirements to fulfill customer needs for electric power

    International Nuclear Information System (INIS)

    Brazzini, R.

    1975-01-01

    The needs of the customers in large steam turbines for electric power are examined. The choices and decisions made by the utility about the equipments are dealt with after considering the evolution of power demand on the French network. These decisions and choices mainly result from a technical and economic optimization of production equipments: choice of field-proven solutions, trend to lower steam characteristics, trend to higher output of the units (i.e. size effect), spreading out standardization of machines and components (policy of technical as well as technological levels, i.e. mass production effect). Standardization of external characteristics of units of same level of output and even standardization of some main components. The requirements turbine manufacturers have to meet may fall in two categories: on one side: gaining experience and know-how, capability of making high quality experiments, out put capacity, will to hold a high efficiency level; on the other side: meeting the technical requirements related to the contracts. Among these requirements, one can differentiate those dealing with the service expected from the turbine and that resulting in the responsibility limits of the manufacturer and those tending to gain interchangeability, to improve availability of the equipment, to increase safety, and to make operation and maintenance easier [fr

  1. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  2. Application of new designed butterfly type intermediate valve for nuclear steam turbine

    International Nuclear Information System (INIS)

    Matsumura, Kazuhiro; Kawamata, Susumu; Fujita, Isao; Taketomo, Seiki.

    1991-01-01

    To cope with a large capacity nuclear steam turbine, a butterfly type intermediate valve has been developed. Compared to the conventional valve, or globe valve, the butterfly valve has the following design features: a) Higher thermal efficiency due to lower pressure loss, b) Easier maintenance due to simplified construction, and c) Lower station cost due to the smaller size of the valve assembly. An experiment with a scaled-down test valve was carried out using compressed air. Subsequently a full-scale valve was tested using steam under actual steam conditions. As a result, these tests gave us no problems. The first nuclear turbine (1100MW) equipped with a butterfly valve is operating satisfactorily with good performance as expected. (author)

  3. 900 MW CP1 nuclear steam turbine retrofit thermal effects on low pressure diaphragms

    International Nuclear Information System (INIS)

    Buguin, A.; Gruau, P.; Lamarque, F.; Huggett, J.

    2015-01-01

    The steam turbines of the Koeberg units 1 and 2 operated by ESKOM in South Africa have been retrofitted in order to mitigate the generic problems of stress corrosion cracking of the original shrunk-on disk rotor design. As already done in Belgium and France, the implementation of welded rotors improves the turbine reliability and availability. Moreover, the new technology implemented associated with a new steam path allows a significant performance improvement. With a wealth of experience in CP1 retrofit, ALSTOM has put in place new technical features in the steam path in order to further improve the heat rate. Among them, steam balance holes drilled in the rotor disks have exacerbated the thermal sensitivity of the LP diaphragms. During the commissioning of the Unit 1 LP turbines following the retrofit, the load increase led to unacceptable vibrations. An investigation program was launched to determine the root causes of the problem. This paper presents the findings following the turbine inspection, as well as the recommendations and modifications to allow a smooth return to service of the unit. In addition, the results of the root cause analysis of the vibration incident are explained. Based on finite element calculations and site measurements, ALSTOM has established that the diaphragm thermal behavior, intensified by the steam balance holes, has led to radial rubbing. It was also established that the phenomena had no effect on the diaphragms mechanical integrity. Design changes have been proposed to ensure a safe and reliable long term operation of the units. These modifications have been successfully implemented onto the Koeberg Unit 2 Nuclear Steam Turbine commissioned in November 2012. (authors)

  4. Secondary cycle water chemistry for 500 MWe pressurised heavy water reactor (PHWR) plant: a case study

    International Nuclear Information System (INIS)

    Bhandakkar, A.; Subbarao, A.; Agarwal, N.K.

    1995-01-01

    In turbine and secondary cycle system of 500 MWe PHWR, chemistry of steam and water is controlled in secondary cycle for prevention of corrosion in steam generators (SGs), feedwater system and steam system, scale and deposit formation on heat transfer surfaces and carry-over of solids by steam and deposition on steam turbine blades. Water chemistry of secondary side of SGs and turbine cycle is discussed. (author). 8 refs., 2 tabs., 1 fig

  5. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    OpenAIRE

    Hui Li; Dian-Gui Huang

    2017-01-01

    Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the pro...

  6. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    Organic Rankine cycle (ORC) power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging...... due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly...... is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net...

  7. LCA-LCCA of oil fired steam turbine power plant in Singapore

    International Nuclear Information System (INIS)

    Kannan, R.; Tso, C.P.; Osman, Ramli; Ho, H.K.

    2004-01-01

    A life cycle assessment (LCA) was conducted to quantify the non-renewable energy use and global warming potential in electricity generation from a typical oil fired steam turbine plant in Singapore. As the conventional LCA does not include any cost analysis, which is a major criterion in decision making, the cost of power generation is estimated using a life cycle cost analysis (LCCA) tool. It is estimated that the hidden processes consumed about 9% additional energy on top of the fuel embedded energy, while the hidden GHG emission is about 12%. A correlation is established to estimate the life cycle energy use and GHG emissions directly from the power plant net efficiency. The study methodology, results and the empirical relations are presented, together with a brief overview of the Singapore power sector. It also highlights the need for consideration of the reserves availability in the pricing mechanism and how such cost indices could be developed based on the LCA-LCCA. (Author)

  8. LCA-LCCA of oil fired steam turbine power plant in Singapore

    International Nuclear Information System (INIS)

    Kannan, R.; Tso, C.P.; Osman, Ramli; Ho, H.K.

    2004-01-01

    A life cycle assessment (LCA) was conducted to quantify the non-renewable energy use and global warming potential in electricity generation from a typical oil fired steam turbine plant in Singapore. As the conventional LCA does not include any cost analysis, which is a major criterion in decision making, the cost of power generation is estimated using a life cycle cost analysis (LCCA) tool. It is estimated that the hidden processes consumed about 9% additional energy on top of the fuel embedded energy, while the hidden GHG emission is about 12%. A correlation is established to estimate the life cycle energy use and GHG emissions directly from the power plant net efficiency. The study methodology, results and the empirical relations are presented, together with a brief overview of the Singapore power sector. It also highlights the need for consideration of the reserves availability in the pricing mechanism and how such cost indices could be developed based on the LCA-LCCA

  9. Causes and means of prevention of erosion of exit edges of drive vanes in final stages of K-300-240 turbine

    Science.gov (United States)

    Orlik, V. G.; Reznik, L. B.

    1984-02-01

    A method, instruments and devices were developed and model and field studies were performed of the flow of steam and moisture downstream from the last stage of a K-300-240 turbine in the vicinity of the vertical separating rib. The quantity of moisture flowing toward the drive wheel of the last stage over the inner cone of the exhaust tube was measured, and found to decrease with increasing temperature, disappearing at 140 C. When the turbine is loaded, moisture appears on the cone at approximately 60 MW, reaching 60 kg/hr at nominal mode and increasing with decreasing steam superheating temperature, to 80 kg/hr at 60 MW and 365 C. The steam receiving section of the condenser was found to be overloaded since the cross section of its drains was not designed to receive steam with excess moisture content. Excessive twisting of the steam flow beyond the last stage in the direction of rotation was experimentally determined. The quantity of erosion-dangerous moisture downstream from the last stage depends on the temperature difference between turbine exhaust and the machine room in which it is located.

  10. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    Ehyaei, Mehdi A.; Tahani, Mojtaba; Ahmadi, Pouria; Esfandiari, Mohammad

    2015-01-01

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  11. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle

    International Nuclear Information System (INIS)

    Selbas, Resat; Kizilkan, Onder; Sencan, Arzu

    2006-01-01

    An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system-i.e., condenser, evaporator, subcooling and superheating heat exchangers-can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology

  12. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    Energy Technology Data Exchange (ETDEWEB)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  13. Design of large reheat steam turbines for U.K. and overseas markets

    International Nuclear Information System (INIS)

    Mitchell, J.M.

    1979-01-01

    Two prototype designs of large reheat steam turbines are described, together with the technical, economic and plant design aspects that have influenced their main features. Relevant service experience is outlined and details are given of the solutions adopted to overcome the relatively few problems that were encountered. The evolution of these designs to form the current range of adaptable, pre-engineered modular designs is presented and the main features of current machines are described. A brief account is given of likely future developments in large steam turbines. (author)

  14. Algebraic approach for the diagnosis of turbine cycles in nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyunyoung; Chang, Soon Heung

    2005-01-01

    According to plant operating staff's practical needs, authors proposed a diagnosis model to identify the performance degradation of steam turbine cycles in nuclear power plants (NPPs). The essential idea of this study is how to identify the intrinsically degraded component which causes electric loss. Authors found that there were not so many turbine cycle diagnosis applications in NPPs currently because of technical, financial, or social characteristics of the plant. So a great part of the diagnosis has been dependent on operating staff's experience and knowledge. However as economic competition becomes severe, the efficiency staffs is asking for reliable and practical advisory tools. For the solution of these shortcomings, authors proposed a simple and intuitive diagnosis concept based on the superposition rule of degradation phenomena, which can be derived by simple algebra and correlation analysis. Though the superposition rule is not so significant statistically, almost all of the performance indices under normal operation are fairly compatible with this model. Authors developed a prototype model of quantitative root-cause diagnosis and validated the background theory using the simulated data. The turbine cycle advisory system using this model was applied to Gori NPP units 3 and 4

  15. HTR plus modern turbine technology for higher efficiencies

    International Nuclear Information System (INIS)

    Barnert, H.; Kugeler, K.

    1996-01-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question 'can the HTR compete with high efficiencies?' is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab

  16. HTR plus modern turbine technology for higher efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-08-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question `can the HTR compete with high efficiencies?` is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab.

  17. Shiraz solar power plant operation with steam engine

    International Nuclear Information System (INIS)

    Yaghoubi, M.; Azizian, K.

    2004-01-01

    The present industrial developments and daily growing need of energy, as well as economical and environmental problem caused by fossil fuels consumption, resulted certain constraint for the future demand of energy. During the past two decades great attention has been made to use renewable energy for different sectors. In this regard for the first time in Iran, design and construction of a 250 K W Solar power plant in Shiraz, Iran is being carried out and it will go to operation within next year. The important elements of this power plant is an oil cycle and a steam cycle, and several studies have been done about design and operation of this power plant, both for steady state and transient conditions. For the steam cycle, initially a steam turbine was chosen and due to certain limitation it has been replaced by a steam engine. The steam engine is able to produce electricity with hot or saturated vapor at different pressures and temperatures. In this article, the effects of installing a steam engine and changing its vapor inlet pressure and also the effects of sending hot or saturated vapor to generate electricity are studied. Various cycle performance and daily electricity production are determined. The effects of oil cycle temperature on the collector field efficiency, and daily, monthly and annual amount of electricity production is calculated. Results are compared with the steam cycle output when it contains a steam turbine. It is found that with a steam engine it is possible to produce more annual electricity for certain conditions

  18. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  19. Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Jaegtnes, K.O.; Braytenbah, A.S.

    1977-01-01

    An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures

  20. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  1. Using the artificial neural network to control the steam turbine heating process

    International Nuclear Information System (INIS)

    Nowak, Grzegorz; Rusin, Andrzej

    2016-01-01

    Highlights: • Inverse Artificial Neural Network has a potential to control the start-up process of a steam turbine. • Two serial neural networks made it possible to model the rotor stress based of steam parameters. • An ANN with feedback enables transient stress modelling with good accuracy. - Abstract: Due to the significant share of renewable energy sources (RES) – wind farms in particular – in the power sector of many countries, power generation systems become sensitive to variable weather conditions. Under unfavourable changes in weather, ensuring required energy supplies involves hasty start-ups of conventional steam power units whose operation should be characterized by higher and higher flexibility. Controlling the process of power engineering machinery operation requires fast predictive models that will make it possible to analyse many parallel scenarios and select the most favourable one. This approach is employed by the algorithm for the inverse neural network control presented in this paper. Based on the current thermal state of the turbine casing, the algorithm controls the steam temperature at the turbine inlet to keep both the start-up rate and the safety of the machine at the allowable level. The method used herein is based on two artificial neural networks (ANN) working in series.

  2. Effectiveness of superheated steam for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios.

    Science.gov (United States)

    Ban, Ga-Hee; Kang, Dong-Hyun

    2016-03-02

    This study was undertaken to evaluate the effectiveness of superheated steam (SHS) on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Enteritidis phage type (PT) 30 and Listeria monocytogenes on almonds and in-shell pistachios and to determine the effect of superheated steam heating on quality by measuring color and texture changes. Almonds and in-shell pistachios inoculated with four foodborne pathogens were treated with saturated steam (SS) at 100 °C and SHS at 125, 150, 175, and 200 °C for various times. Exposure of almonds and pistachios to SHS for 15 or 30s at 200 °C achieved >5l og reductions among all tested pathogens without causing significant changes in color values or texture parameters (P>0.05). For both almonds and pistachios, acid and peroxide values (PV) following SS and SHS treatment for up to 15s and 30s, respectively, were within the acceptable range (PV<1.0 meq/kg). These results show that thermal application of 200 °C SHS treatment for 15s and 30s did not affect the quality of almonds and pistachios, respectively. Therefore, SHS treatment is a very promising alternative technology for the tree nuts industry by improving inactivation of foodborne pathogens on almonds and pistachios while simultaneously reducing processing time. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Laser shock peening of steam turbine blade for enhanced service life

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Fretting-fatigue is an important factor influencing service life of turbine blades. The present paper describes laser shock peening of potential crack nucleation site in the root region of steam turbine blade for its enhanced service life. The experimental study, performed with an in-house developed 2.5 J/7 ns ...

  4. Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  6. Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam

    International Nuclear Information System (INIS)

    Muhammad, Usman; Imran, Muhammad; Lee, Dong Hyun; Park, Byung Sik

    2015-01-01

    Highlights: • A 1 kW organic Rankine cycle test rig for waste heat recovery was investigated for net electric power output. • Low grade steam (1–3 bar) was used directly in evaporator as heat source. • Effect of superheating of working fluid on system performance was studied. • The maximum electric power output and thermal efficiency is 1016 W and 5.75% respectively. - Abstract: This work presents an experimental investigation of a small scale (1 kW range) organic Rankine cycle system for net electrical power output ability, using low-grade waste heat from steam. The system was designed for waste steam in the range of 1–3 bar. After the organic Rankine cycle system was designed and thermodynamic simulation was performed, equipment selection and construction of test rig was carried out. R245fa was used as working fluid, a scroll type expansion directly coupled with electrical generator produced a maximum electrical power output of 1.016 kW with 0.838 kW of net electrical power output. The thermal efficiency of the system was 5.64%, net efficiency was 4.66% and expander isentropic efficiency was 58.3% at maximum power output operation point. Maximum thermal efficiency was 5.75% and maximum expander isentropic efficiency obtained was 77.74% during the experiment. Effect of superheating of working fluid at expander inlet was also investigated which show that an increase in the degree of superheating by 1 °C reduces thermal efficiency of system by 0.021% for current system. The results indicated that the measured electric power output and enthalpy determined power output (after accounting for isentropic efficiency) differed by 40%. Similarly, the screw pump converted 42.25% of electric power to the enthalpy determined pumping power delivered to the working fluid. Both expander and screw pump were losing power in electric and mechanical losses (generator/motor) presenting a need of further development of these components for better efficiency. Heat loss in

  7. Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II - Analysis of waste incineration combined gas/steam cycle

    International Nuclear Information System (INIS)

    Holanda, Marcelo R.; Perrella Balestieri, Jose A.

    2008-01-01

    In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I

  8. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  9. Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell â Gas Turbine â Steam Turbine Power Plants Ranging from 1.5 MWe to 10 MWe

    OpenAIRE

    Arsalis, Alexandros

    2007-01-01

    Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC) â gas turbine (GT) â steam turbine (ST) systems ranging in size from 1.5 MWe to 10 MWe. The fuel cell model used in this thesis is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbi...

  10. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  11. Issues in the selection of the LMFBR steam cycle

    International Nuclear Information System (INIS)

    Buschman, H.W.; McConnell, R.J.

    1983-01-01

    Unlike the light-water reactor, the liquid-metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available

  12. The 52-inch last-stage blades for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shin-ichiro; Ogata, Hisao

    1986-01-01

    The last-stage blades (LSB) of steam turbines are one of the most important components determining the plant's maximum capacity and efficiency. The development of LSBs necessitates high-technology including advanced methods of analyses and verifications as well as ample accumulation of technical data. The 52-inch LSB recently developed by Toshiba has raised nuclear power plant's capacity up to 1,300 ∼ 1,800 MW, has effected compact design of turbine units, and has improved thermal efficiency, keeping high reliability. (author)

  13. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier

    International Nuclear Information System (INIS)

    Mrzljak, Vedran; Poljak, Igor; Mrakovčić, Tomislav

    2017-01-01

    Highlights: • Two low-power steam turbines in the LNG carrier propulsion plant were investigated. • Energy and exergy efficiencies of both steam turbines vary between 46% and 62%. • The ambient temperature has a low impact on exergy efficiency of analyzed turbines. • The maximum efficiencies area of both turbines was investigated. • A method for increasing the turbo-generator efficiencies by 1–3% is presented. - Abstract: Nowadays, marine propulsion systems are mainly based on internal combustion diesel engines. Despite this fact, a number of LNG carriers have steam propulsion plants. In such plants, steam turbines are used not only for ship propulsion, but also for electrical power generation and main feed water pump drive. Marine turbo-generators and steam turbine for the main feed water pump drive were investigated on the analyzed LNG carrier with steam propulsion plant. The measurements of various operating parameters were performed and obtained data were used for energy and exergy analysis. All the measurements and calculations were performed during the ship acceleration. The analysis shows that the energy and exergy efficiencies of both analyzed low-power turbines vary between 46% and 62% what is significantly lower in comparison with the high-power steam turbines. The ambient temperature has a low impact on exergy efficiency of analyzed turbines (change in ambient temperature for 10 °C causes less than 1% change in exergy efficiency). The highest exergy efficiencies were achieved at the lowest observed ambient temperature. Also, the highest efficiencies were achieved at 71.5% of maximum developed turbo-generator power while the highest efficiencies of steam turbine for the main feed water pump drive were achieved at maximum turbine developed power. Replacing the existing steam turbine for the main feed water pump drive with an electric motor would increase the turbo-generator energy and exergy efficiencies for at least 1–3% in all analyzed

  14. Gas-steam combined cycles for power generation: Current state-of-the-art and future prospects

    International Nuclear Information System (INIS)

    Macchi, E.; Chiesa, P.; Consonni, S.; Lozza, G.

