WorldWideScience

Sample records for superfluid stirling refrigerator

  1. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    International Nuclear Information System (INIS)

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the 3 He solute in a superfluid 3 He-- 4 He solution. At low temperatures, the superfluid 4 He is in its quantum ground state, and therefore is thermodynamically inert, while the 3 He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the 3 He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the 3 He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs

  2. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  3. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  4. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  5. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  6. Rotary magnetic refrigerator for superfluid helium production

    International Nuclear Information System (INIS)

    Hakuraku, Y.; Ogata, H.

    1986-01-01

    A new rotary-magnetic refrigerator designed to obtain superfluid helium temperatures by executing a magnetic Carnot cycle is developed. A rotor containing 12 magnetic refrigerants (gadolinium-gallium-garnet) is immersed in liquid helium at 4.2 K and rotated at constant speed in a steady magnetic field distribution. Performance tests demonstrate that the new rotary refrigerator is capable of obtaining a temperature of 1.48 K. The maximum useful cooling power obtained at 1.8 K is 1.81 W which corresponds to a refrigeration efficiency of 34%

  7. Basic dynamics of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2008-01-01

    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temp. at the cold end is an input

  8. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-06-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed.

  9. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-02-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed

  10. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  11. Continuous magnetic refrigeration in the superfluid helium range

    International Nuclear Information System (INIS)

    Lacaze, Alain.

    1982-10-01

    An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr

  12. Qualitative comparison of duplex Stirling and absorption refrigerators in domestic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shao, H. [Global Cooling BV, Zutphen (Netherlands)

    2000-07-01

    A qualitative comparison has been carried out between the duplex Stirling and the absorption refrigerator for domestic applications. The duplex Stirling has many advantages over the absorption refrigerator on efficiency, modulation, suitability, operating costs, pollution reduction. Based on the state of the art of free-piston gas-bearing and linear-motor Stirling engines and coolers, it appears technically and economically feasible to develop the duplex Stirling to compete with the absorption refrigerator for heat-driven domestic refrigeration. (orig.)

  13. Mechanically-cooled germanium detector using two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  14. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.

    Science.gov (United States)

    Luo, E C; Dai, W; Zhang, Y; Ling, H

    2006-12-22

    In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.

  15. One-dimensional numerical simulation of the Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2007-01-01

    Change of title: One-dimensional numerical simulation of the Stirling-type pulse-tube cooler. Pulse-tube refrigeration (PTR) is a new technology for cooling down to extremely low temperatures. In this paper a particular type, the so-called Stirling single-stage refrigerator, is considered. A

  16. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    International Nuclear Information System (INIS)

    Lin, G.; Tegus, O.; Zhang, L.; Brueck, E.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance

  17. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  18. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    Science.gov (United States)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  19. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  20. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  1. Superfluidity

    International Nuclear Information System (INIS)

    Seyfert, P.; Claudet, G.

    1988-01-01

    The paper reviews the understanding of superfluid helium with regard to its use as coolant for superconducting devices. The topics to be addressed include heat transfer properties of the stagnant fluid, cooling by forced flow superfluid helium, design principles for superfluid helium cryogenic systems and, finally, an illustration of these principles by a few practical examples. 18 refs

  2. Experimental study of the pressure characteristics in the Stirling refrigerator

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2001-01-01

    The linear compressor have been widely used for pressure wave generation in the Stirling cryocooler and Stirling type pulse tube cryocooler for tactical purpose. The linear compressor has small and compact structure, and long life due to having non-contact sealing mechanism and the pressure drop through regenerator was ver important role in the motion of displacer in the expander of the Stirling cryocooler. In this study, the characteristic of the linear compressor and the pressure drop through regenerator in the expander was experimentally investigated. The results show resonance of the compressor is very important to get maximum performance and the gas spring force in the compression space of the compressor has effect on the characteristic of resonance and the results show the pressure drop through regenerator is very small than operating pressure change

  3. Performance of V-type Stirling-cycle refrigerator for different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Yusuf; Ataer, Omer Ercan [Erciyes University, Engineering Faculty, Mechanical Engineering Department, Melikgazi, 38 039 Kayseri (Turkey)

    2010-01-15

    The thermodynamic analysis of a V-type Stirling-cycle Refrigerator (VSR) is performed for air, hydrogen and helium as the working fluid and the performance of the VSR is investigated. The V-type Stirling-cycle refrigerator consists of expansion and compression spaces, cooler, heater and regenerator, and it is assumed that the control volumes are subjected to a periodic mass flow. The basic equations of the VSR are derived for per unit crank angle, so time does not appear in the equations. A computer program is prepared in FORTRAN, and the basic equations are solved iteratively. The mass, temperature and density of working fluid in each control volume are calculated for different charge pressures, engine speeds, and for fixed heater and cooler surface temperatures. The work, instantaneous pressure and the COP of the VSR are calculated. The results are obtained for different working fluids, and given by diagrams. (author)

  4. Split-Stirling Cryogenic Refrigerators For Detector Cooling

    Science.gov (United States)

    Lehrfeld, Daniel

    1983-08-01

    Unfortunately, for user and manufacturer both, the closed-cycle cryogenic cooler to date has deserved its reputation as the "weak-link" in IR systems. When the cooler requires service at intervals of a few hundred hours at best, the quality of the system it serves is unfairly diminished. This paper addresses technological advances in the art of Stirling-cycle coolers which will increasingly cause that image of military cryocoolers to change for the better. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (tne first all-linear, military, production cooler) developed in Holland, is explained. Three new machines are discussed. Both 1/4 watt and 1 watt (nominal capacity) at 80°K linear-resonant, free-dispLacer Stirling coolers designed for thousands of hours of service-free operation are examined. The third machine is an advanced 1/4 watt at 80°K Stirling cooler incorporating the same component improvements in its free-displacer while utilizing a crankshaft-driven compressor. All three are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars. The technologies of linear-resonant compressor and free-displacer expanders as embodied in these machines is discussed in sufficient detail that the reasons for their superior performance will he clear.

  5. Design, construction and experimental investigation of a Stirling refrigerator for freezing in supermarkets. Final report; Auslegung, Bau und experimentelle Untersuchung einer Stirling-Kaeltemaschine fuer die Tiefkuehlung in Supermaerkten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F.; Schikora, H.; Mai, M.; Siegel, A.

    2000-10-01

    Several theoretical investigations have shown that Stirling refrigerators could be a promising alternative for refrigeration at 'near-ambient' temperatures (above -40 C). These theoretical statements shall be validated in an actual research project by measurements taken from a Stirling refrigerator that is optimised for this range of temperature. In this paper first measurement results of this new developed Solo 161 Stirling refrigerator will be presented. Problems are investigated by detailed measurements. Possible improvements are described. (orig.) [German] Verschiedene theoretische Untersuchungen haben gezeigt, dass Stirling-Kaeltemaschinen eine interessante Alternative fuer die Kaelteerzeugung im sog. 'umgebungsnahen' Temperaturbereich (oberhalb von -40 C) darstellen koennten. In einem derzeit laufenden Forschungsvorhaben sollen diese theoretischen Untersuchungen durch Messungen an einer fuer diesen Temperaturbereich optimierten Stirling-Kaeltemaschine ueberprueft werden. In diesem Aufsatz werden erste Messergebnisse dieser neu entwickelten Solo 161 Stirling-Kaeltemaschine praesentiert. Anhand detaillierter Messergebnisse werden Schwachstellen lokalisiert und moegliche Verbesserungsmassnahmen beschrieben. (orig.)

  6. Investigations on materials for small Stirling refrigerators in long-term operation

    International Nuclear Information System (INIS)

    Engelland, W.; Kose, V.

    1990-04-01

    Work is being carried out world-wide on the development of refrigerators with low power requirements for the cooling of high-temperature superconductors and other cryoelectronic components. Due to its good efficiency factor, the well-known Stirling principle is particularly suitable for this purpose, but the increasing contamination of the working gases needed for the process which is caused by outgassing and the permeability to gas of the epoxide resins and other materials generally used makes it prone to interference over long periods of operation. For the first time, DURAN glass has been taken as a regenerator material and tested with successful results over a long period of operation in a small Stirling refrigerator designed and constructed for this purpose. A commercial double-membrane compressor which was also to be tested in long-term operation was converted into a dynamic pressure source and used as a refrigerator component. With this refrigerator, it was possible to maintain a temperature of 34 K over a continous period of operation of 77 days. Parallel to this, mass spectrometric permeation measurements were carried out on a compressor membrane made of VITON in which the water vapour of the atmosphere dominated. (orig.) [de

  7. The design of a small linear-resonant, split Stirling cryogenic refrigerator compressor

    Science.gov (United States)

    Ackermann, R. A.

    1985-01-01

    The development of a small linear-resonant compressor for use in a 1/4-watt, 78K, split Stirling cryogenic refrigerator is discussed. The compressor contains the following special features: (1) a permanent-magnet linear motor; (2) resonant dynamics; (3) dynamic balancing; and (4) a close-clearance seal between the compressor piston and cylinder. This paper describes the design of the compressor, and presents component test data and system test data for the compressor driving a 1/4-watt expander.

  8. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan

    2006-01-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed

  9. Experiments with a pressure-driven Stirling refrigerator with flexible chambers

    Science.gov (United States)

    McFarlane, Patrick; Suire, Jonathan; Sen, Mihir; Semperlotti, Fabio

    2014-06-01

    We report on the design and experimental testing of a Stirling refrigerator that uses air as the working fluid, and where the conventional piston-cylinder assemblies are replaced by pressure-driven flexible chambers. The two chambers are periodically compressed by pneumatic actuators resulting in airflow through the regenerator and in a net temperature difference between the chambers. An experimental setup is used to investigate the performance of the refrigerator under different operating conditions with particular attention to actuation frequencies, driving pressure differences, and phase angles between the two inputs. The time constant of the temperature difference between the two chambers is determined, and the temperature difference is measured as a function of the system parameters. The results of several tests conducted under different operating conditions show that the refrigerating effect is very robust and allows good performance even for modulated inputs. The frequency response is radically different from that of a traditional motion-driven device. This work suggests that mechanical to thermal energy conversion devices based on this principle can be successfully powered by human motion.

  10. Superfluid turbulence

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1988-01-01

    Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs

  11. Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions

    International Nuclear Information System (INIS)

    Lin Bihong; Zhang Yue; Chen Jincan

    2006-01-01

    The Stirling refrigeration cycle using an ideal Bose-gas as the working substance is called the Bose-Stirling refrigeration cycle, which is different from other thermodynamic cycles such as the Carnot cycle, Ericsson cycle, Brayton cycle, Otto cycle, Diesel cycle and Atkinson cycle working with an ideal Bose gas and may be operated across the critical temperature of Bose-Einstein condensation of the Bose system. The performance of the cycle is investigated, based on the equation of state of an ideal Bose gas. The inherent regenerative losses of the cycle are considered and the coefficient of performance and the amount of refrigeration of the cycle are calculated. The results obtained here are compared with those derived from the classical Stirling refrigeration cycle, using an ideal gas as the working substance. The influence of quantum degeneracy and inherent regenerative losses on the performance of the Bose Stirling refrigeration cycle operated in different temperature regions is discussed in detail, and consequently, general performance characteristics of the cycle are revealed

  12. Experimental study on the Stirling refrigerator for cooling of infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Koh, D. Y. [Korea Institute of Machinery and Materials, Taejon (Korea, Republic of); Kim, J. H.; Yu, B. K. [Wooyoung, Seoul (Korea, Republic of)

    2001-07-01

    A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD Stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. A Free Piston and Free Displacer (FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery and Materials). In order to evaluate the feasibility of using a linear motor driving cryocooler, prototype Stirling cryocooler with a nominal cooling capacity of 0.5W at 80K was designed, fabricated and tested. The prototype has achieved no load temperature of 51K and cooling power of 0.33W.

  13. Experimental study on the Stirling refrigerator for cooling of infrared detector

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Koh, D. Y.; Kim, J. H.; Yu, B. K.

    2001-01-01

    A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD Stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. A Free Piston and Free Displacer (FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery and Materials). In order to evaluate the feasibility of using a linear motor driving cryocooler, prototype Stirling cryocooler with a nominal cooling capacity of 0.5W at 80K was designed, fabricated and tested. The prototype has achieved no load temperature of 51K and cooling power of 0.33W

  14. Numerical simulation of a three-stage stirling-type pulse-tube refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Etaati, M.A.

    2011-06-22

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and an orifice, in series. In a Stirling-type PTR compression and expansion are generated by a piston. The compression increases the temperature of the helium in the tube and makes it flow towards the orifice; the expansion decreases the temperature and makes the helium flow backwards to the regenerator. The net effect of warmer helium flowing in one direction and colder helium in the opposite direction is that of cooling power at the cold heat exchanger. Three PTRs are inter-connected aiming to obtain the desired 4 K lowest temperature. The conservation laws of mass, momentum and energy, and an equation of state, are simplified using asymptotic analysis based on low Mach-numbers. The regenerator is modelled one-dimensionally with Darcy's law for flow resistance. The tube is modelled either one-dimensionally without resistance or two-dimensionally with axisymmetric laminar viscous flow. The heat transfer in the porous medium of the regenerator and in the solid tube wall is taken into account. The gas can be either ideal or real. All the material properties, including viscosity and conductivity, are taken temperature and pressure dependent. Three single-stage PTRs are connected with the regenerators in series and the tubes in parallel and six flow possibilities at the junctions are considered. Three by-passes (double-inlets) are used to enhance and tune the performance. The governing equations are numerically solved with a finite-difference method of nominally second-order accuracy in space and time. Pressure correction, flux limiter, 1D-2D connections and domain decomposition are the keywords here. Special attention is paid to suitable initial conditions, high resolution

  15. European Stirling forum 2000. Proceedings; Europaeisches Stirling Forum 2000. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document comprises all 42 papers presented at the 'European Stirling Forum 2000', held in Osnabrueck on February 22-24, 2000. Among others, the following subjects were discussed: Thermodynamics, new developments, Stirling engines, free piston heat pumps, flow optimisation of regenerators for Stirling engines, simulation for modelling of flow and heat transfer in the gas cycle of Stirling engines, design and performance, Stirling refrigerators, economic efficiency of biomass Stirling engines, power control of a Stirling CHP system, a Stirling refrigerator for ultralow temperatures in the refrigeration industry. [German] Das vorliegende Dokument enthaelt alle (42) Beitraege der Referenten des 'Europaeischen Stirling Forums 2000', das vom 22. bis 24. Februar 2000 in Osnabrueck stattgefunden hat. Einige der behandelten Themenschwerpunkte im Zusammenhang mit der Stirling-Maschine waren die Thermodynamik, neue Entwicklungen des Kreisprozesses, Heissgasmotoren, Freikolben-Waermepumpe, stroemungstechnische Optimierung von Regeneratoren fuer Stirling-Maschinen, Simulation zur Modellierung der Stroemung und Waermeuebertragung im Gaskreislauf von Stirling-Maschinen, Entwurf und Betriebsverhalten, Stirling-Kaeltemaschine, Wirtschaftlichkeit von Biomasse-Stirlingmotoren, Leistungsregelung eines Stirling-Blockheizkraftwerks, Anwendung eines Stirling-Kuehlers, zum Ultratiefkuehlen in der Kuehlindustrie. (AKF)

  16. Numerical simulation of a three-stage Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.

    2011-01-01

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and

  17. One-dimensional simulation of a stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  18. One-dimensional simulation of a Stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  19. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    Science.gov (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  20. Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases

    Science.gov (United States)

    Ahmadi, Mohammad H.; Amin Nabakhteh, Mohammad; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah; Bidi, Mokhtar

    2017-10-01

    The motivation behind this work is to explore a nanoscale irreversible Stirling refrigerator with respect to size impacts and shows two novel thermo-ecological criteria. Two distinct strategies were suggested in the optimization process and the consequences of every strategy were examined independently. In the primary strategy, with the purpose of maximizing the energetic sustainability index and modified the ecological coefficient of performance (MECOP) and minimizing the dimensionless Ecological function, a multi-objective optimization algorithm (MOEA) was used. In the second strategy, with the purpose of maximizing the ECOP and MECOP and minimizing the dimensionless Ecological function, a MOEA was used. To conclude the final solution from each strategy, three proficient decision makers were utilized. Additionally, to quantify the deviation of the results gained from each decision makers, two different statistical error indexes were employed. Finally, based on the comparison between the results achieved from proposed scenarios reveals that by maximizing the MECOP the maximum values of ESI, ECOP, and a minimum of ecfare achieved.

  1. Performance analysis and optimization for generalized quantum Stirling refrigeration cycle with working substance of a particle confined in a general 1D potential

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2018-03-01

    A generalized irreversible quantum Stirling refrigeration cycle (GIQSRC) is proposed. The working substance of the GIQSRC is a particle confined in a general 1D potential which energy spectrum can be expressed as εn = ℏωnσ . Heat leakage and non-ideal regeneration loss are taken into account. The expressions of coefficient of performance (COP) and dimensionless cooling load are obtained. The different practical cases of the energy spectrum are analyzed. The results of this paper are meaningful to understand the quantum thermodynamics cycles with a particle confined in different potential as working substance.

  2. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  3. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    Science.gov (United States)

    Jahromi, Amir E.; Miller, Franklin K.

    2017-03-01

    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  4. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  5. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  6. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  7. Novel superfluids

    CERN Document Server

    Ketterson, John B

    This book reports on the latest developments in the field of Superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. It began with the discovery of superconductivity in mercury in 1911, which was ultimately described theoretically by the theory of Bardeen Cooper and Schriever (BCS) in 1957. The analogous phenomena, superfluidity, was discovered in helium in 1938 and tentatively explained shortly thereafter as arising from a Bose-Einstein Condensation (BEC) by London. But the importance of superfluidity, and the range of systems in which it occurs, has grown enormously. In addition to metals and the helium liquids the phenomena has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials, and cold gasses trapped in high vacuum. It very likely exist for neutrons in a neutron star and, possibly, in a conjectured quark state at their center. Even the Universe itself can be regarded as being in a kind of sup...

  8. Superfluid 3He—the Early Days

    Science.gov (United States)

    Lee, D. M.; Leggett, A. J.

    2011-08-01

    A history is given of liquid 3He research from the time when 3He first became available following World War II through 1972 when the discovery of the superfluid phases was made. The Fermi liquid nature was established early on, and the Landau Fermi liquid theory provided a framework for understanding the interactions between the Fermions (quasiparticles). The theory's main triumph was to predict zero sound, which was soon discovered experimentally. Experimental techniques are treated, including adiabatic demagnetization, dilution refrigerator technology, and Pomeranchuk cooling. A description of the superfluid 3He discovery experiments using the latter two of these techniques is given. While existing theories provided a basis for understanding the newly discovered superfluid phases in terms of ℓ>0 Cooper pairs, the unexpected stability of the A phase in the high- P, high- T region of the phase diagram needed for its explanation a creative leap beyond the BCS paradigm. The use of sum rules to interpret some of the unusual magnetic resonance in liquid 3He is discussed. Eventually a complete theory of the spin dynamics of superfluid 3He was developed, which predicted many of the exciting phenomena subsequently discovered.

