Sample records for superdeformed rotational states

  1. Superdeformation

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, F.S. [Lawrence Berkeley National Lab., CA (United States)


    This talk consists of three parts: an introduction to the current situation regarding superdeformed bands; some recent highlights; and a quick look at the future. Due mainly to the large gamma-ray detectors coming into use, there is a lot going on in this area and the author does not try to include it all here. Rather, after a few general observations the author selects several highlights and tries to discuss those in some depth. Finally the author gives his thoughts as to the future of studying superdeformed nuclei. His definition of superdeformation is rather broad and generally includes nuclei where the long axis is 1.5-2 times longer than the short axis. Typically this is a second minimum in the potential energy surface; the first having smaller (perhaps {open_quotes}normal{close_quotes}) deformation. With this definition there are now five regions of superdeformation known in the heavier elements, having masses centered around 80, 130, 150, 190 and 240, the last of these being the fission isomers discovered more than 30 years ago. Altogether there are around 200 bands presently known in these five regions. The newest region is that around mass 80, where already some 20 bands are known in 10 nuclei. These bands show all the familiar properties seen in the heavier regions: assigned configurations, band crossings, identical bands, etc.

  2. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    Indian Academy of Sciences (India)

    Abstract. The band-head spin (I0) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were ...

  3. Cluster emission in superdeformed Sr isotopes in the ground state ...

    Indian Academy of Sciences (India)


    Jan 3, 2017 ... Abstract. Cluster decay of superdeformed 76,78,80Sr isotopes in their ground state are studied taking the Coulomb and proximity potential as the interacting barrier for the post-scission region. The predicted T1/2 values are found to be in close agreement with those values reported by the preformed cluster ...

  4. Lifetime measurements of normally deformed and superdeformed states in {sup 82}Sr

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Baktash, C.; Brinkman, M.J.; Jin, H.; Rudolph, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gross, C.J. [Oak Ridge Associate Universities, Oak Ridge, Tennessee 37831 (United States); Devlin, M.; LaFosse, D.R.; Lerma, F.; Sarantites, D.G. [Washington University, St. Louis, Missouri 63130 (United States); Sylvan, G.N.; Tabor, S.L. [Florida State University, Tallahassee, Florida 32306 (United States); Birriel, I.; Saladin, J.X.; Winchell, D.F.; Wood, V.Q. [University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Clark, R.M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Wells, J.C. [Tennessee Technological University, Cookeville, Tennessee 38505 (United States)]|[Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Petrovici, A. [Institute for Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Schmid, K.W.; Faessler, A. [Institute for Theoretical Physics, University of Tuebingen, D-72076 Tuebingen (Germany)


    Lifetimes of a superdeformed band in {sup 82}Sr were measured with the centroid shift method. The measured average quadrupole moment of this band corresponds to a quadrupole deformation of {beta}{sub 2}{approx}0.49, which is slightly smaller than both the theoretical prediction, and the measured deformation of the SD band in the neighboring isotone {sup 84}Zr. Lifetimes of high spin states of three normally deformed rotational bands in {sup 82}Sr were also measured with the Doppler shift attenuation method technique. The quadrupole moments of these normally deformed bands show a decrease at the highest spins, supporting the predicted band terminations. {copyright} {ital 1998} {ital The American Physical Society}

  5. Excitation energy and spins of the Yrast superdeformed states in {sup 193}Tl; Energie d`excitation et spins des etats superdeformes Yrast de {sup 193}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Duprat, J.; Azaiez, F. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others


    Discrete {gamma}-rays of high energy connecting states of the two Yrast superdeformed bands in {sup 193}Tl to the normal deformed states have been identified. Thus, for the first time, in an odd SD nucleus, it has been possible to propose an excitation energy and spins of the two lowest bands. (authors) 3 refs., 2 figs.

