WorldWideScience

Sample records for supergravity motivated model

  1. Likelihood analysis of the next-to-minimal supergravity motivated model

    International Nuclear Information System (INIS)

    Balazs, Csaba; Carter, Daniel

    2009-01-01

    In anticipation of data from the Large Hadron Collider (LHC) and the potential discovery of supersymmetry, we calculate the odds of the next-to-minimal version of the popular supergravity motivated model (NmSuGra) being discovered at the LHC to be 4:3 (57%). We also demonstrate that viable regions of the NmSuGra parameter space outside the LHC reach can be covered by upgraded versions of dark matter direct detection experiments, such as super-CDMS, at 99% confidence level. Due to the similarities of the models, we expect very similar results for the constrained minimal supersymmetric standard model (CMSSM).

  2. Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models

    International Nuclear Information System (INIS)

    Baer, H.; Gunion, J.F.; Kao, C.; Pois, H.

    1995-01-01

    We explore the ability of the Fermilab Tevatron to probe minimal supersymmetry with high-energy-scale boundary conditions motivated by supersymmetry breaking in the context of minimal and string-motivated supergravity theory. A number of boundary condition possibilities are considered: dilatonlike string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (''no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAGET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare the mass reach of Tevatron experiments with the corresponding reach at CERN LEP 200

  3. Supergravity

    International Nuclear Information System (INIS)

    Witt, B. de

    2002-01-01

    It is a comprehensive introduction to supergravities in different dimensions and with various numbers of supersymmetries. Topics covered include the allowed low-energy couplings, duality symmetries, compactification and supersymmetries in curved backgrounds. This document is made up of 7 chapters: 1) introduction, 2) supersymmetry in various dimensions, 3) supergravity, 4) homogeneous spaces and non-linear sigma models, 5) gauged maximal supergravity in 4 and 5 dimensions, 6) supersymmetry in anti-Sitter space, and 7) superconformal symmetry. (A.C.)

  4. Supergravity

    CERN Document Server

    Freedman, Daniel Z

    2012-01-01

    Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers.

  5. Constraining supergravity models from gluino production

    International Nuclear Information System (INIS)

    Barbieri, R.; Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1988-01-01

    The branching ratios for gluino decays g tilde → qanti qΧ, g tilde → gΧ into a stable undetected neutralino are computed as functions of the relevant parameters of the underlying supergravity theory. A simple way of constraining supergravity models from gluino production emerges. The effectiveness of hadronic versus e + e - colliders in the search for supersymmetry can be directly compared. (orig.)

  6. Motivations for AdS/QCD from 10D supergravity solutions

    International Nuclear Information System (INIS)

    De Paula, Wayne

    2016-01-01

    We discuss some attempts for the construction of gravity duals of QCD-like theories. It is analysed some properties of solutions of 10D Type IIB supergravity theory that attempt to be dual to N= 1 gauge theories, in particular the solutions that belong to Papadoulos-Tseytlin ansatz. We argue that one could obtain 5D effective theories from 10d solutions and it motivates the use of phenomenological AdS/QCD models. (paper)

  7. Supersymmetry, supergravity and superstring models

    International Nuclear Information System (INIS)

    Ross, G.G.

    1987-01-01

    The authors discuss the structure of models with a low-energy N=1 supersymmetry. This is extended to locally supersymmetric theories and to the models resulting if physics at the Planck scale is described by the superstring. The possible new light gauge and chiral supermultiplet structures are analysed and a specific model leading to the standard SU(3) x SU(2) x U(1) model is presented. Phenomenological implications of such models are discussed

  8. Scrutinizing supergravity models through neutrino telescopes

    CERN Document Server

    Gandhi, R; Nanopoulos, Dimitri V; Yuan, K; Zichichi, Antonino; Gandhi, Raj; Lopez, Jorge L.; Yuan, Kajia

    1994-01-01

    Galactic halo neutralinos ($\\chi$) captured by the Sun or Earth produce high-energy neutrinos as end-products of various annihilation modes. These neutrinos can travel from the Sun or Earth cores to the neighborhood of underground detectors (``neutrino telescopes") where they can interact and produce upwardly-moving muons. We compute these muon fluxes in the context of the minimal $SU(5)$ supergravity model, and the no-scale and dilaton $SU(5)\\times U(1)$ supergravity models. At present, with the Kamiokande 90\\% C.L. upper limits on the flux, only a small fraction of the parameter space of the $SU(5)\\times U(1)$ models is accessible for $m_\\chi\\sim m_{\\rm Fe}$, which in turn implies constraints for the lightest chargino mass around 100 GeV for a range of $\\tan\\beta$ values. We also delineate the regions of parameter space that would be accessible with the improvements of experimental sensitivity expected in the near future at Gran Sasso, Super-Kamiokande, and other facilities such as DUMAND and AMANDA, curren...

  9. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  10. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  11. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  12. Top-down approach to unified supergravity models

    International Nuclear Information System (INIS)

    Hempfling, R.

    1994-03-01

    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification. (orig.)

  13. 'Semi-realistic'F-term inflation model building in supergravity

    International Nuclear Information System (INIS)

    Kain, Ben

    2008-01-01

    We describe methods for building 'semi-realistic' models of F-term inflation. By semi-realistic we mean that they are built in, and obey the requirements of, 'semi-realistic' particle physics models. The particle physics models are taken to be effective supergravity theories derived from orbifold compactifications of string theory, and their requirements are taken to be modular invariance, absence of mass terms and stabilization of moduli. We review the particle physics models, their requirements and tools and methods for building inflation models

  14. Supergravity Unification

    CERN Document Server

    Chamseddine, A H; Nath, Pran; Chamseddine, Ali H.; Nath, Pran

    2001-01-01

    A review is given of the historical developments of 1982 that lead to the supergravity unified model (SUGRA)with gravity mediated breaking of supersymmetry. Further developments and applications of the model in the period 1982-85 are also discussed. The supergravity unified model and its minimal version (mSUGRA) are currently among the leading candidates for physics beyond the Standard Model. A brief note on the developments from the present vantage point is included.

  15. BOOK REVIEW: Supergravity Supergravity

    Science.gov (United States)

    Gregory, Ruth

    2013-02-01

    Supergravity is an essential ingredient in so many areas of ultra high energy physics, yet it is rarely taught systematically, even at the graduate level. Students most often have to learn along with applying, and must use the now classic older texts. For such core material, it is surprising that there are so few good texts on the subject. It is not necessarily that supergravity is so much more conceptually complex, rather that it is technical and therefore easy for a text to become dry, dense and rather indigestible. This book, written by two experts in the field, is therefore a breath of fresh air. It not only represents a comprehensive modern overview of the subject, but achieves this with clarity, accessibility, and even humour! To paraphrase the authors, if you are not impressed by this book, you should put it down and watch television instead. It starts by reviewing, or overviewing, aspects of field theory, basic supersymmetry and gravity that will be needed for the rest of the book. This first third or so of the book is very condensed, and will not be easy to follow for those who have not encountered the material before. However, the authors acknowledge this and give plenty of suggestions for more pedagogical texts in the relevant areas, thus it does not feel overly brief. The middle section deals with the construction of supergravity, starting with basic N = 1 supergravity in 4 and 11 dimensions and gradually extending the discussion to include matter multiplets. This part of the book systematically builds up understanding and construction of models, before moving on to superconformal methods. The purpose is not to cover all supergravity theories, but to focus on a few examples in detail, and to give sufficient expertise and information for the reader to be able to deal with any other models they might need. The final part of the book deals with applications, and includes two chapters on applications in adS/CFT, which will be of most interest to new

  16. Particle physics models of inflation in supergravity and grand unification

    International Nuclear Information System (INIS)

    Kostka, Philipp Manuel

    2010-01-01

    In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the η-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the η-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the production of stable

  17. Particle physics models of inflation in supergravity and grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Philipp Manuel

    2010-12-03

    In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the {eta}-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the {eta}-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the

  18. Supergravity contributions to inflation in models with non-minimal coupling to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kumar; Dutta, Koushik [Theory Division, Saha Institute of Nuclear Physics, 1/AF Saltlake, Kolkata 700064 (India); Domcke, Valerie, E-mail: kumar.das@saha.ac.in, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: koushik.dutta@saha.ac.in [AstroParticule et Cosmologie (APC), Paris Centre for Cosmological Physics (PCCP), Université Paris Diderot, 75013 Paris (France)

    2017-03-01

    This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes along the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological 'attractor' models.

  19. Supergravity contributions to inflation in models with non-minimal coupling to gravity

    International Nuclear Information System (INIS)

    Das, Kumar; Dutta, Koushik; Domcke, Valerie

    2017-01-01

    This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes along the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological 'attractor' models.

  20. New phenomena in the standard no-scale supergravity model

    CERN Document Server

    Kelley, S; Nanopoulos, Dimitri V; Zichichi, Antonino; Kelley, S; Lopez, J L; Nanopoulos, D V; Zichichi, A

    1994-01-01

    We revisit the no-scale mechanism in the context of the simplest no-scale supergravity extension of the Standard Model. This model has the usual five-dimensional parameter space plus an additional parameter \\xi_{3/2}\\equiv m_{3/2}/m_{1/2}. We show how predictions of the model may be extracted over the whole parameter space. A necessary condition for the potential to be stable is {\\rm Str}{\\cal M}^4>0, which is satisfied if \\bf m_{3/2}\\lsim2 m_{\\tilde q}. Order of magnitude calculations reveal a no-lose theorem guaranteeing interesting and potentially observable new phenomena in the neutral scalar sector of the theory which would constitute a ``smoking gun'' of the no-scale mechanism. This new phenomenology is model-independent and divides into three scenarios, depending on the ratio of the weak scale to the vev at the minimum of the no-scale direction. We also calculate the residual vacuum energy at the unification scale (C_0\\, m^4_{3/2}), and find that in typical models one must require C_0>10. Such constrai...

  1. Applied supersymmetry and supergravity

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1986-01-01

    The structure and physical consequences of global and local supersymmetric (SUSY) gauge theories are reviewed. Motivation for SUSY theories, supersymmetry and its physical properties, the observable consequences of SUSY at low energies and super-high energies, physical structure of simple (N=1) supergravity, physics with simple (N=1) supergravity, and the experimental evidence for supersymmetry, are all discussed. (UK)

  2. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    International Nuclear Information System (INIS)

    Aoki, Shuntaro; Yamada, Yusuke

    2015-01-01

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two

  3. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation

    CERN Document Server

    Ferrara, Sergio

    2017-01-01

    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.

  4. Strongest experimental constraints on SU(5)xU(1) supergravity models

    International Nuclear Information System (INIS)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Zichichi, A.

    1994-01-01

    We consider a class of well-motivated string-inspired flipped SU(5) supergravity models which include four supersymmetry-breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena (m t ,tanβ,m g ). We show that the CERN LEP precise measurements of the electroweak parameters in the form of the ε 1 variable and the CLEO II allowed range for B(b→sγ) are at present the most important experimental constraints on this class of models. For m t approx-gt 155 (165) GeV, the ε 1 constraint [at 90 (95)% C.L.] requires the presence of light charginos (m χ1 ± approx-lt 50--100 GeV depending on m t ). Since all sparticle masses are proportional to m g , m χ1 ± approx-lt 100 GeV implies m χ1 0 approx-lt 55 GeV, m χ2 0 approx-lt 100 GeV, m g approx-lt 360 GeV, m q approx-lt 350 (365) GeV, m e R approx-lt 80 (125) GeV, m e L approx-lt 120 (155) GeV, and m n u approx-lt 100 (140) GeV in the no-scale (dilaton) flipped SU(5) supergravity model. The B(b→sγ) constraint excludes a significant fraction of the otherwise allowed region in the (m χ1 ± ,tanβ) plane (irrespective of the magnitude of the chargino mass), while future experimental improvements will result in decisive tests of these models

  5. Aspects of radiative electroweak breaking in supergravity models

    International Nuclear Information System (INIS)

    Kelley, S.; Lopez, J.L.; Nanopoulos, D.V.; Pois, H.; Yuan, K.

    1993-01-01

    We discuss several aspects of state-of-the-art calculations of radiative electroweak symmetry breaking in supergravity models. These models have a five-dimensional parameter space in contrast with the 21-dimensional one of the MSSM. We examine the Higgs one-loop effective potential V 1 =V 0 +ΔV, in particular how its renormalization-scale (Q) independence is affected by the approximation used to calculate ΔV and by the presence of a Higgs-field-independent term which makes V 1 (0)≠0. We show that the latter must be subtracted out to achieve Q-independence. We also discuss our own approach to the exploration of the five-dimensional parameter space and the fine-tuning constraints within this approach. We apply our methods to the determination of the allowed region in parameter space of two models which we argue to be the prototypes for conventional (SSM) and string (SISM) unified models. To this end we impose the electroweak breaking constraint by minimizing the one-loop effective potential and study the shifts in μ and B relative to the values obtained using the tree-level potential. These shifts are most significant for small values of μ and B, and induce corresponding shifts on the lightest μ- and/or B-dependent particle masses, i.e., those of the lightest stau, neutralino, chargino, and Higgs boson states. Finally, we discuss the predictions for the squark, slepton, and one-loop corrected Higgs boson masses. (orig.)

  6. From supergravity to antigravity

    International Nuclear Information System (INIS)

    Scherk, J.

    1979-01-01

    All known extended supergravity models are shown to lead to a short range cancellation of the gravitational attraction between pairs of particles, a phenomenon known by the name 'Antigravity'. A phenomenological model of antigravity based on supergravity models is proposed where the carrier of the antigravitational force is a spin 1 particle (graviphoton). (Auth.)

  7. Strongest experimental constraints on SU(5)×U(1) supergravity models

    Science.gov (United States)

    Lopez, Jorge L.; Nanopoulos, D. V.; Park, Gye T.; Zichichi, A.

    1994-01-01

    We consider a class of well-motivated string-inspired flipped SU(5) supergravity models which include four supersymmetry-breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena (mt,tanβ,mg~). We show that the CERN LEP precise measurements of the electroweak parameters in the form of the ɛ1 variable and the CLEO II allowed range for B(b-->sγ) are at present the most important experimental constraints on this class of models. For mt>~155 (165) GeV, the ɛ1 constraint [at 90 (95)% C.L.] requires the presence of light charginos (m+/-χ1360 GeV, mq~sγ) constraint excludes a significant fraction of the otherwise allowed region in the (m+/-χ1,tanβ) plane (irrespective of the magnitude of the chargino mass), while future experimental improvements will result in decisive tests of these models. In light of the ɛ1 constraint, we conclude that the outlook for chargino and selectron detection at LEP II and at DESY HERA is quite favorable in this class of models.

  8. SUSY signals at DESY HERA in the no-scale flipped SU(5) supergravity model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Wang, X.; Zichichi, A. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States) CERN, Geneva (Switzerland))

    1993-11-01

    Sparticle production and detection at DESY HERA are studied within the recently proposed no-scale flipped SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: [ital e][sup [minus

  9. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  10. A short review of supergravity

    International Nuclear Information System (INIS)

    Scherk, J.

    1980-01-01

    The perennial question: 'Why fermions' finally answered. A dictionnary of Superwords. The Superalgebras used by Supersymmetrists. The representations of the Super Poincare algebra. What is Super about Supergravity. Extra spatial dimensions and Supergravity. Physical content of the N=8 model. General features of a Supersymmetric World. Antigravity and Supergravity: a crazy idea. Conclusion left to a well-known physicist

  11. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  12. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  13. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  14. Supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1986-01-01

    This book presents a pedagogical introduction of supersymmetry, supergravity and string theories and deals with advanced related topics. Contents: Introduction, The Supersymmetry Algebras; Alternative Approach to the Supersymmetry Algebra; Immediate Consequences of the Supersymmetry Algebra; The Wess-Zumino Model; N = 1 Super QED; N = 1 Super Yang-Mills Theory and the Noether Procedure; Irreducible Representations of Supersymmetry; Simple Supergravity; Invariance of Simple Supergravity; Tensor Calculus of Rigid Supersymmetry; Theories of Extended Rigid Supersymmetry; Local Tensor Calculus and the Coupling of Supergravity to Matter; Superspace; Superspace Formulations of Rigid Supersymmetric Theories; Superspace Formulation of N = 1 Supergravity; N = 1 Super-Feynman Rules; Ultraviolet Properties of the Extended Rigid Supersymmetry Theories; Spontaneous Breaking of Supersymmetry and Realistic Models; Currents in Supersymmetric Theories; Two-Dimensional Supersymmetry Models; Gauge Covariant Formulation of Strings; Appendix A: An Explanation of Our Choices of Conventions; Appendix B: A List of Reviews and Books

  15. 2D supergravity and its connection to integrable models

    International Nuclear Information System (INIS)

    Arnaudov, L.N.; Prodanov, E.M.; Rashkov, R.C.

    1993-05-01

    In the recent work two different approaches for obtaining the covariant W 2 -action of 2-d quantum supergravity are considered. The first one is based on Hamiltonian reduction of flat Osp(2/1) connection in holomorphic polarization. Adding extra degrees of freedom with the help of gauging procedure the W 2 -action and the superconformal identities are obtained. It is shown that the super Virasoro transformations preserve the form of the Lax connection and therefore are symmetries of the sKdV equations. In the second approach starting with Chern-Simons theory and using non-canonical polarization the zero-curvature condition entails the same results. (author). 7 refs

  16. On the topology of the inflaton field in minimal supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044, Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Fré, Pietro [Dipartimento di Fisica, Università di Torino, INFN - Sezione di Torino,via P. Giuria 1, I-10125 Torino (Italy); Sorin, Alexander S. [Bogoliubov Laboratory of Theoretical Physics,and Veksler and Baldin Laboratory of High Energy Physics,Joint Institute for Nuclear Research,141980 Dubna, Moscow Region (Russian Federation)

    2014-04-14

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R+R{sup 2} supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the ((SU(1,1))/(U(1))) space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  17. On the topology of the inflaton field in minimal supergravity models

    Science.gov (United States)

    Ferrara, Sergio; Fré, Pietro; Sorin, Alexander S.

    2014-04-01

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R + R 2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  18. On the Topology of the Inflaton Field in Minimal Supergravity Models

    CERN Document Server

    Ferrara, Sergio; Sorin, Alexander S

    2014-01-01

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R+R^2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the SU(1,1)/U(1) space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  19. Comments on Nonlinear Sigma Models Coupled to Supergravity arXiv

    CERN Document Server

    Ferrara, Sergio

    2017-12-10

    N=1 , D=4 nonlinear sigma models, parametrized by chiral superfields, usually describe Kählerian geometries, provided that Einstein frame supergravity is used. The sigma model metric is no longer Kähler when local supersymmetry becomes nonlinearly realized through the nilpotency of the supergravity auxiliary fields. In some cases the nonlinear realization eliminates one scalar propagating degree of freedom. This happens when the sigma model conformal-frame metric has co-rank 2. In the geometry of the inflaton, this effect eliminates its scalar superpartner. We show that the sigma model metric remains semidefinite positive in all cases, due the to positivity properties of the conformal-frame sigma model metric.

  20. Fermion mass hierarchies in low-energy supergravity and superstring models

    International Nuclear Information System (INIS)

    Binetruy, P.

    1995-01-01

    We investigate the problem of the fermion mass hierarchy in supergravity models with flat directions of the scalar potential associated with some gauge singlet moduli fields. The low-energy Yukawa couplings are non-trivial homogeneous functions of the moduli and a geometric constraint between them plays, in a large class of models, a crucial role in generating hierarchies. Explicit examples are given for no-scale type supergravity models. The Yukawa couplings are dynamical variables at low energy, to be determined by a minimization process which amounts to fixing ratios of the moduli fields. The Minimal Supersymmetric Standard Model is studied and the constraints needed on the parameters in order to have a top quark much heavier than the other fermions are worked out. The bottom mass is explicitly computed and shown to be compatible with the experimental data for a large region of the parameter space. ((orig.))

  1. Supergravity theories

    International Nuclear Information System (INIS)

    Uehara, S.

    1985-01-01

    Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)

  2. Precision electroweak tests of the minimal and flipped SU(5) supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Pois, H.; Yuan, K. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States))

    1993-10-01

    We explore the one-loop electroweak radiative corrections in the minimal SU(5) and the no-scale flipped SU(5) supergravity models via explicit calculation of vacuum polarization contributions to the [epsilon][sub 1,2,3] parameters. Experimentally, [epsilon][sub 1,2,3] are obtained from a global fit to the CERN LEP observables, and [ital M][sub [ital W

  3. Supersymmetric and supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.

    1986-01-01

    The author addressed problems in Kaluza-Klein supergravity, in supersymmetric theories and in string theories. They constructed the following supergravity theories in higher dimensions: the maximal gauged supergravities in five and seven dimensions, both related to the respective ungauged theory, though the latter cannot be obtained by putting the coupling constant of the gauged version to zero (gauge discontinuity); the ten-dimensional N = 2 non-chiral and the six-dimensional N = 4 supergravities, through trivial dimensional reduction of higher dimensional theories. They studied the Kaluza-Klein compactifications of the seven-dimensional supergravity theories and of the ten-dimensional, N = 2 non-chiral supergravity. They obtained the non-compact gaugings and the critical points of the potential of the maximal gauged supergravity in seven dimensions. They computed the non-abelian chiral anomaly in super Yang-Mills theories, using a variation of the Fujikawa method. The covariant action of the SU(2) spinning string is obtained together with its extension to non-linear sigma models. A covariant action for the free open spinning string field theory is constructed by analyzing the BRST transformations

  4. Supersymmetry, supergravity, and unification

    CERN Document Server

    Nath, Pran

    2017-01-01

    This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.

  5. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)

  6. Euclidean supergravity

    Science.gov (United States)

    de Wit, Bernard; Reys, Valentin

    2017-12-01

    Supergravity with eight supercharges in a four-dimensional Euclidean space is constructed at the full non-linear level by performing an off-shell time-like reduction of five-dimensional supergravity. The resulting four-dimensional theory is realized off-shell with the Weyl, vector and tensor supermultiplets and a corresponding multiplet calculus. Hypermultiplets are included as well, but they are themselves only realized with on-shell supersymmetry. We also briefly discuss the non-linear supermultiplet. The off-shell reduction leads to a full understanding of the Euclidean theory. A complete multiplet calculus is presented along the lines of the Minkowskian theory. Unlike in Minkowski space, chiral and anti-chiral multiplets are real and supersymmetric actions are generally unbounded from below. Precisely as in the Minkowski case, where one has different formulations of Poincaré supergravity upon introducing different compensating supermultiplets, one can also obtain different versions of Euclidean supergravity.

  7. Introduction to supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1986-01-01

    This book gives views of supersymmetry and supergravity. The contents include; alternative approach to supersymmetry algebra; immediate consequences of supersymmetry algebra; Wess-Zumino model. N=1 Super QED. N=1 super Yang Mills theory and the Noether procedure; irreducible representations of supersymmetry; invariance of simple supergravity and theories of extended rigid supersymmetry

  8. Minimal $R+R^2$ Supergravity Models of Inflation Coupled to Matter

    CERN Document Server

    Ferrara, S

    2014-01-01

    The supersymmetric extension of "Starobinsky" $R+\\alpha R^2$ models of inflation is particularly simple in the "new minimal" formalism of supergravity, where the inflaton has no scalar superpartners. This paper is devoted to matter couplings in such supergravity models. We show how in the new minimal formalism matter coupling presents certain features absent in other formalisms. In particular, for the large class of matter couplings considered in this paper, matter must possess an R-symmetry, which is gauged by the vector field which becomes dynamical in the "new minimal" completion of the $R+\\alpha R^2$ theory. Thus, in the dual formulation of the theory, where the gauge vector is part of a massive vector multiplet, the inflaton is the superpartner of the massive vector of a nonlinearly realized R-symmetry. The F-term potential of this theory is of no-scale type, while the inflaton potential is given by the D-term of the gauged R-symmetry. The absolute minimum of the potential is always exactly supersymmetri...

  9. Higher curvature supergravity and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Th-Ph Department, CERN, Geneva (Switzerland); U.C.L.A., Los Angeles, CA (United States); INFN - LNF, Frascati (Italy); Sagnotti, Augusto [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy)

    2016-04-15

    In this contribution we describe dual higher-derivative formulations of some cosmological models based on supergravity. Work in this direction started with the R + R{sup 2} Starobinsky model, whose supersymmetric extension was derived in the late 80's and was recently revived in view of new CMB data. Models dual to higher-derivative theories are subject to more restrictions than their bosonic counterparts or standard supergravity. The three sections are devoted to a brief description of R + R{sup 2} supergravity, to a scale invariant R{sup 2} supergravity and to theories with a nilpotent curvature, whose duals describe non-linear realizations (in the form of a Volkov-Akulov constrained superfield) coupled to supergravity. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Supersymmetry and supergravity

    International Nuclear Information System (INIS)

    Wess, J.; Bagger, J.

    1992-01-01

    The first edition of this book appeared in 1983 and was based on a series of lectures given at Princeton in 1983 by Julius Wess. Since the appearance of the first edition much work has been done on the development of phenomenological models of particle behavior based on the supergravity multiplet. Some experimental searches have been carried out and others are planned for the future. For this reason the second edition of the book goes substantially beyond the first. Six new chapters have been added for a total of twenty-six and five new appendices for a total of seven. The new chapters and appendices are primarily aimed at deriving the most general supersymmetric gauge invariant theory of chiral fields interacting with supergravity and expressing it in component form. The book is divided into three sections. After a brief introduction, the first part of the book deals with a description of N=1 supersymmetric non-abelian rigid gauge theory of chiral fields. The second part of the book develops a local supersymmetric theory which is supergravity. The final part describes the coupling of supersymmetric chiral fields to supergravity in a gauge invariant way. The book may be recommended as a pedagogical introduction to the theory of N=1 supergravity. Together with the appendices is is completely self-contained, both in notation and in the concepts used, requiring only some knowledge of field theory as a background

  11. Properties of Nilpotent Supergravity

    CERN Document Server

    Dudas, E.; Kehagias, A.; Sagnotti, A.

    2015-09-30

    We construct Supergravity models where the goldstino multiplet has a gravitational origin, being dual to the chiral curvature superfield. Supersymmetry is nonlinearly realized due to a nilpotent constraint, while the goldstino arises from $\\gamma$-traces of the gauge-invariant gravitino field strength. After duality transformations one recovers, as expected, the standard Volkov-Akulov Lagrangian coupled to Supergravity, but the gravitational origin of the goldstino multiplet restricts the available types of matter couplings. We also construct explicitly some inflationary models of this type, which contain both the inflaton and the nilpotent superfield.

  12. Properties of nilpotent supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E. [Centre de Physique Théorique, École Polytéchnique,F-91128 Palaiseau (France); Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Ferrara, S. [Th-Ph Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Kehagias, A. [Th-Ph Department, CERN,CH-1211 Geneva 23 (Switzerland); Physics Division, National Technical University of Athens,15780 Zografou, Athens (Greece); Sagnotti, A. [Th-Ph Department, CERN,CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN,Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-09-30

    We construct supergravity models where the goldstino multiplet has a gravitational origin, being dual to the chiral curvature superfield. Supersymmetry is nonlinearly realized due to a nilpotent constraint, while the goldstino arises from γ-traces of the gauge-invariant gravitino field strength. After duality transformations one recovers, as expected, the standard Volkov-Akulov Lagrangian coupled to Supergravity, but the gravitational origin of the goldstino multiplet restricts the available types of matter couplings. We also construct explicitly some inflationary models of this type, which contain both the inflaton and the nilpotent superfield.

  13. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    In previous work solitons of N = 2 supergravity were described as test particles in an external supergravity field. In the present paper we derive the effective interaction of two solitons by inserting a classical soliton configuration for the background into the Lagrangian and apply a slow-motion and large-distance approximation. We obtain the interaction potential to lowest order that incorporates the effect of the supercharge. The resulting classical system is quantized and, as a final step, an effective quantum field theory is formulated. (Author)

  14. Generalized IIB supergravity from exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Baguet, Arnaud; Magro, Marc; Samtleben, Henning [Laboratoire de Physique, Université Claude Bernard Lyon 1, Ens de Lyon, CNRS,F-69342 Lyon (France)

    2017-03-20

    The background underlying the η-deformed AdS{sub 5}×S{sup 5} sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.

  15. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)

  16. Supergravities and superstrings

    International Nuclear Information System (INIS)

    Ferrara, S.

    1988-01-01

    In this paper supergavity theories emerging as the point-field limit of various superstring compactifications are considered, and the higher-order corrections to the standard supergravity Lagrangians are discussed. The structure of the effective Lagrangian for the recently constructed four-dimensional superstring models is also reported

  17. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The motion of a soliton in a supergravity background configuration is studied. The dynamics of the soliton is desribed by a trajectory in curved N = 2 superspace. For the proposed Langrangian the moments, the constraints and the generators of local supertranslations are displayed. An additional local gauge symmetry is exhibited. Special emphasis is laid on the classical equations of motion. These turn out to be a supersymmetric generalization of Papapetrou's equation of motion for a spinning particle in a gravitational field. (Author)

  18. Supersymmetry, supergravity and particle physics

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1984-01-01

    We give a short introduction to N=1 supersymmetry and supergravity and review the attempts to construct models in which the breakdown scale of the weak interactions is related to supersymmetry breaking. (orig.)

  19. All possible lightest supersymmetric particles in proton hexality violating minimal supergravity models and their signals at hadron colliders

    International Nuclear Information System (INIS)

    Grab, Sebastian

    2009-08-01

    The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b→sγ, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p T muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background at the LHC

  20. R{sup 2} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Kehagias, Alex [Physics Division, National Technical University of Athens,15780 Zografou, Athens (Greece); Porrati, Massimo [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); CCPP, Department of Physics,NYU 4 Washington Pl. New York NY 10003 (United States)

    2015-08-03

    We formulate R{sup 2} pure supergravity as a scale invariant theory built only in terms of superfields describing the geometry of curved superspace. The standard supergravity duals are obtained in both “old' and “new' minimal formulations of auxiliary fields. These theories have massless fields in de Sitter space as they do in their non supersymmetric counterpart. Remarkably, the dual theory of R{sup 2} supergravity in the new minimal formulation is an extension of the Freedman model, describing a massless gauge field and a massless chiral multiplet in de Sitter space, with inverse radius proportional to the Fayet-Iliopoulos term. This model can be interpreted as the “de-Higgsed' phase of the dual companion theory of R+R{sup 2} supergravity.

  1. Matter couplings in supergravity theories

    International Nuclear Information System (INIS)

    Bagger, J.A.

    1983-01-01

    The N = 1 supersymmetric nonlinear sigma model is coupled to supergravity. The results are expressed in the language of Kahler geometry. Topological considerations constrain the scalar fields to lie on a Kahler manifold of restricted type, or a Hodge manifold. For topologically nontrivial manifolds, this leads to the quantization of Newton's constant in terms of the scalar self-coupling. The isometries of the N = 1 model are gauged. This gives a geometrical picture of what might be called the gauge invariant supersymmetric nonlinear sigma model. It also provides a new interpretation of the Fayet-Iliopoulos D-term. The gauge invariant supersymmetric nonlinear sigma model is coupled to N = 1 supergravity. This leads to a deeper understanding of the connections between supergravity, R-invariance and the Fayet-Iliopoulos D-term. It also provides a foundation for phenomenological studies of supergravity theories. Finally, the N = 2 supersymmetric nonlinear sigma model is coupled to supergravity. The scalar fields are found to lie on a negatively curved quaternionic manifold. This implies that matter self-couplings that are allowed in N = 2 supersymmetry are forbidden in N = 2 supergravity, and vice versa

  2. Supersymmetry and supergravity: Phenomenology and grand unification

    International Nuclear Information System (INIS)

    Arnowitt, R.; Nath, P.

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  3. Asymptomatic freedom in renormalisable gravity and supergravity

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1984-01-01

    This chapter demonstrates that renormalizable supergravity, which is a superextension of renormalizable quantum gravity, can be the basis for a natural ''induced supergravity'' theory. A perturbatively operational unified theory is needed for a description of the early stages of the Universe, and renormalizable quantum gravity is well suited for unification with the renormalizable Grand Unified Models of matter. Topics considered include one-loop counter-terms and renormalization group (RG) equations for pure renormalizable gravity; the consequences of asymptotic freedom; the inclusion of matter; conformal supergravities; and renormalizable supergravity models. It is concluded that the presented lagrangian, which contains a locally superconformal extension of the Yang-Mills and massless spinor lagrangians and the conformal supergravity term, shows that conformal supergravity may play an important role in a fundamental theory

  4. Simplifications of Einstein supergravity

    International Nuclear Information System (INIS)

    Ferrara, S.; van Nieuwenhuizen, P.

    1979-01-01

    Using a new symmetry of the Einstein supergravity action and defining a new spin connection, the axial-vector auxiliary field cancels in the gauge action and in the gauge algebra. This explains why in some models a first-order formalism with minimal coupling of the spin connection and tensor calculus agree, while in other models only the tensor calculus gives the correct result but torsion does not

  5. Large (g-2)$_{\\mu}$ in SU(5) x U(1) supergravity models

    CERN Document Server

    López, J L; Wang, X

    1994-01-01

    We compute the supersymmetric contribution to the anomalous magnetic moment of the muon within the context of $SU(5)\\times U(1)$ supergravity models. The largest possible contributions to $a^{susy}_\\mu$ occur for the largest allowed values of $\\tan\\beta$ and can easily exceed the present experimentally allowed range, even after the LEP lower bounds on the sparticle masses are imposed. Such $\\tan\\beta$ enhancement implies that $a^{susy}_\\mu$ can greatly exceed both the electroweak contribution ($\\approx1.95\\times10^{-9}$) and the present hadronic uncertainty ($\\approx\\pm1.75\\times10^{-9}$). Therefore, the new E821 Brookhaven experiment (with an expected accuracy of $0.4\\times10^{-9}$) should explore a large fraction (if not all) of the parameter space of these models, corresponding to slepton, chargino, and squarks masses as high as 200, 300, and 1000 GeV respectively. Moreover, contrary to popular belief, the $a^{susy}_\\mu$ contribution can have either sign, depending on the sign of the Higgs mixing parameter...

  6. On the gauged Kaehler isometry in minimal supergravity models of inflation

    International Nuclear Information System (INIS)

    Ferrara, S.; Fre, P.; Sorin, A.S.

    2014-01-01

    In this paper we address the question how to discriminate whether the gauged isometry group G Σ of the Kaehler manifold Σ that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Σ.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kaehler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that phenomenologically admissible potentials for the description of inflation and in particular α-attractors are mostly obtained from the gauging of a parabolic isometry, this being, in particular the case of the Starobinsky model. Yet at least one exception exists of an elliptic α-attractor, so that neither type of isometry can be a priori excluded. The requirement of regularity of the manifold Σ poses instead strong constraints on the α-attractors and reduces their space considerably. Curiously there is a unique integrable α-attractor corresponding to a particular value of this parameter. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. On the Gauged Kahler Isometry in Minimal Supergravity Models of Inflation

    CERN Document Server

    Ferrara, Sergio; Sorin, Alexander S.

    2014-01-01

    In this paper we address the question how to discriminate whether the gauged isometry group G_Sigma of the Kahler manifold Sigma that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Sigma.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kahler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that all phenomenologically admissible potentials for the description of inflation and in particular alpha-attractors are mostly obtained from the gauging of a parabolic isometry. The requirement of regularity of the manifold Sigma poses strong constraints on the alpha-attractors and reduces their space considerably. Curi...

  8. Supergravity constraints on monojets

    International Nuclear Information System (INIS)

    Nandi, S.

    1986-01-01

    In the standard model, supplemented by N = 1 minimal supergravity, all the supersymmetric particle masses can be expressed in terms of a few unknown parameters. The resulting mass relations, and the laboratory and the cosmological bounds on these superpartner masses are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP excludes the scalar quarks, of masses up to 45 GeV, as the origin of these monojets. The cosmological bounds, for a stable photino, excludes the mass range necessary for the light gluino-heavy squark production interpretation. These difficulties can be avoided by going beyond the minimal supergravity theory. Irrespective of the monojets, the importance of the stable γ as the source of the cosmological dark matter is emphasized

  9. Inflaton decay in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe

    2007-06-15

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)

  10. Inflaton decay in supergravity

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2007-06-01

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3) C gauge interactions. (orig.)

  11. Neuroscientific Model of Motivational Process

    OpenAIRE

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Rewa...

  12. All possible lightes supersymmetric particles in proton hexality violating minimal supergravity models and their signals at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Grab, Sebastian

    2009-08-15

    The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background

  13. BPS black holes in a non-homogeneous deformation of the stu model of N=2, D=4 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and INFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Santoli, Camilla [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2015-09-29

    We consider a deformation of the well-known stu model of N=2, D=4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.

