WorldWideScience

Sample records for superheated liquid droplets

  1. Response of Superheated Droplet Detector (SDD) and Bubble Detector (BD) to interrupted irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasanna Kumar, E-mail: prasanna_ind_82@yahoo.com; Sarkar, Rupa, E-mail: sarkar_rupa2003@yahoo.com; Chatterjee, Barun Kumar, E-mail: barun_k_chatterjee@yahoo.com

    2017-06-11

    Superheated droplet detectors (SDD) and bubble detectors (BD) are suspensions of micron-sized superheated liquid droplets in inert medium. The metastable droplets can vaporise upon interaction with ionising radiation generating visible bubbles. In this work, we investigated the response of SDD and BD to interrupted neutron irradiations. We observed that the droplet vaporisation rates for SDD and BD are different in nature. The unusual increase in droplet vaporisation rate observed when the SDD is exposed to neutrons after few minutes of radiation-off period is absent for BD. - Highlights: • Superheated droplet detectors (SDD) and bubble detectors (BD) are suspensions of superheated liquid droplets in inert medium. • The bubble nucleation in superheated droplets can be induced by ionising radiation. • The droplet vaporisation rate for SDD is non-monotonic when it is irradiated periodically to neutrons. • For BD the droplet vaporisation rate decrease monotonically when it is irradiated periodically to neutrons.

  2. Acoustic response of superheated droplet detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Zhang Guiying; Ni Bangfa; Zhao Changjun; Zhang Huanqiao; Guan Yongjing; Chen Zhe; Xiao Caijin; Liu Chao; Liu Cunxiong

    2012-01-01

    The search for dark matter (DM) is a hot field nowadays, a number of innovative techniques have emerged. The superheated droplet technique is relatively mature; however, it is recently revitalized in a number of frontier fields including the search for DM. In this work, the acoustic response of Superheated Droplet Detectors (SDDs) to neutrons was studied by using a 252 Cf neutron source, SDDs developed by the China Institute of Atomic Energy, a sound sensor, a sound card and a PC. Sound signals were filtered. The characteristics of FFT spectra, power spectra and time constants were used to determine the authenticity of the bubbles analyzed.

  3. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    Science.gov (United States)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  4. Semi-automatic bubble counting system for superheated droplet detectors

    International Nuclear Information System (INIS)

    Reina, Luiz C.; Bellido, Luis F.; Ramos, Paulo R.; Silva, Ademir X. da; Facure, Alessandro; Dantas, Jose E.R.

    2009-01-01

    Neutron dose rate measurements are normally performed by means of PADC, CR-39 and TLD detectors. Although, none of these devices can give instant reading of the neutron dose, recently new kind of detectors are being developed, based on the formation of tiny drops in a superheated liquid suspended in a polymer or gel solution, called superheated droplet detector (SDD) or also as bubble detectors (BD), with no response for gamma radiation. This work describes the experimental setup and the developed procedures for acquiring and processing digital images obtained with bubble detector spectrometer (BDS), developed by Bubble Technology Industries, for personal neutron dosimeter and/or neutron energy fluence measurements in nuclear facilities. The results of the neutron measurements obtained during the F-18 production, at the RDS-111 cyclotron, are presented. These neutron measurements were the first ones with this type of BDS detectors in a particle accelerator facility in Brazil and it was very important to estimate neutron dose rate received by occupationally exposed individuals. (author)

  5. Gamma ray sensitivity of superheated liquid

    International Nuclear Information System (INIS)

    Sawamura, Teruko; Sugiyama, Noriyuki; Narita, Masakuni

    2000-01-01

    The superheated drop detector (SDD) is composed of droplets of sensitive liquid with a low-boiling point and a medium supporting the dispersed droplets throughout the medium. The SDD has been mainly used for neutron dosimetry and recently also for gamma-rays. While for neutrons the conditions for bubble formation have been discussed, there has been little work for gamma-rays. We investigated the conditions for low LET radiation, such as protons and gamma-rays, and showed octafluoropropane (C 3 F 8 , boiling point -36.7degC) as advantageous liquid. The bubble formation condition is given by the energy density imparted from the charged particle to the sensitive liquid. The energy density requirement means that the energy must be deposited over a definite region length, effective to produce the vapor nucleus that becomes the visible bubble. Recently for γ-rays, Evans and Wang proposed the model that the vaporization was triggered by the energy deposition in a 'cluster' including many events in proximity in a superheated liquid. Measurements of the γ-ray sensitivity have not been sufficiently carried out and therefore the effective length or the cluster model has not been well-established. In this study the detection sensitivity was evaluated by measuring the life time of a liquid drop exposed to γ-rays. We developed a device trapping a superheated drop, where a single drop of test liquid was trapped and decompressed by an acoustic standing wave field. When a liquid drop with volume V[cm 3 ] is exposed to a γ-ray flux φ γ [cm -2 s -1 ], the average evaporation rate λ(T, P) [s -1 ] (T: temperature, P: decompressed pressure) is expressed as λ(T, P)=K γ Vφ γ (1), K γ [cm -1 ] is the γ-ray detection sensitivity per unit volume of the sensitive liquid and unit fluence. If the average rate of spontaneous evaporation is λ 0 (T, P), then the probability distribution of the life time t, the probability that t > τ, is expressed by X(τ)=exp{-(λ+λ 0 )

  6. Vapor bubble growth in highly superheated liquid

    International Nuclear Information System (INIS)

    Pavlov, P.A.

    1981-01-01

    Dynamics of the bubble growth in the volume of the uniformally superheated liquid is considered. It is supposed that its growth is hampered by heat transfer. An asymptotic expression for the bubble growth rate at high superheatings when heat hold by liquid is comparable with heat of steam formation, is found by the automodel solution of the heat transfer equation. Writing the radius square in the form of a functional applicable for the calculation of steam formation at the pressure change in superheated liquid is suggested for eveluation calculations [ru

  7. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  8. Surface boiling of superheated liquid

    International Nuclear Information System (INIS)

    Reinke, P.

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs

  9. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  10. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  11. Droplet impact on superheated micro-structured surfaces

    NARCIS (Netherlands)

    Tran, Tuan; Staat, Erik-Jan; Susarrey Arce, A.; Foertsch, T.C.; van Houselt, Arie; Gardeniers, Johannes G.E.; Prosperetti, Andrea; Lohse, Detlef; Sun, Chao

    2013-01-01

    When a droplet impacts upon a surface heated above the liquid's boiling point, the droplet either comes into contact with the surface and boils immediately (contact boiling), or is supported by a developing vapor layer and bounces back (film boiling, or Leidenfrost state). We study the transition

  12. The active personnel dosimeter---APFEL enterprises superheated drop detector

    International Nuclear Information System (INIS)

    Ipe, N.E.; Donahue, R.J.; Busick, D.D.

    1991-03-01

    The Active Personnel Dosimeter (APD) provides a digital readout of events caused by neutrons interacting with superheated liquid droplets. The droplets are suspended in a gel held in a replaceable cartridge. Upon neutron interaction, the superheated droplet vaporizes, forming a bubble. The sound produced in this process is recorded by transducers that sense the accompanying pressure pulse. The APD electronically discriminates against spurious noise and vibration. Studies with the production prototype APDs indicate that the detector response is linear up to about 0.40 mSv, with large variations sometimes from predicted values and between cartridges at higher dose equivalents. The response to standard neutron sources (bare 252 Cf, PuBe, PuB, PuF, PuLi) is reported and compared with the expected response. Unirradiated cartridges self-nucleate when heated to temperatures of 46 degrees C. The APD is insensitive to low-energy photons but responds to high-energy photons and electrons. 8 refs., 2 figs., 3 tabs

  13. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  14. The initial phase of sudden releases of superheated liquid

    International Nuclear Information System (INIS)

    Schmidli, J.

    1994-04-01

    The catastrophic failure of a pressure vessel containing a liquefied substance, leading to an instantaneous release of its whole contents is considered as one of the major technological hazards. Due to the rapid depressurization caused by vessel failure, the fluid becomes superheated and unstable. Part of the fluid will evaporate using its internal energy and the two-phase mixture forming will be accelerated. This flashing process can be very violent, as experiments and incidents actually happened have shown. In the past, a number of dispersion models were developed to predict the history of an instantaneous release. In most of these models the source term is considered to be a gas volume at rest and not a rapidly expanding aerosol, as could be observed. Furthermore, it is usually assumed that all of the remaining fluid is entrained into the expanding cloud and nothing is deposited on the ground to form a pool. This work concentrates on the initial phase of the sudden release of superheated liquids with the aim to gain a better understanding of the flashing process and of the physical mechanisms involved, leading to a reliable prediction of the source term. Therefore, more than 400 experiments with propane, butane, refrigerant 12 and 114 were conducted. The experiments were initiated by shattering spherical glass flasks of different sizes. The main parameters varied were the liquid superheat and the filling level of the vessel. Using high-speed video and movie recordings and very fast responding measurement devices, it was possible to study the initial phase of such releases during which gravity plays no role. For sufficiently large released internal energy, the initial evolution of the release was always spherical with a constant radial expansion velocity during he first milliseconds until instabilities appeared at the surface of the droplet/vapor cloud that was formed. For all the experimental conditions, the fraction of the initial liquid falling on the ground

  15. Intrinsic noise of a superheated droplet detector for neutron background measurements in massively shielded facilities

    Directory of Open Access Journals (Sweden)

    Fernandes Ana C.

    2017-01-01

    Full Text Available Superheated droplet detectors are a promising technique to the measurement of low-intensity neutron fields, as detectors can be rendered insensitive to minimum ionizing radiations. We report on the intrinsic neutron-induced signal of C2ClF5 devices fabricated by our group that originate from neutron- and alpha-emitting impurities in the detector constituents. The neutron background was calculated via Monte Carlo simulations using the MCNPX-PoliMi code in order to extract the recoil distributions following neutron interaction with the atoms of the superheated liquid. Various nuclear techniques were employed to characterise the detector materials with respect to source isotopes (238U, 232Th and 147Sm for the normalisation of the simulations and also light elements (B, Li having high (α, n neutron production yields. We derived a background signal of ~10-3 cts/day in a 1 liter detector of 1-3 wt.% C2ClF5, corresponding to a detection limit in the order of 10-8 n cm-2s-1. Direct measurements in a massively shielded underground facility for dark matter search have confirmed this result. With the borosilicate detector containers found to be the dominant background source in current detectors, possibilities for further noise reduction by ~2 orders of magnitude based on selected container materials are discussed.

  16. Bubble dynamics in a superheated liquid

    International Nuclear Information System (INIS)

    Sha, W.T.; Shah, V.L.

    1977-09-01

    The report presents an extensive literature survey on bubble dynamics. Growth of a single spherical bubble moving in a uniformly superheated liquid is considered. Equations of motion and energy are presented in the forms that take into consideration the interaction between the motion and the growth. The fourth-order Runge-Kutta method is used to obtain a simultaneous solution of equations of motion and growth rate, and the solution is compared with available experimental results. Results for liquid sodium are presented for a range of pressures and Jakob numbers

  17. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  18. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  19. First Dark Matter Limits from a Large-Mass, Low-Background Superheated Droplet Detector

    CERN Document Server

    Collar, J.I.; Girard, T.A.; Limagne, D.; Miley, H.S.; Waysand, G.

    2000-01-01

    We report on the fabrication aspects and calibration of the first large active mass ($\\sim15$ g) modules of SIMPLE, a search for particle dark matter using Superheated Droplet Detectors (SDDs). While still limited by the statistical uncertainty of the small data sample on hand, the first weeks of operation in the new underground laboratory of Rustrel-Pays d'Apt already provide a sensitivity to axially-coupled Weakly Interacting Massive Particles (WIMPs) competitive with leading experiments, confirming SDDs as a convenient, low-cost alternative for WIMP detection.

  20. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  1. The initial phase of sudden releases of superheated liquid

    International Nuclear Information System (INIS)

    Schmidli, J.; Yadigaroglu, G.

    1994-01-01

    Series of experiments were conducted with refrigerants-114, -12, propane and butane to investigate the initial phase of sudden releases of superheated liquids due to the catastrophic failure of the vessel containing them. The experiments were initiated by shattering spherical flasks of 100 to 2000 ml containing the liquefied, pressurized gases. The variable parameters were the initial superheat, the filling level, the height of the flask above ground, and the relative humidity of the surrounding air. It was found that the initial flashing process is not determined by homogeneous nucleation, but rather by surface instabilities which lead to an evaporation wave traveling from the initial surface towards the center of the released mass. Cloud shape and expansion velocity could be determined from high speed recordings covering the initial stage of the release during which gravity has no influence. When the internal energy was sufficient, it was observed that the expanding droplet/vapor cloud initially propagated spherically with a constant expansion velocity, until Rayleigh-Taylor type instabilities appeared at its surface. Information about the pool which can be formed on the ground, the pressure decay within the flask, the droplet size, and the cloud temperature was collected. The experimental findings for the expansion velocity, as well as for the pool fraction, were the base for a nondimensional analysis leading to correlations which describe the initial phase of such releases and can be used to define the ''source term'' for turbulent dispersion models. (author) 5 figs., 1 tab., 15 refs

  2. Prospects for SIMPLE 2000: a large-mass, low-background superheated droplet detector for WIMP searches

    International Nuclear Information System (INIS)

    Collar, J.I.; Girard, T.A.; Miley, H.S.; Waysand, G.

    2000-01-01

    The Superheated Instrument for Massive Particle searches (SIMPLE 2000) will consist of an array of 8-16 large active mass (approx. 15 g) superheated droplet detectors (SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make the use of SDDs an attractive approach for the detection of weakly interacting massive particles (WIMPs), namely their intrinsic insensitivity to minimally ionizing particles, high fluorine content, low cost and operation at near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from prototype SDDs for SIMPLE, as well as on the expected immediate increase in sensitivity of the programme, which aims at an exposure of > 25 kg day during 2000. The ability of modest-mass fluorine-rich detectors to investigate regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out. (author)

  3. Prospects for SIMPLE 2000: a large-mass, low-background superheated droplet detector for WIMP searches

    International Nuclear Information System (INIS)

    Collar, J I; Puibasset, J; Girard, T A; Limagne, D; Miley, H S; Waysand, G

    2000-01-01

    The Superheated Instrument for Massive Particle searches (SIMPLE 2000) will consist of an array of 8-16 large active mass (≅15 g) superheated droplet detectors (SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make the use of SDDs an attractive approach for the detection of weakly interacting massive particles (WIMPs), namely their intrinsic insensitivity to minimally ionizing particles, high fluorine content, low cost and operation at near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from prototype SDDs for SIMPLE, as well as on the expected immediate increase in sensitivity of the programme, which aims at an exposure of > 25 kg day during 2000. The ability of modest-mass fluorine-rich detectors to investigate regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out

  4. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  5. Prospects for SIMPLE 2000 A large-mass, low-background Superheated Droplet Detector for WIMP searches

    CERN Document Server

    Collar, J I; Girard, T A; Limagne, D; Miley, H S; Waysand, G

    2000-01-01

    SIMPLE 2000 ({\\underline S}uperheated {\\underline I}nstrument for {\\underline M}assive {\\underline P}artic{\\underline {LE}} searches) will consist of an array of eight to sixteen large active mass ($\\sim15$ g) Superheated Droplet Detectors(SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make of SDDs an attractive approach for the detection of Weakly Interacting Massive Particles (WIMPs), namely their intrinsic insensitivity to minimum ionizing particles, high fluorine content, low cost and operation near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from SIMPLE prototype SDDs, as well as on the expected immediate increase in sensitivity of the program, which aims at an exposure of $>$25 kg-day during the year 2000. The ability of modest-mass fluorine-rich detectors to explore regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out.

  6. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); D’Errico, Francesco [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); Scuola di Ingegneria, Universitá di Pisa, Largo Lucio Lazzarino 1, Pisa (Italy)

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1–10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200–400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  7. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    Science.gov (United States)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  8. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.

    2016-08-20

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  9. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.; Thu, K.; Bui, T.D.; Li, Y.; Ng, Kim Choon; Chua, K.J.

    2016-01-01

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  10. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    Science.gov (United States)

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  11. Microwave super-heated boiling of organic liquids: Origin, effect and application

    NARCIS (Netherlands)

    Chemat, F.; Esveld, E.

    2001-01-01

    This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling

  12. Fragmentation of a single molten copper and silver droplets penetrating a sodium pool with solid crust

    International Nuclear Information System (INIS)

    Wataru Itagaki; Ken-ichiro Sugiyama; Satoshi Nishimura; Izumi Kinoshita

    2005-01-01

    As a basic study of molten fuel-coolant interaction in liquid metal fast cooled reactors, we carried out a series of experiments for the fragmentation of molten copper droplet penetrating sodium pool at instantaneous contact interface temperatures below its freezing point. A single molten copper droplet with 5g in weight and with superheating varied from 0 degree C to 131 degree C was dropped into a sodium pool in a wide range of ambient Weber numbers 24 to 228. In addition to the experiment of molten copper droplet, molten silver droplet with 5gs in weight and with superheating varied from 3 degree C to 174 degree C was dropped into the sodium pool at an ambient Weber number of about 80. From the observation of the cross section of solidified silver droplet without fragmentation, it was clearly confirmed that sodium micro jet is driven into the inside from the upper surface of molten droplet keeping liquid phase, which is clear evidence for the thermal fragmentation mechanism proposed in the previous paper. Large scattering in the values of dimensionless mass median diameter observed in the present experimental study is recognized to be dependent on whether latent heat instantaneously released due to the injection of sodium micro jet can be effectively utilized for fragmentation. (authors)

  13. Liquid droplet radiator performance studies

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  14. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    International Nuclear Information System (INIS)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-01-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s -1 are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection. (author)

  15. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-04-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s/sup -1/ are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection.

  16. Vitrification and levitation of a liquid droplet on liquid nitrogen

    OpenAIRE

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitroge...

  17. Radiation dosimetry and spectrometry with superheated emulsions

    International Nuclear Information System (INIS)

    D'Errico, Francesco

    2001-01-01

    Detectors based on emulsions of overexpanded halocarbon droplets in tissue equivalent aqueous gels or soft polymers, known as 'superheated drop detectors' or 'bubble (damage) detectors', have been used in radiation detection, dosimetry and spectrometry for over two decades. Recent technological advances have led to the introduction of several instruments for individual and area monitoring: passive integrating meters based on the optical or volumetric registration of the bubbles, and active counters detecting bubble nucleations acoustically. These advances in the instrumentation have been matched by the progress made in the production of stable and well-specified emulsions of superheated droplets. A variety of halocarbons are employed in the formulation of the detectors, and this permits a wide range of applications. In particular, halocarbons with a moderate degree of superheat, i.e. a relatively small difference between their operating temperature and boiling point, can be used in neutron dosimetry and spectrometry since they are only nucleated by energetic heavy ions such as those produced by fast neutrons. More recently, halocarbons with an elevated degree of superheat have been utilised to produce emulsions that nucleate with much smaller energy deposition and detect low linear energy transfer radiations, such as photons and electrons. This paper reviews the detector physics of superheated emulsions and their applications in radiation measurements, particularly in neutron dosimetry and spectrometry

  18. Boiling of superheated liquids near the spinodal: II Application

    Science.gov (United States)

    aus der Wiesche, S.; Rembe, C.; Hofer, E. P.

    The general theory of boiling near the spinodal as critical phenomenon will be used on the nucleation process of explosive evaporating liquids. In experiments with thermal micro heater the occurrence of the critical opalescence can be demonstrated which is characteristic for phase transitions of second order. In case of water the experiments permit the determination of the gradient energy coefficient κ for nonuniform systems. The homogeneous nucleation rate for extremely superheated water at normal pressure is discussed. It is found that the explosive evaporation starts very closed to the spinodal and leads to spatial extended nuclei in contrast to the conventional nucleation mode.

  19. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  20. Superheated emulsions in neutron spectrometry by varying ambient pressure

    International Nuclear Information System (INIS)

    Das, Mala; Sawamura, Teruko

    2005-01-01

    The principle of present work lies on the dependence of the threshold neutron energy on the dimensionless quantity ''degree of metastability (ss)'' of superheated liquids. The response of the superheated emulsions consists of the drops of superheated liquid (C 2 Cl 2 F 4 , b.p. 3.77 deg. C) has been measured at different 'ss' by varying ambient pressure at different temperatures, in the presence of neutrons generated in Pb by a (γ,n) reaction from 45 MeV electron LINAC of Hokkaido University. To unfold the neutron energy spectrum, a relationship has been developed between the 'ss' of superheated liquids and the threshold neutron energy. The spectrum at the detector position has been calculated by the MCNP code and a comparison has been made with the experimental spectrum. The utilisation of 'ss' is more flexible as this relation can be applied to both positive and negative ambient pressures as well as at different ambient temperatures

  1. Boiling of superheated liquids near the spinodal: II. Application

    Energy Technology Data Exchange (ETDEWEB)

    Aus der Wiesche, S.; Rembe, C.; Hofer, E.P. [Ulm Univ. (Germany). Dept. of Measurement, Control and Microtechnology

    1999-07-01

    The general theory of boiling near the spinodal as critical phenomenon will be used on the nucleation process of explosive evaporating liquids. In experiments with thermal micro heater the occurrence of the critical opalescence can be demonstrated which is characteristic for phase transitions of second order. In case of water the experiments permit the determination of the gradient energy coefficient {kappa} for nonuniform systems. The homogeneous nucleation rate for extremely superheated water at normal pressure is discussed. It is found that the explosive evaporation starts very closed to the spinodal and leads to spatial extended nuclei in contrast to the conventional nucleation mode. (orig.) With 5 figs., 16 refs.

  2. Liquid droplet radiator technology issues

    International Nuclear Information System (INIS)

    Mattick, A.T.; Hertzberg, A.

    1985-01-01

    The operation of the liquid droplet radiator (LDR) is analyzed to establish design constraints for the LDR components and to predict the performance of an integrated LDR system. The design constraints largely result from mass loss considerations: fluid choice is governed by evaporation loss; droplet generation techniques must be capable of precise aiming of >10 5 droplet streams; and collection losses must be less than 1 droplet in 10 7 . Concepts for droplet generation and collection components are discussed and incorporated into a mass model for an LDR system. This model predicts that LDR's using lithium, Dow 705 silicone fluid, or NaK may be several times lighter than heat pipe radiators. 13 refs

  3. Detection based on rainbow refractometry of droplet sphericity in liquid-liquid systems.

    Science.gov (United States)

    Lohner, H; Lehmann, P; Bauckhage, K

    1999-03-01

    The shape of droplets in liquid-liquid systems influences their mass and momentum transfer processes. The deviation from sphericity of rising droplets in liquid-liquid systems was investigated for different droplet sizes. Rainbow refractometry permits one to test, in this case, whether the use of laser-optical particle sizing will be correct or faulty. Since the assumption of spherical particle geometry is a general basis of laser-optical particle-sizing techniques such as rainbow refractometry or phase Doppler anemometry, deviation from the spherical shape results in a measuring error. A sphericity check based on rainbow refractometry is introduced.

  4. Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity

    Science.gov (United States)

    Totani, T.; Itami, M.; Nagata, H.; Kudo, I.; Iwasaki, A.; Hosokawa, S.

    2002-06-01

    The Liquid Droplet Radiator (LDR) has an advantage over comparable conventional radiators in terms of the rejected heat power-weight ratio. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems that will be prerequisite for large space structures. The performance of the LDR under microgravity condition has been studied from the viewpoint of operational space use of the LDR in the future. In this study, the performances of a droplet generator and a droplet collector in the LDR are investigated using drop shafts in Japan: MGLAB and JAMIC. As a result, it is considered that (1) the droplet generator can produce uniform droplet streams in the droplet diameter range from 200 to 280 [µm] and the spacing range from 400 to 950 [µm] under microgravity condition, (2) the droplet collector with the incidence angle of 35 degrees can prevent a uniform droplet stream, in which droplet diameter is 250 [µm] and the velocity is 16 [m/s], from splashing under microgravity condition, whereas splashes may occur at the surface of the droplet collector in the event that a nonuniform droplet stream collides against it.

  5. Janus droplets: liquid marbles coated with dielectric/semiconductor particles.

    Science.gov (United States)

    Bormashenko, Edward; Bormashenko, Yelena; Pogreb, Roman; Gendelman, Oleg

    2011-01-04

    The manufacturing of water droplets wrapped with two different powders, carbon black (semiconductor) and polytetrafluoroethylene (dielectric), is presented. Droplets composed of two hemispheres (Janus droplets) characterized by various physical and chemical properties are reported first. Watermelon-like striped liquid marbles are reported. Janus droplets remained stable on solid and liquid supports and could be activated with an electric field.

  6. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  7. Stationary phases for superheated water chromatography

    International Nuclear Information System (INIS)

    Saha, Shikha

    2002-01-01

    This project focused on the comparison of conventional liquid chromatography and superheated water chromatography. It examined the differences in efficiency and retention of a range of different stationary phases. Alkyl aryl ketones and eight aromatic compounds were separated on PBD-zirconia, Xterra RP 18, Luna C 18 (2) and Oasis HLB columns using conventional LC and superheated water chromatography system. The retention indices were determined in the different eluents. On changing the organic component of the eluent from methanol to acetonitrile to superheated water considerable improvements were found in the peak shapes and column efficiencies on the PBD-zirconia and Oasis HLB columns. PS-DVB, PBD-zirconia and Xterra RP 18 columns have been used in efficiency studies. It was found that simply elevating the column temperature did not increase the efficiency of a separation in superheated water chromatography. The efficiency depended on flow rate, injection volume and also mobile phase preheating system. Although high efficiencies were not achieved with superheated water on PS-DVB and Xterra RP 18 columns, a higher efficiency was achieved on a PBD-zirconia column with superheated water than with 25-35% ACN at room temperature. The proposed theoretical increases in u opt were measured on three columns using superheated water as the mobile phase. The application of the superheated water chromatographic method to the separation of the pungent constituents of ginger by superheated water chromatography-NMR coupling system was studied. The coupling of superheated water chromatography using deuterium oxide to NMR spectroscopy for the separation of dry ginger extract was successful, although the NMR sensitivity in on-line mode coupling system was low. However, four compounds were identified in the ginger extract by stop-flow mode on superheated water chromatography-UV-NMR detection system. (author)

  8. Experimental test of liquid droplet radiator performance

    Science.gov (United States)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  9. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  10. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  11. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  12. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  13. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    Science.gov (United States)

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preparation and characterisation of superheated drop detectors

    International Nuclear Information System (INIS)

    Krishnamoorthy, P.

    1989-01-01

    Basic mechanism of bubble nucleation in superheated drops with respect to minimum energy of radiation and temperature is discussed. Experimental details and techniques for the preparation of Superheated Drop Detectors (SDDs) is explained. For the sample preparation, homogeneous composition of polymer (Morarfloc) and glycerine was used as the host medium and three different refrigerants Mafron-21, Mafron-12 and Mafron-11/12 (50:50) were chosen as the sensitive liquids. A pressure reactor developed at Health and Safety Laboratory is used for dispersing the sensitive liquid drops in the homogeneous composition under pressure. Some of the imporatant detector characteristics were studied. (author). 26 refs., 9 figs., 1 tab

  15. Fabrication of hemispherical liquid encapsulated structures based on droplet molding

    Science.gov (United States)

    Ishizuka, Hiroki; Miki, Norihisa

    2015-12-01

    We have developed and demonstrated a method for forming spherical structures of a thin polydimethylsiloxane (PDMS) membrane encapsulating a liquid. Liquid encapsulation can enhance the performance of microelectromechanical systems (MEMS) devices by providing deformability and improved dielectric properties. Parylene deposition and wafer bonding are applied to encapsulate liquid into a MEMS device. In parylene deposition, a parylene membrane is directly formed onto a liquid droplet. However, since the parylene membrane is stiff, the membrane is fragile. Although wafer bonding can encapsulate liquid between two substrates, the surface of the fabricated structure is normally flat. We propose a new liquid encapsulation method by dispensing liquid droplets. At first, a 20 μl PDMS droplet is dispensed on ethylene glycol. A 70 μl glycerin droplet is dispensed into a PDMS casting solution layer. The droplet forms a layer on heated ethylene glycol. Glycerin and ethylene glycol are chosen for their high boiling points. Additionally, a glycerin droplet is dispensed on the layer and surrounded by a thin PDMS casting solution film. The film is baked for 1 h at 75 °C. As the result, a structure encapsulating a liquid in a flexible PDMS membrane is obtained. We investigate the effects of the volume, surface tension, and guide thickness on the shape of the formed structures. We also evaluated the effect of the structure diameter on miniaturization. The structure can be adapted for various functions by changing the encapsulated liquid. We fabricated a stiffness-tunable structure by dispensing a magnetorheoligical fluid droplet with a stiffness that can be changed by an external magnetic field. We also confirmed that the proposed structure can produce stiffness differences that are distinguishable by humans.

  16. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  17. Self-bound droplets of a dilute magnetic quantum liquid

    Science.gov (United States)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  18. High-Energy Laser Interaction with Gases, Droplets, and Bulk Liquids.

    Science.gov (United States)

    Jarzembski, Maurice Anthony

    Breakdown threshold intensities (I_ {rm TH}) were measured as functions of wavelengths and pressure for air, He, Ar, and Xe using a Nd:YAG pulsed laser. Multiphoton absorption dominates in the UV and cascade collision ionization dominates in the IR; however, both can be affected by other electron gain and loss processes. Presence of droplets lowers breakdown of gases due to field enhancements. Breakdown is initiated either in the droplet material or in the gas. At lambda = 0.532mum for a 50 μm dia. water droplet in He, Ar, and air for p pressure. For droplet -in-Xe, at p pressure. For droplet-in-Xe, at p 140 Torr, breakdown occurs outside the droplet and is dependent on gas pressure. Pressure dependence of breakdown was observed for 120mum dia. water droplets in Ar at p > 400 Torr. The required intensity for breakdown of droplet depends on I_{ rm TH} of bulk liquid and the effective field enhancement created by the droplet. The I _{rm TH} of droplet-in-air provides an upper limit to the propagation of a high energy laser beam in the atmosphere containing particles. By geometrical optics approach, a significant field enhancement located at the critical ring region, encircling the axis of the sphere in the forward direction at angle theta_{c}, was discovered where nonlinear processes can occur. This was confirmed experimentally and by Mie theory. Field enhancements calculated at the critical ring for water droplets of different sizes agree well with measurements. For a droplet of given size and real refractive index, the effective field enhancement and the volume over which it occurs are two important factors governing the occurrence of breakdown in droplets for both off resonance and on resonance conditions. Measurements of wavelength dependence of breakdown showed that in the UV, I_{rm TH} for droplets and bulk liquids were comparable and lower by few orders of magnitude from that of air. Transmittance and reflectance of bulk liquids in the UV change with

  19. Melting of superheated molecular crystals

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  20. Model of a liquid droplet impinging on a high-temperature solid surface

    International Nuclear Information System (INIS)

    Gulikov, A.V.; Berlin, I.I.; Karpyshev, A.V.