    1992-01-01

    The first part of this paper points out the many factors which, after years of stagnation in the electric power industry, are giving rise to a true revolution in power generation engineering: the passing from closed cycles, using steam as the working fluid and energy sources external to the power cycle, to the use of open cycles, in which the primary energy source, in the form of a fuel, is directly immersed in the working fluid of the engine. Attention is given to the advantages in terms of energy and cost savings, greater flexibility in energy policy options and pollution abatement which are now being afforded through the use of gas turbines with combined gas-steam cycles. The second part of the paper deals with an assessment of the current state-of-the-art of the technology relative to these innovative power systems. The assessment is followed by a review of foreseen developments in combined cycle system design, choice of construction materials, type of cooling systems, operating temperatures and performance capabilities

  15. Issues to improve the safety of 18K370 steam turbine operation

    Directory of Open Access Journals (Sweden)

    Bzymek Grzegorz

    2017-01-01

    Full Text Available The paper presents the process of improving the safety and reliability of operation the 18K370 steam turbines Opole Power Plant since the first failure in 2010 [1], up to install the on-line monitoring system [2]. It shows how the units work and how to analyse the contol stage as a critical node in designing the turbine. Selected results of the analysis of the strength of CSD (Computational Solid Dynamic and the nature of the flow in different operating regimes - thanks to CFD (Computational Fluid Dynamic analysis have been included. We have also briefly discussed the way of lifecycle management of individual elements [2,3]. The presented actions could be considered satisfactory, and improve the safety of operating steam turbines of type 18K370.

  16. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  17. Application of Computer Simulation to Identify Erosion Resistance of Materials of Wet-steam Turbine Blades

    Science.gov (United States)

    Korostelyov, D. A.; Dergachyov, K. V.

    2017-10-01

    A problem of identifying the efficiency of using materials, coatings, linings and solderings of wet-steam turbine rotor blades by means of computer simulation is considered. Numerical experiments to define erosion resistance of materials of wet-steam turbine blades are described. Kinetic curves for erosion area and weight of the worn rotor blade material of turbines K-300-240 LMP and atomic icebreaker “Lenin” have been defined. The conclusion about the effectiveness of using different erosion-resistant materials and protection configuration of rotor blades is also made.

  18. Service experience and stress corrosion of Inconel 600 bellows expansion joints in turbine steam environments

    International Nuclear Information System (INIS)

    Kramer, L.D.; Michael, S.T.; Pement, F.W.

    The purpose of this paper is to discuss the service history of Inconel 600 expansion bellows, to illustrate a typical case of failure, propose S.C.C. mechanisms, and to rationalize the most probable mechanism. Inconel 600 is fully resistant to high-purity power plant steam (720 deg F maximum) for on-going service lifetimes which greatly exceed the incubation periods which are reported or postulated in the literature for delayed stress corrosion cracking in high-purity water tests (630-660 deg F). The only observed stress corrosion environments which are sufficiently rapidly deleterious to be consistent with failure lifetimes are molten NaOH in superheated steam or a very concentrated aqueous caustic solution containing silica contamination. (author)

  19. Power Plants, Steam and Gas Turbines WebQuest

    Science.gov (United States)

    Ulloa, Carlos; Rey, Guillermo D.; Sánchez, Ángel; Cancela, Ángeles

    2012-01-01

    A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled "Power Generation Plants: Steam and Gas Turbines." This is one of the topics covered in the course "Thermodynamics and Heat Transfer," which is offered in the second year of Mechanical…

  20. Steam turbines for nuclear power stations in Czechoslovakia and their use for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1989-01-01

    The first generation of nuclear power stations in Czechoslavakia is equipped with 440 MW e pressurized water reactors. Each reactor supplies two 220 MW, 3000 rpm condensing type turbosets operating with saturated steam. After the completion of heating water piping systems, all of the 24 units of 220 MW in Czechoslovak nuclear power stations will be operated as dual purpose units, delivering both electricity and heat. At the present time, second-generation nuclear power stations, with 1000 MW e PWRs, are being built. Each such plant is equipped with one 1000 MW full-speed saturated steam turbine. The turbine is so designed as to permit the extraction of steam corresponding to the following quantities of heat: 893 MJ/s with three-stage water heating (150/60 0 C); and 570 MJ/s with two-stage water heating (120/60 0 C). The steam is taken from uncontrolled steam extraction points. (author)

  1. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were

  2. The development of control systems for high power steam turbines

    International Nuclear Information System (INIS)

    Mathey, M.

    1983-01-01

    The functional and technological aspects of developments in the field of control systems for steam turbines over the last twenty years are analyzed. These developments have now culminated in very sophisticated systems which closely link electronics to high pressure hydraulic technology. A detailed description of these systeme high-lighting the high technical level of the control methods and the flexibility and reliability in service of turbines controlled in this way is given [fr

  3. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  4. Kinetics of Texture and Colour Changes in Chicken Sausage during Superheated Steam Cooking

    Directory of Open Access Journals (Sweden)

    Abdulhameed Asmaa A.

    2016-07-01

    Full Text Available The aim of this study was to develop a kinetic model to describe the texture and colour changes of chicken sausage during superheated steam cooking. Chicken sausages were cooked at temperature ranging from 150-200°C with treatment times ranging from 2-6 mins. The texture profile was evaluated in terms of hardness, cohesiveness, gumminess, and chewiness, while the colour parameters were estimated in terms of lightness (L*, redness (a*, yellowness (b*, and total colour difference (∆E. Experimental data showed a gradual reduction in texture parameters as cooking times and temperatures increased. The L* value of the colour showed a linear reduction with cooking condition, while the a*, b*, and ∆E values showed a contrary effects. The decrease in texture parameters and L*-value of colour parameter followed the first-order kinetic model. While, zero-order kinetic model was adapted to fit the a* and b*. The modified first order kinetic showed a good fit for total ∆E. Significant correlations between colour and texture parameters were observed, which showed that a* alone could be used to predict the texture of chicken sausage.

  5. Theoretical-empirical model of the steam-water cycle of the power unit

    Directory of Open Access Journals (Sweden)

    Grzegorz Szapajko

    2010-06-01

    Full Text Available The diagnostics of the energy conversion systems’ operation is realised as a result of collecting, processing, evaluatingand analysing the measurement signals. The result of the analysis is the determination of the process state. It requires a usageof the thermal processes models. Construction of the analytical model with the auxiliary empirical functions built-in brings satisfyingresults. The paper presents theoretical-empirical model of the steam-water cycle. Worked out mathematical simulation model containspartial models of the turbine, the regenerative heat exchangers and the condenser. Statistical verification of the model is presented.

  6. Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Jaegtnes, K.O.; Braytenbah, A.S.

    1979-01-01

    In accordance with the present invention, a power plant includes a steam source to generate superheat and reheat steam which flows through a turbine-generator and an associated bypass system. A high-pressure and an intermediate-pressure turbine portion drive a first electrical generating means, and a low-pressure turbine portion drives a second electrical generating means. A first flow of superheat steam flows through the high-pressure portion, while a second flow of reheat steam flows through the intermediate and low-pressure portions in succession. Provision is made for bypassing steam around the turbine portions; in particular, one bypass means permits a flow of superheat steam from the steam source to the exhaust of the high-pressure portion, and another bypass means allows reheated steam to pass from the source to the exhaust of the low-pressure portion. The first and second steam flows are governed independently. While one of such flows is varied for purposes of controlling the rotational speed of the first generating means according to a desired speed, the other flow is varied to regulate a power plant variable at its desired level. (author)

  7. Estimation of Temperature Influence on Creep Rate of High-Temperature Elements in Steam Turbines and Steam Pipelines

    Directory of Open Access Journals (Sweden)

    A. G. Gerasimova

    2011-01-01

    Full Text Available The paper considers a high temperature influence on strength characteristics of steam pipelines and steam turbine parts of high and medium pressure. The charts showing a decisive temperature importance in diffuse creep have been presented in the paper. The paper contains a calculation of steel self-diffusion coefficient. Dependence Dsd = f(t for more accurate assessment of  resource characteristics of the applied steel has been proposed in the paper.

  8. Gas-steam turbine plant for cogenerative process at 'Toplifikacija' - Skopje (Joint-Stock Co. for district heating - Macedonia)

    International Nuclear Information System (INIS)

    Cvetkovski, Andrijan

    2003-01-01

    The gas-steam power plant for combined heat and electric power production at A.D. 'Toplifikacija' Skopje - TO 'Zapad' is analyzed and determined. The analyzed plant is consisted of gas turbine, heat recovery steam generator (HRSG) and condensate steam turbine with controlled steam extraction. It operates on natural gas as a main fuel source. The heating of the water for the district heating is dine in the heat exchanger, with // heat of controlled extraction from condensate turbine. The advantages of the both binary plant and centralized co generative production compared with the individual are analyzed. The natural gas consumption of for both specific heating and electrical capacity in join production as well as fuel savings compared to the separate production of the same quantity of energy is also analyzed. (Original)

  9. Through-flow analysis of steam turbines operating under partial admission

    International Nuclear Information System (INIS)

    Delabriere, H.; Werthe, J.M.

    1993-05-01

    In order to produce electric energy with improved efficiency, Electricite de France has to check the performances of equipment proposed by manufacturers. In the specific field of steam turbines, one of the main tools of analysis is the quasi 3D through flow computer code CAPTUR, which enables the calculation of all the aerothermodynamic parameters in a steam turbine. The last development that has been performed on CAPTUR is the extension to a calculation of a flow within a turbine operating under partial admission. For such turbines, it is now possible to calculate an internal flow field, and determine the efficiency, in a much more accurate way than with previous methods, which consist in an arbitrary efficiency correction on an averaged 1D flow calculation. From the aerodynamic point of view, partial admission involves specific losses in the first stage, then expansion and turbulent mixing just downstream of the first stage. Losses in the first stage are of very different types: windage, pumping and expansion at the ends of an admission sector. Their values have been estimated, with help of experimental results, and then expressed as a slow down coefficient applied to the relative velocity at the blade outlet. As for the flow downstream the first stage, a computational analysis has been made with specific 2D and 3D codes. It has led to define the numerical treatment established in the CAPTUR code. Some problems had to be solved to make compatible a quasi 3D formulation, making an average in the azimutal direction and using a streamline curvature method, with an absolute 3D phenomenon. Certain limitations of the working conditions were first adopted, but a generalization is on hand. The calculation of a nuclear HP steam turbine operating under partial admission has been performed. Calculation results are in good accordance with tests results, especially as regards the expansion line along the stages. The code CAPTUR will be particularly useful for the calculation

  10. Analisis Bahaya dengan Metode Hazop dan Manajemen Risiko pada Steam Turbine PLTU di Unit 5 Pembangkitan Listrik Paiton (PT. YTL Jawa Timur

    Directory of Open Access Journals (Sweden)

    Erna Zulfiana

    2013-09-01

    Full Text Available Steam turbine beroperasi pada temperatur dan tekanan uap yang tinggi sehingga keamanan proses harus dijaga agar tidak terjadi bahaya yang menimbulkan risiko. Untuk analisis dan identifikasi bahaya digunakan metode HAZOP yang selanjutnya melakukan manajemen resiko berupa emergency respon plan berdasarkan bahaya yang mungkin terjadi pada PLTU. Identifikasi bahaya dengan metode HAZOP dilakukan dengan penentuan 4 node pada steam turbine yaitu HP Turbine, IP Turbine, LP Turbine 1 dan LP Turbine 2, penentuan guideword dan deviasi berdasarkan control chart data proses transmitter di setiap node, dan untuk estimasi likelihood berdasarkan nilai MTTF tiap transmitter. ERP pada steam turbine dibuat untuk kejadian kebakaran karena berisiko tinggi dan kemungkinan besar terjadi serta dapat menyebabkan bahaya lain seperti ledakan dsb. Dari penelitian ini diketahui kondisi yang paling berbahaya pada steam turbine adalah kondisi high pressure yang diketahui dari risk matrix pressure trasnmitter pada 4 node yang bernilai high dan ekstrim yang dapat menyebabkan turbin mengalami overspeed. Rekomendasi untuk menanggulangi bahaya tersebut antara lain pemasangan pressure alarm, simulasi automatic turbine test, pemeriksaan turbine overspeed protection serta kalibrasi maupun pengecekan pada pressure trasnmitter tersebut.

  11. Modification of the algorithm for steam turbine control under loading drop

    International Nuclear Information System (INIS)

    Nikitin, Yu.V.; Mirnyj, V.A.; Gritsenko, V.N.; Nesterov, L.V.

    1989-01-01

    Problem related to powerful steam turbine control in case of emergency loading drop is considered. Two laws of control creating conditions for qualitative operation of control system under conditions considered are compared. The system of turbine control comprises the turbine major actuating mechanisms (electrohydraulic transducer, high-pressure servomotor, cut-off slide valve) actuating mechanisms of pulse discharge channel (low-pressure servomotor cut-off slide valve, low-pressure servomotor) and regulator. The frequency of the turbine rotor rotation is the parameter to be controlled in the mode of loading drop. The algorithms considered are based on linear variant of the optimal control theory. One of them is realized in electrohydraulic system of the K-750-65/3000 turbine control at the Ignalinsk NPP

  12. A genetic algorithm applied to a PWR turbine extraction optimization to increase cycle efficiency

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Schirru, Roberto

    2002-01-01

    In nuclear power plants feedwater heaters are used to heat feedwater from its temperature leaving the condenser to final feedwater temperature using steam extracted from various stages of the turbines. The purpose of this process is to increase cycle efficiency. The determination of the optimal fraction of mass flow rate to be extracted from each stage of the turbines is a complex optimization problem. This kind of problem has been efficiently solved by means of evolutionary computation techniques, such as Genetic Algorithms (GAs). GAs, which are systems based upon principles from biological genetics, have been successfully applied to several combinatorial optimization problems in nuclear engineering, as the nuclear fuel reload optimization problem. We introduce the use of GAs in cycle efficiency optimization by finding an optimal combination of turbine extractions. In order to demonstrate the effectiveness of our approach, we have chosen a typical PWR as case study. The secondary side of the PWR was simulated using PEPSE, which is a modeling tool used to perform integrated heat balances for power plants. The results indicate that the GA is a quite promising tool for cycle efficiency optimization. (author)

  13. Combined heat and power plants with parallel tandem steam turbines; Smaaskalig kraftvaerme med parallellkopplade tandemturbiner

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, Pontus; Norstroem, Urban; Pettersson, Camilla; Oesterlin, Erik

    2004-12-01

    We investigate the technical and economical conditions for a concept with parallel coupled tandem turbines in small scale combined heat and power plants fired with bio-fuel and waste. Performance and heat production costs at varying electricity prices for the concept with two smaller tandem coupled steam turbines has been compared to the traditional concept with one single multi-staged turbine. Three different types of plants have been investigated: - Bio fuelled CHP plant with thermal capacity of 15 MW{sub th}; - Waste fired CHP plant with thermal capacity of 20 MW{sub th}; - Bio fuelled CHP plant with thermal capacity of 25 MW{sub th}. The simple steam turbines (Curtis turbines) used in the tandem arrangement has an isentropic efficiency of about 49 to 53% compared to the multi-staged steam turbines with isentropic efficiency in the range of 59% to 81%. The lower isentropic efficiency for the single staged turbines is to some extent compensated at partial load when one of the two turbines can be shut down leading to better operational conditions for the one still in operation. For concepts with saturated steam at partial load below 50% the tandem arrangements presents higher electricity efficiency than the conventional single turbine alternative. The difference in annual production of electricity is therefore less than the difference in isentropic efficiency for the two concepts. Production of electricity is between 2% and 42% lower for the tandem arrangements in this study. Investment costs for the turbine island has been calculated for the two turbine concepts and when the costs for turbines, generator, power transmission, condensing system, piping system, buildings, assembling, commissioning and engineering has been added the sum is about the same for the two concepts. For the bio-fuelled plant with thermal capacity of 15 MW{sub th} the turbine island amount to about 10-12 MSEK and about 13-15 MSEK for the waste fired plant with a thermal capacity of 20 MW

  14. A new lease of life for turbine rotors subject to low-cycle fatigue at elevated temperature

    International Nuclear Information System (INIS)

    Coulon, P.A.; Knosp, B.; Saisse, H.

    1989-01-01

    The purpose of the study was to determine the depth of the zone damaged during fatigue crack initiation at the notch root in a Cr Mo V ferritic steel used for the manufacture of steam turbine rotors. Low cycle fatigue tests were conducted at 500 and 550 0 C (932 0 F and 1022 0 F) and the Manson - Coffin curves have been plotted. The results showed firstly that for Na * = 10,000 cycles (Number of cycles for crack initiation Na = 12,500 cycles) the damaged zone in the test-pieces the authors used corresponded to h ≅0.4 mm, and secondly that this zone had the same order of magnitude as the cyclic plastic zone determined according to the mechanical properties of the material studied. Conclusion is clear: if the turbine rotors are remachined over a depth h greater than ≅0.4 mm, their initial low cycle fatigue properties are considered as largely restored

  15. Design, development and operating experience with wet steam turbines

    International Nuclear Information System (INIS)

    Bolter, J.R.

    1989-01-01

    The paper first describes the special characteristics of wet steam units. It then goes on to discuss the principal features of the units manufactured by the author's company, the considerations on which the designs were based, and the development work carried out to validate them. Some of the design features such as the separator/reheater units and the arrangements for water extraction in the high pressure turbine are unconventional. An important characteristic of all nuclear plant is the combination of high capital cost and low fuel cost, and the consequent emphasis placed on high availability. The paper describes some service problems experienced with wet steam plant and how these were overcome with minimum loss of generation. The paper also describes a number of the developments for future wet steam plant which have evolved from these experiences, and from research and development programmes aimed at increasing the efficiency and reliability of both conventional and wet steam units. Blading, rotor construction and separator/reheater units are considered. (author)

  16. Generalised pole-placement control of steam turbine speed

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-del-Busto, R. [ITESM, Cuernavaca (Mexico). Div. de Ingenieria y Ciencias; Munoz, J. [ITESM, Xochimilco (Mexico). Div. de Ingenieria y Ciencias

    1996-12-31

    An application of a pole-placement self-tuning predictive control algorithm is developed to regulate speed of a power plant steam turbine model. Two types of system representation (CARMA and CARIMA) are used to test the control algorithm. Simulation results show that when using a CARMA model better results are produced. Two further comparisons are made when using a PI controller and a generalised predictive controller. (author)

  17. Moving blade for steam turbines with axial flow

    International Nuclear Information System (INIS)

    Raschke, K.; Wehle, G.