  14. C-deformation of supergravity

    International Nuclear Information System (INIS)

    Hatanaka, Tomoya; Ketov, Sergei V

    2006-01-01

    A four-dimensional supergravity toy model in an arbitrary self-dual gravi-photon background is constructed in Euclidean space, by freezing out the gravi-photon field strength in the standard N = (1, 1) extended supergravity with two non-chiral gravitini. Our model has local N = (1/2, 0) supersymmetry. Consistency of the model requires the background gravi-photon field strength to be equal to the self-dual (bilinear) anti-chiral gravitino condensate. (letter to the editor)

  15. Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models

    International Nuclear Information System (INIS)

    Burton, J.W.

    1990-01-01

    Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs

  16. N-flation in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kumar, E-mail: kumar.das@saha.ac.in; Dutta, Koushik, E-mail: koushik.dutta@saha.ac.in

    2014-11-10

    We have constructed a large field N-flation model in the supergravity framework. In this simple set-up, N fields collectively drive inflation where each field traverses sub-Planckian field values. This has been realised with a generalisation of the single-field chaotic inflation in supergravity. Interestingly, despite the presence of the field interactions, the dynamics can be described in terms of an effective single field. The observable predictions of our model, i.e., tensor-to-scalar ratio r and scalar spectral index n{sub s}, are akin to the chaotic inflation.

  17. Introduction to supergravity

    International Nuclear Information System (INIS)

    Wit, B. de.

    1984-06-01

    These lectures aim at introducing supergravity in its most simple and direct form. After explaining the main features of graviton and gravitino fields the invariance of simple supergravity in d=4 dimension are proved. The complications for higher-dimensional supergravity are explained and d=11 supergravity is presented. The author discusses supersymmetry in anti-de Sitter space, which allows him to introduce the concept of isometries and Killing spinors and vectors. The breaking of supersymmetry (super-Brout-Englert-Higgs effect), off-shell aspects of supergravity and the superconformal multiplet calculus are dealt with. This is first done for gravity, but also for the structure of simple d=4 conformal supergravity. Finally, the coupling of scalar fields to N=1 and N=2 supergravity as an application of this formalism is discussed. (Auth.)

  18. Neuroscientific Model of Motivational Process

    Science.gov (United States)

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment. PMID:23459598

  19. Neuroscientific model of motivational process.

    Science.gov (United States)

    Kim, Sung-Il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  20. Neuroscientific Model of Motivational Process

    Directory of Open Access Journals (Sweden)

    Sung-Il eKim

    2013-03-01

    Full Text Available Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three subprocesses, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous subprocesses, namely reward-driven approach, value-based decision making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area and the dorsolateral prefrontal cortex (cognitive control area are the main neural circuits related to regulation of motivation. These three subprocesses interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  1. Geometrical interpretation of extended supergravity

    International Nuclear Information System (INIS)

    Townsend, P.K.; Nieuwenhuizen, P.van

    1977-01-01

    SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)

  2. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  3. Classical solutions in supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.; Ferrara, S.; Nieuwenhuizen Van, P.

    1977-06-01

    Classical solutions of supergravity are obtained by making finite global supersymmetry rotation on known solutions of the field equations of the bosonic sector. The Schwarzschild and the Reissner-Nordstoem solutions of general relativity are extended to various supergravity systems and the modification to the perihelion precession of planets is discussed

  4. d=8 supergravity

    International Nuclear Information System (INIS)

    Salam, A.; Sezgin, E.

    1984-10-01

    SU(2) gauged N=2 supergravity in d=8 is constructed by generalized dimensional reduction of d=11 supergravity on SU(2) group manifold. The relation between the field equations of the d=8 and those of d=11 supergravities is established. As a byproduct of this, it is shown that certain compactifications of d=11 supergravity give rise to anti-de Sitter space-time (AdS)xS 4 or AdSxCP 2 (with or without SU(2) instanton) or AdSxS 2 xS 2 compactifications of d=8 supergravity. The latter two solutions have no supersymmetry, while AdSxS 4 has N=0 or N=1 supersymmetry. (author)

  5. Introduction to supergravity

    CERN Document Server

    Tanii, Yoshiaki

    2014-01-01

    This book is a pedagogical introduction to supergravity, a gravitational field theory that includes supersymmetry (symmetry between bosons and fermions) and is a generalization of Einstein's general relativity. Supergravity provides a low-energy effective theory of superstring theory, which has attracted much attention as a candidate for the unified theory of fundamental particles, and it is a useful tool for studying non-perturbative properties of superstring theory such as D-branes and string duality. This work considers classical supergravities in four and higher spacetime dimensions with their applications to superstring theory in mind. More concretely, it discusses classical Lagrangians (or field equations) and symmetry properties of supergravities. Besides local symmetries, supergravities often have global non-compact symmetries, which play a crucial role in their applications to superstring theory. One of the main features of this book is its detailed discussion of these non-compact symmetries. The aim...

  6. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  7. Tribrid Inflation in Supergravity

    International Nuclear Information System (INIS)

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    2010-01-01

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the 'standard' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W inf = 0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflaton potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.

  8. Tribrid Inflation in Supergravity

    Science.gov (United States)

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kähler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third "driving" field which contributes the large vacuum energy during inflation by its F-term. In contrast to the "standard" hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (Winf = 0) during inflation. Quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.

  9. Composite gravity and composite supergravity

    International Nuclear Information System (INIS)

    Lukierski, J.

    1982-09-01

    It is known that the composite YM H-gauge theory can be constructed from σ-fields taking values in a symmetric Riemannian space G/H. We extend such a framework to graded σ-fields taking values in supercosets. We show that from supercoset σ-fields one can construct composite gravity, and from supercoset σ-superfields the composite supergravity models. (author)

  10. Potentials in N=2 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1985-01-01

    The potentials and Yukava interactions, that arise while introducing a gauge interaction of vector and scalar multiplets in N=2 supergravity are presented, in this the gauge group may be either compact or noncompact. The scalar multiplets geometry corresponds to nonlinear σ, models of the form Sp(2,2n)/Sp(2)xSp(2n), SU(2,n)/SU(2)SU(n)xU(1) and O(4,n)/O(4)xO(n)

  11. Higher derivative couplings and massive supergravity in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M.; Novak, Joseph [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-09-14

    We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R{sup n} terms) in three-dimensional supergravity theories with N≤3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in http://arxiv.org/abs/0907.4658 and http://arxiv.org/abs/1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N=2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N=3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N=3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.

  12. Supergravity and superstrings

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1985-01-01

    The ''standard'' SU/sub 3/ x SU/sub 2/ x U/sub 1/ theory has three independent coupling constants and numerous dimensionless parameters determining mass ratios, the weak coupling matrix, etc. While N=1 supergravity, generalizing Einstein's gravity theory, is not necessarily very divergent itself, it is terribly divergent when coupled to external N=1 supermatter, such as N=1 super-Yang-Mills theory with N=1 supermultiplets of spin one-half and spin zero. Three paths are being explored in the search for the ultimate unified theory of physics. The first path involves N > 1 supergravity in four dimensions, without external supermatter, particularly the largest such theory, N=8 supergravity, where there is no room for external supermatter. The N=8 supergravity supermultiplet itself contains all the haplons (fundamental fields of the theory). During the last couple of years Michael Green and John Schwarz have found that there are two more 10-dimensional superstring theories IIA and IIB, with only closed strings. They reduce, on truncation to the initially massless actor, to N=2A and N=2B supergravity, respectively, in ten dimensions. But the superstring theories are finite to one loop instead of divergent like the corresponding supergravities. The author discusses that IIA and IIB superstrings, when truncated to the initially massless sector and trivially reduced to four dimensions, yield N=8 supergravity. All three superstring theories, although they have the traditional description as ''S-matrix'' theories on the mass shell, can also be written as field theories (with fields as functionals of strings instead of functions of points) with local couplings. So far, the field description is not covariant. This paper discusses various superstrings theories

  13. Yang-Mills-Chern-Simons supergravity

    International Nuclear Information System (INIS)

    Lue, H; Pope, C N; Sezgin, E

    2004-01-01

    N = (1, 0) supergravity in six dimensions admits AdS 3 x S 3 as a vacuum solution. We extend our recent results presented in Lue et al (2002 Preprint hep-th/0212323), by obtaining the complete N = 4 Yang-Mills-Chern-Simons supergravity in D = 3, up to quartic fermion terms, by S 3 group manifold reduction of the six-dimensional theory. The SU(2) gauge fields have Yang-Mills kinetic terms as well as topological Chern-Simons mass terms. There is in addition a triplet of matter vectors. After diagonalization, these fields describe two triplets of topologically-massive vector fields of opposite helicities. The model also contains six scalars, described by a GL(3, R)/SO(3) sigma model. It provides the first example of a three-dimensional gauged supergravity that can be obtained by a consistent reduction of string theory or M-theory and that admits AdS 3 as a vacuum solution. There are unusual features in the reduction from six-dimensional supergravity, owing to the self-duality condition on the 3-form field. The structure of the full equations of motion in N = (1, 0) supergravity in D = 6 is also elucidated, and the role of the self-dual field strength as torsion is exhibited

  14. Hidden symmetries in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Poessel, M.

    2003-05-01

    This thesis is concerned with the study of hidden symmetries in supergravity, which play an important role in the present picture of supergravity and string theory. Concretely, the appearance of a hidden G 2(+2) /SO(4) symmetry is studied in the dimensional reduction of d=5, N=2 supergravity to three dimensions - a parallel model to the more famous E 8(+8) /SO(16) case in eleven-dimensional supergravity. Extending previous partial results for the bosonic part, I give a derivation that includes fermionic terms. This sheds new light on the appearance of the local hidden symmetry SO(4) in the reduction, and shows up an unusual feature which follows from an analysis of the R-symmetry associated with N=4 supergravity and of the supersymmetry variations, and which has no parallel in the eleven-dimensional case: The emergence of an additional SO(3) as part of the enhanced local symmetry, invisible in the dimensional reduction of the gravitino, and corresponding to the fact that, of the SO(4) used in the coset model, only the diagonal SO(3) is visible immediately upon dimensional reduction. The uncovering of the hidden symmetries proceeds via the construction of the proper coset gravity in three dimensions, and matching it with the Lagrangian obtained from the reduction. (orig.)

  15. N=2 no-scale supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Itoyama, H.; McLerran, L.; Taylor, T.R.; Van der Bij, J.J.

    1987-01-12

    N=2 extended supergravity is discussed and an assessment is made of the problems encountered in applying it to the construction of phenomenological models of particle physics. A specific class of so-called no-scale models is discussed, in which the two supersymmetries are spontaneously broken in flat space-time, with naturally vanishing cosmological constant and the symmetry breaking undetermined at the classical level. Supergravity-induced supersymmetry breaking generates effective mass terms for spin-1/2 components of the vector gauge multiplets and spin-0 components of the scalar matter multiplets. For finite globally supersymmetric models, this supersymmetry breaking preserves the finiteness. Possible connections of N=2 no-scale supergravity with superstrings and finite range antigravity are mentioned.

  16. N=2 no-scale supergravity

    International Nuclear Information System (INIS)

    Itoyama, H.; McLerran, L.; Taylor, T.R.; Van der Bij, J.J.

    1987-01-01

    N=2 extended supergravity is discussed and an assessment is made of the problems encountered in applying it to the construction of phenomenological models of particle physics. A specific class of so-called no-scale models is discussed, in which the two supersymmetries are spontaneously broken in flat space-time, with naturally vanishing cosmological constant and the symmetry breaking undetermined at the classical level. Supergravity-induced supersymmetry breaking generates effective mass terms for spin-1/2 components of the vector gauge multiplets and spin-0 components of the scalar matter multiplets. For finite globally supersymmetric models, this supersymmetry breaking preserves the finiteness. Possible connections of N=2 no-scale supergravity with superstrings and finite range antigravity are mentioned. (orig.)

  17. The antigravitation phenomenon in supergravity theories

    International Nuclear Information System (INIS)

    Kotrla, M.

    1984-01-01

    The supergravity theories describe the interaction of particles by means of the local field theory, contain the gravitational field and are invariant relative to local supersymmetry. In supergravity models gravitational interaction is mediated not only by the usual tensor field with spin two but also by a vector field and possibly by a scalar field. This results in the fact that in supergravity theories the gravitational force between a particle and an antiparticle may increase over small distances, and the gravitational force between two particles or two antiparticles may disappear. The properties of the model may be summed up by saying that the model is generally covariant but leads to the disturbance of the weak principle of equivalence, the gravitational law differs from Newton's law at small distances, and particles and antiparticles do not have the same mass. (B.S.)

  18. Effective Lagrangian for s-barbg and s-barbγ vertices in the minimal supergravity model

    International Nuclear Information System (INIS)

    Feng Taifu; Li Xueqian; Wang Guoli

    2002-01-01

    Complete expressions of the s-barbg and s-barbγ vertices are derived in the framework of supersymmetry with minimal flavor violation. As examples, the branching ratios of charmless B decays [B→K+X (no charm)] and exclusive processes B s →γγ are calculated with the minimal supergravity assumptions

  19. Massive type IIA supergravity and E10

    International Nuclear Information System (INIS)

    Henneaux, M.; Kleinschmidt, A.; Persson, D.; Jamsin, E.

    2009-01-01

    In this talk we investigate the symmetry under E 10 of Romans' massive type IIA supergravity. We show that the dynamics of a spinning particle in a non-linear sigma model on the coset space E 10 /K(E 10 ) reproduces the bosonic and fermionic dynamics of massive IIA supergravity, in the standard truncation. In particular, we identify Romans' mass with a generator of E 10 that is beyond the realm of the generators of E 10 considered in the eleven-dimensional analysis, but using the same, underformed sigma model. As a consequence, this work provides a dynamical unification of the massless and massive versions of type IIA supergravity inside E 10 . (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Inflaton decay through supergravity effects

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Kawasaki, M.; Yanagida, T.T.; Tokyo Univ.

    2006-07-01

    We point out that supergravity effects enable the inflaton to decay into all matter fields, including the visible and the supersymmetry breaking sectors, once the inflaton acquires a non-vanishing vacuum expectation value. The new decay processes have great impacts on cosmology; the reheating temperature is bounded below; the gravitinos are produced by the inflaton decay in a broad class of the dynamical supersymmetry breaking models. We derive the bounds on the inflaton mass and the vacuum expectation value, which severely constrain high-scale inflations such as the hybrid and chaotic inflation models. (orig.)

  1. Classical solutions and extended supergravity

    International Nuclear Information System (INIS)

    de Alfaro, V.; Fubini, S.; Furlan, G.

    1980-03-01

    The existence and properties of classical solutions for gravity coupled to matter fields have been investigated previously with the limitation to conformally flat solutions. In the search for a guiding criterion to determine the form of the coupling among the fields, one is led to consider supersymmetric theories, and the question arises whether classical solutions persist in these models. It is found that a discrepancy persists between supergravity and standard meron solutions. Owing to the appearance of the scalar field, a new set of meron solutions exists for particular Lagrangian models. In conclusion, the form of solutions in Minkowski space is discussed

  2. Flatspace chiral supergravity

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya

    2018-05-01

    We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.

  3. Null cone superspace supergravity

    International Nuclear Information System (INIS)

    Downes-Martin, S.G.

    1980-03-01

    The null cone formalism is used to derive a 2(N-1) parameter family of constraints for O(N) extended superspace supergravity. The invariance groups of these constraints is analysed and is found to be [subgroup U submanifold] contains GL(4,R) for N = 1, the submanifold being eliminated for N > 1. The invariance group defines non-Weyl rotations on the superbein which combine to form Weyl transformations on the supertangent space metric. The invariance of the supergravity Lagrangian under these transformations is discussed. (Auth.)

  4. Quantum supergravity, supergravity anomalies and string phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K., E-mail: mkgaillard@lbl.gov

    2016-11-15

    I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.

  5. Modeling motive activation in the Operant Motives Test

    DEFF Research Database (Denmark)

    Runge, J. Malte; Lang, Jonas W. B.; Engeser, Stefan

    2016-01-01

    The Operant Motive Test (OMT) is a picture-based procedure that asks respondents to generate imaginative verbal behavior that is later coded for the presence of affiliation, power, and achievement-related motive content by trained coders. The OMT uses a larger number of pictures and asks...... on the dynamic model were .52, .62, and .73 for the affiliation, achievement, and power motive in the OMT, respectively. The second contribution of this article is a tutorial and R code that allows researchers to directly apply the dynamic Thurstonian IRT model to their data. The future use of the OMT...... respondents to provide more brief answers than earlier and more traditional picture-based implicit motive measures and has therefore become a frequently used measurement instrument in both research and practice. This article focuses on the psychometric response mechanism in the OMT and builds on recent...

  6. Spontaneous symmetry breaking in N = 2 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Y.M.

    1987-01-01

    A model describing the interaction of N = 2 supergravity with a vector and a linear multiplet is constructed. The model admits the introduction of spontaneous supersymmetry breaking with two arbitrary scales, one of which can be equal to zero, corresponding to the partial super-Higgs effect (N = 2→N = 1). The cosmological term is automatically equal to zero

  7. No-scale supergravity and cosmology

    International Nuclear Information System (INIS)

    Deruelle, N.

    1988-01-01

    The confrontation of current unified theories with cosmoly may prove to be very fruteful. Indeed the demand that the cosmological models they induce match the standard scenario and be free of manifest pathologies imposes severe constraints on them. We thus show that no-scale supergravity (at least its simplest incarnation) may not provide acceptable models of the early universe [fr

  8. The Wasteland of Random Supergravities

    OpenAIRE

    Marsh, David; McAllister, Liam; Wrase, Timm

    2011-01-01

    We show that in a general \\cal{N} = 1 supergravity with N \\gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in ...

  9. Topics in supergravity and string theory

    International Nuclear Information System (INIS)

    Eastaugh, A.G.

    1987-01-01

    The first topic covered in this dissertation concerns the harmonic expansion technique and its application to the dimensional compactification of higher dimensional supergravity. A simple example is given to explain the method and then the method is applied to the problem of obtaining the mass spectrum of the squashed seven-sphere compactification of eleven dimensional supergravity. The second topic concerns the application of Fujikawa's method of anomaly calculation to the calculation of the critical dimension of various string models. The third topic is a study and explicit calculation of the Fock space representation of the vertex in Witten's formulation of the interacting open bosonic string field theory

  10. Off-shell Poincaré supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Daniel Z. [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, Massachusetts 02139 (United States); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Proeyen, Antoine Van [KU Leuven, Institute for Theoretical Physics,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-02-21

    We present the action and transformation rules of Poincaré supergravity coupled to chiral multiplets (z{sup α},χ{sup α},h{sup α}) with off-shell auxiliary fields. Starting from the geometric formulation of the superconformal theory with auxiliary fields, we derive the Poincaré counterpart by gauge-fixing the Weyl and chiral symmetry and S-supersymmetry. We show how this transition is facilitated by retaining explicit target-space covariance. Our results form a convenient starting point to study models with constrained superfields, including general matter-coupled de Sitter supergravity.

  11. D=3 unification of curious supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Duff, M.J. [Theoretical Physics, Blackett Laboratory, Imperial College London,London SW7 2AZ (United Kingdom); Mathematical Institute University of Oxford, Andrew Wiles Building,Woodstock Road, Radcliffe Observatory Quarter, Oxford, OX2 6GG (United Kingdom); Ferrara, S. [Theoretical Physics Department, CERN,CH-1211 Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy andMani L. Bhaumik Institute for Theoretical Physics, UCLA,Los Angeles CA 90095-1547 (United States); Marrani, A. [Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”,Via Panisperna 89A, I-00184, Roma (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”,Università di Padova and INFN, Sez. di Padova,Via Marzolo 8, I-35131 Padova (Italy); Theoretical Physics Department, CERN,CH-1211 Geneva (Switzerland)

    2017-01-09

    We consider the dimensional reduction to D=3 of four maximal-rank supergravities which preserve minimal supersymmetry in D=11, 7, 5 and 4. Such “curious” theories were investigated some time ago, and the four-dimensional one corresponds to an N=1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory provided cosmological models for α-attractors, which are based on the disk geometry with possible restrictions on the parameter α. A unified picture emerges in D=3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D=4 parent theories.

  12. D = 3 Unification of Curious Supergravities

    CERN Document Server

    Duff, M.J.; Marrani, A.

    2017-01-09

    We consider the dimensional reduction to D = 3 of four maximal-rank supergravities which preserve minimal supersymmetry in D = 11, 7, 5 and 4. Such "curious" theories were investigated some time ago, and the four-dimensional one corresponds to an N = 1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory was considered to provide cosmological models for alpha-attractors, which are based on the disk geometry with possible restrictions on the parameter alpha. A unified picture emerges in D = 3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D = 4 parent theories.

  13. Developing Automatic Student Motivation Modeling System

    Science.gov (United States)

    Destarianto, P.; Etikasari, B.; Agustianto, K.

    2018-01-01

    Achievement motivation is one of the internal factors in encouraging a person to perform the best activity in achieving its goals. The importance of achievement motivation must be possessed as an incentive to compete so that the person will always strive to achieve success and avoid failure. Based on this, the system is developed to determine the achievement motivation of students, so that students can do self-reflection in improving achievement motivation. The test results of the system using Naïve Bayes Classifier showed an average rate of accuracy of 91,667% in assessing student achievement motivation. By modeling the students ‘motivation generated by the system, students’ achievement motivation level can be known. This class of motivation will be used to determine appropriate counseling decisions, and ultimately is expected to improve student achievement motivation.

  14. The Motive--Strategy Congruence Model Revisited.

    Science.gov (United States)

    Watkins, David; Hattie, John

    1992-01-01

    Research with 1,266 Australian secondary school students supports 2 propositions critical to the motive-strategy congruence model of J. B. Biggs (1985). Students tend to use learning strategies congruent with motivation for learning, and congruent motive-strategy combinations are associated with higher average school grades. (SLD)

  15. De Sitter vacua in no-scale supergravities and Calabi-Yau string models

    CERN Document Server

    Covi, Laura; Gross, Christian; Louis, Jan; Palma, Gonzalo A; Scrucca, Claudio A

    2008-01-01

    We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which b...

  16. de Sitter vacua in no-scale supergravities and Calabi-Yau string models

    International Nuclear Information System (INIS)

    Covi, L.; Gross, C.; Scrucca, C.A.

    2008-04-01

    We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kaehler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the 'sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kaehler potential which break the no-scale property may allow to lift these masses. (orig.)

  17. Is supergravity well-posed?

    International Nuclear Information System (INIS)

    Isenberg, J.; Bao, D.; Yasskin, P.B.

    1983-01-01

    One rather fundamental question concerning supergravity remains unresolved: Is supergravity a well-posed field theory? That is, does a set of certain (Cauchy) data specified on some initial spacelike surface determine a unique, causally propagating spacetime solution of the supergravity field equations (at least in some finite neighborhood of the initial surface)? In this paper, the authors give a very brief report on work directed towards answering this question. (Auth.)

  18. Grand unification and supergravity

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    Grand Unified Theories (GUTs) are very successful, but they suffer from fine-tuning or hierarchy problems. It seems that more symmetry beyond the gauge symmetry is needed and indeed supersymmetric GUTs may provide the correct framework in solving the hierarchy problems. These are reviewed. From the results discussed, it is seen that for the first time in particle physics, gravity seems to play a dominant role. It may be responsible for GUT breaking, SU(2) x U(1) breaking, fermion masses, proton decay and a consistent cosmological picture. Supergravity seems to offer a consistent, effective theory for energies below the Planck scale to N=1 local SUSY but also, in the context of N=8 extended supergravity with a dynamically realized SU(8), there may be a consistent fundamental unified theory of all interactions. (U.K.)

  19. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Noncompact N=2 supergravity

    International Nuclear Information System (INIS)

    Wit, B. de; Lauwers, P.G.; Philippe, R.; Van Proeyen, A.

    1983-10-01

    A massive spin-1 multiplet with central charge is coupled to N=2 supergravity. Compared to conventional gauge fields the anomalous magnetic moment of the spin-1 particles is of opposite sign. The construction of this theory is based on an N=2 supersymmetric gauge theory associated with the noncompact group SO(2,1). As a byproduct we present a convenient expression for the N=2 Einstein-Yang-Mills lagrangian. (Auth.)

  2. Two exercises in supersymmetry: a low-energy supergravity model and free string field theory

    International Nuclear Information System (INIS)

    Preitschopf, C.R.

    1986-09-01

    The new features of a supersymmetric standard model in the presence of heavy families are studied. The minimal set of Higgs fields, the desert between the electroweak and the grand unification scale and perturbative values of the dimensionless parameters throughout this region are assumed. Using the numerical as well as the approximate analytic solution of the renormalization group equations, the evolution of all the parameters of the theory are studied in the case of large Yukawa couplings for the fourth family. The desired spontaneous symmetry breaking of the electroweak symmetry takes place only for a rather unnatural choice of the initial values of certain mass parameters at the grand unification scale. If it is gravitino mass smaller than 200 GeV the vacuum expectation values of the Higgs fields emerge necessarily in an interplay of the tree level Higgs potential and its quantum corrections and are approximately equal. The qurak masses of the fourth family are roughly 135 GeV, while the mass of the fourth charged lepton has an upper bound of 90 GeV. Further characteristic features of this scenario are one light neutral Higgs field of mass 50 GeV and gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one obtains a scaled up version of the well-known three family, heavy top scenario with quark masses between 40 and 205 GeV and all superparticle masses heavier than 150 GeV except the photino, gluino, one chargino and one neutralino. The gauge-invariant theory of the free bosonic open string is generalized to treat closed strings and superstrings. All of these theories can be written as theories of string differential forms defined on suitable spaces. All of the bosonic theories have exactly the same structure; the Ramond theory takes an analogous first-order form. We show explicitly, how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel gauge

  3. Massive Supergravity and Deconstruction

    CERN Document Server

    Gregoire, T; Shadmi, Y; Gregoire, Thomas; Schwartz, Matthew D; Shadmi, Yael

    2004-01-01

    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various qu...

  4. A motivational model for environmentally responsible behavior.

    Science.gov (United States)

    Tabernero, Carmen; Hernández, Bernardo

    2012-07-01

    This paper presents a study examining whether self-efficacy and intrinsic motivation are related to environmentally responsible behavior (ERB). The study analysed past environmental behavior, self-regulatory mechanisms (self-efficacy, satisfaction, goals), and intrinsic and extrinsic motivation in relation to ERBs in a sample of 156 university students. Results show that all the motivational variables studied are linked to ERB. The effects of self-efficacy on ERB are mediated by the intrinsic motivation responses of the participants. A theoretical model was created by means of path analysis, revealing the power of motivational variables to predict ERB. Structural equation modeling was used to test and fit the research model. The role of motivational variables is discussed with a view to creating adequate learning contexts and experiences to generate interest and new sensations in which self-efficacy and affective reactions play an important role.

  5. Newton-Cartan supergravity with torsion and Schrodinger supergravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present

  6. Baryogenesis in superstring-motivated models

    International Nuclear Information System (INIS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    1988-01-01

    Baryogenesis scenarios for a variety of superstring-motivated gauge models are discussed in detail. We restrict our attention to models that possess at least one intermediate scale between the Planck and the electroweak scales. (orig.)

  7. Inflation via Gravitino Condensation in Dynamically Broken Supergravity

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E

    2015-01-01

    Gravitino-condensate-induced inflation via the super-Higgs effect is a UV-motivated scenario for both inflating the early universe and breaking local supersymmetry dynamically, entirely independent of any coupling to external matter. As an added benefit, this also removes the (as of yet unobserved) massless Goldstino associated to global supersymmetry breaking from the particle spectrum. In this review we detail the pertinent properties and outline previously hidden details of the various steps required in this context in order to make contact with current inflationary phenomenology. The class of models of SUGRA we use to exemplify our approach are minimal four-dimensional N=1 supergravity and conformal extensions thereof (with broken conformal symmetry). Therein, the gravitino condensate itself can play the role of the inflaton, however the requirement of slow-roll necessitates unnaturally large values of the wave-function renormalisation. Nevertheless, there is an alternative scenario that may provide Staro...

  8. Pole inflation in Jordan frame supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Saikawa, Ken' ichi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology, Ookayama (Japan). Dept. of Physics; Yamashita, Yasuho [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Yoshida, Daisuke [Montreal Univ., QC (Canada). Dept. of Physics

    2017-09-15

    We investigate inflation models in Jordan frame supergravity, in which an inflaton non-minimally couples to the scalar curvature. By imposing the condition that an inflaton would have the canonical kinetic term in the Jordan frame, we construct inflation models with asymptotically flat potential through pole inflation technique and discuss their relation to the models based on Einstein frame supergravity. We also show that the model proposed by Ferrara et al. has special position and the relation between the Kaehler potential and the frame function is uniquely determined by requiring that scalars take the canonical kinetic terms in the Jordan frame and that a frame function consists only of a holomorphic term (and its anti-holomorphic counterpart) for symmetry breaking terms. Our case corresponds to relaxing the latter condition.

  9. Pole inflation in Jordan frame supergravity

    International Nuclear Information System (INIS)

    Saikawa, Ken'ichi; Yamaguchi, Masahide; Yamashita, Yasuho; Yoshida, Daisuke

    2017-09-01

    We investigate inflation models in Jordan frame supergravity, in which an inflaton non-minimally couples to the scalar curvature. By imposing the condition that an inflaton would have the canonical kinetic term in the Jordan frame, we construct inflation models with asymptotically flat potential through pole inflation technique and discuss their relation to the models based on Einstein frame supergravity. We also show that the model proposed by Ferrara et al. has special position and the relation between the Kaehler potential and the frame function is uniquely determined by requiring that scalars take the canonical kinetic terms in the Jordan frame and that a frame function consists only of a holomorphic term (and its anti-holomorphic counterpart) for symmetry breaking terms. Our case corresponds to relaxing the latter condition.

  10. New compactifications in seven and eleven dimensional supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.; Sezgin, E.

    1984-08-01

    It is found that the N=4 gauged supergravity in d=7 spontaneously compactifies on direct product of anti-deSitter space (AdS) with a 3-sphere (non-supersymmetric: N=0), or with 3-hyperboloid (N=2). Similarly the N=2 gauged supergravity in d=7 compactifies on AdSxH 3 (N=1). The possibility of σ-model induced compactification of ungauged d=7 N=2 supergravity coupled to one vector multiplet on (Minkowski) 4 x Tear Drop x S 1 is discussed. The case of d=11 supergravity is also studied, and two new compactifications are found: AdS x non-Einstein squashed S 7 (n=0) and AdS x non-Einstein SU(2) bundle over CP 2 (N=0). (author)

  11. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  12. Constructive approach to supergravity

    International Nuclear Information System (INIS)

    Milton, K.A.; Urrutia, L.F.; Finkelstein, R.J.

    1980-01-01

    Starting from a first-order formulation of the Lagrangian of noninteracting massless helicity-2 and helicity-3/2 particles, global supersymmetry transformations are deduced. Then, allowing the supersymmetry transformations to become local requires, if supersymmetry is to be maintained, the introduction of a unique primitive interaction through the 'gravitino' stress tensor and torsion. Finally, the imposition of exact supersymmetry invariance leads by a short, constructive process to full supergravity and the complete form of the super-symmetry transformations. In particular, no explicit use is made of general coordinate invariance, and the self-consistency of the gravitational coupling emerges from the local supersymmetry requirement alone. (author)

  13. Motivation.

    Science.gov (United States)

    Chambers, David W

    2007-01-01

    Motivation is short-term focused energy. The oldest theories of motivation explain motivated activity as effort to overcome primary deficiencies, such as hunger or boredom. Such theories are difficult to apply because individuals learn idiosyncratic secondary motives as alternative ways of responding to these needs. Three prominent needs theories are discussed: Herzberg's theory of hygiene and motivational factors; McClelland's needs for achievement, power, and affiliation; and Maslow's hierarchy and theory of self-actualization. A second approach to motivation holds that individuals may be thought of as engaging in rational processes to maximize their self-interests. The presented examples of this approach include Vroom's expectancy theory, Adam's theory of inequality, and the Porter-Lawler model that addresses the question of whether satisfaction leads to high performance or vice versa. Finally, several theories of motivation as life orientation are developed.

  14. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    Science.gov (United States)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  15. Structure of a supergravity group

    International Nuclear Information System (INIS)

    Ogievetsky, V.; Sokatchev, E.

    1978-01-01

    The supergravity group is found to be the direct product of general covariance groups in complex conjugated left and right handed superspaces. The ordinary space-time coordinate and the axial gravitational superfield are the real and imaginary parts of the complex coordinate, respectively. It is pointed out that a number of questions concerning the formalism remains open. For instance how to define superfields with external indices, supercovariant derivatives and invariants of the group, etc. However, the extremely simple and clear geometrical picture of the supergravity group given here will provide an adequate basis for the supergravity theory

  16. Supergravity and field space democracy

    International Nuclear Information System (INIS)

    Gayduk, A.V.; Romanov, V.N.; Schwarz, A.S.

    1980-01-01

    Supergravity is presented in which field and space variables are on an equal footing. The action functional of supergravity is characterized as the functional, defined on the space of (4,4)-dimensional submanifolds of complex (4,2)-dimensional superspace, which is invariant with respect to supervolume preserving analytic transformations. It is shown how the Lagrangian of the supergravity in the Ogievetsky-Sokatchev form can be obtained by means of this characterization and describe natural multi-dimensional generalizations of this Lagrangian. These generalizations are based on the notion of perfect action functional

  17. Background metric in supergravity theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1978-01-01

    In supergravity theories, we investigate the conformal anomaly of the path-integral determinant and the problem of fermion zero modes in the presence of a nontrivial background metric. Except in SO(3) -invariant supergravity, there are nonvanishing conformal anomalies. As a consequence, amplitudes around the nontrivial background metric contain unpredictable arbitrariness. The fermion zero modes which are explicitly constructed for the Euclidean Schwarzschild metric are interpreted as an indication of the supersymmetric multiplet structure of a black hole. The degree of degeneracy of a black hole is 2/sup 4n/ in SO(n) supergravity

  18. Gravitino problem in minimal supergravity inflation

    Directory of Open Access Journals (Sweden)

    Fuminori Hasegawa

    2017-04-01

    Full Text Available We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  19. Gravitino problem in minimal supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Fuminori [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Mukaida, Kyohei [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Terada, Takahiro, E-mail: terada@kias.re.kr [School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455 (Korea, Republic of); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-04-10

    We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  20. Supergravity field theories and the art of constructing them

    International Nuclear Information System (INIS)

    Freedman, D.Z.

    1977-01-01

    The review of supergravity field theories includes global supersymmetry, supergravity, extended supergravity, minimal gauge coupling for spin-3/2 fields, and the general strategy of supergravity constructions. 39 references

  1. Supergravity and matter

    International Nuclear Information System (INIS)

    Adamietz, P.; Binetruy, P.; Girardi, G.; Grimm, R.

    1992-07-01

    The properties of a linear multiplet in interaction with supergravity and matter are presented, with a special emphasis on the coupling of Chern-Simons forms, relevant for the problem of the chiral and conformal anomalies in relation with Kaehler transformations and the corresponding anomaly cancellations. The linear supermultiplet describes an antisymmetric tensor gauge field together with a dilaton and a Majorana spinor. In particular, these fields are found among the massless modes of superstring theories. The general properties of this supermultiplet is reviewed in the Kaehler superspace formalism and the complete supersymmetric action is constructed. This includes the classically Kaehler invariant component field action for all the kinetic terms as well as a Green-Schwarz type action which exhibits a non-holomorphic gauge coupling function. (author) 32 refs

  2. The integral form of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, L. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); INFN - Sezione di Torino,via P. Giuria 1, 10125 Torino (Italy); Catenacci, R. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); Gruppo Nazionale di Fisica Matematica, INdAM,P.le Aldo Moro 5, 00185 Roma (Italy); Grassi, P.A. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); INFN - Sezione di Torino,via P. Giuria 1, 10125 Torino (Italy)

    2016-10-11

    By using integral forms we derive the superspace action of D=3,N=1 supergravity as an integral on a supermanifold. The construction is based on target space picture changing operators, here playing the rôle of Poincaré duals to the lower-dimensional spacetime surfaces embedded into the supermanifold. We show how the group geometrical action based on the group manifold approach interpolates between the superspace and the component supergravity actions, thus providing another proof of their equivalence.

  3. Two-Field Analysis of No-Scale Supergravity Inflation

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A

    2015-01-01

    Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary K\\"ahler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index $n_s$ and the tensor-to-scalar ratio $r$, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflation model with a quadratic potential are capable of reducing $r$ to very small values $\\ll 0.1$. We also calculate the non-Gaussianity measure $f_{\\rm NL}$, finding that is well below the current experimental sensitivity.

  4. A QCD motivated model for soft processes

    International Nuclear Information System (INIS)

    Kormilitzin, A.; Levin, E.

    2009-01-01

    In this talk we give a brief description of a QCD motivated model for both hard and soft interactions at high energies. In this model the long distance behaviour of the scattering amplitude is determined by the dipole scattering amplitude in the saturation domain.