    2004-01-01

    The model of the collision of the liquid droplet, vertically falling on the heated solid surface, is presented. The wall temperature is predeterminated so that the droplet interaction with the wall proceeds through the gas interlayer (T≥400 Deg C). The droplet liquid is incompressible, nonviscous. The droplet surface is assigned as free one. The pressure is composed of two components. The first component is the surface tension. The record component is the steam pressure between the droplet and the wall. The liquid motion inside the droplet is assumed to be potential, axisymmetric. The calculation of the droplet collision are carried out with application of the above model. The obtained results are compared with the data of other authors [ru

  1. Transient heating and evaporation of moving mono-component liquid fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    of which the flow and energy transport equations are numerically solved using the finite volume method. The computer code for the model is developed in a generic 3D framework and verified in different ways (e.g., by comparison against analytical solutions for simplified cases, and against experimental......This paper presents a complete description of a model for transient heating and evaporation of moving mono-component liquid fuel droplets. The model mainly consists of gas phase heat and mass transfer analysis, liquid phase analysis, and droplet dynamics analysis, which address the interaction...... between the moving droplets and free-stream flow, the flow and heat and mass transfer within the droplets, and the droplet dynamics and size, respectively. For the liquid phase analysis, the droplets are discretized into a number of control volumes along the radial, polar and azimuthal directions, on each...

  2. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  3. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    International Nuclear Information System (INIS)

    Das, Mala; Seth, S.; Saha, S.; Bhattacharya, S.; Bhattacharjee, P.

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252 Cf fission neutron source and 137 Cs gamma source, respectively, separately. Analysis of pulse height of signals at the neutron and gamma-ray sensitive temperature provides significant information on the identification of neutron and gamma-ray induced events.

  4. Investigation on Shock Induced Stripping Breakup Process of A Liquid Droplet

    KAUST Repository

    Liu, Yao

    2017-03-02

    Stripping breakup process of a single liquid droplet under the impact of a planar shock wave is investigated both experimentally and numerically. The droplet breakup experiment is conducted in a horizontal shock tube and the evolution of the droplet is recorded by direct high-speed photography. The experimental images clearly illustrate the droplet interface evolution features from its early to relatively late stage. Compressible Euler equations are solved using an in-house inviscid upwind characteristic space-time conservation element and solution element (CE/SE) method coupled with the HLLC approximate Riemann solver. A reduced five-equation model is employed to demonstrate the air/liquid interface. Numerical results accurately reproduce the water column and axi-symmetric water droplet breakup processes in experiments. The present study confirms the validity of the present numerical method in solving the shock wave induced droplet breakup problem and elaborates the stripping breakup process numerically in a long period. Droplet inner flow pattern is depicted, based on which the drives of protrusions emerged on the droplet surface are clearly seen. The droplet deformation is proved to be determined by not only the outer air flow, but also the inner liquid flow.

  5. Investigation on Shock Induced Stripping Breakup Process of A Liquid Droplet

    KAUST Repository

    Liu, Yao; Wen, Chihyung; Shen, Hua; Guan, Ben

    2017-01-01

    Stripping breakup process of a single liquid droplet under the impact of a planar shock wave is investigated both experimentally and numerically. The droplet breakup experiment is conducted in a horizontal shock tube and the evolution of the droplet is recorded by direct high-speed photography. The experimental images clearly illustrate the droplet interface evolution features from its early to relatively late stage. Compressible Euler equations are solved using an in-house inviscid upwind characteristic space-time conservation element and solution element (CE/SE) method coupled with the HLLC approximate Riemann solver. A reduced five-equation model is employed to demonstrate the air/liquid interface. Numerical results accurately reproduce the water column and axi-symmetric water droplet breakup processes in experiments. The present study confirms the validity of the present numerical method in solving the shock wave induced droplet breakup problem and elaborates the stripping breakup process numerically in a long period. Droplet inner flow pattern is depicted, based on which the drives of protrusions emerged on the droplet surface are clearly seen. The droplet deformation is proved to be determined by not only the outer air flow, but also the inner liquid flow.

  6. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    Damsohn, M.

    2011-01-01

    In the upper part of boiling water reactors (BWR) the flow regime is dominated by a steam-water droplet flow with liquid films on the nuclear fuel rod, the so called (wispy) annular flow regime. The film thickness and liquid flow rate distribution around the fuel rod play an important role especially in regard to so called dryout, which is the main phenomenon limiting the thermal power of a fuel assembly. The deposition of droplets in the liquid film is important, because this process sustains the liquid film and delays dryout. Functional spacers with different vane shapes have been used in recent decades to enhance droplet deposition and thus create more favorable conditions for heat removal. In this thesis the behavior of liquid films and droplet deposition in the annular flow regime in BWR bundles is addressed by experiments in an adiabatic flow at nearly ambient pressure. The experimental setup consists of a vertical channel with the cross-section resembling a pair of neighboring subchannels of a fuel rod bundle. Within this double subchannel an annular flow is established with a gas-water mixture. The impact of functional spacers on the annular flow behavior is studied closely. Parameter variations comprise gas and liquid flow rates, gas density and spacer shape. The setup is instrumented with a newly developed liquid film sensor that measures the electrical conductance between electrodes flush to the wall with high temporal and spatial resolution. Advanced post-processing methods are used to investigate the dynamic behavior of liquid films and droplet deposition. The topic is also assessed numerically by means of single-phase Reynolds-Averaged-Navier-Stokes CFD simulations of the flow in the gas core. For this the commercial code STAR-CCM+ is used coupled with additional models for the liquid film distribution and droplet motion. The results of the experiments show that the liquid film is quite evenly distributed around the circumference of the fuel rods. The

  7. Superheated drop, open-quotes Bubbleclose quotes, dosimeters

    International Nuclear Information System (INIS)

    Harper, M.J.; Lindler, K.W.; Nelson, M.E.; Johnson, T.L.; Jones, C.R.; Rabovsky, J.L.; Rao, N.; Kerschner, H.F.; Reil, G.K.; Schwartz, R.B.

    1991-01-01

    Superheated Drop Dosimeters (SDD) offer a sensitive, immediate measure of the neutron dose equivalent, but their dynamic range is limited and their response varies with temperature, pressure, and vibration. They contain thousands of superheated liquid drops in a stabilizing matrix. High linear energy transfer (LET) radiation triggers vaporization of the drops into visible bubbles. If the matrix is a liquid, the bubbles slowly rise, and the number present indicates the dose rate. Dose may be measured by displacement of the matrix, or by counting the sounds of vaporization. If the matrix is a gel, the bubbles are fixed, and their number is proportional to the dose equivalent. Our research has focused on modeling and elimination of the environmental response, extension of the dynamic range, and tests and evaluations of prototype devices

  8. Experimental test of liquid droplet radiator performance

    International Nuclear Information System (INIS)

    Mattick, A.T.; Simon, M.A.

    1986-01-01

    This liquid droplet radiator (LDR) is evolving rapidly as a lightweight system for heat rejection in space power systems. By using recirculating free streams of submillimeter droplets to radiate waste energy directly to space, the LDR can potentially be an order of magnitude lighter than conventional radiator systems which radiate from solid surfaces. The LDR is also less vulnerable to micrometeoroid damage than are conventional radiators, and it has a low transport volume. Three major development issues of this new heat rejection system are the ability to direct the droplet streams with sufficient precision to avoid fluid loss, radiative performance of the array of droplet streams which comprise the radiating elements of the LDR, and the efficacy of the droplet stream collector, again with respect to fluid loss. This paper reports experimental results bearing on the first two issues - droplet aiming in a multikilowatt-sized system, and radiated power from a large droplet array. Parallel efforts on droplet collection and LDR system design are being pursued by several research groups

  9. The evolution of droplet impacting on thin liquid film at superhydrophilic surface

    Science.gov (United States)

    Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu

    2017-12-01

    Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.

  10. Measurement and model development of the droplet diameter in rod bundles with spacer grids in the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Lee, Eo Hwak; Yoo, Seung Hun; Jin, Hyung Gon; Kim, In Hun [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    To understand and to predict the heat transfer between superheated steam and droplets properly during reflood phase of LBLOCA of APR1400, it is very important to measure broken droplet sizes by spacer grids. A study, therefore, has been performed to investigate droplet size in rod bundles with spacer grids and to develop a spacer grid droplet size model for safety analysis codes. Experiments were conducted with liquid droplets (SMD of 300{approx}700 {mu}m) impacting on various spacer grids at air superficial velocity of 10 and 20 m/s based on FLECHT SEASET. The test channel and the grids were heated to 150 .deg. C to prevent the formation of liquid film during tests. The spacer grids were designed refer to the Korean fuel rod bundles (Korean Standard Fuel, Plus 7) of APR1400 with various blockage area ratio and grid geometries (strap thickness, mixing vane) and about 15,000 droplets were measured at upstream and downstream of the grids in 16 tests. As a result, the measurement of broken droplet size by spacer grids with photography method is presented and the droplet size model related to spacer grids as a function of blockage area ratio is suggested in this report

  11. Assembly of silver nanowire ring induced by liquid droplet

    Science.gov (United States)

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-11-01

    Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).

  12. Numerical simulation of liquid droplet breakup in supersonic flows

    Science.gov (United States)

    Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing

    2018-04-01

    A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.

  13. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  14. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  15. Organic chemical hydrides as storage medium of hydrogen on the basis of superheated liquid-film concept

    International Nuclear Information System (INIS)

    Shinya Hodoshima; Atsushi Shono; Kazumi Satoh; Yasukazu Saito

    2006-01-01

    A catalysis pair of tetralin dehydrogenation / naphthalene hydrogenation has been proposed in the present paper as an organic chemical hydride for operating stationary fuel cells. Catalytic naphthalene hydrogenation, having been commercialized since the 1940's, proceeds to generate decalin via tetralin as an intermediate. The storage capacities of tetralin (3.0 wt%, 28.2 kg-H 2 / m 3 ) are lower than decalin (7.3 wt%, 64.8 kg-H 2 / m 3 ) but both tetralin dehydrogenation and naphthalene hydrogenation are much faster than the decalin / naphthalene pair. Moreover, existing infrastructures, e.g., gas station and tank lorry, are available for storage, transportation and supply of hydrogen. As for the stationary fuel cells with large space for hydrogen storage, tetralin as a hydrogen carrier is superior to decalin in terms of fast hydrogen supply. Rapid hydrogen supply from tetralin under mild conditions was only accomplished with the carbon supported metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions. In contrast to the ordinary suspended states, the catalyst layer superheated in the liquid-film state gave high catalytic performances at around 250 C. As a result, serious coke formation over the catalyst surface and excessive exergy consumption were prevented simultaneously. (authors)

  16. Numerical simulation code for combustion of sodium liquid droplet and its verification

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1997-11-01

    The computer programs for sodium leak and burning phenomena had been developed based on mechanistic approach. Direct numerical simulation code for sodium liquid droplet burning had been developed for numerical analysis of droplet combustion in forced convection air flow. Distributions of heat generation and temperature and reaction rate of chemical productions, such as sodium oxide and hydroxide, are calculated and evaluated with using this numerical code. Extended MAC method coupled with a higher-order upwind scheme had been used for combustion simulation of methane-air mixture. In the numerical simulation code for combustion of sodium liquid droplet, chemical reaction model of sodium was connected with the extended MAC method. Combustion of single sodium liquid droplet was simulated in this report for the verification of developed numerical simulation code. The changes of burning rate and reaction product with droplet diameter and inlet wind velocity were investigated. These calculation results were qualitatively and quantitatively conformed to the experimental and calculation observations in combustion engineering. It was confirmed that the numerical simulation code was available for the calculation of sodium liquid droplet burning. (author)

  17. Diffusion and evaporation of a liquid droplet

    Science.gov (United States)

    Shukla, K. N.

    1980-06-01

    The process of evaporation and diffusion of a spherical liquid droplet in an atmosphere of noncondensable gas is studied theoretically. An equation for the shrinkage of the radius of the droplet is derived on the basis of continuity and momentum equations. Further, a conjugate problem consisting of the energy and mass balance for the gaseous environment is formulated. An approximation of thin thermal and diffusion boundary-layers is introduced to simplify the analysis. Results are presented for methanol-nitrogen, ammonia-nitrogen, and sodium-argon systems. It has been observed that the droplet of highly viscous fluid exhibits rapid contraction.

  18. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  19. Detection in superheated water chromatography

    International Nuclear Information System (INIS)

    Chienthavorn, O.

    1999-11-01

    Superheated water has been used successfully as an eluent in liquid chromatography and has been coupled to various modes of detection, ultraviolet (UV), fluorescence, and nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). A number of compounds were examined on poly(styrene-divinylbenzene) (PS-DVB), polybutadiene (PBD), and octadecylsilyl bonded silica (ODS) column with isothermal and temperature programmes. The PS-DVB column was mostly used throughout the project as it was the most stable. Not only pure water could serve as superheated water mobile phase; inorganic buffered water and ion-pairing reagent with a concentration of 1-3 mM of the buffer and reagent were also exploited. It was shown that the pH could be controlled during the separation without salt precipitation and the separations followed a conventional reversed-phase HPLC method. Results from fluorescence detection showed good separation of a series of vitamins, such as pyridoxine, riboflavin, thiamine, and some analgesics. The relationship of riboflavin using the detection was linear and the detection limit was seven times higher than that of a conventional method. Simultaneous separation and identification using superheated water chromatography-NMR was demonstrated. With using a stop flow method, NMR spectra of model drugs, namely barbiturates, paracetamol, caffeine and phenacetin were obtained and the results agreed with reference spectra, confirming a perfect separation. A demonstration to obtain COSY spectrum of salicylamide was also performed. The method was expanded to the coupling of superheated water LC to NMR-MS. Results from the hyphenated detection method showed that deuteration and degradation happened in the superheated water conditions. The methyl group hydrogens of pyrimidine ring of sulfonamide and thiamine were exchanged with deuterium. Thiamine was decomposed to 4-methyl-5-thiazoleethanol and both were deuterated under the conditions. (author)

  20. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    Science.gov (United States)

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  1. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    Science.gov (United States)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  2. Numerical simulation of a liquid droplet combustion experiment focusing on ignition process

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1999-11-01

    SPHINCS (Sodium Fire phenomenology IN multi-Cell System) computer program has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The program can deal with spray combustion and pool surface combustion. In this report the authors investigate a single droplet combustion phenomena focusing on an ignition process. The spray combustion model of SPHINCS is as follows. The liquid droplet-burning rate after ignition is based on the D-square law and a diffusion flame assumption. Before the droplet is ignited, the burning rate is evaluated by mass flux of oxidizer gases. Forced convection effect that skews the sphere shape of the flame zone surrounding a droplet is taken into consideration. It enhances the burning rate. The chemical equilibrium theory is used to determine the resultant fraction of reaction products of Na-O 2 -H 2 O system. It is noted that users have to give an ignition temperature based on empirical evidences. According to this model, it is obvious that a smaller liquid droplet with higher initial temperature tends to burn more easily. What is observed in a recent experiment is that the smallest liquid droplet (2mm diameter) did not ignited of itself and larger droplets (3.7mm and 4.5mm diameter) burnt at 300degC initial temperature. The current model for liquid droplet combustion cannot predict the experimental results. Therefore, in the present study, a surface reaction model has been developed to predict the ignition process. The model has been used to analyze a combustion experiment of a stationary liquid droplet. The authors investigate the validity of the physical modeling of the liquid droplet combustion and surface reaction. It has been found, as the results, that the model can predict the influence of the initial temperature on the temperature lower limit for spontaneous ignition and ignition delay time. Also investigated is the influence of the moisture on the ignition phenomena. From the present study, it has

  3. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  4. Marangoni Convection in Evaporating Organic Liquid Droplets on a Nonwetting Substrate.

    Science.gov (United States)

    Chandramohan, Aditya; Dash, Susmita; Weibel, Justin A; Chen, Xuemei; Garimella, Suresh V

    2016-05-17

    We quantitatively characterize the flow field inside organic liquid droplets evaporating on a nonwetting substrate. A mushroom-structured surface yields the desired nonwetting behavior with methanol droplets, while use of a cooled substrate (5-15 °C) slows the rate of evaporation to allow quasi-static particle image velocimetry. Visualization reveals a toroidal vortex within the droplet that is characteristic of surface tension-driven flow; we demonstrate by means of a scaling analysis that this recirculating flow is Marangoni convection. The velocities in the droplet are on the order of 10-45 mm/s. Thus, unlike in the case of evaporation on wetting substrates where Marangoni convection can be ignored for the purpose of estimating the evaporation rate, advection due to the surface tension-driven flow plays a dominant role in the heat transfer within an evaporating droplet on a nonwetting substrate because of the large height-to-radius aspect ratio of the droplet. We formulate a reduced-order model that includes advective transport within the droplet for prediction of organic liquid droplet evaporation on a nonwetting substrate and confirm that the predicted temperature differential across the height of the droplet matches experiments.

  5. High-resolution liquid patterns via three-dimensional droplet shape control.

    Science.gov (United States)

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  6. Ultra Low Level Environmental Neutron Measurements Using Superheated Droplet Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A.C. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Estrada Nacional 10 - km 139.7, 2695-066 Bobadela LRS (Portugal); Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa (Portugal); Felizardo, M.; Girard, T.A.; Kling, A.; Ramos, A.R. [Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa (Portugal); Marques, J.G.; Prudencio, M.I.; Marques, R.; Carvalho, F.P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Estrada Nacional 10 - km 139.7, 2695-066 Bobadela LRS (Portugal)

    2015-07-01

    Through the application of superheated droplet detectors (SDDs), the SIMPLE project for the direct search for dark matter (DM) reached the most restrictive limits on the spin-dependent sector to date. The experiment is based on the detection of recoils following WIMP-nuclei interaction, mimicking those from neutron scattering. The thermodynamic operation conditions yield the SDDs intrinsically insensitive to radiations with linear energy transfer below ∼150 keVμm{sup -1} such as photons, electrons, muons and neutrons with energies below ∼40 keV. Underground facilities are increasingly employed for measurements in a low-level radiation background (DM search, gamma-spectroscopy, intrinsic soft-error rate measurements, etc.), where the rock overburden shields against cosmic radiation. In this environment the SDDs are sensitive only to α-particles and neutrons naturally emitted from the surrounding materials. Recently developed signal analysis techniques allow discrimination between neutron and α-induced signals. SDDs are therefore a promising instrument for low-level neutron and α measurements, namely environmental neutron measurements and α-contamination assays. In this work neutron measurements performed in the challenging conditions of the latest SIMPLE experiment (1500 mwe depth with 50-75 cm water shield) are reported. The results are compared with those obtained by detailed Monte Carlo simulations of the neutron background induced by {sup 238}U and {sup 232}Th traces in the facility, shielding and detector materials. Calculations of the neutron energy distribution yield the following neutron fluence rates (in 10{sup -8} cm{sup -2}s{sup -1}): thermal (<0.5 eV): 2.5; epithermal (0.5 eV-100 keV): 2.2; fast (>1 MeV): 3.9. Signal rates were derived using standard cross sections and codes routinely employed in reactor dosimetry. The measured and calculated neutron count rates per unit of active mass were 0.15 ct/kgd and 0.33 ct/kg-d respectively. As the major

  7. Experimental observation of the droplet size change across a wet grid spacer in a 6 × 6 rod bundle

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Choi, Ki Yong; Cho, Seok; Song, Chul-Hwa

    2011-01-01

    Highlights: ► In this study, an experiment on the droplet behavior inside a heated rod bundle has been performed. ► The experiment was focused on the change of droplet size induced by a spacer grid in a rod bundle. ► The major measuring parameters of the experiment were the droplet size and velocity. ► This test provided the data on the change of the droplet size after collision with a wet grid spacer. - Abstract: During the reflood phase of a postulated loss of coolant accident in a nuclear reactor, entrainment of liquid droplets can occur at a quench front of reflooding water. It is widely recognized that the behavior of the entrained droplets crucially affects the reflood heat transfer phenomena by decreasing the superheated steam temperature and interacting with a rod bundle and spacer grids. For this reason, various experimental and numerical studies have been performed to examine droplet behavior such as the droplet size, velocity and droplet fraction inside a rod array. In this study, an experiment on the droplet behavior inside a heated rod bundle has been performed. The experiment was focused on the change of droplet size induced by a spacer grid in a rod bundle geometry, which results in the change of the interfacial heat transfer between droplets and superheated steam. A 6 × 6 rod bundle test facility in Korea Atomic Energy Research Institute was used for the experiment. Steam was supplied by an external boiler into the bottom of the test channel, and a droplet injection nozzle was equipped instead of simulating a quench front of reflooding water. The major measuring parameters of the experiment were the droplet size and velocity, which were measured by a high-speed camera and a digital image processing technique. A series of experiments were conducted with various flow conditions of a steam injection velocity, heater temperature, droplet size, and droplet flow rate. The experiments provided the data on the change of the Sauter mean diameter of

  8. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  9. Modeling texture transitions in cholesteric liquid crystal droplets

    Science.gov (United States)

    Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew

    2012-02-01

    Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.

  10. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part II. Droplet dispersion.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Aguiar, M L; Coury, J R

    2004-12-10

    Droplet distribution is of fundamental importance to the performance of a Venturi scrubber. Ensuring good liquid distribution can increase performance at minimal liquid usage. In this study, droplet dispersion in a rectangular Pease-Anthony Venturi scrubber, operating horizontally, was examined both theoretically and experimentally. The Venturi throat cross-section was 24 mm x 35 mm, and the throat length varied from 63 to 140 mm. Liquid was injected through a single orifice (1.0 mm diameter) on the throat wall. This arrangement allowed the study of the influence of jet penetration on droplet distribution. Gas velocity at the throat was 58.3 and 74.6 m/s, and the liquid flow rate was 286, 559 and 853 ml/min. A probe with a 2.7 mm internal diameter was used to isokinetically remove liquid from several positions inside the equipment. It was possible to study liquid distribution close to the injection point. A new model for droplet dispersion, which incorporates the new description of the jet atomization process developed by the present authors in the first article of this series, is proposed and evaluated. The model predicted well the experimental data.

  11. Use of basic principle of nucleation in determining temperature-threshold neutron energy relationship in superheated emulsions

    CERN Document Server

    Das, M; Chatterjee, B K; Roy, S C

    2003-01-01

    Detection of neutrons through use of superheated emulsions has been known for about two decades. The minimum neutron energy (threshold) required to nucleate drops of a given liquid has a dependence on the temperature of the liquid. The basic principle of nucleation has been utilized to find the relationship between the operating temperature and threshold neutron energy for superheated emulsions made of R-114 liquid. The threshold energy thus determined for different temperatures has been compared with accurate experimental results obtained using monoenergetic neutron sources. The agreement is found to be satisfactory and confirms the applicability of the present simple method to other liquids.

  12. Controlling Active Liquid Crystal Droplets with Temperature and Surfactant Concentration

    Science.gov (United States)

    Shechter, Jake; Milas, Peker; Ross, Jennifer

    Active matter is the study of driven many-body systems that span length scales from flocking birds to molecular motors. A previously described self-propelled particle system was made from liquid crystal (LC) droplets in water with high surfactant concentration to move particles via asymmetric surface instabilities. Using a similar system, we investigate the driving activity as a function of SDS surfactant concentration and temperature. We then use an optical tweezer to trap and locally heat the droplets to cause hydrodynamic flow and coupling between multiple droplets. This system will be the basis for a triggerable assembly system to build and couple LC droplets. DOD AROMURI 67455-CH-MUR.

  13. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  14. Droplet snap-off in fluids with nematic liquid crystalline ordering

    International Nuclear Information System (INIS)

    Verhoeff, A A; Lekkerkerker, H N W

    2012-01-01

    We studied the snap-off of nematic liquid crystalline droplets originating from the Rayleigh-Taylor instability at the isotropic-nematic interface in suspensions of charged gibbsite in water and sterically stabilized gibbsite in bromotoluene. We found that droplet snap-off strongly depends on the director field structure inside the thinning neck, which is determined by the ratio of the splay elastic constant and the anchoring strength of the nematic phase to the droplet interface relative to the thickness of the thinning neck. If anchoring is weak, which is the case for aqueous gibbsite, this ratio is comparable to the thickness of the breaking thread. As a result, the thinning neck and pending drop have a uniform director field and droplet snap-off is determined by the viscous properties of the liquid crystal as well as by thermal fluctuations of the interface. On the other hand, in sterically stabilized gibbsite where anchoring is strong, this ratio is significantly smaller than the neck thickness. In this case, the neck has an escaped radial director field and the neck thinning is retarded close to snap-off due to a topological energy barrier involved in the separation of the droplet from the thread. (paper)

  15. Growth and dissolution of liquid 3He droplets in solid 4He matrix

    International Nuclear Information System (INIS)

    Gan'shin, A.N.; Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Rudavskij, Eh.Ya.; Rybalko, A.S.

    2000-01-01

    The phase separation kinetics of solid 3 He - 4 He mixtures was investigated using pressure measurements in the conditions when the two-phase system formed consists of concentrated phase liquid droplets (almost pure 3 He) in the dilute phase crystal matrix (almost pure 4 He). It is shown that the liquid droplet growth may be described by a sum of two exponential processes with small and large time contacts as cooling down step by step. This is a result of the strong influence of strains which appear in the crystal at the phase separation due to a large difference in molar volume between the phases and probably give rise to plastic deformation of the matrix and to non-equilibrium 3 He concentration in it. The 3 He atom transfer occurs only to the extent of strain relaxation. It is found that the cyclic growth and dissolution of the liquid droplets affect the crystal quality and lead to pressure increase. The coexistence of liquid and solid phases in droplets is speculated to be possible

  16. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  17. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  18. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  19. A three-dimensional numerical study on dynamics behavior of a rising vapor bubble in uniformly superheated liquid by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Sun, Tao; Sun, Jiangang; Ang, Xueye; Li, Shanshan; Su, Xin

    2016-01-01

    Highlights: • Dynamics of vapor bubble in uniformly superheated liquid is studied by a 3D LBM. • The growth rate reaches a maximum value and then decrease until a certain value. • The vapor bubble will take place a larger deformation at high ratio of Re/Eo. • The bubble wake has a great influence on motion and deformation of vapor bubble. • Ratio of Re/Eo has an important influence on evolution of temperature field. - Abstract: In this paper, dynamics behaviors of a rising vapor bubble in uniformly superheated liquid are firstly studied by a hybrid three-dimensional lattice Boltzmann model. In order to validate this model, two test cases regarding bubble rising in an isothermal system and vapor bubble growth in a superheated liquid are performed, respectively. The test results are consistent with existing results and indicate the feasibility of the hybrid model. The hybrid model is further applied to simulate growth and deformation of a rising vapor bubble in different physical conditions. Some physical parameters of vapor bubble such as equivalent diameter and growth rate are evaluated accurately by three-dimensional simulations. It is found that the growth rate of vapor bubble changes with time and temperature gradient. It reaches a maximum value at the initial stage and then decrease until a certain value. The growth and deformation of vapor bubble at different ratios of Re/Eo are discussed. The numerical results show the vapor bubble will take place a larger deformation at high ratio of Re/Eo at the middle and final stages. In addition, the hybrid model is also applied to predict the evolution of flow and temperature fields. The bubble wake has a great influence on the motion and deformation of vapor bubble during rising process. As far as the temperature field is concerned, a ratio of Re/Eo has an important influence on heat transfer and evolution of temperature field.

  20. Drop Impact on Superheated Surfaces

    NARCIS (Netherlands)

    Tran, Tuan; Staat, Erik-Jan; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2012-01-01

    At the impact of a liquid droplet on a smooth surface heated above the liquid’s boiling point, the droplet either immediately boils when it contacts the surface (“contact boiling”), or without any surface contact forms a Leidenfrost vapor layer towards the hot surface and bounces back (“gentle film

  1. Experimental and theoretical investigation of droplet dispersion in venturi scrubbers with axial liquid injection

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarian, N.; Talaei, A.; Karimikhosroabadi, M. [Islamic Azad University, Shahreza Branch, Shahreza (Iran); Sadeghi, F. [Chemical Engineering Department, University of Isfahan, Isfahan (Iran); Talaie, M.R.

    2009-05-15

    Droplet dispersion in a Venturi scrubber with axial liquid injection was investigated both experimentally and theoretically. The main objective of this study was to develop a mathematical model to predict droplet dispersion in a Venturi scrubber with axial liquid injection. The effects of the Peclet number and droplet size distribution on droplet dispersion were studied using the developed model. Sampling of the droplets was carried out, isokinetically, in 16 positions at the end of the throat section. The experimental data were used to find the parameters of the developed model, such as the Peclet number. From the results of this study, it was found that the Peclet number was not constant across the cross section of the scrubber channel. In order to achieve a better agreement between the results of the model and the experimental data, it was required to consider Peclet number variations across the Venturi channel. It was also revealed that the parameter representing the width of the Rosin-Rammler distribution of droplet size could not be considered constant and it was influenced significantly by the operating parameters such as liquid flow rate and gas velocity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  3. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  4. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    Science.gov (United States)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  5. Interaction between liquid droplets and heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Vasiliev, N I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Guguchkin, V V [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation)

    1993-06-01

    In this paper, experimental methods and investigation results of interaction between droplets of different liquids and a heated surface are presented. Wetted area, contact time period and transition boundary from wetted to non-wetted interaction regimes are experimentally evaluated. A simple connection of the wetted area value and contact time period with the heat removal efficiency is shown. (orig.)

  6. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  7. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    Science.gov (United States)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  8. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    Science.gov (United States)

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  9. Experimental and numerical investigations of liquid mercury droplet impacts

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Kenny, Richard Gerrard; Otsuki, Masato

    2014-01-01

    A broad investigation into the hydrodynamics of liquid mercury has been motivated of late by its use in MW-scale spallation neutron sources. One area of particular concern relates to the erosion suffered by vessel walls from the cumulative effects of liquid mercury droplet impacts arising from the collapse of cavitation bubbles. The low speed (< 5 m/s) range of such events forms the focus of this paper and to this end a series of experiments is conducted on spherical droplets of diameter 2.5 mm impacting upon a dry quartz surface. A reasonable simulation of such impacts is made possible by using the VOF (volume of fluid) solver interFoam (a part of the open source package OpenFOAM) in combination with an empirical expression for the dynamic contact angle of the air-mercury-quartz system. This latter represents a 'best fit' to data obtained from high resolution imaging of the droplet profile for a range of contact line velocities. Experiment and simulation are subsequently compared throughout the stages of initial deposition, spread, recession with break-up and, finally, bounce. (author)

  10. Comparison of various droplet breakup models in gas-liquid flows in high-pressure environments

    International Nuclear Information System (INIS)

    Khaleghi, H.; Ganji, D. D.; Omidvar, A.