    1976-01-01

    The invention concerns the improvement of the production of moving blades for steam turbines with axial flow, especially of multi-blades produced by welding of the top plates. It is proposed to weld the top plates before the moving blades are fitted into the rotor. Welding is this made much easier and can be carried out under protective gas and with better results. (UWI) [de

  18. Processing of Advanced Alloys for A-USC Steam Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P. D. [National Energy Technology Laboratory (NETL); Hawk, Jeffrey A. [National Energy Technology Laboratory (NETL); Cowen, Christopher J. [National Energy Technology Laboratory (NETL); Maziasz, Philip J [ORNL

    2010-01-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760 C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  19. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  20. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  1. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  2. Using Dynamic Simulation to Evaluate Attemperator Operation in a Natural Gas Combined Cycle With Duct Burners in the Heat Recovery Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Eric [National Energy Technology Laboratory,Department of Energy,Systems Engineering and Analysis Division,Morgantown, WV 26507e-mail: eric.liese@netl.doe.gov; Zitney, Stephen E. [National Energy Technology Laboratory,Department of Energy,Systems Engineering and Analysis Division,Morgantown, WV 26507e-mail: stephen.zitney@netl.doe.gov

    2017-09-26

    A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature. The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.

  3. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  4. The taking into consideration of reliability in the design of steam turbines

    International Nuclear Information System (INIS)

    Brazzini, Robert; Chaboseau, J.; Mathey, J.

    1976-01-01

    Improvement of the quality of steam turbines is the object of continuous effort undertaken a long time ago. The turbines used in nuclear power stations, do not constitute a technical novation as compared to those which equip the 'conventional' type of power station. The specific conditions of the nuclear have nevertheless revealed anxieties which were not so acute in the case of conventional applications (intrinsic safety versus runaway risks, the operating surveillance of safety components, protection against corrosion by wet steam) and which reliability studies have been led to take into account. An example is given of the work carried out in this sense by describing the reliability studies devoted to the protection system of turbogenerator sets against overspeeds [fr

  5. FUNDAMENTALS OF THE THEORY OF VENTILLATION PROCESSES IN THE STEAM TURBINES TPP

    Directory of Open Access Journals (Sweden)

    V. M. Neuimin

    2015-01-01

    Full Text Available  The article proposes the theoretical framework of ventilation processes emerging and going on in the stages of TPP steam turbines during the operating regimes with small-quantity volumetric flow rates in the low-pressure cylinder. The basic theory includes new physicomathematical models for estimating the ventilating capacity losses and ventilation heatings-up of the steam and the air-gas channel of the turbine; search and investigation of the factors causing the increased momental loads on the blade wheels of the finale stages which are likely to lead to destruction of the rotating blades. The paper renders the practical results of utilizing the theoretical framework of ventilation processes.The author obtains a new mathematical relation for high-accuracy assessment of the ventilating capacity losses accounting for all the diversification of parameters defining the level of these losses (it is established that the Coriolis force contributes twice as much to the ventilating capacity losses as the centrifugal force. Seven ordinary formulae obtained on its basis provide a separate stage ventilation-losses immediate evaluation (with rotation blades of the finale stage not unwinding from the turning, with rotation blades of the finale and intermediate stages unwinding from the turning, in the turbine altogether-vapor-evacuated including by readings of the regular instruments located at the connecters of the exhaust part of the lowpressure cylinder.As the cornerstone of the new ventilation heating-up evaluation system the author lays two experimentally established facts: the ventilating capacity losses are practically constant at working steam negligible volumetric flow rates; symmetrical ventilating flows in the blade channel mingle entirely to the moment of their split up at the periphery. This renders possible estimating the complete enthalpy increment of the steam being discharged from a stage in relation to the enthalpy of the steam being

  6. DESAIN AWAL TURBIN UAP TIPE AKSIAL UNTUK KONSEP RGTT30 BERPENDINGIN HELIUM

    Directory of Open Access Journals (Sweden)

    Sri Sudadiyo

    2016-06-01

    Full Text Available ABSTRAK DESAIN AWAL TURBIN UAP TIPE AKSIAL UNTUK KONSEP RGTT30 BERPENDINGIN HELIUM. Konsep reaktor daya nuklir yang dikembangkan merupakan jenis reaktor berpendingin gas dengan temperatur tinggi (RGTT. Gas yang digunakan untuk mendinginkan teras RGTT adalah helium. Konsep RGTT ini dapat menghasilkan daya termal 30 MWth sehingga dinamakan RGTT30. Temperatur helium mampu mencapai 700 °C ketika keluar dari teras RGTT30 dan digunakan untuk memanaskan air di dalam steam generator hingga mencapai temperatur 435 °C. Steam generator dihubungkan dengan turbin uap yang dikopel dengan generator listrik untuk membangkitkan daya 7,27 MWe. Uap yang keluar dari turbin dilewatkan kondensor untuk mencairkan uap menjadi air. Rangkaian komponen dari steam generator, turbin, dan kondensor dinamakan sistem turbin uap. Turbin terdiri dari sudu-sudu yang dimaksudkan untuk mengubah tenaga uap kedalam tenaga mekanis berupa putaran. Efisiensi turbin merupakan parameter yang harus diperhatikan dalam sistem turbin uap ini. Tujuan dari makalah ini adalah untuk mengusulkan sudu tipe aksial dan untuk menganalisa perbaikan efisiensi turbin. Metode yang digunakan yaitu aplikasi prinsip termodinamika yang berhubungan dengan konservasi energi dan massa. Perangkat lunak Cycle-Tempo dipakai untuk mendapatkan parameter termodinamika dan untuk mensimulasikan sistem turbin uap berbasis RGTT30. Pertama, dibuat skenario dalam simulasi sistem turbin uap untuk mengetahui efisiensi dan laju aliran massa uap yang diperoleh nilai optimal 87,52 % dan 8,759 kg/s pada putaran 3000 rpm. Kemudian, turbin uap diberi sudu tipe aksial dengan diameter tip 1580 mm dan panjang 150 mm. Hasil yang diperoleh adalah nilai efisiensi turbin uap naik menjadi 88,3 % pada putaran konstan (3000 rpm. Penambahan nilai efisiensi turbin sebesar 0,78 % menunjukkan peningkatan kinerja RGTT30 secara keseluruhan. Kata kunci: Tipe aksial, turbin uap, RGTT30   ABSTRACT PRELIMINARY DESIGN ON STEAM TURBINE OF AXIAL TYPE

  7. The main features of control and operation of steam turbines at nuclear power plants

    International Nuclear Information System (INIS)

    Czinkoczky, B.

    1981-01-01

    The output and speed control of steam turbines at nuclear power plants as well as the combination of both controls are reviewed and evaluated. At the same time the tasks of unit control at nuclear power plants, the control of steady main steam pressure and medium pressure of primary circuit, further the connection of reactor and turbine controls and the self-controlling properties of pressurized water reactor are dealt with. Hydraulic and electro-hydraulic speed control, the connection of cach-up dampers and speed control and the application of electro-hydraulic signal converters are discussed. The accomplishment of protection is also described. (author)

  8. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  9. Research and development of improved efficiency small steam turbines (IESST). Technical progress report, Phase I, 16 April-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Choate, D.M.; Tuttle, A.H.

    1980-01-01

    Product Statistical Bulletins of the National Electrical Manufacturers Association (NEMA) and Turbodyne's shipment records over a 10-y period were researched to determine quantities installed and to define general parameters of design. Engineering studies were conducted to determine the optimum turbine design to meet the defined design parameters. Two conceptual designs plus an added variation of one design were completed together with designs of gearing required to provide speeds compatible with driven equipment speeds. The calculated performance of the recommended design and currently available small steam turbines were compared and a life cycle cost analysis was conducted to determine the economic competitiveness of the new design.

  10. Erosion-corrosion of structural materials of wet steam turbines

    International Nuclear Information System (INIS)

    Tomarov, G.V.

    1989-01-01

    A model of erosion-corrosion wear of elements of a wet steam zone and a condensate-feeding path of turbines is considered. It is shown that diffusion of impurities and corrosion products in pores of an oxide layer is the control mechanism under conditions of laminar flow of a media. Processes of mass transfer are controlling factors in turbulent flow

  11. Operational Measurement of Stationary Characteristics and Positions of Shrouded Steam Turbine Blades

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel; Vaněk, František

    2016-01-01

    Roč. 65, č. 5 (2016), s. 1079-1086 ISSN 0018-9456 Institutional support: RVO:61388998 Keywords : displacement measurement * turbomachine blades * steam turbines Subject RIV: BI - Acoustics Impact factor: 2.456, year: 2016

  12. Process for resuperheating steam coming from the high-pressure stage of a turbine and device to bring into use this process

    International Nuclear Information System (INIS)

    Pacault, P.H.

    1977-01-01

    A process is described for resuperheating steam coming from the high pressure stage of a turbine fed by a steam generator, itself heated from a base thermal source. The resuperheating is done by desuperheating at least a part of the steam coming from the generator, taken from the inflow of the turbine high pressure stage, the desuperheated steam being condensed, partially at least, in a condensation exchanger forming a preliminary resuperheater [fr

  13. Effects of surface roughness on deviation angle and performance losses in wet steam turbines

    International Nuclear Information System (INIS)

    Bagheri Esfe, H.; Kermani, M.J.; Saffar Avval, M.

    2015-01-01

    In this paper, effects of turbine blade roughness and steam condensation on deviation angle and performance losses of the wet stages are investigated. The steam is assumed to obey non-equilibrium thermodynamic model, in which abrupt formation of liquid droplets produces condensation shocks. An AUSM-van Leer hybrid scheme is used to solve two-phase turbulent transonic steam flow around turbine rotor tip sections. The dominant solver of the computational domain is taken to be the AUSM scheme (1993) that in regions with large gradients smoothly switches to van Leer scheme (1979). This guarantees a robust hybrid scheme throughout the domain. It is observed that as a result of condensation, the aerothermodymics of the flow field changes. For example for a supersonic wet case with exit isentropic Mach number M e,is  = 1.45, the deviation angle and total pressure loss coefficient change by 65% and 200%, respectively, when compared with dry case. It is also observed that losses due to surface roughness in subsonic regions are much larger than those in supersonic regions. Hence, as a practical guideline for maintenance sequences, cleaning of subsonic parts of steam turbines should be considered first. - Highlights: • Two-phase turbulent transonic steam flow is numerically studied in this paper. • As a result of condensation, aerothermodynamics of the flow field changes. • Surface roughness has almost negligible effect on deviation angle. • Surface roughness plays an important role in performance losses. • Contribution of different loss mechanisms for smooth and rough blades are computed.

  14. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    Science.gov (United States)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  15. Control of internal packing seal clearances considering for shaft behavior during steam turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Min Sik; Lee, Si Yeon; Choi, Sung Choul; Lee, Jae Geun [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of); Yang, Bo Suk [Pukyong National Univ., Busan (Korea, Republic of)

    2004-07-01

    This paper presents the characteristics of internal clearances for the interstage of blades and shaft gland seals on the steam turbine which are installed in tandem compound. Internal clearances was changed when the rotor turned in the cylindrical sleeve bearing due to the generation of oil film wedge. This presented concern is very useful to prevent the rubbing damage of seal edge between the fixed and moving parts in steam turbine due to the misalignment at the rotating and stationary parts. This method is applied for the unbalanced clearances distribution to the left and right sides in the turbine casing. A considerable amount of unbalanced clearances distribution trend is determined according to the rotating speed of rotor, size and type of journal bearing, oil viscosity, surface roughness of bearing and shaft, oil temperature, oil pressure and bearing load.

  16. The T-100-12.8 family of cogeneration steam turbines: Yesterday, today, and tomorrow

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Sakhnin, Yu. A.; Stepanov, M. Yu.

    2013-08-01

    The T-100-12.8 turbine and its versions, a type of cogeneration steam turbines that is among best known, unique, and most widely used ones in Russia and abroad, are considered. A list of turbine design versions and quantities in which they were produced, their technical and economic indicators, design features, schematic solutions used in different design versions, and a list of solutions available in a comprehensive portfolio offered for modernizing type T-100-12.8 turbines are presented. Information about amounts in which turbines of the last version are supplied currently and supposed to be supplied soon is given.

  17. Power-generation method using combined gas and steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Radtke, K; Keller, H J

    1997-03-20

    The invention concerns a method of power generation using a so-called COGAS (combined gas and steam) turbine installation, the aim being to improve the method with regard to the initial costs and energy consumption so that power can be generated as cheaply as possible. This is achieved by virtue of the fact that air taken from the surrounding atmosphere is splint into an essentially oxygen-containing stream and an essentially nitrogen-containing stream and the two streams fed further at approximately atmospheric pressure. The essentially nitrogen-containing stream is mixed with an air stream to form a mixed nitrogen/air stream and the mixed-gas stream thus produced is brought to combustion chamber pressure in the compressor of the gas turbine, the combustion of the combustion gases in the combustion chamber of the gas turbine being carried out with the greater part of this compressed mixed-gas stream. (author) figs.

  18. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  19. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  20. For effective thermodynamic calculation of turbines flow-through by gas and steam

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S; Hultsch, M

    1982-03-01

    A programme system for the medium and multiple section calculation of axial-flow turbines is explained. It allows calculations of turbine flow-through by gas and steam at designing and partial load states. The algorithms are independent upon the formulation of thermodynamic function, so that the programmes can be used for any means of production. The highest accuracy and efficiency can be guaranteed by the use of formulations of thermodynamic functions of water.

  1. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary...

  2. A nuclear gas turbine perspective: The indirect cycle (IDC) offers a practical solution

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1996-01-01

    The current generation of nuclear power plants are based on light water reactors and steam cycle power conversion systems. This coupling yields a power plant efficiency of less than 30% when dry-cooled. By utilizing a higher temperature heat source, and a more efficient prime-mover, the next generation of nuclear power plants have the potential for an efficiency of close to 50%, with attendant fuel savings and reduced heat rejection to the environment. The nuclear closed Brayton cycle (NCBC) gas turbine plant involves the coupling of a high temperature reactor (HTR) and a high efficiency helium gas turbine. Studies over many years have shown the merits of an indirect cycle (IDC) approach in which an intermediate heat exchanger is used to transfer the reactor thermal energy to the prime-mover. The major advantages of this include the following: (1) multipurpose nuclear heat source; (2) gas turbine operation in a clean non-nuclear environment; (3) power conversion system simplicity; and (4) maximum utilization of existing technology. An additional factor, which may dominate the above is that the IDC approach is in concert with the only active gas-cooled reactor program remaining in the world, namely a high temperature test reactor (HTTR) under construction in Japan, the culmination of which will be the demonstration of a viable high temperature nuclear heat source. The major theme of this paper is that the IDC nuclear gas turbine offers a practical NCBC power plant concept for operation in the second or third decades of the 21st century

  3. Efficient power generation from large 7500C heat sources. Application to coal-fired and nuclear power station

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Pierre, B.

    1980-03-01

    Considering the future concern about a more efficient, rational use of heat sources, and also about a greater location flexibility of power plants owing to dry cooling possibility, closed gas cycles can offer new solutions for fossil or nuclear energy. An efficient heat conversion into power is obtained by the combination of a main non-intercooled helium cycle with a flexible, superheated, low pressure bottoming steam cycle. Emphasis is placed on the matching of the two cycle; for that, a recuperator by-pass arrangement is used. The operation of the main gas turbocompressor does not depend upon the operation of the small steam cycle. Results are given for a conservative turbine inlet temperature of 750 0 C. Applications are made to a coal-fired power plant and to a gas turbine, gas-cooled nuclear reactor. Overall net plant efficiencies of 39 per cent and 46 per cent respectively are reached. For a cycle top temperature equal to 850 0 C, corresponding net efficiencies would be 42 and 49 per cent

  4. Improvement of testing techniques for inspecting steam turbine rotor in power plant

    International Nuclear Information System (INIS)

    Su, Yeong Shuenn; Wei, Chieng Neng; Wu, Chien Wen; Wu, Yung How

    1997-01-01

    Steam turbine rotor is important to the Utility industry, it degrades over time due to fatigue and corrosion under high temperature and high pressure environment. Periodic inspection is required in the wake of plant annual overhaul to ensure the integrity of turbine rotor. Non-Destructive Testing of turbine rotor is usually performed using magnetic particle testing with wet fluorescent magnetic particle. However, it is very difficult to ensure the reliability of inspection due to the limitation of using one NDT method only. The crack-susceptible areas, such as turbine blade, and blade root have high incidence of stress corrosion cracking, The blade root section is difficult to locate cracks because of the complex geometry which may cause inadequate magnetic field and poor accessibility. Improved inspection practices was developed by our Department, together with remaining life analysis, in maintaining the high availability of steam turbine rotor. The newly-developed inspection system based on the practical study of magnetic field strength distribution, quality of magnetic particle bath and a combination of different NDT methods with Eddy Current Testing using absolute pen-type coil and Visual Testing using reflective mirror to examine the key areas concerned are described. TPC' experience with the well-trained technicians together with the adequate inspection procedure in detecting blade-root flaws are also discussed in the paper. Many of these inspection improvement have been applied in the fields for several times and the inspection reliability has been enhanced substantially. Results are quite encouraging and satisfactory.

  5. Heat balance calculation and feasibility analysis for initial startup of Fuqing nuclear turbine unit with non-nuclear steam

    International Nuclear Information System (INIS)

    He Liu; Xiao Bo; Song Yumeng

    2014-01-01

    Non-nuclear steam run up compared with nuclear steam run up, can verify the design, manufacture, installation quality of the unit, at the same time shorten the follow-up duration of the entire group ready to start debugging time. In this paper, starting from the first law of thermodynamics, Analyzed Heat balance Calculation and Feasibility analysis for Initial startup of Fuqing nuclear Turbine unit with Non-nuclear steam, By the above calculation, to the system requirements and device status on the basis of technical specifications, confirmed the feasibility of Non-nuclear steam running up in theory. After the implementation of the Non-nuclear turn of Fuqing unit, confirmed the results fit with the actual process. In summary, the Initial startup of Fuqing turbine unit with Non-nuclear steam is feasible. (authors)

  6. Influence of steam leakage through vane, gland, and shaft seals on rotordynamics of high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P.N. [Shanghai Jiao Tong University, Key Laboratory of Power Machinery and Engineering, Ministry of Education, School of Mechanical Engineering, Shanghai (China); Shanghai Turbine Company, Department of R and D, Shanghai (China); Wang, W.Z.; Liu, Y.Z. [Shanghai Jiao Tong University, Key Laboratory of Power Machinery and Engineering, Ministry of Education, School of Mechanical Engineering, Shanghai (China); Meng, G. [Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai (China)

    2012-02-15

    A comparative analysis of the influence of steam leakage through vane, gland, and shaft seals on the rotordynamics of the high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine was performed using numerical calculations. The rotordynamic coefficients associated with steam leakage through the three labyrinth seals were calculated using the control-volume method and perturbation analysis. A stability analysis of the rotor system subject to the steam forcing induced by the leakage flow was performed using the finite element method. An analysis of the influence of the labyrinth seal forcing on the rotordynamics was carried out by varying the geometrical parameters pertaining to the tooth number, seal clearance, and inner diameter of the labyrinth seals, along with the thermal parameters with respect to pressures and temperatures. The results demonstrated that the steam forcing with an increase in the length of the blade for the vane seal significantly influences the rotordynamic coefficients. Furthermore, the contribution of steam forcing to the instability of the rotor is decreased and increased with increases in the seal clearance and tooth number, respectively. The comparison of the rotordynamic coefficients associated with steam leakage through the vane seal, gland seal, and shaft seal convincingly disclosed that, although the steam forcing attenuates the stability of the rotor system, the steam turbine is still operating under safe conditions. (orig.)