  9. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers

    International Nuclear Information System (INIS)

    Hermes, Christian J.L.; Barbosa, Jader R.

    2012-01-01

    Highlights: ► A Peltier, a Stirling, and two vapor compression refrigerators were compared. ► Tests were carried out to obtain key performance parameters of the systems. ► The overall 2nd-law efficiency was splited to take into account the internal and external irreversibilities. ► The Stirling and vapor compression refrigeration systems presented higher efficiencies. ► The thermoelectric device was not at the same efficiency level as the other coolers. -- Abstract: The present study compares the thermodynamic performance of four small-capacity portable coolers that employ different cooling technologies: thermoelectric, Stirling, and vapor compression using two different compressors (reciprocating and linear). The refrigeration systems were experimentally evaluated in a climatized chamber with controlled temperature and humidity. Tests were carried out at two different ambient temperatures (21 and 32 °C) in order to obtain key performance parameters of the systems (e.g., power consumption, cooling capacity, internal air temperature, and the hot end and cold end temperatures). These performance parameters were compared using a thermodynamic approach that splits the overall 2nd law efficiency into two terms, namely, the internal and external efficiencies. In doing so, the internal irreversibilities (e.g., friction in the working fluid in the Stirling and vapor compression machines, Joule heating and heat conduction in the thermoelectric devices of the Peltier cooler) were separated from the heat exchanger losses (external irreversibilities), allowing the comparison between different refrigeration technologies with respect to the same thermodynamic baseline.

  11. Flowing holographic anyonic superfluid

    Science.gov (United States)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2014-10-01

    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.

  12. Investigation of a 2K superfluid liquid helium refrigerator system and research of superconducting RF cavities. Report from the short visiting and research program aboard supported by the Japanese education ministry

    International Nuclear Information System (INIS)

    Saito, Kenji

    2001-01-01

    The author visited at Jefferson Lab for two months from July 5 '99 to September 2 by the short visit and research program financed by the Japanese Education Ministry for the investigation the CEBAF 2K refrigerator system and research superconducting RF cavities. Here, the result will be presented. (author)

  13. Stirling Engine Cycle Efficiency

    OpenAIRE

    Naddaf, Nasrollah

    2012-01-01

    ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. This heat engine was invented by Stirling, a Scottish in 1918. The engine’s working principles are based on the laws of thermodynamics and ability of volume expansion of ideal gases at different temperatures. Basically there are three types of Stirling engines: the gamma, beta and alpha models. The commissioner of the thesis ...

  14. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  15. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  16. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  17. In-line stirling energy system

    Science.gov (United States)

    Backhaus, Scott N [Espanola, NM; Keolian, Robert [State College, PA

    2011-03-22

    A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.

  18. Shell Models of Superfluid Turbulence

    International Nuclear Information System (INIS)

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  19. Refrigeration system with clearance seals

    International Nuclear Information System (INIS)

    Holland, N. J.

    1985-01-01

    In a refrigeration system such as a split Stirling system, fluid seals associated with the reciprocating displacer are virtually dragless clearance seals. Movement of the displacer relative to the pressure variations in the working volume of gas is retarded by a discrete braking element. Because it is not necessary that the brake providing any sealing action, the brake can be designed for greater durability and less dependence on ambient and operating temperatures. Similarly, the clearance seal can be formed of elements having low thermal expansion such that the seal is not temperature dependent. In the primary embodiments the braking element is a split friction brake

  20. Holographic anyonic superfluidity

    Science.gov (United States)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  1. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    Science.gov (United States)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  2. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  3. Stirling engine application study

    Science.gov (United States)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  4. Thermoacoustic refrigeration

    Science.gov (United States)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-12-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  5. A compact rotating dilution refrigerator

    Science.gov (United States)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  6. Is the supersolid superfluid?

    International Nuclear Information System (INIS)

    Pushkarov, D.I.

    2008-08-01

    An analysis of previous theories of superfluidity of quantum solids is presented in relation to the nonclassical rotational moment of inertia (NCRM) found first in Kim and Chan experiments. A theory of supersolidity is proposed based on the presence of an additional conservation law. It is shown that the additional entropy or mass fluxes depend on the quasiparticle dispersion relation and vanish in the effective mass approximation. This implies that at low temperatures when the parabolic part of the dispersion relation predominates the supersolid properties should be less expressed. (author)

  7. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  8. Flammable refrigerants

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Verwoerd, M.; Oostendorp, P.A.

    1999-01-01

    Hydrocarbons are promising alternatives for CFC, HCFC and HFC refrigerants. Due to their flammable nature, safety aspects have to be considered carefully. The world-wide situation concerning acceptability and practical application of flammable refrigerants is becoming more and more complex and

  9. Hydrodynamics of rotating superfluids

    International Nuclear Information System (INIS)

    Chandler, E.A.

    1981-01-01

    In this thesis, a coarse grained hydrodynamics is developed from the exact description of Tkachenko. To account for the dynamics of the vortex lattice, the macroscopic vortex displacement field is treated as an independent degree of freedom. The conserved energy is written in terms of the coarse-grained normal fluid, superfluid, and vortex velocities and includes an elastic energy associated with deformations of the vortex lattice. Equations of motion consistent with the conservation of energy, entropy and vorticity and containing mutual friction terms arising from microscopic interactions between normal fluid excitations and the vortex lines are derived. When the vortex velocity is eliminated from the damping terms, this system of equations becomes essentially that of BK with added elastic terms in the momentum stress tensor and energy current. The dispersion relation and damping of the first and second sound modes and the two transverse modes sustained by the system are investigated. It is shown that mutual friction mixes the transverse modes of the normal and superfluid components and damps the transverse mode associated with the relative velocity of these components, making this wave evanescent in the plane perpendicular to the rotation axis. The wave associated with transverse motion of the total mass current is a generalized Tkachenko mode, whose dispersion relation reduces to that derived by Tkachenko wave when the wavevector lies in this plane

  10. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  11. Stirling Engine Controller

    Science.gov (United States)

    Blaze, Gina M.

    2004-01-01

    Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions

  12. Fourth sound of holographic superfluids

    International Nuclear Information System (INIS)

    Yarom, Amos

    2009-01-01

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  13. Vortex mass in a superfluid

    Science.gov (United States)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  14. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  15. Spinning superfluid 4He nanodroplets

    Science.gov (United States)

    Ancilotto, Francesco; Barranco, Manuel; Pi, Martí

    2018-05-01

    We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.

  16. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  17. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  18. A Stirling Idea

    Science.gov (United States)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  19. Stirling in Another Context.

    Science.gov (United States)

    Papademetriou, Peter

    1981-01-01

    An analysis and a critique of how remodeling and extension of the Rice University School of Architecture, by James Stirling, Michael Wilford, and Associates, fits into the campus plan and its eclectic style established early in this century. (Author/MLF)

  20. The Stirling engine accelerates.; Der Stirling-Motor gibt Gas.

    Energy Technology Data Exchange (ETDEWEB)

    Pfannstiel, Dieter [DiWiTech - Ingenieurpraxis fuer technische und wissenschaftliche Dienstleistungen, Breitenbach a.H. (Germany)

    2010-01-15

    At this moment, Stirling engines are the most outstanding micro technology of combined heat and power generation. The free piston machine combines the principle of the conventional Stirling engine with a modern linear generator for power generation utilizing waste heat for the heating of houses or hot water tanks. All large manufacturers concern themselves with this technology and develop devices based on the Stirling engine. The overview contribution under consideration describes the current level of development of the Stirling devices of different manufacturers. In nearly two years, these devices will serially be produced in the market.

  1. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  2. A miniature adsorption3HE refrigerator

    International Nuclear Information System (INIS)

    Duband, L.; Ravex, A.; Lange, A.

    1991-01-01

    A self-contained, recyclable laboratory 3 He refrigerator has been developed. The refrigerator is very compact, portable and is designed to be safe and reliable. The unit can easily be installed on the cold plate of a superfluid 4 He cryostat. Once bolted on the cold plate, operation of the refrigerator is controlled by a single heater. In this new design the refrigerator has a cylindrical geometry. The adsorption pump is placed above the condensation point to prevent convection during the condensation phase and to improve the pumping speed. The inhibition of convection reduces the load on the 4 He bath and increases the condensation efficiency. This refrigeration technique has great potential for space applications. The absence of moving parts makes the system reliable and vibration free. Its simplicity and the absence of external components facilitate its integration on a cryostat. In fact, a rocket-borne 3 He refrigerator has already been successfully flown and has demonstrated the feasibility of this method

  3. Review of SC/RF refrigeration systems

    International Nuclear Information System (INIS)

    Byrns, R.A.

    1990-01-01

    A short review is given of historical events in accelerator and cryogenic developments at both Stanford and Berkeley. Methods of refrigeration between 1.85 K and 4.5 K together with modern techniques and improvements are discussed. Where the decade of the 70's was the era of the screw compressor, the 80's can be considered that of the cold vacuum pump for superfluid cooling. Distribution methods are of major importance, and arguments can be made for bath or tube cooling, two-phase, thermo-syphon, supercritical or superfluid. System design affects reliability, safety and operating stability. Distribution costs and heat loads can be a large part of system totals. Some specific system descriptions are included. (author)

  4. Development of a small Stirling cycle cooler for spaceflight applications

    International Nuclear Information System (INIS)

    Werrett, S.T.; Bradshaw, T.W.; Davey, G.; Delderfield, T.W.; Peskett, G.D.

    1986-01-01

    This paper describes the development, from a previously proven design approach, of a robust and simple Stirling cycle cooler with long life potential. The need for a closed cycle refrigerator for use in a spacecraft borne infra-red radiometer is explained. The refrigerator is to supply 1 watt of cooling at 80 K for less than 80 watts of input power, be able to survive the launch environment and subsequently run for 26000 hours. Clearance seals achieved with a spring suspension developed from earlier space proven mechanisms have led to the production of a linear split Stirling cycle machine with no apparent life limiting features. A servo control system, in conjunction with moving coil motors and LVDT position sensors, permits running of balanced pairs of mechanisms. The working fluid, helium at a pressure of 1.2 MPa, is contained within titanium bodies having gold O-ring seals. A vacuum bakeout procedure, based upon experience and outgassing trials, reduces residual contaminant release to acceptable levels. A prototype refrigerator has been subjected to a vibration test and has subsequently run for 6000 hours with no detectable change in performance

  5. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  6. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  7. Recent investigations on refrigerants for magnetic refrigerators

    International Nuclear Information System (INIS)

    Hashimoto, T.

    1986-01-01

    In development of the magnetic refrigerator, an important problem is selection of magnetic materials as refrigerants. The main purpose of the present paper is to discuss the magnetic and thermal properties necessary for these refrigerants and to report recent investigations. Magnetic refrigerants can be expediently divided into two groups, one for the Carnottype magnetic refrigerator below 20 K and the other for the Ericsson-type refrigerator. The required physical properties of refrigerants in each type of the magnetic refrigerator are first discussed. And then, the results of recent investigations on the magnetic, thermal and magnetocaloric characters of several promising magnetic refrigerants are shown. Finally, a brief prospect of the magnetic refrigerants and refrigerators is given

  8. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  9. Magnetic refrigeration down to 1.6 K for the future circular collider e$^+$e$^-$

    CERN Document Server

    Tkaczuk, Jakub; Millet, Francois; Rousset, Bernard; Duval, Jean Marc

    2017-01-01

    High-field superconducting rf cavities of the future circular collider e+e− may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 103 times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  10. Superconducting superfluids in neutron stars

    International Nuclear Information System (INIS)

    Carter, B.

    2002-01-01

    For treatment of the layers below the crust of a neutron star it is useful to employ a relativistic model involving three independently moving constituents, representing superfluid neutrons, superfluid protons, and degenerate negatively charged leptons. A Kalb-Ramond type formulation is used here to develop such a model for the specific purpose of application at the semi macroscopic level characterised by lengthscales that are long compared with the separation between the highly localised and densely packed proton vortices of the Abrikosov type lattice that carries the main part of the magnetic flux, but that are short compared with the separation between the neutron vortices. (orig.)

  11. Collective excitations in unconventional superconductors and superfluids

    CERN Document Server

    Brusov, Peter

    2009-01-01

    This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-

  12. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  13. Stirling Engine with Unidirectional Gas Flow

    OpenAIRE

    Blumbergs, Ilmars

    2014-01-01

    In this study, a Stirling engine with unidirectional gas flow configuration of beta type Stirling engine is described and studied from kinematic and thermodynamics points of view. Some aspects of the Stirling engine with unidirectional gas flow engine are compared to classic beta type Stirling engines. The aim of research has been to develop a new type of Stirling engine, using SolidWorks 3D design software and Flow Simulation software. In the development process, special attention has been d...

  14. Electric response in superfluid helium

    Czech Academy of Sciences Publication Activity Database

    Chagovets, Tymofiy

    2016-01-01

    Roč. 488, May (2016), s. 62-66 ISSN 0921-4526 R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2016

  15. Stirling Engine Configuration Selection

    Directory of Open Access Journals (Sweden)

    Jose Egas

    2018-03-01

    Full Text Available Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.

  16. The Stirling engine

    International Nuclear Information System (INIS)

    Dunn, P.D.

    1989-01-01

    The Stirling engine can be used with any heat source including direct flame, heating from oil, gas, wood or coal combustors, by solar and by nuclear energy. As an alternative to conventional combustors fuels such as coal, oil, gas, vegetable waste can be combusted in a fluidized bed. The engine can be heated by coupling it directly to one of these sources of heat or it can be separated from the heat source and the heat transported by a heat pipe. There is clearly considerable flexibility in the choice of heat source. A major economic penalty is the need for a high temperature heat exchanger to transfer the heat to the engine working fluid from the heat source. Since in order to achieve good heat transfer a large surface area is needed and hence a complicated arrangement of small bore piping. Since the working fluid is not consumed an expensive substance such as helium can be used; however, if the power is to be extracted by a mechanical shaft it is necessary to design a seal between the engine body and the output shaft which will not allow any significant loss of helium. The seal problem is still one of the major technical difficulties in the development of Stirling engines using Helium or Hydrogen as the working fluid. For this reason interest in using air as the working fluid in lower speed engines has revived. 14 refs, 19 figs

  17. Advanced Stirling Convertor Update

    Science.gov (United States)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  18. Novel sound phenomena in superfluid helium in aerogel and other impure superfluids

    International Nuclear Information System (INIS)

    Brusov, Peter; Brusov, Paul; Lawes, Gavin; Lee, Chong; Matsubara, Akira; Ishikawa, Osamu; Majumdar, Pinaki

    2003-01-01

    During the last decade new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities (D 2 , N 2 , Ne, Kr), superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and for superfluid He in aerogel. We show that the coupling between these two sound modes is governed either by c∂ρ/∂c or σρ a ρ s (for aerogel) rather than thermal expansion coefficient ∂ρ/∂T, which is enormously small in pure superfluids. This replacement plays a fundamental role in all sound phenomena in impure superfluids. It enhances the coupling between the two sound modes that leads to the existence of such phenomena as the slow mode and heat pulse propagation with the velocity of first sound observed in superfluids in aerogel. This means that it is possible to observe in impure superfluids such unusual sound phenomena as slow pressure (density) waves and fast temperature (entropy) waves. The enhancement of the coupling between the two sound modes decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by shock waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which never been observed in pure superfluids) could be observed in impure superfluids

  19. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  20. Lagrangian of superfluid 3He

    International Nuclear Information System (INIS)

    Theodorakis, S.

    1988-01-01

    This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition

  1. Light scattering from superfluid fog

    International Nuclear Information System (INIS)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A.

    2003-01-01

    The dynamics of the droplets of superfluid 4 He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time τ v =10 -5 s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it

  2. Anisotropic superfluidity of hadronic matter

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1977-10-01

    From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions

  3. Simplicity works for superfluid helium

    International Nuclear Information System (INIS)

    Bowley, Roger

    2000-01-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  4. Rotons, Superfluidity, and Helium Crystals

    Science.gov (United States)

    Balibar, Sébastien

    2006-09-01

    Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous "roton" which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his "theory based on the shaky grounds of imaginary rotons". Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist. In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state.

  5. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  6. Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications

    Science.gov (United States)

    Jahromi, Amir E.

    State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.

  7. Magnetic refrigeration down to 1.6 K for the future circular collider e^{+}e^{-}

    Directory of Open Access Journals (Sweden)

    Jakub Tkaczuk

    2017-04-01

    Full Text Available High-field superconducting rf cavities of the future circular collider e^{+}e^{-} may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 10^{3} times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  8. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  9. Being everything to anyone: Applicability of thermoacoustic technology in the commercial refrigeration market

    Science.gov (United States)

    Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2005-09-01

    This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.

  10. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1998-03-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility of refrigerants and lubricants with other materials.

  11. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    International Nuclear Information System (INIS)

    Packard, Richard

    2006-01-01

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He

  12. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  13. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  14. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  15. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  16. Dark matter superfluidity and galactic dynamics

    Directory of Open Access Journals (Sweden)

    Lasha Berezhiani

    2016-02-01

    Full Text Available We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful and galaxy clusters (where MOND is not: dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.

  17. Dynamics of quantised vortices in superfluids

    CERN Document Server

    Sonin, Edouard B

    2016-01-01

    A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...

  18. Quantized vortices in superfluids and superconductors

    International Nuclear Information System (INIS)

    Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.

    1998-01-01

    We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  19. Superfluidity of hyperon-mixed neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo

    2002-01-01

    Superfluidity of hyperons (Y) admixed in neutron star cores is investigated by a realistic approach. It is found that hyperons such as Λ and Σ - are likely to be superfluid due mainly to their large effective masses in the medium, in addition to their 1 S 0 -pairing attraction not so different from that of nucleons. Also the existence of nucleon superfluidity at high-density is investigated under a developed Y-contamination. It is found that the density change of nucleon components due to the Y-mixing does not work for the realization of n-superfluid and makes the existence of p-superfluid more unlikely, as compared to the normal case without the Y-mixing. (author)

  20. Light scattering from superfluid fog

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A

    2003-05-01

    The dynamics of the droplets of superfluid {sup 4}He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time {tau}{sub v}=10{sup -5} s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it.