  6. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsukasa, Takashi [Chalk River Labs., Ontario (Canada); Matsuyanagi, Kenichi [Kyoto Univ. (Japan); Mizutori, Shoujirou [Oak Ridge National Lab., TN (United States)] [and others


    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  7. Superdeformed bands in [sup 191]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Pilotte, S.; Yu, C.; Jin, H.Q.; Lewis, J.M.; Riedinger, L.L. (Department of Physics, University of Tennessee, Knoxville, Tennessee 37996 (United States)); Liang, Y.; Janssens, R.V.F.; Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.; Soramel, F. (Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Bearden, I.G. (Purdue University, West Lafayette, Indiana 47907 (United States)); Baktash, C.; Garrett, J.D.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States))


    High spin states in the [sup 191]Tl nucleus have been populated via the [sup 159]Tb ([sup 36]S,4[ital n]) reaction at 165 MeV. Two weakly populated rotational bands have been observed with properties (energy spacings and dynamic moments of inertia) very similar to those of other superdeformed bands in the [ital A][similar to]190 region. The two bands can be interpreted as signature partners which exhibit some signature splitting for rotational frequencies [h bar][omega][ge]0.2 MeV. They are interpreted within the framework of cranked Woods-Saxon calculations as being based on the proton [ital i][sub 13/2]([Omega]=5/2) intruder orbital, in agreement with pairs of superdeformed bands seen in neighboring odd Tl nuclei.

  8. New results on superdeformed bands in Hg and Tl nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Liang, Y.; Ahmad, I.; Henry, R.G.; Khoo, T.L.; Lauritsen, T.; Soramel, F. [Argonne National Lab., IL (United States); Bearden, I.G. [Purdue Univ., Lafayette, IN (United States). Dept. of Physics; Drigert, M.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Garg, U.; Reviol, W. [Notre Dame Univ., IN (United States). Dept. of Physics; Lewis, J.M.; Riedinger, L.L.; Yu, C.H. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Pilotte, S. [Ottawa Univ., ON (Canada). Dept. of Physics


    New results have been obtained on superdeformed states in {sup 190}Hg, {sup 191}Tl, and {sup 192}Tl. For {sup 190}Hg, the previously identified superdeformed band has been extended up to a rotational frequency of {Dirac_h}{omega} {ge} 0.40 MeV by combining data from several different experiments. The extracted dynamical moment of inertia J({sup 2}) vs {Dirac_h}{omega} exhibits a distinct change in slope at {Dirac_h}{omega} = 0.32 MeV. For {sup 191}Tl and {sup 192}Tl, two and six superdeformed bands have been identified in these nuclei, respectively. Six of these eight bands exhibit a smooth rise in J({sup 2}) with {Dirac_h}{omega} characteristic of the other superdeformed bands identified in this mass region while the remaining two bands which are in {sup 192}Tl show a constant J({sup 2}) with {Dirac_h}{omega}. This new result can be understood in terms of Pauli blocking of quasiparticle alignments in high-N intruder orbitals. The new result for {sup 190}Hg is interpreted as evidence of a band interaction at the highest frequencies due to the rotational alignment of a pair of quasiparticles into these same intruder orbitals. These two new features taken together represent the first conclusive evidence that the alignment of intruders is responsible for the smooth rise in J({sup 2}) seen in the other superdeformed bands of this mass region.

  9. Study of the superdeformed states of the gadolinium nuclei: neutron excitations in {sup 147}Gd nucleus; Etude des etats superdeformes de noyaux de Gadolinium: Excitations neutron dans le noyau {sup 147}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Khadiri, Najia [Institut de Recherche Subatomique, CNRS-IN2P3 - Universite Louis Pasteur, 67 - Strasbourg (France)


    This work is devoted to nuclear structure studies of superdeformed states in the second potential well. Under focus are the gadolinium isotopes and in particular the {sup 147}Gd nucleus. High spin states in {sup 147}Gd have been populating by {sup 122}Sn ({sup 30}Si,5n){sup 147}Gd fusion-evaporation reaction with a silicon beam of 158 MeV delivered by the VIVITRON accelerator of the Institut de Recherches Subatomiques. The nucleus {gamma} de-excitations have been measured using the EUROGAM II {gamma}-ray multidetector. On the basis of multiple coincidences, four new superdeformed (SD) rotational bands have been assigned to {sup 147}Gd nucleus. Nuclear structures corresponding to these bands have been investigated by shell model calculations using a harmonic oscillator potential with cranking, in the Nilsson Strutinsky formalism. Comparison of dynamical moments of inertia of band (1) and (5) in {sup 147}Gd with {sup 148}Gd(2) and {sup 146}Gd(1) SD bands has fixed the role of the [651 1/2]{alpha} = -1/2 orbital crossing frequency. Theoretical calculations reproduce quite well the {sup 148}Gd(2), {sup 127}Gd(1,5) and G{sup 146}Gd(1) dynamical moments of inertia. Using the particle hole excitation nature of {sup 149,148,147,146}Gd bands, effective spin alignment of [651 1/2]{alpha}= {+-}1/2, [770 1/2]{alpha} = -1/2 and [441 1/2]{alpha} = +1/2 orbitals have been deduced from the experiment in agreement with the theoretical values. Of particular interest, the spin alignment measured for the [441 1/2]{alpha} +1/2 orbital, with a value close to zero, is in contradiction with the value predicted by the Pseudo SU(3) model, formalism often used to explain the identical band phenomenon. (author) 68 refs., 41 figs., 17 tabs.