  7. Avoiding failures of steam turbine discs by automated ultrasonic inspections

    International Nuclear Information System (INIS)

    Morton, J.; Bird, C.R.

    1994-01-01

    Under certain conditions, stress corrosion cracking can cause catastrophic failure of steam turbine discs. Nuclear Electric has developed a range of inspection techniques for disc keyways, bores, buttons and blade attachments and has accumulated substantial experience on their use on plant. This paper gives examples of the techniques used and discusses the strengths and weaknesses of the techniques applied

  8. Experience with and techniques of diagnosing power plant steam turbines without dismantling

    International Nuclear Information System (INIS)

    Drapal, A.; Kopecek, K.

    1987-01-01

    Within the framework of vibration diagnostics of steam turbines at the Dukovany nuclear power plant the following factors were monitored: the summation signal of vibrations (usually the path of vibration movement), the time course of the vibration and the phase angle. In non-steady states also run-in and run-out curves, the absolute vibration of bearing stands and the relative vibration of the rotor are monitored. The method has so far not allowed to diagnose failures of antifriction bearings, loose parts, some gear box defects, the development of cracks in vanes, radial cracks in the disk, etc. Briefly characterized is the portable equipment which is available at the Dukovany nuclear power plant for vibration diagnostics of steam turbines. Suggestions are made for completing the system for monitoring service life, operation economics, the diagnosis of control circuits, etc. (Z.M.)

  9. Welding repair of the steam and gas turbines rotors made of Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Mazur, Z.; Kubiak, J.; Hernandez, A.

    1999-01-01

    An analysis of typical steam turbine and gas turbine rotor failures is carried out. On the base of the rotors different failure causes and their mode of occurring, an evaluation of the weldability of the Cr-Mo-V steels and the classification of the common turbine rotors repair possibilities is presented. The developing of specific in-situ welding repair process of the damaged 20.65 MW gas turbine rotor is described. After repair, the rotor was put back into service. (Author) 15 refs

  10. Steam turbine controls and their integration into power plants

    International Nuclear Information System (INIS)

    Kure-Jensen, J.; Hanisch, R.

    1989-01-01

    The main functions of a modern steam turbine control system are: speed and acceleration control during start-up; initialization of generator excitation; synchronization and application of load; pressure control of various forms: inlet, extraction backpressure, etc.; unloading and securing of the turbine; sequencing of the above functions under constraint of thermal stress overspeed protection during load rejection and emergencies; protection against serious hazards, e.g., loss of oil pressure, high bearing vibration; and testing of valves and vitally important protection functions. It is characteristic of the first group of functions that they must be performed with high control bandwidth, or very high reliability, or both, to ensure long-term satisfactory service of the turbine. It is for these reasons that GE has, from the very beginning of the technology, designed and provided the controls and protection for its units, starting with mechanical and hydraulic devices and progressing to analog electrohydraulic systems introduced in the 1960s, and now continuing with all-digital electrohydraulic systems

  11. The market for steam turbine generators around the world

    International Nuclear Information System (INIS)

    Mandement, O.; Anglaret, P.; Ledermann, P.

    2012-01-01

    As a discrete market (in the mathematical meaning of the word) with irregular sales from one year to the next, the market for steam turbine generators in nuclear plants requires working out a strategy adapted to each project. The diversity of the reactors proposed (technology, thermal power, the thermodynamic characteristics of the steam supplied), the variety of the cold sources to be used (ranging from the Baltic Sea to the Indian Ocean) and the different frequencies of electricity grids (50 or 60 Hz) necessitate developing platforms of solutions. Furthermore, the requirement that local businesses have a share in contracts often entails partnerships. After pointing out the diversity of this market, the effort is made to point out its principal characteristics. (authors)

  12. Experimental verification of blade elongation and axial rotor shift in steam turbines

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel

    2016-01-01

    Roč. 2, č. 3 (2016), s. 190-192 ISSN 2149-8024 Institutional support: RVO:61388998 Keywords : blade elongation * axial rotor shift * steam turbines * magnetoresistive sensors Subject RIV: BI - Acoustics http://www.challengejournal.com/index.php/cjsmec/article/download/74/62

  13. Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine

    Directory of Open Access Journals (Sweden)

    Zhihua Ge

    2018-01-01

    Full Text Available To reduce the exergy loss that is caused by the high-grade extraction steam of traditional heating mode of combined heat and power (CHP generating unit, a high back-pressure cascade heating technology for two jointly constructed large-scale steam turbine power generating units is proposed. The Unit 1 makes full use of the exhaust steam heat from high back-pressure turbine, and the Unit 2 uses the original heating mode of extracting steam condensation, which significantly reduces the flow rate of high-grade extraction steam. The typical 2 × 350 MW supercritical CHP units in northern China were selected as object. The boundary conditions for heating were determined based on the actual climatic conditions and heating demands. A model to analyze the performance of the high back-pressure cascade heating supply units for off-design operating conditions was developed. The load distributions between high back-pressure exhaust steam direct supply and extraction steam heating supply were described under various conditions, based on which, the heating efficiency of the CHP units with the high back-pressure cascade heating system was analyzed. The design heating load and maximum heating supply load were determined as well. The results indicate that the average coal consumption rate during the heating season is 205.46 g/kWh for the design heating load after the retrofit, which is about 51.99 g/kWh lower than that of the traditional heating mode. The coal consumption rate of 199.07 g/kWh can be achieved for the maximum heating load. Significant energy saving and CO2 emission reduction are obtained.

  14. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    Rabiti, A.; Delmastro, D.

    2003-01-01

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  15. Using neuro-fuzzy based approach for the evaluation of turbine-generator outputs

    International Nuclear Information System (INIS)

    Chan, Y. K.; Lu, C. C.; Chang, C. J.; Kao, L.; Hong, L. C.

    2010-01-01

    The objective of this study is to develop a hybrid soft-computing modeling technique used to develop the steam turbine cycle model for Chinshan Nuclear Power Station (CNPS). The technique uses neuro-fuzzy model to predict the turbine-generator output. Firstly, the station past three fuel cycles operating data above 95% load were collected and validated as the baseline performance data set. Then, the signal errors for new operating data were detected by comparison with the baseline data set and their allowable range of variations. Finally, the most important parameters were selected as an input of the neuro-fuzzy based steam turbine cycle model. After training and testing with key parameters including throttle pressure, condenser back pressure, feedwater mass flow, and final feedwater temperature, the proposed model can be applied to predict the turbine-generator output. The analysis results show this neuro-fuzzy based turbine cycle model can be used to predict the generator output with a good agreement. Moreover, the achievement of this study provides an alternative approach in thermal performance evaluation for nuclear power stations. (authors)

  16. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows

    International Nuclear Information System (INIS)

    Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.

    2017-01-01

    Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.

  17. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Yoshio; Nakagami, Yasuo; Fujii, Hisashi; Shibanai, Hirooki.

    1980-01-01

    Two 1175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  18. Vibration crack corrosion behavior and failure mechanisms of highly alloyed duplex steels in steam turbine rotor blades

    International Nuclear Information System (INIS)

    Wunderlich, R.

    1991-01-01

    The aim was to test the new duplex steel X3CrMnNiMoN 25 6 4 (A905) for its suitability as a steam turbine rotor blade material. Due to the increased proportion of manganese and nitrogen, compared to A903, in this duplex steel in the solution annealed state, an elastic limit of about 600 N/mm 2 acceptable for steam turbine rotor blades was reached. A micro-duplex structure (recrystallized secondary structure) consisting of 50% each of ferrite and Austenite proved to be the optimum structure composition. To measure the SwRK behaviour, Woehler curves were produced in media containing corrosive NaCl. The mean stress was 250 N/mm 2 , partly 350 N/mm 2 . The maximum duration of the test was given as 3 x 10 7 load cycles at a frequency of 50 Hz. The experimental time was partly extended to 5 x 10 7 load cycles. In order to guarantee as realistic a test as possible, the Sw RK tests took place in aqueous NaCl solution saturated with air. To correspond to envorinmental conditions in actual operation, the electrolyte temperature was varied between 80deg and 150deg C, the Na Cl concentration of the solution was varied between very dilute (0.01 M) and nearly saturated (22%) and the pH value was varied between pH 8 and pH 3. Accompanying passive oxide layer investigations should give information on the thickness and morphology of the layers formed. (orig./MM) [de

  19. Medium-Power Lead-Alloy Fast Reactor Balance-of-Plant Options

    International Nuclear Information System (INIS)

    Dostal, Vaclav; Hejzlar, Pavel; Todreas, Neil E.; Buongiorno, Jacopo

    2004-01-01

    Proper selection of the power conversion cycle is a very important step in the design of a nuclear reactor. Due to the higher core outlet temperature (∼550 deg. C) compared to that of light water reactors (∼300 deg. C), a wide portfolio of power cycles is available for the lead alloy fast reactor (LFR). Comparison of the following cycles for the LFR was performed: superheated steam (direct and indirect), supercritical steam, helium Brayton, and supercritical CO 2 (S-CO 2 ) recompression. Heat transfer from primary to secondary coolant was first analyzed and then the steam generators or heat exchangers were designed. The direct generation of steam in the lead alloy coolant was also evaluated. The resulting temperatures of the secondary fluids are in the range of 530-545 deg. C, dictated by the fixed space available for the heat exchangers in the reactor vessel. For the direct steam generation situation, the temperature is 312 deg. C. Optimization of each power cycle was carried out, yielding net plant efficiency of around 40% for the superheated steam cycle while the supercritical steam and S-CO 2 cycles achieved net plant efficiency of 41%. The cycles were then compared based on their net plant efficiency and potential for low capital cost. The superheated steam cycle is a very good candidate cycle given its reasonably high net plant efficiency and ease of implementation based on the extensive knowledge and operating experience with this cycle. Although the supercritical steam cycle net plant efficiency is slightly better than that of the superheated steam cycle, its high complexity and high pressure result in higher capital cost, negatively affecting plant economics. The helium Brayton cycle achieves low net plant efficiency due to the low lead alloy core outlet temperature, and therefore, even though it is a simpler cycle than the steam cycles, its performance is mediocre in this application. The prime candidate, however, appears to be the S-CO 2

  20. Avoiding failures of steam turbine discs by automated ultrasonic inspections

    International Nuclear Information System (INIS)

    Bird, C.R.; Morton, J.

    1994-01-01

    Under certain conditions, stress corrosion cracking can cause catastrophic failure of steam turbine discs. Nuclear Electric has developed a range of inspection techniques for disc keyways, bores, buttons and blade attachments and has accumulated substantial experience on their use on plant. This paper gives examples of the techniques used and discusses the strengths and weaknesses of the techniques applied. (Author)

  1. Investigation for vertical, two-phase steam-water flow of three turbine models

    International Nuclear Information System (INIS)

    Silverman, S.; Goodrich, L.D.

    1977-01-01

    One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed

  2. Site utility system optimization with operation adjustment under uncertainty

    International Nuclear Information System (INIS)

    Sun, Li; Gai, Limei; Smith, Robin

    2017-01-01

    Highlights: • Uncertainties are classified into time-based and probability-based uncertain factors. • Multi-period operation and recourses deal with uncertainty implementation. • Operation scheduling are specified at the design stage to deal with uncertainties. • Steam mains superheating affects steam distribution and power generation in the system. - Abstract: Utility systems must satisfy process energy and power demands under varying conditions. The system performance is decided by the system configuration and individual equipment operating load for boilers, gas turbines, steam turbines, condensers, and let down valves. Steam mains conditions in terms of steam pressures and steam superheating also play important roles on steam distribution in the system and power generation by steam expansion in steam turbines, and should be included in the system optimization. Uncertainties such as process steam power demand changes and electricity price fluctuations should be included in the system optimization to eliminate as much as possible the production loss caused by steam power deficits due to uncertainties. In this paper, uncertain factors are classified into time-based and probability-based uncertain factors, and operation scheduling containing multi-period equipment load sharing, redundant equipment start up, and electricity import to compensate for power deficits, have been presented to deal with the happens of uncertainties, and are formulated as a multi-period item and a recourse item in the optimization model. There are two case studies in this paper. One case illustrates the system design to determine system configuration, equipment selection, and system operation scheduling at the design stage to deal with uncertainties. The other case provides operational optimization scenarios for an existing system, especially when the steam superheating varies. The proposed method can provide practical guidance to system energy efficiency improvement.

  3. An optical technique for characterizing the liquid phase of steam at the exhaust of an LP turbine

    International Nuclear Information System (INIS)

    Kercel, S.W.; Simpson, M.L.; Azar, M.; Young, M.

    1993-01-01

    Optical observation of velocity and size of water droplets in powerplant steam has several applications. These include the determination of steam wetness fraction, mass flow rate, and predicting erosion of turbine blades and pipe elbows. The major advantages of optical techniques are that they do not interfere with the flow or perturb the observation. This paper describes the measurement of the size and velocity of particles based on the observation and analysis of visibility patterns created by backscattered circularly polarized light. The size of latex particles in a dry nitrogen stream was measured in the laboratory. Visibility patterns of water droplets were observed in the low pressure turbine of Unit 6 of Alabama Power's Gorgas Steam Plant

  4. Numerical analysis and field study of time dependent exergy-energy of a gas-steam combined cycle

    Directory of Open Access Journals (Sweden)

    Barari Bamdad

    2012-01-01

    Full Text Available In this study, time dependent exergy analysis of the Fars Combined Power Plant Cycle has been investigated. Exergy analysis has been used for investigating each part of actual combined cycle by considering irreversibility from Apr 2006 to Oct 2010. Performance analysis has been done for each part by evaluating exergy destruction in each month. By using of exergy analysis, aging of each part has been evaluated respect to time duration. In addition, the rate of lost work for each month has been calculated and variation of this parameter has been considered as a function of aging rate. Finally, effects of exergy destruction of each part have been investigated on exergy destruction of whole cycle. Entire analysis has been done for Unit 3 and 4 of gas turbine cycle which combined by Unit B of steam cycle in Fars Combined Power Plant Cycle located in Fars province in Iran.

  5. Effect of adoption of gas turbine in oil refinery

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Hiroto

    1988-08-01

    With progress in energy saving, and increase in automation in facilities, the dependence on electric power increases relative steam power. Further in order to reduce the production cost, the adoption of gas turbine combined cycle system, mainly aimed at power generation, is considered to be most suitable. This adoption, accompanied with the utilization of refinery offgas, dresults in a reduction in unit power generation cost, by increasing the ratio of domestic power generation. The gas turbine using deethanizing tower offgas as main fuel and butane as auxillary fuel, the combined cycle system, where steam produced from the turbine waste heat boiler drives the existing back pressure turbine, was constituted. The generator is 118 kVA in capacity. Against the maximum power demand being 16,500 kWh in the oil refinery, the obtainment of 11,000 kWh by the gas turbine and 2,500 kWh by the back pressure turbine was assured, with a considerable lowering in power to be purchased. (7 figs, 1 tab, 1 ref)

  6. Exergy Losses in the Szewalski Binary Vapor Cycle

    Directory of Open Access Journals (Sweden)

    Tomasz Kowalczyk

    2015-10-01

    Full Text Available In this publication, we present an energy and exergy analysis of the Szewalski binary vapor cycle based on a model of a supercritical steam power plant. We used energy analysis to conduct a preliminary optimization of the cycle. Exergy loss analysis was employed to perform a comparison of heat-transfer processes, which are essential for hierarchical cycles. The Szewalski binary vapor cycle consists of a steam cycle bottomed with an organic Rankine cycle installation. This coupling has a negative influence on the thermal efficiency of the cycle. However, the primary aim of this modification is to reduce the size of the power unit by decreasing the low-pressure steam turbine cylinder and the steam condenser. The reduction of the “cold end” of the turbine is desirable from economic and technical standpoints. We present the Szewalski binary vapor cycle in addition to a mathematical model of the chosen power plant’s thermodynamic cycle. We elaborate on the procedure of the Szewalski cycle design and its optimization in order to attain an optimal size reduction of the power unit and limit exergy loss.

  7. Advanced on-line monitoring of power plant water/steam quality

    Energy Technology Data Exchange (ETDEWEB)

    Perboni, G.; Rocchini, G.; Sigon, F. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-03-01

    To improve the behaviour and resistance of materials in the water-steam cycle critical components (steam generator, condensate heaters, turbine) it is necessary to adopt proper actions for promoting formation and integrity of surface protective oxide layers and preventing general and localised corrosion and transport processes of corrosion products throughout the cycle. In this report two important topics are reported: steam side corrosion in the low pressure turbines induced by the `first condensate` in the final stages of the turbine, and the stability of the oxides layers as a function of the condensate chemistry, with particular attention to the transport of corrosion products to the boiler. Furthermore an innovative technique for monitoring some physico-chemical parameters at the actual fluid temperature (150-300C) using new electrochemical sensors improved by ENEL/CRAM is studied: pH, conductivity, corrosion rate, corrosion and redox potentials.ENEL/CRAM validated on lab-scale testing loops these sensors and carried out the following programs: calibration procedures, reliability of the response, long-term stability and assessment of a reduced maintenance. Applications of the electrochemical methods to fossil fired units have demonstrated their validity for monitoring the cycle chemistry and the resistance to corrosion of structural materials in real time.

  8. Check of condition of steam generators, volume compensators and turbine condensers in nuclear power plants

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Holy, F.; Sobotka, J.

    1989-01-01

    A negative pressure leak detector is described designed for leak testing of tubes in steam generators and steam turbine condensers. The principle, operation and use are described of inflatable bags and an inflatable platform. The bags are designed for insulating and sealing spaces in nuclear reactor components while the inflatable platform is used in pressurizer inspections and repairs. Their properties, and other facilities for detecting leaks in steam generator tubes are briefly described. (M.D.). 3 figs

  9. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Y.; Nakagami, Y.; Fujii, H.; Shibanai, H.

    1980-01-01

    Two 1,175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  10. Preliminary analysis of combined cycle of modular high-temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Baogang, Z.; Xiaoyong, Y.; Jie, W.; Gang, Z.; Qian, S.