  5. I in generalized supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, T.; O Colgain, E. [Asia Pacific Center for Theoretical Physics, Pohang (Korea, Republic of); Sakamoto, J.; Yoshida, K. [Kyoto University, Department of Physics, Kyoto (Japan); Sheikh-Jabbari, M.M. [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-11-15

    We showed in previous work that for homogeneous Yang-Baxter (YB) deformations of AdS{sub 5} x S{sup 5} the open string metric and coupling and as a result the closed string density e{sup -2Φ}√(g) remain undeformed. In this work, in addition to extending these results to the deformation associated with the modified CYBE or η-deformation, we identify the Page forms as the open string counterpart for RR fields and demonstrate case by case that the non-zero Page forms remain invariant under YB deformations. We give a physical meaning to the Killing vector I of generalized supergravity and show for all YB deformations: (1) I appears as a current for the center of mass motion on the worldvolume of a D-brane probing the background, (2) I is equal to the divergence of the noncommutativity parameter, (3) I exhibits ''holographic'' behavior where the radial component of I vanishes at the AdS boundary and (4) in pure spinor formalism I is related to a certain state in the BRST cohomology. (orig.)

  6. Scale invariant Volkov–Akulov supergravity

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2015-10-01

    Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  7. Scale invariant Volkov–Akulov supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-10-07

    A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  8. Starobinsky-type Inflation in Dynamical Supergravity Breaking Scenarios

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-27

    In the context of dynamical breaking of local supersymmetry (supergravity), including the Deser-Zumino super-Higgs effect, for the simple but quite representative cases of N=1, D=4 supergravity, we discuss the emergence of Starobinsky-type inflation, due to quantum corrections in the effective action arising from integrating out gravitino fields in their massive phase. This type of inflation may occur after a first-stage small-field inflation that characterises models near the origin of the one-loop effective potential, and it may occur at the non-trivial minima of the latter. Phenomenologically realistic scenarios, compatible with the Planck data, may be expected for the conformal supergravity variants of the basic model.

  9. Absence of U(1) anomalous superamplitudes in N≥5 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Daniel Z. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Kallosh, Renata; Murli, Divyanshu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Proeyen, Antoine Van [KU Leuven, Institute for Theoretical Physics,Celestijnenlaan 200D, B-3001, Leuven (Belgium); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2017-05-12

    We list all potential candidates for U(1) anomalous non-local 1-loop 4-point amplitudes and higher loop UV divergences in N≥5 supergravities. The relevant chiral superinvariants are constructed from linearized chiral superfields and define the corresponding superamplitudes. The anomalous amplitudes, of the kind present in N=4, are shown to be absent in N≥5. In N=6 supergravity the result is deduced from the double-copy (N=4){sub YM}×(N=2){sub YM} model, whereas in N=5,8 the result on absence of anomalous amplitudes is derived in supergravities as well as in the (N=4){sub YM}×(N−4){sub YM} double-copy models.

  10. Symmetries of supergravity black holes

    International Nuclear Information System (INIS)

    Chow, David D K

    2010-01-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Staeckel tensors. These are induced by rank-2 Killing-Staeckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.

  11. Studies in gravity and supergravity

    International Nuclear Information System (INIS)

    Castellani, L.

    1981-01-01

    The canonical treatment for theories with local gauge invariances is reviewed and an algorithm for the construction of all the gauge generators is found. This algorithm is then applied to Yang-Mills theories and to (metric) gravity. The first part of the work is concluded with a complete treatment of hamiltonian first order tetrad gravity. In the second part, the geometrical aspects of (super)gravity theories are concentrated on. After an interlude with path integrals in curved space (equivalence is shown with canonical quantization), N = 2 supergravity in superspace, and conformal supergravity in the group manifold scenario are studied. A progress report is added, regarding a study on higher divergences in quantum field theory

  12. Gauged N=8 d=5 supergravity

    International Nuclear Information System (INIS)

    Pernici, M.; Pilch, K.; Van Nieuwenhuizen, P.

    1985-01-01

    The complete gauged nonlinear N=8 d=5 supergravity action and supersymmetry transformation laws (without four- and three-fermion terms) are presented. They are obtained from the ungauged model by reinterpreting part of the field strengths of the abelian vector fields as real self-dual second-rank antisymmetric tensors. The complete set of T-tensor indentities are given and their validity is checked numerically. The model has a local Yang-Mills SO(6) and a local composite USp(8) symmetry. The self-duality is essential for the consistent coupling of the antisymmetric tensors to the nonabelian gauge fields. (orig.)

  13. A worldsheet theory for supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim; Casali, Eduardo; Skinner, David [Department of Applied Mathematics & Theoretical Physics, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-02-18

    We present a worldsheet theory that describes maps into a curved target space equipped with a B-field and dilaton. The conditions for the theory to be consistent at the quantum level can be computed exactly, and are that the target space fields obey the nonlinear d=10 supergravity equations of motion, with no higher curvature terms. The path integral is constrained to obey a generalization of the scattering equations to curved space. Remarkably, the supergravity field equations emerge as quantum corrections to these curved space scattering equations.

  14. Supersymmetric AdS6 solutions of type IIB supergravity

    International Nuclear Information System (INIS)

    Kim, Hyojoong; Kim, Nakwoo; Suh, Minwoo

    2015-01-01

    We study the general requirement for supersymmetric AdS 6 solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS 6 . This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,ℝ)/SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) ⊂SL(3,ℝ) in a way analogous to gauged supergravity

  15. Inflaton decay in supergravity and gravitino problem

    International Nuclear Information System (INIS)

    Takahashi, F.

    2007-09-01

    We have recently shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. Taking account of these processes, we derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. (orig.)

  16. The axion mass in modular invariant supergravity

    International Nuclear Information System (INIS)

    Butter, Daniel; Gaillard, Mary K.

    2005-01-01

    When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality)

  17. General dimensional reduction of ten-dimensional supergravity and superstring

    International Nuclear Information System (INIS)

    Ferrara, S.; Porrati, M.

    1986-01-01

    Dimensional reductions of supergravity theories are shown to yield to specific glasses of four-dimensional no-scale models with N=4, 2 or 1 residual supersymmetry. N=1 ''maximal'' supergravity lagrangian, corresponding to the ''untwisted'' sector of orbifold compactification of superstrings, contains nine families and has a no-scale structure based on the Kaehler manifold [SU(3, 3+3n)/SU(3)xSU(3+3n)]x[SU(1, 1)/U(1)]. The quantum consistency of the resulting theories give information on the non Kaluza-Klein (string) ''twisted'' sector. (orig.)

  18. Representations of algebras of extended supersymmetry and linearised supergravity theories

    International Nuclear Information System (INIS)

    Tejlor, Dzh.

    1985-01-01

    In the lecture an attempt is made to acquaint the reader with the theory of extended supersymmetry, to characterize the corresponding particle spectrum and to explain how it can be used in supersymmetry with the least difficulties. Superalgebras are classified, their irreducible representations are given. Superfields and superspace are introduced, their role in the superalgebra realization is analyzed. Examples of linearized Lagrangians and auxiliary fields for the theories of supergravity with N=1 and N=2 are presented. Methods of spin reduction with the central charges are considered. The possibility to construct supergravity model with N>=3 off mass shell is considered

  19. Introduction to supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1990-01-01

    This book discusses two-dimensional supersymmetry algebras, and their irreducible representations as well as rigid and local (supergravity) theories of supersymmetry both in x-space and superspace. These theories include the actions for the superstring and the heterotic string. A discussion on superconformal algebras in two dimensions and an account of super operator product expansion are included

  20. Problems in unification and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, G.; Henyey, F. (eds.)

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)

  1. Problems in unification and supergravity

    International Nuclear Information System (INIS)

    Farrar, G.; Henyey, F.

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented

  2. Geometric construction of extended supergravity

    International Nuclear Information System (INIS)

    Kostelecky, V.A.

    1982-01-01

    This work describes the explict construction of the locally SO(4)-invariant, on-shell de Sitter supergravity. First, aspects of classical differential geometry used in the construction of local gauge theories are reviewed. Emphasis is placed on fiber bundles and their uses in Yang-Mills and Einstein theories. Next, the extension of the formalism to differential supergeometry is outlined. Applications to extended supergravities are discussed. Finally, the O(4) deSitter supergravity is obtained by considering a bundle of frames constructed using the orthosymplectic superalgebra osp(4/4). The structure group of this bundle is Sl(2C) x SO(4) and the tangent space to the base supermanifold is homeomorphic to the coset osp(4/4)/sl(2C) x so(4). Constraints taken into the Bianchi identifies yield a realization of the superalgebra in the function space of connections, vielbeins, curvatures and torsions of the bundle. Auxiliary fields, transformation laws and equations of motion are determined. Consistency of the realization is verified, proving closure of the algebra. The associated Poincare supergravity is obtained by a contraction

  3. Cartan's geometrical structure of supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.

    1977-06-01

    The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)

  4. Nonlinear self-duality and supergravity

    International Nuclear Information System (INIS)

    Kuzenko, Sergei M.; McCarthy, Shane A.

    2003-01-01

    The concept of self-dual supersymmetric nonlinear electrodynamics is generalized to a curved superspace of N=1 supergravity, for both the old minimal and the new minimal versions of N=1 supergravity. We derive the self-duality equation, which has to be satisfied by the action functional of any U(1) duality invariant model of a massless vector multiplet, and construct a family of self-dual nonlinear models. This family includes a curved superspace extension of the N=1 super Born-Infeld action. The supercurrent and supertrace in such models are proved to be duality invariant. The most interesting and unexpected result is that the requirement of nonlinear self-duality yields nontrivial couplings of the vector multiplet to Kaehler sigma models. We explicitly derive the couplings to general Kaehler sigma models in the case when the matter chiral multiplets are inert under the duality rotations, and more specifically to the dilaton-axion chiral multiplet when the group of duality rotations is enhanced to SL(2,R). (author)

  5. Physics of superheavy dark matter in supergravity

    Science.gov (United States)

    Addazi, Andrea; Marciano, Antonino; Ketov, Sergei V.; Khlopov, Maxim Yu.

    New trends in inflationary model building and dark matter production in supergravity are considered. Starobinsky inflation is embedded into 𝒩 = 1 supergravity, avoiding instability problems, when the inflaton belongs to a vector superfield associated with a U(1) gauge symmetry, instead of a chiral superfield. This gauge symmetry can be spontaneously broken by the super-Higgs mechanism resulting in a massive vector supermultiplet including the (real scalar) inflaton field. Both supersymmetry (SUSY) and the R-symmetry can also be spontaneously broken by the Polonyi mechanism at high scales close to the inflationary scale. In this case, Polonyi particles and gravitinos become superheavy, and can be copiously produced during inflation by the Schwinger mechanism sourced by the universe expansion. The Polonyi mass slightly exceeds twice the gravitino mass, so that Polonyi particles are unstable and decay into gravitinos. Considering the mechanisms of superheavy gravitino production, we find that the right amount of cold dark matter composed of gravitinos can be achieved. In our scenario, the parameter space of the inflaton potential is directly related to the dark matter one, providing a new unifying framework of inflation and dark matter genesis. A multi-superfield extension of the supergravity framework with a single (inflaton) superfield can result in a formation of primordial nonlinear structures like mini- and stellar-mass black holes, primordial nongaussianity, and the running spectral index of density fluctuations. This framework can be embedded into the SUSY GUTs inspired by heterotic string compactifications on Calabi-Yau three-folds, thus unifying particle physics with quantum gravity.

  6. Measuring Students' Motivation: Validity Evidence for the MUSIC Model of Academic Motivation Inventory

    Science.gov (United States)

    Jones, Brett D.; Skaggs, Gary

    2016-01-01

    This study provides validity evidence for the MUSIC Model of Academic Motivation Inventory (MUSIC Inventory; Jones, 2012), which measures college students' beliefs related to the five components of the MUSIC Model of Motivation (MUSIC model; Jones, 2009). The MUSIC model is a conceptual framework for five categories of teaching strategies (i.e.,…

  7. Spontaneous breaking of supersymmetry and gauge invariance in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Sohnius, M. (European Organization for Nuclear Research, Geneva (Switzerland)); West, P. (King' s Coll., London (UK). Dept. of Mathematics)

    1982-08-09

    Using the new minimal auxillary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed.

  8. Spontaneous breaking of supersymmetry and gauge invariance in supergravity

    International Nuclear Information System (INIS)

    Sohnius, M.; West, P.

    1982-01-01

    Using the new minimal auxillary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed. (orig.)

  9. Employee motivation: a powerful new model.

    Science.gov (United States)

    Nohria, Nitin; Groysberg, Boris; Lee, Linda-Eling

    2008-01-01

    Motivating employees begins with recognizing that to do their best work, people must be in an environment that meets their basic emotional drives to acquire, bond, comprehend, and defend. So say Nohria and Groysberg, of Harvard Business School, and Lee, of the Center for Research on Corporate Performance. Using the results of surveys they conducted with employees at a wide range of Fortune 500 and other companies, they developed a model for how to increase workplace motivation dramatically. The authors identify the organizational levers that companies and frontline managers have at their disposal as they try to meet workers' deep needs. Reward systems that truly value good performance fulfill the drive to acquire. The drive to bond is best met by a culture that promotes collaboration and openness. Jobs that are designed to be meaningful and challenging meet the need to comprehend. Processes for performance management and resource allocation that are fair, trustworthy, and transparent address the drive to defend. Equipped with real-world company examples, the authors articulate how to apply these levers in productive ways. That application should not be selective, they argue, because a holistic approach gets you more than a piecemeal one. By using all four levers simultaneously, and thereby tackling all four drives, organizations can improve motivation levels by leaps and bounds. For example, a company that falls in the 50th percentile on employee motivation improves only to the 56th by boosting performance on one drive, but way up to the 88th percentile by doing better on all four drives. That's a powerful gain in competitive advantage that any business would relish.

  10. Toward a tripartite model of intrinsic motivation.

    Science.gov (United States)

    Carbonneau, Noémie; Vallerand, Robert J; Lafrenière, Marc-André K

    2012-10-01

    Intrinsic motivation (IM) refers to engaging in an activity for the pleasure inherent in the activity. The present article presents a tripartite model of IM consisting of IM to know (i.e., engaging in an activity to experience pleasure while learning and trying to understand something new), IM toward accomplishment (i.e., engaging in an activity for the pleasure experienced when attempting task mastery), and IM to experience stimulation (i.e., engaging in an activity for feelings of sensory pleasure). The tripartite model of IM posits that each type of IM can result from task, situational, and personality determinants and can lead to specific types of cognitive, affective, and behavioral outcomes. The purpose of this research was to test some predictions derived from this model. Across 4 studies (Study 1: N = 331; Study 2: N = 113; Study 3: N = 58; Study 4: N = 135), the 3 types of IM as well as potential determinants and consequences were assessed. Results revealed that experiencing one type of IM over the others depends in part on people's personality styles. Also, each type of IM was found to predict specific outcomes (i.e., affective states and behavioral choices). The implications of the tripartite model of IM for motivation research are discussed. © 2011 The Authors. Journal of Personality © 2011, Wiley Periodicals, Inc.

  11. Helical Phase Inflation and Monodromy in Supergravity Theory

    Directory of Open Access Journals (Sweden)

    Tianjun Li

    2015-01-01

    Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.

  12. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  13. Spontaneous symmetry breaking in N=3 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1986-01-01

    The possibility of the spontaneous symmetry breaking without a cosmological term in N=3 supergravity is investigated. A new, dual version of N=3 supergravity - U(3)-supergravity is constructed. Such a theory is shown to admit a spontaneous supersymmetry breaking without a cosmological term and with three arbitrary scales, including partial super-Higgs effect N=3 → N=2 and N=3 → N=1

  14. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  15. MOTIVATION

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Introduction What is the difference between instrumental and integrative motivation? What kind of motivations do students have? How can our knowledge of motivation help the language learning process? Motivation can be very important in language teaching. Students can do very well when they are motivated. Teachers, with their knowledge of motivation, can make their classes more efficient and successful. Middle school teachers, in addition to learning about the English language itself, and about teaching methods, should also learn more about motivation and how this affects our students. "When we consider language teaching, motivation can be classified as either integrative or instrumental motivation" (Luxon)

  16. Minimal N=4 topologically massive supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany); Sachs, Ivo [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität,Theresienstraße 37, D-80333 München (Germany)

    2017-03-21

    Using the superconformal framework, we construct a new off-shell model for N=4 topologically massive supergravity which is minimal in the sense that it makes use of a single compensating vector multiplet and involves no free parameter. As such, it provides a counterexample to the common lore that two compensating multiplets are required within the conformal approach to supergravity with eight supercharges in diverse dimensions. This theory is an off-shell N=4 supersymmetric extension of chiral gravity. All of its solutions correspond to non-conformally flat superspaces. Its maximally supersymmetric solutions include the so-called critical (4,0) anti-de Sitter superspace introduced in https://www.doi.org/10.1007/JHEP08(2012)024, and well as warped critical (4,0) anti-de Sitter superspaces. We also propose a dual formulation for the theory in which the vector multiplet is replaced with an off-shell hypermultiplet. Upon elimination of the auxiliary fields belonging to the hypermultiplet and imposing certain gauge conditions, the dual action reduces to the one introduced in https://www.doi.org/10.1103/PhysRevD.94.065028.

  17. On matter couplings in N=1 supergravities

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievskiy, V.; Sokatchev, E.

    1983-01-01

    A flexible version of N=1 supergravity is proposed. It contains 28+28 fields and is an extension of the new minimal supergravity version. Matter couplings in various N=1 supergravity versions are discussed. The chiral densities are constructed for non-minimal and flexible versions. Therefore these versions admit a general R-non-invariant matter coupling as the minimal supergravity does. A modified Fayet-Iliopoulos type mechanism is conjectured which apparently can work in the non-minimal and flexible versions without R-symmetry of the superpotential unlike the minimal and new minimal ones

  18. Unconstrained multiplet in N=2 conformal supergravity

    International Nuclear Information System (INIS)

    Hayashi, Masahito; Uehara, Shozo.

    1985-02-01

    An unconstrained (general) multiplet was studied in N = 2 conformal supergravity. Transformation law, embedding formula and multiplication rule are explicitly presented at the linearized level. (author)

  19. Long range supergravity coupling strengths

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1991-01-01

    A limit of 2x10 -13 has recently been deduced for the fractional difference between the gravitational masses of the K 0 and anti K 0 mesons. This limit is applied here to put stringent limits on the strengths of the long range vector-scalar gravitational couplings envisaged in supergravity theories. A weaker limit is inferred from the general relativistic fit to the precession of the orbit of the pulsar PSR1913+16. (orig.)

  20. Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector multiplet

    Energy Technology Data Exchange (ETDEWEB)

    Aldabergenov, Yermek [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation)

    2017-04-15

    The N = 1 supergravity models of cosmological inflation with an inflaton belonging to a massive vector multiplet and spontaneous SUSY breaking after inflation are reformulated as the supersymmetric U(1) gauge theories of a massless vector superfield interacting with the Higgs and Polonyi chiral superfields, all coupled to supergravity. The U(1) gauge sector is identified with the U(1) gauge fields of the super-GUT coupled to supergravity, whose gauge group has a U(1) factor. A positive cosmological constant (dark energy) is included. The scalar potential is calculated, and its de Sitter vacuum solution is found to be stable. (orig.)

  1. Linearized supergravity with a dynamical preferred frame

    CERN Document Server

    Marakulin, Arthur

    2016-01-01

    We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.

  2. The motivating role of positive feedback in sport and physical education: evidence for a motivational model.

    Science.gov (United States)

    Mouratidis, Athanasios; Vansteenkiste, Maarten; Lens, Willy; Sideridis, Georgios

    2008-04-01

    Based on self-determination theory (Deci & Ryan, 2000), an experimental study with middle school students participating in a physical education task and a correlational study with highly talented sport students investigated the motivating role of positive competence feedback on participants' well-being, performance, and intention to participate. In Study 1, structural equation modeling favored the hypothesized motivational model, in which, after controlling for pretask perceived competence and competence valuation, feedback positively predicted competence satisfaction, which in turn predicted higher levels of vitality and greater intentions to participate, through the mediation of autonomous motivation. No effects on performance were found. Study 2 further showed that autonomous motivation mediated the relation between competence satisfaction and well-being, whereas a motivation mediated the negative relation between competence satisfaction and ill-being and rated performance. The discussion focuses on the motivational role of competence feedback in sports and physical education settings.

  3. The coach-athlete relationship: a motivational model.

    Science.gov (United States)

    Mageau, Geneviève A; Vallerand, Robert J

    2003-11-01

    The aim of this paper is to present a motivational model of the coach-athlete relationship that describes how coaches may influence athletes' motivation. In line with cognitive evaluation theory (Deci and Ryan, 1980, 1985) and the hierarchical model of intrinsic and extrinsic motivation (Vallerand, 1997, 2000), a motivational sequence is proposed where coaches' personal orientation towards coaching, the context within which they operate, and their perceptions of their athletes' behaviour and motivation influence coaches' behaviours. Also, coaches' behaviours in the form of autonomy-supportive behaviours, provision of structure and involvement have a beneficial impact on athletes' needs for autonomy, competence and relatedness, which, in turn, nurture athletes' intrinsic motivation and self-determined types of extrinsic motivation. Here, we first review coaches' autonomy-supportive behaviours. We then describe the psychological processes through which coaching behaviours have a positive influence on athletes' intrinsic and self-determined extrinsic motivation. Finally, we identify social and personality processes that determine coaching behaviours.

  4. The Effect of Multidimensional Motivation Interventions on Cognitive and Behavioral Components of Motivation: Testing Martin's Model

    OpenAIRE

    Fatemeh PooraghaRoodbarde; Siavash Talepasand; Issac Rahimian Boogar

    2017-01-01

    Objective: The present study aimed at examining the effect of multidimensional motivation interventions based on Martin's model on cognitive and behavioral components of motivation.Methods: The research design was prospective with pretest, posttest, and follow-up, and 2 experimental groups. In this study, 90 students (45 participants in the experimental group and 45 in the control group) constituted the sample of the study, and they were selected by available sampling method. Motivation inter...

  5. College English Students’ Autonomous Learning Motivation and Cultivation Model Research

    Institute of Scientific and Technical Information of China (English)

    王艳荣; 李娥

    2015-01-01

    Studying the autonomous learning motivation and excitation model can stimulate intrinsic motivation of foreign language learners,develop students self-management strategy evaluation are very necessary.The purpose of this paper is to give students the skills of listening and speaking for their autonomous learning.Then study the cultivation and motivation of college English students autonomous learning,hoping to make students to learn autonomous learning and stimulate their motivation fully.

  6. More gaugings of N=8 supergravity

    International Nuclear Information System (INIS)

    Hull, C.M.

    1984-01-01

    New non-compact gaugings of N = 8 supergravity are constructed. The gauge groups are SO(p,q) (with p + q = 8) and the group contraction of SO(p,q) about SO(p). The SO(4,4) gauging and the corresponding contraction truncate to gauged N = 4 supergravity theories. (orig.)

  7. Experimental limits on antigravity in extended supergravity

    OpenAIRE

    Bellucci, S.; Faraoni, V.

    1995-01-01

    The available tests of the equivalence principle constrain the mass of the Higgs-like boson appearing in extended supergravity theories. We determine the constraints imposed by the present and future high precision experiments on the antigravity fields arising from $N=2,8$ supergravity.

  8. Sneutrino driven GUT inflation in supergravity

    International Nuclear Information System (INIS)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-01-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  9. Sneutrino driven GUT inflation in supergravity

    Science.gov (United States)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-06-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  10. Assessing Music Students' Motivation Using the Music Model of Academic Motivation Inventory

    Science.gov (United States)

    Parkes, Kelly A.; Jones, Brett D.; Wilkins, Jesse L. M.

    2017-01-01

    The purpose of this study was to investigate the reliability and validity of using a motivation inventory with music students in upper-elementary, middle, and high school. We used the middle/high school version of the MUSIC Model of Academic Motivation Inventory to survey 93 students in the 5th to 12th grades in one school. Our analysis revealed…

  11. A Study into the Motivation of Knowledge Workers: Using an adapted version of the MOCC model of motivation to explain the motivational tendencies of project managers and engineers

    OpenAIRE

    Hammond, Matthew

    2012-01-01

    There is a general need across organisations to better understand the motivation of knowledge workers. Based on our own empirical findings, research into early and contemporary motivation theories and use of Sharp et al.’s (2009) Motivators, Outcomes, Context, and Characteristics (MOCC) motivational model we adapted our own model. Through adapting the content of the model but keeping the framework intact, we were able to explain the various aspects of motivation in project management and engi...

  12. Advances in geometry and Lie algebras from supergravity

    CERN Document Server

    Frè, Pietro Giuseppe

    2018-01-01

    This book aims to provide an overview of several topics in advanced Differential Geometry and Lie Group Theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject. .

  13. Black holes in ω-deformed gauged N=8 supergravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru

    2014-01-01

    Motivated by the recently found 4-dimensional ω-deformed gauged supergravity, we investigate the black hole solutions within the single scalar field consistent truncations of this theory. We construct black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field is regular everywhere outside the curvature singularity and the stress–energy tensor satisfies the null energy condition. When the parameter ω does not vanish, there is a degeneracy in the spectrum of black hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These boundary conditions correspond to multi-trace deformations in the dual field theory.

  14. Black holes in ω-deformed gauged N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de Lyon, 46 allé d' Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2014-05-01

    Motivated by the recently found 4-dimensional ω-deformed gauged supergravity, we investigate the black hole solutions within the single scalar field consistent truncations of this theory. We construct black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field is regular everywhere outside the curvature singularity and the stress–energy tensor satisfies the null energy condition. When the parameter ω does not vanish, there is a degeneracy in the spectrum of black hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These boundary conditions correspond to multi-trace deformations in the dual field theory.

  15. The effective supergravity of little string theory

    Science.gov (United States)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  16. The effective supergravity of little string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Delgado, Antonio [University of Notre Dame, Department of Physics, Notre Dame, IN (United States); Markou, Chrysoula [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); Pokorski, Stefan [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland)

    2018-02-15

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N = 2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N = 1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory. (orig.)

  17. Minimal scalar-less matter-coupled supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Agata, Gianguido, E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau (France); Ferrara, Sergio [Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Zwirner, Fabio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2016-01-10

    We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.

  18. Minimal scalar-less matter-coupled supergravity

    CERN Document Server

    Dall'Agata, Gianguido; Zwirner, Fabio

    2016-01-01

    We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.

  19. Supergravity and inflation

    International Nuclear Information System (INIS)

    Binetruy, P.

    1985-08-01

    The reasons that led to study supersymmetric models in the context of inflation are reviewed by setting up the constraints that candidates to an inflationary scenario must satisfy. The question is raised whether the groundstate of the new scalar field introduced, the inflaton, breaks supersymmetry. This is discussed in connection with the so-called thermal constraint. Some problems about the study of thermal fluctuations are discussed. The different models available are reviewed and the way they address those issues. A discussion of baryon number generation and of the gravitino problem follows. 67 refs., 4 figs

  20. Generalizing minimal supergravity

    International Nuclear Information System (INIS)

    Li, Tianjun; Nanopoulos, Dimitri V.

    2010-01-01

    In Grand Unified Theories (GUTs), the Standard Model (SM) gauge couplings need not be unified at the GUT scale due to the high-dimensional operators. Considering gravity mediated supersymmetry breaking, we study for the first time the generic gauge coupling relations at the GUT scale, and the general gaugino mass relations which are valid from the GUT scale to the electroweak scale at one loop. We define the index k for these relations, which can be calculated in GUTs and can be determined at the Large Hadron Collider and the future International Linear Collider. Thus, we give a concrete definition of the GUT scale in these theories, and suggest a new way to test general GUTs at future experiments. We also discuss five special scenarios with interesting possibilities. With our generic formulae, we present all the GUT-scale gauge coupling relations and all the gaugino mass relations in the SU(5) and SO(10) models, and calculate the corresponding indices k. Especially, the index k is 5/3 in the traditional SU(5) and SO(10) models that have been studied extensively so far. Furthermore, we discuss the field theory realization of the U(1) flux effects on the SM gauge kinetic functions in F-theory GUTs, and calculate their indices k as well.

  1. Supergravity, Dark Energy and the Fate of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2002-09-27

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  2. Some features of SUSY breaking in N=2 supergravity

    International Nuclear Information System (INIS)

    Cecotti, S.; Giradello, L.; Porrati, M.

    1984-08-01

    We discuss some features of SUSY breaking in N=2 Supergravity. Firstly, we show that in a general N=2 Sugra model (constructed according to the tensor calculus) all stationary points of the potential, at Λ=0, are fully supersymmetric if the compensating multiplet is not gauged. Thus a viable super-Higgs effect in N=2 supergravity can occur only in the presence of a Fayet-Iliopoulos term. Then we present an explicit model with two scales of breaking in anti-de Sitter space. Moreover, the ratio of the two gravitino masses is sliding i.e. not determined by the classical potential. In the extreme situation one of the gravitino mass equals √-Λ/3, and thus we have partial super-Higgs (in AdS space). The cosmological constant may be arranged to an arbitrary small value while keeping the mass of the heavy gravitino constant. (author)

  3. Axion-dilaton domain walls and fake supergravity

    International Nuclear Information System (INIS)

    Sonner, Julian; Townsend, Paul K

    2007-01-01

    Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider 'fake-supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that 'adapted' truncation to a single-scalar model may be inconsistent, and we propose a 'generalized' fake-supergravity formalism that applies in some such cases

  4. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng

    2014-12-01

    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  5. Asymptotic freedom in extended conformal supergravities

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1982-01-01

    We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)

  6. Unlocking the axion-dilaton in 5D supergravity

    Czech Academy of Sciences Publication Activity Database

    Raeymaekers, Joris; Van den Bleeken, D.

    2014-01-01

    Roč. 11, Nov (2014), s. 1-54 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : supergravity models * d-branes * m-theory * black holes in string theory Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014 http://link.springer.com/article/10.1007%2FJHEP11%282014%29029

  7. Supersymmetric solutions of N =(1 ,1 ) general massive supergravity

    Science.gov (United States)

    Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.

    2018-05-01

    We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.

  8. Brane inflation: A field theory approach in background supergravity

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Pal, Supratik

    2012-01-01

    We propose a model of inflation in the framework of brane cosmology driven by background supergravity. Starting from bulk supergravity we construct the inflaton potential on the brane and employ it to investigate for the consequences to inflationary paradigm. To this end, we derive the expressions for the important parameters in brane inflation, which are somewhat different from their counterparts in standard cosmology, using the one loop radiative corrected potential. We further estimate the observable parameters and find them to fit well with recent observational data. We have studied extensively reheating phenomenology, which explains the thermal history of the universe and leptogenesis through the production of thermal gravitino pertaining to the particle physics phenomenology of the early universe.

  9. Motivation and personality: relationships between putative motive dimensions and the five factor model of personality.

    Science.gov (United States)

    Bernard, Larry C

    2010-04-01

    There are few multidimensional measures of individual differences in motivation available. The Assessment of Individual Motives-Questionnaire assesses 15 putative dimensions of motivation. The dimensions are based on evolutionary theory and preliminary evidence suggests the motive scales have good psychometric properties. The scales are reliable and there is evidence of their consensual validity (convergence of self-other ratings) and behavioral validity (relationships with self-other reported behaviors of social importance). Additional validity research is necessary, however, especially with respect to current models of personality. The present study tested two general and 24 specific hypotheses based on proposed evolutionary advantages/disadvantages and fitness benefits/costs of the five-factor model of personality together with the new motive scales in a sample of 424 participants (M age=28.8 yr., SD=14.6). Results were largely supportive of the hypotheses. These results support the validity of new motive dimensions and increase understanding of the five-factor model of personality.

  10. The Effect of Multidimensional Motivation Interventions on Cognitive and Behavioral Components of Motivation: Testing Martin's Model

    Directory of Open Access Journals (Sweden)

    Fatemeh PooraghaRoodbarde

    2017-04-01

    Full Text Available Objective: The present study aimed at examining the effect of multidimensional motivation interventions based on Martin's model on cognitive and behavioral components of motivation.Methods: The research design was prospective with pretest, posttest, and follow-up, and 2 experimental groups. In this study, 90 students (45 participants in the experimental group and 45 in the control group constituted the sample of the study, and they were selected by available sampling method. Motivation interventions were implemented for fifteen 60-minute sessions 3 times a week, which lasted for about 2 months. Data were analyzed using repeated measures multivariate variance analysis test.Results: The findings revealed that multidimensional motivation interventions resulted in a significant increase in the scores of cognitive components such as self-efficacy, mastery goal, test anxiety, and feeling of lack of control, and behavioral components such as task management. The results of one-month follow-up indicated the stability of the created changes in test anxiety and cognitive strategies; however, no significant difference was found between the 2 groups at the follow-up in self-efficacy, mastery goals, source of control, and motivation.Conclusions: The research evidence indicated that academic motivation is a multidimensional component and is affected by cognitive and behavioral factors; therefore, researchers, teachers, and other authorities should attend to these factors to increase academic motivation.

  11. Perturbative and global anomalies in supergravity theories

    International Nuclear Information System (INIS)

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  12. Motivation within the Information Processing Model of Foreign Language Learning

    Science.gov (United States)

    Manolopoulou-Sergi, Eleni

    2004-01-01

    The present article highlights the importance of the motivational construct for the foreign language learning (FLL) process. More specifically, in the present article it is argued that motivation is likely to play a significant role at all three stages of the FLL process as they are discussed within the information processing model of FLL, namely,…

  13. A Model for Employee Motivation and Satisfaction.

    Science.gov (United States)

    Grant, Philip C.

    1979-01-01

    To increase an employee's motivation, an employee must perceive that s/he will achieve higher satisfaction for greater effort. To generate such perception, rewards must clearly be contingent on effort and the cost of increased effort must grow at a slower rate than the increase in reward. (Author/IRT)

  14. Anti-de Sitter black holes in gauged supergravity. Supergravity flow, thermodynamics and phase transitions

    NARCIS (Netherlands)

    Toldo, C.

    2014-01-01

    This thesis is devoted to the analysis of asymptotically Anti-de Sitter (AdS) black holes arising as solutions of theories of gauged Supergravity in four spacetime dimensions. After a brief recap of the main features of gauged supergravity, the first part of the thesis deals with the explicit

  15. The behavioural motivation model in open distance learning

    DEFF Research Database (Denmark)

    Zaikin, Oleg; Malinowska, Magdalena; Kofoed, Lise B.

    2014-01-01

    The article contains the concept of developing a motivation model aimed at supporting activity of both students and teachers in the process of implementing and using an open and distance learning system. Proposed motivation model is focused on the task of filling the knowledge repository with high...... quality didactic material. Open and distance learning system assures a computer space for the teaching/learning process in open environment. The structure of the motivation model and formal assumptions are described. Additionally, there is presented a structure of the linguistic database, helping...... the teacher to assess the student's motivation and the basic simulation model to analysis the teaching/learning process constrains. The proposed approach is based on the games theory and simulation approach....

  16. How motivation affects academic performance: a structural equation modelling analysis.

    Science.gov (United States)

    Kusurkar, R A; Ten Cate, Th J; Vos, C M P; Westers, P; Croiset, G

    2013-03-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.

  17. Supergravity and the quest for a unified theory

    International Nuclear Information System (INIS)

    Ferrara, S.

    1995-01-01

    The foundation of supergravity and research in its subsequent developments is described. Special emphasis is placed on the impact of supergravity on the search for a unified theory of fundamental interactions. (author)

  18. Supersymmetry, superfields and supergravity: An introduction

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1986-01-01

    This book is a self-contained introduction to the subject of supersymmetry. The algebras of supersymmetry and the R-symmetry generators are explained using a simple field theory model. The realisations of this algebra on one-particle states and on a supermultiplet of component fields are then discussed. There is a detailed description of the Wess-Zumino model, with discussion of the realisation of R-symmetry and supermultiplets of currents and anomalies. Detailed treatment of the realisation of the algebra on superspace and superfields is applied to the Yang-Mills theory in interaction with matter. The possibility of spontaneously broken symmetries is introduced before non-Abelian supersymmetric gauge theories are constructed. Superfield propagators are derived as the Green functions of the corresponding equations of motion and the power of superfield perturbation theory is illustrated. Finally local supersymmetry and the supergravity Lagrangian are introduced with a discussion of gravity-induced supersymmetry breaking and the super-Higgs effect. Emphasis is placed on developing a physical understanding of the mathematical formalism and numerous problems are included to help develop the reader's understanding

  19. Phenomenological aspects of heterotic orbifold models at one loop

    International Nuclear Information System (INIS)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.

    2003-01-01

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly

  20. Model of Employees Motivation Through Gamification of Information System

    Directory of Open Access Journals (Sweden)

    Jolanta Kostecka

    2015-05-01

    Full Text Available In this article the problem of motivation of employees, who are working with information system and whose work environment is full of monotonous, boring and repetitive tasks, is analyzed. On the basis of literature, theoretical aspects of work motivation are analyzed and it is suggested to use gamification in order to solve this problem. On the basis of literature, theoretical and practical aspects of motivation of gamers and gamification are analyzed. After all, it is suggested to use model which joins main aspects of employee needs and gamification. Through example of accounting specialists the offered model is used in practice. Based on the results of the research, opportunities of motivating accounting specialists through gamification of information system are evaluated.