    2008-01-01

    Droplet breakup affects spray penetration and evaporation, and plays a critical role in engine efficiency. The purpose of this research was to examine the rate of penetration and evaporation of droplets in a combustion chamber, and the efficiency of the engine when liquid jet is injected into the compressed gas chamber in an axi-symmetrical fashion leading to a turbulent and unsteady flow. As a result of interaction with the highly compressed air in the chamber, the liquid jet breaks up and forms minute droplets. These particles will in turn breakup because of aerodynamic forces, producing even smaller droplets. A number of models are available for analyzing the breakup of droplets; however, each model is typically reliable only over a limited parameter range. In this research three well-known models are applied for droplet breakup modeling and their results are compared. To obtain the details of the flow field, the Eulerian gas phase mass, momentum and energy conservation equations, as well as equations governing the transport of turbulence and fuel vapor mass fraction are solved together with equations of trajectory, momentum, mass and energy conservation for liquid droplets in Lagrangian form. The numerical solution is performed using the finite volume method and EPISO (Engine-PISO) algorithm. The results obtained from the models show that the breakup process in a high pressure environment significantly affects the penetration and evaporation rates of the spray, and the droplet size is determined by the balance between breakup and coalescence processes. It is also shown that the details of atomization in the nozzle do not significantly influence the ultimate size of droplets. It should be mentioned that droplet collision modeling has been taken into account in the computer code and is activated wherever necessary

  11. Active Mesogenic Droplets: Impact of Liquid Crystallinity and Collective Behavior

    Science.gov (United States)

    Bahr, Christian

    Droplets of common mesogenic compounds show a self-propelled motion when immersed in aqueous solutions containing ionic surfactants at concentrations well above the critical micelle concentration. After introducing some general properties of this type of artificial microswimmer, we focus on two topics: the influence of liquid crystallinity on the swimming behavior and the collective behavior of ensembles of a larger number of droplets. The mesogenic properties are not essential for the basic mechanism of self-propulsion, nevertheless they considerably influence the swimming behavior of the droplets. For instance, the shape of the trajectories strongly depends on whether the droplets are in the nematic or isotropic state. The droplet swimmers are also ideally suited for the study of collective behavior: Microfluidics enables the generation of large numbers of identical swimmers and we can tune their buoyancy. We report on the collective behavior in three-dimensional environments. Supported by the Deutsche Forschungsgemeinschaft (SPP 1726 ``Microswimmers'').

  12. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  13. A thermomechanical model for the fragmentation of a liquid metal droplet cooled by water

    Science.gov (United States)

    Ivochkin, Yu P.; Monastyrskiy, V. P.

    2017-11-01

    A thermo mechanical aspect of the fragmentation of a liquid metal droplet, solidified as it falls into cold water, is considered in the presented model. The formation of a solid phase in the form of continuous, fluid-tight and relatively rigid casting skin results in a pressure decrease inside the droplet due to the difference between liquid and solid metal density. Because of the high compression modulus of the melt, the pressure in the droplet becomes negative when the thickness of the solid skin achieves several microns. The tensile stress in the melt results in the deformation of the casting skin or the melt’s continuity violation in the form of a shrinkage pore. The rupture of the deformed solid crust results in the penetration of steam jets into the liquid part of the drop. Due to the difference in pressure in the surrounding steam and in the droplet, the casting skin is crushed and the melt is blown out. Both scenarios contribute to the hydrodynamic destruction of the droplet. The suggested thermo mechanical model gives a qualitative explanation for experimental data. In the experimental part of the work, droplets of molten Sn were solidified in water. The solidified pieces of the droplets usually include deformed, thin-walled shells and dispersed particles. On a qualitative level the composition and shape of the solid fragments can be explained within the bounds of the suggested thermo mechanical model.

  14. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  15. Mean droplet size and local velocity in horizontal isothermal free jets of air and water, respectively, viscous liquid in quiescent ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Al Rabadi, S.; Friedel, L. [Fluid Mechanics Institute, Technical University of Hamburg-Harburg (Germany); Al Salaymeh, A. [Mechanical Engineering Department, University of Jordan (Jordan)

    2007-01-15

    Measurements using two-dimensional Phase Doppler Anemometry as well as high speed cinematography in free jets at several nozzle exit pressures and mass flow rates, show that the Sauter mean droplet diameter decreases with increasing air and liquid-phase mass flow ratio due to the increase of the air stream impact on the liquid phase. This leads to substantial liquid fragmentation, respectively primary droplet breakup, and hence, satellite droplet formation with small sizes. This trend is also significant in the case of a liquid viscosity higher than that of water. The increased liquid viscosity stabilizes the droplet formation and breakup by reducing the rate of surface perturbations and consequently droplet distortions, ultimately also leading, in total, to the formation of smaller droplets. The droplet velocity decreases with the nozzle downstream distance, basically due to the continual air entrainment and due to the collisions between the droplets. The droplet collisions may induce further liquid fragmentation and, hence, formation of a number of relatively smaller droplets respectively secondary breakup, or may induce agglomeration to comparatively larger liquid fragments that may rain out of the free jet. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    Science.gov (United States)

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  17. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, V.G.; Goncalves, J.A.S. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil); Coury, J.R. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil)], E-mail: jcoury@ufscar.br

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  18. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    International Nuclear Information System (INIS)

    Guerra, V.G.; Goncalves, J.A.S.; Coury, J.R.

    2009-01-01

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets

  19. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    Science.gov (United States)

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  20. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  1. Surface morphology of laser superheated Pb(100)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.H.; Lin, B.; Elsayed-Ali, H.E.

    1999-11-01

    The change in the surface vacancy density after heating of Pb(100) with {approximately}100 ps laser pulses is investigated using reflection high-energy electron diffraction. The surface vacancy density remains unchanged when the surface is superheated without melting. However, when the laser fluence is high enough to cause surface melting, the surface vacancy density increases. This increase in vacancy density is attributed to fast diffusion of atoms in the liquid film formed on Pb(100) during laser melting.

  2. Deposition of micron liquid droplets on wall in impinging turbulent air jet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianshu; Nink, Jacob; Merati, Parviz [Western Michigan University, Department of Mechanical and Aeronautical Engineering, Kalamazoo, MI (United States); Tian, Tian; Li, Yong [Massachusetts Institute of Technology, Sloan Automotive Laboratory, Cambridge, MA (United States); Shieh, Tom [Toyota Technical Center, Toyota Motor Engineering and Manufacturing North America, Inc, Ann Arbor, MI (United States)

    2010-06-15

    The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored. (orig.)

  3. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Kreider, W. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States); Sapozhnikov, O. A. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States)

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  4. Moving liquid droplets with inertia : Experiment, simulation, and theory

    NARCIS (Netherlands)

    Kim, H.

    2013-01-01

    This thesis is a work on a contact line instability at a finite Reynolds number, 0 < Re < O(100). This problem corresponds to an immersion droplet applied in a liquid- immersion lithography machine. We perform extensive works to understand this instability problem by means of experimental,

  5. Flashing liquid jets and two-phase droplet dispersion

    International Nuclear Information System (INIS)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-01-01

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future

  6. Study of deformation of droplet in external force field by using liquid-gas model of lattice-gas

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Watanabe, Tadashi

    2000-10-01

    The deformation of the droplet by the external force which is assumed to be gravity is studied by using the liquid-gas model of lattice-gas. Two types of liquid-gas models, one is the minimal model and the other is the maximal model, which are distinguished from each other by the added long-range interactions are used for the simulation of the droplet deformation. The difference of the droplet deformation between the maximal model and the minimal model was observed. While the droplet of the minimal model elongates in the direction of the external force, the droplet of the maximal model elongates in the perpendicular direction to the external force. Therefore the droplet deformation in the external force field of the maximal model is more similar to the droplet deformation which is observed in experiments than that of the minimal model. (author)

  7. Drying of liquid food droplets : enzyme inactivation and multicomponent diffusion

    NARCIS (Netherlands)

    Meerdink, G.

    1993-01-01

    In this thesis the drying of liquid food droplets is studied from three different points of view: drying kinetics, enzyme inactivation and multicomponent diffusion. Mathematical models are developed and validated experimentally.

    Drying experiments are performed with suspended

  8. The Influence Of Mass Fraction Of Dressed Coal On Ignition Conditions Of Composite Liquid Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Shlegel Nikita E.

    2015-01-01

    Full Text Available The laws of condition modification of inert heat and ignition in an oxidant flow of composite liquid fuel droplet were studied by the developed experimental setup. Investigations were for composite liquid fuel composition based on the waste of bituminous and nonbaking coal processing, appropriate carbon dust, water, used motor oil. The characteristics of boundary layer inertia heat of composite liquid fuel droplet, thermal decomposition of coal organic part, the yield of volatiles and evaporation of liquid combustion component, ignition of the gas mixture and coke residue were defined.

  9. Transient direct-contact condensation on liquid droplets

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature

  10. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  11. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    Science.gov (United States)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  12. Micromachined ultrasonic droplet generator based on a liquid horn structure

    Science.gov (United States)

    Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.

    2004-05-01

    A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.

  13. A Study on the Violent Interactions of an Immiscible Drop impacting on a Superheated Pool

    KAUST Repository

    Alchalabi, Mohamad

    2014-05-01

    ABSTRACT A Study on the Violent Interactions of an Immiscible Drop Impacting on a Superheated Pool Mohamad Alchalabi The interactions between two immiscible liquids of different temperatures can be violent to the extent of causing harm to individuals, or damage to equipment, especially when used in the industry. Only a few studies investigated these interactions but they could not produce the violent interactions often reported by the industry, and therefore their results did not help much to develop clear understanding of the dynamics of these interactions. In this work, a high speed imaging system operated at 100,000 frames per second was utilized to record the events and phenomena taking place upon the impact of Perfluorohexane droplet at room temperature onto a hot soybean oil pool at temperatures as high as 300 ºC. The impact velocity was varied by varying the height of the droplet before it pinches off under its own weight. The recorded events identified the occurrence of vortex ring vapor explosions, weak and strong nucleate boiling, and film boiling. An impact velocity vs. oil temperature diagram identifying the regions in which each of these phenomena takes place was generated, and the dynamics driving their occurrences were explored. The vortex ring vapor explosions were found to become less violent as the impact velocity was increased, which was attributed to the existence of a smaller amount of liquid Perfluorohexane within the rings at high speed impacts, which does evaporate but does not expand violently. Weak nucleate boiling occurred at very high impact velocities relatively. As the temperature is increased, however, they start 5 turning into strong nucleate boiling. The strong nucleate boiling usually starts right upon impact, and when the temperature of the oil at one impact velocity is increased, it starts turning into film boiling, in which the liquid Perfluorohexane is covered by a vapor layer of its own vapor.

  14. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.

    Science.gov (United States)

    Oprisan, Ana; Oprisan, Sorinel A; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2014-09-01

    Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations.

  15. Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations.

    Science.gov (United States)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-04-11

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future.

  16. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  17. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  18. Development and analysis of a capacitive touch sensor using a liquid metal droplet

    International Nuclear Information System (INIS)

    Baek, Seungbum; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon

    2015-01-01

    In this paper, we introduce a small-sized capacitive touch sensor with large variations in its capacitance. This sensor uses the changes in capacitance caused by the variation of the overlap area between a liquid metal (LM) droplet and a flat electrode while keeping the gap between the droplet and the bottom electrode at a small constant value (i.e. thickness of dielectric layer). Initially, the droplet is placed inside a polydimethylsiloxane (PDMS) chamber, and a thin silicon dioxide film separates the droplet and the electrode. Owing to the high surface tension of the LM, the droplet retains its spherical shape and the overlap area remains small, which means that the capacitance between the droplet and the electrode also remains small. When normal force is applied, the pressure on the membrane pushes the droplet downward, thus spreading the droplet to the bottom of the chamber and increasing the capacitance. To verify our concept, we performed theoretical analyses and experiments using a 2 mm  ×  2 mm  ×  2 mm 1-cell touch sensor. Finally, we obtained a capacitance variation of ∼30 pF by applying forces between 0 N and 1 N. (paper)

  19. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  20. Improvement of a wall thinning rate model for liquid droplet impingement erosion. Implementation of liquid film thickness model with consideration of film behavior

    International Nuclear Information System (INIS)

    Morita, Ryo

    2014-01-01

    Liquid droplet impingement erosion (LDI) is defined as an erosion phenomenon caused by high-speed droplet attack in a steam flow. Pipe wall thinning by LDI is sometimes observed in a steam piping system of a power plant. As LDI usually occurs very locally and is difficult to detect, predicting LDI location is required for safe operation of power plant systems. Therefore, we have involved in the research program to develop prediction tools that will be used easily in actual power plants. Our previous researches developed a thinning rate evaluation model due to LDI (LDI model) and the evaluation system of the thinning rate and the thinning shape within a practically acceptable time (LDI evaluation system). Though the LDI model can include a cushioning effect of liquid film which is generated on the material surface by droplet impingement as an empirical equation with fluid parameter, the liquid film thickness is not clarified due to complex flow condition. In this study, to improve the LDI model and the LDI evaluation system, an analytical model of the liquid film thickness was proposed with consideration of the liquid film flow behavior on the material surface. The mass balance of the liquid film was considered, and the results of CFD calculations and existing researches were applied to obtain the liquid film thickness in this model. As a result of the LDI evaluation of the new LDI model with liquid film model, improvement of the LDI model was achieved. (author)

  1. Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines

    International Nuclear Information System (INIS)

    Vespini, Veronica; Coppola, Sara; Grilli, Simonetta; Paturzo, Melania; Ferraro, Pietro

    2013-01-01

    Liquid handling at micron- and nano-scale is of paramount importance in many fields of application such as biotechnology and biochemistry. In fact, the microfluidics technologies play an important role in lab-on-a-chip devices and, in particular, the dispensing of liquid droplets is a required functionality. Different approaches have been developed for manipulating, dispensing and controlling nano-droplets under a wide variety of configurations. Here we demonstrate that nano-droplets can be drawn from liquid drop or film reservoirs through a sort of milking effect achieved by the absorption of IR laser radiation into a pyroelectric crystal. The generation of the pyroelectric field induced by the IR laser is calculated numerically and a specific experiment has been designed to visualize the electric field stream lines that are responsible for the liquid milking effect. The experiments performed are expected to open a new route for the visualization, measure and characterization procedures in the case of electrohydrodynamic applications. (paper)

  2. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  3. Selfbound quantum droplets

    Science.gov (United States)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  4. Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi; Lister, Derek H.

    2009-01-01

    Overlapping effects of flow dynamics and corrosion are important issues to determine reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) are typical phenomena due to both interactions. In order to evaluation local wall thinning due to FAC and LDI, 6 step evaluation procedures have been proposed. (1) Flow pattern along the flow path was obtained with 1D computational flow dynamics (CFD) codes, (2) Corrosive conditions, e.g., oxygen concentration along the flow path were calculated with a hydrazine oxygen reaction code for FAC evaluation, while flow pattern of liquid droplets in high velocity steam and possibility of their collision to pipe inner surface were evaluated for LDI evaluation. (3) Mass transfer coefficient at the structure surface was calculated with 3D CFD codes for FAC evaluation, while frequency of oxide film rupture due to droplet collision was calculated for LDI evaluation. (4) High risk zones for FAC/LDI occurrence were evaluated by coupling major parameters, and then, (5) Wall thinning rates were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC/LDI risk zone. (author)

  5. Fast electric control of the droplet size in a microfluidic T-junction droplet generator

    Science.gov (United States)

    Shojaeian, Mostafa; Hardt, Steffen

    2018-05-01

    The effect of DC electric fields on the generation of droplets of water and xanthan gum solutions in sunflower oil at a microfluidic T-junction is experimentally studied. The electric field leads to a significant reduction of the droplet diameter, by about a factor of 2 in the case of water droplets. The droplet size can be tuned by varying the electric field strength, an effect that can be employed to produce a stream of droplets with a tailor-made size sequence. Compared to the case of purely hydrodynamic droplet production without electric fields, the electric control has about the same effect on the droplet size if the electric stress at the liquid/liquid interface is the same as the hydrodynamic stress.

  6. Droplet printing through bubble contact in the laser forward transfer of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.

  7. Droplet printing through bubble contact in the laser forward transfer of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Morenza, J.L.; Serra, P. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-01-15

    The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.

  8. Investigation and visualization of liquid–liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    International Nuclear Information System (INIS)

    Shad, S; Gates, I D; Maini, B B

    2009-01-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas–liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio

  9. Preliminary results on bubble detector as personal neutron dosemeter

    International Nuclear Information System (INIS)

    Ponraju, D.; Krishnan, H.; Viswanathan, S.; Indira, R.

    2011-01-01

    The bubble detector is demonstrated as one of the best suitable neutron detectors for neutron dose rate measurements in the presence of high-intense gamma fields. Immobilisation of a volatile liquid in a superheated state and achieving uniform distribution of tiny superheated droplets were a practical challenge. A compact and reusable bubble detector with high neutron sensitivity has been developed at the Indira Gandhi Centre for Atomic Research by immobilising the superheated droplets in a suitable polymer matrix. Two types of bubble detectors have been successfully developed, one by incorporating isobutane for measuring fast neutron and another by incorporating Freon-12 for both fast and thermal neutron. The performance of the detector has been tested using 5 Ci Am-Be neutron source and the results are described. (authors)

  10. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision.

    Science.gov (United States)

    Takano, Yuuka; Kikkawa, Shigenori; Suzuki, Tomoko; Kohno, Jun-ya

    2015-06-11

    Many important chemical reactions are induced by mixing two solutions. This paper presents a new way to measure rates of rapid chemical reactions induced by mixing two reactant solutions using a liquid-droplet collision. The coloring reaction of phenolphthalein (H2PP) by a reaction with NaOH is investigated kinetically. Liquid droplets of H2PP/ethanol and NaOH/H2O solutions are made to collide, which induces a reaction that transforms H2PP into a deprotonated form (PP(2-)). The concentration of PP(2-) is evaluated from the RGB values of pixels in the colored droplet images, and is measured as a function of the elapsed time from the collision. The obtained rate constant is (2.2 ± 0.7) × 10(3) M(-1) s(-1), which is the rate constant for the rate-determining step of the coloring reaction of H2PP. This method was shown to be applicable to determine rate constants of rapid chemical reactions between two solutions.

  11. Thermophysical properties of a highly superheated and undercooled Ni-Si alloy melt

    Science.gov (United States)

    Wang, H. P.; Cao, C. D.; Wei, B.

    2004-05-01

    The surface tension of superheated and undercooled liquid Ni-5 wt % Si alloy was measured by an electromagnetic oscillating drop method over a wide temperature range from 1417 to 1994 K. The maximum undercooling of 206 K (0.13TL) was achieved. The surface tension of liquid Ni-5 wt % Si alloy is 1.697 N m-1 at the liquidus temperature 1623 K, and its temperature coefficient is -3.97×10-4 N m-1 K-1. On the basis of the experimental data of surface tension, the other thermophysical properties such as the viscosity, the solute diffusion coefficient, and the density of liquid Ni-5 wt % Si alloy were also derived.

  12. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets

    International Nuclear Information System (INIS)

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2006-01-01

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (γ e ) of liquid water is 0.62 ± 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water

  13. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  14. The liquid droplet radiator: Status of development

    Science.gov (United States)

    Persson, J.

    1991-12-01

    The ever greater amounts of power to be dissipated onboard future spacecraft, together with their limited external dimensions, will make it increasingly difficult to use conventional radiator technology without imposing a severe mass penalty. Hunting for lightweight alternatives to current heat rejection systems has become a matter of growing urgency, which explains the great interest that the Liquid Droplet Radiator (LDR) has attracted. Tradeoff analyses indicate that an LDR may be as much as an order of magnitude lighter than a comparable conventional radiator. A literature study examining the progress of the LDR research and some of its possible applications is reviewed. An investigation of the LDR heat rejection capability is presented.

  15. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  16. Droplet evaporation and combustion in a liquid-gas multiphase system

    Science.gov (United States)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  17. Equipment to separate liquid droplets from the cooling air stream of a liquid cooling tower

    International Nuclear Information System (INIS)

    Thompson, S.E.; Schwinn, J.M.

    1977-01-01

    In order to separate off liquid droplets from the air stream of a cooling tower, one uses separator blades that are secured to the supporting construction. An improvement on this is proposed to make the repairs easier. According to the invention, the separator blades should be fabricated from springy material with self-supporting strength and can be fitted onto the supporting construction by means of slits and notches. (RW) [de

  18. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  19. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    International Nuclear Information System (INIS)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-01-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  20. Superheating of Ag nanowires studied by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Duan Wenshi; Ling Guangkong; Hong Lin; Li Hong; Liang Minghe

    2008-01-01

    The melting process of Ag nanowires was studied by molecular dynamics (MD) simulations at the atomic level. It is indicated that the Ag nanowires with Ni coating can be superheated depending on their radius and size. Also, in this paper the mechanism of superheating was analyzed and ascribed to the epitaxial Ag/Ni interface suppressing the nucleation and growth of melt. For the analysis, a thermodynamic model was constructed to describe the superheating mechanism of the Ni-coated Ag nanowires by considering the Ag/Ni interface free energy. We showed that the nucleation and growth of the Ag melt phase are both suppressed by the low energy Ag/Ni interfaces in Ni-coated Ag wires and the suppression of melt growth is crucial and plays a major role in the process of melting. The thermodynamic analysis gave a quantitative relation of superheating with the Ag wire radius and the contact angle of melting. The superheating decreased with Ag wire radius and also depended on the Ag/Ni interfacial condition. The results of the thermodynamic model were consistent with those of the MD simulations

  1. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    Science.gov (United States)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  2. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    International Nuclear Information System (INIS)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug

    2008-01-01

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  3. Development of a new pressure dependent threshold superheated drop detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Peiman [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Raisali, Gholamreza, E-mail: graisali@aeoi.org.ir [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Akhavan, Azam [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Ghods, Hossein [Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Hajizadeh, Bardia [Radiation Protection Division, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2015-03-11

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for {sup 241}Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the {sup 241}Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the {sup 241}Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors.

  4. Development of a new pressure dependent threshold superheated drop detector for neutrons

    International Nuclear Information System (INIS)

    Rezaeian, Peiman; Raisali, Gholamreza; Akhavan, Azam; Ghods, Hossein; Hajizadeh, Bardia

    2015-01-01

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for 241 Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the 241 Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the 241 Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors

  5. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  6. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Science.gov (United States)

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  7. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-10-01

    Full Text Available In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010 using a three-stage Caltech Active Strand Cloud water Collector (CASCC. An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  8. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  9. Liquid droplet sensing using twisted optical fiber couplers fabricated by hydrofluoric acid flow etching

    Science.gov (United States)

    Son, Gyeongho; Jung, Youngho; Yu, Kyoungsik

    2017-04-01

    We report a directional-coupler-based refractive index sensor and its cost-effective fabrication method using hydrofluoric acid droplet wet-etching and surface-tension-driven liquid flows. The proposed fiber sensor consists of a pair of twisted tapered optical fibers with low excess losses. The fiber cores in the etched microfiber region are exposed to the surrounding medium for efficient interaction with the guided light. We observe that the etching-based low-loss fiber-optic sensors can measure the water droplet volume by detecting the refractive index changes of the surrounding medium around the etched fiber core region.

  10. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  11. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    Science.gov (United States)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  12. Acoustic Droplet Vaporization in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Chung-Yin Lin

    2013-01-01

    Full Text Available This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.

  13. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    Science.gov (United States)

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  14. Droplet generation during core reflood

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; De Jarlais, G.; Ishii, M.

    1983-01-01

    The process of entrainment and disintegration of liquid droplets by a flow of steam has considerable practical importance in calculating the effectivenes of the emergency core cooling system. Liquid entrainment is also important in determination of the critical heat flux point in general. Thus the analysis of the reflooding phase of a LOCA requires detailed knowledge of droplet size. Droplet size is mainly determined by the droplet generation mechanisms involved. To study these mechanisms, data generated in the PWR FLECHT SEASET series of experiments was analyzed. In addition, an experiment was performed in which the hydrodynamics of low quality post-CHF flow (inverted annular flow) were simulated in an adiabatic test section

  15. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  16. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  17. Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Gao Hua; Fan Zhenjun; Xing Jie

    2014-01-01

    The angular distribution and pressure force of droplets ejected from liquid water and glycerol ablated by nanosecond laser pulses are investigated under different viscosities in laser plasma propulsion. It is shown that with increasing viscosity, the distribution angles present a decrease tendency for two liquids, and the angular distribution of glycerol is smaller than that of water. A smaller distribution leads to a higher pressure force generation. The results indicate that ablation can be controlled by varying the viscosity of liquid propellant in laser plasma propulsion

  18. Droplet size in a rectangular Venturi scrubber

    OpenAIRE

    Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.

    2004-01-01

    The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...

  19. Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jung Wook; Chang, Woo-Jin [University of Wisconsin-Milwaukee, Milwaukee (United States); Choi, Joo Hyung; Koo, Yoon Mo [Department of Biological Engineering, Incheon (Korea, Republic of); Choi, Bum Joon; Lee, Gyu Do; Lee, Sang Woo [Yonsei University, Wonju (Korea, Republic of)

    2016-01-15

    We have characterized micro-droplet generation using water immiscible hexafluorophosphate ([PF{sub 6}])- and bis(trifluoro methylsulfonyl)imide ([Tf{sub 2}N])-based room temperature ionic liquids (RTILs). The interfacial tension between total 7 RTILs and phosphate buffered saline (PBS) was measured using a tensiometer for the first time. PBS is one of the most commonly used buffer solutions in cell-related researches. The measured interfacial tension ranges from 8.51 to 11.62 and from 9.56 to 13.19 for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The RTILs micro-droplets were generated in a microfluidic device. The micro-droplet size and generation frequency were determined based on continuous monitoring of light transmittance at the interface in microchannel. The size of RTIL micro-droplets was inversely proportional to the increase of PBS solution flow rate and RTILs hydrophobicity, while droplet generation frequency was proportional to those changes. The measured size of RTILs droplets ranged from 0.6 to 10.5 nl, and from 1.0 to 17.1 nl for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The measured frequency of generated RTILs droplets ranged from 2.3 to 37.2 droplet/min, and from 2.7 to 17.1 droplet/min for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The capillary numbers were calculated depending on the RTILs, and ranged from 0.51x10{sup -3} to 1.06x10{sup -3} and from 5.00x10{sup -3} to 8.65x10{sup -3}, for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The interfacial tension between RTILs and PBS will contribute to developing bioprocesses using immiscible RTILs. Also, the RTILs micro-droplets will enable the high-throughput monitoring of various biological and chemical reactions using RTILs as new reaction media.

  20. Construction for wet steam drying and further superheating of the dry steam

    International Nuclear Information System (INIS)

    1978-01-01

    The steam drying operates by a coarse- and a fine trap. The subsequent superheating occurs in a superheating tube nest. Everything is fixed in a cylindric container; the coarse trap is arranged on the bottom zone, and the superheating tubes are arranged along the container axis almost up to the container top around a pipe. (DG) [de

  1. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    International Nuclear Information System (INIS)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-01-01

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  2. Dynamic analysis of a liquid droplet and optimization of helical angles for vortex drainage gas recovery

    Directory of Open Access Journals (Sweden)

    Xiaodong Wu

    2016-10-01

    Full Text Available Downhole vortex drainage gas recovery is a new gas production technology. So far, however, the forces and motions of liquid phase in the swirling flow field of wellbores during its field application have not been figured out. In this paper, the forces of liquid droplets in the swirling flow field of wellbores were analyzed on the basis of two-phase fluid dynamics theories. Then, the motion equations of fluid droplets along axial and radical directions were established. Magnitude comparison was performed on several typical acting forces, including Basset force, virtual mass force, Magnus force, Saffman force and Stokes force. Besides, the formula for calculating the optimal helical angle of vortex tools was established according to the principle that the vertical resultant force on fluid droplets should be the maximum. And afterwards, each acting force was comprehensively analyzed in terms of its origin, characteristics and direction based on the established force analysis model. Magnitude comparison indicates that the forces with less effect can be neglected, including virtual mass force, Basset force and convection volume force. Moreover, the vertically upward centrifugal force component occurs on the fluid droplets in swirling flow field instead of those in the conventional flow field of wellbores, which is favorable for the fluid droplets to move upward. The reliability of optimal helical angle calculation formula was verified by means of case analysis. It is demonstrated that with the decrease of well depth, the fluid-carrying capability of gas and the optimal helical angle increase. The research results in this paper have a guiding significance to the optimization design of downhole vortex tools and the field application of downhole vortex drainage gas recovery technology.

  3. Droplet size effects on film drainage between droplet and substrate.

    Science.gov (United States)

    Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q

    2006-06-06

    When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.

  4. Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors

    Science.gov (United States)

    Liarte, Danilo B.; Transtrum, Mark K.; Sethna, James P.

    2016-10-01

    We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ =λ /ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap, we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field are expected for typical unconventional superconductors near the critical temperature. Using a generalized form of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected. We estimate anisotropies for a number of different materials, and discuss the importance of these results for radio-frequency cavities for particle accelerators.

  5. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.

    Science.gov (United States)

    Wang, Xiu-Li; Zhu, Ying; Fang, Qun

    2014-01-07

    In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.

  6. Treating bituminous minerals. [use of superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    MacIvor, G

    1880-12-21

    In this new procedure, the superheated steam is the agent by which the heat is directly applied to the rock; the superheated steam is made to pass between the rocks and into the vessel or retort in which the rock is contained and where the extraction of the bitumen or the distillation of the mineral oils is carried out. The temperature of the heating apparatus in which the steam is superheated, is easily regulated at will in accord with the desired result. When one wishes to extract only bitumen, the temperature of the steam is raised to a point sufficiently high to loosen and separate the bitumen without permitting any condensation of water inside the retort. When it is desired to produce a mineral oil, the temperature is increased in such a way that all the volatile products are distilled from the rock and come into the condenser. By means of this process, any temperature up to a full red heat, can be maintained in the retort, making possible many variations in the kind of products obtainable from the rock.

  7. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    International Nuclear Information System (INIS)

    Alger, T.W.

    1978-01-01

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 μm and a nominal mass-mean droplet diameter of 2.4 μm. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 μm, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow

  8. Elasto-capillarity: deforming an elastic structure with a liquid droplet

    International Nuclear Information System (INIS)

    Roman, B; Bico, J

    2010-01-01

    Although negligible at macroscopic scales, capillary forces become dominant as the sub-millimetric scales of micro-electro-mechanical systems (MEMS) are considered. We review various situations, not limited to micro-technologies, where capillary forces are able to deform elastic structures. In particular, we define the different length scales that are relevant for 'elasto-capillary' problems. We focus on the case of slender structures (lamellae, rods and sheets) and describe the size of a bundle of wet hair, the condition for a flexible rod to pierce a liquid interface or the fate of a liquid droplet deposited on a flexible thin sheet. These results can be generalized to similar situations involving adhesion or fracture energy, which widens the scope of possible applications from biological systems, to stiction issues in micro-fabrication processes, the manufacturing of 3D microstructures or the formation of blisters in thin film coatings. (topical review)

  9. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  10. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  11. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  12. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle

    International Nuclear Information System (INIS)

    Selbas, Resat; Kizilkan, Onder; Sencan, Arzu

    2006-01-01

    An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system-i.e., condenser, evaporator, subcooling and superheating heat exchangers-can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology

  13. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  14. Ultrahigh throughput microfluidic platform for in-air production of microscale droplets

    Science.gov (United States)

    Tirandazi, Pooyan; Healy, John; Hidrovo, Carlos H.

    2017-11-01

    In-air droplet formation inside microfluidic networks is an alternative technique to the conventional in-liquid systems for creating uniform, microscale droplets. Recent works have highlighted and quantified the use of a gaseous continuous phase for controlled generation of droplets in the Dripping regime in planar structures. Here we demonstrate a new class of non-planar droplet-based systems which rely on controlled breakup of a liquid microjet within a high speed flow of air inside a confined microfluidic flow-focusing PDMS channel. We investigate the physics of confined gas-liquid flows and the effect of geometry on the behavior of a liquid water jet in a gaseous flow. Droplet breakup in the Jetting regime is studied both numerically and experimentally and the results are compared. We show droplet production capability at rates higher than 100 KHz with droplets ranging from 15-30 μm in diameter and a polydispersity index of less than 15%. This work represents an important investigation into the Jetting regime in confined microchannels. The ability to control jet behavior, generation rate, and droplet size in gas-liquid microflows will further expand the potential applications of this system for high throughput operations in material synthesis and biochemical analysis. We acknowledge funding support from NSF CAREER Award Grant CBET-1522841.