    2015-01-01

    Modular high-temperature gas cooled reactor (HTGR) is known as one of the most advanced nuclear reactors because of its inherent safety and high efficiency. The power conversion system of HTGR can be steam turbine based on Rankine cycle or gas turbine based on Brayton cycle respectively. The steam turbine system is mature and the gas turbine system has high efficiency but under development. The Brayton-Rankine combined cycle is an effective way to further promote the efficiency. This paper investigated the performance of combined cycle from the viewpoint of thermodynamics. The effect of non-dimensional parameters on combined cycle’s efficiency, such as temperature ratio, compression ratio, efficiency of compressor, efficiency of turbine, was analyzed. Furthermore, the optimal parameters to achieve highest efficiency was also given by this analysis under engineering constraints. The conclusions could be helpful to the design and development of combined cycle of HTGR. (author)

  11. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-01-01

    Full Text Available Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders (Stobart and Weerasinghe, 2006. Dependable data for small steam expanders will allow us to predict their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Present paper is based on results of experiments carried out on small scale Wankel and two-stroke reciprocating engines as air expanders and as steam expanders. A test facility developed at Sussex used for measurements is comprised of a torque, power and speed measurements, electronic actuation of valves, synchronized data acquisition of pressure, and temperatures of steam and inside of the engines for steam and internal combustion cycles. Results are presented for four engine modes, namely, reciprocating engine in uniflow steam expansion mode and air expansion mode and rotary Wankel engine in steam expansion mode and air expansion mode. The air tests will provide base data for friction and motoring effects whereas steam tests will tell how effective the engines will be in this mode. Results for power, torque, and p-V diagrams are compared to determine the change in performance from air expansion mode to steam expansion mode.

  12. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  13. General characteristics and technical subjects on helium closed cycle gas turbine

    International Nuclear Information System (INIS)

    Shimomura, Hiroaki

    1996-06-01

    Making the subjects clarified on nuclear-heated gas turbine that will apply the inherent features of HTGR, the present paper discusses the difference of the helium closed cycle gas turbine, which is a candidate of nuclear gas turbine, with the open cycle gas turbine and indicates inherent problems of closed cycle gas turbine, its effects onto thermal efficiency and turbine output and difficulties due to the pressure ratio and specific speed from use of helium. The paper also discusses effects of the external pressure losses onto the efficiencies of compressor and turbine that are major components of the gas turbine. According to the discussions above, the paper concludes indicating the key idea on heat exchangers for the closed cycle gas turbine and design basis to solve the problems and finally offers new gas turbine conception using nitrogen or air that is changeable into open cycle gas turbine. (author)

  14. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    Science.gov (United States)

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  15. Application of the combined cycle LWR-gas turbine to PWR for NPP life extension, safety upgrade and improving economy

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.N.; Gabaraev, B.A.

    2002-01-01

    Full text: The unconventional technology to extend the lifetime for the NPPs now in operation and make a construction of new NPPs cheaper - erection of steam-gas toppings to the nuclear power units - is considered in the paper. Application of the steam-gas toppings permits through reducing power of ageing reactors to extend lifetime of nuclear power unit, enhance its safety and at the same time to keep full load operation of NPP turbine and other balance-of-plant equipment. Proposed technology is examined for Russian VVER-440 reactor as an example and, also, as a pilot project, for Russian boiling VK-50 reactor now in operation Application of the steam-gas topping permits: extend the service life of ageing VVER-440 reactor by 10...15 years; use the turbine and other NPP balance-of-plant equipment at full power; increase the efficiency of combined cycle up to 48% and more; enhance the safety of NPP operation; utilize NPP balance-of-plant equipment after reactor decommissioning; perform the cost-effective operation in maneuvering modes; increase capacity factor of the plant. The construction of pilot project on the basis of the VK-50 reactor will allow not only to demonstrate new technology but also to attain appreciable economic effect including that obtained due to using the available reserves of the NPP turbine. (author)

  16. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    Science.gov (United States)

    Ghaebi, Hadi; Abbaspour, Ghader

    2018-05-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  17. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control

    OpenAIRE

    Zhongbo Zhang; Lifu Li

    2018-01-01

    In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...

  18. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  19. Combined cycle simulator with gas turbine and steam turbine with one vaporization stage; Simulador de ciclo combinado con turbina de gas y de vapor con un nivel de vaporizacion

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle Cardenas, B.; Lugo Leyte, R. [Universidad Autonoma Metropolitana, Depto de Ingenieria de Procesos e Hidraulica, Mexico, D. F. (Mexico); Toledo Velazquez, Miguel; Tolentino Eslava, G. [Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, ESIME-IPN-COFFA, Mexico, D. F. (Mexico)

    1998-12-31

    This paper shows the thermal analysis of a combined cycle with gas and steam turbines with one vaporization stage. The analysis is performed through a computer program, which allows the simulation of cycles with different operational conditions, obtaining this way a series of results that permits to know the way these cycles behave in effecting temperature and pressure changes; besides of being an excellent tool in thermodynamics for the user. The simulators were performed in Borland C++ and Builder C++ Versions 4.5 and 2.0 respectively, creating in this way a friendly ambient for the user. This tool offers the opportunity to all its users the ability to simulate combined cycles in a fast and easy way in order to obtain a wider understanding of its thermodynamic behavior. [Espanol] En el presente trabajo se muestra el analisis termico de un ciclo combinado con turbinas de gas y de vapor con un nivel de vaporizacion. El analisis se realiza a traves de un programa de computo, el cual permite simular los ciclos con diferentes condiciones de operacion, obteniendo con esto una serie de resultados que permiten conocer la forma en que trabajan estos ciclos al realizar cambios en temperaturas y presiones; ademas de que es una excelente herramienta para el usuario en termodinamica. Los simuladores fueron realizados en Borland C++ y Builder C++ Versiones 4.5 y 2.0 respectivamente, creandose asi un ambiente amigable para el usuario. Esta herramienta brinda la oportunidad a todos los usuarios de poder simular ciclos combinados de una manera rapida y sencilla con el fin de obtener una comprension mas amplia de su comportamiento termodinamico.

  20. Combined cycle simulator with gas turbine and steam turbine with one vaporization stage; Simulador de ciclo combinado con turbina de gas y de vapor con un nivel de vaporizacion

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle Cardenas, B; Lugo Leyte, R [Universidad Autonoma Metropolitana, Depto de Ingenieria de Procesos e Hidraulica, Mexico, D. F. (Mexico); Toledo Velazquez, Miguel; Tolentino Eslava, G [Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, ESIME-IPN-COFFA, Mexico, D. F. (Mexico)

    1999-12-31

    This paper shows the thermal analysis of a combined cycle with gas and steam turbines with one vaporization stage. The analysis is performed through a computer program, which allows the simulation of cycles with different operational conditions, obtaining this way a series of results that permits to know the way these cycles behave in effecting temperature and pressure changes; besides of being an excellent tool in thermodynamics for the user. The simulators were performed in Borland C++ and Builder C++ Versions 4.5 and 2.0 respectively, creating in this way a friendly ambient for the user. This tool offers the opportunity to all its users the ability to simulate combined cycles in a fast and easy way in order to obtain a wider understanding of its thermodynamic behavior. [Espanol] En el presente trabajo se muestra el analisis termico de un ciclo combinado con turbinas de gas y de vapor con un nivel de vaporizacion. El analisis se realiza a traves de un programa de computo, el cual permite simular los ciclos con diferentes condiciones de operacion, obteniendo con esto una serie de resultados que permiten conocer la forma en que trabajan estos ciclos al realizar cambios en temperaturas y presiones; ademas de que es una excelente herramienta para el usuario en termodinamica. Los simuladores fueron realizados en Borland C++ y Builder C++ Versiones 4.5 y 2.0 respectivamente, creandose asi un ambiente amigable para el usuario. Esta herramienta brinda la oportunidad a todos los usuarios de poder simular ciclos combinados de una manera rapida y sencilla con el fin de obtener una comprension mas amplia de su comportamiento termodinamico.

  1. Corrosion fatigue in LP steam turbine blading - experiences, causes and appropriate measures; Korrosionsutmattning i aangturbinskovlar - Erfarenheter, inverkande faktorer och moejliga aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Tavast, J [ABB STAL AB, Finspaang (Sweden)

    1996-12-01

    Corrosion fatigue in LP steam turbine blading was reviewed together with result of tests performed in order to find blade materials with improved resistance against this. According to international experience, corrosion fatigue of 12Cr steam turbine blades in the transition zone between dry and wet steam, is one of the major causes, if not the major cause, for unavailability of steam turbines. Corrosion fatigue in LP blading is a frequent problem also in Swedish and Finnish nuclear power plants, especially in turbines of type D54 in BWR-plants. Corrosion fatigue has also been discovered in at least one type of nuclear turbine. Initiation times have been very long and the varying experiences in different types of turbines may simply reflect differing initiation times. Corrosion fatigue may therefore become more frequent in other types of turbines in the future. The type of water treatment (BWR/PWR) and possibly temperature after reheating seem to influence the risk for corrosion fatigue. Influence of inleakage of cooling water is less clear for these nuclear plants. The long initiation times together with the fact that very few of the cracked blades have actually failed, indicate that the cracks initiate and/or propagate during transients. Extensive laboratory tests show that there are alternative blade materials available with improved resistance against corrosion fatigue, with the most promising being 15/5 PH and A905, together with Ti6Al4V. The Ti alloy shows the best resistance against corrosion fatigue in most environments and is already used in some turbines. Disadvantage is a higher cost and possible need for redesign of the blades. The alternative materials are recommended for use for blades in the transition zone between dry and wet steam in LP turbines. The main disadvantage is a lack of references, even if 15%5 PH has been used to a very limited extent. 40 refs, 24 figs, 12 tabs, 9 appendices

  2. Optimization of Root Section for Ultra-long Steam Turbine Rotor Blade

    Czech Academy of Sciences Publication Activity Database

    Hála, Jindřich; Luxa, Martin; Šimurda, David; Bobčík, M.; Novák, O.; Rudas, B.; Synáč, J.

    2018-01-01

    Roč. 27, č. 2 (2018), s. 95-102 ISSN 1003-2169 R&D Projects: GA TA ČR(CZ) TA03020277; GA TA ČR TH02020057 Institutional support: RVO:61388998 Keywords : steam turbine * blade cascade * root section Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.678, year: 2016

  3. Parametric simulation on enhancement of the Regenerative Gas Turbine performance by effect of Inlet Air Cooling system and Steam Injection

    Directory of Open Access Journals (Sweden)

    Aadel Abdulrazzaq Alkumait

    2016-02-01

    Full Text Available Iraq being one of the developing countries of the world considers energy efficiency and the impact of its generation on the environment an imperative process in improvement of its power generation policies. Iraq bearing high temperatures all year long results in reduction of air density, therefore, Inlet air Cooling and Steam Injection Gas Turbines are a striking addition to the regenerative gas turbines. Regenerating Gas turbines tend to have a high back work ratio and a high exhaust temperature, thus, it leads to a low efficiency in power generation in hotter climate. Moreover, STIG and IAC through fog cooling have known to be the best retrofitting methods available in the industry which improve the efficiency of generation from 30.5 to 43% and increase the power output from 22MW to 33.5MW as the outcomes of computer simulations reveal. Additionally, this happens without bringing about much extensive change to original features of the power generation cycle. Furthermore, STIG and spray coolers have also resulted in power boosting and exceeding generation efficiency of gas turbine power plant.

  4. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  5. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  6. The use of tracer techniques to measure water flow rates in steam turbines

    International Nuclear Information System (INIS)

    Whitfield, O.J.; Blaylock, G.; Gale, R.W.

    1979-01-01

    Radioactive and chemical tracers offer some unique advantages in detailed flow measurement on steam turbine plant. A series of experiments on a nuclear power station are reported where tracers successfully measured water flow rates and the initial steam moisture with an accuracy suitable for performance and commissioning tests. Both radioactive and chemical tracer methods produced identical results. Straightforward practical procedures were evolved that ensured repeatable accuracy and in addition a quantitative method of detecting heater leaks on load was established. (author)

  7. Accurate calibration of steam turbine speed control system and its influence on primary regulation at electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Irrazabal Bohorquez, Washington Orlando; Barbosa, Joao Roberto [Technological Institute of Aeronautics (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Center for Reference on Gas Turbine and Energy], E-mail: barbosa@ita.br

    2010-07-01

    In an interconnected electric system there are two very important parameters: the field voltage and the frequency system. The frequency system is very important for the primary regulation of the electric grid. Each turbomachine actuating as generator interconnected to the grid has an automatic speed regulator to keep the rotational speed and mechanical power of the prime machine operating at the set conditions and stable frequency. The electric grid is a dynamical system and in every moment the power units are exposed to several types of disturbances, which cause unbalance of the mechanical power developed by prime machine and the consumed electric power at the grid. The steam turbine speed control system controls the turbine speed to support the electric grid primary frequency at the same time it controls the frequency of the prime machine. Using a mathematical model for the speed control system, the transfer functions were calculated, as well as the proportionality constants of each element of the steam turbine automatic speed regulator. Among other parameters, the droop characteristic of steam turbine and the dynamic characteristics of the automatic speed regulator elements were calculated. Another important result was the determination of the behavior of the speed control when disturbances occur with the improvement of the calibration precision of the control system. (author)

  8. Strategies for steam

    International Nuclear Information System (INIS)

    Hennagir, T.

    1996-01-01

    This article is a review of worldwide developments in the steam turbine and heat recovery steam generator markets. The Far East is driving the market in HRSGs, while China is driving the market in orders placed for steam turbine prime movers. The efforts of several major suppliers are discussed, with brief technical details being provided for several projects

  9. Acceptance test guideline for steam turbine control systems. Anahmerichtlinie fuer Regel- und Steuereinrichtungen von Dampfturbinen

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The acceptances to be obtained during the first operational run, refer to measures proving the functional integrity of the turbine control system and assuring the compliance with the maximum allowable overspeed in case of lead changes or perturbations. The Guideline concerns essentially speed, power, and pressure controllers coupled to generators. It may be appropriately extended to steam turbines serving other purposes.

  10. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Nur Fatin Athirah Ahmad Rizal

    2018-04-01

    Full Text Available The combination of superheated steam (SHS with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB and oil palm mesocarp fiber (OPMF were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.

  11. Fatigue life and damage evolution of martensitic steels for low-pressure steam turbine blades in the VHCF regime; Lebensdauer und Schaedigungsentwicklung martensitischer Staehle fuer Niederdruck-Dampfturbinenschaufeln bei Ermuedungsbeanspruchung im VHCF-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Stephan

    2014-07-01

    Low-pressure steam turbine blades are usually made of martensitic steels with Cr contents between 9 and 12%, which combine good corrosion resistance, high mechanical strength and sufficient ductility. The inhomogeneous flow field behind the vanes generates high-frequency oscillations above 1 kHz. In addition, the blades with lengths up to 1.5 m are operated at rotational speeds up to 3000 rpm, resulting in large centrifugal forces leading to the superposition of extremely high mean stresses. Also resonance oscillations during start-up and shutdown cannot be completely excluded. Currently, the components are designed using high safety factors against S-N curves with an assumed asymptotic fatigue limit above 107 load cycles. Nevertheless, fatigue cracks are observed even at high number of cycles, starting from the blade root without pre-damage by erosion or steam droplet impingement. While fatigue failure usually occurs at the surface, fatigue cracks at very high number of cycles (> 108) initiate at oxides or intermetallic inclusions below the surface. This transition between both failure mechanisms in the Very High-Cycle Fatigue (VHCF) regime is in the focus of numerous current research activities, because numbers of cycles above 108 can be attained in a viable period of time using the recently developed high-frequency testing techniques operated at 20 kHz. Also for wind turbines, gas turbines, bearings, springs, etc. VHCF issues become increasingly important. Within this work, the fatigue life and damage behavior of a martensitic Cr-steel during fatigue loading with and without high mean stresses at number of cycles to failure above 108 was analyzed. On the one hand, the studies gave insights into the relation between fatigue life and fatigue damage evolution of the investigated group of high-strength steels in the very high cycle fatigue regime (up to 2·109). In particular, the influence of high mean stresses on the VHCF behavior (fracture origin, crack growth

  12. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  13. Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    The integration of steam bottoming cycles on oil and gas platforms is currently regarded as the most promising option for improving the performance of these energy-intensive systems. In this paper, a North Sea platform is taken as case study, and a systematic analysis of its energy requirements...... cooling utility, and (iv) the weight limitations on the platform are quantitatively assessed. The results illustrate the benefits of converting the gas turbine process into a combined cycle, since the fuel gas consumption and the total CO2-emissions can be reduced by more than 15 %. Using the cooling...... water from the processing plant reveals to be more profitable than using seawater, as the additional pumping power outweighs the benefit of using a cooling medium at a temperature of about 8 °C lower. This study highlights thereby the importance of analysing energy savings and recovery options...

  14. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  15. The preliminary thermal-hydraulic design of one superheated steam water cooled blanket concept based on RELAP5 and MELCOR codes - 15147

    International Nuclear Information System (INIS)

    Guo, Y.; Wang, G.; Cheng, Y.; Peng, C.

    2015-01-01

    Water Cooled Blanket (WCB) is very important in the concept design and energy transfer in future fusion power plant. One concept design of WCB is under computational testing. RELAP5 and MELCOR codes, which are mature and often used in nuclear engineering, are selected as simulation tools. The complex inner flow channels and heat sources are simplified according to its thermal-hydraulic characteristics. Then the nodal models for RELAP5 and MELCOR are built for approximating the concept design. The superheated steam scheme is analyzed by two codes separately under different power levels. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. The results of two codes are compared and some advices are given. (authors)

  16. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  17. Analysis of Maisotsenko open gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Saghafifar, Mohammad; Gadalla, Mohamed

    2015-01-01

    Maisotsenko gas turbine cycle (MGTC) is a recently proposed humid air turbine cycle. An air saturator is employed for air heating and humidification purposes in MGTC. In this paper, MGTC is integrated as the bottoming cycle to a topping simple gas turbine as Maisotsenko bottoming cycle (MBC). A thermodynamic optimization is performed to illustrate the advantages and disadvantages of MBC as compared with air bottoming cycle (ABC). Furthermore, detailed sensitivity analysis is reported to present the effect of different operating parameters on the proposed configurations' performance. Efficiency enhancement of 3.7% is reported which results in more than 2600 tonne of natural gas fuel savings per year. - Highlights: • Developed an accurate air saturator model. • Introduced Maisotsenko bottoming cycle (MBC) as a power generation cycle. • Performed Thermodynamic optimization for MBC and air bottoming cycle (ABC). • Performed detailed sensitivity analysis for MBC under different operating conditions. • MBC has higher efficiency and specific net work output as compared to ABC

  18. Thermodynamic Analysis of a Steam Power Plant with Double Reheat and Feed Water Heaters

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-03-01

    Full Text Available A steam cycle with double reheat and turbine extraction is presented. Six heaters are used, three of them at high pressure and the other three at low pressure with deaerator. The first and second law analysis for the cycle and optimization of the thermal and exergy efficiencies are investigated. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. The exergy and irreversibility analyses of each component of the cycle are determined. Effects of turbine inlet pressure, boiler exit steam temperature, and condenser pressure on the first and second laws' efficiencies are investigated. Also the best turbine extraction pressure on the first law efficiency is obtained. The results show that the biggest exergy loss occurs in the boiler followed by the turbine. The results also show that the overall thermal efficiency and the second law efficiency decrease as the condenser pressure increases for any fixed outlet boiler temperature, however, they increase as the boiler temperature increases for any condenser pressure. Furthermore, the best values of extraction pressure from high, intermediate, and low pressure turbine which give the maximum first law efficiencies are obtained based on the required heat load corresponding to each exit boiler temperature.