  1. Testing relationships from the hierarchical model of intrinsic and extrinsic motivation using flow as a motivational consequence.

    Science.gov (United States)

    Kowal, J; Fortier, M S

    2000-06-01

    The purpose of this study was to test a motivational model based on Vallerand's (1997) Hierarchical Model of Intrinsic and Extrinsic Motivation. This model incorporates situational and contextual motivational variables, and was tested using a time-lagged design. Master's level swimmers (N = 104) completed a questionnaire on two separate occasions. At Time 1, situational social factors (perceptions of success and perceptions of the motivational climate), situational motivational mediators (perceptions of autonomy, competence, and relatedness), situational motivation, and flow were assessed immediately following a swim practice. Contextual measures of these same variables were assessed at Time 2, 1 week later, with the exception of flow. Results of a path analysis supported numerous links in the hypothesized model. Findings are discussed in light of research and theory on motivation and flow.

  2. Background harmonic superfields in N=2 supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1998-01-01

    A modification of the harmonic superfield formalism in D=4, N=2 supergravity using a subsidiary condition of covariance under the background supersymmetry with a central charge (B-covariance) is considered. Conservation of analyticity together with the B-covariance leads to the appearance of linear gravitational superfields. Analytic prepotentials arise in a decomposition of the background linear superfields in terms of spinor coordinates and transform in a nonstandard way under the background supersymmetry. The linear gravitational superfields can be written via spinor derivatives of nonanalytic spinor prepotentials. The perturbative expansion of supergravity action in terms of the B-covariant superfields and the corresponding version of the differential-geometric formalism are considered. We discuss the dual harmonic representation of the linearized extended supergravity, which corresponds to the dynamical condition of Grassmann analyticity

  3. High energy scattering in gravity and supergravity

    CERN Document Server

    Giddings, Steven B; Andersen, Jeppe R

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and gravity appears not to reggeize. These arguments sharpen the need to find a nonpert...

  4. Geometries inherent to N=1 supergravities

    International Nuclear Information System (INIS)

    Galperin, A.S.; Ogievetsky, V.I.; Sokatchev, E.S.

    1981-01-01

    The first part of the talk is devoted to a consideration of linearized N=1 supergravities. The second main part deals with complex geometries inherent to different N=1 supergravities. A special attention is paid to a new version with local symmetry. It is connected to the special nonminimal case (n=0) having a remarkable property of supervolume preservation in Csup(4.4) superspace. Therefore the superdeterminant of change of variables from left to right-handed Rsup(4.4) parametrization is a dimensionless scalar. This geometric invariant has to be constrained to obtain an action. Solving such a constraint on vector and spinor prepotentials in Wess-Zumino gauge one obtains the new supergravity with 12+12 fields and local symmetry. A possible relaxation of this constraint is briefly considered (16+16 fields version) [ru

  5. Euclidean supergravity and multi-centered solutions

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2017-04-01

    Full Text Available In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein–Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D=5, N=2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein–Maxwell multi-centered solutions are also presented.

  6. KICS: A Model of Motivational Leadership in Organizations

    Directory of Open Access Journals (Sweden)

    John N. N. Ugoani

    2015-09-01

    Full Text Available This pure research gave birth to a Model of Motivational Leadership – KICS: which embraces knowledge, intelligence, collaboration and synergy. It is a synergistic  proposition based on the theory of emotional intelligence as the index of competencies needed for effective leadership. It opened with a general discussion on traditional models of leadership, then the roles of knowledge, intelligence, collaboration and synergy as they relate to motivational leadership. Issues of emotional intelligence clusters and synthesis of the model’s elements were discussed, emphasizing how KICS-based motivational leadership skills can be developed and sustained. Motivational leadership entails exciting people’s imaginations and inspiring them to move in a desired direction. It takes more than simple power to motivate and lead in organizations. Realizing that unity and cohesiveness are built from personal bonds, the best leaders ensure to deepen their rapport with employees and colleagues which enhances organizational performance. This pure research argues that the synergy of related emotional intelligence competencies can lead to motivational leadership behaviour. Knowledge is critical to leadership because there are different types of leadership and different situations require different kinds of knowledge, and the person possessing the knowledge demanded by a certain situation in most cases, tends to become the best leader. A knowledgeable person is one who is trained to consider his actions to undertake them deliberately, in a disciplined manner. Added to this ability is the intelligence to endure in a chosen course in the face of distraction, confusion and difficulty, all combined in producing a motivational leader. Knowledge tends to be procedural in nature and to operate outside of focal awareness. It also reflects the structure of the situation more closely than it does in the structure of formal disciplinary knowledge. The survey research design

  7. A problem of the QCD axion in supergravity

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Tokyo Univ.; Yanagida, T.T.; Tokyo Univ.

    2007-12-01

    We point out that the QCD axion generally couples to all the gauge fields in nature through the Super-Weyl, Kaehler and sigma-model anomalies in supergravity. If supersymmetry is dynamically broken by the hidden-sector gauge interactions, the axion potential receives corrections due to the instanton in the hidden sector. We show that the supersymmetry breaking models are tightly constrained for the Peccei-Quinn mechanism to successfully solve the strong CP problem. In particular, the gravity mediation turns out to be strongly disfavored. (orig.)

  8. Black-Hole Attractors in N=1 Supergravity

    CERN Document Server

    Andrianopoli, L; Ferrara, Sergio; Trigiante, M; Andrianopoli, Laura; Auria, Riccardo D'; Ferrara, Sergio; Trigiante, Mario

    2007-01-01

    We study the attractor mechanism for N=1 supergravity coupled to vector and chiral multiplets and compute the attractor equations of these theories. These equations may have solutions depending on the choice of the holomorphic symmetric matrix f_{\\Lambda\\Sigma} which appears in the kinetic lagrangian of the vector sector. Models with non trivial electric-magnetic duality group which have or have not attractor behavior are exhibited. For a particular class of models, based on an N=1 reduction of homogeneous special geometries, the attractor equations are related to the theory of pure spinors.

  9. Formulation of 11-dimensional supergravity in superspace

    International Nuclear Information System (INIS)

    Cremmer, E.; Ferrara, S.

    1980-01-01

    We formulate on-shell 11-dimensional supergravity in superspace and express its equations of motion in terms of purely geometrical quantities. All torsion and curvature components are solved in terms of a single superfield Wsub(rstu), totally antisymmetric in its (flat vector) indices. The dimensional reduction of this formulation is expected to be related to the superspace formulation of N = 8 extended supergravity and might explain the origin of the hidden (local) SU(8) and (global) E 7 symmetries present in this theory. (orig.)

  10. Goldstino superfields in N=2 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M.; McArthur, Ian N. [School of Physics and Astrophysics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-05-11

    We present off-shell N=2 supergravity actions, which exhibit spontaneously broken local supersymmetry and allow for de Sitter vacua for certain values of the parameters. They are obtained by coupling the standard N=2 supergravity-matter systems to the Goldstino superfields introduced in arXiv:1105.3001 and arXiv:1607.01277 in the rigid supersymmetric case. These N=2 Goldstino superfields include nilpotent chiral and linear supermultiplets. We also describe a new reducible N=1 Goldstino supermultiplet.

  11. Generation of composite operators in supergravity

    International Nuclear Information System (INIS)

    Abdalla, E.

    1984-07-01

    The author discusses the generation of quantum composite operators in two and higher dimensions. In two dimensions the problem is discussed in detail, and the supergravity fields, trivial at the beginning, acquire the status of independent fields, non trivial features being obtained as consequence. In higher dimensions one is led to non compact symmetry groups when dealing with supergravity. The symmetry SU(p,q) is discussed; quantization presents several problems. In one case, p=q, it is possible to obtain a prescription leading to finite results, with a quantization procedure breaking the symmetry to SU(p) X SU(q). (Auth.)

  12. Aspects of Weyl Supergravity arXiv

    CERN Document Server

    Ferrara, Sergio; Lust, Dieter

    In this paper we study the spectrum of all conformal, ${\\cal N}$-extended supergravities (${\\cal N}=1,2,3,4$) in four space-time dimensions. When these theories are obtained as massless limit of Einstein plus Weyl$^2$supergravity, the appropriate counting of the enhanced gauge symmetries allow us to derive the massless spectrum which consist of a dipole ghost graviton multiplet, a ${\\cal N}$-fold tripole ghost gravitino, the third state belonging to a spin 3/2 multiplet and a residual vector multiplet present for non-maximal ${\\cal N}<4$ theories. These theories are not expected to have a standard gravity holographic dual in five dimensions.

  13. Employee commitment and motivation: a conceptual analysis and integrative model.

    Science.gov (United States)

    Myer, John P; Becker, Thomas E; Vandenberghe, Christian

    2004-12-01

    Theorists and researchers interested in employee commitment and motivation have not made optimal use of each other's work. Commitment researchers seldom address the motivational processes through which commitment affects behavior, and motivation researchers have not recognized important distinctions in the forms, foci, and bases of commitment. To encourage greater cross-fertilization, the authors present an integrative framework in which commitment is presented as one of several energizing forces for motivated behavior. E. A. Locke's (1997) model of the work motivation process and J. P. Meyer and L. Herscovitch's (2001) model of workplace commitments serve as the foundation for the development of this new framework. To facilitate the merger, a new concept, goal regulation, is derived from self-determination theory (E. L. Deci & R. M. Ryan, 1985) and regulatory focus theory (E. I. Higgins, 1997). By including goal regulation, it is acknowledged that motivated behavior can be accompanied by different mindsets that have particularly important implications for the explanation and prediction of discretionary work behavior. 2004 APA, all rights reserved

  14. Beyond Performance: A Motivational Experiences Model of Stereotype Threat

    Science.gov (United States)

    Thoman, Dustin B.; Smith, Jessi L.; Brown, Elizabeth R.; Chase, Justin; Lee, Joo Young K.

    2013-01-01

    The contributing role of stereotype threat (ST) to learning and performance decrements for stigmatized students in highly evaluative situations has been vastly documented and is now widely known by educators and policy makers. However, recent research illustrates that underrepresented and stigmatized students’ academic and career motivations are influenced by ST more broadly, particularly through influences on achievement orientations, sense of belonging, and intrinsic motivation. Such a focus moves conceptualizations of ST effects in education beyond the influence on a student’s performance, skill level, and feelings of self-efficacy per se to experiencing greater belonging uncertainty and lower interest in stereotyped tasks and domains. These negative experiences are associated with important outcomes such as decreased persistence and domain identification, even among students who are high in achievement motivation. In this vein, we present and review support for the Motivational Experience Model of ST, a self-regulatory model framework for integrating research on ST, achievement goals, sense of belonging, and intrinsic motivation to make predictions for how stigmatized students’ motivational experiences are maintained or disrupted, particularly over long periods of time. PMID:23894223

  15. Associations Between Motivation and Mental Health in Sport: A Test of the Hierarchical Model of Intrinsic and Extrinsic Motivation

    Science.gov (United States)

    Sheehan, Rachel B.; Herring, Matthew P.; Campbell, Mark J.

    2018-01-01

    Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posited by the Hierarchical Model of Intrinsic and Extrinsic Motivation: motivational climate → basic psychological needs → motivation → mental health outcomes. Elite team-sport athletes (140 females, 75 males) completed seven psychometric inventories of motivation-related and mental health variables. Overall, the athletes reported positive motivational patterns, with autonomous motivation and task climate being more prevalent than their less adaptive counterparts. Elevated depressive symptoms and poor sleep quality affected nearly half of the cohort. Structural equation modeling supported pathways between motivational climate, basic needs, motivation, and mood, depressive symptoms, sleep quality, and trait anxiety. Specifically, a task climate was positively associated with the three basic psychological needs, and an ego climate was positively associated with competence. Autonomy and relatedness had positive and negative associations with autonomous and controlled forms of motivation, respectively. Controlled motivation regulations were positively associated with the four mental health outcomes. Integrated regulation had a negative association with anxiety, and intrinsic regulation had a positive association with depressive symptoms. These findings highlight the complexities of and interrelations between motivation and mental health among athletes, and support the importance of considering mental health as an outcome of motivation. PMID:29867672

  16. Associations Between Motivation and Mental Health in Sport: A Test of the Hierarchical Model of Intrinsic and Extrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Rachel B. Sheehan

    2018-05-01

    Full Text Available Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posited by the Hierarchical Model of Intrinsic and Extrinsic Motivation: motivational climate → basic psychological needs → motivation → mental health outcomes. Elite team-sport athletes (140 females, 75 males completed seven psychometric inventories of motivation-related and mental health variables. Overall, the athletes reported positive motivational patterns, with autonomous motivation and task climate being more prevalent than their less adaptive counterparts. Elevated depressive symptoms and poor sleep quality affected nearly half of the cohort. Structural equation modeling supported pathways between motivational climate, basic needs, motivation, and mood, depressive symptoms, sleep quality, and trait anxiety. Specifically, a task climate was positively associated with the three basic psychological needs, and an ego climate was positively associated with competence. Autonomy and relatedness had positive and negative associations with autonomous and controlled forms of motivation, respectively. Controlled motivation regulations were positively associated with the four mental health outcomes. Integrated regulation had a negative association with anxiety, and intrinsic regulation had a positive association with depressive symptoms. These findings highlight the complexities of and interrelations between motivation and mental health among athletes, and support the importance of considering mental health as an outcome of motivation.

  17. Associations Between Motivation and Mental Health in Sport: A Test of the Hierarchical Model of Intrinsic and Extrinsic Motivation.

    Science.gov (United States)

    Sheehan, Rachel B; Herring, Matthew P; Campbell, Mark J

    2018-01-01

    Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posited by the Hierarchical Model of Intrinsic and Extrinsic Motivation: motivational climate → basic psychological needs → motivation → mental health outcomes. Elite team-sport athletes (140 females, 75 males) completed seven psychometric inventories of motivation-related and mental health variables. Overall, the athletes reported positive motivational patterns, with autonomous motivation and task climate being more prevalent than their less adaptive counterparts. Elevated depressive symptoms and poor sleep quality affected nearly half of the cohort. Structural equation modeling supported pathways between motivational climate, basic needs, motivation, and mood, depressive symptoms, sleep quality, and trait anxiety. Specifically, a task climate was positively associated with the three basic psychological needs, and an ego climate was positively associated with competence. Autonomy and relatedness had positive and negative associations with autonomous and controlled forms of motivation, respectively. Controlled motivation regulations were positively associated with the four mental health outcomes. Integrated regulation had a negative association with anxiety, and intrinsic regulation had a positive association with depressive symptoms. These findings highlight the complexities of and interrelations between motivation and mental health among athletes, and support the importance of considering mental health as an outcome of motivation.

  18. N-N potentials in QCD-motivated quark models

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    Nucleon-nucleon interaction has been investigated in different QCD-inspired quark models, particularly the influence of configuration mixing. A string-motivated model is advocated, which yields a realistic short-range part of the nucleon-nucleon potential. (author)

  19. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  20. Models of misbelief: Integrating motivational and deficit theories of delusions.

    Science.gov (United States)

    McKay, Ryan; Langdon, Robyn; Coltheart, Max

    2007-12-01

    The impact of our desires and preferences upon our ordinary, everyday beliefs is well-documented [Gilovich, T. (1991). How we know what isn't so: The fallibility of human reason in everyday life. New York: The Free Press.]. The influence of such motivational factors on delusions, which are instances of pathological misbelief, has tended however to be neglected by certain prevailing models of delusion formation and maintenance. This paper explores a distinction between two general classes of theoretical explanation for delusions; the motivational and the deficit. Motivational approaches view delusions as extreme instances of self-deception; as defensive attempts to relieve pain and distress. Deficit approaches, in contrast, view delusions as the consequence of defects in the normal functioning of belief mechanisms, underpinned by neuroanatomical or neurophysiological abnormalities. It is argued that although there are good reasons to be sceptical of motivational theories (particularly in their more floridly psychodynamic manifestations), recent experiments confirm that motives are important causal forces where delusions are concerned. It is therefore concluded that the most comprehensive account of delusions will involve a theoretical unification of both motivational and deficit approaches.

  1. Primordial cosmological inflation versus local supersymmetry breaking in SUSY GUTs coupled to N = 1 supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Ramon-Medrano, M.

    1984-01-01

    We present a model for a SUSY GUT coupled to N=1 supergravity in which local supersymmetry breaks down in the gauge singlet sector. The constraints for the model to be physically acceptable are incompatible with inflation. The simultaneous breaking of local supersymmetry and gauge symmetry is proposed as a good prospect for inflation. (orig.)

  2. Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity

    International Nuclear Information System (INIS)

    Maru, Nobuhito

    2010-01-01

    We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.

  3. Lagrangians of N=2 supergravity-matter systems

    International Nuclear Information System (INIS)

    Wit, B. de; Proeyen, A. van; Lauwers, P.G.

    1984-12-01

    We present explicit expressions for general actions of vector and scalar multiplets coupled to N=2 supergravity. We outline their construction which is based on the superconformal tensor calculus. The vector multiplets may be associated with a gauge group G which may also act on the scalar multiplets. The latter are naturally described in terms of quaternions; in the simplest case their kinetic terms define a nonlinear sigma model of a quaternionic projective space. We give an extension of the vector multiplet action which is not obtained from a chiral superspace density, and contains a Chern-Simons-type term. Transformation rules are given and the conditions for supersymmetry breaking are defined. (orig.)

  4. Kaluza-Klein supergravity in ten dimensions

    International Nuclear Information System (INIS)

    Huq, M.; Namazie, M.A.

    1983-11-01

    We construct a massive version of N=2 supergravity in ten dimensions by compactification of the eleven dimensional, N=1 theory. This theory describes the usual N=2 massless super-multiplet, in addition to which there is an infinite tower of massive, charged N=2 supermultiplets. (author)

  5. Vacuum state supersymmetry in d=11 supergravity

    International Nuclear Information System (INIS)

    Vasilevich, D.V.

    1987-01-01

    Supersymmetry of vacuum state in d=11 supergravity is considered. Proceeding on sufficiently general assumptions relatively superformation parameter only Freud-Rubin type solutions may possess supersymmetries. To obtain this result no restrictions on the form of superformation parameter, supealgebra of vacuum global supersymmetry and the form of boson fields were imposed

  6. Gauged supergravities in various spacetime dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, M.

    2006-12-15

    In this thesis we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we work out all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor. (orig.)

  7. Generating geodesic flows and supergravity solutions

    NARCIS (Netherlands)

    Bergshoeff, E.; Chemissany, W.; Ploegh, A.; Trigiante, M.; Van Riet, T.

    2009-01-01

    We consider the geodesic motion on the symmetric moduli spaces that arise after timelike and spacellike reductions of supergravity theories. The geodesics correspond to timelike respectively spacelike p-brane Solutions when they are lifted over a p-dimensional flat space. In particular, we consider

  8. Supergravity duals of matrix string theory

    International Nuclear Information System (INIS)

    Morales, Jose F.; Samtleben, Henning

    2002-01-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS 3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS 3 xS 7 . The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the N=(8,8), N=(8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,h-bar) (32,32) twisted operator which brings the matrix string theories out from the conformal point (R; 8 ) N /S N with the dilaton profile in the supergravity background. The familiar dictionary between masses and 'scaling' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdS d+1 xS q geometries and super Yang-Mills theories with 16 supercharges. (author)

  9. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),

  10. Local supertwistors and N=2 conformal supergravity

    International Nuclear Information System (INIS)

    Merkulov, S.A.

    1989-01-01

    N = 2 sypersymmetric extension of the local twistor theory is formulated. A supertwistor superconnection determined by the superconformal structure of the base superspace is introduced on the bundle of N = 2 local supertwistors. It is proved that the Yang - Mills equations for this superconnection coincide exactly with the Bach equations describing the dynamics of N 2 conformal supergravity

  11. Kaluza-Klein theories and supergravity

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    1986-01-01

    In all recent attempts at a unified description of all fundamental interactions, the idea of introducing extra dimensions has played an important role. This idea becomes even more attractive when combined with the more recent concepts of supersymmetry and supergravity. These topics as well as more recent developments will be reviewed at an introductory level in these lectures.

  12. Graded-Lie-algebra cohomology and supergravity

    International Nuclear Information System (INIS)

    D'Auria, R.; Fre, P.; Regge, T.

    1980-01-01

    Detailed explanations of the cohomology invoked in the group-manifold approach to supergravity is given. The Chevalley cohomology theory of Lie algebras is extended to graded Lie algebras. The scheme of geometrical theories is enlarged so to include cosmological terms and higher powers of the curvature. (author)

  13. Complex linear Goldstino superfield and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia)

    2015-10-01

    The complex linear Goldstino superfield was proposed in http://arxiv.org/abs/1102.3042 for the cases of global and local four-dimensional N=1 supersymmetry. Here we make use of this superfield to construct a supergravity action which is invariant under spontaneously broken local N=1 supersymmetry and has a positive cosmological constant for certain values of the parameters.

  14. Applying an Employee-Motivation Model to Prevent Student Plagiarism.

    Science.gov (United States)

    Malouff, John M.; Sims, Randi L.

    1996-01-01

    A model based on Vroom's expectancy theory of employee motivation posits that instructors can prevent plagiarism by ensuring that students understand the rules of ethical writing, expect assignments to be manageable and have personal benefits, and expect plagiarism to be difficult and have important personal costs. (SK)

  15. Active estimation of motivational spots for modeling dynamic interactions

    NARCIS (Netherlands)

    Olier Jauregui, J.S.; Campo, D.; Marcenaro, L.; Barakova, E.I.; Rauterberg, G.W.M.; Regazzoni, C.

    2017-01-01

    To understand the behavior of moving entities in a given environment, one should be capable of predicting their motion, that is, to model their dynamics. In a setting where different behaviors can arise, one can assume that each of them corresponds to different motivational states of observed

  16. Flow-based model of computer hackers' motivation.

    Science.gov (United States)

    Voiskounsky, Alexander E; Smyslova, Olga V

    2003-04-01

    Hackers' psychology, widely discussed in the media, is almost entirely unexplored by psychologists. In this study, hackers' motivation is investigated, using the flow paradigm. Flow is likely to motivate hackers, according to views expressed by researchers and by hackers themselves. Taken as granted that hackers experience flow, it was hypothesized that flow increases with the increase of hackers' competence in IT use. Self-selected subjects were recruited on specialized web sources; 457 hackers filled out a web questionnaire. Competence in IT use, specific flow experience, and demographic data were questioned. An on-line research was administered within the Russian-speaking community (though one third of Ss are non-residents of Russian Federation); since hacking seems to be international, the belief is expressed that the results are universal. The hypothesis is not confirmed: flow motivation characterizes the least and the most competent hackers, and the members of an intermediate group, that is, averagely competent Ss report the "flow crisis"-no (or less) flow experience. Two differing strategies of task choice were self-reported by Ss: a step-by-step increase of the difficulty of choices leads to a match of challenges and skills (and to preserving the flow experience); putting choices irrespective of the likelihood of solution leads to a "flow crisis." The findings give productive hints on processes of hackers' motivational development. The flow-based model of computer hackers' motivation was developed. It combines both empirically confirmed and theoretically possible ways of hackers' "professional" growth.

  17. The motivational theory of role modeling : How role models influence role aspirants' goals

    NARCIS (Netherlands)

    Morgenroth, Thekla; Ryan, Michelle K.; Peters, Kim

    2015-01-01

    Role models are often suggested as a way of motivating individuals to set and achieve ambitious goals, especially for members of stigmatized groups in achievement settings. Yet, the literature on role models tends not to draw on the motivational literature to explain how role models may help role

  18. The electric dipole moment of the neutron in low energy supergravity

    International Nuclear Information System (INIS)

    Polchinski, J.; Wise, M.B.

    1983-01-01

    We compute the electric dipole moment of the neutron in models with low energy supergravity or softly broken supersymmetry. The electric dipole moment is typically of order 10sup(-(22-23))e cm times CP-violating phases. We discuss the origin of these phases. (orig.)

  19. The Role of Implicit Motives in Strategic Decision-Making: Computational Models of Motivated Learning and the Evolution of Motivated Agents

    Directory of Open Access Journals (Sweden)

    Kathryn Merrick

    2015-11-01

    Full Text Available Individual behavioral differences in humans have been linked to measurable differences in their mental activities, including differences in their implicit motives. In humans, individual differences in the strength of motives such as power, achievement and affiliation have been shown to have a significant impact on behavior in social dilemma games and during other kinds of strategic interactions. This paper presents agent-based computational models of power-, achievement- and affiliation-motivated individuals engaged in game-play. The first model captures learning by motivated agents during strategic interactions. The second model captures the evolution of a society of motivated agents. It is demonstrated that misperception, when it is a result of motivation, causes agents with different motives to play a given game differently. When motivated agents who misperceive a game are present in a population, higher explicit payoff can result for the population as a whole. The implications of these results are discussed, both for modeling human behavior and for designing artificial agents with certain salient behavioral characteristics.

  20. Spontaneous SUSY breaking without R symmetry in supergravity

    Science.gov (United States)

    Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu

    2018-03-01

    We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.

  1. Phenomenology of R-parity violating minimal supergravity

    International Nuclear Information System (INIS)

    Bernhardt, M.A.

    2008-02-01

    We investigate in detail the low-energy spectrum of the P 6 violating minimal supergravity model using the SOFTSUSY spectrum code. We impose the experimental constraints from the measurement of the anomalous magnetic moment of the muon (g-2) μ , the b→sγ decay, the branching ration of B s →μ + μ - , as well as the mass bound from direct searches at colliders, in particular the Higgs boson and the lightest Chargino. We focus on regions, where the lightest neutralino is not the lightest supersymmetric particle (LSP). In these regions of parameter space either the lightest scalar tau or one of the sneutrinos is the LSP. We suggest four benchmark points with typical spectra and novel collider signatures which we investigate with a parton level Monte-Carlo simulation. We give an outlook for their detailed phenomenological analysis and simulation by the LHC collaborations, then including detector effects. In addition, we discuss a full Monte-Carlo simulation for single slepton production in association with a single top quark via an LQD type operator at the hadron colliders LHC and Tevatron. We present these results and show a predicted range of detectability for this process- for small couplings in various minimal supergravity models at the LHC. (orig.)

  2. Phenomenology of R-parity violating minimal supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, M.A.

    2008-02-15

    We investigate in detail the low-energy spectrum of the P{sub 6} violating minimal supergravity model using the SOFTSUSY spectrum code. We impose the experimental constraints from the measurement of the anomalous magnetic moment of the muon (g-2){sub {mu}}, the b{yields}s{gamma} decay, the branching ration of B{sub s}{yields}{mu}{sup +}{mu}{sup -}, as well as the mass bound from direct searches at colliders, in particular the Higgs boson and the lightest Chargino. We focus on regions, where the lightest neutralino is not the lightest supersymmetric particle (LSP). In these regions of parameter space either the lightest scalar tau or one of the sneutrinos is the LSP. We suggest four benchmark points with typical spectra and novel collider signatures which we investigate with a parton level Monte-Carlo simulation. We give an outlook for their detailed phenomenological analysis and simulation by the LHC collaborations, then including detector effects. In addition, we discuss a full Monte-Carlo simulation for single slepton production in association with a single top quark via an LQD type operator at the hadron colliders LHC and Tevatron. We present these results and show a predicted range of detectability for this process- for small couplings in various minimal supergravity models at the LHC. (orig.)

  3. Minimal set of auxiliary fields and S-matrix for extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A [Physical Lebedev Institute - Moscow

    1979-05-19

    Minimal set of auxiliary fields for linearized SO(2) supergravity and one-parameter extension of the minimal auxiliary fields in the SO(1) supergravity are constructed. The expression for the S-matrix in SO(2) supergravity are given.

  4. 3D gauged supergravity from SU(2) reduction of $N=1$ 6D supergravity

    CERN Document Server

    Gava, Edi; Narain, K S

    2010-01-01

    We obtain Yang-Mills $SU(2)\\times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+\\textrm{dim}\\, G)$ bosonic and $4(1+\\textrm{dim}\\, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $\\mathbf{R}\\times \\frac{SO(3,\\, \\textrm{dim}\\, G)}{SO(3)\\times SO(\\textrm{dim}\\, G)}$, and there is a $SU(2)\\times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)\\ltimes \\mathbf{R}^3)\\times (G\\ltimes \\mathbf{R}^{\\textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $\\frac{SO(4,\\,1+\\textrm{dim}G)}{SO(4)\\times SO(1+\\textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)\\times G$ gauged supergravity the...

  5. The Relational-Behavior Model: The Relationship between Intrinsic Motivational Instruction and Extrinsic Motivation in Psychologically Based Instruction

    Science.gov (United States)

    Chandler, Donald S., Jr.

    2008-01-01

    This pilot study examined the relational-behavior model (RBM) as a method of intrinsic motivational instruction in psychology courses. Among a sample of 33 college students enrolled in two undergraduate psychology courses, a Spearman rho analysis revealed a significant relationship between the intrinsic motivational factors (e.g. student/class…

  6. Generalized supersymmetric cosmological term in N=1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Via Pietro Giuria 1, 10125 Torino (Italy); Salgado, P. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)

    2015-08-04

    An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N=1, D=4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.

  7. On the hidden maxwell superalgebra underlying D = 4 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Penafiel, D.M. [Departamento de Fisica, Universidad de Concepcion (Chile); DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy); Ravera, L. [DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy)

    2017-09-15

    In this work, we expand the hidden AdS-Lorentz superalgebra underlying D = 4 supergravity, reaching a (hidden) Maxwell superalgebra. The latter can be viewed as an extension involving cosmological constant of the superalgebra underlying D = 4 supergravity in flat spacetime. We write the Maurer-Cartan equations in this context and we find some interesting extensions of the antisymmetric 3-form A{sup (3)} appearing in the Free Differential Algebra in Minkowski space. The structure of Free Differential Algebras is obtained by considering the zero curvature equations. We write the parametrization of A{sup (3)} in terms of 1-forms and we rend the topological features of its extensions manifest. We interestingly find out that the structure of these extensions, and consequently the structure of the corresponding boundary contribution dA{sup (3)}, strongly depends on the form of the extra fermionic generator appearing in the hidden Maxwell superalgebra. The model we develop in this work is defined in an enlarged superspace with respect to the ordinary one, and the extra bosonic and fermionic 1-forms required for the closure of the hidden Maxwell superalgebra must be considered as physical fields in this enlarged superspace. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Supergravity and supersymmetry breaking in four and five dimensions

    International Nuclear Information System (INIS)

    Ellis, John; Lalak, Zygmunt; Pokorski, Stefan; Thomas, Steven

    1999-01-01

    We discuss supersymmetry breaking in the field-theoretical limit of the strongly coupled heterotic string compactified on a Calabi-Yau manifold, from the different perspectives of four and five dimensions. The former applies to light degrees of freedom below the threshold for five-dimensional Kaluza-Klein excitations, whereas the five-dimensional perspective is also valid up to the Calabi-Yau scale. We show how, in the latter case, two gauge sectors separated in the fifth dimension are combined to form a consistent four-dimensional supergravity. In the lowest order of the κ 2/3 expansion, we show how a four-dimensional supergravity with gauge kinetic function f 1,2 =S is reproduced, and we show how higher-order terms give rise to four-dimensional operators that differ in the two gauge sectors. In the four-dimensional approach, supersymmetry is seen to be broken when condensates form on one or both walls, and the goldstino may have a non-zero dilatino component. As in the five-dimensional approach, the Lagrangian is not a perfect square, and we have not identified a vacuum with broken supersymmetry and zero vacuum energy. We derive soft supersymmetry-breaking terms for non-standard perturbative embeddings, that are relevant in more general situations such as type I/type IIB orientifold models

  9. Generalized Attractor Points in Gauged Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.

    2011-08-15

    The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.

  10. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  11. HKT geometry and de Sitter supergravity

    International Nuclear Information System (INIS)

    Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A.R.; Sabra, Wafic

    2009-01-01

    Solutions of five-dimensional minimal de Sitter supergravity admitting Killing spinors are considered. It is shown that the 'timelike' solutions are determined in terms of a four-dimensional hyper-Kaehler torsion (HKT) manifold. If the HKT manifold is conformally hyper-Kaehler the most general solution can be obtained from a sub-class of supersymmetric solutions of minimal N=2 ungauged supergravity, by means of a simple transformation. Examples include a multi-BMPV de Sitter solution, describing multiple rotating black holes co-moving with the expansion of the universe. If the HKT manifold is not conformally hyper-Kaehler, examples admitting a tri-holomorphic Killing vector field are constructed in terms of certain solutions of three-dimensional Einstein-Weyl geometry

  12. A superstring field theory for supergravity

    Science.gov (United States)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  13. Scattering equations, supergravity integrands, and pure spinors

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim; Casali, Eduardo [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-05-25

    The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.

  14. Stable supergravity dual of nonsupersymmetric glue

    International Nuclear Information System (INIS)

    Babington, James; Crooks, David E.; Evans, Nick

    2003-01-01

    We study nonsupersymmetric fermion mass and condensate deformations of the AdS conformal field theory correspondence. The five dimensional supergravity flows are lifted to a complete and remarkably simple ten dimensional background. A brane probe analysis shows that when all the fermions have an equal mass a positive mass is generated for all six scalar fields leaving nonsupersymmetric Yang-Mills theory in the deep infrared. We numerically determine the potential, produced by the background, in the Schroedinger equation relevant to the study of O ++ glueballs. The potential is a bounded well, providing evidence of stability and for a discrete, confined spectrum. The geometry can also describe the supergravity background around an (unstable) fuzzy 5-brane

  15. Scattering equations, supergravity integrands, and pure spinors

    International Nuclear Information System (INIS)

    Adamo, Tim; Casali, Eduardo

    2015-01-01

    The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.

  16. Tensor calculus for supergravity on a manifold with boundary

    International Nuclear Information System (INIS)

    Belyaev, Dmitry V.; Nieuwenhuizen, Peter van

    2008-01-01

    Using the simple setting of 3D N = 1 supergravity, we show how the tensor calculus of supergravity can be extended to manifolds with boundary. We present an extension of the standard F-density formula which yields supersymmetric bulk-plus-boundary actions. To construct additional separately supersymmetric boundary actions, we decompose bulk supergravity and bulk matter multiplets into co-dimension one submultiplets. As an illustration we obtain the supersymmetric extension of the York-Gibbons-Hawking extrinsic curvature boundary term. We emphasize that our construction does not require any boundary conditions on off-shell fields. This gives a significant improvement over the existing orbifold supergravity tensor calculus

  17. One-loop infinities in dimensionally reduced supergravities

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1983-11-01

    It is proved explicitly in the paper that d=4 theory following via reduction from N=1, d=10 supergravities is not finite at one loop while the version of N=8 supergravity directly following from N=1, d=11 theory is one-loop finite. The method used is based on quantization of initial higher dimensional theory as a first step. The results also suggest possible existence of non-standard (higher N) d>4 supergravities which reduce to d=4 theories with finite N=8 supergravity sector. (author)

  18. On the construction of supergravity theories

    International Nuclear Information System (INIS)

    Holten, J.W. van.

    1980-01-01

    A precise and technical definition of supersymmetry is given. The theory of SO(2) supergravity is presented. The linearized version of the full multiplet, including auxiliary fields, of this theory as well as of certain matter multiplets, are constructed. These results are extended to all orders in the coupling constant kappa. Finally, the quantization procedure for theories with local gauge invariance and its generalization for theories with non-closing, or open, gauge algebras is presented. (Auth.)

  19. Ultraviolet Behavior of N = 8 Supergravity

    International Nuclear Information System (INIS)

    Dixon, Lance J.

    2010-01-01

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  20. Newton-Cartan supergravity with torsion and Schrödinger supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.

  1. Newton-Cartan supergravity with torsion and Schrödinger supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Institute for Theoretical Physics, Vienna University of Technology,Wiedner Hauptstr. 8-10/136, A-1040 Vienna (Austria); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-11-25

    We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.

  2. A thermodynamically and microscopically motivated constitutive model for piezoceramics

    International Nuclear Information System (INIS)

    Kamlah, M.; Wang, Z.

    2003-07-01

    This progress report presents a thermodynamically and microscopically motivated constitutive model for piezoceramics within the framework of a research project supported by the Deutsche Forschungsgemeinschaft. This project is aimed at developing a finite element tool for the analysis of piezoceramic components taking into account the full range of large signal electromechanical hysteresis effects exhibited by these materials. Such a tool is necessary for the stress analysis being the basis for a reliability assessment of piezoceramic devices subject to domain switching processes. In a first step, the hysteresis phenomena of piezoceramics and their microscopic origin were discussed, and the phenomena to be described were selected. Concerning the balance laws, the simplest form consisting of balance of momentum and Gauss' Law was derived by physically motivated assumptions step by step from nonlinear thermomechanics and Maxwell's Equations. Revision of the current literature revealed that a commonly accepted thermodynamic framework for phenomenological modeling has been established in the international scientific discussion. (orig.)