  1. I. Construction of an ultralow temperature laboratory. II. Thermal relaxation in superfluid helium-3

    International Nuclear Information System (INIS)

    Neuhauser, B.J.

    1986-01-01

    The first part of this thesis describes the construction of an ultralow temperature laboratory capable of reaching temperatures below 0.002 K. Continuous refrigeration to 0.012 K is provided by a cold plate/dilution refrigerator system. Single-cycle cooling to 0.002 K is accomplished by adiabatic demagnetization of cerous magnesium nitrate (CMN), a paramagnetic salt. Thermometry is done by measuring the resistance of carbon and germanium sensors, the magnetic susceptibility of lanthanum-diluted CMN, and the anisotropy of gamma radiation from a cobalt-60 nuclear orientation thermometer. Systems have been developed to allow precise control of the temperature and pressure of the liquid helium-3 sample. Measurements of thermal relaxation of liquid helium-3 in the ultralow temperature cell following sudden magnetic cooling of the CMN refrigerant are described. Analysis of the transient response of a thermal model of the cell indicates that the ratio of the time constants immediately below and above the superfluid-to-normal transition temperature provides a close estimate of the ratio of the corresponding helium-3 heat capacities, at least in the superfluid A-phase

  2. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    International Nuclear Information System (INIS)

    Kopko, W.L.

    1991-01-01

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant

  3. Path-integral computation of superfluid densities

    International Nuclear Information System (INIS)

    Pollock, E.L.; Ceperley, D.M.

    1987-01-01

    The normal and superfluid densities are defined by the response of a liquid to sample boundary motion. The free-energy change due to uniform boundary motion can be calculated by path-integral methods from the distribution of the winding number of the paths around a periodic cell. This provides a conceptually and computationally simple way of calculating the superfluid density for any Bose system. The linear-response formulation relates the superfluid density to the momentum-density correlation function, which has a short-ranged part related to the normal density and, in the case of a superfluid, a long-ranged part whose strength is proportional to the superfluid density. These facts are discussed in the context of path-integral computations and demonstrated for liquid 4 He along the saturated vapor-pressure curve. Below the experimental superfluid transition temperature the computed superfluid fractions agree with the experimental values to within the statistical uncertainties of a few percent in the computations. The computed transition is broadened by finite-sample-size effects

  4. Innovation at Stirling

    Science.gov (United States)

    1998-11-01

    The 24th Stirling Meeting of the Scottish Branch of the Institute of Physics was held on 21 May 1998. It was, for the first time, coupled to a Physics Update Course, which then continued in the Heriot-Watt University over the following two days. This encouraged many more exhibitors to come to Stirling where some 220 physics teachers were present. Ten manufacturers, five publishers and, of course, the ASE and the Institute of Physics exhibited materials during the conference. Morning In his introductory remarks Jack Woolsey reminded teachers that a great deal of information about the Scottish Qualifications Authority was available on the web (http://www.sqa.org.uk). Lorna Neill chaired the morning session, which was devoted to teaching chips and assessing pupils! Tony Joyce (Motorola) emphasized the need to invest in the skills required by the electronics industry. There has been an explosion in the demand for microchips and Motorola, together with Edinburgh University, Compugraphics and Scottish Enterprise, have produced a number of `teaching chips' which are being used throughout Britain and abroad. Les Haworth (Edinburgh University) discussed the construction, operating principles and educational relevance of MOS devices. MOSFETs, he claimed, are the best vehicle for early teaching of device physics. Andrew Moore (Balerno High School) gave an entertaining presentation in which he suggested ways of using the `teaching chips' in practice. Although there were many good information sheets with suggested experiments and investigations, teachers often found it difficult to tailor them to specific courses. To reduce hassle Andrew recommended using the Teaching Chip Project Board which was now available. It was particularly useful for practical investigations at Standard Grade. For the question session Jim Jamieson (SSERC) and Walter Whitelaw (Edinburgh Council) joined the three speakers. Ian Kennedy (Kilwinning Academy) described a fascinating system, developed in his

  5. Stirling engine with pressurized crankcase

    Science.gov (United States)

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  6. Free-Piston Stirling Engines

    Science.gov (United States)

    Shaltens, Richard K.

    1989-01-01

    Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.

  7. A blind test on the pulse tube refrigerator model (PTRM)

    International Nuclear Information System (INIS)

    Yuan, S.W.K.; Radebaugh, R.

    1996-01-01

    The Stirling Refrigerator Performance Model (SRPM) has been validated extensively against the Lockheed built Stirling Coolers and various units in the literature. This model has been modified to predict the performance of the Pulse Tube Coolers (PTCs). It was successfully validated against a Lockheed in-house-built PTC. The results are to be published elsewhere. In this paper, the validation of PTRM against a NIST (National Institute of Standards and Technology) orifice pulse tube cooler is reported. Dimensions and operating condition of the PTC were obtained from NIST without prior knowledge of the performance. In other words, this is a open-quote blind test close-quote on the PTRM with the help of the National Institute of Standards and Technology. Good correlation was found between the test data and the prediction. PTRM is a generic model that gives accurate performance prediction of the pulse tube coolers

  8. Solar-driven refrigeration technologies; Koeltechnologieen op zonne-energie

    Energy Technology Data Exchange (ETDEWEB)

    De Cillis, S.; Infante Ferreira, C.A. [Technische Universiteit Delft, Delft (Netherlands); Krieg, J. [Unilever Foods and Health Research Institute, Vlaardingen (Netherlands)

    2005-12-01

    A review is presented of solar driven refrigeration technologies. A subdivision is made between electric driven and thermal driven systems. Their potential and stage of development are discussed. The electric driven systems include Stirling, thermo-acoustic, thermoelectric, electrochemical and membrane assisted absorption systems. The thermal driven systems include absorption and adsorption systems. A model is used to compare the performance of the different solutions. [Dutch] Dit artikel geeft een overzicht van zon-aangedreven koeltechnologieen. Er wordt onderscheid gemaakt tussen elektrisch en thermisch aangedreven systemen. Hun potentieel en niveau van ontwikkeling worden besproken. De elektrisch aangedreven systemen omvatten Stirling, thermo-akoestisch, thermo-elektrisch, elektrochemisch en membraanondersteund absorptiesystemen.De warmte-aangedreven systemen omvatten absorptie en adsorptie. Er wordt gebruik gemaakt van een model om de prestaties van de verschillende alternatieven onderling te vergelijken.

  9. Transition to New Refrigerants

    Science.gov (United States)

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  10. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  11. Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application

    Science.gov (United States)

    Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

    2011-01-01

    This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

  12. Fourth sound in relativistic superfluidity theory

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  13. An enlarged superfluid model of atomic nucleus

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Horoi, M.

    1989-01-01

    The well known superfluid model (or quasiparticle phonon nuclear model (QPNM)) of atomic nucleus is enlarged by including an adequate four-nucleon effective interaction in addition to the pairing and long-range effective residual interactions. New experimental data can be explained without affecting those observables already described by the QPNM and in addition new features can be enumerated: 1) superfluidities of the neutron and proton systems may be generated by one another; 2) the phase structure is enriched by a new superfluid phase dominated by alpha-type correlations (ATC) and 3) superfluid isomers and their bands of elementary excitations are predicted. Unusual large two-nucleon and alpha transfer reactions cross sections as well as some unusual large alpha decay widths can be explained. (author). 46 refs, 3 figs, 2 tabs

  14. Didactic demonstrations of superfluidity and superconductivity phenomena

    International Nuclear Information System (INIS)

    Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.

    1980-01-01

    In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)

  15. Broken superfluid in dense quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Parganlija, Denis; Schmitt, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Alford, Mark [Department of Physics, Washington University St Louis, MO, 63130 (United States)

    2014-07-01

    Quark matter at high densities is a superfluid. Properties of the superfluid become highly non-trivial if the effects of strange-quark mass and the weak interactions are considered. These properties are relevant for a microscopic description of compact stars. We discuss the effect of a (small) explicitly symmetry-breaking term on the properties of a zero-temperature superfluid in a relativistic φ{sup 4} theory. If the U(1) symmetry is exact, chemical potential and superflow can be equivalently introduced either via (1) a background gauge field or (2) a topologically nontrivial mode. However, in the case of the explicitly broken symmetry, we demonstrate that the scenarios (1) and (2) lead to quantitatively different results for the mass of the pseudo-Goldstone mode and the critical velocity for superfluidity.

  16. Effective theory of bosonic superfluids

    International Nuclear Information System (INIS)

    Schakel, A.M.J.

    1994-01-01

    The authors discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling φ 4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. The authors calculate the critical temperature, the coefficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given

  17. Quantum turbulence in superfluids with wall-clamped normal component.

    Science.gov (United States)

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-03-25

    In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.

  18. Development of a small Stirling-cycle cooler for spaceflight applications

    Energy Technology Data Exchange (ETDEWEB)

    Werrett, S.T.; Peskett, G.D.; Davey, G.; Bradshaw, T.W.; Delderfield, J.

    1985-01-01

    The paper describes the development, from a previously proven design approach, of a robust and simple Stirling-cycle cooler with long-life potential. The need for a closed-cycle refrigerator for use in a spacecraft borne infrared radiometer is explained. The refrigerator is to supply 1 watt of cooling at 80 K for less than 80 watts of input power, be able to survive the launch environment and subsequently run for 26000 hours. Clearance seals achieved with a spring suspension developed from earlier space-proven mechanisms have led to the production of a linear split Stirling-cycle machine with no apparent life limiting features. A servo-control system, in conjunction with moving coil motors and LVDT position sensors, permits running of balanced pairs of mechanisms. The working fluid, helium at a pressure of 1.2 MPa, is contained within titanium bodies having gold O-ring seals. A vacuum-bakeout procedure, based upon experience and outgassing trials, reduces residual contaminant release to acceptable levels. A prototype refrigerator was subjected to a vibration test and has subsequently run for 6000 hours with no detectable change in performance.

  19. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  20. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1996-04-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

  1. A compact dilution refrigerator with vertical heat exchangers for operation to 2 mK

    International Nuclear Information System (INIS)

    Bunkov, Yu.M.; Guenault, A.M.; Hayward, D.J.; Jackson, D.A.; Kennedy, C.J.; Nichols, T.R.; Miller, I.E.; Pickett, G.R.; Ward, M.G.

    1991-01-01

    A compactly designed dilution refrigerator with closely packed, vertical heat exchangers is described. The refrigerator reaches a temperature of 2 mK and is easily constructed, since the sintered heat exchangers are straight units. Vibrating wire resonators are employed in the mixing chamber as diagnostic tools, which may act as both thermometers and phase-boundary level indicators. There is a design problem in the vertical arrangement, namely, the sumps on the concentrated phase side that can slowly fill with dilute phase and degrade the performance. The problem is solved by draining the superfluid 4 He component in any collected dilute phase through superleaks into the mixing chamber

  2. Apparent de-wetting due to superfluid flow

    CERN Document Server

    Poujade, M; Rolley, E

    2002-01-01

    We have investigated the wetting behaviour of superfluid helium-4 on silicon. Surprisingly, we observe pseudo-de-wetting: though a thick superfluid film covers the substrate, the meniscus displays a finite contact angle which decreases from about 5 deg C at low temperature down to zero at the superfluid transition. We show that this behaviour can be explained by a pressure decrease due to a superfluid flow, closely related to the Kontorovich effect. (authors)

  3. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  4. Nonuniform quantum turbulence in superfluids

    Science.gov (United States)

    Nemirovskii, Sergey K.

    2018-04-01

    The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.

  5. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  6. Developments in magnetocaloric refrigeration

    International Nuclear Information System (INIS)

    Brueck, Ekkes

    2005-01-01

    Modern society relies on readily available refrigeration. Magnetic refrigeration has three prominent advantages compared with compressor-based refrigeration. First, there are no harmful gases involved; second, it may be built more compactly as the working material is a solid; and third, magnetic refrigerators generate much less noise. Recently a new class of magnetic refrigerant-materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: they exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase-transition of first order. This MCE is larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review we compare the different materials considering both scientific aspects and industrial applicability. Because fundamental aspects of MCE are not so widely discussed, we also give some theoretical considerations. (topical review)

  7. Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions with charged condensates coupled electromagnetically

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, B.A.

    1987-01-01

    Four levels of nonlinear hydrodynamic description are presented for a nondissipative multicondensate solution of superfluids with vorticity. First, the multivelocity superfluid (MVSF) theory is extended to the case of a multivelocity superfluid plasma (MVSP), in which some of the superfluid condensates (protons, say) are charged and coupled electromagnetically to an additional, normal, charged fluid (electrons). The resulting drag-current density is derived due to the electromagnetic coupling of the condensates with the normal fluids. For the case of one charged condensate, the MVSP equations simplify to what we call superfluid Hall magnetohydrodynamics (SHMHD) in the approximation that displacement current and electron inertia are negligible, and local charge neutrality is imposed. The contribution of the charged condensate to the Hall drift force is determined. In turn, neglecting the Hall effect in SHMHD gives the equations of superfluid magnetohydrodynamics (SMHD). Each set of equations (MVSF, MVSP, SHMHD, and SMHD) is shown to be Hamiltonian and to possess a Poisson bracket associated with the dual space of a corresponding semidirect-product Lie algebra with a generalized two-cocycle defined on it. Topological conservation laws (helicities) associated with the kernels of these Lie algebras are also discussed as well as those associated physically with generalized Kelvin theorems for conservation of superfluid circulation around closed loops moving with the normal fluid

  8. Stirling engine design manual, 2nd edition

    Science.gov (United States)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  9. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  10. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  11. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  12. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  13. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  14. Phenomenological theory of superfluidity and superconductivity

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1994-01-01

    Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperatures T c of superfluid 3 He and 4 He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors. T c for atomic H is estimated. T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths

  15. Wave processes in a superfluid liquid

    International Nuclear Information System (INIS)

    Sanikidze, D.G.

    1981-01-01

    The monograph is devoted to theory of sound wave propagation in superfluid He 4 and He 3 -He 4 solutions. Hydrodynamic theory of sound oscillation propagation in superfluid liquid under conditions of confined geometry is given. In particular considered are problems of propagation of the first, second and fourth sounds, dispersion, attenuation and absorption, sound propagation in films, channels and waveguides. The monograph summarizes a certain stage of studying different sound oscillations in superfluid liquid and along with original results contains also results obtained by other investigators. The theory and experimental investigations carried on both in the Soviet Union and abroad are compared. The monograph is intended for specialists working in the area of low temperature physics and for students of the given speciality [ru

  16. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  17. Realization of mechanical rotation in superfluid helium

    Science.gov (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  18. Hydrodynamics of compressible superfluids in confined geometries

    International Nuclear Information System (INIS)

    Malmi-Kakkada, Abdul N; Valls, Oriol T; Dasgupta, Chandan

    2014-01-01

    We present a study of the hydrodynamics of compressible superfluids in confined geometries. We use a perturbative procedure in terms of the dimensionless expansion parameter (v/v s ) 2 where v is the typical speed of the flow and v s is the speed of sound. A zero value of this parameter corresponds to the incompressible limit. We apply the procedure to two specific problems: the case of a trapped superfluid with a Gaussian profile of the local density, and that of a superfluid confined in a rotating obstructed cylinder. We find that the corrections due to finite compressibility which are, as expected, negligible for liquid He, are important but amenable to the perturbative treatment for typical ultracold atomic systems. (paper)

  19. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  20. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  1. Free energy of superfluid 3He

    International Nuclear Information System (INIS)

    Rainer, D.; Serene, J.W.

    1976-01-01

    A systematic scheme is presented for calculating the free energy of superfluid Fermi liquids by an asymptotic expansion in the small parameter T/subc//T/subF/. This scheme is used to evaluate the strong-coupling corrections to the free energy of superfluid 3 He. It is shown that the leading corrections can be expressed in terms of the normal-state quasiparticle scattering amplitude, and the strong-coupling results are discussed using the s-p approximation for the scattering amplitude

  2. Superfluid helium-4: An introductory review

    International Nuclear Information System (INIS)

    Vinen, W.F.

    1983-01-01

    Helium was first liquefied by Kamerlingh Onnes in Leiden in July 1908, an achievement that followed much careful and painstaking work. On the same day Onnes reduced the temperature of his helium to a value approaching lK, and he must therefore have produced and observed the superfluid phase. These experimental discoveries led very quickly to a series of remarkable theoretical contributions that laid the foundations for all subsequent work. The period since the second world war has of course seen an enormous amount of work on superfluid helium-4. In reviewing it the author tries to see it in terms of two threads: one originating from Landau; the other from London

  3. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  4. Dissipation in the superfluid helium film

    International Nuclear Information System (INIS)

    Turkington, R.R.; Harris-Lowe, R.F.

    1977-01-01

    We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021

  5. Stirling co-generation plants - Is this the future?; Stirling-BHKWs - Zukunft oder...?

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, M.

    2000-07-01

    This article gives an overview of the history and main features of Stirling engines and their use in combined-cycle power generation. The principles behind the Stirling and its thermo-dynamic characteristics are discussed and compared with the internal combustion engine and other thermally-driven machines. The two main types of Stirling - the free-piston and the kinematic Stirling engines are discussed. Also, the important role played by the burner in the operation of Stirling engines is discussed. The use of Stirling engines as a basis for small combined heat and power (CHP) units to produce thermal heating power and electricity is examined. Three examples - the implementations made by the Solo, Whispergen and SIG companies - are looked at in detail and compared with alternative CHP-solutions using small gas engines and fuel cells. The advantages and disadvantages of these different solutions are listed.

  6. Cryogenic mixed refrigerant processes

    CERN Document Server

    Venkatarathnam, Gadhiraju

    2010-01-01

    Teaches the need for refrigerant mixtures, the type of mixtures that can be used for different refrigeration and liquefaction applications, the different processes that can be used and the methods to be adopted for choosing the components of a mixture and their concentration for different applications.

  7. The Stirling engine mechanism optimization

    Directory of Open Access Journals (Sweden)

    Jiří Podešva

    2016-03-01

    Full Text Available A special type of the gas engine with external combustion is called Stirling engine. The mechanism has two pistons with two volumes inside. The pistons are connected together through cooler, regenerator and warmer. The engine effectivity depends on the piston movement behaviour. The usual sinusoidal time curve leads to low effectiveness. The quick movement from lower to upper position with a certain delay in both top and bottom dead centres is more effective. The paper deals with three types of mechanisms, analyzing the piston movement, and their behavior. Special emphasize is taken to the piston movement regime.

  8. Refrigerants and environment

    Science.gov (United States)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  9. Spin Superfluidity and Magnone BEC in He-3

    Science.gov (United States)

    Bunkov, Yury

    2011-03-01

    The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).