  19. Performance assessment of simple and modified cycle turboshaft gas turbines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-06-01

    Full Text Available This paper focuses on investigations encompassing comparative assessment of gas turbine cycle options. More specifically, investigation was carried out of technical performance of turboshaft engine cycles based on existing simple cycle (SC and its projected modified cycles for civil helicopter application. Technically, thermal efficiency, specific fuel consumption, and power output are of paramount importance to the overall performance of gas turbine engines. In course of carrying out this research, turbomatch software established at Cranfield University based on gas turbine theory was applied to conduct simulation of a simple cycle (baseline two-spool helicopter turboshaft engine model with free power turbine. Similarly, some modified gas turbine cycle configurations incorporating unconventional components, such as engine cycle with low pressure compressor (LPC zero-staged, recuperated engine cycle, and intercooled/recuperated (ICR engine cycle, were also simulated. In doing so, design point (DP and off-design point (OD performances of the engine models were established. The percentage changes in performance parameters of the modified cycle engines over the simple cycle were evaluated and it was found that to a large extent, the modified engine cycles with unconventional components exhibit better performances in terms of thermal efficiency and specific fuel consumption than the traditional simple cycle engine. This research made use of public domain open source references.

  20. Dynamic performances of wet turbine and steam-separator-superheater and their mathematical simulation as objects of temperature control

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1985-01-01

    A mathematical model of a turbine and steam-separator-superheater (SSS) as applied to solution of the tasks of steam temperature regulaton after SSS has been developed. SSS as objects of steam temperature control are considerably less inertial, than intermediate superheaters (IS) of power units in thermal power plants, since for typical SSS and IS considered the duration of transition process according to steam temperature after SSS is 5-10 times loweA than for IS

  1. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  2. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  3. Turbine flow diagram of Paks-1 reactor

    International Nuclear Information System (INIS)

    Vancso, Tamas

    1983-01-01

    Computer calculations and programs are presented which inform the operators on the effect projected on the turbine and thermal efficiency of the modification in the flow diagram and in the starting parameters of the power cycle. In the program the expansion line of steam turbine type K-220-44 and the thermo-technical parameters of the elements of the feed-water heater system are determined. Detailed degree calculations for turbine unit of high pressure can be made. (author)

  4. Possibility of revitalization of control system of steam turbine 210 MW LMZ

    International Nuclear Information System (INIS)

    Racki, Branko

    2004-01-01

    It is a one-shaft, three casing condensing turbine, type K-210-130. A rigid coupling connects it directly to the electric energy generator. There is one intermediate superheat of steam and seven non regulated blending for regenerative condensate heating. A considerate number of such turbines have been used on the territory of the Eastern Europe. There are two blocks installed in TP Sisak, Croatia. There is a survey of the existing control system of turbine, power 210 MW. It points out and describes problems appearing during exploitation. Technical solutions according to complexity of realization have been described. It gives an overview of minimum range of modification with utilization of the existing oil system and maximum range by adding separate high pressure oil system with new solutions for performing segments. (Author)

  5. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  6. Process and apparatus for recovering of oil, bitumen, tar, resins, etc

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-06

    A process for recovering oil, bitumen, tar, and resins from oil shale, oil sands, Fuller's earth, peat, brown coal, mineral coal, and wood, through direct action of superheated steam on the material, is characterized by the fact that superheated steam with or without mixing of inert gases at a temperature, which lies below the decomposition temperature of the material being treated, is passed through the material with a high velocity. It leaves through nozzles, used in steam turbines. A method of carrying out the process in which solution medium is used for action on the material is characterized by the fact that solvents such as benzine and benzol are mixed with steam in different quantities.

  7. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  8. Robust velocity and load control of a steam turbine in a combined cycle thermoelectric power station; Control robusto de velocidad y carga de una turbina de vapor en una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Archundia, Enrique

    1998-12-31

    This research work is oriented to design, develop and validate an algorithm of modern control, that allows obtaining better performances in the control of speed of a steam turbine pertaining to a combined cycle thermoelectric power station, in all the operation interval, as well as obtaining better performances in the control of the amount of generated megawatts by the same when it is connected to an electric power generator, comparing the performance with the one obtained by means of the existing conventional controller. The changes in the speed reference or load are at the request of the operator and they always occur in incline form, indicating the rapidity with which it is desired to carry out the change of value in the reference. This is the reason for why the main objective of the control to design is to make a good follow up to references of the incline type. In the subsystem of the existing steam turbine the disadvantage is that the valves that regulate the steam flow to the turbine present a connection with the bypass valve that allows to derive the steam flow towards the main condenser without going through the turbine. It is for this reason that a multi-variable control that contemplates the interaction that occurs among the valves just mentioned, departing from a single variable design. The robust control H{infinity} has the following characteristics that allow it to be applied to the steam turbine process: the design can be made to have two poles in the origin, with which a good follow up to references of incline type is obtained; it allows the uncertainty handling, with which good results in everything are expected an entire operation interval; and it allows the design of multi-variable controllers, with which the existing interaction between the valves of control and bypass is considered. It is very difficult to be able to make tests with the real process, due to the cost and risks that it implies, nevertheless, the developments achieved in the areas

  9. Evaluation of Steam Generator Level behavior for Determination of Turbine Runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Hwang, Su Hyun; Yoo, Tae Geun; Chung, Soon Il; An, Byung Chang; Park, Jung Gu

    2010-01-01

    4.5% power uprate project has been progressing for the first time in Yonggwang 1 and 2(YGN1 and 2). Reviews for design change due to the power uprate were accomplished. Steam generator level behavior was one of the most important parameters because it could be cause of reactor trip or turbine trip. As the results of the reviews, YGN1 and 2 had to reassess it for change of turbine runback rate when turbine runback occurs due to the condensate operating pumps (COP) trip. This study has been carried out for evaluating the steam generator level behavior for determination of turbine runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units. The steam generator water level evaluation program for YGN1 and 2 (SLEP-Y1) has been developed for it. The program includes models for the steam generator water level response. SLEP-Y1 is programmed with advanced continuous system simulation language (ACSL). The language has been used to simulate physical systems as a commercial tool used to evaluate system designs

  10. Parametric Simulation on Enhancement of the Regenerative Gas Turbine Performance by Effect of Inlet Air Cooling System and Steam Injection

    Directory of Open Access Journals (Sweden)

    Aadel A. Alkumait

    2016-02-01

    Full Text Available Aadel Abdulrazzaq Alkumait/Tikrit Journal of Engineering Sciences 22(1 (201538-44Iraq being one of the developing countries of the world considers energy efficiency and the impact of its generation on the environment an imperative process in improvement of its power generation policies. Iraq bearing high temperatures all year long results in reduction of air density, therefore, Inlet air Cooling and Steam Injection Gas Turbines are a striking addition to the regenerative gas turbines. Regenerating Gas turbines tend to have a high back work ratio and a high exhaust temperature, thus, it leads to a low efficiency in power generation in hotter climate. Moreover, STIG and IAC through fog cooling have known to be the best retrofitting methods available in the industry which improve the efficiency of generation from 30.5 to 43% and increase the power output from 22MW to 33.5MW as the outcomes of computer simulations reveal. Additionally, this happens without bringing about much extensive change to original features of the power generation cycle. Furthermore, STIG and spray coolers have also resulted in power boosting and exceeding generation efficiency of gas turbine power plant.

  11. Ecotaxes and their impact in the cost of steam and electric energy generated by a steam turbine system

    International Nuclear Information System (INIS)

    Montero, Gisela

    2006-01-01

    Ecotaxes allow the internalization of costs that are considered externalities associated with polluting industrial process emissions to the atmosphere. In this paper, ecotaxes internalize polluting emissions negative impacts that are added to electricity and steam generated costs of a steam turbine and heat recovery systems from a utilities refinery plant. Steam costs were calculated by means of an exergy analysis tool and Aspen Plus simulation models. Ecotaxes were calculated for specific substances emitted in the refinery flue gases, based on a toxicity and pollution scale. Ecotaxes were generated from a model that includes damages produced to biotic and abiotic resources and considers the relative position of those substances in a toxicity and pollution scale. These ecotaxes were internalized by an exergoeconomic analysis resulting in an increase in the cost per kWh produced. This kind of ecotax is not applied in Mexico. The values of ecotaxes used in the cost determination are referred to the values currently applied by some European countries to nitrogen oxides emissions. (author)

  12. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Weber, M; Weiss, M [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  13. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  14. High-temperature gas-cooled reactor steam cycle/cogeneration application study update

    International Nuclear Information System (INIS)

    1981-09-01

    Since publication of a report on the application of a High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) plant in December of 1980, progress has continued on application related activities. In particular, a reference plant and an application identification effort has been performed, a variable cogeneration cycle balance-of-plant design was developed and an updated economic analysis was prepared. A reference HTGR-SC/C plant size of 2240 MW(t) was selected, primarily on the basis of 2240 MW(t) being in the mid-range of anticipated application needs and the availability of the design data from the 2240 MW(t) Steam Cycle/Electric generation plant design. A variable cogeneration cycle plant design was developed having the capability of operating at a range of process steam loads between the reference design load (full cogeneration) and the no process steam load condition

  15. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  16. Aerodynamic instabilities in governing valves of steam turbines

    International Nuclear Information System (INIS)

    Richard, J.M.; Pluviose, M.

    1991-01-01

    The capacity of a.c. turbogenerators in a Pressurized Water Reactor (PWR) is regulated by means of governing valves located at the inlet of the high-pressure turbine. The conditions created in these valves (due to the throttling of the steam) involve the generation of a jet structure, possibly supersonic. Aerodynamic instabilities could potentially excite the mechanical structure. These aerodynamic phenomena are studied in this paper by means of a two-dimensional numerical model. Viscous effects are taken into account with heuristic criteria on separation and reattachment. Detailed experimental analysis of the flow behaviour is compared with the numerical prediction of stability limits. (Author)

  17. Preliminary safety evaluation of the Gas Turbine-Modular Helium Reactor (GT-MHR)

    International Nuclear Information System (INIS)

    Dunn, T.D.; Lommers, L.J.; Tangirala, V.E.

    1994-04-01

    A qualitative comparison between the safety characteristics of the Gas Turbine-Modular Helium Reactor (GT-MHR) and those of the steam cycle shows that the two designs achieve equivalent levels of overall safety performance. This comparison is obtained by applying the scaling laws to detailed steam-cycle computations as well as the conclusions obtained from preliminary GT-MHR model simulations. The gas turbine design is predicted to be superior for some event categories, while the steam cycle design is better for others. From a safety perspective, the GT-MHR has a modest advantage for pressurized conduction cooldown events. Recent computational simulations of 102 column, 550 MW(t) GT-MHR during a depressurized conduction cooldown show that peak fuel temperatures are within the limits. The GT-MHR has a significantly lower risk due to water ingress events under operating conditions. Two additional scenarios, namely loss of load event and turbine deblading event that are specific to the GT-MHR design are discussed. Preliminary evaluation of the GT-MHR's safety characteristics indicate that the GT-MHR can be expected to satisfy or exceed its safety requirements

  18. Arabelle: The most powerful steam turbine in the world

    International Nuclear Information System (INIS)

    Lamarque, F.; Deloroix, V.

    1998-01-01

    On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs

  19. Study on thermodynamic cycle of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu Xinhe; Yang Xiaoyong; Wang Jie

    2017-01-01

    The development trend of the (very) High temperature gas-cooled reactor is to gradually increase the reactor outlet temperature. The different power conversion units are required at the different reactor outlet temperature. In this paper, for the helium turbine direct cycle and the combined cycle of the power conversion unit of the High temperature gas-cooled reactor, the mathematic models are established, and three cycle plans are designed. The helium turbine direct cycle is a Brayton cycle with recuperator, precooler and intercooler. In the combined cycle plan 1, the topping cycle is a simple Brayton cycle without recuperator, precooler and intercooler, and the bottoming cycle is based on the steam parameters (540deg, 6 MPa) recommended by Siemens. In the combined cycle plan 2, the topping cycle also is a simple Brayton cycle, and the bottoming cycle which is a Rankine cycle with reheating cycle is based on the steam parameters of conventional subcritical thermal power generation (540degC, 18 MPa). The optimization results showed that the cycle efficiency of the combined cycle plan 2 is the highest, the second is the helium turbine direct cycle, and the combined cycle plan 2 is the lowest. When the reactor outlet temperature is 900degC and the pressure ratio is 2.02, the cycle efficiency of the combined cycle plan 2 can reach 49.7%. The helium turbine direct cycle has a reactor inlet temperature above 500degC due to the regenerating cycle, so it requires a cooling circuit for the internal wall of the reactor pressure vessel. When the reactor outlet temperature increases, the increase of the pressure ratio required by the helium turbine direct cycle increases may bring some difficulties to the design and manufacture of the magnetic bearings. For the combined cycle, the reactor inlet temperature can be controlled below than 370degC, so the reactor pressure vessel can use SA533 steel without cooling the internal wall of the reactor pressure vessel. The pressure

  20. An investigation of nucleating flows of steam in a cascade of turbine blading: Effect of overall pressure ratios

    International Nuclear Information System (INIS)

    Bakhtar, F.; Savage, R.A.

    1993-01-01

    In the course of expansion of steam in turbines the state path crosses the saturation line and the fluid becomes a two-phase mixture. To reproduce turbine nucleating and wet conditions realistically requires a supply of supercooled steam which can be obtained under blow down conditions. An experimental short duration cascade tunnel working on this principle has been constructed. The blade profile studied is that of a typical nozzle The paper is one of a set and describes the surface pressure measurements carried out to investigate the effect of the overall pressure ratio on the performance of the blade

  1. Preliminary conceptual design of the secondary sodium circuit-eliminated JSFR (Japan Sodium Fast Reactor) adopting a supercritical CO2 turbine system (2). Turbine system and plant size

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko; Kotake, Shoji

    2014-09-01

    Research and development of the supercritical CO 2 (S-CO 2 ) cycle turbine system is underway in various countries for further improvement of the safety and economy of sodium-cooled fast reactors. The Component Design and Balance-Of-Plant (CD and BOP) of the Generation IV International Nuclear Forum (Gen-IV) has addressed this study, and their analytical and experimental results have been discussed between the relevant countries. JAEA, who is a member of the CD and BOP, has performed a design study of an S-CO 2 gas turbine system applied to the Japan Sodium-cooled Fast Reactor (JSFR). In this study, the S-CO 2 cycle turbine system was directly connected to the primary sodium system of the JSFR to eliminate the secondary sodium circuit, aiming for further economical improvement. This is because there is no risk of sodium-water reaction in the S-CO 2 cycle turbine system of SFRs. This report describes the system configuration, heat/mass balance, and main components of the S-CO 2 turbine system, based on the JSFR specifications. The layout of components and piping in the reactor and turbine buildings were examined and the dimensions of the buildings were estimated. The study has revealed that the reactor and turbine buildings could be reduced by 7% and 40%, respectively, in comparison with those in the existing JSFR design with the secondary sodium circuit employing the steam turbine. The cycle thermal was also calculated as 41.9-42.3%, which is nearly the same as that of the JSFR with the water/steam system. (author)

  2. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  3. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    OpenAIRE

    Weerasinghe, Rohitha; Hounsham, Sandra

    2017-01-01

    Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders [1]. Dependable data for small steam expanders will allow us to predict on their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Wankel Engines, with its lower resistance properties at small scale provide excellent contenders for bottoming cycle expanders. Present paper is based on results of experiments carried ...

  4. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  5. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  6. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  7. Modelling of an air-cooled two-stage Rankine cycle for electricity production

    International Nuclear Information System (INIS)

    Liu, Bo

    2014-01-01

    This work considers a two stage Rankine cycle architecture slightly different from a standard Rankine cycle for electricity generation. Instead of expanding the steam to extremely low pressure, the vapor leaves the turbine at a higher pressure then having a much smaller specific volume. It is thus possible to greatly reduce the size of the steam turbine. The remaining energy is recovered by a bottoming cycle using a working fluid which has a much higher density than the water steam. Thus, the turbines and heat exchangers are more compact; the turbine exhaust velocity loss is lower. This configuration enables to largely reduce the global size of the steam water turbine and facilitate the use of a dry cooling system. The main advantage of such an air cooled two stage Rankine cycle is the possibility to choose the installation site of a large or medium power plant without the need of a large and constantly available water source; in addition, as compared to water cooled cycles, the risk regarding future operations is reduced (climate conditions may affect water availability or temperature, and imply changes in the water supply regulatory rules). The concept has been investigated by EDF R and D. A 22 MW prototype was developed in the 1970's using ammonia as the working fluid of the bottoming cycle for its high density and high latent heat. However, this fluid is toxic. In order to search more suitable working fluids for the two stage Rankine cycle application and to identify the optimal cycle configuration, we have established a working fluid selection methodology. Some potential candidates have been identified. We have evaluated the performances of the two stage Rankine cycles operating with different working fluids in both design and off design conditions. For the most acceptable working fluids, components of the cycle have been sized. The power plant concept can then be evaluated on a life cycle cost basis. (author)

  8. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  9. An innovative modular device and wireless control system enabling thermal and pressure sensors using FPGA on real-time fault diagnostics of steam turbine functional deterioration

    Science.gov (United States)

    Devi, S.; Saravanan, M.

    2018-03-01

    It is necessary that the condition of the steam turbines is continuously monitored on a scheduled basis for the safe operation of the steam turbines. The review showed that steam turbine fault detection and operation maintenance system (STFDOMS) is gaining importance recently. In this paper, novel hardware architecture is proposed for STFDOMS that can be communicated through the GSM network. Arduino is interfaced with the FPGA so as to transfer the message. The design has been simulated using the Verilog programming language and implemented in hardware using FPGA. The proposed system is shown to be a simple, cost effective and flexible and thereby making it suitable for the maintenance of steam turbines. This system forewarns the experts to access to data messages and take necessary action in a short period with great accuracy. The hardware developed is promised as a real-time test bench, specifically for investigations of long haul effects with different parameter settings.