  3. Motivation and timing: clues for modeling the reward system.

    Science.gov (United States)

    Galtress, Tiffany; Marshall, Andrew T; Kirkpatrick, Kimberly

    2012-05-01

    There is growing evidence that a change in reward magnitude or value alters interval timing, indicating that motivation and timing are not independent processes as was previously believed. The present paper reviews several recent studies, as well as presenting some new evidence with further manipulations of reward value during training vs. testing on a peak procedure. The combined results cannot be accounted for by any of the current psychological timing theories. However, in examining the neural circuitry of the reward system, it is not surprising that motivation has an impact on timing because the motivation/valuation system directly interfaces with the timing system. A new approach is proposed for the development of the next generation of timing models, which utilizes knowledge of the neuroanatomy and neurophysiology of the reward system to guide the development of a neurocomputational model of the reward system. The initial foundation along with heuristics for proceeding with developing such a model is unveiled in an attempt to stimulate new theoretical approaches in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Motivation and timing: Clues for modeling the reward system

    Science.gov (United States)

    Galtress, Tiffany; Marshall, Andrew T.; Kirkpatrick, Kimberly

    2012-01-01

    There is growing evidence that a change in reward magnitude or value alters interval timing, indicating that motivation and timing are not independent processes as was previously believed. The present paper reviews several recent studies, as well as presenting some new evidence with further manipulations of reward value during training vs. testing on a peak procedure. The combined results cannot be accounted for by any of the current psychological timing theories. However, in examining the neural circuitry of the reward system, it is not surprising that motivation has an impact on timing because the motivation/valuation system directly interfaces with the timing system. A new approach is proposed for the development of the next generation of timing models, which utilizes knowledge of the neuroanatomy and neurophysiology of the reward system to guide the development of a neurocomputational model of the reward system. The initial foundation along with heuristics for proceeding with developing such a model is unveiled in an attempt to stimulate new theoretical approaches in the field. PMID:22421220

  5. Parenting Styles, Motivational Orientations, and Self-Perceived Academic Competence: A Mediational Model.

    Science.gov (United States)

    Leung, Patrick W. L.; Kwan, Kim S. F.

    1998-01-01

    Surveyed Hong Kong high schoolers to test model stipulating motivational orientations as mediators between parenting styles and self-perceived academic competence: authoritarian parenting leading to extrinsic motivation, authoritative parenting to intrinsic motivation, and neglectful parenting to amotivation, and each motivation in turn related to…

  6. Hypermultiplet gaugings and supersymmetric solutions from 11D and massive IIA supergravity on H^{(p,q)} spaces

    Science.gov (United States)

    Guarino, Adolfo

    2018-03-01

    Supersymmetric {AdS}4, {AdS}2 × Σ 2 and asymptotically AdS4 black hole solutions are studied in the context of non-minimal N=2 supergravity models involving three vector multiplets (STU-model) and Abelian gaugings of the universal hypermultiplet moduli space. Such models correspond to consistent subsectors of the {SO}(p,q) and {ISO}(p,q) gauged maximal supergravities that arise from the reduction of 11D and massive IIA supergravity on {H}^{(p,q)} spaces down to four dimensions. A unified description of all the models is provided in terms of a square-root prepotential and the gauging of a duality-hidden symmetry pair of the universal hypermultiplet. Some aspects of M-theory and massive IIA holography are mentioned in passing.

  7. The Trans-Contextual Model of Autonomous Motivation in Education

    Science.gov (United States)

    Hagger, Martin S.; Chatzisarantis, Nikos L. D.

    2015-01-01

    The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods. PMID:27274585

  8. Non-supersymmetric membrane flows from fake supergravity and multi-trace deformations

    International Nuclear Information System (INIS)

    Papadimitriou, I.; Hamburg Univ.

    2006-06-01

    We use fake supergravity as a solution generating technique to obtain a continuum of non-supersymmetric asymptotically AdS 4 x S 7 domain wall solutions of eleven-dimensional supergravity with non-trivial scalars in the SL(8,R)/SO(8) coset. These solutions are continuously connected to the supersymmetric domain walls describing a uniform sector of the Coulomb branch of the M2-brane theory. We also provide a general argument that identifies the fake superpotential with the exact large-N quantum effective potential of the dual theory, thus arriving at a very general description of multi-trace deformations in the AdS/CFT correspondence, which strongly motivates further study of fake supergravity as a solution generating method. This identification allows us to interpret our non-supersymmetric solutions as a family of marginal triple-trace deformations of the Coulomb branch that completely break supersymmetry and to calculate the exact large-N anomalous dimensions of the operators involved. The holographic one- and two-point functions for these solutions are also computed. (Orig.)

  9. Non-supersymmetric membrane flows from fake supergravity and multi-trace deformations

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2006-06-15

    We use fake supergravity as a solution generating technique to obtain a continuum of non-supersymmetric asymptotically AdS{sub 4} x S{sup 7} domain wall solutions of eleven-dimensional supergravity with non-trivial scalars in the SL(8,R)/SO(8) coset. These solutions are continuously connected to the supersymmetric domain walls describing a uniform sector of the Coulomb branch of the M2-brane theory. We also provide a general argument that identifies the fake superpotential with the exact large-N quantum effective potential of the dual theory, thus arriving at a very general description of multi-trace deformations in the AdS/CFT correspondence, which strongly motivates further study of fake supergravity as a solution generating method. This identification allows us to interpret our non-supersymmetric solutions as a family of marginal triple-trace deformations of the Coulomb branch that completely break supersymmetry and to calculate the exact large-N anomalous dimensions of the operators involved. The holographic one- and two-point functions for these solutions are also computed. (Orig.)

  10. Mixed Emotions: An Incentive Motivational Model of Sexual Deviance.

    Science.gov (United States)

    Smid, Wineke J; Wever, Edwin C

    2018-05-01

    Sexual offending behavior is a complex and multifaceted phenomenon. Most existing etiological models describe sexual offending behavior as a variant of offending behavior and mostly include factors referring to disinhibition and sexual deviance. In this article, we argue that there is additional value in describing sexual offending behavior as sexual behavior in terms of an incentive model of sexual motivation. The model describes sexual arousal as an emotion, triggered by a competent stimulus signaling potential reward, and comparable to other emotions coupled with strong bodily reactions. Consequently, we describe sexual offending behavior in terms of this new model with emphasis on the development of deviant sexual interests and preferences. Summarized, the model states that because sexual arousal itself is an emotion, there is a bidirectional relationship between sexual self-regulation and emotional self-regulation. Not only can sex be used to regulate emotional states (i.e., sexual coping), emotions can also be used, consciously or automatically, to regulate sexual arousal (i.e., sexual deviance). Preliminary support for the model is drawn from studies in the field of sex offender research as well as sexology and motivation research.

  11. Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

    International Nuclear Information System (INIS)

    Saririan, K.

    1997-05-01

    In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model

  12. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  13. N=1 supergravity off-shell in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1983-01-01

    It is shown that the N=1 supergravity in six dimensions showns useful characteristics to study the unification of a gauge theory together with the supergravity, via dimensinal reduction, giving a geometrical interpretation for the internal quantum numbers in the reduced theory. (L.C.) [pt

  14. Construction of the superalgebras for N=1 supergravity

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Niederle, J.

    1984-11-01

    It is shown that the infinite parameter gauge superalgebras of the conformal and of the N=1 Einstein supergravities can be obtained as the closures of various two finite-parameter superalgebras. In the conformal case the standard, minimal and Einsteinian closures are studied. In the case of the N=1 Einstein supergravities the minimal and non-minimal closures are discussed. (author)

  15. Attractor horizons in six-dimensional type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Miskovic, Olivera, E-mail: olivera.miskovic@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Universidad Andres Bello, Departamento de Ciencias Fisicas, Republica 220, Santiago (Chile)

    2012-08-14

    We consider near horizon geometries of extremal black holes in six-dimensional type IIB supergravity. In particular, we use the entropy function formalism to compute the charges and thermodynamic entropy of these solutions. We also comment on the role of attractor mechanism in understanding the entropy of the Hopf T-dual solutions in type IIA supergravity.

  16. Ambitwistor pure spinor string in a type II supergravity background

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,República 220, Santiago (Chile)

    2015-06-30

    We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS{sub 5}×S{sup 5} background.

  17. The Bianchi classification of maximal D = 8 gauged supergravities

    NARCIS (Netherlands)

    Bergshoeff, Eric; Gran, Ulf; Linares, Román; Nielsen, Mikkel; Ortín, Tomás; Roest, Diederik

    2003-01-01

    We perform the generalized dimensional reduction of D = 11 supergravity over three-dimensional group manifolds as classified by Bianchi. Thus, we construct 11 different maximal D = 8 gauged supergravities, two of which have an additional parameter. One class of group manifolds (class B) leads to

  18. The Bianchi classification of maximal D=8 gauged supergravities

    NARCIS (Netherlands)

    Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D

    2003-01-01

    We perform the generalized dimensional reduction of D = 11 supergravity over three-dimensional group manifolds as classified by Bianchi. Thus, we construct 11 different maximal D = 8 gauged supergravities, two of which have an additional parameter. One class of group manifolds (class B) leads to

  19. Invisible axion in the hidden sector of no-scale supergravity

    International Nuclear Information System (INIS)

    Sato, Hikaru

    1987-01-01

    We propose a new axion model which incorporates the U(1) PQ symmetry into a hidden sector, as well as an observable sector, of no-scale supergravity models. The axion is a spin-zero field in the hidden sector. The U(1) PQ symmetry is naturally embedded in the family symmetry of the no-scale models. Invisible axions live in the gravity hidden sector without conflict with the cosmological and astrophysical constraints. (orig.)

  20. Differences in Students' School Motivation: A Latent Class Modelling Approach

    Science.gov (United States)

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje

    2015-01-01

    In this study, we investigated the school motivation of 7,257 9th grade students in 80 secondary schools across the Netherlands. Using a multiple goal perspective, four motivation dimensions were included: performance, mastery, extrinsic, and social motivation. Our first aim was to identify distinct motivation profiles within our sample, using the…

  1. How motivation affects academic performance: a structural equation modelling analysis

    NARCIS (Netherlands)

    Kusurkar, R.A.; ten Cate, T.J.; Vos, C. M. P.; Westers, P.; Croiset, G.

    2013-01-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external

  2. The no-hair conjecture in 2D dilaton supergravity

    International Nuclear Information System (INIS)

    Gamboa, J.; Georgelin, Y.

    1993-06-01

    Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs

  3. Exploring persistence in science in CEGEP: Toward a motivational model

    Science.gov (United States)

    Simon, Rebecca A.

    There is currently a shortage of science teachers in North America and continually decreasing rates of enrollment in science programs. Science continues to be the academic domain that sees the highest attrition rates, particularly for women. The purpose of the present study was to examine male and female students' experiences in mathematics and science courses during a crucial time in their academic development in an attempt to explain the high attrition rates in science between the last year of high school and the first year of CEGEP (junior college). In line with self-determination theory (Deci & Ryan, 1985), as well as achievement-goal theory (Pintrich & Schunk, 1996) and research on academic emotions, the study examined the relation between a set of motivational variables (i.e., perceptions of autonomy-support, self-efficacy, achievement goals, and intrinsic motivation), affect, achievement, and persistence. A secondary objective was to test a motivational model of student persistence in science using structural equation modeling (SEM). The sample consisted of 603 male and 706 female students from four English-language CEGEPs in the greater Montreal area. Just prior to beginning CEGEP, participants completed a questionnaire that asked about the learning environment in high school mathematics and science classes as well as student characteristics including sources of motivation, personal achievement goals, and feelings of competence. All students expressed an initial interest in pursuing a career in science by enrolling in optional advanced mathematics and science courses during high school. Multivariate analysis of variance was used to examine differences among male and female students across the variables measured. Structural equation modeling was used to test the validity of a questionnaire designed specifically to gather information about CEGEP students' experiences with mathematics and science, and to evaluate the fit of a model designed to reflect the

  4. Residual supersymmetry of compactified d = 10 supergravity

    International Nuclear Information System (INIS)

    Wit, B. de; Smit, D.J.; Hari Dass, N.D.

    1986-05-01

    The conditions for residual supersymmetry in compactified ten-dimensional supergravity theories are investigated, including the effect of a non-constant 'warp factor'. The analysis is based on on-shell transformation laws which implies that certain linear combinations of classical field equations must be satisfied. The conditions for superysymmetry are, in general, not very restrictive. When, in addition, one assumes the validity of Bianchi identities, two independent contractions of the Einstein equation are implied. These equations exclude d=4 de Sitter space; for compactifications to d=4 Minkowski space they only allow purely metric Ricci-flat field configurations with constant warp factor. (Auth.)

  5. The simplest group of Einstein supergravity

    International Nuclear Information System (INIS)

    Ogievetsky, V.I.; Sokatchev, E.S.

    1979-01-01

    The simplest supergroup of Einstein supergravity is considered. It is the complex supergroup of general coordinate transformations in left- and right-handed chiral conjugated superspaces restricted by the condition of left- and right- supervolume-preservation. The real part of the vector coordinate of the superspace is identified with the space-time coordinate xsup(m) and the imaginary one, with the axial gravitational superfield Hsup(m) (x, theta, anti theta). The transformations of the field components of Hsup(m) are studied in detail. The approach described is the geometrical basis of the so-called ''tensor calculus''

  6. A Comprehensive Expectancy Motivation Model: Implications for Adult Education and Training.

    Science.gov (United States)

    Howard, Kenneth W.

    1989-01-01

    The Comprehensive Expectancy Motivation Model is based on valence-instrumentality-expectancy theory. It describes expectancy motivation as part of a larger process that includes past experience, motivation, effort, performance, reward, and need satisfaction. The model has significant implications for the design, marketing, and delivery of adult…

  7. Two Ramond-Ramond corrections to type II supergravity via field-theory amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiarizadeh, Hamid R. [Sirjan University of Technology, Department of Physics, Sirjan (Iran, Islamic Republic of)

    2017-12-15

    Motivated by the standard form of the string-theory amplitude, we calculate the field-theory amplitude to complete the higher-derivative terms in type II supergravity theories in their conventional form. We derive explicitly the O(α{sup '3}) interactions for the RR (Ramond-Ramond) fields with graviton, B-field and dilaton in the low-energy effective action of type II superstrings. We check our results by comparison with previous work that has been done by the other methods, and we find exact agreement. (orig.)

  8. Nonlinear symmetries of black hole entropy in gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2017-04-04

    Freudenthal duality in N=2, D=4 ungauged supergravity is generated by an anti-involutive operator that acts on the electromagnetic fluxes, and results to be a symmetry of the Bekenstein-Hawking entropy. We show that, with a suitable extension, this duality can be generalized to the abelian gauged case as well, even in presence of hypermultiplets. By defining Freudenthal duality along the scalar flow, one can prove that two configurations of charges and gaugings linked by the Freudenthal operator share the same set of values of the scalar fields at the black hole horizon. Consequently, Freudenthal duality is promoted to a nonlinear symmetry of the black hole entropy. We explicitly show this invariance for the model with prepotential F=−iX{sup 0}X{sup 1} and Fayet-Iliopoulos gauging.

  9. Inflation and leptogenesis from right handed sneutrinos in supergravity

    International Nuclear Information System (INIS)

    Peloso, Marco

    2016-01-01

    We describe a supergravity model of inflation where the inflaton is identified with one linerar combination of two right handed sneutrino fields. The potential along the inflationary trajectory is flatter than that of massive chaotic inflation, resulting in a detectable but not ruled out tensor-to-scalar ratio r. In general, the potential for the two sneutrinos has complex phases. As a result, the two neutrinos can develop a nonvanishing lepton charge through a simple modification of the Affleck-Dine mechanism. [This talk summarizes the work of Evans, Ghergetta, and Peloso, Phys. Rev. D 92, no. 2, 021303 (2015) (Ref. 1). Please refer to that work for details and for a more comprehensive list of references.

  10. Another two dark energy models motivated from Karolyhazy uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Cheng-Yi; Yang, Wen-Li; Song, Yu. [Northwest University, Institute of Modern Physics, Xian (China); Yue, Rui-Hong [Ningbo University, Faculty of Science, Ningbo (China)

    2012-03-15

    The Karolyhazy uncertainty relation indicates that there exists a minimal detectable cell {delta}t{sup 3} over the region t{sup 3} in Minkowski space-time. Due to the energy-time uncertainty relation, the energy of the cell {delta}t {sup 3} cannot be less {delta}t{sup -1}. Then we get a new energy density of metric fluctuations of Minkowski spacetime as {delta}t{sup -4}. Motivated by the energy density, we propose two new dark-energy models. One model is characterized by the age of the universe and the other is characterized by the conformal age of the universe. We find that in the two models, the dark energy mimics a cosmological constant in the late time. (orig.)

  11. Chern-Simons supergravity plus matter near the boundary of AdS3

    International Nuclear Information System (INIS)

    Deger, N.S.; Kaya, A.; Sezgin, E.; Sundell, P.; Tanii, Y.

    2001-01-01

    We examine the boundary behaviour of the gauged N=(2,0) supergravity in D=3 coupled to an arbitrary number of scalar supermultiplets which parametrize a Kaehler manifold. In addition to the gravitational coupling constant, the model depends on two parameters, namely the cosmological constant and the size of the Kaehler manifold. It is shown that regular and irregular boundary conditions can be imposed on the matter fields depending on the size of the sigma model manifold. It is also shown that the super AdS transformations in the bulk produce the transformations of the N=(2,0) conformal supergravity and scalar multiplets on the boundary, containing fields with nonvanishing Weyl weights determined by the ratio of the sigma model and the gravitational coupling constants. Various types of (2,0) superconformal multiplets are found on the boundary and in one case the superconformal symmetry is shown to be realized in an unconventional way

  12. GUT scale extra dimensions and light moduli in supergravity and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Jan

    2010-05-15

    We study the dynamical properties of geometric moduli in five- and six-dimensional supergravity compactified on flat orbifolds, focusing on the impact of the Kaehler potential. In both cases, the Kaehler potential exhibits no-scale structure at tree level. In five dimensions, the volume modulus (radion) can be stabilized by means of perturbative Kaehler corrections. In six dimensions, the same holds for size and shape of the extra dimensions, only if the dilaton can be stabilized in a Minkowski vacuum by nonperturbative effects. We develop a systematic description of almost no-scale models and derive a model independent formula for the radion mass. The radion mass is suppressed compared to the gravitino mass. The supression factor reflects the hierarchy between the Planck and the compactification scale. We analyze a specific example, where the compactification scale is determined by Fayet-Iliopoulos terms of a locally anomalous Abelian gauge group, which are O(M{sub GUT}). In a scenario with gravitino dark matter, this leads to a radion mass of 1-10 MeV. In this mass range, the radion is cosmologically stable and contributes to the dark matter density. Based on galactic gamma ray data, we derive a tight bound on the initial displacement of the field value from its low energy vacuum. We also investigate implications of typical moduli Kaehler potentials on the cosmological evolution of the scalar fields. In particular, we discuss a class of models with steep exponential potentials and non-canonical kinetic terms, motivated by our radion example. We consider the overshooting problem of cosmological moduli dynamics, and the possibility of slow-roll solutions despite the steepness of the scalar potential. (orig.)

  13. GUT scale extra dimensions and light moduli in supergravity and cosmology

    International Nuclear Information System (INIS)

    Moeller, Jan

    2010-05-01

    We study the dynamical properties of geometric moduli in five- and six-dimensional supergravity compactified on flat orbifolds, focusing on the impact of the Kaehler potential. In both cases, the Kaehler potential exhibits no-scale structure at tree level. In five dimensions, the volume modulus (radion) can be stabilized by means of perturbative Kaehler corrections. In six dimensions, the same holds for size and shape of the extra dimensions, only if the dilaton can be stabilized in a Minkowski vacuum by nonperturbative effects. We develop a systematic description of almost no-scale models and derive a model independent formula for the radion mass. The radion mass is suppressed compared to the gravitino mass. The supression factor reflects the hierarchy between the Planck and the compactification scale. We analyze a specific example, where the compactification scale is determined by Fayet-Iliopoulos terms of a locally anomalous Abelian gauge group, which are O(M GUT ). In a scenario with gravitino dark matter, this leads to a radion mass of 1-10 MeV. In this mass range, the radion is cosmologically stable and contributes to the dark matter density. Based on galactic gamma ray data, we derive a tight bound on the initial displacement of the field value from its low energy vacuum. We also investigate implications of typical moduli Kaehler potentials on the cosmological evolution of the scalar fields. In particular, we discuss a class of models with steep exponential potentials and non-canonical kinetic terms, motivated by our radion example. We consider the overshooting problem of cosmological moduli dynamics, and the possibility of slow-roll solutions despite the steepness of the scalar potential. (orig.)

  14. New gauged N = 8, D = 4 supergravities

    International Nuclear Information System (INIS)

    Hull, C M

    2003-01-01

    New gaugings of four-dimensional N = 8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N = 2 supersymmetry and in which the gauge group is broken to SU(3) x U(1) 2 . Previous gaugings used the form of the ungauged action which is invariant under a rigid SL (8,R) symmetry and promoted a 28-dimensional subgroup (SO(8), SO(p, 8 - p) or the non-semi-simple contraction CSO(p, q, 8 - p - q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU*(8) instead of SL (8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p, 8 - 2p) groups, denoted as CSO*(2p, 8 - 2p), and the new theories have a rigid SU(2) symmetry. The five-dimensional gauged N = 8 supergravities are dimensionally reduced to D = 4. The D = 5, SO(p, 6 - p) gauge theories reduce, after a duality transformation, to the D = 4, CSO(p, 6 - p, 2) gauging while the SO*(6) gauge theory reduces to the D = 4, CSO*(6, 2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualized to forms with different gauge groups

  15. Vacua of maximal gauged D=3 supergravities

    International Nuclear Information System (INIS)

    Fischbacher, T; Nicolai, H; Samtleben, H

    2002-01-01

    We analyse the scalar potentials of maximal gauged three-dimensional supergravities which reveal a surprisingly rich structure. In contrast to maximal supergravities in dimensions D≥4, all these theories possess a maximally supersymmetric (N=16) ground state with negative cosmological constant Λ 2 gauged theory, whose maximally supersymmetric groundstate has Λ = 0. We compute the mass spectra of bosonic and fermionic fluctuations around these vacua and identify the unitary irreducible representations of the relevant background (super)isometry groups to which they belong. In addition, we find several stationary points which are not maximally supersymmetric, and determine their complete mass spectra as well. In particular, we show that there are analogues of all stationary points found in higher dimensions, among them are de Sitter (dS) vacua in the theories with noncompact gauge groups SO(5, 3) 2 and SO(4, 4) 2 , as well as anti-de Sitter (AdS) vacua in the compact gauged theory preserving 1/4 and 1/8 of the supersymmetries. All the dS vacua have tachyonic instabilities, whereas there do exist nonsupersymmetric AdS vacua which are stable, again in contrast to the D≥4 theories

  16. Gauged supergravities from M-theory reductions

    Science.gov (United States)

    Katmadas, Stefanos; Tomasiello, Alessandro

    2018-04-01

    In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.

  17. Towards loop quantum supergravity (LQSG): I. Rarita–Schwinger sector

    International Nuclear Information System (INIS)

    Bodendorfer, N; Thiemann, T; Thurn, A

    2013-01-01

    In our companion papers, we managed to derive a connection formulation of Lorentzian general relativity in D + 1 dimensions with compact gauge group SO(D + 1) such that the connection is Poisson-commuting, which implies that loop quantum gravity quantization methods apply. We also provided the coupling to standard matter. In this paper, we extend our methods to derive a connection formulation of a large class of Lorentzian signature supergravity theories, in particular 11 D SUGRA and 4 D, N = 8 SUGRA, which was in fact the motivation to consider higher dimensions. Starting from a Hamiltonian formulation in the time gauge which yields a Spin(D) theory, a major challenge is to extend the internal gauge group to Spin(D + 1) in the presence of the Rarita–Schwinger field. This is non-trivial because SUSY typically requires the Rarita–Schwinger field to be a Majorana fermion for the Lorentzian Clifford algebra and Majorana representations of the Clifford algebra are not available in the same spacetime dimension for both Lorentzian and Euclidean signatures. We resolve the arising tension and provide a background-independent representation of the non-trivial Dirac antibracket *-algebra for the Majorana field which significantly differs from the analogous construction for Dirac fields already available in the literature. (paper)

  18. Promoting success or preventing failure: cultural differences in motivation by positive and negative role models.

    Science.gov (United States)

    Lockwood, Penelope; Marshall, Tara C; Sadler, Pamela

    2005-03-01

    In two studies, cross-cultural differences in reactions to positive and negative role models were examined. The authors predicted that individuals from collectivistic cultures, who have a stronger prevention orientation, would be most motivated by negative role models, who highlight a strategy of avoiding failure; individuals from individualistic cultures, who have a stronger promotion focus, would be most motivated by positive role models, who highlight a strategy of pursuing success. In Study 1, the authors examined participants' reported preferences for positive and negative role models. Asian Canadian participants reported finding negative models more motivating than did European Canadians; self-construals and regulatory focus mediated cultural differences in reactions to role models. In Study 2, the authors examined the impact of role models on the academic motivation of Asian Canadian and European Canadian participants. Asian Canadians were motivated only by a negative model, and European Canadians were motivated only by a positive model.

  19. Motivation and Achievement: Is There an East Asian Model?

    Science.gov (United States)

    Zhu, Yan; Leung, Frederick K. S.

    2011-01-01

    The importance of motivation in learning has been widely recognized. However, due to its multidimensional and complex nature, it appears difficult to synthesize research findings on motivation across studies. Heated debates about the effects of intrinsic and extrinsic motivation on learning and their interaction have been going on since the terms…

  20. Differences in students' school motivation : A latent class modelling approach

    NARCIS (Netherlands)

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje

    In this study, we investigated the school motivation of 7,257 9th grade students in 80 secondary schools across the Netherlands. Using a multiple goal perspective, four motivation dimensions were included: performance, mastery, extrinsic, and social motivation. Our first aim was to identify distinct

  1. Ward identities of local supersymmetry and spontaneous breaking of extended supergravity

    International Nuclear Information System (INIS)

    Cecotti, S.; Girardello, L.; Porrati, M.

    1985-01-01

    It is a general agreement that any extended supergravity theory, in order to lead to a viable model with acceptable phenomenological implications, should admit spontaneous breaking to N = 1 local supersymmetry in a Minkowski background. It is then important to understand the possible patterns of partial breaking of extended local supersymmetry. These patterns strongly depend on the theory being formulated directly in 4-D or in higher-D. In general, the higher-D theories lead to partial breaking in 4-D anti-de Sitter spaces. Examples are known with partial breaking in flat space. They result respectively from a generalized dimensional reduction of the N = 1 theory in 11-D or from the spontaneous compactification of the 10-D low-energy theory from the superstring theory and of a 6-D Maxwell-Einstein supergravity model. We will comment later on this example. In this paper we will discuss some considerations which apply to theories formulated in 4-D

  2. Towards a worldsheet description of N=8 supergravity

    International Nuclear Information System (INIS)

    Lipstein, Arthur; Schomerus, Volker

    2015-10-01

    In this note we address the worldsheet description of 4-dimensional N=8 supergravity using ambitwistors. After gauging an appropriate current algebra, we argue that the only physical vertex operators correspond to the N=8 supermultiplet. It has previously been shown that worldsheet correlators give rise to supergravity tree level scattering amplitudes. We extend this work by proposing a definition for genus-one amplitudes that passes several consistency checks such as exhibiting modular invariance and reproducing the expected infrared behavior of 1-loop supergravity amplitudes.

  3. Invariants for minimal conformal supergravity in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)

    2016-12-15

    We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.

  4. A Model of Motivation for Extensive Reading in Japanese as a Foreign Language

    Science.gov (United States)

    de Burgh-Hirabe, Ryoko; Feryok, Ann

    2013-01-01

    Numerous studies have reported that extensive reading (ER) has a positive influence on affect. Recent studies suggest that motivation for ER changes. This is in line with recent developments in second language (L2) motivation research that have highlighted the complex and dynamic nature of L2 motivation. This study presents a model of complex and…

  5. EFFECT OF INQUIRY LEARNING MODEL AND MOTIVATION ON PHYSICS OUTCOMES LEARNING STUDENTS

    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede

    2016-06-01

    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  6. A Cross Cultural Model for FlexibleMotivation in Management

    Directory of Open Access Journals (Sweden)

    Gratiela Dana BOCA

    2015-05-01

    Full Text Available The importance of world business has created a demand for managers sophisticated in global management skills and working with people from other countries. Organizational behavior from different countries and cultures compares organizational behavior across countries and cultures and seeks to understand how to improve the interaction of co workers, manager’s executives, client’s suppliers and alliance partners from around the world. The economic world shows us that all the elements that we consider static have a pulsation around an equilibrium position. The present study concerning the organization’s culture the motivational factors of the employees an outlet in this field. The flexibility in a global economy is an important element on which people can communicate and the manager can exercise his leading task thus is an imperfect world that imposed the necessity of adaptation to a cross cultural model.

  7. Motivation Factors for Adopting Building Information Modeling (BIM in Iraq

    Directory of Open Access Journals (Sweden)

    W. A. Hatem

    2018-04-01

    Full Text Available Building information modeling (BIM is an integrated and comprehensive system including whatever is related to a construction project and its stages. It represents a unified database for all project data through which project documents are available to all stakeholders. This paper evaluates the factors driving the adoption of BIM in Iraqi construction projects in different ministries and adopts quantitative approach to collect data by using a questionnaire survey specially prepared for this purpose which was distributed to experts in the ministries of the Iraqi construction sector. Returned data were subjected to proper statistical analysis. Results showed that the highest motivation for BIM application is to include it in the educational curricula, raise awareness through courses and workshops and contracting with international experts with experience in BIM field.

  8. Observations on BI from N=2 supergravity and the general Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Andrianopoli, Laura [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Concha, Patrick [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); D’Auria, Riccardo [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Rodriguez, Evelyn [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Trigiante, Mario [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy)

    2015-11-09

    The multi-vector generalization of a rigid, partially-broken N=2 supersymmetric theory is presented as a rigid limit of a suitable gauged N=2 supergravity with electric, magnetic charges and antisymmetric tensor fields. This on the one hand generalizes a known result by Ferrara, Girardello and Porrati while on the other hand allows to recover the multi-vector BI models of http://dx.doi.org/10.1007/JHEP12(2014)065 from N=2 supergravity as the end-point of a hierarchical limit in which the Planck mass first and then the supersymmetry breaking scale are sent to infinity. We define, in the parent supergravity model, a new symplectic frame in which, in the rigid limit, manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components of the embedding tensor. The supergravity origin of several features of the resulting rigid supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie algebra term in the Ward identity and the existence of a central charge in the supersymmetry algebra which manifests itself as a harmless gauge transformation on the gauge vectors of the rigid theory; we show that this effect can be interpreted as a kind of “superspace non-locality” which does not affect the rigid theory on space-time. To set the stage of our analysis we take the opportunity in this paper to provide and prove the relevant identities of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isometries in a generic N=2 model, which include the supersymmetry Ward identity, in a fully symplectic-covariant formalism.

  9. The goldstino brane, the constrained superfields and matter in N=1 supergravity

    International Nuclear Information System (INIS)

    Bandos, Igor; Heller, Markus; Kuzenko, Sergei M.; Martucci, Luca; Sorokin, Dmitri

    2016-01-01

    We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.

  10. Full component Lagrangian in the linear multiplet formulation of string-inspired effective supergravity

    International Nuclear Information System (INIS)

    Giedt, Joel

    2003-01-01

    We compute the component field four-dimensional N = 1 supergravity Lagrangian that is obtained from a superfield Lagrangian in the U(1) K formalism with a linear dilaton multiplet. All fermionic terms are presented. In a variety of important ways, our results generalize those that have been reported previously, and are flexible enough to accommodate many situations of phenomenological interest in string-inspired effective supergravity, especially models based on orbifold compactifications of the weakly coupled heterotic string. We provide for an effective theory of hidden gaugino and matter condensation. We include supersymmetric Green-Schwarz counterterms associated with the cancellation of U(1) and modular duality anomalies; the modular duality counterterm is of a rather general form. Our assumed form for the dilaton Kaehler potential is quite general and can accommodate Kaehler stabilization methods. We note possible applications of our results. We also discuss the usefulness of the linear dilaton formulation as a complement to the chiral dilaton approach

  11. The goldstino brane, the constrained superfields and matter in N=1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU,P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,48011, Bilbao (Spain); Heller, Markus [Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy); Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia35 Stirling Highway, Crawley W.A. 6009 (Australia); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-11-21

    We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.

  12. Inoenue-Wigner contraction and D = 2 + 1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodriguez, E.K. [Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Vina del Mar (Chile); Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Fierro, O. [Universidad Catolica de la Santisima Concepcion, Departamento de Matematica y Fisica Aplicadas, Concepcion (Chile)

    2017-01-15

    We present a generalization of the standard Inoenue-Wigner contraction by rescaling not only the generators of a Lie superalgebra but also the arbitrary constants appearing in the components of the invariant tensor. The procedure presented here allows one to obtain explicitly the Chern-Simons supergravity action of a contracted superalgebra. In particular we show that the Poincare limit can be performed to a D = 2 + 1 (p,q) AdS Chern-Simons supergravity in presence of the exotic form. We also construct a new three-dimensional (2,0) Maxwell Chern-Simons supergravity theory as a particular limit of (2,0) AdS-Lorentz supergravity theory. The generalization for N = p + q gravitinos is also considered. (orig.)

  13. New set of auxiliary fields for supergravity theories

    International Nuclear Information System (INIS)

    Oliveira Rivelles, V. de.

    1983-02-01

    A brief introduction on supersymmetry is given. The problems with the obtainment of the auxiliary fields in supergravity theories are discussed, after a short presentation of the supersymmetry algebra representations. (L.C.) [pt

  14. Tensor calculus for the vector multiplet coupled to supergravity

    International Nuclear Information System (INIS)

    Stelle, K.S.

    1978-01-01

    An invariant coupling of a local vector multiplet to supergravity is constructed in analogy with the D term invariant of global supersymmetry. The rules for combining local vector and chiral scalar multiplets of opposite chirality are given. (Auth.)

  15. N=2 supergravity in superspace and the BRS symmetry

    International Nuclear Information System (INIS)

    Kachkachi, M.; Lhallabi, T.

    1989-07-01

    The quantum N = 2 Einstein supergravity action is constructed by requiring the BRS symmetry. This latter is derived by the use of the distorted horizontality conditions in the curved N = 2 harmonic superspace. (author). 16 refs

  16. Employees` motivation model in Lithuanian food industry : Search for theoretical and practical premises

    OpenAIRE

    Marcinkevičiūtė, Lina

    2005-01-01

    A complex use of employee motivation measures has recently been the issue of discussions, and a practical approach to this issue has become increasingly relevant. The paper aims to prepare an employee motivation model under the changing market conditions. When creating a rational employee motivation model, a certain logical analysis and consistency should be followed, because the creation of a model requires a considerable preparatory work, i.e. the evaluation of the current state of employee...

  17. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students

    OpenAIRE

    Pardede, Dahlia Megawati; Manurung, Sondang Rina

    2016-01-01

    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  18. Maximal supergravities and the E10 model

    International Nuclear Information System (INIS)

    Kleinschmidt, Axel; Nicolai, Hermann

    2006-01-01

    The maximal rank hyperbolic Kac-Moody algebra e 10 has been conjectured to play a prominent role in the unification of duality symmetries in string and M theory. We review some recent developments supporting this conjecture

  19. Critical N = (1, 1) general massive supergravity

    Science.gov (United States)

    Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan

    2018-04-01

    In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

  20. Gauged N=8 supergravity in five dimensions

    International Nuclear Information System (INIS)

    Guenaydin, M.; Romans, L.J.; Warner, N.P.

    1985-01-01

    We construct gauged N=8 supergravity theories in five dimensions. Instead of the twenty-seven vector fields of the ungauged theory, the gauged theories contain fifteen vector fields and twelve second-rank antisymmetric tensor fields satisfying self-dual field equations. The fifteen vector fields can be used to gauge any of the fifteen-dimensional semisimple subgroups of SL(6, R), sepcifically SO(p, 6-p) for p=0, 1, 2, 3. The gauged theories also have a physical global SU(1,1) symmetry which survives from the Esub(6(6)) symmetry of the ungauged theory. This SU(1, 1) for the SO(6) gauging is presumably related to that of the chiral N=2 theory in ten dimensions. In our formalism we maintain a composite local USp(8) symmetry analogous to SU(8) in four dimensions. (orig.)