  10. RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, R.; Dewald, A.; Kruecken, R. [Universitaet Koeln (Germany)] [and others


    The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.

  11. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G.; Lunardon, M.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others


    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  12. Search and analysis of superdeformed and oblate states in {sup 193}Pb nucleus with the EUROGAM II multidetector array; Recherche et analyse des etats superdeformes et aplatis dans le noyau {sup 193}Pb a l'aide du multidetecteur EUROGAM II

    Energy Technology Data Exchange (ETDEWEB)

    Ducroux, L. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)


    This work is devoted to the search and analysis of superdeformed and oblate states in {sup 193}Pb nucleus. High spin states of this isotope, populated via fusion-evaporation reaction {sup 168}Er ({sup 30}Si, 5n) {sup 193}Pb, have been studied with the EUROGAM II {gamma} multidetector array located near the VIVITRON accelerator in Strasbourg. New sorting and analysis programs have been developed in particular related to the background treatment. Angular distribution and linear polarisation analysis allowed us to assign the {gamma} transition multipolarities. Five dipole bands, corresponding to a weakly oblate-deformed shape of the nucleus, have been observed and connected to the low-lying states. The level scheme has been considerably extended up to a spin of 61/2 {Dirac_h} and an excitation energy of about 8 MeV. These structures have been interpreted as based on a high-K two-quasi-proton excitation coupled to rotation aligned quasi-neutrons. Six superdeformed bands, corresponding to a high prolate-deformed shape of the nucleus, have been observed. These six bands have been interpreted as three pairs of signature partners based on quasineutron excitations. The extraction of the g-factor of a K=9/2 neutron superdeformed orbital has been done for the first time in lead isotopes, giving access to the magnetic properties of the extreme nuclear matter. All these results have been discussed in terms of microscopic mean field self-consistent Hartree-Fock calculations using the microscopic 'rotor + particle(s)' model. (author)

  13. Superdeformation of Ar hypernuclei (United States)

    Isaka, Masahiro; Kimura, Masaaki; Hiyama, Emiko; Sagawa, Hiroyuki


    We investigate the differences in the Λ separation energies (S_Λ ) of the ground and superdeformed (SD) states in {}^{37}_Λ Ar, ^{39}_Λ Ar, and ^{41}_Λ Ar within the framework of antisymmetrized molecular dynamics (AMD). In this study, we find that the calculated S_Λ values in the SD states are much smaller than those in the ground states, unlike the result using the relativistic mean-field (RMF) calculation [B.-N. Lu et al., Phys. Rev. C, 89, 044307 (2014)]. One of the reasons for this difference between the present work and the RMF calculation is the difference in the density profile of the SD states in the core nuclei. We also find that the property of the Λ N odd-parity interaction affects the S_Λ trend between the ground and SD states.

  14. Superdeformation in Asymmetric N$>$Z Nucleus $^{40}$Ar

    CERN Document Server

    Ideguchi, E; Morikawa, T; Oshima, M; Koizumi, M; Toh, Y; Kimura, A; Harada, H; Furutaka, K; Nakamura, S; Kitatani, F; Hatsukawa, Y; Shizuma, T; Sugawara, M; Miyatake, H; Watanabe, Y X; Hirayama, Y; Oi, M


    A rotational band with five $\\gamma$-ray transitions ranging from 2$^{+}$ to 12$^{+}$ states was identified in $^{40}$Ar. This band is linked through $\\gamma$ transitions from the excited 2$^{+}$, 4$^{+}$ and 6$^{+}$ levels to the low-lying states; this determines the excitation energy and the spin-parity of the band. The deduced transition quadrupole moment of 1.45$^{+0.49}_{-0.31} eb$ indicates that the band has a superdeformed shape. The nature of the band is revealed by cranked Hartree--Fock--Bogoliubov calculations and a multiparticle--multihole configuration is assigned to the band.