  10. Free-piston Stirling component test power converter test results and potential Stirling applications

    Science.gov (United States)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  11. Variable displacement alpha-type Stirling engine

    Science.gov (United States)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  12. Idealization of The Real Stirling Cycle

    Directory of Open Access Journals (Sweden)

    Červenka Libor

    2016-12-01

    Full Text Available The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT Power commercial simulation software.

  13. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  14. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  15. Condensate fraction in superfluid 4He

    International Nuclear Information System (INIS)

    Olinto, A.C.

    1986-01-01

    Recently, a relationship between the chemical potential and the condensate fraction η o (T) has been derived for all temperatures in the superfluid region. An analysis of liquid 4 He chemical potential data yields η o (T=0) = 0.062 and η o (T) is in excellent with the empirical results of Svensson, Sears, and Griffin. (Autor) [pt

  16. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  17. Small objects in superfluid 3He

    International Nuclear Information System (INIS)

    Rainer, D.; Vuorio, M.

    1977-02-01

    Distortions in the superfluid order parameter around a small object in 3 He are calculated together with the supercurrents and the angular momentum induced by it in the liquid. The forces acting on the impurity by the liquid texture structure are also considered. (author)

  18. Multipole pair vibrations in superfluid 3He

    International Nuclear Information System (INIS)

    Baldo, M.; Giansiracusa, G.; Lombardo, U.; Pucci, R.; Petronio, G.

    1978-01-01

    Starting from a path integral formation of the 3 He superfluidity, the authors study the pair vibrations around the BCS solution. For both the BW and ABM states get a set of possible excitations. In particular it is shown that a new type of excitation is present for pure 1 = 2 spin singlet vibration. (Auth.)

  19. Magnus force in superfluids and superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1997-01-01

    The forces on the vortex, transverse to its velocity, are considered. In addition to the superfluid Magnus force from the condensate (superfluid component), there are transverse forces from thermal quasiparticles and external fields violating the Galilean invariance. The forces between quasiparticles and the vortex originate from interference of quasiparticles with trajectories on the left and on the right from the vortex like similar forces for electrons interacting with the thin magnetic-flux tube (the Aharonov-Bohm effect). These forces are derived for phonons from the equations of superfluid hydrodynamics, and for BCS quasiparticles from the Bogolyubov endash de Gennes equations. The effect of external fields breaking Galilean invariance is analyzed for vortices in the two-dimensional Josephson junction array. The symmetry analysis of the classical equations for the array shows that the total transverse force on the vortex vanishes. Therefore the Hall effect which is linear in the transverse force is absent also. This means that the Magnus force from the superfluid component exactly cancels with the transverse force from the external fields. The results of other approaches are also brought together for discussion. copyright 1997 The American Physical Society

  20. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  1. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  2. Continuing Development for Free-Piston Stirling Space Power Systems

    Science.gov (United States)

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  3. Raytheon Stirling/pulse Tube Cryocooler Development

    Science.gov (United States)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  4. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  5. Stirling convertor performance mapping test results

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .

  6. Simple and Clear Proofs of Stirling's Formula

    Science.gov (United States)

    Niizeki, Shozo; Araki, Makoto

    2010-01-01

    The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.

  7. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  8. Alternative thermodynamic cycle for the Stirling machine

    Science.gov (United States)

    Romanelli, Alejandro

    2017-12-01

    We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic process plays a central role. Analytical expressions for pressure and temperatures of the working gas are obtained as a function of the volume and the parameter that characterizes the polytropic process. This approach achieves closer agreement with the experimental pressure-volume diagram and can be adapted to any type of Stirling engine.

  9. Recent Stirling engine loss - understanding results

    International Nuclear Information System (INIS)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-01-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed

  10. Public Refrigerated Warehouses

    Data.gov (United States)

    Department of Homeland Security — The International Association of Refrigerated Warehouses (IARW) came into existence in 1891 when a number of conventional warehousemen took on the demands of storing...

  11. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  12. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    Science.gov (United States)

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  13. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  14. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  15. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  17. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  18. Contribution to the study of a magnetic refrigeration between 4.2 and 1.8 kelvin

    International Nuclear Information System (INIS)

    Delpuech, Claude.

    1980-11-01

    This thesis includes three parts. (1) Construction of a study alternating refrigerator. This is essentially a double acting machine, with ancillary refrigeration by helium expansion. This refrigerator operates in a liquid helium bath at 4.2 K and the cold source is a superfluid bath whose temperature can be brought down to 1.6 K. The magnetic components, actuated by a periodic translation movement, are magnetized cyclically in the 4.2 K bath, then demagnetized in the central bath forming the cold source. The bar slides in guide bearings, isolating the central chamber of the 4.2 K bath. This can be cooled through the copper wall by the refrigeration bath. A relief valve and a level gauge enable the operation of the ancillary refrigerator to be adjusted. A temperature of under 1.8 K was obtained in a superfluid bath at atmospheric pressure. (2) Study of possible thermal exchange improvements in supercritical helium by artificially creating turbulency between two walls. This study could concern rotary machines described in an addendum. (3) Some physical properties of paramagnetic rare earth salts are also studied [fr

  19. Acquisition system testing with superfluid helium

    International Nuclear Information System (INIS)

    Anderson, J.E.; Fester, D.A.; DiPirro, M.J.

    1988-01-01

    NASA is evaluating both a thermomechanical pump and centrifugal pump for the SHOOT experiment using capillary fluid acquisition systems. Tests were conducted for these systems with superfluid helium under adverse operating conditions. Minus one-g outflow tests were run in conjunction with the thermomechanical pump. Both fine mesh screen and porous sponges were tested. A screen acquisition device was also tested with the low-NPSH centrifugal pump. Results to date show that the screen and sponge are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to four cm. This is more than sufficient for the SHOOT application. Results with the sponge were reproducible while those with the screen could not always be repeated

  20. Landau superfluids as nonequilibrium stationary states

    International Nuclear Information System (INIS)

    Wreszinski, Walter F.

    2015-01-01

    We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system

  1. Modern trends in superconductivity and superfluidity

    CERN Document Server

    Kagan, M Yu

    2013-01-01

    This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetism in novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject...

  2. Sound propagation in elongated superfluid fermionic clouds

    International Nuclear Information System (INIS)

    Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.

    2006-01-01

    We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor √(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate

  3. Bose-Einstein condensation and superfluidity

    CERN Document Server

    Pitaevskii, Lev

    2016-01-01

    This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.

  4. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  5. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  6. A cryogenic test stand for full length SSC magnets with superfluid capability

    International Nuclear Information System (INIS)

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs

  7. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  8. Superfluidity of bosons on a deformable lattice

    International Nuclear Information System (INIS)

    Jackeli, G.; Ranninger, J.

    2001-01-01

    We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts

  9. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  10. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  11. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  12. James Stirling Regionalismo y modernidad

    Directory of Open Access Journals (Sweden)

    Javier de Esteban Garbayo

    2015-05-01

    Full Text Available ResumenEn los años treinta, la arquitectura moderna se había introducido en los más remotos lugares del mundo enfrentándose con la infinita idiosincrasia de lo local, y al mismo tiempo, el arquitecto, sintiendo las limitaciones de su estilo e intentando ampliar su vocabulario, se embarcó en un proceso de difusión, asimilación y personalización.La idea de una renovada época después de la posguerra británica, sería compartida por una joven generación de arquitectos con el fin de encontrar una nueva forma de modernidad.Si en sus proyectos domésticos de mediados de los cincuenta, James Stirling partió de una aproximación al regionalismo y a la 'tradición funcional' con el fin de renovar el lenguaje moderno, no abandonaría la idea 'programática' inicial de entender la arquitectura desde una consistencia formal y una lógica que combinaba 'una síntesis común del pasado reciente y una certera actitud hacia el futuro'. AbstractThirties, modern architecture had percolated into remote corners of the world, encountering the infinite idiosyncrasies of locality, and, at the same time, Architects, feelings the limitations of their style and becoming intent upon extending their vocabulary, embarked upon a process of diffusion, assimilation and personalitation.The idea of a renewed period after British postwar, was shared for a new young architects generationto find a new way of modernity.While in his mid fifties housing projects, James Stirling approached to 'regionalism' and 'the functional tradition' to renew the modern language, he wouldn't reject the programmatic idea to understand architecture from a logic and formal consistency that combine 'a common synthesis of the recent past and a certain attitude toward the future'.

  13. Indirect refrigeration systems with natural refrigerants

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Christensen, Kim Gardø; Jensen, Per Henrik

    1998-01-01

    Heat transfer for boiling and condensing carbon dioxide has been investigated.Heat transfer for carbon dioxide evaporating inside pipe has been measured and compared with Shah's correlation. The measured heat transfer coefficient is much higher than the value determined with the correlation.A shell......-and-tube heat exchanger with carbon dioxide on the shell side and flow ice inside the tubes has been used to investigate the heat transfer for condensing carbon dioxide.At leats is mentioned results obtained with a frozen food display case using carbone dioxide as refrigerant....

  14. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  15. Symmetric structures of coherent states in superfluid helium-4

    International Nuclear Information System (INIS)

    Ahmad, M.

    1981-02-01

    Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)

  16. Normal-superfluid interface for polarized fermion gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    Recent experiments on imbalanced fermion gases have proved the existence of a sharp interface between a superfluid and a normal phase. We show that, at the lowest experimental temperatures, a temperature difference between normal N and superfluid SF phases can appear as a consequence of the blocking

  17. Fast Whole-Engine Stirling Analysis

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  18. Combining solid biomass combustion and stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemers, W.; Senkel, N. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany)], e-mail: werner.siemers@cutec.de

    2012-11-01

    Decentralised electricity production in combination with and based on biomass still finds some difficulties in real applications. One concept favoured in a recent project is the connection of a wood chip furmace with a Stirling engine. Because the direct exposure of the Stirling head causes numerous problems, the solution is sought in designing an indirect heat transfer system. The main challenge is the temperature level, which should be reached for high electrical efficiencies. Temperatures above 1000 deg C at the biomass combustion side are needed for an efficient heat transfer at some 850 deg C at the Stirling engine in theory. Measurements on both installations have been conducted and analyzed. After this, the design phase is started. However, no final choice on the design has been taken.

  19. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  20. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  1. Cost estimating Brayton and Stirling engines

    Science.gov (United States)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  2. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  3. Stirling Technology Development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  4. Stirling Technology Development at NASA GRC. Revised

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  5. Stirling technology development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  6. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  7. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  8. Nonlinear hydrodynamic equations for superfluid helium in aerogel

    International Nuclear Information System (INIS)

    Brusov, Peter N.; Brusov, Paul P.

    2003-01-01

    Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )

  9. Vortex structure in superfluid color-flavor locked quark matter

    Directory of Open Access Journals (Sweden)

    Alford Mark G.

    2016-01-01

    Full Text Available The core region of a neutron star may feature quark matter in the color-flavor-locked (CFL phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.

  10. Superfluid response of two-dimensional parahydrogen clusters in confinement

    Energy Technology Data Exchange (ETDEWEB)

    Idowu, Saheed; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)

    2015-04-07

    We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.

  11. Helicity conservation and twisted Seifert surfaces for superfluid vortices.

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  12. Induced interactions in a superfluid Bose-Fermi mixture

    DEFF Research Database (Denmark)

    Kinnunen, Jami; Bruun, Georg

    2015-01-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...

  13. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  14. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    Science.gov (United States)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-03-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  15. Pinning down the superfluid and measuring masses using pulsar glitches.

    Science.gov (United States)

    Ho, Wynn C G; Espinoza, Cristóbal M; Antonopoulou, Danai; Andersson, Nils

    2015-10-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  16. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  17. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  18. Reversible and irreversible heat engine and refrigerator cycles

    Science.gov (United States)

    Leff, Harvey S.

    2018-05-01

    Although no reversible thermodynamic cycles exist in nature, nearly all cycles covered in textbooks are reversible. This is a review, clarification, and extension of results and concepts for quasistatic, reversible and irreversible processes and cycles, intended primarily for teachers and students. Distinctions between the latter process types are explained, with emphasis on clockwise (CW) and counterclockwise (CCW) cycles. Specific examples of each are examined, including Carnot, Kelvin and Stirling cycles. For the Stirling cycle, potentially useful task-specific efficiency measures are proposed and illustrated. Whether a cycle behaves as a traditional refrigerator or heat engine can depend on whether it is reversible or irreversible. Reversible and irreversible-quasistatic CW cycles both satisfy Carnot's inequality for thermal efficiency, η ≤ η C a r n o t . Irreversible CCW cycles with two reservoirs satisfy the coefficient of performance inequality K ≤ K C a r n o t . However, an arbitrary reversible cycle satisfies K ≥ K C a r n o t when compared with a reversible Carnot cycle operating between its maximum and minimum temperatures, a potentially counterintuitive result.

  19. Superfluid Kubo formulas from partition function

    International Nuclear Information System (INIS)

    Chapman, Shira; Hoyos, Carlos; Oz, Yaron

    2014-01-01

    Linear response theory relates hydrodynamic transport coefficients to equilibrium retarded correlation functions of the stress-energy tensor and global symmetry currents in terms of Kubo formulas. Some of these transport coefficients are non-dissipative and affect the fluid dynamics at equilibrium. We present an algebraic framework for deriving Kubo formulas for such thermal transport coefficients by using the equilibrium partition function. We use the framework to derive Kubo formulas for all such transport coefficients of superfluids, as well as to rederive Kubo formulas for various normal fluid systems

  20. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  1. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  2. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  3. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  4. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  5. Experimental research on the Stirling engine

    Science.gov (United States)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  6. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  7. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  8. The Stirling Lesson-Sampling Instruments.

    Science.gov (United States)

    White, D. R.

    A long-term Leverhulme Research Project was established at Stirling University in 1970 to investigate the potential of microteaching as a major ingredient in the preparation of graduate high school teachers in Scotland. Members of the research team developed systematic observation schedules for each of the skills, in order to sharpen the focus of…

  9. Resource letter SH-1: superfluid helium

    International Nuclear Information System (INIS)

    Hallock, R.B.

    1982-01-01

    The resource letter covers the general subject of superfluid helium and treats 3 He and 3 He-- 4 He mixtures as well as 4 He. No effort has been made to include the fascinating experiments on either solid helium or the equally fascinating work on adsorbed helium where the helium coverage is below that necessary for superfluidity. An earlier resource letter by C. T. Lane [Am. J. Phys. 35, 367 (1967)] may be consulted for additional comments on some of the cited earlier manuscripts, but the present work is self-contained and may be used independently. Many high-quality research reports have not been cited here. Rather, the author has tried in most cases to include works particularly readable or relevant. There is a relatively heavy emphasis on experimental references. The primary reason is that these works tend to be more generally readable. No doubt some works that might have been included, have not, and for this the author takes responsibility with apology. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are marked with an asterisk(*). Following each referenced work the general level of difficulty is indicated by E, I, or A for elementary, intermediate, or advanced

  10. Theory of superfluidity macroscopic quantum waves

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs [pt

  11. Superfluidity, Bose condensation and neutron scattering in liquid 4He

    International Nuclear Information System (INIS)

    Silver, R.N.

    1997-01-01

    The relation between superfluidity and Bose condensation in 4 He provides lessons that may be valuable in understanding the strongly correlated electron system of high T c superconductivity. Direct observation of a Bose condensate in the superfluid by deep inelastic neutron scattering measurements has been attempted over many years. But the impulse approximation, which relates momentum distributions to neutron scattering structure functions, is broadened by final state effects. Nevertheless, the excellent quantitative agreement between ab initio quantum many body theory and high precision neutron experiments provides confidence in the connection between superfluidity and Bose condensation

  12. A hydrodynamic model for superfluid helium with vortices

    International Nuclear Information System (INIS)

    Lhuillier, D.; Francois, M.

    1975-01-01

    Although their existence is experimentally well verified, the so-called mutual friction force Fsub(sn) and superfluid friction force Fsub(s) cannot emerge from the Landau irrotational model of superfluidity. Up to now these forces have merely been added to the Landau equations but this is untenable since, as a consequence, one destroys the irrotationality condition with which the equations have expressly been built. It is shown that these friction forces appear in a natural way in a model where superfluid helium with vortices is compared to a fluid with a conserved intrinsic momentum. (Auth.)

  13. Superfluid phase stiffness in electron doped superconducting Gd-123

    Science.gov (United States)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  14. Population imbalance as a vortex catalyst in Fermi superfluids

    International Nuclear Information System (INIS)

    Tempere, J.; Devreese, J.T.

    2008-01-01

    Pairing leads to superfluidity in ultracold atomic gases, but this pairing can be frustrated when a population imbalance is present between the pairing partners. Here we investigate how vortices in the fermionic superfluid are affected by imbalance. We show that the vortex core radius is increased by imbalance, accommodating excess component atoms. This has two intriguing consequences. Firstly, a small imbalance acts as a catalyst for vortex formation, decreasing the critical rotation frequency. Secondly, imbalanced gases near critical imbalance can exhibit rotationally induced superfluidity

  15. Decoupling of Solid 4He Layers under the Superfluid Overlayer

    Science.gov (United States)

    Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru

    2018-03-01

    It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.

  16. Observation of spin superfluidity: YIG magnetic films and beyond

    Science.gov (United States)

    Sonin, Edouard

    2018-03-01

    From topology of the order parameter of the magnon condensate observed in yttrium-iron-garnet (YIG) magnetic films one must not expect energetic barriers making spin supercurrents metastable. But we show that some barriers of dynamical origin are possible nevertheless until the gradient of the phase (angle of spin precession) does not exceed the critical value (analog of the Landau critical velocity in superfluids). On the other hand, recently published claims of experimental detection of spin superfluidity in YIG films and antiferromagnets are not justified, and spin superfluidity in magnetically ordered solids has not yet been experimentally confirmed.

  17. Lenr:. Superfluids, Self-Trapping and Non-Self States

    Science.gov (United States)

    Chubb, Talbot A.

    2005-12-01

    LENR ion band state models involve deuteron many-body systems resembling superfluids. The physics of atom Bose-Einstein condensates in optical lattices teaches that superfluid behavior occurs when the potential barriers between adjacent potential wells permit high tunneling rates and the well potentials are shallow. These superfluids have fractional occupation of individual wells. Well periodic symmetry is not affected by the presence of the atoms. This behavior suggests that deuterons in a lattice should be in non-self-trapping sites, which may indicate that D+Bloch occupies the Pd tetrahedral sites.

  18. Three-stage linear, split-Stirling cryocooler for 1 to 2K magnetic cold stage

    International Nuclear Information System (INIS)

    Longsworth, R.C.