  1. (Super-)Gravities of a different sort

    International Nuclear Information System (INIS)

    Edelstein, Jose D; Zanelli, Jorge

    2006-01-01

    We review the often forgotten fact that gravitation theories invariant under local de Sitter, anti-de Sitter or Poincare transformations can be constructed in all odd dimensions. These theories belong to the Chern-Simons family and are particular cases of the so-called Lovelock gravities, constructed as the dimensional continuations of the lower dimensional Euler classes. The supersymmetric extensions of these theories exist for the AdS and Poincare groups, and the fields are components of a single connection for the corresponding Lie algebras. In 11 dimensions these supersymmetric theories are gauge theories for the osp(1/32) and the M algebra, respectively. The relation between these new supergravities and the standard theories, as well as some of their dynamical features are also discussed

  2. Motivation, workout and performance - a model for amatorial sports

    OpenAIRE

    Mattera, Raffaele

    2017-01-01

    The previous literature has not devoted enough space to “motivation for training” issues, especially for amateur sports. Generally, is possible imagine some factors which influence motivation for training in professional sports like an high remuneration, fame, etc. However is more difficult find these motivation factors it in the amatorial context, because an amatorial player already has not a substantial remuneration, has a job beyond sports, etc. The main result of this paper is that a larg...

  3. Why do young people consume marijuana? Extending motivational theory via the Dualistic Model of Passion.

    Science.gov (United States)

    Davis, Alan K; Arterberry, Brooke J; Bonar, Erin E; Bohnert, Kipling M; Walton, Maureen A

    2018-03-01

    We evaluated an extended model of motivation for consuming marijuana by combining motivational theory and the dualistic model of passion. An online sample of 524 young, frequent marijuana consumers (M age = 24; 88% male; M past-30-days =21; Mode=31; 50% used 25-31 days) self-administered several questionnaires including the Marijuana-Harmonious and Obsessive Passion Scale and the Marijuana Motives Measure. Intercorrelations among the obsessive and harmonious passion and motives subscales were small-to-medium. A canonical correlation analysis revealed that obsessive passion was significantly positively associated with coping and conformity motives, while controlling for marijuana use, other motives, and harmonious passion scores. Additionally, harmonious passion was significantly positively associated with expansion, social, enhancement, and coping motives, while controlling for marijuana use and obsessive passion scores. A second canonical correlation analysis revealed that, when motive and passion subscales were included as independent predictors of recent marijuana use and related consequences, high obsessive passion and coping motives emerged as significant predictors of recent use and related consequences. Moreover, high harmonious passion and using less for conformity motives emerged as significant predictors of recent marijuana use. These results demonstrate that passion is related to, but not a proxy for, previously established motives for marijuana use and that, when examined simultaneously, both types of passion predict recent consumption but appear to differentiate whether one will experience use-related consequences. Researchers and clinicians could evaluate whether addressing obsessive passion and coping motives reduces or ameliorates negative outcomes associated with consumption.

  4. Supergravity tensor calculus in 5D from 6D

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Ohashi, Keisuke

    2000-01-01

    Supergravity tensor calculus in five spacetime dimensions is derived by dimensional reduction from the d=6 superconformal tensor calculus. In particular, we obtain an off-shell hypermultiplet in 5D from the on-shell hypermultiplet in 6D. Our tensor calculus retains the dilatation gauge symmetry, so that it is a trivial gauge fixing to make the Einstein term canonical in a general matter-Yang-Mills-supergravity coupled system. (author)

  5. Quantum creation of the universe in N = 8 supergravity

    International Nuclear Information System (INIS)

    Goncharov, Yu.P.; Bytsenko, A.A.

    1988-01-01

    We discuss the possibility of quantum creation of an inflationary universe filled with the fields of maximal extended N = 8 supergravity. If the created universe has spatial topology (S 1 ) 3 and after the creation Starobinskii's inflationary scenario through the topological Casimir effect in N = 8 supergravity is realized, the probability of creation of such a universe can be estimated in the semiclassical approximation. The estimate shows that the creation of a universe with a more isotropic topology is more probable

  6. The structure of N = 2 supergravity in N = 1 superfields

    International Nuclear Information System (INIS)

    Awada, M.A.; Mokhtari, S.

    1985-01-01

    A formulation of N = 2 supergravity in N = 1 superspace is presented. The authors solve up to all orders the N = 2 supergravity constraints in terms of unconstrained N = 1 superfields. The structure of the N = 2 action in N = 1 superspace is examined. The proposed action coincides in the quadratic limit of the spin (3/2,1) matter fields with the action given by previous workers. (author)

  7. Structure of N = 2 supergravity in N = 1 superfields

    Energy Technology Data Exchange (ETDEWEB)

    Awada, M.A.; Mokhtari, S. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1985-01-01

    A formulation of N = 2 supergravity in N = 1 superspace is presented. The authors solve up to all orders the N = 2 supergravity constraints in terms of unconstrained N = 1 superfields. The structure of the N = 2 action in N = 1 superspace is examined. The proposed action coincides in the quadratic limit of the spin (3/2,1) matter fields with the action given by previous workers.

  8. Extending hierarchical achievement motivation models: the role of motivational needs for achievement goals and academic performance

    NARCIS (Netherlands)

    Bipp, T.; Dam, van K.

    2014-01-01

    In the current study, we investigated the role of three basic motivational needs (need for power, affiliation, achievement) as antecedents of goals within the 2 × 2 achievement goal framework, and examined their combined predictive validity with regard to academic performance in a sample of 120

  9. The effects of motivational factors on car use: a multidisciplinary modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Steg, L.; Ras, M. [University of Groningen (Netherlands). Centre for Environmental and Traffic Psychology; Geurs, K. [National Institute of Public Health and Environment, Bilthoven (Netherlands)

    2001-11-01

    Current transport models usually do not take motivational factors into account, and if they do, it is only implicitly. This paper presents a modelling approach aimed at explicitly examining the effects of motivational factors on present and future car use in the Netherlands. A car-use forecasting model for the years 2010 and 2020 was constructed on the basis of (i) a multinominal regression analysis, which revealed the importance of a motivational variable (viz., problem awareness) in explaining current car-use behavior separate from socio-demographic and socio-economic variables, and (ii) a population model constructed to forecast the size and composition of the Dutch population. The results show that car use could be better explained by taking motivational factors explicitly into account, and that the level of car use forecast might change significantly if changes in motivations are assumed. The question on how motivational factors could be incorporated into current (Dutch) national transport models was also addressed. (author)

  10. K- nuclear potentials from in-medium chirally motivated models

    International Nuclear Information System (INIS)

    Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.

    2011-01-01

    A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.

  11. Off shell N=1 supergravity theory in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1983-01-01

    The off shell N=1 supergravity theory in six dimensions shows beneath the extreme simplicity of theories in higher dimensions useful properties for the study of a unification of normal gauge theories with the supergravity theory via dimensional reduction and yields a geometrical interpretation for the quantum numbers of internal symmtries of the reduced theory. Furthermore this theory permits a better understanding of ultraviolet divergences than a theory in four dimensions. This six-dimensional supergravity theory is constructed here in the corresponding superspace the importance of which was clained otherwise because a precisely defined mathematical formalism for this exists: Differential geometry in the superspace. We establish constraining conditions for the torsion components and give a complete solution of the Bianchi identities. In the formulation of the conditions for the torsions exists a certain freedom, because different conditions lead to the same solution. Therefore only the analysis of the Bianchi identities will show wether the conditions are too restrictive or not. Furthermore the dimensional reduction of D=6 to the four-dimensional space-time is performed. We show here that the reduced theory yields the conformal N=2 supergravity theory. In the last part of this thesis a Langrangian is presented by which the supergravity is coupled to a matter multiplet. In the analysis of the supersymmetry transformations of the component fields we see that the matter multiplet cannot be consistently brought to vanish. That means that a pure supergravity theory cannot be written manifestly Lorentz covariant. (orig.) [de

  12. A preliminary Analysis of Dörnyei and Otto’s Process Model of L2 Motivation

    Institute of Scientific and Technical Information of China (English)

    徐佳佳

    2015-01-01

    In the past few decades, motivation has already become a recurring topic in SLA field, where motivational theories have placed great influence on language teaching. Different from previous motivation theories, Dörnyei and Otto’s process model of L2 motivation focuses on the dynamicity of motivation.This paper aims at analyzing the process model of L2 motivation and proposing stimulation strategies for each phase to attain learning effect.

  13. A preliminary Analysis of Drnyei and Otto’s Process Model of L2 Motivation

    Institute of Scientific and Technical Information of China (English)

    徐佳佳

    2015-01-01

    In the past few decades, motivation has already become a recurring topic in SLA field, where motivational theories have placed great influence on language teaching.Different from previous motivation theories, Drnyei and Otto’s process model of L2 motivation focuses on the dynamicity of motivation.This paper aims at analyzing the process model of L2 motivation and proposing stimulation strategies for each phase to attain learning effect.

  14. Toward the development of a motivational model of pain self-management.

    Science.gov (United States)

    Jensen, Mark P; Nielson, Warren R; Kerns, Robert D

    2003-11-01

    Adaptive management of chronic pain depends to a large degree on how patients choose to cope with pain and its impact. Consequently, patient motivation is an important factor in determining how well patients learn to manage pain. However, the role of patient motivation in altering coping behavior and maintaining those changes is seldom discussed, and theoretically based research on motivation for pain treatment is lacking. This article reviews theories that have a direct application to understanding motivational issues in pain coping and presents a preliminary motivational model of pain self-management. The implications of this model for enhancing engagement in and adherence to chronic pain treatment programs are then discussed. The article ends with a call for research to better understand motivation as it applies to chronic pain self-management. In particular, there is a need to determine whether (and which) motivation enhancement interventions increase active participation in self-management treatment programs for chronic pain.

  15. Constraints on modular inflation in supergravity and string theory

    International Nuclear Information System (INIS)

    Covi, L.; Palma, G.A.; Gomez-Reino, M.; Gross, C.; Louis, J.; Hamburg Univ.; Scrucca, C.A.

    2008-05-01

    We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non-negative cosmological constant. In fact, we show that the condition for the existence of viable inflationary trajectories is a deformation of the condition for the existence of metastable de Sitter vacua. This condition depends on the ratio between the scale of inflation and the gravitino mass and becomes stronger as this parameter grows. After performing a general study within arbitrary supergravity models, we analyse the implications of our results in several examples. More concretely, in the case of heterotic and orientifold string compactifications on a Calabi-Yau in the large volume limit we show that there may exist fully viable models, allowing both for inflation and stabilisation. Additionally, we show that subleading corrections breaking the no-scale property shared by these models always allow for slow-roll inflation but with an inflationary scale suppressed with respect to the gravitino scale. A scale of inflation larger than the gravitino scale can also be achieved under more restrictive circumstances and only for certain types of compactifications. (orig.)

  16. Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Katmadas, Stefanos [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy); Lodato, Ivano [Department of Physics, IISER Pune,Homi Bhaba Road, Pashan, Pune (India)

    2016-05-30

    We analyze BPS black hole attractors in 4d gauged supergravity in the presence of higher derivative supersymmetric terms, including a Weyl-squared-type action, and determine the resulting corrections to the Bekenstein-Hawking entropy. The near-horizon geometry AdS{sub 2}×S{sup 2} (or other Riemann surface) preserves half of the supercharges in N=2 supergravity with Fayet-Iliopoulos gauging. We derive a relation between the entropy and the black hole charges that suggests via AdS/CFT how subleading corrections contribute to the supersymmetric index in the dual microscopic picture. Depending on the model, the attractors are part of full black hole solutions with different asymptotics, such as Minkowski, AdS{sub 4}, and hvLif{sub 4}. We give explicit examples for each of the asymptotic cases and comment on the implications. Among other results, we find that the Weyl-squared terms spoil the exact two-derivative relation to non-BPS asymptotically flat black holes in ungauged supergravity.

  17. General f(R and conformal inflation from minimal supergravity plus matter

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2016-02-01

    Full Text Available We embed general f(R inflationary models in minimal supergravity plus matter, a single chiral superfield Φ, with or without another superfield S, via a Jordan frame Einstein+scalar description. In particular, inflationary models like a generalized Starobinsky one are analyzed and constraints on them are found. We also embed the related models of conformal inflation, also described as Jordan frame Einstein+scalar models, in particular the conformal inflation from the Higgs model, and analyze the inflationary constraints on them.

  18. Cultural differences of a dual-motivation model on health risk behaviour

    NARCIS (Netherlands)

    Ohtomo, S.; Hirose, Y.; Midden, C.J.H.

    2011-01-01

    This study investigated the cultural differences of a dual-motivation model of unhealthy risk behaviour in the Netherlands and Japan. Our model assumes dual motivations involved in unhealthy eating behaviour, a behavioural willingness that leads behaviour unintentionally or subconsciously and a

  19. Motivation Monitoring and Assessment Extension for Input-Process-Outcome Game Model

    Science.gov (United States)

    Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    This article proposes a Motivation Assessment-oriented Input-Process-Outcome Game Model (MotIPO), which extends the Input-Process-Outcome game model with game-centred and player-centred motivation assessments performed right from the beginning of the game-play. A feasibility case-study involving 67 participants playing an educational game and…

  20. The effects of motivational factors on car use : a multidisciplinary modelling approach

    NARCIS (Netherlands)

    Steg, L; Geurs, K; Ras, M

    Current transport models usually do not take motivational factors into account, and if they do, it is only implicitly. This paper presents a modelling approach aimed at explicitly examining the effects of motivational factors on present and future car use in the Netherlands. A car-use forecasting

  1. Cooperation Models, Motivation and Objectives behind Farm–School Collaboration

    DEFF Research Database (Denmark)

    Dyg, Pernille Malberg; Mikkelsen, Bent Egberg

    2016-01-01

    economic incentives. Teachers display academic motives for engaging in farm visits, but also a broader focus on shaping children’s world views, connectedness to food and nature and fostering life skills. The farm can be an important setting for promoting food, agricultural and ecological literacy. We...... people and their ability to understand the food system. Thus, efforts are made to promote food literacy through strengthening of farm–school links. The case-study research from Denmark investigates existing cooperation arrangements in farm–school collaboration and the underlying motivation of the farmers...... and teachers. Findings show distinct differences in motivation. Farmers want to create transparency in their production, ensure support for the agricultural profession or promote food and agricultural literacy. The idealistic motivation of teaching children about food and agriculture weighs higher than...

  2. Motives and periods in Bianchi IX gravity models

    Science.gov (United States)

    Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde

    2018-05-01

    We show that, when considering the anisotropic scaling factors and their derivatives as affine variables, the coefficients of the heat-kernel expansion of the Dirac-Laplacian on SU(2) Bianchi IX metrics are algebro-geometric periods of motives of complements in affine spaces of unions of quadrics and hyperplanes. We show that the motives are mixed Tate and we provide an explicit computation of their Grothendieck classes.

  3. On minimal coupling of the ABC-superparticle to supergravity background

    OpenAIRE

    Galajinsky, A. V.; Gitman, D. M.

    1998-01-01

    By rigorous application of the Hamiltonian methods we show that the ABC-formulation of the Siegel superparticle admits consistent minimal coupling to external supergravity. The consistency check proves to involve all the supergravity constraints.

  4. A complete solution of the Bianchi identities in superspace with supergravity constraints

    International Nuclear Information System (INIS)

    Grimm, R.; Wess, J.; Zumino, B.

    1979-01-01

    A short discussion of the superspace formulation of supergravity is given and the Bianchi identities are derived. The supergravity constraints are imposed and the identities are solved in terms of superfields and their covariant derivatives. (Auth.)

  5. Behavioral facilitation: a cognitive model of individual differences in approach motivation.

    Science.gov (United States)

    Robinson, Michael D; Meier, Brian P; Tamir, Maya; Wilkowski, Benjamin M; Ode, Scott

    2009-02-01

    Approach motivation consists of the active, engaged pursuit of one's goals. The purpose of the present three studies (N = 258) was to examine whether approach motivation could be cognitively modeled, thereby providing process-based insights into personality functioning. Behavioral facilitation was assessed in terms of faster (or facilitated) reaction time with practice. As hypothesized, such tendencies predicted higher levels of approach motivation, higher levels of positive affect, and lower levels of depressive symptoms and did so across cognitive, behavioral, self-reported, and peer-reported outcomes. Tendencies toward behavioral facilitation, on the other hand, did not correlate with self-reported traits (Study 1) and did not predict avoidance motivation or negative affect (all studies). The results indicate a systematic relationship between behavioral facilitation in cognitive tasks and approach motivation in daily life. Results are discussed in terms of the benefits of modeling the cognitive processes hypothesized to underlie individual differences motivation, affect, and depression. (c) 2009 APA, all rights reserved

  6. Supergravity on an Atiyah-Hitchin base

    International Nuclear Information System (INIS)

    Stotyn, Sean; Mann, R.B.

    2008-01-01

    We construct solutions to five dimensional minimal supergravity using an Atiyah-Hitchin base space. In examining the structure of solutions we show that they generically contain a singularity either on the Atiyah-Hitchin bolt or at larger radius where there is a singular solitonic boundary. However for most points in parameter space the solution exhibits a velocity of light surface (analogous to what appears in a Goedel space-time) that shields the singularity. For these solutions, all closed time-like curves are causally disconnected from the rest of the space-time in that they exist within the velocity of light surface, which null geodesics are unable to cross. The singularities in these solutions are thus found to be hidden behind the velocity of light surface and so are not naked despite the lack of an event horizon. Outside of this surface the space-time is geodesically complete, asymptotically flat and can be arranged so as not to contain closed time-like curves at infinity. The rest of parameter space simply yields solutions with naked singularities.

  7. Higher-Derivative Supergravity and Moduli Stabilization

    International Nuclear Information System (INIS)

    Ciupke, David; Westphal, Alexander; Louis, Jan; Hamburg Univ.

    2015-05-01

    We review the ghost-free four-derivative terms for chiral superfields in N=1 supersymmetry and supergravity. These terms induce cubic polynomial equations of motion for the chiral auxiliary fields and correct the scalar potential. We discuss the different solutions and argue that only one of them is consistent with the principles of effective field theory. Special attention is paid to the corrections along flat directions which can be stabilized or destabilized by the higher-derivative terms. We then compute these higher-derivative terms explicitly for the type IIB string compactified on a Calabi-Yau orientifold with fluxes via Kaluza-Klein reducing the (α') 3 R 4 corrections in ten dimensions for the respective N=1 Kaehler moduli sector. We prove that together with flux and the known (α') 3 -corrections the higher-derivative term stabilizes all Calabi-Yau manifolds with positive Euler number, provided the sign of the new correction is negative.

  8. Self-determined motivation in sport predicts anti-doping motivation and intention: a perspective from the trans-contextual model.

    Science.gov (United States)

    Chan, D K C; Dimmock, J A; Donovan, R J; Hardcastle, S; Lentillon-Kaestner, V; Hagger, M S

    2015-05-01

    Motivation in sport has been frequently identified as a key factor of young athletes' intention of doping in sport, but there has not been any attempt in scrutinizing the motivational mechanism involved. The present study applied the trans-contextual model of motivation to explain the relationship between motivation in a sport context and motivation and the social-cognitive factors (attitude, subjective norm, perceived behavioral control, and intention) from the theory of planned behavior (TPB) in an anti-doping context. A cross-sectional survey was conducted. Questionnaire data was collected from 410 elite and sub-elite young athletes in Australia (Mean age [17.7±3.9 yr], 55.4% male, Years in sport [9.1±3.2]). We measured the key model variables of study in relation to sport motivation (Behavioral Regulation in Sport Questionnaire), and the motivation (adapted version of the Treatment Self-Regulation Questionnaire) and social cognitive patterns (the theory of planned behavior questionnaire) of doping avoidance. The data was analyzed by variance-based structural equation modeling with bootstrapping of 999 replications. The goodness-of-fit of the hypothesized model was acceptable. The bootstrapped parameter estimates revealed that autonomous motivation and amotivation in sport were positively associated with the corresponding types of motivation for the avoidance of doping. Autonomous motivation, subjective norm, and perceived behavioral control in doping avoidance fully mediated the relationship between autonomous motivation in sport and intention for doping avoidance. The findings support the tenets of the trans-contextual model, and explain how motivation in sport is related to athletes' motivation and intention with respect to anti-doping behaviors. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    OpenAIRE

    Hayati .; Retno Dwi Suyanti

    2013-01-01

    The objective in this research: (1) Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2) Determine the level of motivation to learn in affects physics student learning outcomes. (3) Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all s...

  10. A Game Theoretic Framework for Incentive-Based Models of Intrinsic Motivation in Artificial Systems

    Directory of Open Access Journals (Sweden)

    Kathryn Elizabeth Merrick

    2013-10-01

    Full Text Available An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players’ optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots.

  11. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems.

    Science.gov (United States)

    Merrick, Kathryn E; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots.

  12. R4 terms in supergravities via T -duality constraint

    Science.gov (United States)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-05-01

    It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.

  13. Summing up D-instantons in N=2 supergravity

    International Nuclear Information System (INIS)

    Ketov, Sergei V.

    2003-01-01

    The non-perturbative quantum geometry of the universal hypermultiplet (UH) is investigated in N=2 supergravity. The UH low-energy effective action is given by the four-dimensional quaternionic non-linear sigma-model having an U(1)xU(1) isometry. The UH metric is governed by the single real pre-potential that is an eigenfunction of the Laplacian in the hyperbolic plane. We calculate the classical pre-potential corresponding to the standard (Ferrara-Sabharwal) metric of the UH arising in the Calabi-Yau compactification of type-II superstrings. The non-perturbative quaternionic metric, describing the D-instanton contributions to the UH geometry, is found by requiring the SL(2,Z) modular invariance of the UH pre-potential. The pre-potential found is unique, while it coincides with the D-instanton function of Green and Gutperle, given by the order-3/2 Eisenstein series. As a by-product, we prove cluster decomposition of D-instantons in curved spacetime. The non-perturbative UH pre-potential interpolates between the perturbative (large CY volume) region and the superconformal (Landau-Ginzburg) region in the UH moduli space. We also calculate a non-perturbative scalar potential in the hyper-Kaehler limit, when an abelian isometry of the UH metric is gauged in the presence of D-instantons

  14. Split Attractor Flow in N=2 Minimally Coupled Supergravity

    CERN Document Server

    Ferrara, Sergio; Orazi, Emanuele

    2011-01-01

    We classify the stability region, marginal stability walls (MS) and split attractor flows for two-center extremal black holes in four-dimensional N=2 supergravity minimally coupled to n vector multiplets. It is found that two-center (continuous) charge orbits, classified by four duality invariants, either support a stability region ending on a MS wall or on an anti-marginal stability (AMS) wall, but not both. Therefore, the scalar manifold never contains both walls. Moreover, the BPS mass of the black hole composite (in its stability region) never vanishes in the scalar manifold. For these reasons, the "bound state transformation walls" phenomenon does not necessarily occur in these theories. The entropy of the flow trees also satisfies an inequality which forbids "entropy enigma" decays in these models. Finally, the non-BPS case, due to the existence of a "fake" superpotential satisfying a triangle inequality, can be treated as well, and it can be shown to exhibit a split attractor flow dynamics which, at le...

  15. Summing up D-instantons in N=2 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V. E-mail: ketov@phys.metro-u.ac.jp

    2003-01-20

    The non-perturbative quantum geometry of the universal hypermultiplet (UH) is investigated in N=2 supergravity. The UH low-energy effective action is given by the four-dimensional quaternionic non-linear sigma-model having an U(1)xU(1) isometry. The UH metric is governed by the single real pre-potential that is an eigenfunction of the Laplacian in the hyperbolic plane. We calculate the classical pre-potential corresponding to the standard (Ferrara-Sabharwal) metric of the UH arising in the Calabi-Yau compactification of type-II superstrings. The non-perturbative quaternionic metric, describing the D-instanton contributions to the UH geometry, is found by requiring the SL(2,Z) modular invariance of the UH pre-potential. The pre-potential found is unique, while it coincides with the D-instanton function of Green and Gutperle, given by the order-3/2 Eisenstein series. As a by-product, we prove cluster decomposition of D-instantons in curved spacetime. The non-perturbative UH pre-potential interpolates between the perturbative (large CY volume) region and the superconformal (Landau-Ginzburg) region in the UH moduli space. We also calculate a non-perturbative scalar potential in the hyper-Kaehler limit, when an abelian isometry of the UH metric is gauged in the presence of D-instantons.

  16. Sources of motivation, interpersonal conflict management styles, and leadership effectiveness: a structural model.

    Science.gov (United States)

    Barbuto, John E; Xu, Ye

    2006-02-01

    126 leaders and 624 employees were sampled to test the relationship between sources of motivation and conflict management styles of leaders and how these variables influence effectiveness of leadership. Five sources of motivation measured by the Motivation Sources Inventory were tested-intrinsic process, instrumental, self-concept external, self-concept internal, and goal internalization. These sources of work motivation were associated with Rahim's modes of interpersonal conflict management-dominating, avoiding, obliging, complying, and integrating-and to perceived leadership effectiveness. A structural equation model tested leaders' conflict management styles and leadership effectiveness based upon different sources of work motivation. The model explained variance for obliging (65%), dominating (79%), avoiding (76%), and compromising (68%), but explained little variance for integrating (7%). The model explained only 28% of the variance in leader effectiveness.

  17. Modeling the Relations among Students' Epistemological Beliefs, Motivation, Learning Approach, and Achievement

    Science.gov (United States)

    Kizilgunes, Berna; Tekkaya, Ceren; Sungur, Semra

    2009-01-01

    The authors proposed a model to explain how epistemological beliefs, achievement motivation, and learning approach related to achievement. The authors assumed that epistemological beliefs influence achievement indirectly through their effect on achievement motivation and learning approach. Participants were 1,041 6th-grade students. Results of the…

  18. Broadening the trans-contextual model of motivation: A study with Spanish adolescents.

    Science.gov (United States)

    González-Cutre, D; Sicilia, Á; Beas-Jiménez, M; Hagger, M S

    2014-08-01

    The original trans-contextual model of motivation proposed that autonomy support from teachers develops students' autonomous motivation in physical education (PE), and that autonomous motivation is transferred from PE contexts to physical activity leisure-time contexts, and predicts attitudes, perceived behavioral control and subjective norms, and forming intentions to participate in future physical activity behavior. The purpose of this study was to test an extended trans-contextual model of motivation including autonomy support from peers and parents and basic psychological needs in a Spanish sample. School students (n = 400) aged between 12 and 18 years completed measures of perceived autonomy support from three sources, autonomous motivation and constructs from the theory of planned behavior at three different points in time and in two contexts, PE and leisure-time. A path analysis controlling for past physical activity behavior supported the main postulates of the model. Autonomous motivation in a PE context predicted autonomous motivation in a leisure-time physical activity context, perceived autonomy support from teachers predicted satisfaction of basic psychological needs in PE, and perceived autonomy support from peers and parents predicted need satisfaction in leisure-time. This study provides a cross-cultural replication of the trans-contextual model of motivation and broadens it to encompass basic psychological needs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cost Perception and the Expectancy-Value Model of Achievement Motivation.

    Science.gov (United States)

    Anderson, Patricia N.

    The expectancy-value model of achievement motivation, first described by J. Atkinson (1957) and refined by J. Eccles and her colleagues (1983, 1992, 1994) predicts achievement motivation based on expectancy for success and perceived task value. Cost has been explored very little. To explore the possibility that cost is different from expectancy…

  20. A Process Model of L2 Learners' Motivation: From the Perspectives of General Tendency and Individual Differences

    Science.gov (United States)

    Hiromori, Tomohito

    2009-01-01

    The purpose of this study is to examine a process model of L2 learners' motivation. To investigate the overall process of motivation, the motivation of 148 university students was analyzed. Data were collected on three variables from the pre-decisional phase of motivation (i.e., value, expectancy, and intention) and four variables from the…

  1. On-shell diagrams for N=8 supergravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Heslop, Paul; Lipstein, Arthur E. [Department of Mathematical Sciences, Durham University,Lower Mountjoy, Stockton Road, Durham, DH1 3LE (United Kingdom)

    2016-06-10

    We define recursion relations for N=8 supergravity amplitudes using a generalization of the on-shell diagrams developed for planar N=4 super-Yang-Mills. Although the recursion relations generically give rise to non-planar on-shell diagrams, we show that at tree-level the recursion can be chosen to yield only planar diagrams, the same diagrams occurring in the planar N=4 theory. This implies non-trivial identities for non-planar diagrams as well as interesting relations between the N=4 and N=8 theories. We show that the on-shell diagrams of N=8 supergravity obey equivalence relations analogous to those of N=4 super-Yang-Mills, and we develop a systematic algorithm for reading off Grassmannian integral formulae directly from the on-shell diagrams. We also show that the 1-loop 4-point amplitude of N=8 supergravity can be obtained from on-shell diagrams.

  2. Brane induced supersymmetry breaking and de Sitter supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-02-12

    We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.

  3. Invariant Killing spinors in 11D and type II supergravities

    International Nuclear Information System (INIS)

    Gran, U; Gutowski, J; Papadopoulos, G

    2009-01-01

    We present all isotropy groups and associated Σ groups, up to discrete identifications of the component connected to the identity, of spinors of 11-dimensional and type II supergravities. The Σ groups are products of a Spin group and an R-symmetry group of a suitable lower dimensional supergravity theory. Using the case of SU(4)-invariant spinors as a paradigm, we demonstrate that the Σ groups, and so the R-symmetry groups of lower dimensional supergravity theories arising from compactifications, have disconnected components. These lead us to discrete symmetry groups reminiscent of R-parity. We examine the role of disconnected components of the Σ groups in the choice of Killing spinor representatives and in the context of compactifications.

  4. An N=2 gauge theory and its supergravity dual

    CERN Document Server

    Brandhuber, A

    2000-01-01

    We study flows on the scalar manifold of N=8 gauged supergravity in five dimensions which are dual to certain mass deformations of N=4 super Yang-Mill theory. In particular, we consider a perturbation of the gauge theory by a mass term for the adjoint hyper-multiplet, giving rise to an N=2 theory. The exact solution of the 5-dim gauged supergravity equations of motion is found and the metric is uplifted to a ten-dimensional background of type-IIB supergravity. Using these geometric data and the AdS/CFT correspondence we analyze the spectra of certain operators as well as Wilson loops on the dual gauge theory side. The physical flows are parametrized by a single non-positive constant and describe part of the Coulomb branch of the N=2 theory at strong coupling.

  5. On the consistency of classical and quantum supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)

    2012-07-01

    It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.

  6. The component structure of conformal supergravity invariants in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); Novak, Joseph [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm (Germany); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-05-24

    In the recent paper https://arxiv.org/abs/1606.02921, the two invariant actions for 6D N=(1,0) conformal supergravity were constructed in superspace, corresponding to the supersymmetrization of C{sup 3} and C◻C. In this paper, we provide the translation from superspace to the component formulation of superconformal tensor calculus, and we give the full component actions of these two invariants. As a second application, we build the component form for the supersymmetric F◻F action coupled to conformal supergravity. Exploiting the fact that the N=(2,0) Weyl multiplet has a consistent truncation to N=(1,0), we then verify that there is indeed only a single N=(2,0) conformal supergravity invariant and reconstruct most of its bosonic terms by uplifting a certain linear combination of N=(1,0) invariants.

  7. Complex superspaces and prepotentials for N = 2 supergravity

    International Nuclear Information System (INIS)

    Sokatchev, E.

    1981-01-01

    A prepotential formulation of N=2 supergravity is constructed as a generalization of the non-minimal N=1 case. The non-minimal and minimal prepotential formulations of N=1 supergravity are briefly reviewed, the non-minimal case is then generalized to from the basis of the N=2 theory. The action of the Lorentz structure group is extracted from the transformation law of the spinar derivatives. Vielbeins and connections are defined and expressed in terms of the prepotentials. In evaluation of the torsion components the normal gauge technique is applied. The possibility of using the invariant volume of the chiral superspaces as an action for the N=2 supergravity is considered. (author)

  8. Testing theories of gravity and supergravity with inflation and observations of the cosmic microwave background

    Science.gov (United States)

    Chakravarty, G. K.; Mohanty, S.; Lambiase, G.

    Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these

  9. E-Learning and Social Media Motivation Factor Model

    Science.gov (United States)

    Rosli, Mohd Shafie; Saleh, Nor Shela; Aris, Baharuddin; Ahmad, Maizah Hura; Sejzi, Abbas Abjoli; Shamsudin, Nur Amalina

    2016-01-01

    The aims of this study are to probe into the motivational factors toward the usage of e-learning and social media among educational technology postgraduate students in the Faculty of Education, Universiti Teknologi Malaysia. This study had involved 70 respondents via the means of a questionnaire. Four factors have been studied, named, the factor…

  10. Exploring Student Persistence in STEM Programs: A Motivational Model

    Science.gov (United States)

    Simon, Rebecca A.; Aulls, Mark W.; Dedic, Helena; Hubbard, Kyle; Hall, Nathan C.

    2015-01-01

    To address continually decreasing enrollment and rising attrition in post-secondary STEM degree (science, technology, engineering, and mathematics) programs, particularly for women, the present study examines the utility of motivation and emotion variables to account for persistence and achievement in science in male and female students…

  11. On moduli spaces in AdS{sub 4} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, Senarath de [Colorado Univ., Boulder, CO (United States). Dept. of Physics; Louis, Jan [Hamburg Univ. (Germany). Fachbereich 12 - Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; McAllister, Liam [Cornell Univ., Ithaca, NY (United States). Dept. of Physics; Triendl, Hagen [CERN, Geneva (Switzerland). Theory Division, Physics Dept.; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2013-12-15

    We study the structure of the supersymmetric moduli spaces of N=1 and N=2 supergravity theories in AdS{sub 4} backgrounds. In the N=1 case, the moduli space cannot be a complex submanifold of the Kaehler field space, but is instead real with respect to the inherited complex structure. In N=2 supergravity the same result holds for the vector multiplet moduli space, while the hypermultiplet moduli space is a Kaehler submanifold of the quaternionic-Kaehler field space. These findings are in agreement with AdS/CFT considerations.

  12. Differential and integral forms in supergauge theories and supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.; Pak, D.G.

    1989-01-01

    D = 3, 4, N = 1 supergauge theories and D = 3, N = 1 supergravity are considered in the superfield formalism by using differential and integral forms. A special map of the space of differential forms into the space of integral forms is proposed. By means of this map we find the superfield Chern-Simons terms in D = 3, N = 1 Yang-Mills theory and supergravity. The integral forms corresponding to superfield invariants of D = 4, N = 1 supergauge theory have also been constructed. (Author)

  13. Supersymmetric couplings and trajectories in N = 1 supergravity

    International Nuclear Information System (INIS)

    Castagnino, M.; Umerez, N.; Domenech, G.; Levinas, M.

    1989-01-01

    The present work deals with the classical behaviour of matter represented by chiral multiplets in a background of N = 1 supergravity. The WKB method is used. It is shown that supersymmetric coupling leads, at the lowest order, to a non-geodesic motion law for spin-1/2 matter. This result permits us to establish physical differences with respect to gravitational theories with minimal coupled matter Lagrangians. Deviations from the Newton law are found, allowing us to speculate about low-energy effects for testing supergravity. (author)

  14. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luedeling, C

    2006-07-15

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  15. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Luedeling, C.

    2006-07-01

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  16. d=3 Chern-Simons action, supergravity and quantization

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-01-01

    An interpretation of three-dimensional simple supergravity as a pure Chern-Simons gauge action is shown to be valid up to the one loop level. Canonical quantization of this system does not lead to an explicit definition of the physical Hilbert space. Hence another formulation of the N = 1 three-dimensional supergravity is introduced. In this formalism an explicit definition of the physical Hilbert space is possible, but still one has to solve the problems of showing that there exists a global set of coordinates and of defining the inner product. (author). 10 refs

  17. Extremal Black Holes in Supergravity and the Bekenstein-Hawking Entropy

    Directory of Open Access Journals (Sweden)

    R. D'Auria

    2002-03-01

    Full Text Available Abstract: We review some results on the connection among supergravity central charges, BPS states and Bekenstein-Hawking entropy. In particular, N = 2 super-gravity in four dimensions is studied in detail. For higher N supergravities we just give an account of the general theory specializing the discussion to the N = 8 case when one half of supersymmetry is preserved. We stress the fact that for extremal supergravity black holes the entropy formula is topological, that is the entropy turns out to be a moduli independent quantity and can be written in terms of invariants of the duality group of the supergravity theory.