  15. Superdeformation in asymmetric N>Z nucleus {sup 40}Ar

    Energy Technology Data Exchange (ETDEWEB)

    Ideguchi, E., E-mail: [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Ota, S. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Morikawa, T. [Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Oshima, M.; Koizumi, M.; Toh, Y.; Kimura, A.; Harada, H.; Furutaka, K.; Nakamura, S.; Kitatani, F.; Hatsukawa, Y.; Shizuma, T. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Sugawara, M. [Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan); Miyatake, H.; Watanabe, Y.X.; Hirayama, Y. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Oi, M. [Institute of Natural Sciences, Senshu University, Tokyo 101-8425 (Japan)


    A rotational band with five gamma-ray transitions ranging from 2{sup +} to 12{sup +} states was identified in {sup 40}Ar. This band is linked through gamma transitions from the excited 2{sup +}, 4{sup +} and 6{sup +} levels to the low-lying states; this determines the excitation energy and the spin-parity of the band. The deduced transition quadrupole moment of 1.45{sub -0.31}{sup +0.49}+-0.15 eb indicates that the band has a superdeformed shape. The nature of the band is revealed by cranked Hartree-Fock-Bogoliubov calculations and a multiparticle-multihole configuration is assigned to the band.

  16. The superdeformation phenomenon in atomic nuclei (United States)

    Meyer, M.; Vivien, J. P.

    After the discovery of discrete rotational bands corresponding to superdeformed nuclei with spin around 60h, the study of the structure of these nuclei over the last five years has witnessed a significant expansion in physical understanding with the emergence of new phenomena and in a technical development with the construction of sophisticated apparatus to examine these nuclei. On the eve of the approaching operation of news detectors such as EUROGAM resulting from a French-British collaboration,or the American GAMMASPHERE, this article discusses the present state of knowledge on superdeformation and exposes the theoretical basis as well as recent experimental results in the field. Avec la découverte de bandes de rotations discrètes correspondant à des noyaux superdéformés ayant des moments angulaires avoisinant 60h, l'étude de la structure de ces noyaux connait depuis les cinq dernières années un essor important tant sur le plan de la physique avec l'apparition de phénomènes nouveaux que sur le plan de la technique avec le développement d'appareillages sophistiqués pour scruter ces noyaux. A la veille de l'entrée en fonction de nouveaux détecteurs comme EUROGAM issu d'une collaboration Franco-Britannique ou GAMMASPHERE résultant des efforts des laboratoires Americains, cet article fait le point des connaissances actuelles sur la superdéformation et relate les acquis théoriques ainsi que les resultats expérimentaux accumulés récemment dans ce domaine.

  17. Microscopic study of superdeformed rotational bands in sup 1 sup 5 sup 1 Tb 21.60.Ev; 21.10.Re; 21.60.Jz; 27.70.+q; Superdeformation; Pairing; Hartree-Fock method; Woods-Saxon potential; Dynamical moments

    CERN Document Server

    El-Aouad, N; Dudek, J; Li, X; Luo, W D; Molique, H; Bouguettoucha, A; Byrski, T; Beck, F A; Curien, D; Duchêne, G; Finck, C; Kharraja, B


    Structure of eight experimentally known superdeformed bands in the nucleus sup 1 sup 5 sup 1 Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going detailed similarities between the two approaches exist and predictions related to the structure of rotational bands calculated within the two models are nearly parallel. An interpretation scenario for the structure of the superdeformed bands is presented and predictions related to the exit spins are made. Small but systematic discrepancies between experiment and theory, analyzed in terms of the dynamical moments, J sup ( sup 2 sup ) , are shown to exist. These discrepancies can be parametrized in terms of a scaling factor f, such that modifications J sup ( sup 1 sup ) sup , sup ( sup 2 sup )->fJ sup ( sup 1 sup ) sup , sup ( sup 2 sup ) together with the implied scaling of the frequencies omega->f sup - sup 1 omega, correspond systematically better with the experimental data (f approx =0.9) for b...

  18. Primary transitions between the yrast superdeformed band and low-lying normal deformed states in {sup 194}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, K.; Bernstein, L.A.; Becker, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others


    The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.