    1993-08-01

    A long-life, linear, high efficiency 8K split Stirling cycle cryocooler was designed, built, and tested. The refrigerator is designed for cooling a 50 mW, 1.5K magnetic cold stage. Dual opposed piston compressors are driven by moving-coil linear motors. The three stage expander, although not completed, is also driven by a linear motor and is designed to produce 1 SW at 60K, 4W at 16K, and 1.2W at 8K. The cold regenerator employs a parallel gap construction for high efficiency. The key technology areas addressed include warm and cold flexible suspension bearings and a new cold regenerator geometry for high efficiency at 8K

  19. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    CERN Document Server

    Ferlin, G; Claudet, S; Pezzetti, M

    2015-01-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  20. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    Science.gov (United States)

    Ferlin, G.; Tavian, L.; Claudet, S.; Pezzetti, M.

    2015-12-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  1. Flammability Indices for Refrigerants

    Science.gov (United States)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  2. Development of a Battery-Free Solar Refrigerator

    Science.gov (United States)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls

  3. Quantum-Circuit Refrigerator

    Science.gov (United States)

    MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann

    Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.

  4. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  5. Superfluidity (a bibliography with abstracts). Report for 1964--Feb 1976

    International Nuclear Information System (INIS)

    Reimherr, G.W.

    1976-03-01

    The cited reports discuss superfluidity in liquid helium, with both helium 3 and helium 4 considered. Topics discussed include phase studies, heat transfer, hydrodynamics, rotons, zero sound, first sound, second sound, third sound, and fourth sound. (Contains 142 abstracts)

  6. Second sound velocities in superfluid 3He-4He solutions

    International Nuclear Information System (INIS)

    Dikina, L.S.; Kotenev, G.Ya.; Rudavskij, Eh.Ya.

    1978-01-01

    The velocities of the second sound in the superfluid He 3 -He 4 solutions were measured by the pulse method in the range of temperatures from 1.3 K to Tsub(lambda) and for He 3 concentrations up to 13%.The results obtained supplemented by those available before give the complete description of the concentration and temperature dependences of the second sound velocity in superfluid He 3 -He 4 solutions. The comprehensive comparison of the experimental data on the velocity of the second sound with the theoretical calculations for the superfluid solutions with arbitrary content of He 3 is performed. The good agreement is found between experiment and the theory. The experimental data obtained are used for determination of the potential, which determines the properties of the superfluid solutions

  7. Identifying a Superfluid Reynolds Number via Dynamical Similarity.

    Science.gov (United States)

    Reeves, M T; Billam, T P; Anderson, B P; Bradley, A S

    2015-04-17

    The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Re(s), that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Re(s)≈0.7, irrespective of obstacle width.

  8. Sustained propagation and control of topological excitations in polariton superfluid

    Science.gov (United States)

    Pigeon, Simon; Bramati, Alberto

    2017-09-01

    We present a simple method to compensate for losses in a polariton superfluid. Based on a weak support field, it allows for the extended propagation of a resonantly driven polariton superfluid with minimal energetic cost. Moreover, this setup is based on optical bistability and leads to the significant release of the phase constraint imposed by resonant driving. This release, together with macroscopic polariton propagation, offers a unique opportunity to study the hydrodynamics of the topological excitations of polariton superfluids such as quantized vortices and dark solitons. We numerically study how the coherent field supporting the superfluid flow interacts with the vortices and how it can be used to control them. Interestingly, we show that standard hydrodynamics does not apply for this driven-dissipative fluid and new types of behaviour are identified.

  9. Adiabatic effective action for vortices in neutral and charged superfluids

    International Nuclear Information System (INIS)

    Hatsuda, M.; Sato, M.; Yahikozawa, S.; Hatsuda, T.

    1996-01-01

    Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed

  10. Boundary effects on sound propagation in superfluids

    International Nuclear Information System (INIS)

    Jensen, H.H.; Smith, H.; Woelfle, P.

    1983-01-01

    The attenuation of fourth sound propagating in a superfluid confined within a channel is determined on a microscopic basis, taking into account the scatter of the quasiparticles from the walls. The Q value of a fourth-sound resonance is shown to be inversely proportional to the stationary flow of thermal excitations through the channel due to an external force. Our theoretical estimates of Q are compared with experimentally observed values for 3 He. The transition between first and fourth sound is studied in detail on the basis of two-fluid hydrodynamics, including the slip of the normal component at the walls. The slip is shown to have a strong influence on the velocity and attenuation in the transition region between first and fourth sound, offering a means to examine the interaction of quasiparticles with a solid surface

  11. On superconductivity and superfluidity. A scientific autobiography

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, Vitaly L. [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.

    2009-07-01

    This book presents the Nobel Laureate Vitaly Ginzburg's views on the development in the field of superconductivity. It contains a selection of Ginzburg's key writings, including his amended version of the Nobel lecture in Physics 2003. Also included are an expanded autobiography, which was written for the Nobel Committee, an article entitled 'A Scientific Autobiography: An Attempt,' a fundamental article co-written with L.D. Landau entitled 'To the theory of superconductivity,' an expanded review article 'Superconductivity and superfluidity (what was done and what was not done),' and some newly written short articles about superconductivity and related subjects. So, in toto, presented here are the personal contributions of Ginzburg, that resulted in the Nobel Prize, in the context of his scientific biography. (orig.)

  12. On superconductivity and superfluidity. A scientific autobiography

    International Nuclear Information System (INIS)

    Ginzburg, Vitaly L.

    2009-01-01

    This book presents the Nobel Laureate Vitaly Ginzburg's views on the development in the field of superconductivity. It contains a selection of Ginzburg's key writings, including his amended version of the Nobel lecture in Physics 2003. Also included are an expanded autobiography, which was written for the Nobel Committee, an article entitled ''A Scientific Autobiography: An Attempt,'' a fundamental article co-written with L.D. Landau entitled ''To the theory of superconductivity,'' an expanded review article ''Superconductivity and superfluidity (what was done and what was not done),'' and some newly written short articles about superconductivity and related subjects. So, in toto, presented here are the personal contributions of Ginzburg, that resulted in the Nobel Prize, in the context of his scientific biography. (orig.)

  13. On superconductivity and superfluidity a scientific autobiography

    CERN Document Server

    Ginzburg, Vitalii Lazarevich

    2009-01-01

    This book presents the Nobel Laureate Vitaly Ginzburg's views on the development in the field of superconductivity. It contains a selection of Ginzburg's key writings, including his amended version of the Nobel lecture in Physics 2003. Also included are an expanded autobiography, which was written for the Nobel Committee, an article entitled "A Scientific Autobiography: An Attempt," a fundamental article co-written with L.D. Landau entitled "To the theory of superconductivity," an expanded review article "Superconductivity and superfluidity (what was done and what was not done)," and some newly written short articles about superconductivity and related subjects. So, in toto, presented here are the personal contributions of Ginzburg, that resulted in the Nobel Prize, in the context of his scientific biography.

  14. Self-energy dispersion effects on neutron matter superfluidity

    International Nuclear Information System (INIS)

    Zuo Wei

    2001-01-01

    The effects of the dispersion and ground state correlation of the single particle self-energy on neutron matter superfluidity have been investigated in the framework of the Extended Brueckner-Hartree-Fock and the generalized BCS approaches. A sizable reduction of the energy gap is found due to the energy dependence of the self-energy. And the inclusion of the ground state correlations in the self-energy suppresses further the neutron matter superfluidity

  15. Superfluid compressibility and the inertial mass of a moving singularity

    International Nuclear Information System (INIS)

    Duan, J.

    1993-01-01

    The concept of finite compressibility of a Fermi superfluid is used to reconsider the problem of inertial mass of vortex lines in both neutral and charged superfluids at T=0. For the charged case, in contrast to previous works where perfect screening was assumed, we take proper account of electromagnetic screening and solve the bulk charge distribution caused by a moving vortex line. A similar problem for a superconducting thin film is also considered

  16. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    Science.gov (United States)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  17. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    Science.gov (United States)

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  18. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  19. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  20. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  1. Cermet Coatings for Solar Stirling Space Power

    Science.gov (United States)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.

  2. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  3. Optimization of an irreversible Stirling regenerative cycle

    International Nuclear Information System (INIS)

    Aragón-González, G; Cano-Bianco, M; León-Galicia, A; Rivera-Camacho, J M

    2015-01-01

    In this work a Stirling regenerative cycle with some irreversibilities is analyzed. The analyzed irreversibilities are located at the heat exchangers. They receive a finite amount of heat and heat leakage occurs between both reservoirs. Using this model, power and the efficiency at maximum power are obtained. Some optimal design parameters for the exchanger heat areas and thermal conductances are presented. The relation between the power, efficiency and the results obtained are shown graphically

  4. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  5. Reliability Issues in Stirling Radioisotope Power Systems

    Science.gov (United States)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  6. Energy optimisation of domestic refrigerators

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1998-01-01

    This paper describes the main results of a research project with the objective of reducing the energy consumption of domestic refrigerators by increasing the efficiency of the refrigeration system. The improvement of the system efficiency was to be obtained by:1) Introducing continuous operation ...

  7. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  8. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  9. Modeling for Control of a Wobble-Yoke Stirling Engine

    NARCIS (Netherlands)

    Garcia Canseco, E.; Scherpen, J.M.A.; Kuindersma, M.

    2009-01-01

    In this paper we derive the dynamical model of a four–cylinder double–acting wobble–yoke Stirling engine introduced originally by [1, 2]. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems perspective to obtain a

  10. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  11. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  12. Ross-Stirling engines: Variations on a theme

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G; Fauvel, R

    1986-01-01

    A new mechanism called the Ross linkage offers the prospect for compact, lightweight, long-lived, relatively low-cost, Stirling engines with excellent prospects for early commercial developed for various applications. Ross-Stirling engines are unusually compact, with installation envelope about one-third of conventional engines, piston side forces are virtually eliminated facilitating the use of dry lubricated or close tolerance, gas lubricated seals and the linkage geometry automatically favors the large bore/short ratios preferred for Stirling engines. The linkage is simple to make with few moving parts so that cost is relatively low. Various potential or actual embodiments of Ross-Stirling engines are reviewed including Stirling-Stirling gas-fired heat pumps, multicylinder power systems and cryocoolers. The system has sufficient flexibility to readily accommodate widely disparate piston stroke and cylinder diameters. Most work has been done so far with two-piston Stirling engines but the same linkage may be adopted for piston-displacer Stirling engines. 6 refs., 10 figs.

  13. Regulating Power from Supermarket Refrigeration

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    2014-01-01

    the Danfoss refrigeration test centre. The complexities of modelling demand response are demonstrated through simulation. Simulations are conducted by placing the identified model in a direct-control demand response architecture, with power reference tracking using model predictive control. The energylimited......This paper presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability for participation in the regulating power market. An ARMAX model of a supermarket refrigeration system is identified using experimental data from...... nature of demand response from refrigeration is identified as the key consideration when considering participation in the regulating power market. It is demonstrated that by restricting the operating regions of the supermarket refrigeration system, a simple relationship can be found between the available...

  14. Single-piston alternative to Stirling engines

    International Nuclear Information System (INIS)

    Glushenkov, Maxim; Sprenkeler, Martin; Kronberg, Alexander; Kirillov, Valeriy

    2012-01-01

    Highlights: ► Thermodynamic analysis of an unconventional heat engine. ► The engine has a number of advantages compared to state-of-the-art Stirling engines. ► The engine can to be fuelled with “difficult” fuels and used for micro-CHP systems. ► The energy conversion efficiency can be as high as 40–50%. ► A prototype of the engine was demonstrated. -- Abstract: Thermodynamic analysis of an unconventional heat engine was performed. The engine studied has a number of advantages compared to state-of-the-art Stirling engines. The main advantage of the engine proposed is its simplicity. A power piston is integral with a displacer and a heat regenerator. It allows solving the problem of the high-temperature sealing of the piston and the displacer typical of all types of Stirling engines. In addition the design proposed provides ideal use of the displacer volume eliminating heat losses from outside gas circuit. Both strokes of the piston are working ones in contrary to any other types of piston engines. The engine can be considered as maintenance-free as it has no piston rings or any other rubbing components requiring lubrication. The only seal is contactless and wear free. It is located in the cold part of the cylinder. As a result the leakage rate in operation can be one-two orders of magnitude as small as that in Stirling engines. Balancing of the engine is much easy compared to Stirling engines with two reciprocating masses because of the only moving part inside the engine cylinder. The engine suits ideally to be fuelled with “difficult” fuels such as bio oil and can be used as a prime mover for micro-CHP systems. The thermodynamic model developed incorporates non-ideal features of the cycle, such as specific regenerator efficiency, dead volumes and other geometrical parameters of the engine. The model shows that the energy efficiency is highly sensitive to regenerator performance. For realistic geometric and operating parameters and the

  15. Biomolecular ions in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Gonzalez Florez, Ana Isabel

    2016-01-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  16. Biomolecular ions in superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Florez, Ana Isabel

    2016-07-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  17. Microscopic and hydrodynamic theory of superfluidity in periodic solids

    International Nuclear Information System (INIS)

    Saslow, W.M.

    1977-01-01

    The microscopic theory of fourth sound and of the superfluid fraction for perfect one-component periodic solids has been derived. It is applicable to finite temperatures and is restricted to the case of well-defined excitations. One finds that the superfluid fraction is a tensor rho/sub s//sub b//sub β//rho 0 and that the fourth-sound velocity C 4 is a tensor (C 2 4 )/sub b//sub β/ = (partialrho 0 /partialμ 0 ) -1 rho/sub s//sub b//sub β/, where μ 0 and rho 0 are the spatially averaged values of the chemical potential (per unit mass) and of the number density. In addition, the exact nonlinearized hydrodynamics is derived, and for fourth sound is found to give agreement with the microscopic theory. Because the superfluid velocity for a periodic solid cannot be generated by a Galilean transformation, it is found that elastic waves are loaded by the average mass density of the system. This is in contrast to the result of Andreev and Lifshitz, which involves only the superfluid fraction. Therefore one cannot look to (hydrodynamic) elastic waves for an obvious signature of superfluidity. A study of the effect of a transducer indicates that fourth sound will be generated to a non-negligible extent only when the crystal is imperfect (i.e., it has vacancies, interstitials, or impurities). On the other hand, a heater might be an effective generator of fourth sound, provided that the mean free path for umklapp processes is sufficiently small. In the limit of zero crystallinity the theory shows that second sound, rather than fourth sound, occurs. Detection of superflow by rotation experiments is also considered. It is pointed out that, because the superfluid velocity is not Galilean, two-fluid counterflow does not occur. Hence, it appears that rapid angular acceleration or deceleration would be the best technique for bringing the superfluid into rotation

  18. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    The External combustion of the Stirling engine makes it very attractive for small-scale Combined Heat and Power (CHP) plants using bio-fuels. Especially wood chips are an attractive fuel because of the high melting point and the low content of ash. Unfortunately, it is more complicated than...... expected to use bio-fuels for a Stirling engine. The high temperature in the hot heat exchanger transferring heat from the combustion to the Stirling engine combined with the low heating value of the fuel reduce the obtainable efficiency of the plant. The limitations of the combustion temperature in order...... to avoid melted ash in the combustion chamber decrease the obtainable efficiency even further. If a Stirling engine, which has an efficiency of 28,5% using natural gas, is converted into utilization of bio-fuel, the efficiency will decrease to 17,5%. Another problem for utilization of bio-fuels in Stirling...

  19. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  20. Renormalization group approach to superfluid neutron matter

    Energy Technology Data Exchange (ETDEWEB)

    Hebeler, K.

    2007-06-06

    In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)

  1. Superfluid 3He dynamcs in 3He - 4He solutions

    International Nuclear Information System (INIS)

    Mejerovich, A.Eh.

    1984-01-01

    The dynamics of a 3 He- 4 He superfluid solution with two condensates ( 3 He and 4 He) is investigated. Despite the fact that the hydrodynamics of the system is a three-velocity one (two superfluid and one normal velocity), all the thermo- and hydrodynamic functions are determined by the value of only a single linear combination of the velocities. 0n the basis of an analogy between a moving solution and a BCS system with coupling with a non-zero momentum, the dependence of the thermodynamic quantities on the velocities and critical velocities can easily be calculated for both homogeneous and inhomogeneous phases of the solution. In a magnetic field the temperature oscillations (analogue of second sound for a superfluid solution) are accompanied by oscillations of the magnetic moment. The velocity and damping of the spin-temperature waves are determined. The orienting action of a current on the inhomogeneous phases of the solution is discussed. It is shown that the energy and size of the vortexes in a superfluid solution are, due to drag effects, oscillating functions of the effective mass of the 3 He quasirartictes (pressure). At a pressure of the order of 10 atm a first order transition should take place in the vortex line which is accompanied by an abrupt change of the circulations of superfluid velocity of 3 He for a fixed circulation of the 4 He velocity

  2. Optomechanics in a Levitated Droplet of Superfluid Helium

    Science.gov (United States)

    Brown, Charles; Harris, Glen; Harris, Jack

    2017-04-01

    A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.

  3. Two-fluid hydrodynamic modes in a trapped superfluid gas

    International Nuclear Information System (INIS)

    Taylor, E.; Griffin, A.

    2005-01-01

    In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0

  4. Superfluid H3e in globally isotropic random media

    Science.gov (United States)

    Ikeda, Ryusuke; Aoyama, Kazushi

    2009-02-01

    Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.

  5. Occurrence of hyperson superfluidity in neutron star cores

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo

    2006-01-01

    Superfluidity of Λ and Σ - admixed in neutron star (NS) cores is investigated realistically for hyperon (Y)-mixed NS models obtained using a G-matrix-based effective interaction approach. Numerical results for the equation of state (EOS) with the mixing ratios of the respective components and the hyperon energy gaps including the temperature dependence are presented. These are meant to serve as physical inputs for Y-cooling calculations of NSs. By paying attention to the uncertainties of the EOS and the YY interactions, it is shown that both Λ and Σ - are superfluid as soon as they appear although the magnitude of the critical temperature and the density region where superfluidity exists depend considerably on the YY pairing potential. Considering momentum triangle condition and the occurrence of superfluidity, it is found that a so-called hyperon cooling'' (neutrino-emission from direct Urca process including Y) combined with Y-superfluidity may be able to account for observations of the colder class of NSs. It is remarked that Λ-hyperons play a decisive role in the hyperon cooling scenario. Some comments are given regarding the consequences of the less attractive ΛΛ interaction recently suggested by the ''NAGARA event'' 6 ΛΛ He. (author)

  6. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    Science.gov (United States)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  7. Baryonic 3P2 superfluidity under charged-pion condensation with Δ isobar

    International Nuclear Information System (INIS)

    Takatsuka, T.; Tamagaki, R.