  15. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  16. Study on Design Change of a Pipe Affected by Liquid Droplet Impingement Erosion

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Lee, Chan Gyu; Bhang, Keug Jin; Yim, Young Sig

    2011-01-01

    Liquid droplet impingement erosion (LDIE) is caused by the impact of high-velocity droplets entrained in steam or air on metal. The degradation caused by the LDIE has been experienced in steam turbine internals and high-velocity airplane components (particularly canopies). Recently, LDIE has also been observed in the pipelines of nuclear plants. LDIE among the pipelines occurs when two-phase steam experiences a high pressure drop (e.g., across an orifice in a line to the condenser). In 2011, a nuclear power plant in Korea experienced a steam leak caused by LDIE in a pipe through which a two-phase fluid was flowing. This paper describes a study on the design change of a pipe affected by LDIE in order to mitigate the damage. The design change has been reviewed in terms of fluid dynamics by using the FLUENT code

  17. Study on Design Change of a Pipe Affected by Liquid Droplet Impingement Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyeong Mo; Lee, Chan Gyu [KEPCO Engineering and Construction Co., Daejeon (Korea, Republic of); Bhang, Keug Jin; Yim, Young Sig [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-10-15

    Liquid droplet impingement erosion (LDIE) is caused by the impact of high-velocity droplets entrained in steam or air on metal. The degradation caused by the LDIE has been experienced in steam turbine internals and high-velocity airplane components (particularly canopies). Recently, LDIE has also been observed in the pipelines of nuclear plants. LDIE among the pipelines occurs when two-phase steam experiences a high pressure drop (e.g., across an orifice in a line to the condenser). In 2011, a nuclear power plant in Korea experienced a steam leak caused by LDIE in a pipe through which a two-phase fluid was flowing. This paper describes a study on the design change of a pipe affected by LDIE in order to mitigate the damage. The design change has been reviewed in terms of fluid dynamics by using the FLUENT code.

  18. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  19. Influence of radiative heat and mass transfer mechanism in system “water droplet-high-temperature gases” on integral characteristics of liquid evaporation

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Physical and mathematical (system of differential equations in private derivatives models of heat and mass transfer were developed to investigate the evaporation processes of water droplets and emulsions on its base moving in high-temperature (more than 1000 K gas flow. The model takes into account a conductive and radiative heat transfer in water droplet and also a convective, conductive and radiative heat exchange with high-temperature gas area. Water vapors characteristic temperature and concentration in small wall-adjacent area and trace of the droplet, numerical values of evaporation velocities at different surface temperature, the characteristic time of complete droplet evaporation were determined. Experiments for confidence estimation of calculated integral characteristics of processes under investigation - mass liquid evaporation velocities were conducted with use of cross-correlation recording video equipment. Their satisfactory fit (deviations of experimental and theoretical velocities were less than 15% was obtained. The influence of radiative heat and mass transfer mechanism on characteristics of endothermal phase transformations in a wide temperature variation range was established by comparison of obtained results of numerical simulation with known theoretical data for “diffusion” mechanisms of water droplets and other liquids evaporation in gas.

  20. Colliding droplets: A short film presentation

    Science.gov (United States)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  1. Linear Stability Analysis of an Acoustically Vaporized Droplet

    Science.gov (United States)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  2. Numerical simulation of droplet evaporation between two circular plates

    International Nuclear Information System (INIS)

    Bam, Hang Jin; Son, Gi Hun

    2015-01-01

    Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.

  3. DNS of droplet motion in a turbulent flow

    Science.gov (United States)

    Rosso, Michele; Elghobashi, S.

    2013-11-01

    The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.

  4. The precise and accurate production of millimetric water droplets using a superhydrophobic generating apparatus

    Science.gov (United States)

    Wood, Michael J.; Aristizabal, Felipe; Coady, Matthew; Nielson, Kent; Ragogna, Paul J.; Kietzig, Anne-Marie

    2018-02-01

    The production of millimetric liquid droplets has importance in a wide range of applications both in the laboratory and industrially. As such, much effort has been put forth to devise methods to generate these droplets on command in a manner which results in high diameter accuracy and precision, well-defined trajectories followed by successive droplets and low oscillations in droplet shape throughout their descents. None of the currently employed methods of millimetric droplet generation described in the literature adequately addresses all of these desired droplet characteristics. The reported methods invariably involve the cohesive separation of the desired volume of liquid from the bulk supply in the same step that separates the single droplet from the solid generator. We have devised a droplet generation device which separates the desired volume of liquid within a tee-apparatus in a step prior to the generation of the droplet which has yielded both high accuracy and precision of the diameters of the final droplets produced. Further, we have engineered a generating tip with extreme antiwetting properties which has resulted in reduced adhesion forces between the liquid droplet and the solid tip. This has yielded the ability to produce droplets of low mass without necessitating different diameter generating tips or the addition of surfactants to the liquid, well-defined droplet trajectories, and low oscillations in droplet volume. The trajectories and oscillations of the droplets produced have been assessed and presented quantitatively in a manner that has been lacking in the current literature.

  5. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet

    Directory of Open Access Journals (Sweden)

    Qingming Hu

    2017-04-01

    Full Text Available In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS actuator applications because of generating high-throughput and excellent mixing performance at the same time.

  6. Droplet behaviour in a Ranque-Hilsch vortex tube

    Energy Technology Data Exchange (ETDEWEB)

    Liew, R; Zeegers, J C H [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Michalek, W R; Kuerten, J G M, E-mail: r.liew@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-12-22

    The vortex tube is an apparatus by which compressed gas is separated into cold and warm streams. Although the apparatus is mostly used for cooling, the possibility to use the vortex tube as a device for removing non-desired condensable components from gas mixtures is investigated. To give first insight on how droplets behave in the vortex tube, a MATLAB model is written. The model tracks Lagrangian droplets in time and space according to the forces acting on the droplets. Phase interactions, i.e. evaporation or condensation, are modeled according to the kinetic approach for phase interactions. Liquid (water) concentrations are shown for two cases where the humidity at the inlet of the vortex tube is varied from 0% to 50%. It is clearly observed from the results that the concentration of liquid increases with increasing humidity. The higher this concentration is, the higher the probability that droplets collide with each other and form larger droplets which are swirled towards the wall to form an easy-to-separate liquid film.

  7. Flow transition criteria of a liquid jet into a liquid pool

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shimpei, E-mail: s1630195@u.tsukuba.ac.jp [Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Abe, Yutaka [Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Koyama, Kazuya [Reactor Core and Safety Design Department, Mitsubishi FBR Systems, Inc., 2-34-17 Jingumae, Shibuya, Tokyo 150-0001 (Japan)

    2017-04-15

    Highlights: • Jet breakup and droplet formation in immiscible liquid-liquid systems was studied experimentally. • The observed jet breakup behavior was classified into characteristic regimes. • The droplet size distribution was analyzed using image processing. • The variation of droplet size was compared with available melt-jet experiments. • Extrapolation to the expected SFR conditions implied that most of the hydrodynamic conditions would be the atomization regime. - Abstract: To better understand the fundamental interactions between melt jet and coolant during a core-disruptive accident at a sodium-cooled fast reactor, the jet breakup and droplet formation in immiscible liquid-liquid systems were studied experimentally. Experiments using two different pairs of test fluids were carried out at isothermal conditions. The observed jet breakup behavior was classified into characteristic regimes based on the classical Ohnesorge classification in liquid-gas systems. The variation in breakup length obtained in the present liquid-liquid system was similar to that in a liquid-gas system. The droplet size distribution in each breakup regime was analyzed using image processing and droplet formation via pinch-off, satellite formation, and entrainment was observed. The measured droplet size was compared with those available from melt jet experiments. Based on the observation and analysis results, the breakup regimes were organized on a dimensionless operating diagram, with the derived correlations representing the criteria for regime boundaries of a liquid-liquid system. Finally, the experimental data were extrapolated to the expected conditions of a sodium-cooled fast reactor. From this, it was implied that most of the hydrodynamic conditions during an accident would be close to the atomization regime, in which entrainment is the dominant process for droplet formation.

  8. Air-assisted liquid-liquid microextraction using floating organic droplet solidification for simultaneous extraction and spectrophotometric determination of some drugs in biological samples through chemometrics methods

    Science.gov (United States)

    Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein

    2018-01-01

    An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40 μg mL- 1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08 μg mL- 1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  9. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    Science.gov (United States)

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  10. Gas dynamic virtual nozzle for generation of microscopic droplet streams

    Energy Technology Data Exchange (ETDEWEB)

    DePonte, D P; Weierstall, U; Schmidt, K; Warner, J; Starodub, D; Spence, J C H; Doak, R B [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)], E-mail: dandeponte@gmail.com

    2008-10-07

    As shown by Ganan-Calvo (1998 Phys. Rev. Lett. 80 285-8), a free liquid jet can be compressed in diameter through gas dynamic forces exerted by a coaxially co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, essentially immune to clogging and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single-file droplet streams are generated by triggering the device with a piezoelectric actuator.

  11. Droplet Impacting on Liquid Film: Evolution of Entrapped Air Layer

    Science.gov (United States)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.

    2014-11-01

    In this work we experimentally studied the dynamics of droplet impacting films of various thicknesses within a range of h / R <= 1 (h: film thickness; R: droplet radius). High speed imaging and color interferometry enabled the investigation of the evolution of the air layer trapped between two surfaces, which plays a critical role in determining the collision outcome. Globally, two distinct regimes of impaction outcome, namely bouncing and merging, are observed at low and high impact inertia, respectively. Impaction with high inertia depletes the air layer before the droplet significantly deforms, resulting in permanent merging. At low impact inertia, however, color interferometry shows the existence of three phases prior to bouncing. Upon impaction, droplet endures significant deformation trapping the air layer between the interfaces, hence increasing the resistance force. This phase is characterized by fast deformation of the air film, followed by a period of pseudo equilibrium, with minimal changes in the interfacial air-film profile. The droplet also lacks kinetic energy to penetrate further into the film, resulting in a temporary balance between the droplet weight and air-film pressure. The deformed droplet eventually relaxes towards spherical shape to destroy the equilibrium. Fast change occurs in air-layer and pressure distribution favoring the droplet bouncing.

  12. Colliding droplets: a short film presentation

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets. The experiments will be discussed and a short movie film presentation of some of the impacts will be shown

  13. Principles of superheated superconducting granules as a detector for dark matter and neutrinos

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.

    1993-01-01

    The interest in superconducting devices for particle detection is based on the very small quantum energies involved as compared to conventional ionization and semiconductor detectors. The use of superheated superconducting granules (SSG) as a particle detector is reviewed. Physical properties and experimental applications of SSG are discussed. The dynamic responses of the phase transition of superheated superconducting Sn, In, Al and Zn single granules (20-50μm in diameter) due to an applied magnetic field exceeding the superheating threshold are presented. A status report on further experimental development is given. (orig.)

  14. Surface morphology of laser superheated Pb(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. H.; Lin, Bo; Zeng, X. L.; Elsayed-Ali, H. E.

    1998-05-01

    The step density on the vicinal Pb(111) surface after laser superheating and melting is investigated using reflection high-energy electron diffraction. The (00) beam profiles parallel and perpendicular to the incident beam are analyzed. For laser heating with ˜100 ps laser pulses, surface superheating does not significantly change the density of the steps and step edge roughness. A sudden increase in the average terrace width is observed after laser surface melting. The average terrace width and the string length at the step edge become as large as those at room temperature. The average terrace width at 573 K changes from 38±15 to 64±19 Å after laser surface melting, while the average string length at the step edge changes from 50±12 to 250±38 Å.

  15. The droplet injection system used in the rod bundle heat transfer facility

    International Nuclear Information System (INIS)

    Frepoli, C.; Andrew, A.J.; Hochreiter, L.E.; Cheung, F.B.

    2001-01-01

    The full text follows. The US Nuclear Regulatory Commission (NRC) and the Pennsylvania State University are currently funding a research program entitled ''Rod Bundle Heat Transfer'' (RBHT). The main objective of the program is to investigate heat transfer during the core reflood period of a hypothetical Large Break Loss of Coolant Accident in a typical nuclear power plant. The RBHT test facility consists of a full-length 7 x 7 rod bundle. Information gathered by the RBHT test facility will be used for improvement of the reflood heat transfer models in the NRC's thermal hydraulic codes. In particular the RBHT data will be used to improve the understanding of individual heat transfer effects to the total rod heat transfer such that compensating errors present in current Best Estimate codes can be significantly reduced. The strategy in developing the test matrix is to use a ''building block'' approach in which simpler experiments are performed first to quantify a particular heat transfer mechanism alone and then the additional complications of the full two-phase flow, reflood film boiling behavior of the test facility are added in later experiments. One of these ''simpler'' experiments will be the injection of known size and velocity liquid droplets into the main stream of superheated steam. The droplet injection system consists of small diameter tubes inserted across the bundle at a given elevation. A number of equal size holes are drilled perpendicular to the surface in a triangular pitch. Water is forced into opposite ends of the tube and ejected from the holes. The injection system was tested using a digital imaging system known as VisiSizer. This system is capable of determining the diameter and velocity of small water droplets using a laser-illuminated digital camera system (LIDCS). Imaging software analyzes the digital images in real time to determine the distributions of droplet size and velocity. Pre-test analysis using COBRA-TF have been conducted to

  16. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S. [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed.

  17. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    International Nuclear Information System (INIS)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S.

    2015-01-01

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed

  18. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  19. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  20. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  1. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  2. Droplet generating device for droplet-based μTAS using electro-conjugate fluid

    Science.gov (United States)

    Iijima, Y.; Takemura, K.; Edamura, K.

    2017-05-01

    Droplet-based μTAS, which carries out biochemical inspection and synthesis by handling samples as droplets on a single chip, has been attracting attentions in recent years. Although miniaturization of a chip is progressed, there are some problems in miniaturization of a whole system because of the necessity to connect syringe pumps to the chip. Thus, this study aims to realize a novel droplets generating device for droplet-based μTAS using electro-conjugate fluid (ECF). The ECF is a dielectric liquid generating a powerful flow when subjected to high DC voltage. The ECF flow generation allows us to realize a tiny hydraulic power source. Using the ECF flow, we can develop a droplet generating device for droplet-based μTAS by placing minute electrode pairs in flow channels. The device contains two channels filled with the ECF, which are dispersed and continuous phases meeting at a T-junction. When a sample in the dispersed phase is injected by the ECF flow to the continuous phase at T-junction, droplets are generated by shearing force between the two phases. We conducted droplet generating experiment and confirmed that droplets are successfully generated when the flow rate of the continuous phase is between 90 and 360 mm3 s-1, and the flow rate of the dispersed phase is between 10 and 40 mm3 s-1. We also confirmed that the droplet diameter and the droplet production rate are controllable by tuning the applied voltage to the electrode pairs.

  3. Fragility of superheated melts and glass-forming ability in Pr-based alloys

    International Nuclear Information System (INIS)

    Meng, Q.G.; Zhou, J.K.; Zheng, H.X.; Li, J.G.

    2006-01-01

    The kinetic viscosity (η) of superheated melts, thermal properties (T x , T m , T L ) and X-ray diffraction analysis on the Pr-based bulk metallic glasses (BMG) are reported and discussed. A new refined concept, the superheated fragility defined as M' = E S δ x /k B , has been developed based on common solidification theory and the Arrhenius equation. The interrelationship between this kind of fragility and the glass-forming ability (GFA) is elaborated on and evaluated in Pr-based BMG and Al-based amorphous ribbon alloys. Using viscosity data of superheated melts, it is shown, theoretically and experimentally, that the fragility parameter M' may be used as a GFA indicator for metallic alloys

  4. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  5. Cascade control of superheated steam temperature with neuro-PID controller.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    OpenAIRE

    Puentes,N. A. G.; Guerra,V. G.; Coury,J. R.; Gonçalves,J. A. S.

    2012-01-01

    A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" ...

  7. Droplet behaviour in an acoustic field: application to high frequency instability in liquid propellant rocket engines; Comportement de gouttes dans un champ acoustique: applications aux instabilites hautes-frequences dans les moteurs de fusees a ergols liquides

    Energy Technology Data Exchange (ETDEWEB)

    Boisneau, O.; Lecourt, R.; Grisch, F.; Orain, M.

    2002-07-01

    A setup has been developed at ONERA in the scope of studying interaction between calibrated droplets and a transversal acoustic wave in the scope of high frequency instabilities in liquid rocket engines. First, the setup has been checked acoustically by hot-wire anemometer and microphone. We present an analytical solution of the Stokes' droplet motion equation in an acoustic field. The trajectory equation can be split into three different parts: a sinusoidal part (negligible in liquid rocket engines), a transient part and a final mean position (only function of the loudspeaker characteristics but never reached). Some kind of vibrational breakup at low Weber's number has been observed using line-of-sight visualization of acoustic/droplet interactions. However, preponderant phenomena observed were jet oscillations and droplet coalescence. For ambient temperature, PLIF visualization has shown a coupling between the created vapor cylinder and the acoustic induced jet position. For hot temperature, some unsteady phenomena seem to appear but further processing are needed. (authors)

  8. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  9. Ice and water droplets on graphite: A comparison of quantum and classical simulations

    International Nuclear Information System (INIS)

    Ramírez, Rafael; Singh, Jayant K.; Müller-Plathe, Florian; Böhm, Michael C.

    2014-01-01

    Ice and water droplets on graphite have been studied by quantum path integral and classical molecular dynamics simulations. The point-charge q-TIP4P/F potential was used to model the interaction between flexible water molecules, while the water-graphite interaction was described by a Lennard-Jones potential previously used to reproduce the macroscopic contact angle of water droplets on graphite. Several energetic and structural properties of water droplets with sizes between 10 2 and 10 3 molecules were analyzed in a temperature interval of 50–350 K. The vibrational density of states of crystalline and amorphous ice drops was correlated to the one of ice Ih to assess the influence of the droplet interface and molecular disorder on the vibrational properties. The average distance of covalent OH bonds is found 0.01 Å larger in the quantum limit than in the classical one. The OO distances are elongated by 0.03 Å in the quantum simulations at 50 K. Bond distance fluctuations are large as a consequence of the zero-point vibrations. The analysis of the H-bond network shows that the liquid droplet is more structured in the classical limit than in the quantum case. The average kinetic and potential energy of the ice and water droplets on graphite has been compared with the values of ice Ih and liquid water as a function of temperature. The droplet kinetic energy shows a temperature dependence similar to the one of liquid water, without apparent discontinuity at temperatures where the droplet is solid. However, the droplet potential energy becomes significantly larger than the one of ice or water at the same temperature. In the quantum limit, the ice droplet is more expanded than in a classical description. Liquid droplets display identical density profiles and liquid-vapor interfaces in the quantum and classical limits. The value of the contact angle is not influenced by quantum effects. Contact angles of droplets decrease as the size of the water droplet increases

  10. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-12-15

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  11. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    International Nuclear Information System (INIS)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  12. Measurement of droplet dynamics across grid spacer in mist cooling of subchannel of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.

    1984-01-01

    An experiment was conducted of the dynamics and heat transfer of a droplet-vapor mist flow across a test grid spacer in a flow channel of 2 x 2 electrically heated simulation fuel rods. Embedded thermocouples were used to measure the rod cladding temperature and an unshielded Chromel-Alumel thermocouple was transversed in the center of the subchannel to measure the temperature of the water and steam coolant phases at various axial locations. Thermocouples were also embedded in the test grid spacer. Optical measurements of the size and velocity distributions of droplets and the velocity distribution of the superheated steam were made by special laser-Doppler anemometry techniques through quartz glass windows immediately upstream and downstream of the test grid spacer. Experiments over a range of steam and injected water flow rates and rod heat flux have been performed and some representative results and discussions are presented

  13. A microfluidic platform for the rapid determination of distribution coefficients by gravity assisted droplet-based liquid-liquid extraction

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Wootton, Robert C. R.; Wolff, Anders

    2015-01-01

    The determination of pharmacokinetic properties of drugs, such as the distribution coefficient, D, is a crucial measurement in pharmaceutical research. Surprisingly, the conventional (gold standard) technique used for D measurements, the shake-flask method, is antiquated and unsuitable...... for the testing of valuable and scarce drug candidates. Herein we present a simple micro fluidic platform for the determination of distribution coefficients using droplet-based liquid-liquid extraction. For simplicity, this platform makes use of gravity to enable phase separation for analysis and is 48 times...... the apparent acid dissociation constant, pK', as a proxy for inter-system comparison. Our platform determines a pK' value of 7.24 ± 0.15, compared to 7.25 ± 0.58 for the shake-flask method in our hands and 7.21 for the shake-flask method in literature. Devices are fabricated using injection moulding, the batch...

  14. Remotely controllable liquid marbles

    KAUST Repository

    Zhang, Lianbin; Cha, Dong Kyu; Wang, Peng

    2012-01-01

    Liquid droplets encapsulated by self-organized hydrophobic particles at the liquid/air interface - liquid marbles - are prepared by encapsulating water droplets with novel core/shell-structured responsive magnetic particles, consisting of a

  15. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    Science.gov (United States)

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  16. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

    Science.gov (United States)

    Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

    2017-05-01

    The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

  17. Study of airborne particles generated by the impact of droplets

    International Nuclear Information System (INIS)

    Motzkus, Ch.

    2007-12-01

    A liquid droplet impinging onto surfaces occurs in many industrial and natural processes. The study of this phenomenon is fundamental in order to determine the potential sources of contamination in the case of scenarios of liquid falls such as dripping. There are very few data in the literature in the case of the impact of millimeter-size droplets. The purpose of our work is to study experimentally the particle emission during the impact of droplets onto a liquid film. Experiments were conducted to study the influence of the velocity and the diameter of the droplets, the height of the liquid film, the surface tension and viscosity of the liquid on the airborne particles. Our results, original, have made it possible to examine the relevance of existing relations, describing the transition between deposition and splash regimes, in order to determine the presence or not of airborne particles. The micro droplets produced, with diameters less than fifty micrometers, are characterised in terms of total mass and size distribution. Our results also show the influence of a combination of several factors on the production of airborne particles. For this reason, it is interesting to use dimensionless numbers, to describe the relationship between the inertial, viscosity and surface tension forces, in order to understand physically the emission of airborne particles. (author)

  18. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  19. Measurement of airborne droplets by the magnesium oxide method

    Energy Technology Data Exchange (ETDEWEB)

    May, K R

    1950-01-01

    A complete calibration has been made for the first time of the method of detecting and measuring airborne droplets whereby the permanent impressions made when they strike a layer of magnesium oxide smoked on a glass slide are measured microscopically. A size range of 200 to 10 microns and a wide range of liquids and impact velocities were investigated, and it was found that the ratio of true drop size to impression size is constant at 0.86 for droplets greater than 20 microns of any liquid. The method fails below 10 microns. The calibration was made against an absolute method of droplet measurement, also against the so-called focal-length method. Droplets of any desired size were generated by a uniform spray apparatus.

  20. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    Science.gov (United States)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  1. Control of the droplet generation by an infrared laser

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2018-01-01

    Full Text Available In this work, the control of the droplet generation by a focused infrared (IR laser with a wavelength of 1550 nm was studied, in which the liquid water and the oil with the surfactant of Span 80 were employed as the disperse and continuous phases, respectively. The characteristics of the droplet generation controlled by the laser was explored under various flow rates, laser powers and spot positions and the comparison between the cases with/without the laser was also performed. The results showed that when the laser was focused on the region away from the outlet of the liquid water inflow channel, the droplet shedding was blocked due to the IR laser heating induced thermocapillary flow, leading to the increase of the droplet volume and the cycle time of the droplet generation as compared to the case without the laser. Decreasing the continuous phase flow rate led to the increase of the droplet volume, cycle time of the droplet generation and the volume increase ratio, while increasing the disperse phase flow rate led to the increase of the droplet volume and the decrease of the cycle time and volume increase ratio. For a given flow rate ratio between the continuous and disperse phases, the increase of the flow rates decreased the volume increase ratio. In addition, it is also found that the droplet volume, the cycle time and the volume increase ratio all increased with the laser power. When the laser was focused at the inlet of the downstream channel, the droplet volume, the cycle time and the volume increase ratio were the largest. Moving the laser spot to the downstream or upstream led to the decrease of them. When the laser was focused on the outlet of the liquid water inflow channel, the generated droplet volume and cycle time of the droplet generation were even lower than the case without the laser because of the lowered viscosity. This works provides a comprehensive understanding of the characteristics of the droplet generation controlled

  2. Hole growth dynamics in a two dimensional Leidenfrost droplet

    Science.gov (United States)

    Raufaste, Christophe; Celestini, Franck; Barzyk, Alexandre; Frisch, Thomas

    2015-03-01

    We studied the behaviors of Leidenfrost droplets confined in a Hele-Shaw cell. These droplets are unstable above a critical size and a hole grows at their center. We experimentally investigate two different systems for which the hole growth dynamics exhibits peculiar features that are driven by capillarity and inertia. We report a first regime characterized by the liquid reorganization from a liquid sheet to a liquid torus with similarities to the burst of micron-thick soap films. In the second regime, the liquid torus expands and thins before fragmentation. Finally, we propose models to account for the experimental results.

  3. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    Science.gov (United States)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  4. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    Science.gov (United States)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  5. Thermophysical measurements on solid and liquid rhenium

    International Nuclear Information System (INIS)

    Pottlacher, G.; Jager, H.; Neger, T.

    1986-01-01

    A fast resistive heating technique was used to measure such thermophysical data of solid and liquid rhenium as enthalpy, specific heat, thermal volume expansion, and electrical resistivity. The measurements are performed with heating rates of slightly more than 10 9 K s -1 up to states of superheated liquid rhenium (7500 K)

  6. Biodiesel production via injection of superheated methanol technology at atmospheric pressure

    International Nuclear Information System (INIS)

    Ang, Gaik Tin; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2014-01-01

    Highlights: • Non-catalytic superheated methanol for biodiesel production is developed. • Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock. • High content of biodiesel can be produced. • Separation of FAME and glycerol from the sample product is easy. - Abstract: In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1 MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300 °C and at different methanol flow rate ranging from 1 ml/min to 3 ml/min for 4 h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290 °C and methanol flow rate at 2 ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME

  7. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  8. Mechanism and simulation of droplet coalescence in molten steel

    Science.gov (United States)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  9. Study on pipe wastage mechanism by liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Higashi, Yuma; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi; Ohmori, Shuichi; Mori, Michitsugu; Tezuka, Kenichi

    2009-01-01

    Evaluation of wastage speed for nuclear power plant maintains plant reliability and power up rating is important. There are two main cause of wastage flow accelerated corrosion (FAC) and mechanical erosion. This study is to develop evaluating the wastage speed by liquid droplet impingement erosion (LDIE). LDIE often occurs at downstream of corner of pipe or orifice. In this study, the liquid drop impinging tests were conducted with the test pieces mounted on a high speed rotating disk that cross thin water down jet and produced LDIE phenomena. The amount of the wastage by LDIE was evaluated by changing the rotational speed, the impingement frequency, and test piece materials. In addition, the generation mechanism of erosion was investigated by observing the surface of the test piece with a microscope. There is a method of evaluating by the mass difference before and after experiments. But this method is not correct because error becomes larger for mass measurement in the experiment, for the lost mass by LDIE is very little amount. Therefore, the method was developed to measure the volume in the erosion part. In this method, depth of LDIE was measured by the accuracy of ±0.01μm; therefore accurate measurement of the wastage can be improved. (author)

  10. La moral de los superhéroes

    Directory of Open Access Journals (Sweden)

    Jhon Rozo Mila

    2015-12-01

    Full Text Available Los superhéroes, el deber moral y la obligación; El caso de Spider-Man y los X-Men. Laura Victoria Bolaño Pérez; Universidad del Rosario, colección Ópera Prima, Bogotá, 2012, 309 págs.

  11. Droplet Growth

    Science.gov (United States)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  12. A droplet entrainment model for horizontal segregated flows

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: T.Hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) – Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hänsch, Susann [Imperial College, Department of Mechanical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2015-05-15

    Highlights: • We further developed the flow morphology detection model AIAD. • An advanced droplet entrainment model was introduced. • The new approach is applied against HAWAC experiments. - Abstract: One limitation in simulating horizontal segregated flows is that there is no treatment of droplet formation mechanisms at wavy surfaces. For self-generating waves and slugs, the interfacial momentum exchange and the turbulence parameters have to be modeled correctly. Furthermore, understanding the mechanism of droplet entrainment for heat and mass transfer processes is of great importance in the chemical and nuclear industry. The development of general computational fluid dynamics models is an essential precondition for the application of CFD codes to the modeling of flow related phenomena. The new formulation for the interfacial drag at the free surface and turbulence parameters within the algebraic interfacial area density model (AIAD) represents one step toward a more physical description of free surface flows including less empiricism. The AIAD approach allows the use of different physical models depending on the local fluid morphology inside a macro-scale multi-fluid framework. A further step of improving the modeling of free interfaces lies within the consideration of droplet entrainment mechanisms. In this paper a new sub-grid entrainment model is proposed, which assumes that due to liquid turbulence the interface gets rough and wavy leading to the formation of droplets. Therefore, the droplet entrainment model requires the consideration of an additional droplet phase, which is described with an own set of balance equations in the spirit of the particle model. Two local key factors determine the rate of droplet entrainment: the liquid turbulent kinetic energy as well as the outward velocity gradient of the liquid relative to the interface motion. The new droplet entrainment approach is included into CFD simulations for attempting to reproduce existing

  13. Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile

    International Nuclear Information System (INIS)

    Shelke, Ashish V.; Gera, B.; Maheshwari, N.K.; Singh, R.K.

    2018-01-01

    After the events of 9/11, the impact of fast flying commercial aircraft is considered as major hazard threatening the Nuclear Power Plant's (NPP) safety. The study of fuel spillage phenomenon and fireball formation is important to understand fire hazards due to burning of dispersed aviation fuel. The detailed analysis of fuel dispersion is very difficult to deliberate because both, large NPP structures and the large size of commercial aircrafts. Sandia National Laboratories, USA conducted impact tests using cylindrical projectiles filled with water to measure the associated parameters. Due to combustion properties and volatile nature of hydrocarbon fuels, the obtained parameters from impact studies using water are incomplete in fire analysis of flammable droplet clouds. A mathematical model is developed for prediction of droplet sizes and distribution associated with the impact of a liquid-containing projectile. The model can predict the transient behavior of droplet cloud. It is validated with experimental data available in literature. In the present study, the analysis has been performed using water and kerosene. The data obtained can be utilized as boundary and initial condition for CFD analysis. This information is useful for fire hazard analysis of aircraft impacts on NPP structures.

  14. The Evaporation of Liquid Droplets in Highly Turbulent Gas Streams

    National Research Council Canada - National Science Library

    Gould, Richard

    1998-01-01

    Single acetone and heptane droplets were suspended from a hypodermic needle in turbulent airflow, and the Nusselt number was obtained from direct measurements of the droplet diameter and evaporation rate...

  15. Curvature dependence of the electrolytic liquid-liquid interfacial tension

    NARCIS (Netherlands)

    Bier, Markus; de Graaf, J.; Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    The interfacial tension of a liquid droplet surrounded by another liquid in the presence of microscopic ions is studied as a function of the droplet radius. An analytical expression for the interfacial tension is obtained within a linear Poisson–Boltzmann theory and compared with numerical results

  16. Ionic Liquid-Assisted Liquid-Liquid Microextraction based on the Solidification of Floating Organic Droplet in Sample Preparation for Simultaneous Determination of Herbicide Residues in Fruits.