  19. Single-step linking transition from superdeformed to spherical states in {sup 143}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Atac, A.; Axelsson, A.; Persson, J. [Uppsala Univ. (Sweden)] [and others


    A discrete {gamma}-ray transition which connects the second lowest SD state with a normally deformed one in {sup 143}Eu has been discovered. It has an energy of 3360.6 keV and carries 3.2 % of the full intensity of the SD band. It feeds into a nearly spherical state which is above the I = 35/2{sup +}, E=4947 keV level. The exact placement of the single-step link could, however, not be established due to the especially complicated level scheme in the region of interest. The angular correlation study favours a stretched dipole character for the 3360.6 keV transition. The single-step link agrees well with the previously determined two-step links, both with respect to energy and spin.

  20. α clustering and superdeformation of 28Si

    Directory of Open Access Journals (Sweden)

    Kimura M.


    Full Text Available We have studied positive-parity states of 28Si using antisymmetrized molecular dynamics and multiconfiguration mixing with constrained variation. Applying constraints to the cluster distance and the quadrupole deformation of the variational calculation, we have obtained basis wave functions that have various structures such as α-24Mg and 12C-16O cluster structures as well as deformed structures. Superposing those basis wave functions, we have obtained a oblate ground state band, a β vibration band, a normal-deformed prolate band, and a superdeformed band. It is found that the superdeformed bands contain large amounts of the α-24Mg cluster components. The results also suggest the presence of two excited bands with the developed α-24Mg cluster structure, where the inter-cluster motion and the 24Mg-cluster deformation play important roles.

  1. Generator coordinate method and superdeformation in A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dancer, H.; Perres, S.; Bonche, P.; Flocard, H.; Heenen, P.-H.; Meyer, J. E-mail:; Meyer, M


    The Generator Coordinate Method with particle number projection using a set of Hartree-Fock plus BCS states is applied to the superdeformed even-even Hg and Pb isotopes. The q{sub 30} and q{sub 32} octupole vibrations are investigated in even-even Hg and Pb isotopes. These one-dimensional calculations predict that the collective octupole K{sup {pi}}=0{sup -} excitations are the lowest mode in energy. The electric monopole E0 decay out of superdeformed states is also compared to the electric quadrupole E2 transition rates.

  2. Dynamical symmetries, multiclustering, and octupole susceptibility in superdeformed and hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, W.; Dobaczewski, J. (Joint Institute for Heavy-Ion Research, Holifield Heavy Ion Research Facility, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States) Institute of Theoretical Physics, Warsaw University, ul. Hoza 69, PL-00-681 Warsaw (Poland))


    Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three-dimensional harmonic oscillator. The quantum numbers and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. New classification schemes can be directly related to certain geometrical properties of the nuclear shape.

  3. Evidences for magicity in superdeformed shapes

    Indian Academy of Sciences (India)

    Superdeformed bands; 4-parameter formula; nuclear softness parameter; R(I) ratio. PACS Nos 26.10.−n; 21.10.Re; 21.10.Pc; 27.70.+q. 1. Introduction. The phenomenon of superdeformation represents one of the most remarkable discover- ies in nuclear physics during the last decade of the 20th century. A large number of.

  4. Triaxial superdeformed bands in {sup 86}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.; LaFosse, D.R.; Devlin, M.; Lerma, F. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Wood, V.Q.; Saladin, J.X.; Winchell, D.F. [Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Baktash, C.; Yu, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Afanasjev, A.V.; Ragnarsson, I. [Department of Mathematical Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)


    Four new superdeformed bands have been found in the nucleus {sup 86}Zr. The good agreement between experiment and configuration-dependent shell correction calculations suggests that three of the bands have triaxial superdeformed shapes. Such unique features in mass A{approximately}80 superdeformed bands have been predicted, but not observed experimentally until now. A fourth band in {sup 86}Zr is interesting due to a fairly constant and unusually high dynamic moment of inertia. Possible interpretations of this structure are discussed. {copyright} {ital 1998} {ital The American Physical Society}

  5. First triaxial superdeformed band in sup 1 sup 7 sup 0 Hf

    CERN Document Server

    Neusser, A; Bringel, P; Domscheit, J; Mergel, E; Nenoff, N; Singh, A K; Hagemann, G B; Jensen, D R; Bhattacharya, S; Curien, D; Dorvaux, O; Hannachi, F; López-Martens, A


    First evidence is presented for triaxial superdeformation in sup 1 sup 7 sup 0 Hf. High-spin states in this nucleus have been investigated in a gamma-ray coincidence measurement using the EUROBALL spectrometer array. A new band was discovered which has moments of inertia that are very similar to the ones of triaxial superdeformed bands in neighbouring Hf and Lu nuclei. The intensities with which these bands are populated are different from what may be expected from calculated potential-energy minima. (orig.)