  10. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Li, Weihua; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong

    2017-01-01

    Highlights: • Steam injection was adopted in a turbocompound engine to further recover waste heat. • Thermodynamics model for the turbocompound engine was established and calibrated. • Steam injection at CT inlet obtained lower engine BSFC than injection at PT inlet. • The optimal injected steam mass at different engine speeds was presented. • Turbocompounding combined with steam injection can reduce the BSFC by 6.0–11.2%. - Abstract: Steam injection and turbocompouding are both effective methods for engine waste heat recovery. The fuel saving potential obtained by the combination of the two methods is not clear. Based on a turbocompound engine developed in the previous study, the impacts of pre-turbine steam injection on the fuel saving potentials of the turbocompound engine were investigated in this paper. Firstly, thermodynamic cycle model for the baseline turbocompound engine is established using commercial software GT-POWER. The cycle model is calibrated with the experiment data of the turbocompound engine and achieves high accuracy. After that, the influences of steam mass flow rate, evaporating pressure and injection location on the engine performance are studied. In addition, the impacts of hot liquid water injection are also investigated. The results show that steam injection at the turbocharger turbine inlet can reduce the turbocompound engine BSFC at all speed conditions. The largest fuel reduction 6.15% is obtained at 1000 rpm condition. However, steam injection at power turbine inlet can only lower the BSFC at high speed conditions. Besides, it is found that hot liquid water injection in the exhaust cannot improve the engine performance. When compared with the conventional turbocharged engine, the combination of turbocompounding and steam injection can reduce the BSFC by 6.0–11.2% over different speeds.

  11. Numerical Investigation of Methane Combustion under Mixed Air-Steam Turbine Conditions

    NARCIS (Netherlands)

    Skevis, G.; Chrissanthopoulos, A.; Goussis, D.A.; Mastorakos, E.; Derksen, M.A.F.; Kok, Jacobus B.W.

    2004-01-01

    Lowering emissions from power generating gas turbines, while retaining efficiency and power output, constitutes a formidable task, both at fundamental and technical levels. Combined gas turbine cycles involving air humidification are particularly attractive, since they provide additional power with

  12. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    Science.gov (United States)

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Design and construction of a steam generator with feedback

    International Nuclear Information System (INIS)

    Camargo, Camila C.; Placco, Guilherme M.; Guimaraes, Lamartine N.F.

    2013-01-01

    The EARTH project aims to develop technologies to design and build systems that generate electricity in space, using microreactors. One of the activities within the TERRA project aims to build a closed thermal cycle Rankine type in order to test a Tesla turbine type. The objective of this work is to design and build a steam generator with feedback, which should ensure a satisfactory range of steam supply, security system, feedback system and heating system

  14. Influence of prolonged service of steam turbines on the properties of materials of rotor and vessel components

    International Nuclear Information System (INIS)

    Anfimov, V.M.; Artamonov, V.V.; Chizhik, T.A.

    1984-01-01

    The structure and mechanical properties of steam turbine elements of 25Kh1MF, 25Kh1M1FA (rotors), 15Kh1M1FL (vessel components) steels have been investigated both in initial state and after 200 000 h operation. The structure stability and phase composition of rotor steels providing conservation of heat resistance at a required level was established. Examination of vessel components showed a decrease in the yield strength by 15-20% and durability - by 10% as compared to initial ones. The conclusion on a possible prolongation of the steam turbine service life to 200 000 h is drawn. The nominal service life equals 100 000 h

  15. A unified approach to assess performance of different techniques for recovering exhaust heat from gas turbines

    International Nuclear Information System (INIS)

    Carapellucci, Roberto

    2009-01-01

    Exhaust heat from gas turbines can be recovered externally or internally to the cycle itself. Of the technology options for external recovery, the combined gas-steam power plant is by far the most effective and commonly used worldwide. For internal recovery conventional solutions are based on thermodynamic regeneration and steam injection, while innovative solutions rely on humid air regeneration and steam reforming of fuel. In this paper a unified approach for analysing different exhaust heat recovery techniques is proposed. It has been possible to define a characteristic internal heat recovery plane, based on a few meaningful parameters and to identify an innovative scheme for repowering existing combined cycles. The characteristic plane indicates directly the performance obtainable with the different recovery techniques, showing that performances close to combined cycle plants (external recovery) can only be achieved with combined recovery techniques (humid air regeneration, steam reforming of fuel). The innovative repowering scheme, which requires the addition of a gas turbine and one-pressure level HRSG to an existing combined gas-steam power plant, significantly increases power output with fairly high marginal efficiency.

  16. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  17. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  18. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  19. Stationary phases for superheated water chromatography

    International Nuclear Information System (INIS)

    Saha, Shikha

    2002-01-01

    This project focused on the comparison of conventional liquid chromatography and superheated water chromatography. It examined the differences in efficiency and retention of a range of different stationary phases. Alkyl aryl ketones and eight aromatic compounds were separated on PBD-zirconia, Xterra RP 18, Luna C 18 (2) and Oasis HLB columns using conventional LC and superheated water chromatography system. The retention indices were determined in the different eluents. On changing the organic component of the eluent from methanol to acetonitrile to superheated water considerable improvements were found in the peak shapes and column efficiencies on the PBD-zirconia and Oasis HLB columns. PS-DVB, PBD-zirconia and Xterra RP 18 columns have been used in efficiency studies. It was found that simply elevating the column temperature did not increase the efficiency of a separation in superheated water chromatography. The efficiency depended on flow rate, injection volume and also mobile phase preheating system. Although high efficiencies were not achieved with superheated water on PS-DVB and Xterra RP 18 columns, a higher efficiency was achieved on a PBD-zirconia column with superheated water than with 25-35% ACN at room temperature. The proposed theoretical increases in u opt were measured on three columns using superheated water as the mobile phase. The application of the superheated water chromatographic method to the separation of the pungent constituents of ginger by superheated water chromatography-NMR coupling system was studied. The coupling of superheated water chromatography using deuterium oxide to NMR spectroscopy for the separation of dry ginger extract was successful, although the NMR sensitivity in on-line mode coupling system was low. However, four compounds were identified in the ginger extract by stop-flow mode on superheated water chromatography-UV-NMR detection system. (author)

  20. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  1. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  2. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Combined cycle performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2011-01-01

    The part-load performance of combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry gas turbines on the part-load efficiency for combined...... cycles used for ship propulsion. Moreover, the paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis of various components within combined cycle power plants. Two different gas turbine configurations are studied, a two-shaft aero......-derivative configuration and a single-shaft industrial configuration. The results suggest that by the use of variable geometry gas turbines, the combined cycle part-load performance can be improved. In order to minimise the voyage fuel consumption, a combined cycle featuring two-shaft gas turbines with VAN control...

  3. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  4. To the choice of the regeneration system of the K-1000-68/1500 turbine plant for the NPP with a vertical-type steam generator

    International Nuclear Information System (INIS)

    Kuznetsov, N.M.; Piskarev, A.A.; Grinman, M.I.; Kruglikov, P.A.

    1985-01-01

    Several variants of the heat regeneration system for the NPP with WWER-1000 type reactors using vertical steam generator (SG) generating saturated steam at 7.2 MPa pressure and 200 deg C feed water temperature at the SG inlet are considered. The results of comparison of variants in water and steam circuits of turbine plants are greatly influenced by integral economy account, i.e. efficiency indexes account under variable conditions of power unit operation. From variants of water and steam circuits of the K-1000-68/1500 turbine plant considered preference is given to the variant with four low pressure heaters with increased up to 1.25 MPa pressure in a deacrator without high pressure heater with pumping intermediate steam superheater condensate into feedwater circuit

  5. Studying the effects of combining internal and external heat recovery on techno-economic performances of gas–steam power plants

    International Nuclear Information System (INIS)

    Carapellucci, Roberto; Giordano, Lorena

    2016-01-01

    Highlights: • Effects of gas-cycle regeneration on steam–gas power plants are investigated. • Power plant performances are evaluated varying gas turbine operative parameters. • The power plant operational flexibility is assessed through an off-design analysis. • Gas-cycle regeneration improves energy and economic performance parameters. • Power increase due to regenerator by-pass depends on steam section design. - Abstract: Thermodynamic regeneration is regarded as a conventional technique to enhance the efficiency of gas turbines, by means of an internal recovery of waste heat from exhaust gases. In combined cycle power plants (CCGTs), only external heat recovery is usually applied, in order to achieve the highest steam cycle power. Combining internal and external recovery, while decreasing the power plant rated capacity, has the potential to boost the efficiency of CCGTs. This paper aims to examine the effects of thermodynamic regeneration on steam–gas power plants from the energy and economic point of view. First, a dual pressure combined cycle based on a regenerative gas turbine is designed using GateCycle software and effects on energy and economic performances are evaluated varying gas turbine operating parameters. Then, an off-design simulation of different CCGT configurations is carried out, in order to evaluate the power increase achieved by-passing the regenerator and its effects on efficiency and cost of electricity. The study has shown that the improvement of energy and economic performances of regenerative CCGTs is more and more pronounced with the increase of turbine inlet temperature (TIT). Additionally, regeneration enhances the power plant operational flexibility, allowing to obtain a 30% power increase with respect to the design value, if the regenerator is fully by-passed and the bottoming steam cycle is designed to manage the increased flue gas temperature.

  6. Co-generation on steam industrial systems with disks turbines; Co-geracao em sistemas industriais de vapor com turbinas de discos

    Energy Technology Data Exchange (ETDEWEB)

    Lezsovits, Ferenc [Universidad de Tecnologia y Economia de Budapest (Hungary)

    2010-03-15

    The disk turbine, also called Tesla turbine, being of simple construction and low cost, can be used as steam pressure reduction on industrial systems, generating simultaneously electric power, becoming the co-generation even at lower levels. Can be used for various operational parameters and mass flux ratios.This paper analyses the advantages and disadvantages of the turbines under various operation conditions.

  7. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  8. Natural gas turbine topping for the iris reactor

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Paramonov, D.

    2001-01-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  9. Natural gas turbine topping for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, L.; Lombardi, C. [Politecnico di Milano, Milan (Italy); Paramonov, D. [Westinghouse Electric Corp., LLC, Pittsburgh, PA (United States)

    2001-07-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  10. Comparison of the effect of saturated and superheated steam on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on cantaloupe and watermelon surfaces.

    Science.gov (United States)

    Kwon, Sun-Ah; Song, Won-Jae; Kang, Dong-Hyun

    2018-06-01

    The purpose of this study was evaluation of the effectiveness of superheated steam (SHS) on inactivation of foodborne pathogens on cantaloupes and watermelons. Saturated steam (SS) treatment was performed at 100 °C and that of SHS at 150 and 200 °C. Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes-inoculated cantaloupes and watermelons were exposed for a maximum of 30 s and 10 s, respectively. Populations of the three pathogens on cantaloupes and watermelons were reduced by more than 5 log after 200 °C steam treatment for 30 s and 10 s, respectively. After SHS treatment of cantaloupes and watermelons for each maximum treatment time, color and maximum load values were not significantly different from those of untreated controls. By using a noncontact 3D surface profiler, we found that surface characteristics, especially surface roughness, is the main reason for differences in microbial inactivation between cantaloupes and watermelons. The results of this study suggest that SHS treatment can be used as an antimicrobial intervention for cantaloupes and watermelons without inducing quality deterioration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of the Operational Wear of the Stator Parts of Shroud Seals on the Economic Efficiency of the Steam Turbines

    Science.gov (United States)

    Kostyuk, A. G.; Dmitriev, S. S.; Petrunin, B. N.; Gusev, A. A.

    2018-01-01

    During the operation of steam turbines under transient conditions, due to different thermal expansion of the stator and rotor parts in the radial and axial directions, the clearances fixed in the course of assembling the seals of the flow path change, which causes rubbing in the seals and the wear of the latter. This inevitably increases the leakages through the seals. A particularly large difference in the relative axial and radial displacements of the rotor and stator parts is observed during the turbine start-ups when the difference in their temperature expansion is maximal. Upon the turbine stops, the turbine shafting runs down freely, as a rule, passing through all critical speeds at which the amplitude of the shafting oscillations reach their peak values, which also leads to seizures in the seals and their wear and tear. The seizures in the seals may also be a consequence of the eccentricity between the rotor and stator caused by the thermal strain of the stator, incorrect choice of the clearances, floating-up of the rotor in the bearing, and many other factors. Recently, standard shroud labyrinth seals are being replaced in the steam turbines by seals with honeycomb stator inserts, the design of which allows the ridges to cut into the honeycomb surface without damaging the former, which allows fixing a radial clearance in the seals of 0.5 mm. On the honeycomb surface where the ridges touch it, grooves are cut through. The wear of the shroud seals reduces the efficiency of the steam turbines during the operation to the greatest degree. However, by the present there have been no exact quantitative data available on the change in the leakage through the worn-out honeycomb seals. The paper presents the results of comparative experimental studies on the flow and power characteristics of seal models with smooth and honeycomb stator parts for various degrees of their wear. The studies showed that the leakages through the worn-out stator parts of the honeycomb seals

  12. Engineering nonlinearity characteristic compensation for commercial steam turbine control valve using linked MARS code and Matlab Simulink

    International Nuclear Information System (INIS)

    Halimi, B.; Suh, Kune Y.

    2012-01-01

    Highlights: ► A nonlinearity characteristic compensation is proposed of the steam turbine control valve. ► A steady state and transient analyzer is developed of Ulchin Units 3 and 4 OPR1000 nuclear plants. ► MARS code and Matlab Simulink are used to verify the compensation concept. ► The results show the concept can compensate for the nonlinearity characteristic very well. - Abstract: Steam turbine control valves play a pivotal role in regulating the output power of the turbine in a commercial power plant. They thus have to be operated linearly to be run by an automatic control system. Unfortunately, the control valve has inherently nonlinearity characteristics. The flow increases more significantly near the closed end than near the open end of the stem travel given the valve position signal. The steam flow should nonetheless be proportional to the final desired quantity, output power, of the turbine to obtain a linear operation. This paper presents the valve engineering linked analysis (VELA) for nonlinearity characteristic compensation of the steam turbine control valve by using a linked two existing commercial software. The Multi-dimensional Analysis of Reactor Safety (MARS) code and Matlab Simulink have been selected for VELA to develop a steady state and transient analyzer of Ulchin Units 3 and 4 powered by the Optimized Power Reactor 1000 MWe (OPR1000). MARS is capable of modeling a wide range of systems from single pipes to full nuclear power plants. As one of standard nuclear power plant thermal hydraulic analysis software tools, MARS simulates the primary and secondary sides of the nuclear power plant. To simulate the electric power flow part, Matlab Simulink is chosen as the standard analysis software. Matlab Simulink having an interactive environment to model analyzes and simulates a wide variety of engineering dynamic systems including multimachine power systems. Based on the MARS code result, Matlab Simulink analyzes the power flow of the

  13. Physical-chemistry aspects of water in steam turbines associated with material stress and electrochemical assessment of the AISI 403 to simulate real condition

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, D S; Franco, C V; Godinho, J F; Frech, W A; Sonai, G G [Univ. Federal de Santa Catarina, Florianopolis (Brazil); Torres, L A.M.; Ellwanger, A R.F. [Tractebel Energia, Capivari de Baixo (Brazil)

    2009-07-01

    This study described a methodology developed to prevent the occurrence of corrosion failure in steam turbines. The methodology was developed after the failure of a turbine blade at a plant in Brazil. Deposits were collected from various locations along the turbine blade path and analyzed. A turbine deposit collector and simulator was installed to determine the concentrations of steam impurities. Samples were collected from the low pressure turbine at the crossover point and from the polishing station and analyzed using inductive coupled plasma-mass spectrometry (ICP-MS) in order to determine if sodium levels exceeded 3 ppb. Filters were weighed in order to determine the accumulation of impurities. A 3-electrode system was used to determine the influence of chloride ions. The design of the system's condensate polisher beds was modified in order to improve condensate effluent conductivity. The condensate treatment procedure lowered the concentrations of salt impurities and established a monitoring methodology for water and steam used at the plant. It was concluded that the methodology can be used to to reduce inspection intervals and increase system reliability. 10 refs., 1 tab., 7 figs.

  14. A study on reliability of electro-hydraulic governor control system for large steam turbine in power plant

    International Nuclear Information System (INIS)

    Kang, Gu Hwa; Lee, Tae Hoon; Moon, Seung Jae; Lee, Jae Heon; Yoo, Ho Seon

    2008-01-01

    In this work, the right management procedure for hydraulic power oil will be discussed and suggested. A thermal power plant turbine should respond to the change of load status. However, to satisfy the frequency of alternating current, the revolution per minute should be kept constant. Therefore, by controlling the flow rate of the steam to the turbine, the governor satisfies the load variation without alternating the revolution per minutes of the turbine. To protect the governor, the hydraulic power unit should be managed carefully by controlling the quality and the flow rate of the oil

  15. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  16. Method for repairing a steam turbine or generator rotor

    International Nuclear Information System (INIS)

    Clark, R.E.; Amos, D.R.

    1987-01-01

    A method is described for repairing low alloy steel steam turbine or generator rotors, the method comprising: a. machining mating attachments on a replacement end and a remaining portion of the original rotor; b. mating the replacement end and the original rotor; c. welding the replacement end to the original rotor by narrow-gap gas metal arc or submerged arc welding up to a depth of 1/2-2 inches from the rotor surface; d. gas tungsten arc welding the remaining 1/2-2 inches; e. boring out the mating attachment and at least the inside 1/4 inch of the welding; and f. inspecting the bore

  17. A theoretical analysis of flow through the nucleating stage in a low pressure steam turbine

    International Nuclear Information System (INIS)

    Skillings, S.A.; Walters, P.T.; Jackson, R.

    1989-01-01

    In order to improve steam turbine efficiency and reliability, the phenomena associated with the formation and growth of water droplets must be understood. This report describes a theoretical investigation into flow behaviour in the nucleating stage, where the predictions of a one-dimensional theory are compared with measured turbine data. Results indicate that droplet sizes predicted by homogeneous condensation theory cannot be reconciled with measurements unless fluctuating shock waves arise. Heterogeneous effects and flow turbulence are also discussed along with their implications for the condensation process. (author)

  18. New low pressure (LP) turbines for NE Krsko

    International Nuclear Information System (INIS)

    Nemcic, K.; Novsak, M.