    Science.gov (United States)

    Vichapong, Jitlada; Santaladchaiyakit, Yanawath; Burakham, Rodjana; Srijaranai, Supalax

    2017-09-01

    An ionic liquid-assisted liquid-liquid microextraction based on the solidification of floating organic droplet (ILSFODLLME) was investigated for analysis of four herbicide residues (i.e. simazine, atrazine, propazine, and linuron) by high performance liquid chromatography. For ILSFOD-LLME, the optimal extraction conditions were 5% w/v Na2SO4, 30 μL [C4MIM][PF6]RTIL, 100 μL of 1-octanol, ultrasonication time 30 s and centrifugation at 5000 rpm for 5 min. Under the optimal conditions, linearity was obtained within the range of 0.1-1000 μg kg-1, with the correlation coefficients greater than 0.999. The high enrichment factors of the target analytes were in the range of 64.5-139.9 and low limit of detection could be obtained. A modified QuEChERS was applied for fruit sample preparation before analysis. Matrix effects were also investigated using matrix matched standards for construction of the calibration graph. The proposed method has been successfully applied for extraction and preconcentration of herbicide residues in fruit samples, and good recoveries in the range of 87.32% to 99.93% were obtained.

  17. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  18. Classification of the ejection mechanisms of charged macromolecules from liquid droplets.

    Science.gov (United States)

    Consta, Styliani; Malevanets, Anatoly

    2013-01-28

    The relation between the charge state of a macromolecule and its ejection mechanism from droplets is one of the important questions in electrospray ionization methods. In this article, effects of solvent-solute interaction on the manifestation of the charge induced instability in a droplet are examined. We studied the instabilities in a prototype system of a droplet comprised of charged poly(ethylene glycol) and methanol, acetonitrile, and water solvents. We observed instances of three, previously only conjectured, [S. Consta, J. Phys. Chem. B 114, 5263 (2010)] mechanisms of macroion ejection. The mechanism of ejection of charged macroion in methanol is reminiscent of "pearl" model in polymer physics. In acetonitrile droplets, the instability manifests through formation of solvent spines around the solvated macroion. In water, we find that the macroion is ejected from the droplet through contiguous extrusion of a part of the chain. The difference in the morphology of the instabilities is attributed to the interplay between forces arising from the macroion solvation energy and the surface energy of the droplet interface. For the contiguous extrusion of a charged macromolecule from a droplet, we demonstrate that the proposed mechanism leads to ejection of the macromolecule from droplets with sizes well below the Rayleigh limit. The ejected macromolecule may hold charge significantly higher than that suggested by prevailing theories. The simulations reveal new mechanisms of macroion evaporation that differ from conventional charge residue model and ion evaporation mechanisms.

  19. Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature

    International Nuclear Information System (INIS)

    Dunand, P.; Castanet, G.; Gradeck, M.; Maillet, D.; Lemoine, F.

    2013-01-01

    Highlights: • Measurement techniques are combined to characterize the heat lost due to liquid vaporization. • The wall heat flux is estimated by infrared thermography associated with inverse heat conduction. • The liquid heating is characterized by the two-color Laser-Induced Fluorescence thermometry. • Results reveal how the heat fluxes vary with the droplet sizes and the Weber number. -- Abstract: This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80–180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence thermometry (2cLIF) which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the sensible heat removed by the liquid. Measurements are performed at wall conditions well above the Leidenfrost temperature. Different values of the Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparisons between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number

  20. Dispersive liquid-liquid microextraction with solidification of floating organic droplets for simultaneous extraction of pesticides, pharmaceuticals and personal care products

    International Nuclear Information System (INIS)

    Marube, Liziane Cardoso; Caldas, Sergiane Souza; Soares, Karina Lotz; Primel, Ednei Gilberto

    2015-01-01

    Dispersive liquid-liquid microextraction based on solidification of floating organic droplets (DLLME-SFO) has been applied to the extraction of pharmaceutical and personal care products (PPCPs) and pesticides from water samples. The PPCPs included bisphenol A, sodium diclofenac, gemfibrozil, furosemide, glibenclamide, nifedipine, nimesulide, propylparaben and triclocarban. The pesticides included 2,4-D, atrazine, azoxystrobin, cyproconazole, clomazone, dichloran, difenoconazole, diuron, epoxiconazole, fenoxaprop-p-ethyl, fipronil, iprodione, irgarol, propanil, propiconazole, tebuconazole, and trifloxystrobin. The type and volume of extraction solvent, type and volume of disperser solvent, ionic strength and pH were optimized. All species were then quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The limits of quantification (LOQs) ranged from 50 to 500 ng L −1 , and the linearity ranged from the LOQ of each compound up to 10,000 ng L −1 . Recoveries ranged from 63 to 120 %, with relative standard deviations lower than 14 %. It is making use of a low-toxicity and affordable extraction solvent (1-dodecanol) and was successfully applied to the analysis of surface water samples. (author)

  1. Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction

    Directory of Open Access Journals (Sweden)

    Enrico Chiarello

    2015-11-01

    Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.

  2. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  3. Numerical Study on Deformation and Interior Flow of a Droplet Suspended in Viscous Liquid under Steady Electric Fields

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2014-07-01

    Full Text Available A model based on the volume of fluid (VOF method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.

  4. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  5. Design and construction of hydrogen pellet injector by droplet-method

    International Nuclear Information System (INIS)

    Noda, Etsuo; Iida, Yoshiyuki; Sekiguchi, Tadashi; Suemori, Nobuo; Imaizumi, Hideki.

    1984-01-01

    A hydrogen pellet injector by a droplet-method has been constructed and studied, in order to realize a hydrogen-isotope pellet injector for refueling into nuclear fusion reactors, which can inject pellets into plasma repetitively. Preliminary experiments with oxygen gas, instead of hydrogen gas, has been systematically carried out. Assuming the liquid concerned as viscous fluid, theoretical predictions about droplet-diameter, its ejected velocity and optimum frequency of ejecting-nozzle vibration for stable droplet production has been made, and it is found that theoretical results are in good agreement with experimental ones. It is found that the stable droplet train can be obtained when the value of Reynolds number is in the range of 1,100--1,300. In the hydrogen experiments based upon the oxygen results, the production of a stable hydrogen liquid-droplet train, their self-solidification and transfer into a vacuum space through an orifice (with the diameter of 1 mm) have been successfully realized, by maintaining the gas pressure around the droplets at 45--50 Torr. (author)

  6. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    Science.gov (United States)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  7. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  8. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    Science.gov (United States)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  9. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  10. Ignition of a Droplet of Composite Liquid Fuel in a Vortex Combustion Chamber

    Science.gov (United States)

    Valiullin, T. R.; Vershinina, K. Yu; Glushkov, D. O.; Strizhak, P. A.

    2017-11-01

    Experimental study results of a droplet ignition and combustion were obtained for coal-water slurry containing petrochemicals (CWSP) prepared from coal processing waste, low-grade coal and waste petroleum products. A comparative analysis of process characteristics were carried out in different conditions of fuel droplet interaction with heated air flow: droplet soars in air flow in a vortex combustion chamber, droplet soars in ascending air flow in a cone-shaped combustion chamber, and droplet is placed in a thermocouple junction and motionless in air flow. The size (initial radii) of CWSP droplet was varied in the range of 0.5-1.5 mm. The ignition delay time of fuel was determined by the intensity of the visible glow in the vicinity of the droplet during CWSP combustion. It was established (under similar conditions) that ignition delay time of CWSP droplets in the combustion chamber is lower in 2-3.5 times than similar characteristic in conditions of motionless droplet placed in a thermocouple junction. The average value of ignition delay time of CWSP droplet is 3-12 s in conditions of oxidizer temperature is 600-850 K. Obtained experimental results were explained by the influence of heat and mass transfer processes in the droplet vicinity on ignition characteristics in different conditions of CWSP droplet interaction with heated air flow. Experimental results are of interest for the development of combustion technology of promising fuel for thermal power engineering.

  11. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.

    Science.gov (United States)

    Tsai, Chen S; Mao, Rong W; Tsai, Shirley C; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C

    2017-01-01

    An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  12. Lifetime of superheated steam components

    International Nuclear Information System (INIS)

    Stoklossa, K.H.; Oude-Hengel, H.H.; Kraechter, H.J.

    1974-01-01

    The current evaluation schemes in use for judging the lifetime expectations of superheated steam components are compared with each other. The influence of pressure and temperature fluctuations, the differences in the strength of the wall, and the spread band of constant-strainrates are critically investigated. The distribution of these contributory effects are demonstrated in the hight of numerous measuring results. As an important supplement to these evaluation schemes a newly developed technique is introduced which is designed to calculate failure probabilities. (orig./RW) [de

  13. Horizontal liquid film-mist two phase flow, (1)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Sakaguchi, Tadashi; Fujii, Terushige; Nakatani, Yoji; Nakaseko, Kosaburo.

    1979-01-01

    The characteristics of liquid film in annular spray flow, the generation of droplets from liquid film and the transport of droplets to a wall are the important matters in the planning and design of nuclear reactor cooling system and the channels of steam generators. The study on the liquid film spray flow is scarce, and its characteristics are not yet elucidated. The purpose of this series of studies is to clarify the characteristics of liquid film, the generation, diffusion and distribution of droplets and pressure loss in the liquid film spray flow composed of the liquid film on the lower wall and spraying gas flow in a rectangular, horizontal channel. In this paper, the concentration distribution and the diffusion coefficient of droplets on a cross section in the region of flow completion are reported. The experimental apparatuses and the experimental method, the flow rate of droplets and the velocity distribution of gas phase, the concentration distribution and the diffusion coefficient of droplets, and the diameter of generated droplets are explained. The equation for the concentration distribution of droplets using dimensionless characteristic value was derived. The mean diffusion coefficient of droplets was constant on a cross section, and the effects of gravity and turbulent diffusion can be evaluated. (Kako, I.)

  14. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques

    International Nuclear Information System (INIS)

    Yang, Xufei; Xu, Jinliang; Miao, Zheng; Zou, Jinghuang; Yu, Chao

    2015-01-01

    An ORC (organic Rankine cycle) was developed with R123 as the working fluid. The heat capacity is in ∼100 kW. The match between pump and expander is investigated. Lower pump frequencies (f 10 Hz) adapt low expander torques only, and cause unstable flow and pump cavitation for larger expander torques. Ultra-low expander torques generate sufficiently high vapor superheatings to decrease expander efficiencies. Ultra-high expander torques achieve saturation vapor at the expander inlet, causing liquid droplets induced shock wave to worsen expander performance. An optimal range of expander torques exists to have better expander performance. A liquid subcooling of 20 °C is necessary to avoid pump cavitation. Expander powers and efficiencies show parabola shapes versus expander torques, or vapor superheatings at the expander inlet. The optimal vapor superheating is 13 °C. The cavitation mechanisms and measures to avoid cavitation are analyzed. This paper notes the overestimation of ORC performance by equilibrium thermodynamic analysis. Assumptions should be dependent on experiments. Future studies are suggested on organic fluid flow, heat transfer and energy conversion in various components. - Highlights: • The match between pump and expander is investigated. • A liquid subcooling of 20 °C is needed at pump inlet. • A vapor superheating of 13 °C is necessary at expander inlet. • Cavitation in pumps and expanders are analyzed. • The equilibrium thermodynamics overestimate ORC performances.

  15. Spraying mode effect on droplet formation and ion chemistry in electrosprays.

    Science.gov (United States)

    Nemes, Peter; Marginean, Ioan; Vertes, Akos

    2007-04-15

    Depending on the spraying conditions and fluid properties, a variety of electrospray regimes exists. Here we explore the changes in ion production that accompany the transitions among the three axial spraying modes, the burst mode, the pulsating Taylor cone mode, and the cone-jet mode. Spray current oscillation and phase Doppler anemometry measurements, fast imaging of the electrified meniscus, and mass spectrometry are utilized to study the formation, size, velocity, and chemical composition of droplets produced in the three modes. High-speed images indicate that the primary droplets are produced by varicose waves and lateral kink instabilities on the liquid jet emerging from the Taylor cone, whereas secondary droplets are formed by fission. Dramatic changes in the droplet size distributions result from the various production and breakup mechanisms observed at different emitter voltages and liquid flow rates. We demonstrate that droplet fission can be facilitated by space charge effects along the liquid jet and in the plume. Compared to the other two regimes, a significantly enhanced signal-to-noise ratio, a lower degree of analyte oxidation, and milder fragmentation are observed for the cone-jet mode.

  16. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2013-01-01

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  17. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng

    2013-03-20

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  18. Light induced cooling of a heated solid immersed in liquid helium I

    International Nuclear Information System (INIS)

    Lezak, D.; Brodie, L.C.; Semura, J.S.

    1984-01-01

    This chapter investigates the marked enhancement in the transient heat transfer from the heater-thermometer to the liquid helium immediately following the application of a flash of visible light. This ''light effect'' is associated with increased bubble activity, and it is possible that the light induces a rapid nucleation of bubbles in the superheated liquid at or near the heater surface. A summary of the light effect is presented and some potential uses to which this effect could be applied are suggested. Quantification of the light effect and properties of the light effect are discussed. It is determined that the light effect is an additional cooling due to a light induced enhancement of boiling in superheated liquid helium I. The effect could be applied in practical cryogenic engineering and for the acquisition of fundamental knowledge of boiling heat transfer and nucleation in cryogenic liquids

  19. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  20. Video-microscopy of NCAP films: the observation of LC droplets in real time

    Science.gov (United States)

    Reamey, Robert H.; Montoya, Wayne; Wong, Abraham

    1992-06-01

    We have used video-microscopy to observe the behavior of liquid crystal (LC) droplets within nematic droplet-polymer films (NCAP) as the droplets respond to an applied electric field. The textures observed at intermediate fields yielded information about the process of liquid crystal orientation dynamics within droplets. The nematic droplet-polymer films had low LC content (less than 1 percent) to allow the observation of individual droplets in a 2 - 6 micrometers size range. The aqueous emulsification technique was used to prepare the films as it allows the straightforward preparation of low LC content films with a controlled droplet size range. Standard electro-optical (E-O) tests were also performed on the films, allowing us to correlate single droplet behavior with that of the film as a whole. Hysteresis measured in E-O tests was visually confirmed by droplet orientation dynamics; a film which had high hysteresis in E-O tests exhibited distinctly different LC orientations within the droplet when ramped up in voltage than when ramped down in voltage. Ramping the applied voltage to well above saturation resulted in some droplets becoming `stuck'' in a new droplet structure which can be made to revert back to bipolar with high voltage pulses or with heat.

  1. Simulation of droplet impact onto a deep pool for large Froude numbers in different open-source codes

    Science.gov (United States)

    Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.

    2017-11-01

    A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.

  2. Hot Surface Ignition of A Composite Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available The present study examines the characteristics of conductive heating (up to ignition temperature of a composite fuel droplet based on coal, liquid petroleum products, and water. In this paper, we have established the difference between heat transfer from a heat source to a fuel droplet in case of conductive (hot surface and convective (hot gas heat supply. The Leidenfrost effect influences on heat transfer characteristics significantly due to the gas gap between a composite fuel droplet and a hot surface.

  3. Study on Droplet Size and Velocity Distributions of a Pressure Swirl Atomizer Based on the Maximum Entropy Formalism

    Directory of Open Access Journals (Sweden)

    Kai Yan

    2015-01-01

    Full Text Available A predictive model for droplet size and velocity distributions of a pressure swirl atomizer has been proposed based on the maximum entropy formalism (MEF. The constraint conditions of the MEF model include the conservation laws of mass, momentum, and energy. The effects of liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio on the droplet size and velocity distributions of a pressure swirl atomizer are investigated. Results show that model based on maximum entropy formalism works well to predict droplet size and velocity distributions under different spray conditions. Liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio have different effects on droplet size and velocity distributions of a pressure swirl atomizer.

  4. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  5. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  6. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    Directory of Open Access Journals (Sweden)

    Chen S. Tsai

    2017-02-01

    Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  7. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    International Nuclear Information System (INIS)

    Bennett, P.R.; St Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption

  8. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Influence of film dimensions on film droplet formation.

    Science.gov (United States)

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  10. USC/AIAA student get away special project liquid droplet collector experiment

    Science.gov (United States)

    Levesque, Raymond J., II

    1987-01-01

    This experimental payload was developed in order to observe, in a micro-gravity vacuum environment, the characteristics and stability of a thin fluid film flowing across a slightly curved surface. The test apparatus was designed based upon various ground-based thin film investigations, combined with the constraints imposed by the rigors of launch and the space environment. Testing of the fluid test article at atmospheric pressure and in vacuum verified the design provisions employed concerning ultra-low inlet pressure pump construction, as well as confirming expected pressure losses in the system. During the course of hardware development and construction modifications were required; however, the overall payload configuration remained largely unchanged. This will allow for modification and reflight of the apparatus based upon the findings of the initial flight. The specific applications of this experiment include Liquid Droplet Radiator development and various forms of material transport in vacuum.

  11. Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for determination of three antifungal drugs in water and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Shojaie, Mehran; Abdi, Khosrou; Karimi, Mohammad Ali

    2017-03-01

    A novel ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet (UAAD-LLM-SFO) followed by HPLC-UV detection was developed for the analysis of three antifungal drugs in water and biological samples. In this method, 1-dodecanol was used as the extraction solvent. The emulsion was rapidly formed by pulling in and pushing out the mixture of sample solution and extraction solvent for 5 times repeatedly using a 10-mL glass syringe while sonication was performed. Therefore, an organic dispersive solvent required in common microextraction methods was not used in the proposed method. After dispersing, an aliquot of acetonitrile was introduced as a demulsifier solvent into the sample solution to separate two phases. Therefore, some additional steps, such as the centrifugation, ultrasonication, or agitation of the sample solution, are not needed. Parameters influencing the extraction recovery were investigated. The proposed method showed a good linearity for the three antifungal drugs studied with the correlation coefficients (R 2  > 0.9995). The limits of detection (LODs) and the limits of the quantification (LOQs) were between 0.01-0.03 μg L -1 and 0.03-0.08 μg L -1 , respectively. The preconcentration factors (PFs) were in the range of 107-116, respectively. The precisions, as the relative standard deviations (RSDs) (n = 5), for inter-day and intra-day analysis were in the range of 2.1-4.5% and 6.5-8.5%, respectively. This method was successfully applied to determine the three antifungal drugs in tap water and biological samples. The recoveries of antifungal drugs in these samples were 92.4-98.5%. Graphical abstract Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for the analysis of three antifungal drugs prior HPLC-UV.

  12. Micro-droplet formation via 3D printed micro channel

    Science.gov (United States)

    Jian, Zhen; Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T.

    2016-11-01

    Low cost, fast-designed and fast-fabricated 3D micro channel was used to create micro-droplets. Capillary with an outer diameter of 1.5 mm and an inner diameter of 150 μm was inserted into a 3D printed cylindrical channel with a diameter of 2 mm . Flow rate of the two inlets, insert depth, liquid (density, viscosity and surface tension) and solid (roughness, contact angle) properties all play a role in the droplet formation. Different regimes - dripping, jetting, unstable state - were observed in the micro-channel on varying these parameters. With certain parameter combinations, successive formation of micro-droplets with equal size was observed and its size can be much smaller than the smallest channel size. Based on our experimental results, the droplet formation via 3D printed micro T-junction was investigated through direct numerical simulations with a code called Gerris. Reynolds numbers Re = ρUL / μ and Weber numbers We = ρU2 L / σ of the two liquids were introduced to measure the liquid effect. The parameter regime where different physical dynamics occur was studied and the regime transition was observed with certain threshold values. Qualitative and quantitative analysis were performed as well between simulations and experiments.

  13. A New Microstructure Device for Efficient Evaporation of Liquids

    Science.gov (United States)

    Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice

    Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by

  14. High-throughput controllable generation of droplet arrays with low consumption

    Science.gov (United States)

    Lin, Yinyin; Wu, Zhongsheng; Gao, Yibo; Wu, Jinbo; Wen, Weijia

    2018-06-01

    We describe a controllable sliding method for fabricating millions of isolated femto- to nanoliter-sized droplets with defined volume, geometry and position and a speed of up to 375 kHz. In this work, without using a superhydrophobic or superoleophobic surface, arrays of droplets are instantly formed on the patterned substrate by sliding a strip of liquid, including water, low-surface-tension organic solvents and solution, along the substrate. To precisely control the volume of the droplets, we systemically investigate the effects of the size of the wettable pattern, the viscosity of the liquid and sliding speed, which were found to vary independently to tune the height and volume of the droplets. Through this method, we successfully fabricated an oriented single metal-organic framework crystal array with control over their XY positioning on the surface, as characterized by microscopy and X-ray diffraction (XRD) techniques.

  15. Droplet bubbling evaporatively cools a blowfly.

    Science.gov (United States)

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  16. Automatic read out system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2010-01-01

    Full text: Defence Laboratory, Jodhpur (DLJ) has developed superheated emulsion technology for neutron and gamma measurements. The laboratory has attempted to develop reader system to display neutron dose and dose rate based on acoustic technique. The paper presents a microcontroller based automatic reader system for neutron measurements using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic. The front end of system is mainly consisting of specially designed signal conditioning unit consisted of piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PIC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following peripheral units interfaced to microcontroller temperature and battery monitoring, display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported

  17. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  18. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  19. A Comparison of the Computation Times of Thermal Equilibrium and Non-equilibrium Models of Droplet Field in a Two-Fluid Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun

    2007-12-15

    A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.

  20. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    Science.gov (United States)

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  1. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  2. Autoignition of liquid-fuel sprays

    International Nuclear Information System (INIS)

    Mitzutani, Y.

    1991-01-01

    This paper reports on the published autoignition data of liquid fuel sprays that were extensively reviewed by classifying them into the following three categories; liquid fuels injected into a stagnant hot atmosphere, liquid fuels injected into a hot air stream (vitiated or unvitiated), and droplet cluster ignited behind an incident or reflected shock. Comparison of these data with the counterparts of gaseous fuels and single droplets revealed that it was the ignition process dominated by droplet evaporation whereas it was the one dominated by chemical kinetics. It consisted, depending on the experimental condition, of the data and of the ignition process dominated by the shattering of droplets by an incident shock. In addition, theoretical works on spray autoignition were reviewed, pointing out that they were still far from universally predicting the ignition delays of liquid fuel sprays

  3. Velocity and size distribution measurement of suspension droplets using PDPA technique

    Science.gov (United States)

    Amiri, Shahin; Akbarnozari, Ali; Moreau, Christian; Dolatabadi, Ali

    2015-11-01

    The creation of fine and uniform droplets from a bulk of liquid is a vital process in a variety of engineering applications, such as atomization in suspension plasma spray (SPS) in which the submicron coating materials are injected to the plasma gas through the suspension droplets. The size and velocity of these droplets has a great impact on the interaction of the suspension with the gas flow emanating from a plasma torch and can consequently affect the mechanical and chemical properties of the resultant coatings. In the current study, an aqueous suspension of small glass particles (2-8 μm) was atomized by utilizing an effervescent atomizer of 1 mm orifice diameter which involves bubbling gas (air) directly into the liquid stream. The gas to liquid ratio (GLR) was kept constant at 6% throughout this study. The mass concentration of glass particles varied in the range between 0.5 to 5% in order to investigate the effect of suspension viscosity and surface tension on the droplet characteristics, such as velocity and size distributions. These characteristics were simultaneously measured by using a non-intrusive optical technique, Phase Doppler Particle Anemometry (PDPA), which is based on the light signal scattered from the droplets moving in a measurement volume. The velocity and size distribution of suspension droplets were finally compared to those of distilled water under identical conditions. The results showed a different atomization behaviors due to the reduction in surface tension of the suspension spray.

  4. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    Science.gov (United States)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  5. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  6. Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets.

    Science.gov (United States)

    Sun, Jiazhen; Bao, Bin; He, Min; Zhou, Haihua; Song, Yanlin

    2015-12-30

    Inkjet printing has been widely used in functional material patterning for fabrication of optical/electrical devices. The depositing morphologies of inkjet droplets are critical to the resolution and performance of resulted functional patterns. This review summarizes various strategies to control the depositing morphologies of inkjet droplets, including suppressing and utilizing coffee-ring effect, employing liquid substrates, developing patterned substrates and controlling droplets coalescence. Moreover, the remaining challenges in controlling inkjet droplets are presented, and the broad research and application prospects of controlling nanomaterial patterning by inkjet printing are proposed.

  7. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  8. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  9. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    Science.gov (United States)

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  10. Morphing and vectoring impacting droplets by means of wettability-engineered surfaces.

    Science.gov (United States)

    Schutzius, Thomas M; Graeber, Gustav; Elsharkawy, Mohamed; Oreluk, James; Megaridis, Constantine M

    2014-11-13

    Driven by its importance in nature and technology, droplet impact on solid surfaces has been studied for decades. To date, research on control of droplet impact outcome has focused on optimizing pre-impact parameters, e.g., droplet size and velocity. Here we follow a different, post-impact, surface engineering approach yielding controlled vectoring and morphing of droplets during and after impact. Surfaces with patterned domains of extreme wettability (high or low) are fabricated and implemented for controlling the impact process during and even after rebound--a previously neglected aspect of impact studies on non-wetting surfaces. For non-rebound cases, droplets can be morphed from spheres to complex shapes--without unwanted loss of liquid. The procedure relies on competition between surface tension and fluid inertial forces, and harnesses the naturally occurring contact-line pinning mechanisms at sharp wettability changes to create viable dry regions in the spread liquid volume. Utilizing the same forces central to morphing, we demonstrate the ability to rebound orthogonally-impacting droplets with an additional non-orthogonal velocity component. We theoretically analyze this capability and derive a We(-.25) dependence of the lateral restitution coefficient. This study offers wettability-engineered surfaces as a new approach to manipulate impacting droplet microvolumes, with ramifications for surface microfluidics and fluid-assisted templating applications.

  11. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels

    KAUST Repository

    Wu, Congmin

    2013-04-04

    For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (∼10 nm) simulated in the present work. These findings are in semi

  12. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  13. The ground state energy of 3He droplet in the LOCV framework

    International Nuclear Information System (INIS)

    Modarres, M.; Motahari, S.; Rajabi, A.

    2012-01-01

    The (extended) lowest order constrained variational method was used to calculate the ground state energy of liquid helium 3 ( 3 He) droplets at zero temperature. Different types of density distribution profiles, such as the Gaussian, the Quasi-Gaussian and the Woods-Saxon were used. It was shown that at least, on average, near 20 3 He atoms are needed to get the bound state for 3 He liquid droplet. Depending on the choice of the density profiles and the atomic radius of 3 He, the above estimate can increase to 300. Our calculated ground state energy and the number of atoms in liquid 3 He droplet were compared with those of Variational Monte Carlo method, Diffusion Monte Carlo method and Density Functional Theory, for which a reasonable agreement was found.

  14. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.

    Science.gov (United States)

    Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian

    2017-05-30

    We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.

  15. Micro-Particles Motion in an Evaporating Droplet

    International Nuclear Information System (INIS)

    Jung, Jung Yeul; Yoo, Jung Yul; Kim, Young Won

    2007-01-01

    Nano-particles (on the order of 1 to 100 nm) contained within the droplet are moved by liquid flow and stacked at the contact line. The self-pinned contact line under the evaporating droplet is very interesting in the field of patterning and separation of particles and biocells. Models accounting for the nano-particles' flow and deposit patterns have been reported and verified by various experiments. Here, we report for the first time a phenomenon where micro-particles (on the order of 1 μm) in the colloid droplet flow to the center of droplet. There are three modes of fluid and particle flow in the evaporating droplet. In the first mode, a self-pinned contact line is maintained and the fluid and micro/nano-particles flow to the contact line. In the second mode, micro/nano-particles self-assemble at the near contact line, as reported by Jung and Kwak. In the final mode, only micro-particles are adverted to the center of the droplet due to movement of the contact line

  16. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    Science.gov (United States)

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  17. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  18. Droplet networks with incorporated protein diodes show collective properties

    Science.gov (United States)

    Maglia, Giovanni; Heron, Andrew J.; Hwang, William L.; Holden, Matthew A.; Mikhailova, Ellina; Li, Qiuhong; Cheley, Stephen; Bayley, Hagan

    2009-07-01

    Recently, we demonstrated that submicrolitre aqueous droplets submerged in an apolar liquid containing lipid can be tightly connected by means of lipid bilayers to form networks. Droplet interface bilayers have been used for rapid screening of membrane proteins and to form asymmetric bilayers with which to examine the fundamental properties of channels and pores. Networks, meanwhile, have been used to form microscale batteries and to detect light. Here, we develop an engineered protein pore with diode-like properties that can be incorporated into droplet interface bilayers in droplet networks to form devices with electrical properties including those of a current limiter, a half-wave rectifier and a full-wave rectifier. The droplet approach, which uses unsophisticated components (oil, lipid, salt water and a simple pore), can therefore be used to create multidroplet networks with collective properties that cannot be produced by droplet pairs.

  19. Use of an electric field for the removal of droplets in a gaseous fluid

    NARCIS (Netherlands)

    Ursem, W.N.; Marijnissen, J.C.M.; Roos, R.A.

    2009-01-01

    The invention provides the use, a method, and an apparatus to reduce and remove liquid droplets in air, such as fog, mist, or haze, although the invention in specific embodiments might also be used to reduce and remove liquid droplets from a spray or steam.The invention of the mist and/or air borne

  20. The influence of liquid/vapor phase change onto the Nusselt number

    Science.gov (United States)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  1. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak

    Science.gov (United States)

    Choi, Yun-Sang; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Eun-Mi; Sung, Jung-Min; Kim, Hyun-Wook

    2016-01-01

    The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (pcooked chicken steak was lower than that in the other cooking treatments (pchicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak. PMID:27499656

  2. Numerical Simulation on Head-On Binary Collision of Gel Propellant Droplets

    Directory of Open Access Journals (Sweden)

    Zejun Liu

    2013-01-01

    Full Text Available Binary collision of droplets is a fundamental form of droplet interaction in the spraying flow field. In order to reveal the central collision mechanism of two gel droplets with equal diameters, an axi-symmetric form of the Navier-Stokes equations are firstly solved and the method of VOF (volume of fluid is utilized to track the evolution of the gas-liquid free interface. Then, the numerical computation model is validated with Qian’s experimental results on Newtonian liquids. Phenomena of rebound, coalescence and reflexive separation of droplets after collision are investigated, and structures of the complicated flow fields during the collision process are also analyzed in detail. Results show that the maximum shear rate will appear at the point where the flow is redirected and accelerated. Rebound of droplets is determined by the Weber number and viscosity of the fluid together. It can be concluded that the gel droplets are easier to rebound in comparison with the base fluid droplets. The results also show that the alternant appearance along with the deformation of droplets in the radial and axial direction is the main characteristic of the droplet coalescence process, and the deformation amplitude attenuates gradually. Moreover, the reflexive separation process of droplets can be divided into three distinctive stages including the radial expansion, the recovery of the spherical shape, and the axial extension and reflexive separation. The variation trend of the kinetic energy is opposite to that of the surface energy. The maximum deformation of droplets appears in the radial expansion stage; in the case of a low Weber number, the minimum central thickness of a droplet appears later than its maximum deformation, however, this result is on the contrary in the case of a high Weber number.