  6. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki


    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  7. $\\Delta I=4$ and $\\Delta I=8$ bifurcations in rotational bands of diatomic molecules

    CERN Document Server

    Bonatsos, Dennis; Lalazissis, G A; Drenska, S B; Minkov, N; Raychev, P P; Roussev, R P; Bonatsos, Dennis


    It is shown that the recently observed $\\Delta I=4$ bifurcation seen in superdeformed nuclear bands is also occurring in rotational bands of diatomic molecules. In addition, signs of a $\\Delta I=8$ bifurcation, of the same order of magnitude as the $\\Delta I=4$ one, are observed both in superdeformed nuclear bands and rotational bands of diatomic molecules.

  8. Microscopic study of superdeformation in the A = 150 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Rigollet, C.; Gall, B. [CNRS, Strasbourg (France); Bonche, P. [CEN Saclay, Gif sur Yvette (France)] [and others


    The authors are presently investigating the properties of superdeformed (SD) nuclear states in the A=150 mass region. For that purpose, they use the cranked HFB method in which pairing correlations are treated dynamically by means of the Lipkin-Nogami prescription. Their goal is to take advantage of the large amount of experimental data to test the predictive power of their microscopic approach and of the effective interaction. In the present communication, they focus on {sup 152}Dy and {sup 153}Dy for which there are recent experimental data. In particular lifetime measurements have allowed to extract electric quadrupole moments. The new Skyrme effective force SLy4 is used to describe the nucleon-nucleon interaction, while for the pairing channel the authors use a density-dependent zero-range interaction.

  9. Synchronous states of slowly rotating pendula

    Energy Technology Data Exchange (ETDEWEB)

    Kapitaniak, Marcin [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, Scotland (United Kingdom); Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Kapitaniak, Tomasz, E-mail: [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)


    Coupled systems that contain rotating elements are typical in physical, biological and engineering applications and for years have been the subject of intensive studies. One problem of scientific interest, which among others occurs in such systems is the phenomenon of synchronization of different rotating parts. Despite different initial conditions, after a sufficiently long transient, the rotating parts move in the same way — complete synchronization, or a permanent constant shift is established between their displacements, i.e., the angles of rotation — phase synchronization. Synchronization occurs due to dependence of the periods of rotating elements motion and the displacement of the base on which these elements are mounted. We review the studies on the synchronization of rotating pendula and compare them with the results obtained for oscillating pendula. As an example we consider the dynamics of the system consisting of n pendula mounted on the movable beam. The pendula are excited by the external torques which are inversely proportional to the angular velocities of the pendula. As the result of such excitation each pendulum rotates around its axis of rotation. It has been assumed that all pendula rotate in the same direction or in the opposite directions. We consider the case of slowly rotating pendula and estimate the influence of the gravity on their motion. We classify the synchronous states of the identical pendula and observe how the parameters mismatch can influence them. We give evidence that synchronous states are robust as they exist in the wide range of system parameters and can be observed in a simple experiment.

  10. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S.; Tajima, N.; Onishi, N. [Tokyo Univ. (Japan)


    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  11. Rotational parameters using linearized theory of rotational states

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, N.


    The problem of collective rotational parameters is studied using a new expansion of the good angular momentum states Vertical BarPsi/sub J/> and linearization procedure. It is shown that the approximation correctly reproduces Skyrme's formula. The approximation is applied to parametrize the value of the matrix element Vertical BarVertical Bar. The agreement with the values deduced from experimental data on the nuclei 1 /sub 64//sup 56/Gd/sub 92/ and 1 /sub 70//sup 76/Yb/sub 106/ is fairly good.