  18. A study on the information-motivation-behavioural skills model among Chinese adults with peritoneal dialysis.

    Science.gov (United States)

    Chang, Tian-Ying; Zhang, Yi-Lin; Shan, Yan; Liu, Sai-Sai; Song, Xiao-Yue; Li, Zheng-Yan; Du, Li-Ping; Li, Yan-Yan; Gao, Douqing

    2018-05-01

    To examine whether the information-motivation-behavioural skills model could predict self-care behaviour among Chinese peritoneal dialysis patients. Peritoneal dialysis is a treatment performed by patients or their caregivers in their own home. It is important to implement theory-based projects to increase the self-care of patients with peritoneal dialysis. The information-motivation-behavioural model has been verified in diverse populations as a comprehensive, effective model to guide the design, implementation and evaluation of self-care programmes. A cross-sectional, observational study. A total of 201 adults with peritoneal dialysis were recruited at a 3A grade hospital in China. Participant data were collected on demographics, self-care information (knowledge), social support (social motivation), self-care attitude (personal motivation), self-efficacy (behaviour skills) and self-care behaviour. We also collected data on whether the recruited patients had peritoneal dialysis-associated peritonitis from electronic medical records. Measured variable path analysis was performed using mplus 7.4 to identify the information-motivation-behavioural model. Self-efficacy, information and social motivation predict peritoneal dialysis self-care behaviour directly. Information and personal support affect self-care behaviour through self-efficacy, whereas peritoneal dialysis self-care behaviour has a direct effect on the prevention of peritoneal dialysis-associated peritonitis. The information-motivation-behavioural model is an appropriate and applicable model to explain and predict the self-care behaviour of Chinese peritoneal dialysis patients. Poor self-care behaviour among peritoneal dialysis patients results in peritoneal dialysis-associated peritonitis. The findings suggest that self-care education programmes for peritoneal dialysis patients should include strategies based on the information-motivation-behavioural model to enhance knowledge, motivation and behaviour

  19. THE EFFECTS OF COOPERATIVE LEARNING MODEL GROUP INVESTIGATION AND MOTIVATION TOWARD PHYSICS LEARNING RESULTS MAN TANJUNGBALAI

    Directory of Open Access Journals (Sweden)

    Amalia Febri Aristi

    2014-12-01

    Full Text Available This study aimed to determine: (1 Is there a difference in student's learning outcomes with the application of learning models Investigation Group and Direct Instruction teaching model. (2 Is there a difference in students' motivation with the application of learning models Investigation Group and Direct Instruction teaching model, (3 Is there an interaction between learning models Investigation Group and Direct Instruction to improve students' motivation in learning outcomes Physics. This research is a quasi experimental. The study population was a student of class XII Tanjung Balai MAN. Random sample selection is done by randomizing the class. The instrument used consisted of: (1 achievement test (2 students' motivation questionnaire. The tests are used to obtain the data is shaped essay. The data in this study were analyzed using ANOVA analysis of two paths. The results showed that: (1 there were differences in learning outcomes between students who used the physics model of Group Investigation learning compared with students who used the Direct Instruction teaching model. (2 There was a difference in student's learning outcomes that had a low learning motivation and high motivation to learn both in the classroom and in the classroom Investigation Group Direct Instruction. (3 There was interaction between learning models Instruction Direct Group Investigation and motivation to learn in improving learning outcomes Physics.

  20. Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation.

    Science.gov (United States)

    Ventura-Aquino, Elisa; Paredes, Raúl G

    2017-01-01

    Many different animal models of sexual medicine have been developed, demonstrating the complexity of studying the many interactions that influence sexual responses. A great deal of effort has been invested in measuring sexual motivation using different behavioral models mainly because human behavior is more complex than any model can reproduce. To compare different animal models of male and female behaviors that measure sexual motivation as a key element in sexual medicine and focus on models that use a combination of molecular techniques and behavioral measurements. We review the literature to describe models that evaluate different aspects of sexual motivation. No single test is sufficient to evaluate sexual motivation. The best approach is to evaluate animals in different behavioral tests to measure the motivational state of the subject. Different motivated behaviors such as aggression, singing in the case of birds, and sexual behavior, which are crucial for reproduction, are associated with changes in mRNA levels of different receptors in brain areas that are important in the control of reproduction. Research in animal models is crucial to understand the complexity of sexual behavior and all the mechanisms that influence such an important aspect of human well-being to decrease the physiologic and psychological impact of sexual dysfunctions. In other cases, research in different models is necessary to understand and recognize, not cure, the variability of sexuality, such as asexuality, which is another form of sexual orientation. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  1. Charged Fermions Tunneling from a Rotating Charged Black Hole in 5-Dimensional Gauged Supergravity

    International Nuclear Information System (INIS)

    Li Huiling; Lin Rong; Wang Chuanyin

    2010-01-01

    Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.

  2. Longitudinal associations between exercise identity and exercise motivation: A multilevel growth curve model approach.

    Science.gov (United States)

    Ntoumanis, N; Stenling, A; Thøgersen-Ntoumani, C; Vlachopoulos, S; Lindwall, M; Gucciardi, D F; Tsakonitis, C

    2018-02-01

    Past work linking exercise identity and exercise motivation has been cross-sectional. This is the first study to model the relations between different types of exercise identity and exercise motivation longitudinally. Understanding the dynamic associations between these sets of variables has implications for theory development and applied research. This was a longitudinal survey study. Participants were 180 exercisers (79 men, 101 women) from Greece, who were recruited from fitness centers and were asked to complete questionnaires assessing exercise identity (exercise beliefs and role-identity) and exercise motivation (intrinsic, identified, introjected, external motivation, and amotivation) three times within a 6 month period. Multilevel growth curve modeling examined the role of motivational regulations as within- and between-level predictors of exercise identity, and a model in which exercise identity predicted exercise motivation at the within- and between-person levels. Results showed that within-person changes in intrinsic motivation, introjected, and identified regulations were positively and reciprocally related to within-person changes in exercise beliefs; intrinsic motivation was also a positive predictor of within-person changes in role-identity but not vice versa. Between-person differences in the means of predictor variables were predictive of initial levels and average rates of change in the outcome variables. The findings show support to the proposition that a strong exercise identity (particularly exercise beliefs) can foster motivation for behaviors that reinforce this identity. We also demonstrate that such relations can be reciprocal overtime and can depend on the type of motivation in question as well as between-person differences in absolute levels of these variables. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Matter and gauge couplings of N=2 supergravity in six dimensions

    International Nuclear Information System (INIS)

    Nishino, H.; Sezgin, E.

    1984-04-01

    We construct the couplings of a single anti-symmetric tensor multiplet, the non-compact HP(n-1,1) identical Sp(n,1)/Sp(n)xSp(1) σ-model and a Yang-Mills multiplet with the local gauge group Sp(n)xSp(1) to N=2 supergravity in d=6. The theory has a positive definite potential. If only the Sp(n) group is gauged, we can use the global Sp(1) invariance to realize a super-Higgs effect a la Scherk and Schwarz. [Nucl. Phys. B153, 61(1979)]. (author)

  4. De Theatro Motivarum, Motivation : In Search of Essentials. Research on a Theoretical Model of the Process of Motivation and on Critical Determinants of Interference

    NARCIS (Netherlands)

    Mennes, M.A.

    2016-01-01

    In using a fundamentally different approach to theory formation, a new Model of Motivation is presented and tested through empirical research in various studies. Motivation is assumed to evolve around an objective and to proceed in twenty-four consecutive ‘stages’ that can be organized according to

  5. Frequentist analysis of the parameter space of minimal supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O.; Colling, D. [Imperial College, London (United Kingdom). High Energy Physics Group; Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Illinois Univ., Chicago, IL (US). Physics Dept.] (and others)

    2010-12-15

    We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A{sub 0}=B{sub 0}+m{sub 0}, and the gravitino mass is fixed by m{sub 3/2}=m{sub 0}. We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M{sub h}, B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m{sub 1/2} and m{sub 0} similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m{sub 1/2} and m{sub 0} than in the VCMSSM, and one with large m{sub 0} but small m{sub 1/2}. We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere. (orig.)

  6. Grassmann expansion of the classical N=2 supergravity field equations

    International Nuclear Information System (INIS)

    Embacher, F.

    1984-01-01

    The classical field equations of N=2 supergravity are expanded with respect to an infinite dimensional Grassmann algebra. The general freedom in constructing classical solution is exhibited. As an application, a uniqueness theorem for supersymmetric extreme black holes is given. (Author)

  7. Supersymmetric black holes in N = 2 supergravity theory

    International Nuclear Information System (INIS)

    Aichelburg, P.C.

    1982-01-01

    We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)

  8. Half-supersymmetric solutions in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Gutowski, Jan B.; Sabra, Wafic

    2007-01-01

    We present a systematic classification of half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which at least one of the Killing spinors generate a time-like Killing vector

  9. General supersymmetric solutions of five-dimensional supergravity

    International Nuclear Information System (INIS)

    Gutowski, Jan B.; Sabra, Wafic

    2005-01-01

    The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated elsewhere, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed

  10. Well-posedness of (N = 1) classical supergravity

    International Nuclear Information System (INIS)

    Bao, D.; Choquet-Bruhat, Y.; Isenberg, J.; Yasskin, P.B.

    1985-01-01

    In this paper we investigate whether classical (N = 1) supergravity has a well-posed locally causal Cauchy problem. We define well-posedness to mean that any choice of initial data (from an appropriate function space) which satisfies the supergravity constraint equations and a set of gauge conditions can be continuously developed into a space-time solution of the supergravity field equations around the initial surface. Local causality means that the domains of dependence of the evolution equations coincide with those determined by the light cones. We show that when the fields of classical supergravity are treated as formal objects, the field equations are (under certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order partial differential equations which is formally nonstrictly hyperbolic (in the sense of Leray--Ohya). Hence, if the fields were numerical valued, there would be an applicable existence theorem leading to well-posedness. We shall observe that well-posedness is assured if the fields are taken to be Grassmann (i.e., exterior algebra) valued, for then the second-order system decouples into the vacuum Einstein equation and a sequence of numerical valued linear diagonal strictly hyperbolic partial differential equations which can be solved successively

  11. Chaotic inflation in supergravity after Planck and BICEP2

    International Nuclear Information System (INIS)

    Kallosh, Renata; Linde, Andrei

    2014-05-01

    We discuss the general structure and observational consequences of some of the simplest versions of chaotic inflation in supergravity in relation to the data by Planck 2013 and BICEP2. We show that minimal modifications to the simplest quadratic potential are sufficient to provide a controllable tensor mode signal and a suppression of CMB power at large angular scales.

  12. N=2 supergravity in superspace: the invariant action

    International Nuclear Information System (INIS)

    Gal'perin, A.S.; Sokachev, E.

    1987-01-01

    This paper continues the formulation of harmonic superspace supergravity. We write down the invariant action for the first off-shell version of the theory. The proof of the invariance relies on the existence of a new 'hybrid' basis in harmonic superspace in which semi-chirality combined with analyticity are manifest

  13. Gauge fixing of Chern-Simons N-extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ney, W G [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Centro Federal de Educacao Tecnologica (CEFET), Campos dos Goytacazes, RJ (Brazil); Piguet, O [Universidade Federal do Espirito Santo (UFES), ES 29000-001, Vitoria (Brazil); Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2004-08-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  14. Gauge fixing of Chern-Simons N-extended supergravity

    International Nuclear Information System (INIS)

    Ney, W.G.; Piguet, O.; Spalenza, W.

    2004-01-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  15. The superspace-translation tensor and linearized N = 1 supergravities

    International Nuclear Information System (INIS)

    Bedding, S.P.; Lang, W.

    1982-01-01

    The recently proposed superspace-translation tensor is considered as the source of supergravities in the context of N = 1 supersymmetry. It is shown how the structure of this tensor leads to a complete evaluation of the linearized supervielbein in terms of unconstrained prepotentials with derived transformation laws. Connection with formulations using torsion constraints is made. (orig.)

  16. Hidden symmetries in minimal five-dimensional supergravity

    International Nuclear Information System (INIS)

    Poessel, Markus; Silva, Sebastian

    2004-01-01

    We study the hidden symmetries arising in the dimensional reduction of d=5, N=2 supergravity to three dimensions. Extending previous partial results for the bosonic part, we give a derivation that includes fermionic terms, shedding light on the appearance of the local hidden symmetry SO(4) in the reduction

  17. Forced fluid dynamics from blackfolds in general supergravity backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2016-10-27

    We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.

  18. (2, 0) tensor multiplets and conformal supergravity in D = 6

    NARCIS (Netherlands)

    Bergshoeff, Eric; Sezgin, Ergin; Proeyen, Antoine Van

    1999-01-01

    We construct the supercurrent multiplet that contains the energy–momentum tensor of the (2, 0) tensor multiplet. By coupling this multiplet of currents to the fields of conformal supergravity, we first construct the linearized superconformal transformations rules of the (2, 0) Weyl multiplet.

  19. Which compactifications of D=11 supergravity are stable

    International Nuclear Information System (INIS)

    Page, D.N.; Pope, C.N.

    1984-01-01

    We complete the stability analysis of all known Freund-Rubin solutions of eleven-dimensional supergravity by determining the necessary and sufficient conditions for Qsup(pqr) spaces (U(1) bundles over S 2 xS 2 xS 2 ) to be stable. (orig.)

  20. A Structural Model of Stress, Motivation, and Academic Performance in Medical Students

    Science.gov (United States)

    Park, Jangho; An, Hoyoung; Park, Seungjin; Lee, Chul; Kim, Seong Yoon; Lee, Jae-Dam; Kim, Ki-Soo

    2012-01-01

    Objective The purpose of the present study was 1) to identify factors that may influence academic stress in medical students and 2) to investigate the causal relationships among these variables with path analysis. Methods One hundred sixty medical students participated in the present study. Psychological parameters were assessed with the Medical Stress Scale, Minnesota Multiphasic Personality Inventory, Hamilton Depression Scale, Beck Depression Inventory, and Academic Motivation Scale. Linear regression and path analysis were used to examine the relationships among variables. Results Significant correlations were noted between several factors and Medical Stress scores. Specifically, Hamilton Depression Scale scores (β=0.26, p=0.03) and amotivation (β=0.20, p=0.01) and extrinsically identified regulation (β=0.27, p<0.01) response categories on the Academic Motivation Scale had independent and significant influences on Medical Stress Scale scores. A path analysis model indicated that stress, motivation, and academic performance formed a triangular feedback loop. Moreover, depression was associated with both stress and motivation, and personality was associated with motivation. Conclusion The triangular feedback-loop structure in the present study indicated that actions that promote motivation benefit from interventions against stress and depression. Moreover, stress management increases motivation in students. Therefore, strategies designed to reduce academic pressures in medical students should consider these factors. Additional studies should focus on the relationship between motivation and depression. PMID:22707964

  1. Longitudinal Effects of Student-Perceived Classroom Support on Motivation - A Latent Change Model.

    Science.gov (United States)

    Lazarides, Rebecca; Raufelder, Diana

    2017-01-01

    This two-wave longitudinal study examined how developmental changes in students' mastery goal orientation, academic effort, and intrinsic motivation were predicted by student-perceived support of motivational support (support for autonomy, competence, and relatedness) in secondary classrooms. The study extends previous knowledge that showed that support for motivational support in class is related to students' intrinsic motivation as it focused on the developmental changes of a set of different motivational variables and the relations of these changes to student-perceived motivational support in class. Thus, differential classroom effects on students' motivational development were investigated. A sample of 1088 German students was assessed in the beginning of the school year when students were in grade 8 ( Mean age = 13.70, SD = 0.53, 54% girls) and again at the end of the next school year when students were in grade 9. Results of latent change models showed a tendency toward decline in mastery goal orientation and a significant decrease in academic effort from grade 8 to 9. Intrinsic motivation did not decrease significantly across time. Student-perceived support of competence in class predicted the level and change in students' academic effort. The findings emphasized that it is beneficial to create classroom learning environments that enhance students' perceptions of competence in class when aiming to enhance students' academic effort in secondary school classrooms.

  2. Longitudinal Effects of Student-Perceived Classroom Support on Motivation – A Latent Change Model

    Science.gov (United States)

    Lazarides, Rebecca; Raufelder, Diana

    2017-01-01

    This two-wave longitudinal study examined how developmental changes in students’ mastery goal orientation, academic effort, and intrinsic motivation were predicted by student-perceived support of motivational support (support for autonomy, competence, and relatedness) in secondary classrooms. The study extends previous knowledge that showed that support for motivational support in class is related to students’ intrinsic motivation as it focused on the developmental changes of a set of different motivational variables and the relations of these changes to student-perceived motivational support in class. Thus, differential classroom effects on students’ motivational development were investigated. A sample of 1088 German students was assessed in the beginning of the school year when students were in grade 8 (Mean age = 13.70, SD = 0.53, 54% girls) and again at the end of the next school year when students were in grade 9. Results of latent change models showed a tendency toward decline in mastery goal orientation and a significant decrease in academic effort from grade 8 to 9. Intrinsic motivation did not decrease significantly across time. Student-perceived support of competence in class predicted the level and change in students’ academic effort. The findings emphasized that it is beneficial to create classroom learning environments that enhance students’ perceptions of competence in class when aiming to enhance students’ academic effort in secondary school classrooms. PMID:28382012

  3. A structural model of stress, motivation, and academic performance in medical students.

    Science.gov (United States)

    Park, Jangho; Chung, Seockhoon; An, Hoyoung; Park, Seungjin; Lee, Chul; Kim, Seong Yoon; Lee, Jae-Dam; Kim, Ki-Soo

    2012-06-01

    The purpose of the present study was 1) to identify factors that may influence academic stress in medical students and 2) to investigate the causal relationships among these variables with path analysis. One hundred sixty medical students participated in the present study. Psychological parameters were assessed with the Medical Stress Scale, Minnesota Multiphasic Personality Inventory, Hamilton Depression Scale, Beck Depression Inventory, and Academic Motivation Scale. Linear regression and path analysis were used to examine the relationships among variables. Significant correlations were noted between several factors and Medical Stress scores. Specifically, Hamilton Depression Scale scores (β=0.26, p=0.03) and amotivation (β=0.20, p=0.01) and extrinsically identified regulation (β=0.27, pAcademic Motivation Scale had independent and significant influences on Medical Stress Scale scores. A path analysis model indicated that stress, motivation, and academic performance formed a triangular feedback loop. Moreover, depression was associated with both stress and motivation, and personality was associated with motivation. The triangular feedback-loop structure in the present study indicated that actions that promote motivation benefit from interventions against stress and depression. Moreover, stress management increases motivation in students. Therefore, strategies designed to reduce academic pressures in medical students should consider these factors. Additional studies should focus on the relationship between motivation and depression.

  4. An Empirical Model and Ethnic Differences in Cultural Meanings Via Motives for Suicide.

    Science.gov (United States)

    Chu, Joyce; Khoury, Oula; Ma, Johnson; Bahn, Francesca; Bongar, Bruce; Goldblum, Peter

    2017-10-01

    The importance of cultural meanings via motives for suicide - what is considered acceptable to motivate suicide - has been advocated as a key step in understanding and preventing development of suicidal behaviors. There have been limited systematic empirical attempts to establish different cultural motives ascribed to suicide across ethnic groups. We used a mixed methods approach and grounded theory methodology to guide the analysis of qualitative data querying for meanings via motives for suicide among 232 Caucasians, Asian Americans, and Latino/a Americans with a history of suicide attempts, ideation, intent, or plan. We used subsequent logistic regression analyses to examine ethnic differences in suicide motive themes. This inductive approach of generating theory from data yielded an empirical model of 6 cultural meanings via motives for suicide themes: intrapersonal perceptions, intrapersonal emotions, intrapersonal behavior, interpersonal, mental health/medical, and external environment. Logistic regressions showed ethnic differences in intrapersonal perceptions (low endorsement by Latino/a Americans) and external environment (high endorsement by Latino/a Americans) categories. Results advance suicide research and practice by establishing 6 empirically based cultural motives for suicide themes that may represent a key intermediary step in the pathway toward suicidal behaviors. Clinicians can use these suicide meanings via motives to guide their assessment and determination of suicide risk. Emphasis on environmental stressors rather than negative perceptions like hopelessness should be considered with Latino/a clients. © 2017 Wiley Periodicals, Inc.

  5. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    Directory of Open Access Journals (Sweden)

    Hayati .

    2013-06-01

    Full Text Available The objective in this research: (1 Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2 Determine the level of motivation to learn in affects physics student learning outcomes. (3 Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all students in class XI SMA Negeri 1 T.P Sunggal Semester I 2012/2013. The sample of this research was consisted of two classes with a sample of 70 peoples who are determined by purposive sampling, the IPA XI-2 as a class experiment using a model-based multimedia learning Training Inquiry as many as 35 peoples and XI IPA-3 as a control class using learning model Inquiry Training 35 peoples. Hypotheses were analyzed using the GLM at significant level of 0.05 using SPSS 17.0 for Windows. Based on data analysis and hypothesis testing conducted found that: (1 Training Inquiry-based multimedia learning model in improving student learning outcomes rather than learning model physics Inquiry Training. (2 The results of studying physics students who have high motivation to learn better than students who have a low learning motivation. (3 From this research there was an interaction between learning model inquiry-based multimedia training and motivation to study on learning outcomes of students.

  6. Associations Between Motivation and Mental Health in Sport: A Test of the Hierarchical Model of Intrinsic and Extrinsic Motivation

    OpenAIRE

    Rachel B. Sheehan; Matthew P. Herring; Matthew P. Herring; Mark J. Campbell

    2018-01-01

    Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posi...

  7. Teacher-student interpersonal relationships do change and affect academic motivation: a multilevel growth curve modelling.

    Science.gov (United States)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Bosker, Roel

    2014-09-01

    Research has shown that the teacher-student interpersonal relationship (TSIR) is important for student motivation. Although TSIR has received a growing interest, there are only few studies that focus on changes and links between TSIR and student academic motivation in a longitudinal fashion in non-Western contexts. This study investigated changes in TSIR and links with academic motivation as perceived by first-grade secondary school students in Indonesia. TSIR was studied from the perspective of interpersonal behaviour in terms of Influence and Proximity. Students' academic motivation was studied from the perspective of self-determination theory. A total of 504 first-grade secondary school students of 16 mathematics and English classes participated in the study. Surveys were administered in five waves throughout the school year. Multilevel growth curve modelling was applied. Contrary to the (limited) general research findings from Western contexts, we found that the quality of TSIR (student perceptions) increased over time. The increase was slightly more pronounced for Proximity than for Influence. In accordance with the findings for the Western countries, the level of students' controlled motivation increased, while that of autonomous motivation decreased over time. However, the negative change in autonomous motivation was less pronounced. As in Western countries, TSIR was longitudinally linked with academic motivation, in particular, with autonomous motivation. Evidence is found that TSIR can change in a favourable way, and this positively affects student motivation. Future research could benefit from unravelling the influences of cultures on changes in TSIR in broader contexts. © 2013 The British Psychological Society.

  8. Effect of corporate social responsibility motives on purchase intention model: An extension

    Directory of Open Access Journals (Sweden)

    Sunee Wongpitch

    2016-01-01

    Full Text Available The number of empirical studies on the effect of Corporate Social Responsibility (CSR motives on the consumer purchase intention is still very small. Furthermore, the models tested in these studies were also relatively simple (including only CSR motives, attitude toward the firm, and/or purchase intention. The present research extends the knowledge in this area of study by proposing and empirically testing an extended model of the effect of CSR motives on purchase intention, with 192 samples participated in the survey. It was found that an altruistic motive positively affects the attitude toward the firm, which in turn affects the purchase intention via the perceived quality and attitude toward the brand.

  9. Pre-Service Teachers' Intention to Adopt Mobile Learning: A Motivational Model

    Science.gov (United States)

    Baydas, Ozlem; Yilmaz, Rabia M.

    2018-01-01

    This study proposes a model for determining preservice teachers' intentions to adopt mobile learning from a motivational perspective. Data were collected from 276 preservice teachers and analyzed by structural equation modeling. A model capable of explaining 87% of the variance in preservice teachers' intention to adopt mobile learning was…

  10. Changing, priming, and acting on values: Effects via motivational relations in a circular model

    OpenAIRE

    Maio, Gregory R.; Pakizeh, Ali; Cheung, Wing-Yee; Rees, Kerry J.

    2009-01-01

    Circular models of values and goals suggest that some motivational aims are consistent with each other, some oppose each other, and others are orthogonal to each other. The present experiments tested this idea explicitly by examining how value confrontation and priming methods influence values and value-consistent behaviors throughout the entire value system. Experiment 1 revealed that change in 1 set of social values causes motivationally compatible values to increase in importance, whereas ...

  11. Modeling Attitude towards Drug Treament: The Role of Internal Motivation, External Pressure, and Dramatic Relief

    OpenAIRE

    Conner, Bradley T.; Longshore, Douglas; Anglin, M. Douglas

    2008-01-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) enter...

  12. The Motivational Knowledge Management Model: proposal to apply it in the library sector

    Directory of Open Access Journals (Sweden)

    Daniel López-Fernández

    2016-12-01

    Full Text Available In professional environments, attention paid to aspects such as supervisory styles, interpersonal relationships and workers eagerness can have a positive impact on employee motivation and, consequently, on their performance and well-being. To achieve this, knowledge management models such as those presented here can be applied. This model generates diagnoses of motivation and recommendations for improvement, both systematically and scientifically. Consequently, it is especially useful for managers and human resource departments. The proposed model can be adapted to different kinds of professional groups, including those in library and documentation services. The suitability, reliability and usefulness of the proposed model have been empirically checked through case studies with 92 students and 166 professionals. The positive results allow us to conclude that the model is effective and useful for assessing and improving motivation.

  13. School Culture, Basic Psychological Needs, Intrinsic Motivation and Academic Achievement: Testing a Casual Model

    Directory of Open Access Journals (Sweden)

    Rahim Badri

    2014-07-01

    Full Text Available Culture is s common system of believes, values and artifacts that the members of a society use it in their relations, and it transfers from one generation to another. The school culture is a system of norms, meanings and values between school members. One of STD (self-determination theory components is basic psychological needs that emphasizes on Relatedness, Competence and Autonomy to accomplish the motivation. Motivation involves the processes that energize, direct, and sustain behavior. It seems that school culture, basic psychological needs and motivation has immense effect on academic achievement. The purpose of the present research was to examine the relation between students' perceived school culture, basic psychological needs, intrinsic motivation and academic achievement in a causal model. 296 high school students (159 females and 137 males in Tabriz, north - west of Iran, participated in this research and completed the students' perceived school culture questionnaire based on Hofstede's cultural dimensions (femininity, uncertainty avoidance, collectivism and power distance, basic psychological needs and intrinsic motivation. The results of the path analysis showed that fulfillment of basic psychological needs and intrinsic motivation has positive effect on academic achievement. Uncertainty avoidance and power distance have also negative effect on fulfillment of psychological needs, but the influence of femininity on this variable was positive. Also, collectivism has no significant effect on it. In general, the findings showed that if school culture supports students' autonomy, they will experience fulfillment of their basic psychological needs, and attain higher intrinsic motivation and academic achievement.

  14. Examining the Relations among Student Motivation, Engagement, and Retention in a MOOC: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Yao Xiong

    2015-09-01

    Full Text Available Students who are enrolled in MOOCs tend to have different motivational patterns than fee-paying college students. A majority of MOOC students demonstrate characteristics akin more to "tourists" than formal learners. As a consequence, MOOC students’ completion rate is usually very low. The current study examines the relations among student motivation, engagement, and retention using structural equation modeling and data from a Penn State University MOOC. Three distinct types of motivation are examined: intrinsic motivation, extrinsic motivation, and social motivation. Two main hypotheses are tested: (a motivation predicts student course engagement; and (b student engagement predicts their retention in the course. The results show that motivation is significantly predictive of student course engagement. Furthermore, engagement is a strong predictor of retention. The findings suggest that promoting student motivation and monitoring individual students’ online activities might improve course retention

  15. Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications

    CERN Document Server

    Antoniadis, I.; Knoops, R.

    2015-01-01

    We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and K\\"ors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($\\xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the "naive" field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditi...

  16. Modified Dynamical Supergravity Breaking and Off-Diagonal Super-Higgs Effects

    CERN Document Server

    Gheorghiu, Tamara; Vacaru, Sergiu

    2015-01-01

    We argue that generic off-diagonal vacuum and nonvacuum solutions for Einstein manifolds mimic physical effects in modified gravity theories (MGTs) and encode certain models of $f(R,T,...)$, Ho\\vrava type with dynamical Lorentz symmetry breaking, induced effective mass for graviton etc. Our main goal is to investigate the dynamical breaking of local supersymmetry determined by off--diagonal solutions in MGTs encoded as effective Einstein spaces. This includes the Deser-Zumino super--Higgs effect, for instance, for an one--loop potential in a (simple but representative) model of $\\mathcal{N}=1, D=4$ supergravity. We develop and apply a new geometric techniques which allows us to decouple the gravitational field equations and integrate them in very general forms with metrics and vierbein fields depending on all spacetime coordinates via various generating and integration functions and parameters. We study how solutions in MGTs may be related to dynamical generation of a gravitino mass and supergravity breaking.

  17. Science motivation by discussion and controversy (SMDC) model

    Science.gov (United States)

    Izadi, Dina; Mora Ley, César Eduardo; Ramírez Díaz, Mario Humberto

    2017-05-01

    Succeeding theories and empirical investigations have often been built over conceptual understanding to develop talent education. Opportunities provided by society are crucial at every point in the talent-development process. Abilities differ and can vary among boys and girls. Although they have some responsibility for their own growth and development, the educational system and psychosocial variables influence on the successful development of high levels of education. This research explores students’ attitudes to science education to establish why many disengage with the subject in class and what can be done to reverse this trend to produce unimaginable scientific and practical benefits to society. The control group is students from several schools with traditional education in Iran and the experimental group is teams who have taken part in several activities such as national and international tournaments (2005-2013). This research has two parts: 1—how innovation in teaching and 2—discussion and controversy in class can improve science education and cause motivation. The average scores are divided into 5 ranges in both experimental and traditional groups. As shown by Spearman’s correlation rank (ρ) the difference between boys’ and girls’ average scores is about (2.71) in the control group but it has decreased to (0.29) in the experimental group. The main point of discussion is on problems in class which advance a set of interrelated scientific arguments for outstanding achievement.

  18. Motivation and justification: a dual-process model of culture in action.

    Science.gov (United States)

    Vaisey, Stephen

    2009-05-01

    This article presents a new model of culture in action. Although most sociologists who study culture emphasize its role in post hoc sense making, sociologists of religion and social psychologists tend to focus on the role beliefs play in motivation. The dual-process model integrates justificatory and motivational approaches by distinguishing between "discursive" and "practical" modes of culture and cognition. The author uses panel data from the National Study of Youth and Religion to illustrate the model's usefulness. Consistent with its predictions, he finds that though respondents cannot articulate clear principles of moral judgment, their choice from a list of moral-cultural scripts strongly predicts later behavior.

  19. Applying an expectancy-value model to study motivators for work-task based information seeking

    DEFF Research Database (Denmark)

    Sigaard, Karen Tølbøl; Skov, Mette

    2015-01-01

    on the theory of expectancy-value and on the operationalisation used when the model was first developed. Data for the analysis were collected from a sample of seven informants working as consultants in Danish municipalities. Each participant filled out a questionnaire, kept a log book for a week...... for interpersonal and internal sources increased when the task had high-value motivation or low-expectancy motivation or both. Research limitations/implications: The study is based on a relatively small sample and considers only one motivation theory. This should be addressed in future research along...... with a broadening of the studied group to involve other professions than municipality consultants. Originality/value: Motivational theories from the field of psychology have been used sparsely in studies of information seeking. This study operationalises and verifies such a theory based on a theoretical adaptation...

  20. The Trans-Contextual Model: Perceived Learning and Performance Motivational Climates as Analogues of Perceived Autonomy Support

    Science.gov (United States)

    Barkoukis, Vassilis; Hagger, Martin S.

    2013-01-01

    The trans-contextual model of motivation (TCM) proposes that perceived autonomy support in physical education (PE) predicts autonomous motivation within this context, which, in turn, is related to autonomous motivation and physical activity in leisure-time. According to achievement goal theory perceptions of learning and performance, motivational…

  1. Enriching the hierarchical model of achievement motivation: autonomous and controlling reasons underlying achievement goals.

    Science.gov (United States)

    Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy

    2014-12-01

    The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between achievement motives and outcomes. We tested whether mastery approach, performance approach, and performance avoidance goals and their underlying autonomous and controlling reasons would jointly explain the relation between achievement motives (i.e., fear of failure and need for achievement) and learning strategies (Study 1). Additionally, we examined whether the autonomous and controlling reasons underlying learners' dominant achievement goal would account for the link between achievement motives and the educational outcomes of learning strategies and cheating (Study 2). Six hundred and six Greek adolescent students (Mage = 15.05, SD = 1.43) and 435 university students (Mage M = 20.51, SD = 2.80) participated in studies 1 and 2, respectively. In both studies, a correlational design was used and the hypotheses were tested via path modelling. Autonomous and controlling reasons underlying the pursuit of achievement goals mediated, respectively, the relation of need for achievement and fear of failure to aspects of learning outcomes. Autonomous and controlling reasons underlying achievement goals could further explain learners' functioning in achievement settings. © 2014 The British Psychological Society.

  2. Testing the simplex assumption underlying the Sport Motivation Scale: a structural equation modeling analysis.

    Science.gov (United States)

    Li, F; Harmer, P

    1996-12-01

    Self-determination theory (Deci & Ryan, 1985) suggests that motivational orientation or regulatory styles with respect to various behaviors can be conceptualized along a continuum ranging from low (a motivation) to high (intrinsic motivation) levels of self-determination. This pattern is manifested in the rank order of correlations among these regulatory styles (i.e., adjacent correlations are expected to be higher than those more distant) and is known as a simplex structure. Using responses from the Sport Motivation Scale (Pelletier et al., 1995) obtained from a sample of 857 college students (442 men, 415 women), the present study tested the simplex structure underlying SMS subscales via structural equation modeling. Results confirmed the simplex model structure, indicating that the various motivational constructs are empirically organized from low to high self-determination. The simplex pattern was further found to be invariant across gender. Findings from this study support the construct validity of the SMS and have important implications for studies focusing on the influence of motivational orientation in sport.

  3. 10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica

    2016-04-15

    We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. ISMS: A New Model for Improving Student Motivation and Self-Esteem in Primary Education

    Science.gov (United States)

    Ghilay, Yaron; Ghilay, Ruth

    2015-01-01

    In this study we introduce a new model for primary education called ISMS: Improving Student Motivation and Self-esteem. Following a two-year study undertaken in a primary school (n = 67), the new model was found to be successful. Students who participated in the research, reported that a course based on ISMS principles was very helpful for…

  5. Children's Autonomy and Perceived Control in Learning: A Model of Motivation and Achievement in Taiwan.

    Science.gov (United States)

    d'Ailly, Hsiao

    2003-01-01

    Tests a model of motivation and achievement with data from 50 teachers and 806 Grade 4-6 students in Taiwan. Autonomy as a construct was shown to have ecological validity in Chinese children. The proposed model fit the data well, showing that maternal involvement and autonomy support, as well as teachers' autonomy support, are important for…

  6. Relationships among Adolescents' Leisure Motivation, Leisure Involvement, and Leisure Satisfaction: A Structural Equation Model

    Science.gov (United States)

    Chen, Ying-Chieh; Li, Ren-Hau; Chen, Sheng-Hwang

    2013-01-01

    The purpose of this cross-sectional study was to test a cause-and-effect model of factors affecting leisure satisfaction among Taiwanese adolescents. A structural equation model was proposed in which the relationships among leisure motivation, leisure involvement, and leisure satisfaction were explored. The study collected data from 701 adolescent…

  7. Superstring motivated gauge models based on a rank six subgroup of E6

    International Nuclear Information System (INIS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    1987-01-01

    We discuss gauge models based on a superstring motivated rank six subgroup of E 6 . Lepton number is an accidental unbroken symmetry of the models which leads to an essential stable proton. One of the neutral gauge bosons couples to B-L and may have mass below a TeV. (orig.)

  8. An Application of the Trans-Contextual Model of Motivation in Elementary School Physical Education

    Science.gov (United States)

    Ntovolis, Yannis; Barkoukis, Vassilis; Michelinakis, Evaggelos; Tsorbatzoudis, Haralambos

    2015-01-01

    Elementary school physical education can play a prominent role in promoting children's leisure-time physical activity. The trans-contextual model of motivation has been proven effective in describing the process through which school physical education can affect students' leisure-time physical activity. This model has been tested in secondary…

  9. Kaon-nucleon S-wave phase shifts in a QCD-motivated quark model

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    We calculate kaon-nucleon central potentials and S-wave phase shifts for I = 0 and I = 1 in an QCD-motivated quark model. In our model the K-N interaction is derived from short-range perturbative quark-quark interactions. (orig.)

  10. Phenomenological Hints from a Class of String Motivated Model Constructions

    Directory of Open Access Journals (Sweden)

    Hans Peter Nilles

    2015-01-01

    Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.

  11. On Motivation and Motivation

    OpenAIRE

    Mircea UDRESCU

    2014-01-01

    Economic motivations were a big influence on consumer behavior motivation. In this context, it is considered that the general motives which give motivation to purchase content can be structured into rational and emotional motives, the motives innate and acquired motives, all gaining an individual or group event. The study of consumer behavior, with general motivations, attention increasingly larger granted special incentives, consisting of assertiveness feeling (emerging desire for a product)...

  12. Modeling the Impact of Motivation, Personality, and Emotion on Social Behavior

    Science.gov (United States)

    Miller, Lynn C.; Read, Stephen J.; Zachary, Wayne; Rosoff, Andrew

    Models seeking to predict human social behavior must contend with multiple sources of individual and group variability that underlie social behavior. One set of interrelated factors that strongly contribute to that variability - motivations, personality, and emotions - has been only minimally incorporated in previous computational models of social behavior. The Personality, Affect, Culture (PAC) framework is a theory-based computational model that addresses this gap. PAC is used to simulate social agents whose social behavior varies according to their personalities and emotions, which, in turn, vary according to their motivations and underlying motive control parameters. Examples involving disease spread and counter-insurgency operations show how PAC can be used to study behavioral variability in different social contexts.