  3. Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model

    Science.gov (United States)

    Espath, L. F. R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O. N.; Cortes, A. M. A.; Dalcin, L.; Calo, V. M.

    2016-06-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to further insight into the model. Highly resolved simulations involving density-driven flows and merging of droplets allow us to analyze these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modeling droplet dynamics within the framework of NSCH equations is a sensible approach worth further research.

  4. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles

    Science.gov (United States)

    Wu, Feng-Min; Wang, Xiao-Wei; Jing, Bo; Zhang, Yun-Hong; Ge, Mao-Fa

    2018-04-01

    The confocal Raman microscopy is utilized to investigate the liquid-liquid phase separation (LLPS) of mixed magnesium sulfate/glutaric acid (MgSO4/GA) droplets deposited on a hydrophobic polytetrafluoroethylene (PTFE) substrate and a hydrophilic quartz substrate. Raman spectra collected from different regions of the mixed droplets provide detailed information of component distributions for MgSO4 and GA. During the dehydration process, the MgSO4/GA mixed particles show the initial liquid-liquid phase separation between 85% and 80% relative humidity (RH) on both the hydrophobic and hydrophilic substrates. For the droplets deposited on the two substrates, the inner phase of droplets is dominated by aqueous MgSO4, which is surrounded by a rich GA organic layer due to the surface tension effects. In addition, the crystallization of GA could be observed in the organic aqueous phase while it is inhibited in the inner MgSO4 phase due to the effects of gel formation of MgSO4 at low RH. The Raman spectra reveal that with decreasing RH the morphology of the mixed droplet evolves from a uniform droplet to the structure of LLPS with the GA crystallizing in the outer layer and MgSO4 gel formed in the inner phase. These findings contribute to the further understanding of the role of interactions between inorganic salts and organic acids on the morphological evolution and environmental effects of atmospheric aerosols under ambient RH conditions.

  5. Kinetic Monte Carlo simulation of formation of microstructures in liquid droplets

    International Nuclear Information System (INIS)

    Block, M; Kunert, R; Schoell, E; Boeck, T; Teubner, Th

    2004-01-01

    We study the deposition of indium droplets on a glass surface and the subsequent formation of silicon microcrystals inside these droplets. Kinetic Monte Carlo methods are used to analyse the influence of growth temperature, flux of incoming particles, surface coverage, and in particular an energy parameter simulating the surface tension, upon the morphology of growth. According to the experimental conditions of crystallization, a temperature gradient and diffusion in spherical droplets are included. The simulations explain the formation of silicon crystal structures in good agreement with the experiment. The dependence of their shape and the conditions of formation on the growth parameters are investigated in detail

  6. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  7. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    Science.gov (United States)

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  8. Remotely controllable liquid marbles

    KAUST Repository

    Zhang, Lianbin

    2012-07-26

    Liquid droplets encapsulated by self-organized hydrophobic particles at the liquid/air interface - liquid marbles - are prepared by encapsulating water droplets with novel core/shell-structured responsive magnetic particles, consisting of a responsive block copolymer-grafted mesoporous silica shell and magnetite core (see figure; P2VP-b-PDMS: poly(2-vinylpyridine-b- dimethylsiloxane)). Desirable properties of the liquid marbles include that they rupture upon ultraviolet illumination and can be remotely manipulated by an external magnetic field. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  10. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  11. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  12. Superheating and supercooling of Ge nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Xu, Q; Sharp, I D; Yuan, C W; Yi, D O; Liao, C Y; Glaeser, A M; Minor, A M; Beeman, J W; Ridgway, M C; Kluth, P; Iii, J W Ager; Chrzan, D C; Haller, E E

    2007-01-01

    Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 deg. C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO 2 exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature

  13. Role of cavitation in high-speed droplet impact problems

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2014-11-01

    High-speed droplet impact is found in physical cleaning using liquid jets, but its mechanisms for particle removal from target surfaces are yet unclear. In this study, we explore the possibility of having cavitation inside the droplet. The pressure evolution within a droplet colliding with a flat surface of deformable materials is determined by multicomponent Euler equations. Dynamics of cavitation bubbles heterogeneously nucleated from preexisting nuclei are determined from Rayleigh-Plesset calculations according to the pressure evolution within the droplet in one-way-coupling manner. The simulation shows that cavitation indeed occurs due to tension that arises from the water hammer shock reflection at the droplet interface. The role of cavitation including pressure emission from its collapse is to be discussed based on the one-way-coupling computations.

  14. Material forming apparatus using a directed droplet stream

    Science.gov (United States)

    Holcomb, David E.; Viswanathan, Srinath; Blue, Craig A.; Wilgen, John B.

    2000-01-01

    Systems and methods are described for rapidly forming precision metallic and intermetallic alloy net shape parts directly from liquid metal droplets. A directed droplet deposition apparatus includes a crucible with an orifice for producing a jet of material, a jet destabilizer, a charging structure, a deflector system, and an impact zone. The systems and methods provide advantages in that fully dense, microstructurally controlled parts can be fabricated at moderate cost.

  15. Acceleration of liquid by boiling of other volatile liquid, (4)

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Mori, Yasuo

    1978-01-01

    In the development of liquid metal MHD power generation using liquid metal as a working fluid, it is one of the important problems to accelerate liquid metal efficiently by means of thermal energy. Though various accelerating methods have been proposed so far, those do not provide high cycle thermal efficiency because of either small electric conductivity, low accelerating efficiency or low gas-liquid separating efficiency. The authors proposed the method to accelerate through volume expansion by boiling a volatile liquid being blown into liquid metal at high temperature, and have investigated it experimentally and theoretically. In the study, efficiency has been discussed in case of the acceleration of fluid subjected to magneto-hydrodynamical force by boiling of droplets of other liquid. Theoretically, the field of flow and two-phase cycle and gas phase cycle were analyzed. The report describes on these results and discussions. It is concluded that efficiency is independent of the injected amount and position of droplets, final efficiency is little affected by external load and thermal conductivity of volatile liquid droplets, the efficiency for the combination of cesium and lead is about 50%, and the method proposed by authors seems to be better than the conventional methods with gas phase cycle proposed so far using inert gas bubbles in lieu of volatile liquid. (Wakatsuki, Y.)

  16. Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model

    KAUST Repository

    Espath, L. F. R.

    2016-05-23

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to gain further insight into the model. Highly resolved simulations involving density-driven flows and the merging of droplets allow us to analyse these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modelling droplet dynamics within the framework of NSCH equations is a sensible approach worthy of further research. © 2016 Cambridge University Press.

  17. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-09-01

    Full Text Available Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100: first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1 the

  18. Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces

    Science.gov (United States)

    Attarzadeh, Reza; Dolatabadi, Ali

    2017-01-01

    The phenomenon of droplets coalescence-induced self-propelled jumping on homogeneous and heterogeneous superhydrophobic surfaces was numerically modeled using the volume of fluid method coupled with a dynamic contact angle model. The heterogeneity of the surface was directly modeled as a series of micro-patterned pillars. To resolve the influence of air around a droplet and between the pillars, extensive simulations were performed for different droplet sizes on a textured surface. Parallel computations with the OpenMP algorithm were used to accelerate computation speed to meet the convergence criteria. The composition of the air-solid surface underneath the droplet facilitated capturing the transition from a no-slip/no-penetration to a partial-slip with penetration as the contact line at triple point started moving to the air pockets. The wettability effect from the nanoscopic roughness and the coating was included in the model by using the intrinsic contact angle obtained from a previously published study. As the coalescence started, the radial velocity of the coalescing liquid bridge was partially reverted to the upward direction due to the counter-action of the surface. However, we found that the velocity varied with the size of the droplets. A part of the droplet kinetic energy was dissipated as the merged droplet started penetrating into the cavities. This was due to a different area in contact between the liquid and solid and, consequently, a higher viscous dissipation rate in the system. We showed that the effect of surface roughness is strongly significant when the size of the micro-droplet is comparable with the size of the roughness features. In addition, the relevance of droplet size to surface roughness (critical relative roughness) was numerically quantified. We also found that regardless of the viscous cutoff radius, as the relative roughness approached the value of 44, the direct inclusion of surface topography was crucial in the modeling of the

  19. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    Directory of Open Access Journals (Sweden)

    N. A. G. Puentes

    2012-03-01

    Full Text Available A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" could be used as a simple and quick way to estimate droplet dispersion. The purpose of this paper is to measure the spreading angle of jets transversally injected into the throat of a Venturi scrubber and correlate it with both gas and jet velocities. The throat gas velocities varied between 59 and 74 m/s and the jet velocity between 3.18 and 19.1 m/s. The angles were measured through image analysis, obtained with high velocity photography. The spreading angle was found to be strongly dependent on jet velocity.

  20. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    Science.gov (United States)

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  1. Nanoscale footprints of self-running gallium droplets on GaAs surface.

    Directory of Open Access Journals (Sweden)

    Jiang Wu

    Full Text Available In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001 surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems.

  2. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  3. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

    Directory of Open Access Journals (Sweden)

    Glen McHale

    2011-03-01

    Full Text Available In the wetting of a solid by a liquid it is often assumed that the substrate is rigid. However, for an elastic substrate the rigidity depends on the cube of its thickness and so reduces rapidly as the substrate becomes thinner as it approaches becoming a thin sheet. In such circumstances, it has been shown that the capillary forces caused by a contacting droplet of a liquid can shape the solid rather than the solid shaping the liquid. A substrate can be bent and folded as a (pinned droplet evaporates or even instantaneously and spontaneously wrapped on contact with a droplet. When this effect is used to create three dimensional shapes from initially flat sheets, the effect is called capillary origami or droplet wrapping.In this work, we consider how the conditions for the spontaneous, capillary induced, folding of a thin ribbon substrate might be altered by a rigid surface structure that, for a rigid substrate, would be expected to create Cassie–Baxter and Wenzel effects. For smooth thin substrates, droplet wrapping can occur for all liquids, including those for which the Young’s law contact angle (defined by the interfacial tensions is greater than 90° and which would therefore normally be considered relatively hydrophobic. However, consideration of the balance between bending and interfacial energies suggests that the tendency for droplet wrapping can be suppressed for some liquids by providing the flexible solid surface with a rigid topographic structure. In general, it is known that when a liquid interacts with such a structure it can either fully penetrate the structure (the Wenzel case or it can bridge between the asperities of the structure (the Cassie–Baxter case.In this report, we show theoretically that droplet wrapping should occur with both types of solid–liquid contact. We also derive a condition for the transition between the Cassie–Baxter and Wenzel type droplet wrapping and relate it to the same transition condition

  4. The micro-droplet behavior of a molten lead-free solder in an inkjet printing process

    International Nuclear Information System (INIS)

    Tsai, M H; Chou, H H; Hwang, W S

    2009-01-01

    An experimental investigation on the droplet formation of molten Sn3.0 wt%Ag0.5 wt%Cu alloy by an inkjet printing process was conducted. The printing process used a piezoelectric print head with a nozzle orifice diameter of 50 µm. Micro-droplets of a molten lead-free solder were ejected at 230 °C. The print head was driven by a bipolar pulse 40 V in amplitude. The major variables for this study were two pulse times; t rise /t finalrise and t fall , as well as N 2 back-pressure in the molten solder reservoir. Under various printing conditions, extrusion of the liquid column, contraction of liquid thread and pinch-off of liquid thread at nozzle exit were observed by monitoring the dynamics of the molten solder droplet ejection process. The droplet formation was found to be insensitive to t rise and t finalrise in the range of 250–1000 µs. The behavior of droplet formation was, however, significantly affected by the transfer rate, t fall , in the range of 30–60 µs and t fall of 50 µs yielded the most desirable condition of single droplet formation. The N 2 back-pressure was also found to be critical, where a back pressure between 10 and 21 kPa could give the desirable single-droplet formation condition

  5. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  6. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  7. The determination of superheated layer thickness for boiling incipience in a vertical thermosiphon reboiler

    International Nuclear Information System (INIS)

    Shamsuzzoha, M.; Kamil, M.; Alam, S.S.

    2003-01-01

    The characteristics of the incipient boiling for vertical thermosiphon reboiler were examined in detail. At the onset of boiling, liquid film adjacent to the heating surface, the super-heated layers thickness δ * , must attain a threshold value so that the critical bubble nuclei with radius r c can further grow to the point of detachment. Thus, the value of δ * /r c is of primary importance for the superheat calculation. In the present study a semi-empirical equation was proposed for the incipient point of boiling including the effect of submergence. The results predicted from theoretical analysis are consistent with the experimental data available in the literature. All the data for fluids namely, distilled water, toluene and ethylene glycol having different thermophysical properties were correlated with a unified correlation having mean absolute deviation 12.73%. (author)

  8. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  9. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  10. Breakup, instabilities, and dynamics of high-speed droplet under transcritical conditions

    Directory of Open Access Journals (Sweden)

    Yanfei Gao

    2015-06-01

    Full Text Available A droplet breakup model is developed for a single droplet introduced into transcritical and strong convective environments. The numerical model takes into account variable thermophysical properties, gas solubility in the liquid phase, and vapor–liquid interfacial thermodynamics. The influences of ambient conditions on droplet breakup characteristics are investigated. The results indicate that (1 the drag acceleration decreases slowly at first and then increases drastically with the initial droplet temperature increasing, but always increases at a constant rate with ambient pressure; (2 the pressure and the drop temperature have similar effects on the Kelvin–Helmholtz and Rayleigh–Taylor wave growth at high pressures (reduced pressure higher than 1.2 and high temperatures (reduced temperature higher than 0.7, but the impact of pressure on the wave growth is relatively stronger than that of droplet temperature at relatively low pressures (reduced pressure lower than 0.8 and low temperatures (reduced temperature lower than 0.63; (3 the temperature significantly affects the surface instability growth at high drop temperatures (reduced temperature higher than 0.7, but has no effect on the instability growth at low temperatures (reduced temperature lower than 0.63.

  11. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    Science.gov (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  12. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Apratim [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Basu, Saptarshi, E-mail: sbasu@mecheng.iisc.ernet.in [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2014-01-24

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  13. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    International Nuclear Information System (INIS)

    Sanyal, Apratim; Basu, Saptarshi; Kumar, Ranganathan

    2014-01-01

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  14. Direct numerical simulations of evaporating droplets in turbulence

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2015-11-01

    This work demonstrates direct numerical simulations of evaporating two phase flows, with applications to studying combustion in aircraft engines. Inside the engine, liquid fuel is injected into the combustion chamber where it atomizes into droplets and evaporates. Combustion occurs as the fuel vapor mixes with the surrounding flow of turbulent gas. Understanding combustion, therefore, requires studying evaporation in a turbulent flow and the resulting vapor distribution. We study the problem using a finite volume framework to solve the Navier-Stokes and scalar transport equations under a low-Mach assumption [Desjardins et al., J. Comp. Phys., 2008]. The liquid-gas interface is tracked using a conservative level-set method [Desjardins et al., J. Comp. Phys., 2008] which allows for a sharp reconstruction of the discontinuity across the interface. Special care is taken in the discretization of cells near the liquid-gas interface to ensure the stability and accuracy of the solution. Results are discussed for non-reacting simulations of liquid droplets evaporating into a turbulent field of inert gas.

  15. In-line characterization and identification of micro-droplets on-chip

    Directory of Open Access Journals (Sweden)

    Weber Emanuel

    2014-01-01

    Full Text Available We present an integrated optofluidic sensor system for in-line characterization of micro-droplets. The device provides information about the droplet generation frequency, the droplet volume, and the content of the droplet. Due to its simplicity this principle can easily be implemented with other microfluidic components on one and the same device. The sensor is based on total internal reflection phenomena. Droplets are pushed through a microfluidic channel which is hit by slightly diverging monochromatic light. At the solid-liquid interface parts of the rays experience total internal reflection while another part is transmitted. The ratio of reflected to transmitted light depends on the refractive index of the solution. Both signals are recorded simultaneously and provide a very stable output signal for the droplet characterization. With the proposed system passing droplets were counted up to 320 droplets per second and droplets with different volumes could be discriminated. In a final experiment droplets with different amounts of dissolved CaCl2 were distinguished based on their reflected and transmitted light pattern. This principle can be applied for the detection of any molecules in microdroplets which significantly influence the refractive index of the buffer solution.

  16. Effect of Surfactants on the Deformation and Detachment of Oil Droplets in a Model Laminar Flow Cell

    Directory of Open Access Journals (Sweden)

    Fréville V.

    2013-10-01

    Full Text Available Sugar-based surfactants are increasingly present in the development of eco-friendly detergents due to current regulations and consumer demand. In order to assess the degreasing performance of these new surfactants, the behavior of model oil droplets subjected to the action of a flow of surfactant solutions of different concentrations was studied in a laminar flow cell and related to the physico-chemical properties measured at the liquid/liquid (interfacial tension and solid/liquid/liquid interfaces (contact angle. With the surfactant solutions and the model oils employed in this study, three main behaviors were observed when a critical flow rate was reached: elongation, fragmentation or spontaneous detachment of the droplet. The analysis of the results leads to a correlation between the droplet behavior and the balance of the forces applied on the droplet in its initial position, in particular the gravity force Fg, which tends to move the oil droplet upwards (given the density difference, and the capillary force Fc, which tends to keep the droplet spherical. A state diagram could be established, based on the dimensionless Bond number (Fg/Fc and cosθ, θ being the initial contact angle of the drop on the surface before the establishment of the flow. One can thus predict the droplet behavior as a function of the system initial characteristics. The results allowed the comparison of degreasing performance of the different surfactants used and illustrated the potential of AlkylPolyPentosides (APP for detergent formulations.

  17. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  18. Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel

    Science.gov (United States)

    Pang, Yan; Liu, Zhaomiao; Zhao, Fuwang

    2016-08-01

    This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method. The pressure difference between the continuous and dispersed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.

  19. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  20. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    Science.gov (United States)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  1. A new stationary droplet evaporation model and its validation

    OpenAIRE

    Fang WANG; Jie YAO; Shaofeng YANG; Rui LIU; Jie JIN

    2017-01-01

    The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets’ evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their ev...

  2. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  3. Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets

    International Nuclear Information System (INIS)

    Williams, K.A.

    1984-01-01

    The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced

  4. Numerical investigation on liquid sheets interaction characteristics of liquid-liquid coaxial swirling jets in bipropellant thruster

    International Nuclear Information System (INIS)

    Ding, Jia-Wei; Li, Guo-Xiu; Yu, Yu-Song

    2016-01-01

    Highlights: • A LES-VOF model is conducted to simulate atomization of coaxial swirling jets. • Structure and flow field of coaxial swirling jets are investigated. • Merging process occurs at the nozzle exit and generates additional perturbation. • The Rayleigh mode instability dominates the breakup of ligaments. - Abstract: Spray atomization process of a liquid-liquid coaxial swirl injector in bipropellant thruster has been investigated using volume of fluid (VOF) method coupled with large eddy simulation methodology. With fine grid resolution, detailed flow field of interacted liquid sheet has been captured and analyzed. For coaxial swirling jet, static pressure drop in the region between the liquid sheets makes two liquid sheets to approach each other and merge. A strong pressure, velocity and turbulent fluctuations are calculated near the contact position of two coaxial jets. Simulation results indicate that additional perturbations are generated due to strong radial and axial shear effects between coaxial jets. Observation of droplet formation process reveals that the Rayleigh mode instability dominates the breakup of the ligament. Droplet diameter and distribution have been investigated quantitatively. The mean diameter of the coaxial jets is between that of the inner and the outer jets. Compared with the individual swirling jets, wider size distributions of droplets are produced in the coaxial jets.

  5. Counter current 'emulsion flow' extractor for continuous liquid-liquid extraction from suspended solutions

    International Nuclear Information System (INIS)

    Yanase, Nobuyuki; Naganawa, Hirochika; Nagano, Tetsushi; Noro, Junji

    2011-01-01

    A single current 'emulsion flow' liquid-liquid extraction apparatus has a head with a number of holes from which micrometer-sized droplets of an aqueous phase spout into an organic phase to mix the two liquid phases. For practical use, however, a fatal problem can occur when particulate components in the aqueous phase plug the holes. In the present study, we have succeeded in solving the problem by applying a counter current-type emulsion flow extractor where micrometer-sized droplets of the organic phase are generated. (author)

  6. Droplet Splashing by a Slingshot Mechanism

    KAUST Repository

    Thoroddsen, Sigurdur T; Thoraval, M.-J.; Takehara, K.; Etoh, T. G.

    2011-01-01

    When a drop impacts onto a liquid pool, it ejects a thin horizontal sheet of liquid, which emerges from the neck region connecting the two liquid masses. The leading section of this ejecta bends down to meet the pool liquid. When the sheet touches the pool, at an “elbow,” it ruptures and sends off microdroplets by a slingshot mechanism, driven by surface tension. High-speed imaging of the splashing droplets suggests the liquid sheet is of submicron thickness, as thin as 300 nm. Experiments in partial vacuum show that air resistance plays the primary role in bending the sheet. We identify a parameter regime where this slingshot occurs and also present a simple model for the sheet evolution, capable of reproducing the overall shape.

  7. Droplet Splashing by a Slingshot Mechanism

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2011-01-18

    When a drop impacts onto a liquid pool, it ejects a thin horizontal sheet of liquid, which emerges from the neck region connecting the two liquid masses. The leading section of this ejecta bends down to meet the pool liquid. When the sheet touches the pool, at an “elbow,” it ruptures and sends off microdroplets by a slingshot mechanism, driven by surface tension. High-speed imaging of the splashing droplets suggests the liquid sheet is of submicron thickness, as thin as 300 nm. Experiments in partial vacuum show that air resistance plays the primary role in bending the sheet. We identify a parameter regime where this slingshot occurs and also present a simple model for the sheet evolution, capable of reproducing the overall shape.

  8. Microchemical Plant in a Liquid Droplet: Plasmonic Liquid Marble for Sequential Reactions and Attomole Detection of Toxin at Microliter Scale.

    Science.gov (United States)

    Han, Xuemei; Koh, Charlynn Sher Lin; Lee, Hiang Kwee; Chew, Wee Shern; Ling, Xing Yi

    2017-11-15

    Miniaturizing the continuous multistep operations of a factory into a microchemical plant offers a safe and cost-effective approach to promote high-throughput screening in drug development and enforcement of industrial/environmental safety. While particle-assembled microdroplets in the form of liquid marble are ideal as microchemical plant, these platforms are mainly restricted to single-step reactions and limited to ex situ reaction monitoring. Herein, we utilize plasmonic liquid marble (PLM), formed by encapsulating liquid droplet with Ag nanocubes, to address these issues and demonstrate it as an ideal microchemical plant to conduct reaction-and-detection sequences on-demand in a nondisruptive manner. Utilizing a two-step azo-dye formation as our model reaction, our microchemical plant allows rapid and efficient diazotization of nitroaniline to form diazonium nitrobenzene, followed by the azo coupling of this intermediate with target aromatic compound to yield azo-dye. These molecular events are tracked in situ via SERS measurement through the plasmonic shell and further verified with in silico investigation. Furthermore, we apply our microchemical plant for ultrasensitive SERS detection and quantification of bisphenol A (BPA) with detection limit down to 10 amol, which is 50 000-fold lower than the BPA safety limit. Together with the protections offered by plasmonic shell against external environments, these collective advantages empower PLM as a multifunctional microchemical plant to facilitate small-volume testing and optimization of processes relevant in industrial and research contexts.

  9. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo droplet

    NARCIS (Netherlands)

    Tan, H.; Diddens, C.; Lv, P.; Kuerten, J.G.M.; Zhang, X.; Lohse, D.

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  10. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction

    Science.gov (United States)

    Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo

    2017-12-01

    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.

  11. Printing microstructures in a polymer matrix using a ferrofluid droplet

    International Nuclear Information System (INIS)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.

    2016-01-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  12. Printing microstructures in a polymer matrix using a ferrofluid droplet

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Fattah, Abdel Rahman [Department of Mechanical Engineering, Hamilton, Ontario (Canada); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, Hamilton, Ontario (Canada); Puri, Ishwar K. [Department of Mechanical Engineering, Hamilton, Ontario (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario (Canada)

    2016-03-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  13. A SIMPLE Bubble Chamber for Dark Matter Searches: Testing and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.R.; Fernandes, A.C.; Marques, J.G.; Kling, A. [C2TN, Instituto Superior Tecnico, Universidade de Lisboa, E.N. 10 - km 139.7, 2695-066 Bobadela, LRS (Portugal); Felizardo, M.; Girard, T.A. [Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003, Lisbon (Portugal); Lazaro, I. [Laboratoire Souterrain a Bas Bruit, UMS 3538 UNS/UAPV/CNRS, 84400 Rustrel-Pays d' Apt (France); Puibasset, J. [Centre de Recherche sur la Matiere Divisee CNRS et Universite d' Orleans, 45071 Orleans, 02 (France)

    2015-07-01

    SIMPLE (Superheated Instrument for Massive Particle Experiments) is one of only three experiments worldwide in search of evidence of astroparticle dark matter (WIMPs) using halocarbon-loaded superheated liquid (SHL) detectors. The 2012 Phase II SIMPLE measurements yielded the most restrictive exclusion contour in the spin-dependent (SD) sector of WIMP-proton interactions from a direct search experiment at the time, overlapping for the first time results previously obtained only indirectly [1]. In order to remain competitive with other experiments in the field, the next phase measurement requires larger exposure over shorter observation times with significantly improved neutron shielding. To increase exposure, SIMPLE plans, as a first step, to replace its superheated droplet detectors (SDDs), each containing an active mass of about 15 g of halocarbon, with bubble chambers capable of holding up to 20 kg of active halocarbon mass. We report on the development of the first 1 kg halocarbon SIMPLE bubble chamber prototype, including chamber recompression system design and testing and initial acoustic detection of bubble formation. (authors)

  14. A MATHEMATICAL MODEL OF THE ROASTING CHESTNUTS PROCESS BY SUPERHEATED STEAM

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2013-01-01

    Full Text Available The mathematic modeling for chestnuts roasting process by superheated steam is conducted. Diffusion and thermal diffusion coefficients are used for process description. Initial conditions and boundary conditions of the third kind for thermal conductivity and mass transfer equations are set.

  15. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    Science.gov (United States)

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Motion of water droplets in the counter flow of high-temperature combustion products

    Science.gov (United States)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  17. Droplet deposition above a quench front during reflood after a large break LOCA

    International Nuclear Information System (INIS)

    Lee, R.

    1982-01-01

    Droplet deposition or migration towards the wall in a dispersed flow has been the subject of many investigations due to its industrial applications such as combustion of sprays of liquid fuel, evaporators, spray cooling, nuclear reactors, etc. Dispersed flow is characterized by high void and hence low droplet concentration and the theoretical study of droplet deposition is the treatment of a single droplet trajectory in the dispersed. As the droplet is travelling towards the wall, whether it will eventually be deposited on the wall or not, will be determined by the competing forces acting on it and by the boundary layer it is traversing through towards the wall. The mechanism of droplet deposition will be examined. The prediction of the boundary layer thickness will take into account the droplet size and density difference between the fluid and the droplet. Given the condition above the quench front, the minimum lateral velocity required for droplet deposition could be determined as a function of droplet diameter

  18. Solid-phase extraction assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet to determine sildenafil and its analogues in dietary supplements.

    Science.gov (United States)

    Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won

    2017-08-01

    A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Droplet-Assisted Laser Direct Nanoscale Writing on Silicon

    Directory of Open Access Journals (Sweden)

    Yuan-Jen Chang

    2016-03-01

    Full Text Available Nano-structuring using laser direct writing technology has shown great potential for industrial applications. A novel application of water droplets to this technology is proposed in this paper. With a hydrophobic layer and a controlled substrate temperature, a layer of randomly distributed water droplets with a high contact angle is formed on the substrate. These liquid droplets can be used as lenses to enhance the laser intensity at the bottom of the droplets. As a result, nanoscale holes can be fabricated on the substrate by controlling the laser energy density. We successfully fabricated holes with a diameter of 600 nm at a substrate temperature of 12 ∘C and a power density of 1.2 × 108 W/cm2 in our experiments. We also found that the hole diameter was around a ninth of the water droplet diameter. Meanwhile, the machined holes are not affected much by the focal length of the lens, but a hole with less than 100 nm in diameter at the center was observed.

  20. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    Science.gov (United States)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  1. Automatic readout system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2011-01-01

    The paper presents a microcontroller based automatic reader system for neutron measurement using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic during the nucleation. The front end of system is mainly consisting of specially designed signal conditioning unit, piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PlC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following microcontroller peripheral units viz temperature monitoring, battery monitoring, LCD display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported. (author)

  2. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  3. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  4. Superheated water pretreatment combined with CO2 activation/regeneration of the exhausted activated carbon used in the treatment of industrial wastewater.

    Science.gov (United States)

    Xiao, Jin; Yu, Bailie; Zhong, Qifan; Yuan, Jie; Yao, Zhen; Zhang, Liuyun

    2017-10-01

    This paper examines a novel method of regenerating saturated activated carbon after adsorption of complex phenolic, polycyclic aromatic hydrocarbons with low energy consumption by using superheated water pretreatment combined with CO 2 activation. The effects of the temperature of the superheated water, liquid-solid ratio, soaking time, activation temperature, activation time, and CO 2 flow rate of regeneration and adsorption of coal-powdered activated carbon (CPAC) were studied. The results show that the adsorption capacity of iodine values on CPAC recovers to 102.25% of the fresh activated carbon, and the recovery rate is 79.8% under optimal experimental conditions. The adsorption model and adsorption kinetics of methylene blue on regenerated activated carbon (RAC) showed that the adsorption process was in accordance with the Langmuir model and the pseudo-second-order kinetics model. Furthermore, the internal diffusion process was the main controlling step. The surface properties, Brunauer-Emmett-Teller (BET) surface area, and pore size distribution were characterized by Fourier transform infrared spectroscopy (FT-IR) and BET, which show that the RAC possesses more oxygen-containing functional groups with a specific surface area of 763.39 m 2 g -1 and a total pore volume of 0.3039 cm 3 g -1 . Micropores account for 79.8% and mesopores account for 20.2%.

  5. Droplets bouncing on a standing wave field

    Science.gov (United States)

    Pucci, Giuseppe; Tambasco, Lucas; Harris, Daniel; Bush, John

    2017-11-01

    A liquid bath subject to a vertical vibration becomes unstable to standing surface waves at a critical vibrational acceleration known as the Faraday threshold. We examine the behavior of a millimetric droplet bouncing on the surface of a quasi-one-dimensional fluid channel above the Faraday threshold. We identify a sequence of bifurcations that occurs as the vibrational acceleration is increased progressively, ultimately leading to the erratic, diffusive motion of the droplet along the length of the channel. A simple theoretical model is presented. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  6. Conical Refraction Bottle Beams for Entrapment of Absorbing Droplets.

    Science.gov (United States)

    Esseling, Michael; Alpmann, Christina; Schnelle, Jens; Meissner, Robert; Denz, Cornelia

    2018-03-22

    Conical refraction (CR) optical bottle beams for photophoretic trapping of airborne absorbing droplets are introduced and experimentally demonstrated. CR describes the circular split-up of unpolarised light propagating along an optical axis in a biaxial crystal. The diverging and converging cones lend themselves to the construction of optical bottle beams with flexible entry points. The interaction of single inkjet droplets with an open or partly open bottle beam is shown implementing high-speed video microscopy in a dual-view configuration. Perpendicular image planes are visualized on a single camera chip to characterize the integral three-dimensional movement dynamics of droplets. We demonstrate how a partly opened optical bottle transversely confines liquid objects. Furthermore we observe and analyse transverse oscillations of absorbing droplets as they hit the inner walls and simultaneously measure both transverse and axial velocity components.