  12. Comparative quadrupole moments of triaxial superdeformed states in sup 1 sup 6 sup 3 sup , sup 1 sup 6 sup 4 sup , sup 1 sup 6 sup 5 Lu

    CERN Document Server

    Schoenwasser, G; Hagemann, G B; Herskind, B; Sletten, G; Wilson, J N; Amro, H; Ma, W C; Clark, R M; Cromaz, M; Diamond, R M; Fallon, P; Lane, G; Macchiavelli, A O; Ward, D; Oedegaard, S W


    Average transition quadrupole moments in the yrast triaxial superdeformed bands of sup 1 sup 6 sup 3 Lu, sup 1 sup 6 sup 4 Lu and sup 1 sup 6 sup 5 Lu were determined in a Doppler-shift attenuation-method experiment. Fractional Doppler shifts were determined in gamma-ray coincidence spectra measured with the Gammasphere array. The transition quadrupole moments derived from these data show a decrease from sup 1 sup 6 sup 3 Lu to sup 1 sup 6 sup 5 Lu which is not predicted by total-energy surface calculations. (orig.)

  13. Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    CERN Document Server

    Marinov, Amnon; Kolb, D.; Weil, J.L.


    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding w...

  14. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others


    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  15. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M.; Onishi, N.; Tajima, N. [Tokyo Univ. (Japan); Horibata, T.


    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  16. Table of superdeformed nuclear bands and fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B. [Lawrence Berkeley Lab., CA (United States); Singh, B. [McMaster Univ., Hamilton, ON (Canada)


    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  17. Lifetimes of superdeformed nuclei in the mass region A {approx}150 with the Eurogam multidetector array; Durees de vie de noyaux superdeformes de la region de masse A {approx}150 mesurees avec le multicompteur Eurogam

    Energy Technology Data Exchange (ETDEWEB)

    Savajols, H.


    This work concerns the study of the nuclear superdeformation phenomenon in the rare earth region (A {approx} 150). The superdeformed (SD) states in Gadolinium and Dysprosium isotopes were produced via heavy-ion induced reactions and studied with the (EUROGAM EUROpean GAmma-ray Microscope) gamma multidetector array. Precise level attenuation method (DSAM). From the derived quadrupole moments, we find large differences in deformation between the yrast bands in neighbour nuclei explained in terms of the case of nuclei corresponding to an axis ratio of 2:1, the shell gaps are not fixed at a specific particle number and deformation. Furthermore the present results indicate that the deformations associated with identical bands are different supporting the picture that mass and deformation changes tend to compensate in SB bands with the same moments of inertia. (author). 114 refs.

  18. Deexcitation of superdeformed bands in the nucleus Tb-151

    NARCIS (Netherlands)

    Finck, C; Appelbe, D; Beck, FA; Byrski, T; Cullen, D; Curien, D; deFrance, G; Duchene, G; Erturk, S; Haas, B; Khadiri, N; Kharraja, B; Prevost, D; Rigollet, C; Stezowski, O; Twin, P; Vivien, JP; Zuber, K


    The aim of this work is to get more informations about the decay-out of superdeformed bands. One of the best candidates in the mass A similar or equal to 150 region for that kind of research is the nucleus Tb-151. From previous works, it has been established that the first excited band goes lower in

  19. Steady States of the Parametric Rotator and Pendulum (United States)

    Bouzas, Antonio O.


    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  20. Predicting superdeformed rotational band-head spin in A∼ 190 ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 1 ... Department of Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 303, India; Amity Institute of Nuclear Science and Technology, Amity University, Noida 201 303, India; Department of Physics, Indian Institute of Technology, Roorkee ...

  1. Solid State Replacement of Rotating Mirror Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A M; Bartolick, J M


    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  2. Influence of i{sub 13/2} proton and j{sub 15/2} neutron intruding orbitals on the behaviour of 190 mass region superdeformed nuclei; Influence des orbitales intruses proton i{sub 13/2} et neutron j{sub 15/2} sur le comportement des noyaux superdeformes de la region de masse 190

    Energy Technology Data Exchange (ETDEWEB)

    Duprat, J.