  13. Modeling and Analysis of the Motivations of Fast Fashion Consumers in Relation to Innovativeness

    Directory of Open Access Journals (Sweden)

    Saricam Canan

    2016-12-01

    Full Text Available In this study, fast fashion concept is investigated in order to understand the motivations of the consumers that make them adopt these products because of their willingness for the innovativeness. The relationship between the motivational factors which were named as “Social or status image” and “Uniqueness” as expressions of individuality, “Conformity” and the willingness for “Innovativeness” is analyzed using a conceptual model. Exploratory factor analysis, confirmatory factor analysis and structural equation modeling were used to analyze and validate the model. The data used for the study was obtained from 244 people living in Turkey. The findings showed that the motivational factors “Social or status image” and “Uniqueness” as expressions of individuality are influential on the consumers’ willingness for “Innovativeness”.

  14. An information-motivation-behavioral skills model of adherence to antiretroviral therapy.

    Science.gov (United States)

    Fisher, Jeffrey D; Fisher, William A; Amico, K Rivet; Harman, Jennifer J

    2006-07-01

    HIV-positive persons who do not maintain consistently high levels of adherence to often complex and toxic highly active antiretroviral therapy (HAART) regimens may experience therapeutic failure and deterioration of health status and may develop multidrug-resistant HIV that can be transmitted to uninfected others. The current analysis conceptualizes social and psychological determinants of adherence to HAART among HIV-positive individuals. The authors propose an information-motivation-behavioral skills (IMB) model of HAART adherence that assumes that adherence-related information, motivation, and behavioral skills are fundamental determinants of adherence to HAART. According to the model, adherence-related information and motivation work through adherence-related behavioral skills to affect adherence to HAART. Empirical support for the IMB model of adherence is presented, and its application in adherence-promotion intervention efforts is discussed.

  15. All partial breakings in ${\\cal N}=2$ supergravity with a single hypermultiplet arXiv

    CERN Document Server

    Antoniadis, Ignatios; Petropoulos, P. Marios; Siampos, Konstantinos

    We consider partial supersymmetry breaking in ${\\cal N}=2$ supergravity coupled to a single vector and a single hypermultiplet. This breaking pattern is in principle possible if the quaternion-K\\"ahler space of the hypermultiplet admits (at least) one pair of commuting isometries. For this class of manifolds, explicit metrics exist and we analyse a generic electro-magnetic (dyonic) gauging of the isometries. An example of partial breaking in Minkowski spacetime has been found long ago by Ferrara, Girardello and Porrati, using the gauging of two translation isometries on $SO(4,1)/SO(4)$. We demonstrate that no other example of partial breaking of ${\\cal N}=2$ supergravity in Minkowski spacetime exists. We also examine partial-breaking vacua in anti-de Sitter spacetime that are much less constrained and exist generically even for electric gaugings. On $SO(4,1)/SO(4)$, we construct the partially-broken solution and its global limit which is the Antoniadis-Partouche-Taylor model.

  16. Antigravitating black hole solitons with scalar hair in N=4 supergravity

    International Nuclear Information System (INIS)

    Gibbons, G.W.

    1982-01-01

    We present some new solutions of the equations of the N = 4 supergravity theory which represent black holes with scalar, electric and magnetic charges. The solutions are parameterized by the mass and 6 electric and 6 magnetic charges which can be assembled into a complex 6-vector, Zsup(N). One can act on the solutions with SO(6) x U(1) to obtain new solutions with the same mass M but charges Zsup(N) related by SO(6) x U(1) transformations, the U(1) factor corresponding to the duality subgroup of the hidden SU(1, 1) symmetry of the N = 4 model. In a certain limiting case the black holes have zero temperature and behave like solitons. In this case multisoliton solutions are exhibited which antigravitate, i.e. are in static equilibrium. We also present some solutions of the Kaluza-Klein theory which were anticipated by Scherk which also antigravitate. However, these latter solutions contain naked singularities. A discussion is also given of the relation of these solutions to dimensional reduction which has relevance for the black holes in the N = 8 supergravity theory. (orig.)

  17. Chaotic inflation in no-scale supergravity with string inspired moduli stabilization

    International Nuclear Information System (INIS)

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-01-01

    The simple chaotic inflation is highly consistent with the BICEP2 experiment, and no-scale supergravity can be realized naturally in various string compactifications. Thus, we construct a chaotic inflation model in no-scale supergravity inspired from Type IIB string compactification with an anomalous U(1) X gauged symmetry. We introduce two moduli T 1 and T 2 which transform non-trivially under U(1) X , and some pairs of fundamental quarks charged under the SU(N) x U(1) X gauge group. The non-trivial transformations of moduli under U(1) X lead to a moduli-dependent Fayet-Iliopoulos (FI) term. The modulus T 2 and the real component of T 1 are stabilized by the non-perturbative effect from quark condensation and the U(1) X D-term. In particular, the stabilization from the anomalous U(1) X D-term with moduli-dependent FI term is crucial for inflation since it gives heavy mass to the real component of the modulus T 1 while keeping its axionic part light. Choosing the proper parameters, we obtain a global Minkowski vacuum where the imaginary part of T 1 has a quadratic potential for chaotic inflation. (orig.)

  18. Non-linear realizations and higher curvature supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-12-15

    We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Supersymmetric warped AdS in extended topologically massive supergravity

    International Nuclear Information System (INIS)

    Deger, N.S.; Kaya, A.; Samtleben, H.; Sezgin, E.

    2014-01-01

    We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS 3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS 3 . This occurs when the coefficient of the Lorentz–Chern–Simons term is related to the AdS radius by μℓ=2. We find that the spacelike-squashed AdS 3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoids closed timelike curves

  20. Supersymmetric solutions of minimal gauged supergravity in five dimensions

    International Nuclear Information System (INIS)

    Gauntlett, Jerome P.; Gutowski, Jan B.

    2003-01-01

    All purely bosonic supersymmetric solutions of minimal gauged supergravity in five dimensions are classified. The solutions fall into two classes depending on whether the Killing vector constructed from the Killing spinor is timelike or null. When it is timelike, the solutions are determined by a four-dimensional Kaehler base manifold, up to an antiholomorphic function, are necessarily not static, and generically preserve 1/2 of the supersymmetry. When it is null we provide a precise prescription for constructing the solutions and we show that they generically preserve 1/4 of the supersymmetry. We show that five-dimensional anti-de Sitter space (AdS 5 ) is the unique maximally supersymmetric configuration. The formalism is used to construct some new solutions, including a nonsingular deformation of AdS 5 , which can be uplifted to obtain new solutions of type IIB supergravity

  1. Rotating D0-branes and consistent truncations of supergravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Ortiz, Thomas; Samtleben, Henning

    2013-01-01

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1) 4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S 8 . As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS 2 ×M 8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields

  2. Gauge and matter fields coupled to N=2 supergravity

    International Nuclear Information System (INIS)

    Wit, B. de; Lauwers, P.G.; Philippe, R.; Su, S.-Q.; Proeyen, A. van.

    1983-07-01

    The authors consider the potential of a general matter system of N=2 vector and scalar multiplets coupled to supergravity. For lagrangians that are initially quadratic in the matter fields the potential is proved to be either positive or unbounded from below. The results have been obtained in the framework of a superconformal multiplet calculus, and it has been verified that they can be derived from each of the three off-shell representations. As an example the authors consider SO(6) Yang-Mills theory coupled to scalar multiplets in the 10+10 representation, which, for suitably chosen parameters, leads to the potential of gauged N=8 supergravity. Finally, a discussion of the possibility to set residual nonabelian symmetry groups after breaking of N=8 supersymmetry to N=1 or 2 is presented. (Auth.)

  3. Generalized curvature and the equations of D=11 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor A. [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Institute for Theoretical Physics, NSC ' Kharkov Institute of Physics and Technology' , UA-61108 Kharkov (Ukraine); Azcarraga, Jose A. de [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain)]. E-mail: j.a.de.azcarraga@ific.uv.es; Picon, Moises [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Varela, Oscar [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Michigan Center for Theoretical Physics, Randall Laboratory, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 (United States)

    2005-05-26

    It is known that, for zero fermionic sector, {psi}{sub {mu}}{sup {alpha}}(x)=0, the bosonic equations of Cremmer-Julia-Scherk eleven-dimensional supergravity can be collected in a compact expression, Rab{alpha}{gamma}{gamma}b{gamma}{beta}=0, which is a condition on the curvature R{alpha}{beta} of the generalized connection w. In this Letter we show that the equation Rbc{alpha}{gamma}{gamma}abc{gamma}{beta}=4i((D-bar {psi}){sub bc}{gamma}{sup [abc{sub {beta}({psi}{sub d}{gamma}{sup d}]){sub {alpha}}), where D-bar is the covariant derivative for the generalized connection w, collects all the bosonic equations of D=11 supergravity when the gravitino is nonvanishing, {psi}{sub {mu}}{sup {alpha}}(x)<>0.

  4. One-loop divergences in the quantum theory of supergravity

    International Nuclear Information System (INIS)

    Nieuwenhuizen, P. van; Vermaseren, J.A.M.

    1976-01-01

    Supergravity does not lead to a finite quantum theory of gravitation when coupled to the spin 1, 1/2 matter multiplet. The S-matrix of photon-photon scattering diverges; its divergences are proportional to the square of the photon energy-momentum tensor, in agreement with electro-magnetic duality and chiral invariance. The graviton self-energy corrections are divergent in pure supergravity as well as in the coupled Maxwell-Einstein system and satisfy their Ward identity because the supersymmetry ghost field is commuting. The photon-graviton vertex corrections diverge, as expected from the non-invariance of the action under local scale transformations, and satisfy the equivalence principle at the quantum level. The photon self-energy is divergent. (Auth.)

  5. Gauge theory of gravity and supergravity on a group manifold

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Regge, T.

    1977-12-01

    The natural arena for the physics of gravity, supergravity and their enlargements appears to be the group manifold of the Poincare group P, the graded Poincare group GP of supersymmetry, and the corresponding enlargements. The dynamics of these theories correspond to geometrical algorithms in P and GP. Differential geometry on Lie groups is reviewed and results applied to P and GP. Curvature, gauge transformations and factorization are introduced. Also reviewed is the general coordinate transformation group and a hybrid gauge transformation, the anholonomized G.C.T. gauge. A study is made of the construction of an action, including the introduction of a set of special 2 forms, the ''pseudo curvatures.'' The possibilities of factorization in supersymmetry are analyzed. The version of supergravity is present which has now become a completely geometrical theory

  6. On eleven-dimensional supergravity and Chern-Simons theory

    Energy Technology Data Exchange (ETDEWEB)

    Izaurieta, Fernando, E-mail: fizaurie@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile); Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, Av. Insurgentes Sur s/n, D.F. (Mexico); Departament de Fisica Teorica, Universitat de Valencia, C/ Dr. Moliner 50, 46100 Burjassot, Valencia (Spain); Rodriguez, Eduardo, E-mail: edurodriguez@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)

    2012-02-11

    We probe in some depth into the structure of eleven-dimensional, osp(32|1)-based Chern-Simons supergravity, as put forward by Troncoso and Zanelli (TZ) in 1997. We find that the TZ Lagrangian may be cast as a polynomial in 1/l, where l is a length, and compute explicitly the first three dominant terms. The term proportional to 1/l{sup 9} turns out to be essentially the Lagrangian of the standard 1978 supergravity theory of Cremmer, Julia and Scherk, thus establishing a previously unknown relation between the two theories. The computation is nontrivial because, when written in a sufficiently explicit way, the TZ Lagrangian has roughly one thousand non-explicitly Lorentz-covariant terms. Specially designed algebraic techniques are used to accomplish the results.

  7. Complete D =11 embedding of SO(8) supergravity

    Science.gov (United States)

    Varela, Oscar

    2018-02-01

    The truncation formulas of D =11 supergravity on S7 to D =4 N =8 SO(8)-gauged supergravity are completed to include the full nonlinear dependence of the D =11 three-form potential A^ (3 ) on the D =4 fields, and their consistency is shown. The full embedding into A^ (3 ) is naturally expressed in terms of a restricted version, still N =8 but only SL(8)-covariant, of the D =4 tensor hierarchy. The redundancies introduced by this approach are removed at the level of the field strength F^ (4 ) by exploiting D =4 duality relations. Finally, new expressions for the full consistent truncation formulas are given that are explicit in all D =11 and D =4 fields.

  8. Rotating D0-branes and consistent truncations of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France); Ortiz, Thomas; Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France)

    2013-12-18

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1){sup 4} truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S{sup 8}. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS{sub 2}×M{sub 8} geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.

  9. Low-energy supergravities from heterotic compactification on reduced structure backgrounds

    International Nuclear Information System (INIS)

    Martinez Pedrera, Danny Manuel

    2009-10-01

    In this thesis, the compactification of heterotic supergravity on six-dimensional manifolds with SU(2) and SU(3) structure is studied. For the SU(2)-structure backgrounds, the spectrum and the bosonic action of the effective theory in four dimensions are obtained. The results are gauged versions of the ungauged N=2 supergravity obtained after compactification on K3 x T 2 . The gauge algebra and the Killing prepotentials are also computed. For the SU(3)-structure backgrounds, the couplings of the resulting N=1 supergravity are computed by reducing terms on the heterotic supergravity action involving fermionic fields, and are further checked by computing the supersymmetry variations of the fermions. (orig.)

  10. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-03-14

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  11. Supergravity duals of supersymmetric four dimensional gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Cotrone, A L [Centre de Physique Theorique, Ecole Polytechnique, Palaiseau Cedex (France); [INFN, Rome (Italy); Petrini, M [Centre de Physique Theorique, Ecole Polytechnique, Palaiseau (France); Zaffaroni, A [Universita di Milano-Bicocca and INFN, Milan (Italy)

    2002-03-01

    This article contains an overview of some recent attempts of understanding supergravity and string duals of four dimensional gauge theories using the AdS/CFT correspondence. We discuss the general philosophy underlying the various ways to realize Super Yang-Mills theories in terms of systems of branes. We then review some of the existing duals for N=2 and N=1 theories. We also discuss differences and similarities with realistic theories. (author)

  12. The potentials of the gauged N=8 supergravity theories

    International Nuclear Information System (INIS)

    Hull, C.M.

    1985-01-01

    The potentials of the SO(p,q) gaugings of N=8 supergravity are investigated for critical points. The SO(7,1) gauging has no G 2 -invariant critical points, the SO(6,2) theory has no SU(3) invariant critical points and the SO(5,3) gauging has only one SO(5)-invariant critical point, with positive cosmological constant, SO(5) x SO(3) symmetry and no supersymmetry. (orig.)

  13. Null half-supersymmetric solutions in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Grover, Jai; Gutowski, Jan B.; Sabra, Wafic

    2008-01-01

    We classify half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which all of the Killing spinors generate null Killing vectors. We show that there are four classes of solutions, and in each class we find the metric, scalars and gauge field strengths. When the scalar manifold is symmetric, the solutions correspond to a class of local near horizon geometries recently found by Kunduri and Lucietti.

  14. O' R inflation in F-term supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo, E-mail: sibozheng.zju@gmail.com

    2017-06-15

    The supersymmetric realization of inflation in F-term supergravity is usually plagued by the well known “η” problem. In this paper, a broad class of small-field examples is realized by employing general O' Raifeartaigh superpotentials, where the moduli is identified as the massless inflaton. For illustration we present the simplest example in detail, which can be considered as a generalization of hybrid inflation.

  15. Type I supergravity effective action from pure spinor formalism

    International Nuclear Information System (INIS)

    Alencar, Geova

    2009-01-01

    Using the pure spinor formalism, we compute the tree-level correlation functions for three strings, one closed and two open, in N = 1 D = 10 superspace. Expanding the superfields in components, the respective terms of the effective action for the type I supergravity are obtained. All terms found agree with the effective action known in the literature. This result gives one more consistency test for the pure spinor formalism.

  16. TDHF-motivated macroscopic model for heavy ion collisions: a comparative study

    International Nuclear Information System (INIS)

    Biedermann, M.; Reif, R.; Maedler, P.

    1984-01-01

    A detailed investigation of Bertshc's classical TDHF-motivated model for the description of heavy ion collisions is performed. The model agrees well with TDHF and phenomenological models which include deformation degrees of freedom as well as with experimental data. Some quantitative deviations from experiment and/or TDHF can be removed to a large extent if the standard model parameters are considered as adjustable parameters in physically reasonable regions of variation

  17. A Latent Curve Model of Parental Motivational Practices and Developmental Decline in Math and Science Academic Intrinsic Motivation

    Science.gov (United States)

    Gottfried, Adele Eskeles; Marcoulides, George A.; Gottfried, Allen W.; Oliver, Pamella H.

    2009-01-01

    A longitudinal approach was used to examine the effects of parental task-intrinsic and task-extrinsic motivational practices on academic intrinsic motivation in the subject areas of math and science. Parental task-intrinsic practices comprise encouragement of children's pleasure and engagement in the learning process, whereas task-extrinsic…

  18. An expectancy-value model of emotion regulation: implications for motivation, emotional experience, and decision making.

    Science.gov (United States)

    Tamir, Maya; Bigman, Yochanan E; Rhodes, Emily; Salerno, James; Schreier, Jenna

    2015-02-01

    According to expectancy-value models of self-regulation, people are motivated to act in ways they expect to be useful to them. For instance, people are motivated to run when they believe running is useful, even when they have nothing to run away from. Similarly, we propose an expectancy-value model of emotion regulation, according to which people are motivated to emote in ways they expect to be useful to them, regardless of immediate contextual demands. For instance, people may be motivated to get angry when they believe anger is useful, even when there is nothing to be angry about. In 5 studies, we demonstrate that leading people to expect an emotion to be useful increased their motivation to experience that emotion (Studies 1-5), led them to up-regulate the experience of that emotion (Studies 3-4), and led to emotion-consistent behavior (Study 4). Our hypotheses were supported when we manipulated the expected value of anxiety (Study 1) and anger (Studies 2-5), both consciously (Studies 1-4) and unconsciously (Study 5). We discuss the theoretical and pragmatic implications of the proposed model. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  19. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia.

    Science.gov (United States)

    Simpson, Eleanor H; Kellendonk, Christoph; Ward, Ryan D; Richards, Vanessa; Lipatova, Olga; Fairhurst, Stephen; Kandel, Eric R; Balsam, Peter D

    2011-05-15

    Deficits in incentive motivation, the energizing of behavior in pursuit of a goal, occur in many psychiatric disorders including schizophrenia. We previously reported deficits in both cognition and incentive motivation in a transgenic mouse model of increased striatal-specific dopamine D2 receptor (D2R) density (D2R-OE mice). This molecular alteration is observed in patients with schizophrenia, making D2R-OE mice a suitable system to study the cellular and molecular mechanisms of motivation and avolition, as well as a tool for testing potential therapies against motivational deficits. Behavioral studies using operant conditioning methods were performed both to further characterize the incentive motivation deficit in D2R-OE mice and test a novel pharmacological treatment target that arose from an unbiased expression study performed using gene chips and was validated by quantitative reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. The reluctance of D2R-OE mice to work is due neither to intolerance for low rates of reward, decreased reactivity to reward, nor increased sensitivity to satiety or fatigue but to a difference in willingness to work for reward. As in patients with schizophrenia, this deficit was not ameliorated by D2R blockade, suggesting that reversal of the motivational deficit by switching off the transgene results from molecular changes downstream of D2R overexpression. We observed a reversible increase in serotonin subtype 2C (5-HT2C) receptor expression in D2R-OE mice. Systemic injection of a 5-HT2C receptor antagonist increased incentive motivation in D2R-OE and control mice. We propose that targeting 5-HT2C receptors may be a useful approach to modulate incentive motivation in psychiatric illness. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Group manifold approach to gravity and supergravity theories

    International Nuclear Information System (INIS)

    d'Auria, R.; Fre, P.; Regge, T.

    1981-05-01

    Gravity theories are presented from the point of view of group manifold formulation. The differential geometry of groups and supergroups is discussed first; the notion of connection and related Yang-Mills potentials is introduced. Then ordinary Einstein gravity is discussed in the Cartan formulation. This discussion provides a first example which will then be generalized to more complicated theories, in particular supergravity. The distinction between ''pure'' and ''impure' theories is also set forth. Next, the authors develop an axiomatic approach to rheonomic theories related to the concept of Chevalley cohomology on group manifolds, and apply these principles to N = 1 supergravity. Then the panorama of so far constructed pure and impure group manifold supergravities is presented. The pure d = 5 N = 2 case is discussed in some detail, and N = 2 and N = 3 in d = 4 are considered as examples of the impure theories. The way a pure theory becomes impure after dimensional reduction is illustrated. Next, the role of kinematical superspace constraints as a subset of the group-manifold equations of motion is discussed, and the use of this approach to obtain the auxiliary fields is demonstrated. Finally, the application of the group manifold method to supersymmetric Super Yang-Mills theories is addressed

  1. Extremal black hole/CFT correspondence in (gauged) supergravities

    International Nuclear Information System (INIS)

    Chow, David D. K.; Cvetic, M.; Lue, H.; Pope, C. N.

    2009-01-01

    We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are [(D-1)/2] commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D-1)/2] central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in D=4 and three charges in D=5, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

  2. Motivation to quit or reduce gambling: Associations between Self-Determination Theory and the Transtheoretical Model of Change.

    Science.gov (United States)

    Kushnir, Vladyslav; Godinho, Alexandra; Hodgins, David C; Hendershot, Christian S; Cunningham, John A

    2016-01-01

    Motivation for change and recovery from addiction has been commonly assessed using the Transtheoretical Model's stages of change. Analogous to readiness for change, this measure of motivation may not recognize other elements of motivation relevant to successful change. The aim of this study was to examine the relationship between stages of change and reasons for change according to the Self-Determination Theory among problem gamblers motivated to quit. Motivations for change were examined for 200 adult problem gamblers with intent to quit in the next 6 months (contemplation stage) or 30 days (preparation stage). Analyses revealed that higher autonomous motivation for quitting gambling predicted greater likelihood of being in the preparation stage, whereas those with higher external motivation for change were less likely to be farther along the stage of change continuum. The findings suggest that autonomous motivations relate to readiness for quitting gambling, and may predict successful resolution from problem gambling.

  3. Efficiency of Motivation Development Models for Hygienic Skills

    Directory of Open Access Journals (Sweden)

    Alexander V. Tscymbalystov

    2017-09-01

    Full Text Available The combined influence of a family and a state plays an important role in the development of an individual. This study is aimed at the model effectiveness evaluation concerning the development of oral hygiene skills among children living in families (n = 218 and being under the care of a state (n = 229. The groups were created among the children who took part in the study: the preschoolers of 5-7 years, schoolchildren of 8-11 years and adolescents of 12-15 years. During the initial examination, the hygienic status of the oral cavity before and after tooth brushing was evaluated. After that, subgroups were formed in each age group according to three models of hygienic skills training: 1 computer presentation lesson; 2 one of the students acted as a demonstrator of the skill; 3 an individual training by a hygienist. During the next 48 hours children did not take hygienic measures. Then the children were invited for a control session to demonstrate the acquired skills of oral care and evaluate the effectiveness of a model developing the skills of individual oral hygiene. During the control examination, the hygienic status was determined before and after the tooth cleaning, which allowed to determine the regimes of hygienic measure performance for children with different social status and the effectiveness of hygiene training models.

  4. Chirally motivated separable potential model for eta N amplitudes

    Czech Academy of Sciences Publication Activity Database

    Cieplý, Aleš; Smejkal, J.

    2013-01-01

    Roč. 919, DEC (2013), s. 46-66 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : Chrial model * eta-nucleon amplitude * Baryon resonances Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013

  5. K- nuclear potentials from in-medium chirally motivated models

    Czech Academy of Sciences Publication Activity Database

    Cieplý, Aleš; Friedman, E.; Gal, A.; Gazda, Daniel; Mareš, Jiří

    2011-01-01

    Roč. 84, č. 4 (2011), 045206/1-045206/11 ISSN 0556-2813 R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : p-wave interactions * coupled-channel model Subject RIV: BE - Theoretical Physics Impact factor: 3.308, year: 2011

  6. THE MOTIVATIONAL MODEL OF YOUNG JAPANESE EFL LEARNERS: AFTER GETTING LESSONS BY HOMEROOM TEACHERS

    Directory of Open Access Journals (Sweden)

    Rie Adachi

    2013-01-01

    Full Text Available Abstract: This study focuses on Japanese pupils’ motivation with other attitudinal attitudes about learning English. The writer surveyed the 5th and 6th grade pupils’ motivation and its effect factors at an elementary school in Japan at the end of the school year 2007 and 2008. The main focus of this study is to find the relationship between motivation and effect factors using both the 2007 and 2008 data and to examine differences of the pupils’ attitudes between 2007 and 2008. Since the 2008 school year, pupils have received lessons by not only an assistant language teacher (ALT but also their home room teachers (HRTs. The finding showed that the 2008 and 2007 results were similar in most valuables, but the value of “Motivation” increased in 2008 compared to the previous year. Furthermore, “people around the learner” influenced on motivation more positively. Finally, this study presented a model which could be suggested as one of the motivational models of Japanese pupils for English activities. The writer concluded that the involvement of HRTs brought about generally good effects on pupils’ attitudes in this elementary school at this point.

  7. Modelling antecedents of blood donation motivation among non-donors of varying age and education.

    Science.gov (United States)

    Lemmens, K P H; Abraham, C; Ruiter, R A C; Veldhuizen, I J T; Dehing, C J G; Bos, A E R; Schaalma, H P

    2009-02-01

    Understanding blood donation motivation among non-donors is prerequisite to effective recruitment. Two studies explored the psychological antecedents of blood donation motivation and the generalisability of a model of donation motivation across groups differing in age and educational level. An older well-educated population and a younger less well-educated population were sampled. The studies assessed the role of altruism, fear of blood/needles and donation-specific cognitions including attitudes and normative beliefs derived from an extended theory of planned behaviour (TPB). Across both samples, results showed that affective attitude, subjective norm, descriptive norm, and moral norm were the most important correlates of blood donation intentions. Self-efficacy was more important among the younger less well-educated group. Altruism was related to donation motivation but only indirectly through moral norm. Similarly, fear of blood/needles only had an indirect effect on motivation through affective attitude and self-efficacy. Additional analyses with the combined data set found no age or education moderation effects, suggesting that this core model of donation-specific cognitions can be used to inform future practical interventions recruiting new blood donors in the general population.

  8. How absent negativity relates to affect and motivation: an integrative relief model.

    Science.gov (United States)

    Deutsch, Roland; Smith, Kevin J M; Kordts-Freudinger, Robert; Reichardt, Regina

    2015-01-01

    The present paper concerns the motivational underpinnings and behavioral correlates of the prevention or stopping of negative stimulation - a situation referred to as relief. Relief is of great theoretical and applied interest. Theoretically, it is tied to theories linking affect, emotion, and motivational systems. Importantly, these theories make different predictions regarding the association between relief and motivational systems. Moreover, relief is a prototypical antecedent of counterfactual emotions, which involve specific cognitive processes compared to factual or mere anticipatory emotions. Practically, relief may be an important motivator of addictive and phobic behaviors, self destructive behaviors, and social influence. In the present paper, we will first provide a review of conflicting conceptualizations of relief. We will then present an integrative relief model (IRMO) that aims at resolving existing theoretical conflicts. We then review evidence relevant to distinctive predictions regarding the moderating role of various procedural features of relief situations. We conclude that our integrated model results in a better understanding of existing evidence on the affective and motivational underpinnings of relief, but that further evidence is needed to come to a more comprehensive evaluation of the viability of IRMO.

  9. How Absent Negativity Relates to Affect and Motivation: An Integrative Relief Model

    Directory of Open Access Journals (Sweden)

    Roland eDeutsch

    2015-03-01

    Full Text Available The present paper concerns the motivational underpinnings and behavioral correlates of the prevention or stopping of negative stimulation – a situation referred to as relief. Relief is of great theoretical and applied interest. Theoretically, it is tied to theories linking affect, emotion and motivational systems (Carver & Scheier, 1990; Gray & McNaughton, 2000; Higgins, 1997; Lang, Bradley, & Cuthbert, 1990. Importantly, these theories make different predictions regarding the association between relief and motivational systems. Moreover, relief is a prototypical antecedent of counterfactual emotions, which involve specific cognitive processes compared to factual or mere anticipatory emotions. Practically, relief may be an important motivator of addictive and phobic behaviors (Mowrer, 1951; Ostafin & Brooks, 2011, self destructive behaviors (Favazza, 1998; Franklin, Lee, Hanna, & Prinstein, 2013, and social influence (Dolinski & Nawrat, 1998. In the present paper, we will first provide a review of conflicting conceptualizations of relief. We will then present an integrative relief model (IRMO that aims at resolving existing theoretical conflicts. We then review evidence relevant to distinctive predictions regarding the moderating role of various procedural features of relief situations. We conclude that our integrated model results in a better understanding of existing evidence on the affective and motivational underpinnings of relief, but that further evidence is needed to come to a more comprehensive evaluation of the viability of IRMO.

  10. How absent negativity relates to affect and motivation: an integrative relief model

    Science.gov (United States)

    Deutsch, Roland; Smith, Kevin J. M.; Kordts-Freudinger, Robert; Reichardt, Regina

    2015-01-01

    The present paper concerns the motivational underpinnings and behavioral correlates of the prevention or stopping of negative stimulation – a situation referred to as relief. Relief is of great theoretical and applied interest. Theoretically, it is tied to theories linking affect, emotion, and motivational systems. Importantly, these theories make different predictions regarding the association between relief and motivational systems. Moreover, relief is a prototypical antecedent of counterfactual emotions, which involve specific cognitive processes compared to factual or mere anticipatory emotions. Practically, relief may be an important motivator of addictive and phobic behaviors, self destructive behaviors, and social influence. In the present paper, we will first provide a review of conflicting conceptualizations of relief. We will then present an integrative relief model (IRMO) that aims at resolving existing theoretical conflicts. We then review evidence relevant to distinctive predictions regarding the moderating role of various procedural features of relief situations. We conclude that our integrated model results in a better understanding of existing evidence on the affective and motivational underpinnings of relief, but that further evidence is needed to come to a more comprehensive evaluation of the viability of IRMO. PMID:25806008

  11. Motivational and behavioural models of change: A longitudinal analysis of change among men with chronic haemophilia-related joint pain.

    Science.gov (United States)

    Elander, J; Richardson, C; Morris, J; Robinson, G; Schofield, M B

    2017-09-01

    Motivational and behavioural models of adjustment to chronic pain make different predictions about change processes, which can be tested in longitudinal analyses. We examined changes in motivation, coping and acceptance among 78 men with chronic haemophilia-related joint pain. Using cross-lagged regression analyses of changes from baseline to 6 months as predictors of changes from 6 to 12 months, with supplementary structural equation modelling, we tested two models in which motivational changes influence behavioural changes, and one in which behavioural changes influence motivational changes. Changes in motivation to self-manage pain influenced later changes in pain coping, consistent with the motivational model of pain self-management, and also influenced later changes in activity engagement, the behavioural component of pain acceptance. Changes in activity engagement influenced later changes in pain willingness, consistent with the behavioural model of pain acceptance. Based on the findings, a combined model of changes in pain self-management and acceptance is proposed, which could guide combined interventions based on theories of motivation, coping and acceptance in chronic pain. This study adds longitudinal evidence about sequential change processes; a test of the motivational model of pain self-management; and tests of behavioural versus motivational models of pain acceptance. © 2017 European Pain Federation - EFIC®.

  12. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    Science.gov (United States)

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  13. Nonsingular 4d-flat branes in six-dimensional supergravities

    International Nuclear Information System (INIS)

    Nair, V.P.; Randjbar-Daemi, S.

    2005-01-01

    We show that six-dimensional supergravity models admit nonsingular solutions in the presence of flat three-brane sources with positive tensions. The models studied in this paper involve nonlinear sigma model scalar fields targeted on noncompact manifolds. For the particular solutions of the scalar field equations which we consider, only two brane sources are possible which are positioned at those points where the scalar field densities diverge, without creating a divergence in the Ricci scalar or the total energy. These solutions are invariant under 1/2 of D=6 supersymmetries far away from the branes, which, however, do not integrate to global Killing spinors. Other branes can be introduced by hand by allowing for local deficit angles in the transverse space without generating any kind of curvature singularities. (author)

  14. Is spontaneous breaking of R-parity feasible in minimal low-energy supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Perez-Mercader, J.; Quiros, M.

    1985-01-01

    Spontaneous violation of lepton number without breaking Lorentz invariance can, in principle, be incorporated in models with softly broken supersymmetry. We study the situation for minimal low-energy supergravity models coming from a GUT (hence not having hierarchy destabilizing light singlets) and where the SU(2)xU(1) breaking is radiative. It is found that for this type of model, R-parity breaking requires either too heavy a top quark for a realistic superpartner spectrum or too light a superpartner spectrum for a realistic top quark, making the spontaneous violation of lepton number in the third generation incompatible with present experimental data. We do not discard the possibility of having it in a fourth, heavier, generation. (orig.)

  15. Building a better minimal supergravity: WIMP dark matter without flavor violation

    International Nuclear Information System (INIS)

    Craig, Nathaniel J.; Green, Daniel

    2009-01-01

    The appearance of a natural dark matter candidate, the neutralino, is among the principal successes of minimal supergravity (mSUGRA) and its descendents. In lieu of a suitable ultraviolet completion, however, theories of gravity-mediated supersymmetry breaking such as mSUGRA suffer from arbitrary degrees of flavor violation. Though theories of gauge-mediated supersymmetry breaking are free from such prohibitive flavor violation, they typically lack natural neutralino dark matter candidates. Yet this conventional dichotomy breaks down when the hidden sector is strongly coupled; in models of gauge-mediated supersymmetry breaking, the neutralino may be the lightest supersymmetric particle if the fields of the hidden sector possess large anomalous dimensions. In fact, general models of so-called 'sequestered' gauge mediation possess the full richness of neutralino dark matter found in mSUGRA without corresponding flavor problems. Here we explore generalized models of sequestered gauge mediation and the rich variety of neutralino dark matter they exhibit.

  16. Non-perturbative approach to 2D-supergravity and super-Virasoro constraints

    CERN Document Server

    Becker, M

    1994-01-01

    The coupling of N=1 SCFT of type (4m,2) to two-dimensional supergravity can be formulated non-perturbatively in terms of a discrete super-eigenvalue model proposed by Alvarez-Gaum\\'e, et al. We derive the superloop equations that describe, in the double scaling limit, the non-perturbative solution of this model. These equations are equivalent to the double scaled super-Virasoro constraints satisfied by the partition function. They are formulated in terms of a \\widehat c=1 theory, with a \\IZ_2-twisted scalar field and a Weyl-Majorana fermion in the Ramond sector. We have solved the superloop equations to all orders in the genus expansion and obtained the explicit expressions for the correlation functions of gravitationally dressed scaling operators in the NS- and R-sector. In the double scaling limit, we obtain a formulation of the model in terms of a new supersymmetric extension of the KdV hierarchy.

  17. Hairy black holes in N=2 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Federico [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); Klemm, Dietmar; Nozawa, Masato [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-11-06

    We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS{sub 2}×H{sup 2}, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter m{sup 2}=−2ℓ{sup −2} at the supersymmetric vacuum lies in a characteristic range m{sub BF}{sup 2}≤m{sup 2}

  18. Motivation dimensions for running a marathon: A new model emerging from the Motivation of Marathon Scale (MOMS

    Directory of Open Access Journals (Sweden)

    Sima Zach

    2017-09-01

    Conclusion: This study provides a sound and solid framework for studying motivation for physically demanding tasks such as marathon runs, and needs to be similarly applied and tested in studies incorporating physical tasks which vary in mental demands.

  19. User modelling for motivational systems : the affective and the rational routes to persuasion

    NARCIS (Netherlands)

    Grasso, F.; Ham, J.R.C.; Masthoff, J.F.M.

    2011-01-01

    The idea that a computer system could be used to motivate people to perform a certain task on the basis of a user model is certainly not novel. As early as the 80s, intelligent tutoring systems would encourage students to learn by means of tailored feedback and hints [24], and in the 90s patient

  20. Toward a Tripartite Model of L2 Reading Strategy Use, Motivations, and Learner Beliefs

    Science.gov (United States)

    Matsumoto, Hiroyuki; Hiromori, Tomohito; Nakayama, Akira

    2013-01-01

    The present study proposes a tripartite model of L2 reading strategy use, reading motivations, and general learner beliefs by examining the relationships among them in an L2 context. Reading strategy instruction was performed for 360 first-year university students enrolled in a reading-based course, in expectation of affecting their motivations…