  7. Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesis.

    Science.gov (United States)

    Muñoz, Mariana; Goutier, Simon; Foucaud, Sylvie; Mariaux, Gilles; Poirier, Thierry

    2018-03-01

    Spray pyrolysis process has been used for the synthesis of non-oxide ceramic powders from liquid precursors in the Si/C/N system. Particles with a high thermal stability and with variable composition and size distribution have been obtained. In this process, the mechanisms involved in precursor decomposition and gas phase recombination of species are still unknown. The final aim of this work consists in improving the whole process comprehension by an experimental/modelling approach that helps to connect the synthesized particles characteristics to the precursor properties and process operating parameters. It includes the following steps: aerosol formation by a piezoelectric nebulizer, its transport and the chemical-physical phenomena involved in the reaction processes. This paper focuses on the aerosol characterization to understand the relationship between the liquid precursor properties and the liquid droplet diameter distribution. Liquids with properties close to the precursor of interest (hexamethyldisilazane) have been used. Experiments have been performed using a shadowgraphy technique to determine the drop size distribution of the aerosol. For all operating parameters of the nebulizer device and liquids used, bimodal droplet size distributions have been obtained. Correlations proposed in the literature for the droplet size prediction by ultrasonic nebulization were used and adapted to the specific nebulizer device used in this study, showing rather good agreement with experimental values. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. RESUS: A code for low volatile radio-nuclide release from liquids due to vapor bubble burst induced liquid jet formation and disintegration

    International Nuclear Information System (INIS)

    Koch, M.K.; Starflinger, J.; Linnemann, Th.; Brockmeier, U.; Unger, H.; Schuetz, W.

    1995-01-01

    In the field of nuclear safety, the release of volatile and low volatile radio-nuclides from liquid surfaces into a gas atmosphere is important for aerosol source term considerations particularly in late severe accident sequences. In case of a hypothetical nuclear reactor accident involving a failure of the primary system, primary coolant and radio-nuclides may be released into the containment to frequently form a liquid pool which may be contaminated by suspended or solved fuel particles and fission products. Under this scope, the release code package REVOLS/RENONS was developed for radio-nuclide release from liquid surfaces. Assuming the absence of gas or vapor bubbles in the liquid, the evaporative release of volatile components, calculated by the REVOLS code, is governed by diffusive and convective transport processes, whereas the release of low volatiles, calculated by the RENONS code, may be governed by mechanical processes which leads to droplet entrainment in case of wavy liquid pool surface conditions into the containment atmosphere by means of convection. For many accident sequences, in which gas is injected into a pool or liquid area elsewhere, predominantly when saturation temperatures can be reached, the release of low volatile species from liquid surfaces due to bubble burst is identified as a decisive release mechanism also. Together with the liquid, the particles which are located at the pool surface or suspended in the pool, are released into the atmosphere. Consequently, the code RESUS.MOD1 (RESUSpension) is presently extended to include the calculation of the release of droplets and suspended radio-nuclide particles due to bubble burst induced liquid jet formation and disintegration above liquid surfaces. Experimental investigations indicate the influence of bubble volume and shape at the pool surface as well as bubble stabilization or destabilization, and furthermore the system pressure and temperatures as well as fluid properties, on droplet

  9. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench (removal of stored energy from initial temperature to saturation temperature) of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  10. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schad, Kelly C; Hynynen, Kullervo, E-mail: khynynen@sri.utoronto.c [Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto (Canada)

    2010-09-07

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 {mu}m in diameter and diluted to a concentration of 8 x 10{sup 6} droplets mL{sup -1}. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  11. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    International Nuclear Information System (INIS)

    Schad, Kelly C; Hynynen, Kullervo

    2010-01-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 μm in diameter and diluted to a concentration of 8 x 10 6 droplets mL -1 . The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  12. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Science.gov (United States)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  13. A basic experimental study on combustion of suspended sodium droplet. 2

    International Nuclear Information System (INIS)

    Sato, Kenji

    1999-10-01

    For appropriate understanding and/or prediction of the combustion behavior of sodium, working as liquid coolant in fast breeder reactors, in case of leakage accident, phenomenological analyses of the behavior must be also important along with conventional engineering approach. Following our previous study in the last year, the major objective of this experimental research is to elucidate the effects of the initial temperature and diameter of droplet, and of the air flow velocity on ignition process of a sodium droplet, by exposing a suspended droplet to the air flow at room-temperature. In the experiments, a high-temperature droplet suspended from the end of a fine stainless steel nozzle of the liquid sodium supply system was exposed to an upward air flow, and the ignition and succeeding combustion phenomena were observed by using high-speed color video recording system. In the preliminary study, the effects of lighting and image data processing on obtaining pictures suitable to analyses were investigated with the apparatus used in the previous study. After the experimental apparatus was modified partially in order to expose the unreacted droplet to the air flow more quickly, main experiments were performed in synthetic dry air or oxygen-nitrogen mixture of 21% oxygen. Good quality pictures of the phenomena achieved under good conditions were recorded even for a few cases. The details of the ignition process of a sodium droplet, including the aspects of the surface and light emission, were examined, and the effects of the air flow velocity were discussed. Since number of performed experimental runs was small, the effects of the initial droplet temperature were not examined. (author)

  14. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang

    2012-03-12

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  15. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang; Li, Erqiang; Zhang, F. H.; Sui, Yi; Spelt, Peter D M; Thoroddsen, Sigurdur T

    2012-01-01

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  16. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  17. Optimizing cell viability in droplet-based cell deposition

    NARCIS (Netherlands)

    Hendriks, Jan; Visser, C.W.; Henke, S.J.; Leijten, Jeroen Christianus Hermanus; Saris, Daniël B.F.; Sun, Chao; Lohse, Detlef; Karperien, Hermanus Bernardus Johannes

    2015-01-01

    Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here,

  18. Investigation of Effective Parameters of Drop-on-Demand Droplet Generator

    Directory of Open Access Journals (Sweden)

    Mojtaba Ghodsi

    2017-06-01

    Full Text Available This article presents a design and development of a drop-on-demand (DOD droplets generator. This generator uses molten metal as a liquid and can be used in fabrication, prototyping and any kind of printing with solder droplets. This setup consists of a vibrator solenoid with tunable frequency to produce a semi-spherical shape of molten metal, close to the surface of fabrication. This design also has a nozzle with micro-size orifice, a rod for transmitting force and a heater to melt the metal and keep it in superheat temperature. This DOD can produce droplets in different sizes (less than 550 µm by controlling the vibration frequency of solenoid. This ability together with the accuracy of the droplets in positioning (the error is less than ±20 µm for 1.5 mm amplitude can be used in different applications.  Moreover, in this paper, the impact of initial position of the head and temperature on the average diameter of droplets and the impact of the frequency on the shape of the droplets have been tested and discussed

  19. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    Science.gov (United States)

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  20. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.

    Science.gov (United States)

    Wang, Chung-Hsin; Kang, Shih-Tsung; Lee, Ya-Hsuan; Luo, Yun-Ling; Huang, Yu-Fen; Yeh, Chih-Kuang

    2012-02-01

    Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Tests of Bubble Damage Detectors in a Heavy Ion Beam from the SPS

    CERN Multimedia

    2002-01-01

    This experiment is designed to investigate the properties of a bubble damage polymer (BDP) using ion beams from the SPS. These polymers are already used commercially for making neutron and gamma-ray dosimeters. \\\\ \\\\ An attractive feature of BDP detectors is the ability to ``design'' a material to have a particular dE/dx threshold which can be used to detect such objects as monopoles and heavy ions as well as relativistic, singly charged tracks originating f particle interactions. \\\\ \\\\ The BDP detector is a polymer which holds droplets of super-heated liquid in suspension. The droplet size is typically a few microns and the droplet density is normally between 10|5 and 10|7 droplets/cm|3. The passage of a particle with a dE/dx exceeding the threshold of the material will cause the droplets with a sufficiently s parameter to change state, giving rise to bubbles. The dE/dx threshold of the BDP varies with pressure and temperature. The growth of bubbles in the bubble trail is limited by the polymer matrix and th...

  2. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit; Mayet, Abdulilah M.

    2014-01-01

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  3. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  4. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  5. In situ droplet size and speed determination in a fluid-bed granulator.

    Science.gov (United States)

    Ehlers, Henrik; Larjo, Jussi; Antikainen, Osmo; Räikkönen, Heikki; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-05-31

    The droplet size affects the final product in fluid-bed granulation and coating. In the present study, spray characteristics of aqueous granulation liquid (purified water) were determined in situ in a fluid-bed granulator. Droplets were produced by a pneumatic nozzle. Diode laser stroboscopy (DLS) was used for droplet detection and particle tracking velocimetry (PTV) was used for determination of droplet size and speed. Increased atomization pressure decreased the droplet size and the effect was most strongly visible in the 90% size fractile. The droplets seemed to undergo coalescence after which only slight evaporation occurred. Furthermore, the droplets were subjected to a strong turbulence at the event of atomization, after which the turbulence reached a minimum value in the lower halve of the chamber. The turbulence increased as speed and droplet size decreased due to the effects of the fluidizing air. The DLS and PTV system used was found to be a useful and rapid tool in determining spray characteristics and in monitoring and predicting nozzle performance. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.

    Science.gov (United States)

    Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V

    2013-12-23

    Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the

  7. New safety experiments in decommissioned superheated steam reactor at Karlstein

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    This article gives a concise summary of the Status Report of the Superheated Steam Reactor Safety Program (PHDR) Project, held at KfK on Dec. 5, 1985. The results discussed dealt with fire experiments, shock tests simulating airplane crashes, temperature shocks in the reactor pressure vessel, studies of crack detection in pressure vessels and blasting experiments associated with nuclear plant decommissioning

  8. Estimation of droplet charge forming out of an electrified ligament in the presence of a uniform electric field

    International Nuclear Information System (INIS)

    Osman, H; Castle, G S P; Adamiak, K; Fan, H T; Simmer, J

    2015-01-01

    The charge on a liquid droplet is a critical parameter that needs to be determined to accurately predict the behaviour of the droplet in many electrostatic applications, for example, electrostatic painting and ink-jet printing. The charge depends on many factors, such as the liquid conductivity, droplet and ligament radii, ligament length, droplet shape, electric field intensity, space charge, the presence of adjacent ligaments and previously formed droplets. In this paper, a 2D axisymmetric model is presented which can be used to predict the electric charge on a conductive spherical droplet ejected from a single ligament directly supplied with high voltage. It was found that the droplet charging levels for the case of isolated electrified ligaments are as much as 60 times higher than that in the case of ligaments connected to a planar high voltage electrode. It is suggested that practical atomization systems lie somewhere between these two extremes and that a better model was achieved by developing a 3D approximation of a linear array of ligaments connected to an electrode having variable width. The effect on droplet charge and its radius was estimated for several cases of different boundary conditions. (paper)

  9. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    Science.gov (United States)

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  10. Bioinspired one-dimensional materials for directional liquid transport.

    Science.gov (United States)

    Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-08-19

    One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate

  11. Characteristics of droplet motion in effervescent sprays

    Directory of Open Access Journals (Sweden)

    Jedelský Jan

    2014-03-01

    Full Text Available Time resolved droplet size and velocity measurement was made using Phase-Doppler anemometry in an effervescent spray at GLR of 6 % and operation pressure drops 21 – 52 kPa. The spray shows a size dependent variation of mean as well as fluctuating axial and radial velocities of droplets similarly for all operation regimes. Particles under 13 μm follow the gas flow, axially decelerated due to gas expansion. Velocity of medium sized particles is positively size correlated and larger particles keep high velocity, given them during discharge. Fluctuating radial velocity of small particles is larger than that of large particles while fluctuating axial velocity increases with size. Small particles thus reach a ratio of radial to axial velocity fluctuations ~ 0.6 but large particles only ~ 0.1, which indicates large transverse dispersion of small particles. Overall fluctuating velocity ratios smaller than 0.5 document an anisotropic character of the liquid mass fluctuations. Power spectral density (PSD of axial velocity fluctuations of large droplets is uniform up to 1 kHz, while PSD of smaller particles drops down with frequency for frequencies > 100 Hz. Large particles thus preserve the fluctuations imposed during discharge while the gas turbulence drops with frequency. Turbulence intensity reaches 14 to 21 % depending on pressure. Such high-turbulence character of the flow probably results from a heterogeneous gas–liquid mixture at the discharge.

  12. Characteristics of droplet motion in effervescent sprays

    Science.gov (United States)

    Jedelský, Jan; Zaremba, Matouš; Malý, Milan; Jícha, Miroslav

    2014-03-01

    Time resolved droplet size and velocity measurement was made using Phase-Doppler anemometry in an effervescent spray at GLR of 6 % and operation pressure drops 21 - 52 kPa. The spray shows a size dependent variation of mean as well as fluctuating axial and radial velocities of droplets similarly for all operation regimes. Particles under 13 μm follow the gas flow, axially decelerated due to gas expansion. Velocity of medium sized particles is positively size correlated and larger particles keep high velocity, given them during discharge. Fluctuating radial velocity of small particles is larger than that of large particles while fluctuating axial velocity increases with size. Small particles thus reach a ratio of radial to axial velocity fluctuations ~ 0.6 but large particles only ~ 0.1, which indicates large transverse dispersion of small particles. Overall fluctuating velocity ratios smaller than 0.5 document an anisotropic character of the liquid mass fluctuations. Power spectral density (PSD) of axial velocity fluctuations of large droplets is uniform up to 1 kHz, while PSD of smaller particles drops down with frequency for frequencies > 100 Hz. Large particles thus preserve the fluctuations imposed during discharge while the gas turbulence drops with frequency. Turbulence intensity reaches 14 to 21 % depending on pressure. Such high-turbulence character of the flow probably results from a heterogeneous gas-liquid mixture at the discharge.

  13. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2018-04-05

    Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.

  14. A combined volume-of-fluid method and low-Mach-number approach for DNS of evaporating droplets in turbulence

    Science.gov (United States)

    Dodd, Michael; Ferrante, Antonino

    2017-11-01

    Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.

  15. A phenomenological model of two-phase (air/fuel droplet developing and breakup

    Directory of Open Access Journals (Sweden)

    Pavlović Radomir R.

    2013-01-01

    Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.

  16. A process for superheating steam in a nuclear power station circuit and device for putting in operation this process

    International Nuclear Information System (INIS)

    Monteil, Marcel; Forestier, Jean; Leblanc, Bernard; Monteil, Pierre

    1975-01-01

    A process is described for superheating steam in a nuclear power station circuit, comprising a turbine with a high pressure chamber and a low pressure chamber. It consists in superheating the steam between the high and low pressure chambers of the turbine by using as heating fluid water under pressure at vaporisation temperature, directly taken from the recirculation or circulation flow water of the reactor or of the steam generators. The process is adapted to a pressurised water reactor using a once-through steam generator comprising in succession an economiser, a vaporiser and a superheater, the superheating water being taken at the vaporiser intake. It is also adapted for a boiling water reactor, in that the water is taken directly from the reactor vessel and at a suitable level in the recirculation water [fr

  17. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  18. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    Science.gov (United States)

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  19. Sound speed of isobaric heat capacity in the saturated and superheated vapour of cesium, rubidium and potassium

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roschupkin, V.V.

    1985-01-01

    The paper reviews the work carried out on the thermodynamic properties of alkali metal vapours. The most systematic investigations concern the sound velocity measurements for saturated and superheated vapours of caesium, for saturated vapour of rubidium, and for superheated vapour of potassium. The Joule-Thompson coefficient has been studied in caesium vapour, and the isobaric heat capacity of potassium vapour has also been examined. The experimental methods for all these experiments are described, and the data obtained are presented in tabular form. (U.K.)

  20. Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model

    KAUST Repository

    Espath, L. F. R.; Sarmiento, Adel; Vignal, Philippe; Varga, B. O. N.; Cortes, Adriano Mauricio; Dalcin, Lisandro; Calo, Victor M.

    2016-01-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq

  1. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiangwei [Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101 (China); College of Science, China Agricultural University, Beijing 100193 (China); Xing, Zhuokan [College of Science, China Agricultural University, Beijing 100193 (China); Liu, Fengmao, E-mail: liufengmao@cau.edu.cn [College of Science, China Agricultural University, Beijing 100193 (China); Zhang, Xu [College of Science, China Agricultural University, Beijing 100193 (China)

    2015-05-22

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L{sup −1}. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  2. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    International Nuclear Information System (INIS)

    You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu

    2015-01-01

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L −1 . The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly

  3. Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating

    Science.gov (United States)

    Li, Xiaoguang; Wang, Yiqi; Huang, Junchao; Yang, Yao; Wang, Renxian; Geng, Xingguo; Zang, Duyang

    2017-12-01

    A sol-gel coating consisting of hydrophobic SiO2 nanoparticles (NPs) was used to produce monolayer NP-covered (mNPc) liquid marbles. The simplest approach was rolling a droplet on this coating, and an identifiable signet allowed determination of the coverage ratio of the resulting liquid marble. Alternatively, the particles were squeezed onto a droplet surface with two such coatings, generating surface buckling from interfacial NP jamming, and then a liquid marble was produced via a jamming-relief process in which water was added into the buckled droplet. This process revealed an ˜7% reduction in particle distance after interfacial jamming. The mNPc liquid marbles obtained by the two methods were transparent with smooth profiles, as naked droplets, and could be advantageously used in fundamental and applied researches for their unique functions.

  4. Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field

    Science.gov (United States)

    Gumerov, Nail A.

    1999-01-01

    Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.

  5. Moving droplets : The measurement of contact lines

    NARCIS (Netherlands)

    Poelma, C.; Franken, M.J.Z.; Kim, H.; Westerweel, J.

    2014-01-01

    Contact lines are the locations where a gas, liquid and a solid meet. From everyday experience we know that such contact lines can be mobile, for example in the case of a water droplet sliding over a glass surface. However, the continuum description of the flow towards or away from a contact line

  6. Thermocapillary droplet actuation on structured solid surfaces

    Science.gov (United States)

    Karapetsas, George; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-11-01

    The present work investigates, through 2D and 3D finite element simulations, the thermocapillary-driven flow inside a droplet which resides on a non-uniformly heated patterned surface. We employ a recently proposed sharp-interface scheme capable of efficiently modelling the flow over complicate surfaces and consider a wide range of substrate wettabilities, i.e. from hydrophilic to super-hydrophobic surfaces. Our simulations indicate that due to the presence of the solid structures and the induced effect of contact angle hysteresis, inherently predicted by our model, a critical thermal gradient arises beyond which droplet migration is possible, in line with previous experimental observations. The migration velocity as well as the direction of motion depends on the combined action of the net mechanical force along the contact line and the thermocapillary induced flow at the liquid-air interface. We also show that through a proper control and design of the substrate wettability, the contact angle hysteresis and the induced flow field it is possible to manipulate the droplet dynamics, e.g. controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size as well as providing appropriate conditions for enhanced mixing inside the droplet. Funding from the European Research Council under the Europeans Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. [240710] is acknowledged.

  7. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  8. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  9. Experimental study on oxidation and combustion characteristics of sodium droplets

    International Nuclear Information System (INIS)

    Zhang Zhigang; Sun Shubin; Liu Chongchong; Tang Yexin

    2015-01-01

    In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent. In this paper, the oxidation and combustion characteristics of sodium droplets were studied by carrying out the experiments of the oxidation and combustion under different conditions of initial temperatures (140-370℃) of the sodium droplets and oxygen concentrations (4%-21%). The oxidation and combustion behaviors were visualized by a set of combustion apparatus of sodium droplet and a high speed camera. The experiment results show that the columnar oxides grow longer as the initial temperature of sodium droplet and oxygen concentration become lower. Under the same oxygen concentration condition, the sodium droplet with the higher initial temperature is easier to ignite and burn. When the initial temperature of sodium droplet is below 200℃, it is very difficult to ignite. If there is a turbulence damaging the oxide layer on the surface, the sodium droplet will also burn gradually. When the initial temperature ranges from 140℃ to 370℃ and the oxygen fraction is equal to or higher than 12%, the sodium droplet could burn completely and the maximum combustion temperature could roughly reach 600-800℃. When the oxygen concentration is below 12%, the sodium droplet could not burn completely and the highest combustion temperature is below 600℃. The results are helpful to the research on the columnar flow and spray sodium fire. (authors)

  10. Proof of the Parr Formula for the superheating field

    CERN Document Server

    Del Castillo, P

    2003-01-01

    In \\cite{BoHe4}, in order to prove the De Gennes Formula \\cite{Ge1966}, C. Bolley and B. Helffer have obtained an upper bound for the superheating field $h^{sh}(\\ka)$ in a semi-infinite film in the weak-$\\kappa$ limit. Precisely, they have proved that $\\ka \\left(h^{sh}(\\ka)\\right)^2\\leq 2^{-\\frac{3}{2}}+\\mathcal{O}(\\ka^{\\frac{1}{2}}).$ In this paper, we improve this result and get the upper bound

  11. Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations

    Science.gov (United States)

    Kanjanachuchai, Songphol; Wongpinij, Thipusa; Kijamnajsuk, Suphakan; Himwas, Chalermchai; Panyakeow, Somsak; Photongkam, Pat

    2018-04-01

    Lattice-mismatched layers of GaAs/InGaAs are grown on GaAs(001) using molecular beam epitaxy and subsequently heated in vacuum while the surface is imaged in situ using low-energy electron microscopy, in order to study (i) the nucleation of group-III droplets formed as a result of noncongruent sublimation and (ii) the dynamics of these self-propelled droplets as they navigate the surface. It is found that the interfacial misfit dislocation network not only influences the nucleation sites of droplets, but also exerts unusual steering power over their subsequent motion. Atypical droplet flow patterns including 90° and 180° turns are found. The directions of these dislocations-guided droplets are qualitatively explained in terms of in-plane and out-of-plane stress fields associated with the buried dislocations and the driving forces due to chemical potential and stress gradients typical of Marangoni flow. The findings would benefit processes and devices that employ droplets as catalysts or active structures such as droplet epitaxy of quantum nanostructures, vapor-liquid-solid growth of nanowires, or the fabrication of self-integrated circuits.

  12. El auge del género de superhéroes y la nueva industria cinematográfica global

    Directory of Open Access Journals (Sweden)

    Vicente GARCÍA-ESCRIVÁ

    2018-01-01

    Full Text Available Proveniente del mundo del cómic, la figura del superhéroe debutó con éxito en el cine a finales de la década de los 70. Sin embargo, ha sido durante los últimos quince años cuando esta figura ha cobrado un extraordinario protagonismo y, en sus múltiples variantes, ha dado pie a buena parte de las franquicias cinematográficas que en la actualidad dominan las salas de cine de todo el planeta. Al hilo de este nuevo paisaje fílmico, el presente artículo se propone explorar la naturaleza del cine de superhéroes, un apabullante espectáculo audiovisual que es consumido por millones de espectadores en todo el mundo, con especial incidencia entre el público infantil y juvenil. Tal indagación conduce a examinar las narrativas desplegadas en estas series de películas, así como a analizar la propia figura del superhéroe en el contexto de un cine saturado de efectos visuales y acción trepidante. Finalmente, el artículo trata de señalar las razones de fondo que han llevado a la industria de Hollywood a apostar por el género de superhéroes como fórmula recurrente para atraer al público a las salas de cine.

  13. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  14. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    Science.gov (United States)

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  16. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique)

    International Nuclear Information System (INIS)

    Charalampous, Georgios; Hardalupas, Yannis

    2011-01-01

    The dependence of fluorescent and scattered light intensities from spherical droplets on droplet diameter was evaluated using Mie theory. The emphasis is on the evaluation of droplet sizing, based on the ratio of laser-induced fluorescence and scattered light intensities (LIF/Mie technique). A parametric study is presented, which includes the effects of scattering angle, the real part of the refractive index and the dye concentration in the liquid (determining the imaginary part of the refractive index). The assumption that the fluorescent and scattered light intensities are proportional to the volume and surface area of the droplets for accurate sizing measurements is not generally valid. More accurate sizing measurements can be performed with minimal dye concentration in the liquid and by collecting light at a scattering angle of 60 deg. rather than the commonly used angle of 90 deg. Unfavorable to the sizing accuracy are oscillations of the scattered light intensity with droplet diameter that are profound at the sidescatter direction (90 deg.) and for droplets with refractive indices around 1.4.

  17. Droplet Breakup Mechanisms in Air-blast Atomizers

    Science.gov (United States)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  18. The dynamics of droplets in moist Rayleigh-Benard turbulence

    Science.gov (United States)

    Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond

    2017-11-01

    Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.

  19. Systems of mechanized and reactive droplets powered by multi-responsive surfactants

    Science.gov (United States)

    Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.

    2018-01-01

    Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

  20. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    Science.gov (United States)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  1. Experimental Investigation of Extensional Deformation of Immiscible Droplets in a Laminar, Converging Flow

    Science.gov (United States)

    Sangli, Aditya; Arispe-Guzman, Marcelo; Armstrong, Connor; Bigio, David

    2017-11-01

    The deformation of an immiscible droplet in an extensional flow has been widely studied by researchers using experimental four-roll mills where the bulk liquid imposes a stagnation extensional deformation on the droplet. However, it is of vital interest to study the behavior of an immiscible droplet in a non-stagnant extensional flow which can be produced using a converging channel. A hyperbolic converging channel was built, which could produce a constant extensional rate in the center of the channel, and deformation of droplets of Castor oil injected in a matrix of Silicone oil was observed. Droplets injected in the center of the channel experienced a pure extensional deformation while the droplets injected at an offset position attained the affine state. The nature of the droplet deformation and the critical Capillary numbers are compared with the four-roll mill experiments. Additional experiments were performed with the initial position of the droplet being vertically off center. Higher strain rates were exhibited compared to the pure extensional flow condition. An analysis of the flow field helps explaining the phenomenon and provides insight into the droplet behavior.

  2. Numerical Investigations on Electric Field Characteristics with Respect to Capacitive Detection of Free-Flying Droplets

    Directory of Open Access Journals (Sweden)

    Peter Koltay

    2012-08-01

    Full Text Available In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM, including calculations of an electric field which changes according to the presence of a liquid droplet. The volume of fluid (VOF method is applied for the simulation of the ejection process of a liquid droplet out of a dispenser nozzle. The simulations were realised using the computational fluid dynamic (CFD software CFD ACE+. The investigated capacitive sensing principle enables to determine the volume of a micro droplet passing the sensor capacitor due to the induced change in capacity. It could be found that single droplets in the considered volume range of 5 nL < Vdrop < 100 nL lead to a linear change of the capacity up to ΔQ < 30 fC. The sensitivity of the focused capacitor geometry was evaluated to be Si = 0.3 fC/nL. The simulation results are validated by experiments which exhibit good agreement.

  3. Generation of entrained droplets from an imitated disturbance wave and their deposition on the wall

    International Nuclear Information System (INIS)

    Fukano, T.; Inatomi, T.; Matsuzawa, Y.; Yoshida, T.; Uchimichi, N.

    2003-01-01

    In the present experiment, an isokinetic sampling probe technique was used for the measurement of the local droplet flow rate generated from an imitated disturbance wave, which was constructed by injecting liquid through a slit mounted on the bottom wall of a horizontal rectangular duct. The experimental data on the distribution of entrained droplets and their deposition on the duct wall are presented. As a result, it is clarified that the droplet generation is periodic and the distribution of the droplet flow rate is not uniform in both axial and height directions. And accordingly the droplet flow is fundamentally unsteady. Furthermore, the correlation of the entrainment fraction proposed by Paleev-Filippovich is superior to that by others. (orig.)

  4. Lithium droplet divertor collector for ions and heat

    International Nuclear Information System (INIS)

    Wells, W.M.

    1979-01-01

    Coping with the ion and energy fluxes which must be collected with a tokamak divertor is one of the more difficult technological challenges for a power producing reactor. Use of stationary solid surfaces to collect ions and the attendant heat flux faces technology feasibility questions. Calculations indicate that gravity-driven flow of liquid metals having a free surface will not move adequately fast. It is proposed to circumvent these problems by having high velocity lithium droplets perform the collection functions. Droplets which are not in contact with a wall encounter only very small retardation effects in a magnetic field, and these droplets can be formed by nozzles outside of the magnetic field. If they travel at about 150 m/s, they can absorb in excess of 1 kW/cm 2 of projected area. The hydrogen isotope ion fluence is well below the saturation dose which has been achieved with lithium

  5. An impulse-driven liquid-droplet deposition interface for combining LC with MALDI MS and MS/MS.

    Science.gov (United States)

    Young, J Bryce; Li, Liang

    2006-03-01

    A simple and robust impulse-driven droplet deposition system was developed for off-line liquid chromatography matrix-assisted laser desorption ionization mass spectrometry (LC-MALDI MS). The system uses a solenoid operated with a pulsed voltage power supply to generate impulses that dislodge the hanging droplets from the LC outlet directly to a MALDI plate via a momentum transfer process. There is no contact between the LC outlet and the collection surface. The system is compatible with solvents of varying polarity and viscosity, and accommodates the use of hydrophobic and hydrophilic MALDI matrices. MALDI spots are produced on-line with the separation, and do not require further processing before MS analysis. It is shown that high quality MALDI spectra from 5 fmol of pyro-Glu-fibrinopeptide deposition after LC separation could be obtained using the device, indicating that there was no sample loss in the interface. To demonstrate the analytical performance of the system as a proteome analysis tool, a range of BSA digest concentrations covering about 3 orders of magnitude, from 5 fmol to 1 pmol, were analyzed by LC-MALDI quadrupole time-of-flight MS, yielding 6 and 57% amino acid sequence coverage, respectively. In addition, a complex protein mixture of an E. coli cell extract was tryptically digested and analyzed by LC-MALDI MS, resulting in the detection of a total of 409 unique peptides from 100 fractions of 15-s intervals.

  6. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  7. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    Science.gov (United States)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  8. Liquid-liquid structure transition and nucleation in undercooled Co-B eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yixuan [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France); Li, Jinshan; Wang, Jun; Kou, Hongchao [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Beagunon, Eric [Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France)

    2017-06-15

    Cyclic superheating and cooling were carried out for the undercooled hypereutectic Co{sub 80}B{sub 20}, eutectic Co{sub 81.5}B{sub 18.5,} and hypoeutectic Co{sub 83}B{sub 17} alloys. For each alloy, there is a critical overheating temperature T{sub c}° at which there is a sharp increase of the mean undercooling, i.e., below (above) T{sub c}°, and the mean undercooling is about 80 °C (200 °C). DSC measurements show that there is a thermal absorption peak in the heating process, the peak temperature of which is nearly equal to the critical overheating temperature, indicating that the temperature-induced liquid-liquid structure transition does occur and should relate highly to nucleation in the undercooled Co-B eutectic melts. The effect of the liquid-liquid structure transition on nucleation was interpreted by the recent nucleation theory that considers the structures of overheated melts, and the composition-dependent overheating temperature was ascribed to the change of local favored structures. The present work provides further evidences for the liquid-liquid structure transition and is helpful for understanding solidification in undercooled melts. (orig.)