    1999-01-01

    We study the baryonic 3 P 2 superfluidity under charged-pion condensation with isobar (Δ) degrees of freedom. After a remark on motivations of the present study, the outline of theoretical framework is briefly described, typical results of the superfluid critical temperature are shown, and the possibility of coexistence of the superfluid with charged-pion condensation is discussed. (author)

  8. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen-hydrocarbon and argon-hydrocarbon refrigerants

    Science.gov (United States)

    Gurudath Nayak, H.; Venkatarathnam, G.

    2009-07-01

    There is a worldwide interest in the development of auto refrigerant cascade (ARC) refrigerators operating with refrigerant mixtures. Both flammable and non-flammable refrigerant mixtures can be used in these systems. The performance of an ARC system with optimum nitrogen-hydrocarbon and argon-hydrocarbon mixtures between 90 and 160 K is presented in this paper.

  9. Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat

    International Nuclear Information System (INIS)

    Wang, Kai; Qiu, Limin

    2017-01-01

    Highlights: • Four-stage looped thermoacoustic power generator for waste heat is studied. • Coupling position is found to have remarkable effects on performance. • Better efficiency is available when coupled near the cold ends of the cores. • The influence of the regenerator position on the efficiency is weak. • Matching between the acoustic impedances of engine and alternator is important. - Abstract: Recent developments in thermoacoustic technologies have demonstrated that multi-stage looped thermoacoustic Stirling engine would be a promising option for harvesting waste heat. Previous studies on multi-stage looped thermoacoustic systems were mainly focused on heat-driven refrigeration or heat pumping, while much fewer work were done on power generations, especially those for recovering low temperature heat. In this work, a four-stage looped thermoacoustic Stirling power generator for generating electricity from low temperature waste heat at 300 °C is systematically studied. A numerical model is built and then validated on an experimental four-stage looped thermoacoustic Stirling engine. On the basis of the validated model, the effects of the coupling position for the linear alternators and the regenerator position on the acoustic characteristics and performances of the power generation system are numerically investigated. The distributions of the acoustic fields along the loop, including the pressure amplitude, volume flow rate, phase angle, specific acoustic impedance and acoustic power, are presented and analysed for three representative coupling modes. Superior efficiency is achieved when the linear alternators are coupled near the cold ends of the thermoacoustic cores on the resonators, while more electric power is generated at the hot ends. The worst performance is expected when the linear alternators are connected at the middle of the resonators. The underling mechanisms are further explained detailedly by analysing the characteristics of the

  10. Unconventional superfluids of fermionic polar molecules in a bilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemâa, Abdelâali, E-mail: a.boudjemaa@univhb-chlef.dz

    2017-05-25

    We study unconventional superfluids of fermionic polar molecules in a two-dimensional bilayer system with dipoles are head-to-tail across the layers. We analyze the critical temperature of several unconventional pairings as a function of different system parameters. The peculiar competition between the d- and the s-wave pairings is discussed. We show that the experimental observation of such unconventional superfluids requires ultralow temperatures, which opens up new possibilities to realize several topological phases. - Highlights: • Investigation of novel superfluids of fermionic polar molecules in a bilayer geometry. • Solving the gap equation and the l-wave interlayer scattering problem. • Calculation of the critical temperature of several competing pairings using the BCS approach.

  11. On the disappearance of superfluidity in helium films

    International Nuclear Information System (INIS)

    Bannink, G.

    1983-01-01

    Experiments to investigate the changes in superfluid properties when helium films become thinner are reported. A thin-film oscillator, formed by two large filmreservoirs connected by a long and narrow tube, is used to study both the mass transport properties and the third-sound phenomena. Both sets of data are analysed in the framework of a two-fluid model. Absolute values for the areal superfluid density are deduced from the results, and also the observation of friction in the film itself is briefly discussed. A series of additional measurements of the thermo-mechanical effect in the reservoirs, with the purpose of determing the thickness at which onset of superfluidity occurs, are also reported. Finally the overall picture of the film properties is discussed on the basis of a phase diagram of the observed mobilities. (Auth.)

  12. Laszlo Tisza and the two-fluid model of superfluidity

    Science.gov (United States)

    Balibar, Sébastien

    2017-11-01

    The "two-fluid model" of superfluidity was first introduced by Laszlo Tisza in 1938. On that year, Tisza published the principles of his model as a brief note in Nature and two articles in French in the Comptes rendus de l'Académie des sciences, followed in 1940 by two other articles in French in the Journal de physique et le Radium. In 1941, the two-fluid model was reformulated by Lev Landau on a more rigorous basis. Successive experiments confirmed the revolutionary idea introduced by Tisza: superfluid helium is indeed a surprising mixture of two fluids with independent velocity fields. His prediction of the existence of heat waves, a consequence of his model, was also confirmed. Then, it took several decades for the superfluidity of liquid helium to be fully understood.

  13. Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope

    Science.gov (United States)

    Chui, Talso; Penanen, Konstantin

    2004-01-01

    A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.

  14. Superfluidity of nuclei and the nucleon--phonon interaction

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Luk'yanovich, P.A.

    1989-01-01

    The Lehmann expansion for the exact one-particle Green function in a system with superfluidity is obtained. Expressions for the correlation function and mass operator are derived with allowance for a retarded nucleon--phonon interaction. Within the scope of the formalism developed, equations for the superfluidity of nuclei allowing for quasiparticle fragmentation effects are derived. It is concluded that the retarded nucleon--phonon interaction in the particle--particle channel causes a decrease of the fragmentation of the one-particle force in the vicinity of the Fermi surface. It is shown that inclusion of a nonretarded vacuum interaction of two nucleons and of a retarded interaction due to the exchange between two nucleons of low-lying highly collectivized quadrupole phonons is sufficient to provide the necessary scale of attraction in the description of pair correlations of nucleons in nuclei with developed superfluidity

  15. Holographic p-wave superfluid in Gauss–Bonnet gravity

    International Nuclear Information System (INIS)

    Liu, Shancheng; Pan, Qiyuan; Jing, Jiliang

    2017-01-01

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  16. A quantitative experiment on the fountain effect in superfluid helium

    Science.gov (United States)

    Amigó, M. L.; Herrera, T.; Neñer, L.; Peralta Gavensky, L.; Turco, F.; Luzuriaga, J.

    2017-09-01

    Superfluid helium, a state of matter existing at low temperatures, shows many remarkable properties. One example is the so called fountain effect, where a heater can produce a jet of helium. This converts heat into mechanical motion; a machine with no moving parts, but working only below 2 K. Allen and Jones first demonstrated the effect in 1938, but their work was basically qualitative. We now present data of a quantitative version of the experiment. We have measured the heat supplied, the temperature and the height of the jet produced. We also develop equations, based on the two-fluid model of superfluid helium, that give a satisfactory fit to the data. The experiment has been performed by advanced undergraduate students in our home institution, and illustrates in a vivid way some of the striking properties of the superfluid state.

  17. Holographic p-wave superfluid in Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-02-10

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  18. Update on the NASA GRC Stirling Technology development project

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  19. The NASA Next Generation Stirling Technology Program Overview

    Science.gov (United States)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  20. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  1. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  2. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  3. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  4. Demonstration Experiments for Solid-State Physics Using a Table-Top Mechanical Stirling Refrigerator

    Science.gov (United States)

    Osorio, M. R.; Morales, A. Palacio; Rodrigo, J. G.; Suderow, H.; Vieira, S.

    2012-01-01

    Liquid-free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature and solid-state physics to graduate students and specialists. Most of the devices are relatively expensive, but small-sized equipment is slowly becoming available. Here, we have designed…

  5. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  6. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    Science.gov (United States)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  7. Thermoacoustic refrigerator for space applications

    Science.gov (United States)

    Garrett, Steven L.; Adeff, Jay A.; Hofler, Thomas J.

    1993-10-01

    A new spacecraft cryocooler which uses resonant high-amplitude sound waves in inert gases to pump heat is described. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). A space-qualified thermoacoustic refrigerator was flown on the Space Shuttle Discovery (STS-42) in January, 1992. It was entirely autonomous, had no sliding seals, required no lubrication, used mostly low-tolerance machined parts, and contained no expensive components. Thermoacoustics is shown to be a competitive candidate for food refrigerator/freezers and commercial/residential air conditioners. The design and performance of the Space Thermo/Acoustic Refrigerator (STAR) is described.

  8. Magnetic refrigeration apparatus and method

    Science.gov (United States)

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  9. ENERGY STAR Certified Residential Refrigerators

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  10. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A; Jurkowski, R [CIAT, 01 - Culoz (France)

    1998-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  11. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R. [CIAT, 01 - Culoz (France)

    1997-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  12. Topological charge and chiral anomalies in Fermi superfluids

    International Nuclear Information System (INIS)

    Stone, M.; Gaitan, F.

    1987-01-01

    We review some of the topological properties of Fermi superfluids, in particular the persistent currents in superfluid 3 He. We show that the topological charge formalism developed by Garg et al. is related to the chiral anomaly viewpoint of Volovik and co-workers through the Callan--Harvey effect. We stress that the question of the existence of a ''twist'' term in the current induced by a texture is a history-dependent phenomenon which depends on how the textures are envisaged as being created. copyright 1987 Academic Press, Inc

  13. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1976-01-01

    We have found that the mobility of negative ions increases rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature-independent mobility between 30 mK and T/sub c/ for all pressures between 0 and 28 bars

  14. Topological superfluids confined in a nanoscale slab geometry

    Science.gov (United States)

    Saunders, John

    2013-03-01

    Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464

  15. Hidden vortex lattices in a thermally paired superfluid

    International Nuclear Information System (INIS)

    Dahl, E. K.; Sudboe, A.; Babaev, E.

    2008-01-01

    We study the evolution of rotational response of a statistical mechanical model of two-component superfluid with a nondissipative drag interaction as the system undergoes a transition into a paired superfluid phase at finite temperature. The transition manifests itself in a change of (i) vortex-lattice symmetry and (ii) nature of the vortex state. Instead of a vortex lattice, the system forms a highly disordered tangle which constantly undergoes merger and reconnecting processes involving different types of vortices with a 'hidden' breakdown of translation symmetry

  16. Onset of superfluidity in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.; Roepke, G.; Friman, B.L.

    1991-05-01

    The onset of superfluidity in hot asymmetric nuclear matter is studied within a generalized Beth-Uhlenbeck approach. The finite tempeature t-matrix is of the Bethe-Goldstone type and contains hole-hole propagation not considered in the Brueckner G-matrix approach. It is shown that the phase contour for the onset of superfluidity in this approach is identical to that obtained within Gorkov's approach to BCS theory. Results for the realistic Paris potential imply that the critical temperature in the neutron-proton triplet channel is on the order of 6-8 MeV and thus much larger than that for singlet pairing. (orig.)

  17. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1977-01-01

    The mobility of negative ions is shown to increase rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature independent mobility between 40 mK and T/sub c/ for all pressures between 0 and 28 bar. The increase of μ/sub N/ with increasing pressure is in agreement with the bubble model for the negative ion

  18. ultrasound studies of superfluid 3He in high magnetic fields

    International Nuclear Information System (INIS)

    De Vegvar, P.G.N.

    1986-01-01

    Measurements of ultrasound propagation in superfluid helium-three in magnetic fields of up to 94 kG are reported. The experiments were performed on an adiabatic nuclear demagnetization cryostat using a sensitive radio frequency spectrometer. In addition to observing the expected collective mode splittings, an anomaly near the A-two transition was intensively investigated. The effect is interpreted in terms of a first order transformation in the superfluid I-texture driven by the second order bulk phase transition at the point. Numerical computations give fair agreement with the experimental data

  19. A charged 3P superfluid in the ABM states

    International Nuclear Information System (INIS)

    Ohmi, Tetsuo; Nakahara, Mikio; Tsuneto, Toshihiko

    1980-01-01

    Magnetic properties of a charged 3 P superfluid in the ABM states are studied in the framework of the Ginzburg-Landau theory. A non-singular vortex in a cylindrical sample, similar to the Mermin-Ho structure in the superfluid 3 He-A, is considered. In particular, the analytic solutions for the order parameter and the magnetic field are obtained in the limit lambda sub(L)/R → 0, where lambda sub(L) is the penetration depth and R the radius of the cylinder. The possibility of a non-singular vortex lattice is also discussed. (author)

  20. Preliminary results of the Spacelab 2 superfluid helium experiment

    International Nuclear Information System (INIS)

    Mason, P.V.; Collins, D.J.; Elleman, D.D.; Jackson, H.W.; Wang, T.

    1986-01-01

    An experiment to investigate the properties of superfluid helium in a microgravity environment flew on the Shuttle on the Spacelab 2 mission in July and August of 1985. This paper summarizes the flight experiment and describes some preliminary results. The experiment comprised an investigation of long-wavelength third-sound waves in micron-thick films, a study of the motions of superfluid helium under milli-g and micro-g accelerations, and measurements of the fluctuations in temperature associated with the small motions of the bulk helium. An additional objective was to qualify and characterize a reflyable, space-compatible cryostat

  1. Anisotropic superfluidity in the two-species polar Fermi gas

    International Nuclear Information System (INIS)

    Liao Renyuan; Brand, Joachim

    2010-01-01

    We study the superfluid pairing in a two-species gas of heteronuclear fermionic molecules with equal density. The interplay of the isotropic s-wave interaction and anisotropic long-range dipolar interaction reveals rich physics. We find that the single-particle momentum distribution has a characteristic ellipsoidal shape that can be reasonably represented by a deformation parameter α defined similarly to the normal phase. Interesting momentum-dependent features of the order parameter are identified. We calculate the critical temperatures of both the singlet and triplet superfluids, suggesting a possible pairing symmetry transition by tuning the s-wave or dipolar interaction strength.

  2. A Note on the Field-Theoretical Description of Superfluids

    CERN Document Server

    Andrianopoli, L; Grassi, P A; Trigiante, M

    2014-01-01

    Recently, a Lagrangian description of superfluids attracted some interest from the fluid/gravity-correspondence viewpoint. In this respect, the work of Dubovksy et al. has proposed a new field theoretical description of fluids, which has several interesting aspects. On another side, we have provided in arXiv:1304.2206 a supersymmetric extension of the original works. In the analysis of the Lagrangian structures a new invariant appeared which, although related to known invariants, provides, in our opinion, a better parametrisation of the fluid dynamics in order to describe the fluid/superfluid phases.

  3. LAMBDA-hyperon superfluidity in neutron star cores

    CERN Document Server

    Takatsuka, T

    2000-01-01

    Superfluidity of LAMBDA hyperons in neutron star cores is investigated by a realistic approach to use reliable LAMBDA LAMBDA interactions and the effective mass of LAMBDA based on the G-matrix calculations. It is found that LAMBDA superfluid can exist at rho approx = (rho sub t approx rho sub d) with rho sub t approx = 2 rho sub 0 (rho sub 0 being the nuclear density) and rho sub d approx = (3 - 4.5)rho sub 0 , depending on hyperon core models.

  4. A Neutron Scattering Study of Collective Excitations in Superfluid Helium

    DEFF Research Database (Denmark)

    Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans

    1974-01-01

    Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....

  5. Refrigeration plants for the SSCL

    International Nuclear Information System (INIS)

    McAshan, M.; Ganni, V.; Than, R.; Niehaus, T.

    1991-03-01

    The basic requirements and operating features of the collider cryogenic system have already been described in other publications. The general arrangement of the refrigeration plant and its subsystems is presented, and the issue of how to provide redundancy in the cryogenic system is addressed, and some of the basic features of the refrigeration plants are described. The collider cryogenic system design is not final yet, and this report only reflects the direction and current status of the cryogenic system design

  6. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  7. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  8. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  9. Potential impacts of Brayton and Stirling cycle engines

    Science.gov (United States)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  10. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  11. Blowing smoke rings in superfluid helium

    International Nuclear Information System (INIS)

    Allum, D.R.; McClintock, P.V.E.

    1977-01-01

    Among experiments designed to investigate the properties of superfluids, measurements are discussed which aim at determining the variation in the speed of an ion with the size of the electric field propelling it through liquid helium. The experimental set up using helium ions is described. The velocity-field characteristic shows an initial rise but at a higher electric field the ions exhibit the curious behaviour of slowing down before again increasing speed with force. The reason for this region of slowing down is here explained as being due to the fact that the charge is no longer carried by a free ion but, rather, by a charged vortex ring. As the ion speeds thorugh the liquid it suddenly creates a vortex ring and as one of the fundamental characteristics of a vortex ring is that its velocity is inversely proportional to its radius the speed reduction is explained. The subsequent rise in the characteristic indicates that the charge carriers are no longer straightforward charged vortex rings. This behaviour is attributed to ions 'falling off' their rings soon after creating them. It would appear that the force exerted by the electric field is so large that it overcomes the hydrodynamic force which binds the ion to the slowly moving vortex, enabling the ion to escape and accelerate away. In a final levelling off part of the characteristic curve it is considered that the ions are travelling faster than the critical velocity for roton creation, but are moving far below that for phonon creation. One may therefore conclude that the ion, as it travels through the liquid, transforms energy extracted from the electric field into rotons, which fan out forming a sort of wake behind it. (U.K.)

  12. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  13. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1993-01-01

    In 1982 McDonnell Douglas Aerospace Space System (MDA-SS) and United Stirling AB of Sweden formed a joint venture to develop and market a solar Stirling dish unit. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing have been characterized and modeled in a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing and other maintenance outage time, operation and maintenance (O and M) costs and other cost models. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  14. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  15. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1995-01-01

    In 1982 McDonnell Douglas Aerospace (MDA) and United Stirling AB (USAB) of Sweden formed a joint venture to develop and market a solar Stirling dish system. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing were characterized and modeled into a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing, and other maintenance outage time, operation and maintenance (O and M) costs, and equipment purchase cost. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  16. On Generalizations of the Stirling Number Triangles

    Science.gov (United States)

    Lang, Wolfdieter

    2000-09-01

    Sequences of generalized Stirling numbers of both kinds are introduced. These sequences of triangles (i.e. infinite-dimensional lower triangular matrices) of numbers will be denoted by S2(k;n,m) and S1(k;n,m) with k in Z. The original Stirling number triangles of the second and first kind arise when k = 1. S2(2;n,m) is identical with the unsigned S1(2;n,m) triangle, called S1p(2;n,m), which also represents the triangle of signless Lah numbers. Certain associated number triangles, denoted by s2(k;n,m) and s1(k;n,m), are also defined. Both s2(2;n,m) and s1(2;n + 1, m + 1) form Pascal's triangle, and s2(-1,n,m) turns out to be Catalan's triangle. Generating functions are given for the columns of these triangles. Each S2(k) and S1(k) matrix is an example of a Jabotinsky matrix. Therefore the generating functions for the rows of these triangular arrays constitute exponential convolution polynomials. The sequences of the row sums of these triangles are also considered. These triangles are related to the problem of obtaining finite transformations from infinitesimal ones generated by x^k d/dx, for k in Z.