    2004-01-01

    During the evaluation of possible future maintenance strategies on steam turbine in very short period of time, engineering decision was made by NE Krsko in agreement with Owners to replace the existing two Low Pressure (LP) Turbines with new upgrading LP Turbines. This decision is presented with review of the various steam turbine problems as: SCC on turbine discs; blades cracking; erosion-corrosion with comparison of various maintenance options and efforts undertaken by the NE Krsko to improve performance of the original low pressure turbines. This paper presents the NEK approach to solve the possible future problems with steam turbine operation in NE Krsko as pro-active engineering and maintenance activities on the steam turbine. This paper also presents improvements involving retrofits, confined to the main steam turbine path, with major differences between original and new LP Turbines as beneficial replacement because of turbine MWe upgrading and return capital expenditures.(author)

  19. Fracture of an industrial steam turbine horizontal joint nut upon tightening; Bruch der Mutter einer Horizontalteilfugenverschraubung einer Industriedampfturbine beim Anziehen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Boromir; Giller, Madeleine; Neidel, Andreas; Riesenbeck, Susanne [Siemens AG - Gasturbinenwerk Berlin (Germany). Energy Sector Werkstoffprueflabor

    2017-11-01

    The nut of a horizontal joint fastener cracked upon tightening during assembly in an industrial steam turbine factory. It was previously used in an over-pressure test, but was otherwise not yet used in service. Nut and bolt were made of the nickel-based superalloy Nimonic 80A, a precipitation-hardenable wrought high-strength alloy with excellent creep and corrosion properties. Such alloys usually get a complex heat treatment after hot-rolling, comprising homogenizing and multiple ageing cycles. The subject nut failed due to an extreme case of mixed grain size which detrimentally affected mechanical properties and was attributed to an insufficient degree of deformation during hot rolling.

  20. A CFD Analysis of Steam Flow in the Two-Stage Experimental Impulse Turbine with the Drum Rotor Arrangement

    Directory of Open Access Journals (Sweden)

    Yun Kukchol

    2016-01-01

    Full Text Available The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.

  1. Characterisation and modelling of the microstructural and mechanical evolution of a steam turbine rotor steel

    International Nuclear Information System (INIS)

    Mayer, T.

    2012-01-01

    This dissertation deals with the effective mechanical analysis of steam turbine parts which is not only required for the reliable and safe use of newly built steam turbines, but also for the remaining life assessment of components that have been exposed to service duty over long periods of time. This Thesis aims to develop a physically motivated evolutionary constitutive model for a low-alloy bainitic 2CrMoNiWV (23CrMoNiWV8-8) steam turbine rotor steels. A comprehensive experimental characterisation is performed concerning the mechanical and microstructural evolution of 2CrMoNiWV as subjected to low cycle fatigue (LCF) deformation at elevated temperatures, at different strain rates and for various strain amplitudes. This cyclic plastic deformation causes the rearrangement of dislocations in the microstructure of the steels used for such rotor applications. Symmetric, strain controlled LCF experiments have been carried out in the Laboratory of the High Temperature Integrity Group at the Swiss Federal Laboratories for Materials Science and Technology EMPA. These include mechanical tests in the temperature range between 20 °C to 600 °C at strain rates of 0.001%/s to 1.0%/s and strain amplitudes of ±0.25% to ±1.0%. The LCF experiments reported on comprehensively characterise the temperature, strain rate and strain amplitude dependent cyclic elastic-plastic behaviour of 2CrMoNiWV. Both complete single-specimen endurance tests and interrupted multi-specimen tests have been performed. On the basis of this experimental evidence, an evolutionary formulation of the model is further developed that excellently reproduces the strain amplitude dependent mechanical evolution of 2CrMoNiWV when subjected to LCF loading at different constant strain amplitudes but equal temperature and strain rate. The simulation of benchmark experiments introducing increasing or decreasing strain amplitude steps into the LCF deformation history provide promising results. A further important

  2. Characterisation and modelling of the microstructural and mechanical evolution of a steam turbine rotor steel

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, T.

    2012-07-01

    This dissertation deals with the effective mechanical analysis of steam turbine parts which is not only required for the reliable and safe use of newly built steam turbines, but also for the remaining life assessment of components that have been exposed to service duty over long periods of time. This Thesis aims to develop a physically motivated evolutionary constitutive model for a low-alloy bainitic 2CrMoNiWV (23CrMoNiWV8-8) steam turbine rotor steels. A comprehensive experimental characterisation is performed concerning the mechanical and microstructural evolution of 2CrMoNiWV as subjected to low cycle fatigue (LCF) deformation at elevated temperatures, at different strain rates and for various strain amplitudes. This cyclic plastic deformation causes the rearrangement of dislocations in the microstructure of the steels used for such rotor applications. Symmetric, strain controlled LCF experiments have been carried out in the Laboratory of the High Temperature Integrity Group at the Swiss Federal Laboratories for Materials Science and Technology EMPA. These include mechanical tests in the temperature range between 20 °C to 600 °C at strain rates of 0.001%/s to 1.0%/s and strain amplitudes of ±0.25% to ±1.0%. The LCF experiments reported on comprehensively characterise the temperature, strain rate and strain amplitude dependent cyclic elastic-plastic behaviour of 2CrMoNiWV. Both complete single-specimen endurance tests and interrupted multi-specimen tests have been performed. On the basis of this experimental evidence, an evolutionary formulation of the model is further developed that excellently reproduces the strain amplitude dependent mechanical evolution of 2CrMoNiWV when subjected to LCF loading at different constant strain amplitudes but equal temperature and strain rate. The simulation of benchmark experiments introducing increasing or decreasing strain amplitude steps into the LCF deformation history provide promising results. A further important

  3. Comparison of performances of full-speed turbine and half-speed turbine for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hu; Zhang Weihong; Zhang Qiang; Li Shaohua

    2010-01-01

    The steam turbines of nuclear power plants can be divided into the full-speed turbine and half-speed turbine. Different speed leads to differences in many aspects. Therefore, the rational speed is the key point in the selection of steam turbines. This paper contrasts the economy between the half-speed turbine and full-speed turbine, by calculating the relative internal efficiency of half-speed and full-speed steam turbines with the typical level of 1000 megawatt. At the same time, this paper also calculate the relative speed of high speed water drops in the last stage blade of half-speed turbine and full-speed turbine, to contrast the water erosion between the half-speed turbine and full-speed turbine. The results show that the relative internal efficiency of half-speed turbine is higher than that of the full-speed turbine, and that the security especially the ability of preventing water erosion of half-speed turbine is better than that of the full-speed turbine. (authors)

  4. Investigation of a combined gas-steam system with flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Chmielniak Tadeusz

    2016-06-01

    Full Text Available This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.

  5. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  6. Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units

    Science.gov (United States)

    Legkostupova, V. V.; Sudakov, A. V.

    2015-03-01

    The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the

  7. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  8. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  9. Exergetic analysis of a gas turbine plant with chemical recuperation; Analise exergetica de uma planta de turbina a gas com recuperacao quimica

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Mario G. Sanchez; Nebra, Silvia Azucena; Gallo, Waldir L. Ribeiro [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: 192572rg@discovery.fem.unicamp.br; sanebra@fem.unicamp.br; wgallo@fem.unicamp.br

    2000-07-01

    One of the proposals that has been more recently analyzed with growing interest in Gas Turbine cycles, with the purpose of obtaining gains in the power output and thermal efficiency, is the Chemically Recuperated Gas Turbine Cycle, (CRGT). Such systems are equipped of chemical heat recovery components in which the waste heat in the turbine exhaust is used to convert a methane-steam mixture into a hydrogen-rich fuel in a methane steam reformer. One additional aspect of these cycles that represents a potential benefit is explained by the ultra-low NO{sub x} emission levels, even less than those system which use steam injection This paper, with the aid of the concepts emanated from the Second Thermodynamic Law, is presenting an evaluation of the exergetic performance of one installation of this type. Exergetic efficiencies are evaluated according to the relation fuel-product, considering one control volume for each component of the system. (author)

  10. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    International Nuclear Information System (INIS)

    Maruska, C.C.

    2002-01-01

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  11. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  12. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  13. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  14. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  15. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  16. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    Directory of Open Access Journals (Sweden)

    Sukarman Sukarman

    2010-12-01

    Full Text Available Kualitas fisik pakan (pelet untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan pelet adalah saturated steam. Pengaruh penambahan steam pada kualitas pelet bisa mencapai 20%. Penambahan steam dengan jumlah dan kualitas yang tepat akan menghasilkan pelet berkualitas. Sedangkan jika pengaturan dan penambahannya tidak tepat, maka kualitas fisik pelet akan rendah dan kemungkinan bisa merusak kandungan nutrisi seperti vitamin dan protein. Penambahan steam yang benar bisa dilakukan di dalam kondisioner dengan mengatur retention time, sudut kemiringan paddle conditioner, kecepatan putaran bearing dan menjaga kualitas steam dari mesin boiler sampai dengan kondisioner.

  17. Use of a microvideo probe to measure the size and velocity of water droplets in EDF steam turbines

    International Nuclear Information System (INIS)

    Courant, J.J.; Heurtebise, F.; Kleitz, A.

    1992-09-01

    Owing to the necessity to protect equipment associated with power plant turbines using saturated steam and following verification of the turbine design codes, EDF has developed a probe specifically designed for velocimetric and particle size grading measurements in this 2-phase environment. This method is also suitable for the measurement of cold or incandescent solid particles entrained in gas. (authors). 8 figs., 3 refs

  18. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, L.E.; Bary, M.R. [Black and Veatch, Kansas City, MO (United States); Gray, K.M. [Pennsylvania Electric Co., Johnstown, PA (United States); LaHaye, P.G. [Hague International, South Portland, ME (United States)

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  19. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  20. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    Science.gov (United States)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  1. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Phillips, Jeffrey [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Tanzosh, James [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2016-10-01

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C). These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  2. Emergency makeup of nuclear steam generators in blackout conditions

    International Nuclear Information System (INIS)

    Korolev, A.V.; Derevyanko, O.V.

    2014-01-01

    The paper describes an original solution for using steam energy to organize makeup of NPP steam generators in blackout conditions. The proposed solution combines a disk friction turbine and an axial turbine in a single housing to provide a high overall technical effect enabling the replenishment of nuclear steam generators with steam using the pump turbine drive assembly. The application of the design is analyzed and its efficiency and feasibility are shown

  3. Design of a Rankine cycle operating with a passive turbine multi fluid

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M., E-mail: guilhermeplacco@gmail.com [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Guimarães, Lamartine N.F., E-mail: guimarae@ieav.cta.br [Instituto de Estudo Avançados (CTA/IEAV), São José dos Campos, SP, (Brazil); Santos, Gabriela S. B., E-mail: siqueira.gsb@gmail.com [Universidade Paulista (UNIP), São José dos Campos, SP (Brazil)

    2017-07-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  4. Design of a Rankine cycle operating with a passive turbine multi fluid

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimarães, Lamartine N.F.; Santos, Gabriela S. B.

    2017-01-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  5. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2016-06-01

    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  7. Ni-base wrought alloy development for USC steam turbine rotor applications

    International Nuclear Information System (INIS)

    Penkalla, H.-J.; Schubert, F.

    2004-01-01

    For the development of a new generation of steam turbines for use in advanced power plants with prospective operating temperatures of about 700 o C the ferritic steels for rotor applications must be replaced by advanced wrought Ni-base superalloys as the most qualified candidate materials for this purpose. In this paper three different potential candidates are discussed under the aspects of fabricability, sufficient microstructural and mechanical stability. As a result of theoretical and experimental investigation suitable strategies for the development two modified alloys are proposed to improve the fabricability and microstructural stability. (author)

  8. The new equation of steam quality and the evaluation of nonradioactive tracer method in PWR steam generators

    International Nuclear Information System (INIS)

    Ki Bang, Sung; Young Jin, Chang

    2001-01-01

    The performance of steam turbines is tested as ANSI/ASME-PTC 6. This code provides rules for the accurate testing of steam turbines for the purpose of obtaining the level of performance with a minimum uncertainty. Only the relevant portion of this code needs to process any individual case, In some case the procedure is simple. However, in complex turbines or complex operation modes, more procedures are required to test the involved provisions. Anyway, to measure the steam quality in the Wolsong PHWR with 4 SGs in Korea by the methods in the section ''Measure of steam quality methods'' of ANSI/ASME PTC 6, the result was not good though the steam generators are efficient. So, the new testing method was developed and the sophisticated equation of steam quality was introduced and uses the nonradioactive chemical tracer, Lithium hydroxide(LiOH) instead of the radioactive tracer, Na-24. (author)

  9. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  10. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...

  11. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  12. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  13. Thermodynamic assessment of a wind turbine based combined cycle

    International Nuclear Information System (INIS)

    Rabbani, M.; Dincer, I.; Naterer, G.F.

    2012-01-01

    Combined cycles use the exhaust gases released from a Gas Turbine (GT). Approximately 30–40% of the turbine shaft work is typically used to drive the Compressor. The present study analyzes a system that couples a Wind Turbine (WT) with a combined cycle. It demonstrates how a WT can be used to supply power to the Compressor in the GT cycle and pump fluid through a reheat Rankine cycle, in order to increase the overall power output. Three different configurations are discussed, namely high penetration, low penetration and wind power addition. In the case of a low electricity demand and high penetration configuration, extra wind power is used to compress air which can then be used in the low penetration configuration. During a high load demand, all the wind power is used to drive the pump and compressor and if required additional compressed air is supplied by a storage unit. The analysis shows that increasing the combustion temperature reduces the critical velocity and mass flow rate. Increases in wind speed reduce both energy and exergy efficiency of the overall system. -- Highlights: ► This study analyzes a system that couples a wind turbine with a combined power generation cycle. ► Surplus wind power is used to compress air, which is then stored and used at a later time. ► Increasing the pressure ratio will reduce the work ratio between the Rankine and Brayton cycles. ► A higher combustion temperature will increase the net work output, as well as the system energy and exergy efficiencies.

  14. Energetic and exergetic analysis of combined cycle Energas Boca de Jaruco

    International Nuclear Information System (INIS)

    Dominguez, F. J.; Tapanez, A.; Castillo, E. del; Castillo, R.; Perez, R.

    2015-01-01

    The work shows the energy and exergy evaluation of the combined cycle Energas Boca de Jaruco, which consists of five gas turbines 30 MWh five heat recovery steam OTSGs type and a steam turbine of 150 MW. This evaluation is performed without additional burning and for different percentages of utilization of these burners. The results allow to have a criterion of the efficiency of the system with and without supplementary burned, which can define strategies most appropriate system operation. (full text)

  15. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  16. Method of effecting fast turbine valving for improvement of power system stability

    International Nuclear Information System (INIS)

    Park, R.H.

    1981-01-01

    As a improved way of effecting fast valving of turbines of power system steam-electric generating units for the purpose of improving the stability of power transmission over transmission circuits to which their generators make connection, when stability is threatened by line faults and certain other stability endangering events, the heretofore employed and/or advocated practice of automatically closing intercept valves at fastest available closing speed in response to a fast valving signal, and thereafter automatically fully reopening them in a matter of seconds, is modified by providing to reopen the valves only partially to and thereafter retain them at a preset partially open position. For best results the process of what can be termed sustained partial reopening is so effected as to result in its completion within a fraction of a second following the peak of the first forward swing of the generator rotor. Control valves may be either held open, or automatically fully or partly closed and thereafter fully opened in a preprogrammed manner, or automatically moved to and thereafter held in a partly closed position, by means of a preprogrammed process of repositioning in which the valves may optionally be first fully or partly closed and thereafter partly reopened. Avoidance of discharge of steam through high pressure safety valves can be had with use of suitably controlled power operated valves that discharge steam to the condenser or to atmosphere. Where there is an intermediate pressure turbine that is supplied with superheated steam, use of sustained partial control valve closure, if employed, is supplemented by provision for reduction of rate of heat release within the steam generator in order to protect the reheater from overheating. As a way to restrict increase of reheat pressure of fossil fuel installations, and to minimize increase in the msr (Moisture separator-reheater) pressure of nuclear units, provision is optionally made of normally closed by-pass v

  17. Exergy analysis of a combined power and cooling cycle

    International Nuclear Information System (INIS)

    Fontalvo, Armando; Pinzon, Horacio; Duarte, Jorge; Bula, Antonio; Quiroga, Arturo Gonzalez; Padilla, Ricardo Vasquez

    2013-01-01

    This paper presents a comprehensive exergy analysis of a combined power and cooling cycle which combines a Rankine and absorption refrigeration cycle by using ammonia–water mixture as working fluid. A thermodynamic model was developed in Matlab ® to find out the effect of pressure ratio, ammonia mass fraction at the absorber and turbine efficiency on the total exergy destruction of the cycle. The contribution of each cycle component on the total exergy destruction was also determined. The results showed that total exergy destruction decreases when pressure ratio increases, and reaches a maximum at x ≈ 0.5, when ammonia mass fraction is varied at absorber. Also, it was found that the absorber, the boiler and the turbine had the major contribution to the total exergy destruction of the cycle, and the increase of the turbine efficiency reduces the total exergy destruction. The effect of rectification cooling source (external and internal) on the cycle output was investigated, and the results showed that internal rectification cooling reduces the total exergy destruction of the cycle. Finally, the effect of the presence or absence of the superheater after the rectification process was determined and it was obtained that the superheated condition reduces the exergy destruction of the cycle at high turbine efficiency values. Highlights: • A parametric exergy analysis of a combined power and cooling cycle is performed. • Two scenarios for rectifier cooling (internal and external) were studied. • Internal cooling source is more exergetic efficient than external cooling source. • The absorber and boiler have the largest total exergy destruction. • Our results show that the superheater reduces the exergy destruction of the cycle

  18. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tylczak, Joseph [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carney, Casey [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dogan, Omer N. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  19. An opportunity for capacity up-rating of 1000 MW steam turbine plant in Kozloduy NPP

    International Nuclear Information System (INIS)

    Popov, D.

    2005-01-01

    In connection with earlier and forced decommissioning of the Kozloduy NPP units 1 - 4, an alternative has to be found in order to substitute these capacities. As a reasonable options, capacity up-rating of 1000 MW steam turbine plants without nuclear reactor thermal capacity increase, is investigated in the present study. The cooling water for these units is delivered by Danube river. The cooling water temperatures substantially decrease during the winter months. These changes create an opportunity for steam back end pressure reduction. It was found that when the cooling water temperature decreases from 15 0 C to 3 0 C, the steam back end pressure is on the decrease of from 3.92 kPa to 2.3 kPa. As a result capacity of the plant could be raised up to 50 MW without any substantial equipment and systems change

  20. Fatigue and creep cracking of nickel alloys for 700 C steam turbines

    International Nuclear Information System (INIS)

    Berger, C.; Granacher, J.; Thoma, A.; Roesler, J.; Del Genovese, D.

    2001-01-01

    Four materials of the types Inconel 706 (two heat treatment states), Inconel 617, and Waspaloy were tested as shaft materials for 700 to 720 C steam turbines. At an extrapolation time ratio of 10, Waspaloy was expected to have the highest creep strength (about 270 MPa at 700 C), with values of about 140 MPa at 700 C for Inconel 617. A preliminary evaluation of the 700 C creep rupture tests showed the highest creep rupture resistance for Inconel 617, followed by Waspaloy and Inconel 706 [de