  9. Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Zhang Qing-Yu; Zhang You-Fa; Zhu Ming-Fang; Sun Dong-Ke

    2016-01-01

    In the present study, the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multi-component multi-phase lattice Boltzmann model. The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays. Droplets nucleated at the top (top-nucleation mode), or in the upside interpillar space of nanoarrays (side-nucleation mode), generate the non-wetting Cassie state, whereas the ones nucleated at the bottom corners between the nanoarrays (bottom-nucleation mode) present the wetting Wenzel state. Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes. The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated, indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface. The simulation results are compared well with the experimental observations reported in the literature. (paper)

  10. Superheated superconducting granules: a detector for particle physics and astrophysics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1987-01-01

    A general introduction to superheated superconducting granules (SSG) detectors is given and some recent results on their basic properties are presented. Granules recently made by industrial producers exhibit good metastability properties and show sensitivity, better than naively expected, to photons and ionizing particles. The behaviour of SSG detectors at very low temperatures is also discussed. We finally sketch a critical review of proposed applications to the cross-disciplinary frontier between particle physics and astrophysics

  11. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

    1990-11-01

    Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

  12. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  13. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  14. Application of rainbow refractometry for measurement of droplets with solid inclusions

    Science.gov (United States)

    Li, Can; Wu, Xue-cheng; Cao, Jian-zheng; Chen, Ling-hong; Gréhan, Gerard; Cen, Ke-fa

    2018-01-01

    Characterization of droplets with solid inclusions is of great research interest and has wide industrial applications. Reported here is a theoretical and experimental investigation of the measurement of droplets with solid inclusions using rainbow refractometry. A rainbow extinction model of a droplet with solid inclusions was deduced based on Beer-Lambert's Law. It takes into account the volume concentration, relative size, scattering efficiency of the solid inclusion, and liquid refractive index. An acoustic levitation system for a single droplet and a global rainbow instrumentation system for spray were integrated to study the effect of the H2O-CaCO3 suspension droplets on the rainbow signal and the measured parameters. The results showed that the rainbow encountered unusual disturbances, introduced by the solid inclusions, but its overall structure was not destroyed. Discoveries also included that for volume concentrations of 2.5% or less the CaCO3 particles with diameters below 4 μm had little effect on the measured parameters of the host droplet. The extinction characteristic was also analyzed. The rainbow extinction model failed to quantity the volume concentration of CaCO3, but succeeded in its qualitative analysis.

  15. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Behavior of fine droplet flow. JAERI's nuclear research promotion program, H10-027-7. Contract research

    International Nuclear Information System (INIS)

    Kataoka, Isao; Yoshida, Kenji; Matsuura, Keizo

    2002-03-01

    Analytical and experimental researches were carried out on the behavior of fine droplet flow in relation to the fundamental phenomena of thermohydraulics in severe accident. Simulation program of fine droplet behavior in turbulent gas flow was developed based on the eddy interaction model with improvement of Graham's stochastic model on eddy lifetime and eddy size. Furthermore, the developed program are capable of simulating the droplet behavior in annular dispersed flow based on the models of droplet entrainment from liquid film and turbulence modification of gas phase by liquid film. This program was confirmed by the various experimental data on droplet diffusion, deposition. Furthermore, this program was applied to the three dimensional droplet flow with the satisfactory agreement of experimental data. This means the developed program can be used as a simulation program for analysis of severe accident. Experimental research was carried out on the effect of liquid film on the turbulence field of gas flow in annular and annular dispersed flow. Averaged and turbulent velocity of gas phase were measured under various gas and liquid film flow rates. Turbulent velocity of gas phase in annular flow increased compared with single phase gas flow. This is due to turbulence generation by waves in liquid film. Corresponding to the turbulence modification by liquid film, distribution of averaged velocity of gas phase became flattened compared with single phase gas flow. (author)

  16. Axial propagation of free surface boiling into superheated liquids in vertical tubes

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Fauske, H.K.

    1974-01-01

    A unique free surface boiling phenomenon has been observed as a result of rapid depressurization of an initially saturated or slightly subcooled stagnant liquid column in the absence of wall and bulk nucleation sites. Closeup high-speed photographs of water, refrigerant-11, and methyl alcohol in tubes from 0.2 to 15 in. dia reveal that the initiation of violent free surface flashing (vapor plus entrained liquid) follows from the development of Marangoni-type surface waves. The rate of propagation of the flashing surface shows evidence of choked flow limitations and proceeds at a rate which is several orders of magnitude greater than surface evaporation (vapor only) alone. The onset of free surface flashing was found to be dependent upon both the degree of initial liquid superheat and the tube diameter. (U.S.)

  17. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  18. Evolution of oil droplets in a chemorobotic platform

    Science.gov (United States)

    Gutierrez, Juan Manuel Parrilla; Hinkley, Trevor; Taylor, James Ward; Yanev, Kliment; Cronin, Leroy

    2014-12-01

    Evolution, once the preserve of biology, has been widely emulated in software, while physically embodied systems that can evolve have been limited to electronic and robotic devices and have never been artificially implemented in populations of physically interacting chemical entities. Herein we present a liquid-handling robot built with the aim of investigating the properties of oil droplets as a function of composition via an automated evolutionary process. The robot makes the droplets by mixing four different compounds in different ratios and placing them in a Petri dish after which they are recorded using a camera and the behaviour of the droplets analysed using image recognition software to give a fitness value. In separate experiments, the fitness function discriminates based on movement, division and vibration over 21 cycles, giving successive fitness increases. Analysis and theoretical modelling of the data yields fitness landscapes analogous to the genotype-phenotype correlations found in biological evolution.

  19. Penetration of liquid fingers into superheated fractured rock

    Science.gov (United States)

    Birkholzer, Jens

    2003-04-01

    Water infiltrating down a fracture in unsaturated rock experiences complex fluid flow and heat transfer phenomena when entering above-boiling rock temperature regions. Such conditions are expected, for example, after emplacement of heat-generating nuclear waste in underground repositories. A new efficient semianalytical method is proposed in this paper that simulates the flow processes of infiltration events subject to vigorous boiling from the adjacent hot rock. It is assumed that liquid flow forms in localized preferential flow paths and that infiltration events are typically short in duration but large in magnitude relative to the average net infiltration. The new solution scheme is applied to several test cases studying sensitivity to a variety of input parameters. Sample simulations are performed for conditions representative of the potential nuclear waste repository at Yucca Mountain, Nevada. A characteristic parameter is introduced that provides a quick estimate of the relative significance of boiling at a given location of interest.

  20. Penetration of liquid fingers into superheated fractured rock

    International Nuclear Information System (INIS)

    Birkholzer, Jens

    2002-01-01

    Water infiltrating down a fracture in unsaturated rock experiences complex fluid-flow and heat-transfer phenomena when entering above-boiling rock temperature regions. Such conditions are expected, for example, after emplacement of heat-generating nuclear waste in underground repositories. A new, efficient semi-analytical method is proposed in this paper that simulates the flow processes of infiltration events subject to vigorous boiling from the adjacent hot rock. It is assumed that liquid flow forms in localized preferential flow paths, and that infiltration events are typically short in duration but large in magnitude relative to the average net infiltration. The new solution scheme is applied to several test cases studying sensitivity to a variety of input parameters. Sample simulations are performed for conditions representative of the potential nuclear waste repository at Yucca Mountain, Nevada. A characteristic parameter is introduced that provides a quick estimate of the relative significance of boiling at a given location of interest

  1. High-Speed Imaging of Explosive Droplet Boiling at the Superheat Limit

    Science.gov (United States)

    Ferris, F. Robert; Hermanson, Jim; Asadollahi, Arash; Esmaeeli, Asghar

    2017-11-01

    The explosive boiling processes of droplets of diethyl ether (1-2 mm in diameter) at the superheat limit were examined both experimentally and computationally. Experimentally, droplet explosion was studied using a heated bubble column to bring the test droplet to the superheat limit. The droplet fluid was diethyl ether (superheat limit 147 C at 1 bar) with immiscible glycerol employed as the heated host fluid. Tests were carried out at pressures between 0.5 and 4 bar absolute. The pressure rise associated with the explosive boiling event was captured using a piezoelectric quartz pressure transducer with a 1 MHz DAQ system. High-speed imaging of the interfacial behavior during explosive boiling was performed using a Phantom v12.1 camera at a frame rate of up to one million frames per second with the droplets illuminated by diffuse back-lighting. The imaging reveals features of the Rayleigh-Taylor instability at the vapor-liquid interface resulting from the unstable boiling process. Computationally, Direct Numerical Simulations are performed at Southern Illinois University Carbondale to compliment the experimental tests. NSF Award Number 1511152.

  2. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    Science.gov (United States)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  3. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  4. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    Science.gov (United States)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  5. Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J

    Science.gov (United States)

    Sies, M. F.; Madzlan, N. F.; Asmuin, N.; Sadikin, A.; Zakaria, H.

    2017-09-01

    In this study, determine of spray droplets size (SMD) using water sensitive paper (WSP) at low fluid pressure with deflector nozzle or tangential flow nozzle model Delavan AL75 and New Design Nozzle with two different type of swirl (ND2.5 A1.0 & ND2.5 B1.0). These three deflected flat sprays have used at different liquid mixing ratio. These liquid mixture ratios are pure water, 10% of lime juice + 90% of water (L10W90) and 30% of lime juice + 70% of water (L30W70). WSP is used to collect the spray droplets from nozzles. The operational liquid pressure of each nozzle is 3 bar, while air operational pressures are 3 bar and 6 bar. Then, the WSP were scanned using scanner then it was analyzed using ImageJ software. ImageJ can be used for determining the diameter of droplets size on the WSP. As the results from an experiment, the AL75 nozzle recorded the lowest Sauter mean diameter which is 193.69μm at 6 bar of pressurized air while ND2.5 A1.0 recorded the highest Sauter mean diameter which is 353.61µm at 3 bar of pressurized air. Summary from the experiment shows that the higher of droplet size is because of the lower air pressure (3 Bar). Then, increasing of liquid viscosity also increase the SMD. The orifice diameter for New Design nozzle (ND-2.5) is smaller than AL75, which are 2.5mm and 2.8mm respectively. The different nozzle design also gives effect the SMD. WSP is an alternative method to determine SMD for spray droplets with the low cost if compared to Phase Doppler Anemometry (PDA).

  6. Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    Science.gov (United States)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2018-03-01

    An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet-vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.

  7. On-demand production of uniform DT droplets using pulsed electrohydrodynamic spraying. Charged Particle Research Laboratory report No. 1-82

    International Nuclear Information System (INIS)

    Kim, K.; Gavrilovic, P.

    1982-04-01

    A technique suitable for on-demand production of uniform DT droplets is investigated using pulsed electrohydrodynamic (EHD) spraying. Liquid hydrogen is employed as the working liquid, into which charge is injected using a sharp tungsten needle raised to high voltage. By controlling this high voltage, the amount of charge injection required for disrupting the liquid surface into a smooth liquid jet of desired size is determined. For on-demand production of the liquid jet (which breaks up into uniform droplets), high voltage pulses of appropriate height and duration are applied to the charge injection electrode. Results obtained with liquid hydrogen and liquid nitrogen are presented. Considering the potential hazard and scarcity of tritium, the present technique may prove to be particularly useful when there is a need for filling ICF targets with a controlled amount of DT micropellets

  8. Measurement of droplet vaporization rate enhancement caused by acoustic disturbances

    Science.gov (United States)

    Anderson, T. J.; Winter, M.

    1992-10-01

    Advanced laser diagnostics are being applied to quantify droplet vaporization enhancement in the presence of acoustic fields which can lead to instability in liquid-fueled rockets. While models have been developed to describe the interactions between subcritical droplet vaporization and acoustic fields in the surrounding gases, they have not been verified experimentally. In the super critical environment of a rocket engine combustor, little is understood about how the injected fluid is distributed. Experiments in these areas have been limited because of the lack of diagnostic techniques capable of providing quantitative results. Recently, however, extremely accurate vaporization rate measurements have been performed on droplets in a subcritical environment using morphology-dependent resonances (MDR's) in which fluorescence from an individual droplet provides information about its diameter. Initial measurements on methanol droplets behind a pressure pulse with a pressure ratio of 1.2 indicated that the evaporation rate in the first few microsec after wave passage was extremely high. Subsequent measurements have been made to validate these results using MDR's acquired from similarly-sized droplets using a pulse with a 1.1 pressure ratio. A baseline measurement was also made using a non evaporative fluid under similar Weber and Reynolds number conditions. The MDR technique employed for these measurements is explained and the facilities are described. The evaporation measurement results are shown and the rates observed from different droplet materials and different wave strengths are compared.

  9. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    OpenAIRE

    Chen, Jian Z.; Darhuber, Anton A.; Troian, Sandra M.; Wagner, Sigurd

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable wi...

  10. Onset of liquid droplet entrainment on a direct vessel injection system for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-Young [Handong Global University, Pohang (Korea, Republic of); Kim, Jong-Rok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this research, a series of visualization works was conducted to understand droplet entrainment of the flow pattern generated in direct vessel injection system(DVI) of Korea nuclear power plant, APR 1400. In the emergency situation of a nuclear power plant, reliability of DVI cooling can be an important issue. It is known that, the amount and the rate of entrainment during the DVI cooling process can significantly affect the total heat removal. To visualize the film Reynolds number closely related with onset of droplet entrainment induced by falling film flow and lateral air flow in a small gap, confocal chromatic sensing method for measuring accurately film thickness and depth averaging particle image velocimetry for film velocity were used. The results have been post processed 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. To visualize the droplet entrainment induced by falling film flow and lateral air flow in a small gap, shadowgraph method with CCD camera (2200fps, 1280 pixel X 800 pixel, ) on coated plate with super water-repellent agent was used. The results have been post processed using 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. By adopting both super hydrophobic coating method and shadowgraph method, entrainment in a narrow gap was successfully visualized that has rarely performed before and meaningful results for DVI system research fields have been made.

  11. Onset of liquid droplet entrainment on a direct vessel injection system for APR1400

    International Nuclear Information System (INIS)

    Kim, Han-sol; Lee, Jae-Young; Kim, Jong-Rok; Euh, Dong-Jin

    2016-01-01

    In this research, a series of visualization works was conducted to understand droplet entrainment of the flow pattern generated in direct vessel injection system(DVI) of Korea nuclear power plant, APR 1400. In the emergency situation of a nuclear power plant, reliability of DVI cooling can be an important issue. It is known that, the amount and the rate of entrainment during the DVI cooling process can significantly affect the total heat removal. To visualize the film Reynolds number closely related with onset of droplet entrainment induced by falling film flow and lateral air flow in a small gap, confocal chromatic sensing method for measuring accurately film thickness and depth averaging particle image velocimetry for film velocity were used. The results have been post processed 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. To visualize the droplet entrainment induced by falling film flow and lateral air flow in a small gap, shadowgraph method with CCD camera (2200fps, 1280 pixel X 800 pixel, ) on coated plate with super water-repellent agent was used. The results have been post processed using 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. By adopting both super hydrophobic coating method and shadowgraph method, entrainment in a narrow gap was successfully visualized that has rarely performed before and meaningful results for DVI system research fields have been made

  12. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    Science.gov (United States)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  13. The Effects of Sooting and Radiation on Droplet Combustion

    Science.gov (United States)

    Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young

    1997-01-01

    The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.

  14. Effect of droplet size on the droplet behavior on the heterogeneous surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Yeon; Son, Sung Wan; Ha, ManYeong [Pusan National University, Busan (Korea, Republic of); Park, Yong Gap [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The characteristics of a three-dimensional hemispherical droplet on a heterogeneous surface were studied using the Lattice Boltzmann method (LBM). The hydrophilic surface has a hydrophobic part at the center. The hemispherical droplets are located at the center of the heterogeneous surface. According to the contact angles of hydrophilic and hydrophobic bottom surfaces, the droplet either separates or reaches a new equilibrium state. The separation time varies according to the change in droplet size, and it affects the status of droplet separation. The droplet separation behavior was investigated by analyzing the velocity vector around the phase boundary line. The shape and separation time of a droplet are determined by the contact angle of each surface. The speed of droplet separation increases as the difference in contact angle increases between the hydrophobic surface and hydrophilic surface. The separation status and the separation time of a droplet are also determined by the change of the droplet size. As the size of the droplet decreases, the effect of surface tension decreases, and the separation time of the droplet also decreases. On the other hand, as the droplet becomes larger, the effect of surface tension increases and the time required for the droplet to separate also increases.

  15. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    Science.gov (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  16. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  17. Fusion of microlitre water-in-oil droplets for simple, fast and green chemical assays.

    Science.gov (United States)

    Chiu, S-H; Urban, P L

    2015-08-07

    A simple format for microscale chemical assays is proposed. It does not require the use of test tubes, microchips or microtiter plates. Microlitre-range (ca. 0.7-5.0 μL) aqueous droplets are generated by a commercial micropipette in a non-polar matrix inside a Petri dish. When two droplets are pipetted nearby, they spontaneously coalesce within seconds, priming a chemical reaction. Detection of the reaction product is accomplished by colorimetry, spectrophotometry, or fluorimetry using simple light-emitting diode (LED) arrays as the sources of monochromatic light, while chemiluminescence detection of the analytes present in single droplets is conducted in the dark. A smartphone camera is used as the detector. The limits of detection obtained for the developed in-droplet assays are estimated to be: 1.4 nmol (potassium permanganate by colorimetry), 1.4 pmol (fluorescein by fluorimetry), and 580 fmol (sodium hypochlorite by chemiluminescence detection). The format has successfully been used to monitor the progress of chemical and biochemical reactions over time with sub-second resolution. A semi-quantitative analysis of ascorbic acid using Tillman's reagent is presented. A few tens of individual droplets can be scanned in parallel. Rapid switching of the LED light sources with different wavelengths enables a spectral analysis of multiple droplets. Very little solid waste is produced. The assay matrix is readily recycled, thus the volume of liquid waste produced each time is also very small (typically, 1-10 μL per analysis). Various water-immiscible translucent liquids can be used as the reaction matrix: including silicone oil, 1-octanol as well as soybean cooking oil.

  18. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations.

    Science.gov (United States)

    You, David J; Yoon, Jeong-Yeol

    2012-09-04

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using "wire-guided" method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of

  19. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  20. Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2014-11-26

    The effects of ethanol component and nanoparticle concentration on evaporation dynamics of graphite-water nanofluid droplets have been studied experimentally. The results show that the formed deposition patterns vary greatly with an increase in ethanol concentration from 0 to 50 vol %. Nanoparticles have been observed to be carried to the droplet surface and form a large piece of aggregate. The volume evaporation rate on average increases as the ethanol concentration increases from 0 to 50 vol % in the binary mixture nanofluid droplets. The evaporation rate at the initial stage is more rapid than that at the late stage to dry, revealing a deviation from a linear fitting line, standing for a constant evaporation rate. The deviation is more intense with a higher ethanol concentration. The ethanol-induced smaller liquid-vapor surface tension leads to higher wettability of the nanofluid droplets. The graphite nanoparticles in ethanol-water droplets reinforce the pinning effect in the drying process, and the droplets with more ethanol demonstrate the depinning behavior only at the late stage. The addition of graphite nanoparticles in water enhances a droplet baseline spreading at the beginning of evaporation, a pinning effect during evaporation, and the evaporation rate. However, with a relatively high nanoparticle concentration, the enhancement is attenuated.

  1. Modeling study of droplet behavior during blowdown period of large break LOCA based on experimental data

    International Nuclear Information System (INIS)

    Sakaba, Hiroshi; Umezawa, Shigemitsu; Teramae, Tetsuya; Furukawa, Yuji

    2004-01-01

    During LOCA (Loss Of Coolant Accident) in PWR, droplets behavior during blowdown period is one of the important phenomena. For example, the spattering from falling liquid film that flows from upper plenum generates those droplets in core region. The behavior of droplets in such flow has strong effect for cladding temperature behavior because these droplets are able to remove heat from a reactor core by its direct contact on fuel rods and its evaporation at the surface. For safety analysis of LOCA in PWR, it is necessary to evaluate droplet diameter precisely in order to predict fuel cladding temperature changing by the calculation code. Based on the test results, a new droplet behavior model was developed for the MCOBRA/TRC code that predicts the droplet behavior during such LOCA events. Furthermore, the verification calculations that simulated some blowdown tests were performed using by the MCOBRA/TRAC code. These results indicated the validity of this droplet model during blow down cooling period. The experiment was focused on investigating the Weber number of steady droplet in the blow down phenomenon of large break LOCA. (author)

  2. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Behavior of fine droplet flow. JAERI's nuclear research promotion program, H10-027-7. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Isao; Yoshida, Kenji [Osaka Univ., Graduate School of Engineering, Osaka (Japan); Matsuura, Keizo [Nuclear Fuel Industry, Co., Ltd., Tokyo (Japan)

    2002-03-01

    Analytical and experimental researches were carried out on the behavior of fine droplet flow in relation to the fundamental phenomena of thermohydraulics in severe accident. Simulation program of fine droplet behavior in turbulent gas flow was developed based on the eddy interaction model with improvement of Graham's stochastic model on eddy lifetime and eddy size. Furthermore, the developed program are capable of simulating the droplet behavior in annular dispersed flow based on the models of droplet entrainment from liquid film and turbulence modification of gas phase by liquid film. This program was confirmed by the various experimental data on droplet diffusion, deposition. Furthermore, this program was applied to the three dimensional droplet flow with the satisfactory agreement of experimental data. This means the developed program can be used as a simulation program for analysis of severe accident. Experimental research was carried out on the effect of liquid film on the turbulence field of gas flow in annular and annular dispersed flow. Averaged and turbulent velocity of gas phase were measured under various gas and liquid film flow rates. Turbulent velocity of gas phase in annular flow increased compared with single phase gas flow. This is due to turbulence generation by waves in liquid film. Corresponding to the turbulence modification by liquid film, distribution of averaged velocity of gas phase became flattened compared with single phase gas flow. (author)

  3. Effects of droplet interactions on droplet transport at intermediate Reynolds numbers

    Science.gov (United States)

    Shuen, Jian-Shun

    1987-01-01

    Effects of droplet interactions on drag, evaporation, and combustion of a planar droplet array, oriented perpendicular to the approaching flow, are studied numerically. The three-dimensional Navier-Stokes equations, with variable thermophysical properties, are solved using finite-difference techniques. Parameters investigated include the droplet spacing, droplet Reynolds number, approaching stream oxygen concentration, and fuel type. Results are obtained for the Reynolds number range of 5 to 100, droplet spacings from 2 to 24 diameters, oxygen concentrations of 0.1 and 0.2, and methanol and n-butanol fuels. The calculations show that the gasification rates of interacting droplets decrease as the droplet spacings decrease. The reduction in gasification rates is significant only at small spacings and low Reynolds numbers. For the present array orientation, the effects of interactions on the gasification rates diminish rapidly for Reynolds numbers greater than 10 and spacings greater than 6 droplet diameters. The effects of adjacent droplets on drag are shown to be small.

  4. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  5. Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study

    International Nuclear Information System (INIS)

    Gao Yu-Feng; Yang Yang; Sun De-Yan

    2011-01-01

    Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained. Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions. (condensed matter: structure, mechanical and thermal properties)

  6. Swimming droplets driven by a surface wave

    Science.gov (United States)

    Ebata, Hiroyuki; Sano, Masaki

    2015-02-01

    Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects.

  7. Nanoparticle motion on the surface of drying droplets

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2018-03-01

    Advances in solution-based printing and surface patterning techniques for additive manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets and its relationship with deposit structure. Although the evaporation-driven deposition has been studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by the multiphase lattice Boltzmann-Brownian dynamics method. The particle trajectory and its area density profile characterize the assembly dynamics and deposition pattern development during evaporation. While the bulk-dispersed particles continuously move to the contact line, forming the typical "coffee-ring" deposit, the interface-bound particles migrate first toward the apex and then to the contact line as the droplet dries out. To understand this unexpected behavior, we resolve the droplet velocity field both in the bulk and within the interfacial region. The simulation results agree well with the analytical solution for the Stokes flow inside an evaporating droplet. At different stages of evaporation, our study reveals that the competition between the tangential surface flow and the downward motion of the evaporating liquid-vapor interface governs the dynamics of the interface-bound particles. In particular, the interface displacement contributes to the particle motion toward the droplet apex in a short phase, while the outward advective flow prevails at the late stage of drying and carries the particles to the contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at the center, in addition to a coffee ring. Despite its small influence on the final deposit in the present study, the distinct dynamics of surface-active particles due to the interfacial confinement

  8. Fundamental study of droplet spray characteristics in photomask cleaning for advanced lithography

    Science.gov (United States)

    Lu, C. L.; Yu, C. H.; Liu, W. H.; Hsu, Luke; Chin, Angus; Lee, S. C.; Yen, Anthony; Lee, Gaston; Dress, Peter; Singh, Sherjang; Dietze, Uwe

    2010-09-01

    The fundamentals of droplet-based cleaning of photomasks are investigated and performance regimes that enable the use of binary spray technologies in advanced mask cleaning are identified. Using phase Doppler anemometry techniques, the effect of key performance parameters such as liquid and gas flow rates and temperature, nozzle design, and surface distance on droplet size, velocity, and distributions were studied. The data are correlated to particle removal efficiency (PRE) and feature damage results obtained on advanced photomasks for 193-nm immersion lithography.

  9. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    Science.gov (United States)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  10. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  11. Two mechanisms of droplet splashing on a solid substrate

    KAUST Repository

    Jian, Zhen

    2017-11-29

    We investigate droplet impact on a solid substrate in order to understand the influence of the gas in the splashing dynamics. We use numerical simulations where both the liquid and the gas phases are considered incompressible in order to focus on the gas inertial and viscous contributions. We first confirm that the dominant gas effect on the dynamics is due to its viscosity through the cushioning of the gas layer beneath the droplet. We then describe an additional inertial effect that is directly related to the gas density. The two different splashing mechanisms initially suggested theoretically are observed numerically, depending on whether a jet is created before or after the impacting droplet wets the substrate. Finally, we provide a phase diagram of the drop impact outputs as the gas viscosity and density vary, emphasizing the dominant effect of the gas viscosity with a small correction due to the gas density. Our results also suggest that gas inertia influences the splashing formation through a Kelvin–Helmholtz-like instability of the surface of the impacting droplet, in agreement with former theoretical works.

  12. Analysis of liquid samples using dried-droplet laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Do, Trong-Mui; Hsieh, Hui-Fang; Chang, Wei-Ciang [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei City, 11031 Taiwan (China); Wang, Chu-Fang, E-mail: cfwang@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2011-08-15

    In this study we developed a dried-droplet method for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method provides accurate and precise results when building calibration curves and determining elements of interest in real liquid samples. After placing just 1 {mu}L of a liquid standard solution or a real sample onto the filter surface and then converting the solution into a very small, thin dry spot, the sample could be applied as an analytical subject for LA. To demonstrate the feasibility of this proposed method, we used LA-ICP-MS and conventional ICP-MS to determine the levels of 13 elements (Li, V, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) in five water samples. The correlation coefficients obtained from the various calibration curves ranged from 0.9920 ({sup 205}Tl) to 0.9998 ({sup 51}V), sufficient to allow the determination of a wide range of elements in the samples. We also investigated the effects of Methylene Blue (MB) and the NaCl concentration on the elemental analyses. MB could be used as an indicator during the ablation process; its presence in the samples only negligibly influenced the intensities of the signals of most of the tested elements. Notably, high NaCl contents led to signal suppression for some of the elements. In comparison with the established sample introduction by nebulization, our developed technique abrogates the need for time-consuming sample preparation and reduces the possibility of sample contamination.

  13. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    Science.gov (United States)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  14. Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation.

    Science.gov (United States)

    Gatapova, Elizaveta Ya; Shonina, Anna M; Safonov, Alexey I; Sulyaeva, Veronica S; Kabov, Oleg A

    2018-03-07

    The evaporation dynamics of a water droplet with an initial volume of 2 μl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 μm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R 2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.

  15. Interaction mechanisms between ceramic particles and atomized metallic droplets

    Science.gov (United States)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of

  16. Internal flow inside droplets within a concentrated emulsion during droplet rearrangement

    Science.gov (United States)

    Leong, Chia Min; Gai, Ya; Tang, Sindy K. Y.

    2018-03-01

    Droplet microfluidics, in which each droplet serves as a micro-reactor, has found widespread use in high-throughput biochemical screening applications. These droplets are often concentrated at various steps to form a concentrated emulsion. As part of a serial interrogation and sorting process, such concentrated emulsions are typically injected into a tapered channel leading to a constriction that fits one drop at a time for the probing of droplet content in a serial manner. The flow physics inside the droplets under these flow conditions are not well understood but are critical for predicting and controlling the mixing of reagents inside the droplets as reactors. Here we investigate the flow field inside droplets of a concentrated emulsion flowing through a tapered microchannel using micro-particle image velocimetry. The confining geometry of the channel forces the number of rows of drops to reduce by one at specific and uniformly spaced streamwise locations, which are referred to as droplet rearrangement zones. Within each rearrangement zone, the phase-averaged velocity results show that the motion of the droplets involved in the rearrangement process, also known as a T1 event, creates vortical structures inside themselves and their adjacent droplets. These flow structures increase the circulation inside droplets up to 2.5 times the circulation in droplets at the constriction. The structures weaken outside of the rearrangement zones suggesting that the flow patterns created by the T1 process are transient. The time scale of circulation is approximately the same as the time scale of a T1 event. Outside of the rearrangement zones, flow patterns in the droplets are determined by the relative velocity between the continuous and disperse phases.

  17. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    NARCIS (Netherlands)

    Chen, J.-Z.; Darhuber, A.A.; Troian, S.M.; Wagner, S.

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is

  18. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations

    Directory of Open Access Journals (Sweden)

    You David J

    2012-09-01

    Full Text Available Abstract A computer numerical control (CNC apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study. This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate. Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction. The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability, in rapid succession (using droplets

  19. Multi-scale simulation of droplet-droplet interactions and coalescence

    CSIR Research Space (South Africa)

    Musehane, Ndivhuwo M

    2016-10-01

    Full Text Available Conference on Computational and Applied Mechanics Potchefstroom 3–5 October 2016 Multi-scale simulation of droplet-droplet interactions and coalescence 1,2Ndivhuwo M. Musehane?, 1Oliver F. Oxtoby and 2Daya B. Reddy 1. Aeronautic Systems, Council... topology changes that result when droplets interact. This work endeavours to eliminate the need to use empirical correlations based on phenomenological models by developing a multi-scale model that predicts the outcome of a collision between droplets from...

  20. A new stationary droplet evaporation model and its validation

    Directory of Open Access Journals (Sweden)

    Fang WANG

    2017-08-01

    Full Text Available The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets’ evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their evaporation rate changing with temperature, were obtained. The evaporation rate experimental data were compared with the prediction result of Ranz-Marshall boiling temperature model (RMB, Ranz-Marshall low-temperature model (RML, drift flux model (DFM, mass analogy model (MAM, and stagnant film model (SFM. The disparity between the experimental data and the model prediction results was mainly caused by the neglect of the natural convection effect, which was never introduced into the droplet evaporation concept. A new droplet evaporation model with consideration of natural convection buoyancy force effect was proposed in this paper. Under the experimental conditions in this paper, the calculation results of the new droplet evaporation model were agreed with the experimental data for kerosene, methanol and other fuels, with less than 20% relative deviations. The relative deviations between the new evaporation model predictions for kerosene and the experimental data from the references were within 10%.