  17. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  18. Refrigeration waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  19. Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine

    Science.gov (United States)

    Chen, M.; Ju, L. Y.; Hao, H. X.

    2014-01-01

    Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.

  20. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    Science.gov (United States)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  1. 40 kW Stirling Engine for Solid Fuel

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Trærup, Jens

    1996-01-01

    The external combustion in a Stirling engine makes it very attractive for utilisation of solid fuels in decentralised combined heat and power (CHP) plants. Only a few projects have concentrated on the development of Stirling engines specifically for biomass. In this project, a Stirling engine has...... been designed primarily for utilisation of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has...... been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurised crankcase so...

  2. Stirling engine alternatives for the terrestrial solar application

    Science.gov (United States)

    Stearns, J.

    1985-01-01

    The first phase of the present study of Stirling engine alternatives for solar thermal-electric generation has been completed. Development risk levels are considered to be high for all engines evaluated. Free-piston type and Ringbom-type Stirling engine-alternators are not yet developed for the 25 to 50-kW electrical power range, although smaller machines have demonstrated the inherent robustness of the machines. Kinematic-type Stirling engines are presently achieving a 3500 hr lifetime or longer on critical components, and lifetime must still be further extended for the solar application. Operational and technical characteristics of all types of Stirling engines have been reviewed with engine developers. Technical work of merit in progress in each engine development organization should be recognized and supported in an appropriate manner.

  3. Optimal design of Stirling heat engine using an advanced ...

    Indian Academy of Sciences (India)

    R V Rao

    The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear ... cooling water and had improved the thermal efficiency of ... integrated system of a free-piston Stirling engine and an.

  4. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  5. Development of Electronic Load Controllers for Free-Piston Stirling Convertors Aided by Stirling Simulation Model

    Science.gov (United States)

    Regan, Timothy F.

    2004-01-01

    The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.

  6. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  7. Briton wins Nobel physics prize for work on superfluids

    CERN Multimedia

    Connor, S

    2003-01-01

    A British born scientist, Anthony Leggett, 65, has jointly won this year's Nobel prize in physics for research into the arcane area of superfluids - when matter behaves in its lowest and most ordered state. He shares the 800,000 pounds prize with two Russian physicists who have worked in the field of superconductivity - when electrical conductors lose resistance (1/2 page).

  8. Coulomb-gas scaling, superfluid films, and the XY model

    International Nuclear Information System (INIS)

    Minnhagen, P.; Nylen, M.

    1985-01-01

    Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent

  9. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  10. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  11. Transformation of second sound into surface waves in superfluid helium

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.

    1995-01-01

    The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs

  12. The dissipative flow of superfluid helium-3 through capillaries

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The equations are obtained which describe the behaviour of the chemical potential (pressure) of the superfluid helium-3 flowing through a narrow capillary, diffusively scattering boundaries being taken into consideration. The possibility is discussed whether the dissipation experimentally observed by Manninen and Pekola can be understood in terms of the phase-slip process

  13. Boson localization and the superfluid-insulator transition

    International Nuclear Information System (INIS)

    Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)

    1989-01-01

    The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential

  14. Resonance superfluidity in a quantum degenerate Fermi gas

    NARCIS (Netherlands)

    Kokkelmans, S.J.J.M.F.; Holland, M.; Walser, R.; Chiofalo, M.L.; Chu, S.; Vuletic, V.; Kerman, A.J.; Chin, C.

    2002-01-01

    We consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas. This is related to the phenomenon of superconductivity described by the seminal Bardeen-Cooper-Schrieffer (BCS) theory. In superconductivity, the phase transition is caused by a

  15. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    Science.gov (United States)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  16. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  17. Internal Magnus effects in superfluid 3He-A

    International Nuclear Information System (INIS)

    Salmelin, R.H.; Salomaa, M.M.; Mineev, V.P.

    1989-01-01

    Orbital angular momentum of the coherently aligned Cooper pairs in superfluid 3 He-A is encountered by an object immersed in the condensate. We evaluate the associated quasiparticle-scattering asymmetry experienced by a negative ion; this leads to a measureable, purely quantum-mechanical reactive force deflecting the ion's trajectory. Possible hydrodynamic Magnus effects are also discussed

  18. Mobility of negative ions in superfluid 3He-B

    International Nuclear Information System (INIS)

    Baym, G.; Pethick, C.J.; Salomaa, M.

    1979-01-01

    We calculate the mobility of negative ions in superfluid 3 He-B. We first derive the general formula for the mobility, and show that to a good approximation the scattering of quasiparticles from an ion may be treated as elastic, both in the superfluid for temperatures not too far below the transition temperature and also in the normal state. The scattering cross section in the superfluid is then calculated in terms of normal state properties; as we show, it is vital to include the effects of superfluid correlations on intermediate states in the scattering process. We find that for quasiparticles near the gap edge, the quasiparticle: ion scattering amplitude has a resonant behavior, and that as a result of interference among many partial waves, the differential scattering cross section is strongly peaked in the forward direction and reduced at larger angles, in much the same way as in diffraction. The transport cross section for such a quasiparticle is strongly reduced compared to that for a normal state quasiparticle, and the mobility is consequently strongly enhanced. Detailed calculations of the mobility which contain essentially no free parameters, agree well with the experimental data

  19. Rotational speedups accompanying angular deceleration of a superfluid

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1979-01-01

    Exact calculations of the angular deceleration of superfluid vortex arrays show momentary speedups in the angular velocity caused by coherent, multiple vortex loss at the boundary. The existence and shape of the speedups depend on the vortex friction, the deceleration rate, and the pattern symmetry. The phenomenon resembles, in several ways, that observed in pulsars

  20. Time correlation functions and transport coefficients in a dilute superfluid

    International Nuclear Information System (INIS)

    Kirkpatrick, T.R.; Dorfman, J.R.

    1985-01-01

    Time correlation functions for the transport coefficients in the linear Landau-Khalatnikov equations are derived on the basis of a formal theory. These Green--Kubo expressions are then explicitly evaluated for a dilute superfluid and the resulting transport coefficiencts are shown to be identical to those obtained previously by using a distribution function method

  1. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.

  2. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  3. White Paper on Dish Stirling Technology: Path Toward Commercial Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Stechel, Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Becker, Peter [Stirling Energy Systems, Scottsdale, AZ (United States); Messick, Brian [Stirling Energy Systems, Scottsdale, AZ (United States)

    2016-07-01

    Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.

  4. Normal ordering problem and the extensions of the Stirling grammar

    Science.gov (United States)

    Ma, S.-M.; Mansour, T.; Schork, M.

    2014-04-01

    The purpose of this paper is to investigate the connection between context-free grammars and normal ordered problem, and then to explore various extensions of the Stirling grammar. We present grammatical characterizations of several well known combinatorial sequences, including the generalized Stirling numbers of the second kind related to the normal ordered problem and the r-Dowling polynomials. Also, possible avenues for future research are described.

  5. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    Science.gov (United States)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  6. Functional renormalization group study of fluctuation effects in fermionic superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Andreas

    2013-03-22

    This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature

  7. Dynamics of vortex assisted metal condensation in superfluid helium.

    Science.gov (United States)

    Popov, Evgeny; Mammetkuliyev, Muhammet; Eloranta, Jussi

    2013-05-28

    Laser ablation of copper and silver targets immersed in bulk normal and superfluid (4)He was studied through time-resolved shadowgraph photography. In normal fluid, only a sub-millimeter cavitation bubble is created and immediate formation of metal clusters is observed within a few hundred microseconds. The metal clusters remain spatially tightly focused up to 15 ms, and it is proposed that this observation may find applications in particle image velocimetry. In superfluid helium, the cavitation bubble formation process is distinctly different from the normal fluid. Due to the high thermal conductivity and an apparent lag in the breakdown of superfluidity, about 20% of the laser pulse energy was transferred directly into the liquid and a large gas bubble, up to several millimeters depending on laser pulse energy, is created. The internal temperature of the gas bubble is estimated to exceed 9 K and the following bubble cool down period therefore includes two separate phase transitions: gas-normal liquid and normal liquid-superfluid. The last stage of the cool down process was assigned to the superfluid lambda transition where a sudden formation of large metal clusters is observed. This is attributed to high vorticity created in the volume where the gas bubble previously resided. As shown by theoretical bosonic density functional theory calculations, quantized vortices can trap atoms and dimers efficiently, exhibiting static binding energies up to 22 K. This, combined with hydrodynamic Bernoulli attraction, yields total binding energies as high as 35 K. For larger clusters, the static binding energy increases as a function of the volume occupied in the liquid to minimize the surface tension energy. For heliophobic species an energy barrier develops as a function of the cluster size, whereas heliophilics show barrierless entry into vortices. The present theoretical and experimental observations are used to rationalize the previously reported metal nanowire assembly in

  8. The optimal performance of a quantum refrigeration cycle working with harmonic oscillators

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan; Hua Ben

    2003-01-01

    The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here are compared with those of an Ericsson or Stirling refrigeration cycle using an ideal gas as the working substance. Finally, the optimal performance of a harmonic quantum Carnot refrigeration cycle at high temperatures is derived easily

  9. MATHEMATICAL MODEL FOR THE STUDY AND DESIGN OF A ROTARY-VANE GAS REFRIGERATION MACHINE

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-08-01

    Full Text Available This paper presents a mathematical model of calculating the main parameters the operating cycle, rotary-vane gas refrigerating machine that affect installation, machine control and working processes occurring in it at the specified criteria. A procedure and a graphical method for the rotary-vane gas refrigerating machine (RVGRM are proposed. A parametric study of the main geometric variables and temperature variables on the thermal behavior of the system is analyzed. The model considers polytrope index for the compression and expansion in the chamber. Graphs of the pressure and temperature in the chamber of the angle of rotation of the output shaft are received. The possibility of inclusion in the cycle regenerative heat exchanger is appreciated. The change of the coefficient of performance machine after turning the cycle regenerative heat exchanger is analyzed. It is shown that the installation of a regenerator RVGRM cycle results in increased COP more than 30%. The simulation results show that the proposed model can be used to design and optimize gas refrigerator Stirling.

  10. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  11. Development of a Stirling System Dynamic Model with Enhanced Thermodynamics

    Science.gov (United States)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-02-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  12. New 5 Kilowatt Free-piston Stirling Space Convertor Developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2007-01-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc. s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 W and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  13. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  14. Micro-cogeneration units based on Stirling engine for heating and their real operation

    Science.gov (United States)

    Čierny, Jaroslav; Patsch, Marek

    2014-08-01

    This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

  15. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  16. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  17. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  18. Solar Stirling for deep space applications

    International Nuclear Information System (INIS)

    Mason, Lee S.

    2000-01-01

    A study was performed to quantify the performance of solar thermal power systems for deep space planetary missions. The study incorporated projected advances in solar concentrator and energy conversion technologies. These technologies included inflatable structures, lightweight primary concentrators, high efficiency secondary concentrators, and high efficiency Stirling convertors. Analyses were performed to determine the mass and deployed area of multihundred watt solar thermal power systems for missions out to 40 astronomical units. Emphasis was given to system optimization, parametric sensitivity analyses, and concentrator configuration comparisons. The results indicated that solar thermal power systems are a competitive alternative to radioisotope systems out to 10 astronomical units without the cost or safety implications associated with nuclear sources

  19. Creep rupture behavior of Stirling engine materials

    Science.gov (United States)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  20. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  1. Krypton based adsorption type cryogenic refrigerator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  2. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  3. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  4. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  5. Refrigeration Cycle Design for Refrigerant Mixtures by Molecular Simulation

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Francová, Magda; Kowalski, M.; Nezbeda, Ivo

    2010-01-01

    Roč. 75, č. 4 (2010), s. 383-391 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720710 Grant - others:NSERC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : refrigerants * molecular simulation s * vapor–liquid equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  6. 46 CFR 154.702 - Refrigerated carriage.

    Science.gov (United States)

    2010-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1) Have enough capacity to maintain the cargo vapor pressure in each cargo tank served by the system below... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  7. 49 CFR 173.174 - Refrigerating machines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or less...

  8. Solar Refrigerators Store Life-Saving Vaccines

    Science.gov (United States)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  9. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  10. Linear dynamics and control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Alvarez Aguirre, A.; Garcia Canseco, E.; Scherpen, J.M.A.

    2010-01-01

    This paper presents a control systems approachfor the modeling and control of a kinematic wobbleyokeStirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by the authors in [1]. We show that the Stirling engine can be viewed as

  11. Dynamics of Superfluid Helium in Low-Gravity

    Science.gov (United States)

    Frank, David J.

    1997-01-01

    This report summarizes the work performed under a contract entitled 'Dynamics of Superfluid Helium in Low Gravity'. This project performed verification tests, over a wide range of accelerations of two Computational Fluid Dynamics (CFD) codes of which one incorporates the two-fluid model of superfluid helium (SFHe). Helium was first liquefied in 1908 and not until the 1930s were the properties of helium below 2.2 K observed sufficiently to realize that it did not obey the ordinary physical laws of physics as applied to ordinary liquids. The term superfluidity became associated with these unique observations. The low temperature of SFHe and it's temperature unifonrmity have made it a significant cryogenic coolant for use in space applications in astronomical observations with infrared sensors and in low temperature physics. Superfluid helium has been used in instruments such as the Shuttle Infrared Astronomy Telescope (IRT), the Infrared Astronomy Satellite (IRAS), the Cosmic Background Observatory (COBE), and the Infrared Satellite Observatory (ISO). It is also used in the Space Infrared Telescope (SIRTF), Relativity Mission Satellite formally called Gravity Probe-B (GP-B), and the Test of the Equivalence Principle (STEP) presently under development. For GP-B and STEP, the use of SFHE is used to cool Superconducting Quantum Interference Detectors (SQUIDS) among other parts of the instruments. The Superfluid Helium On-Orbit Transfer (SHOOT) experiment flown in the Shuttle studied the behavior of SFHE. This experiment attempted to get low-gravity slosh data, however, the main emphasis was to study the low-gravity transfer of SFHE from tank to tank. These instruments carried tanks of SFHE of a few hundred liters to 2500 liters. The capability of modeling the behavior of SFHE is important to spacecraft control engineers who must design systems that can overcome disturbances created by the movement of the fluid. In addition instruments such as GP-B and STEP are very

  12. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  13. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  14. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  15. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  16. Efficiency improvement of commercial refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Denecke, Julius [NTNU, Trondheim (Norway); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway)

    2011-07-01

    This work presents a historical review of carbon dioxide refrigeration systems. Further a literature survey is carried out to get a status of existing refrigeration technology related to supermarkets. In the next step various energy saving options are stated. A heat recovery model, basing on a R744 booster refrigeration system is established and described. Simplified demand curves for refrigeration, air conditioning and heating will base this model to calculate different heat recovery layouts. Supermarket future trends will be considered and integrated in the calculation. Finally the calculated energy consumptions will be compared with real energy consumptions of selected supermarket refrigeration systems.

  17. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian

    2014-05-08

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  18. Physical acoustics at UCLA in the study of superfluid helium

    International Nuclear Information System (INIS)

    Rudnick, I.

    1976-01-01

    The theory of sound propagation in superfluid helium is reviewed. The theory of first, second, fourth and third sound is considered. A simple approximate derivation of the velocity of third sound is given and the Doppler shift of first, second, third and fourth sound is discussed. Experimental aspects of first, second, third and fourth sound are considered in turn. For first sound consideration is given to first-sound transducers, cavitation in liquid helium and velocity at the lambda transition. Second-sound transducers and the velocity of second sound at the lambda transition are discussed. Experimental aspects of third-sound transducers, the velocity and attenuation of third sound, the critical velocity of superfluid films and the thickness of a moving film are then discussed. Various aspects of fourth sound are considered. (B.R.H.)

  19. Lifshitz effects on holographic p-wave superfluid

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2015-02-01

    Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime. Keywords: Gauge/gravity duality, Holographic superconductor, Lifshitz black hole, Maxwell-complex vector field

  20. Introduction to superfluidity field-theoretical approach and applications

    CERN Document Server

    Schmitt, Andreas

    2015-01-01

    Superfluidity – and closely related to it, superconductivity – are very general phenomena that can occur on vastly different energy scales. Their underlying theoretical mechanism of spontaneous symmetry breaking is even more general and applies to a multitude of physical systems.  In these lecture notes, a pedagogical introduction to the field-theory approach to superfluidity is presented. The connection to more traditional approaches, often formulated in a different language, is carefully explained in order to provide a consistent picture that is useful for students and researchers in all fields of physics. After introducing the basic concepts, such as the two-fluid model and the Goldstone mode, selected topics of current research are addressed, such as the BCS-BEC crossover and Cooper pairing with mismatched Fermi momenta.

  1. Novel Role of Superfluidity in Low-Energy Nuclear Reactions.

    Science.gov (United States)

    Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel

    2017-07-28

    We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.

  2. Destruction of superfluidity by disorder in one dimension

    International Nuclear Information System (INIS)

    Zhang, L.; Ma, M.

    1988-01-01

    We study the effect of disorder on the superfluidity of the hard-sphere Bose gas in one dimension. This system is equivalent to the spin-(1/2 XY model with a random transverse field, which in turn can be mapped onto a disordered spinless-fermion model. We show that the localization of all fermionic states implies an exponential decay in the spin-spin correlation function and hence the instability of the superfluid against any amount of disorder. We point out a fundamental difference in the characteristics of the Jordan-Wigner transformation between the pure and disordered systems. Generalization of our results beyond the present model and implications to disordered superconductivity are discussed

  3. Superfluid/Bose-glass transition in one dimension

    Science.gov (United States)

    Ristivojevic, Zoran; Petković, Aleksandra; Le Doussal, Pierre; Giamarchi, Thierry

    2014-09-01

    We consider a one-dimensional system of interacting bosons in a random potential. At zero temperature, it can be either in the superfluid or in the insulating phase. We study the transition at weak disorder and moderate interaction. Using a systematic approach, we derive the renormalization group equations at two-loop order and discuss the phase diagram. We find the universal form of the correlation functions at the transitions and compute the logarithmic corrections to the main universal power-law behavior. In order to mimic large density fluctuations on a single site, we study a simplified model of disordered two-leg bosonic ladders with correlated disorder across the rung. Contrarily to the single-chain case, the latter system exhibits a transition between a superfluid and a localized phase where the exponents of the correlation functions at the transition do not take universal values.

  4. Strong-coupling effects in superfluid 3He in aerogel

    International Nuclear Information System (INIS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2007-01-01

    Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally

  5. Critical behavior and dimension crossover of pion superfluidity

    Science.gov (United States)

    Wang, Ziyue; Zhuang, Pengfei

    2016-09-01

    We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.

  6. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    Science.gov (United States)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  7. Topological superfluids with finite-momentum pairing and Majorana fermions.

    Science.gov (United States)

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  8. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian; Berloff, Natalia G.

    2014-01-01

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  9. px+ipy Superfluid from s-Wave Interactions of Fermionic Cold Atoms

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Tewari, Sumanta; Lutchyn, Roman M.; Das Sarma, S.

    2008-01-01

    Two-dimensional (p x +ip y ) superfluids or superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic atom optical traps using p-wave Feshbach resonance is turning out to be challenging. Here we propose a method to create a p x +ip y superfluid directly from an s-wave interaction making use of a topological Berry phase, which can be artificially generated. We discuss ways to detect the spontaneous Hall mass current, which acts as a diagnostic for the chiral p-wave superfluid

  10. A Stirling engine for use with lower quality fuels

    Science.gov (United States)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  11. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  12. Dynamic Analysis and Test Results for an STC Stirling Generator

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.

    2004-02-01

    Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.

  13. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  14. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  15. Optimization of powered Stirling heat engine with finite speed thermodynamics

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel

    2016-01-01

    Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.

  16. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  17. Transient heat transfer into superfluid helium under confined conditions

    International Nuclear Information System (INIS)

    Filippov, Yu.P.; Miklyaev, V.M.; Sergeev, I.A.

    1988-01-01

    Transient thermal processes at solid-HeII interface at input of step pulse of heat load was investigated. Particular attention is given to the study of influence of geometry of experimental specimen upon the heat transfer dynamics. Abrupt breakdown of highly efficient transfer modes caused by the developmet of superfluid turbulence under confined condition is revealed, and accompanying temperature shift is registered. Some characteristic parameters are selected, their dependence on experimental conditions is established

  18. Characterization of fractals with an adsorbed superfluid film

    International Nuclear Information System (INIS)

    Golov, A.I.; Berkutov, I.B.; Babuin, S.; Cousins, D.J.

    2003-01-01

    The tortuosity of a capillary-condensed film of superfluid 4 He adsorbed on 91%-porous silica aerogel has been measured, with transverse sound, as a function of helium coverage. Complementary data from 4 He adsorption isotherms and small-angle X-ray scattering have also been used for substrate characterization. The tortuosity is found to be roughly inversely proportional to the volume fraction of the liquid phase of helium

  19. The Thomas-Kuhn sum rule and superfluidity, 2

    International Nuclear Information System (INIS)

    Izuyama, Takeo

    1977-01-01

    Since the ODLRO by itself cannot always lead to dynamical superfluidity, we must seek for a supplementary condition for the persistent flow. The condition found here is that, even when weak impurities exist, the Josephson-Baym phase fluctuation spectrum remains to be valid for long wave-length components of the fluctuation including the extreme cases k=(2π/L), (4π/L),.... (auth.)

  20. Singular f-sum rule for superfluid 4He

    International Nuclear Information System (INIS)

    Wong, V.K.

    1979-01-01

    The validity and applicability to inelastic neutron scattering of a singular f-sum rule for superfluid helium, proposed by Griffin to explain the rhosub(s) dependence in S(k, ω) as observed by Woods and Svensson, are examined in the light of similar sum rules rigorously derived for anharmonic crystals and Bose liquids. It is concluded that the singular f-sum rules are only of microscopic interest. (Auth,)

  1. Theory of superfluidity of helium II near the lambda point

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Sobyanin, A.A.

    1982-01-01

    The present state of the Psi theory of superfluidity of helium II near the lambda point is reviewed. The basic assumptions underlying this theory and the limits of its applicability are discussed. The results of the solution of some problems in the framework of the theory are presented and compared with experimental data. The necessity and possibility of further comparison of the theory with experiment are emphasized

  2. Propagative modes along a superfluid helium-4 meniscus

    International Nuclear Information System (INIS)

    Poujade, M.; Guthmann, C.; Rolley, E.

    2002-01-01

    We have studied the dynamics of a superfluid helium-4 meniscus on a solid substrate. In a pseudo-non-wetting situation, there is no hysteresis of the contact angle. We show that distortions of a liquid meniscus do propagate along the contact line. We have analyzed the propagation of pulses. We find a good agreement with theoretical predictions by Brochard for the dispersion relation of oscillation modes of the contact line. (authors)

  3. Fractional statistics of the vortex in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Chiao, R.Y.; Hansen, A.; Moulthrop, A.A.

    1985-01-01

    The quantum behavior of two identical point vortices (e.g., in a superfluid 4 He thin film) is studied. It is argued that this system obeys neither Bose nor Fermi statistics, but intermediate or theta statistics: We find that a single vortex in this system possesses quarter-fractional statistics (i.e., theta = π/2 or 3π/2). The source of the theta statistics is identified in the relative zero-point motion of the vortices

  4. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  5. Environment-friendly refrigeration - Switzerland moves forward

    International Nuclear Information System (INIS)

    Stohler, F.

    2003-01-01

    This article presents an interview with Silvan Schaller, president of the Swiss Refrigeration Society SVK and head of a leading Swiss industrial refrigeration company, on the subject of the implementation of new Swiss materials legislation that regulates the use of various refrigerants. In particular, the co-operation between the Society and the regulatory authorities is stressed. The reasons behind the regulations - the protection of the environment and, in particular, the ozone layer - are discussed as are the efforts required by industry to meet them. Future refrigeration technologies and the choice of refrigerants are examined. Measures that will have to be taken by the companies in the refrigeration sector, such as the additional training of personnel and the monitoring of the disposal of wastes, are examined. For the future, the goal of reducing the energy consumption of refrigeration installations is noted

  6. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  7. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    International Nuclear Information System (INIS)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-01-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. copyright 1996 American Institute of Physics

  8. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  9. Baryon superfluidity and neutrino emissivity of neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo

    2004-01-01

    For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)

  10. Transient behavior of superfluid turbulence in a large channel

    International Nuclear Information System (INIS)

    Schwarz, K.W.; Rozen, J.R.

    1991-01-01

    The transient behavior of superfluid turbulence is studied theoretically and experimentally with the aim of understanding the disagreement between vortex-tangle theory and past measurements of free vortex-tangle decay in superfluid 4 He. Scaling theory is extended and large-scale simulations based on the reconnecting-vortex model are carried out. These imply that the Vinen equation should be a reasonable approximation even for rather large transients, and predict definite values for the Vinen parameters. Direct measurements of the vortex-tangle response to a sudden change in the driving velocity are seen to be in reasonable agreement with these predictions. It is found, however, that when the vortex tangle is allowed to decay farther toward zero, it eventually crosses over into a state of anomalously slow decay, which appears to be that observed in previous experiments. We argue that this regime should be interpreted in terms of a coupled-turbulence state in which random superfluid and normal-fluid motion interacts with the vortex tangle, the whole system decaying self-consistently at a rate controlled by the normal-fluid viscosity. Several additional qualitative observations which may be relevant to the question of how the vortex tangle is initiated are also reported

  11. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  12. Chiral superfluidity of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2012-08-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  13. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    Science.gov (United States)

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  14. Use of biomass as fuel for Stirling motors; Uso de biomassa como combustivel para acionamento de motores Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Robledo Wakin; Aradas, Maria Eugenia Coria; Cobas, Vladmir Rafael Melian; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mail: robledo@unifei.edu.br

    2004-07-01

    The search to increase the electrical generation, together with the need to decrease the pollution emission, has encouraged the alternative energy sources. Nowadays around the world there are a lot of alternative energy sources incentive programs. In Brazil have PROINFA - Alternative Energy Sources Incentive Program. An example of alternative energy sources is the use of biomass as combustible. In the electrical generation, the biomass can be used directly, having it's directly combustion, and transforming the thermal energy liberated in electrical energy, or can be transformed in gas or liquid, and after use technology as internal combustion engine and gas turbine to generate electricity with these combustibles. Few technologies can be used to generate electricity burning directly to the biomass. Among these technologies, have the Stirling engine. It is possible to use this engine because the Stirling engines are external combustion engines, and it has not contact between the work gas and the flue gas. In this way, the Stirling engine needs a heat source, independent of the combustible type that will be used, including solar source. In this work will be present this technology, the different kinds of Stirling engines according to their configuration, moreover will be present the ST 05 G Stirling engine, which is a 500 W engine, acquired by University Federal of Itajuba. Also are present the tests results of this engine, and the installation to work with wood waste as combustible. (author)

  15. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  16. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  17. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  18. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  19. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  20. Micro power/heat cogeneration incorporating a stirling engine

    International Nuclear Information System (INIS)

    Luft, S.

    2003-01-01

    The Stirling-engine for CHP-purpose developed by SOLO is a trend-setting technology. It represents the most suspicious perspective apart from the fuel-cell technology in order to become suitable to the requirements of the future power supply in the focus of the sustainability and the decentralized energy supply. The charm of the Stirling technology is based on the external combustion: a so far not known variability with the primary energy choice as well as a life span substantially extending, wear-free operation are possible thereby. The external combustion reduces also the maintenance and the emissions in a measure not known with conventional engine technologies. The development steps are finished. The result is the world-wide first concept for the commercial, stationary application of decentralized micro-CHP on Stirling technology basis, which goes into series. (orig.) [de

  1. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  2. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  3. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  4. Overview of NASA supported Stirling thermodynamic loss research

    International Nuclear Information System (INIS)

    Tew, R.C.; Geng, S.M.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA's primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillator-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning

  5. Cool down time optimization of the Stirling cooler

    Science.gov (United States)

    Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.

    2017-12-01

    The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.

  6. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 k...... in the hot end connecting the expansion space with the hot end of the regenerator through the heater panel. However, this has resulted in comparably large dead volumes and flow losses in the connections between the heater and the regenerator/expansion volume. For the new eight-cylinder engine the design...... of the connections between the heater and the regenerator/expansion volume have been improved considerably, reducing the flow losses and internal dead volume. Results from simulations indicate an improvement of power output and efficiency of about 10%. A four cylinder double acting Stirling engine is basically...

  7. Magnon Bose-Einstein condensation and spin superfluidity.

    Science.gov (United States)

    Bunkov, Yuriy M; Volovik, Grigory E

    2010-04-28

    Bose-Einstein condensation (BEC) is a quantum phenomenon of formation of a collective quantum state in which a macroscopic number of particles occupy the lowest energy state and thus is governed by a single wavefunction. Here we highlight the BEC in a magnetic subsystem--the BEC of magnons, elementary magnetic excitations. The magnon BEC is manifested as the spontaneously emerging state of the precessing spins, in which all spins precess with the same frequency and phase even in an inhomogeneous magnetic field. The coherent spin precession was observed first in superfluid (3)He-B and this domain was called the homogeneously precessing domain (HPD). The main feature of the HPD is the induction decay signal, which ranges over many orders of magnitude longer than is prescribed by the inhomogeneity of magnetic field. This means that spins precess not with a local Larmor frequency, but coherently with a common frequency and phase. This BEC can also be created and stabilized by continuous NMR pumping. In this case the NMR frequency plays the role of a magnon chemical potential, which determines the density of the magnon condensate. The interference between two condensates has also been demonstrated. It was shown that HPD exhibits all the properties of spin superfluidity. The main property is the existence of a spin supercurrent. This spin supercurrent flows separately from the mass current. Transfer of magnetization by the spin supercurrent by a distance of more than 1 cm has been observed. Also related phenomena have been observed: the spin current Josephson effect; the phase-slip processes at the critical current; and the spin current vortex--a topological defect which is the analog of a quantized vortex in superfluids and of an Abrikosov vortex in superconductors; and so on. It is important to mention that the spin supercurrent is a magnetic phenomenon, which is not directly related to the mass superfluidity of (3)He: it is the consequence of a specific

  8. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  9. Output characteristics of Stirling thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong; Zhao Liang

    2008-01-01

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE

  10. Dynamics of the Ross-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Doige, A G; Walker, G

    1986-01-01

    A computer model has been developed for the simulation of the dynamic loading in a Stirling engine having a Ross linkage as the drive mechanism. The model is based on a complete theoretical formulation of the dynamics of the system. The masses and moments of inertia of all moving components have been included in the model. The computer program can be used for determining the effect of changes in many design parameters on the geometry, velocities, accelerations, dynamic loading and reactions at all pin connections and engine-mount locations. In this paper, emphasis is given to assessing the general characteristics of the reaction forces at the pin connections and to the reduction of overall engine shaking forces by simple balancing methods. The most heavily loaded element in the engine is the pin connecting the crank and the yoke. The force at that location is a combination of a static load produced by gas pressure in the cylinders and a combined inertia load for the whole engine which increases with the square of the rotational speed. 6 refs., 12 figs., 2 tabs.

  11. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  12. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  13. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying the effects of fluctuations in regenerator matrix temperatures on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the balance equations for mass, energy...... and accurately calculated. Simulation results have been compared to experimental data for a 9 kW Stirling engine and reasonable agreement has been found over a wide range of operating conditions using Helium or Nitrogen as working gas. Simulation results indicate that fluctuations in the regenerator matrix...... temperatures have significant impact on the regenerator loss, the engine power output, and the cycle efficiency....

  14. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  15. Four-Cylinder Stirling-Engine Computer Program

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Computer program developed for simulating steady-state and transient performance of four-cylinder Stirling engine. In model, four cylinders interconnected by four working spaces. Each working space contains seven volumes: one for expansion space, heater, cooler, and compression space and three for regenerator. Thermal time constant for regenerator mass associated with each regenator gas volume. Former code generates results very quickly, since it has only 14 state variables with no energy equation. Current code then used to study various aspects of Stirling engine in much more detail. Program written in FORTRAN IV for use on IBM 370 computer.

  16. Active Vibration Reduction of the Advanced Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC

  17. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  18. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    Science.gov (United States)

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  19. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy

  20. Thermal flow regulator of refrigerant

    International Nuclear Information System (INIS)

    Dubinskij, S.I.; Savchenko, A.G.; Suplin, V.Z.

    1988-01-01

    A thermal flow regulator of refrigerant for helium flow-type temperature-controlled cryostats based on controlling the channel hydraulic resistance due to variation of the flow density and viscosity during liquid helium transformation into the gaseous state. Behind the regulator both two-phase flow and a heated gas can be produced. The regulator resolution is (7-15)x10 -4 l/mW of liquid helium

  1. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  2. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  3. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  4. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  5. Functional Dependence of Thermodynamic and Thermokinetic Parameters of Refrigerants Used in Mine Air Refrigerators. Part 1 - Refrigerant R407C

    Science.gov (United States)

    Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał

    2017-03-01

    The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.

  6. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    Science.gov (United States)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  7. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Science.gov (United States)

    2010-01-01

    ... functional characteristics that affect energy consumption. Commercial refrigerator, freezer, and refrigerator... formed by the plane of the door, when the equipment is viewed in cross-section; and (2) For equipment...

  8. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  9. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  10. Not all counterclockwise thermodynamic cycles are refrigerators

    Science.gov (United States)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  11. Magnetocaloric refrigeration near room temperature (invited)

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Thanh, D.T.C.; Buschow, K.H.J.

    2007-01-01

    Modern society relies on readily available refrigeration. The ideal cooling machine would be a compact, solid state, silent and energy-efficient heat pump that does not require maintenance. Magnetic refrigeration has three prominent advantages compared to compressor-based refrigeration. First, there are no harmful gases involved, second it may be built more compact as the working material is a solid and third magnetic refrigerators generate much less noise. Recently, a new class of magnetic refrigerant materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: They exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase transition of first order. This MCE is, larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review, we compare the different materials considering both scientific aspects and industrial applicability

  12. Optimum operating regimes of common paramagnetic refrigerants

    CERN Document Server

    Wikus, P; Figueroa-Feliciano, E

    2011-01-01

    Adiabatic Demagnetization Refrigerators (ADRs) are commonly used in cryogenic laboratories to achieve subkelvin temperatures. ADRs are also the technology of choice for several space borne instruments which make use of cryogenic microcalorimeters or bolometers {[}1-4]. For these applications, refrigerants with high ratios of cooling capacity to volume, or cooling capacity to mass are usually required. In this manuscript, two charts for the simple selection of the most suitable of several common refrigerants (CAA, CMN, CPA, DGG, FAA, GGG, GLF and MAS) are presented. These graphs are valid for single stage cycles. The selection of the refrigerants is uniquely dependent on the starting conditions of the refrigeration cycle (temperature and magnetic field density) and the desired final temperature. Only thermodynamic properties of the refrigerants have been taken into account, and other important factors such as availability and manufacturability have not been considered. (C) 2011 Elsevier Ltd. All rights reserve...

  13. Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment

    International Nuclear Information System (INIS)

    Poluektov, Yu.M.

    2014-01-01

    The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively

  14. Ecological optimization for generalized irreversible Carnot refrigerators

    International Nuclear Information System (INIS)

    Chen Lingen; Zhu Xiaoqin; Sun Fengrui; Wu Chih

    2005-01-01

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators

  15. Evaluation of Virtual Refrigerant Mass Flow Sensors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor ma...

  16. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  17. United States: refrigeration industry blows hot

    International Nuclear Information System (INIS)

    Crawford, J.

    1997-01-01

    In the framework of the Kyoto convention on global warming, the american refrigeration industries have undertaken several organizations and contacts with governments and agencies in order to explain the real issues concerning the effects of refrigerant utilization in refrigerating machines on the greenhouse effect, taking into consideration the commercial impact that a ban on certain refrigerants could have on the industry's business. They argue that HFC utilization in this industry is fundamentally non-emissive and that important improvements have been realized concerning tightness and energy consumption

  18. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  19. Automotive Stirling engine development program. [fuel economy assessment

    Science.gov (United States)

    Kitzner, E. W.

    1978-01-01

    The Ford/DOE automotive Stirling engine development program is directed towards establishing the technological and developmental base that would enable a decision on whether an engineering program should be directed at Stirling engine production. The fuel economy assessment aims to achieve, with a high degree of confidence, the ERDA proposal estimate of 20.6 MPG (gasoline) for a 4500 lb 1WC Stirling engine passenger car. The current M-H fuel economy projection for the 170 HP Stirling engine is 15.7 MPG. The confidence level for this projection is 32%. A confidence level of 29% is projected for a 22.1 MPG estimate. If all of the planned analyses and test work is accomplished at the end of the one year effort, and the projected improvements are substantiated, the confidence levels would rise to 59% for the 20.6 MPG projection and 54% for the 22.1 MPG projection. Progress achieved thus far during the fuel economy assessment is discussed.

  20. How to Overcome Numerical Challenges to Modeling Stirling Engines

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.