    This work concerns the study of the nuclear superdeformation phenomenon in the A = 190 mass region. The superdeformed (SD) states in {sup 193}Tl, {sup 194}Tl {sup 195}Tl were produced via heavy-ion induced reactions and studied with the EUROGAM gamma multidetector array. The analysis of high-multiplicity events allowed the study of the magnetic properties of the SD states in these nuclei. For the first time, the g-factor of a proton orbital in a SD nucleus in the A = 190 mass region has been extracted. This measurement indicates that the two known bands in {sup 195}Tl-SD are built on the i{sub 13/2} proton intruder orbital. A new SD band has been found in this isotope: it is the first SD band built on an excited proton state found in the A = 190 region. Finally an interaction between two pairs of bands has been established in {sup 194}Tl; this interaction indicate the crossing of two neutron orbitals above the N = 112 gap. The magnetic properties of the states of the SD bands in {sup 194}Tl reveals that these bands are built on configurations in which the single proton and neutron intrinsic spins are aligned. Comparison between different SD bands in the Thallium isotopes shows the prominent role of the i{sub 13/2} proton and the j{sub 15/2} neutron intruder orbitals in the smooth increase of the dynamical moment of inertia as a function of the rotational frequency. In addition, this work reports on the first observation of a SD rotational band produced in a (HI, {alpha}xn) reaction channel. The study of the maximum spin reached by the SD bands indicates both a competition between alpha emission and fission of the compound nucleus, and the limitation due to the fission process in the population of the SD nuclei in the A = 190 region. (author). 120 refs., 112 figs., 22 tabs., 2 ann.

  3. Systematic description of superdeformed bands in the mass-190 region

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang; Guidry, M. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States); Zhang, Jing-ye [Univ. of Tennessee, Knoxville, TN (United States)


    Superdeformed bands for the mass-190 region are described by the Projected Shell Model. Even-even, odd mass and odd-odd nuclei are equally well described. Good agreement with available data for all isotopes studied is obtained. The authors calculation of electromagnetic properties and pairing correlations provides an understanding of the observed gradual increase of dynamical moments of inertia with angular momentum observed in many bands in this mass region.

  4. Reducing collective quantum state rotation errors with reversible dephasing

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K. [JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States)


    We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.

  5. Octupole vibration in the superdeformed {sup 196}Pb nucleus; Vibration octupolaire dans le noyau superdeforme {sup 196}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others


    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. All the three observed excited SD bands were found to decay to the Yrast SD band through, presumably, E1 transitions, allowing relative spin and excited energy assignments. Comparisons with calculation using the random phase approximation suggests that all three excited bands can be interpreted as octupole vibrational structures. (authors) 5 refs., 1 fig.

  6. Individual and collective excitations in the superdeformed nuclei of the 190 mass region; Excitations individuelles et collectives dans les noyaux superdeformes de la region de masse 190

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, Sandra [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)


    This work aims at the study of different excitation modes, individual and collective, in superdeformed (SD) nuclei in the mass 190 region. The study of {sup 193}Tl and {sup 195,196,197}Bi SD nuclei brought information concerning individual excitation around the proton and neutron SD gaps Z = 80 - 82 and N = 112. Also, the study of the nucleus {sup 196}Pb revealed excited SD states built on collective vibrations. Concerning the isotope {sup 193}Tl, magnetic property analysis has been performed and allowed us to identify the proton intruder orbital {pi}i{sub 13/2} on which the two known SD the bands of the nucleus are build. It was possible to separate experimentally the relative contribution of proton and neutron pairing to the dynamic moment of inertia. Several {gamma} transition of high energy (about 3 MeV) linking SD states to normal deformed states (ND) and three new SD bands have been found in this nucleus. These SD bands have been interpreted in terms of individual excitations of the single proton on different orbitals identified above the proton SD gap Z = 80. An interaction between the states of two excited SD band have been observed and its strength measured. All these results (gyromagnetic factor, the role of nuclear pairing, excitation energy of the SD well, the interaction between two orbitals) represent information of theoretical interest. In each isotope {sup 195-197}Bi, one SD band has been discovered. They have been also interpreted in terms of individual excitation implying the same proton state. The study of this nuclei brought the first experimental proof that the superdeformation phenomenon persists above the shell closure Z = 82. In {sup 196}Pb nucleus a new excited SD band has been discovered. Observations are mentioned suggesting that we have to consider excitations different from those based on individual ones. An interpretation based on vibrational modes can explain both the low energy measured of the excited states in respect with the SD

  7. Isovector M1 rotational states in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S. (Trento Univ. (Italy). Dipartimento di Fisica)


    Isovector M1 rotational states are investigated in the framework of a sum rule approach. It is shown that, due to the nuclear deformation, the rotational isovector state couples to the k=/sup 1 +/ component of the isovector giant quadrupole resonance. The effect of the coupling on the energy and on the M1 strength of the low-lying state as well as the comparison with previous macroscopic and microscopic models are discussed in details. The analysis suggests the existence of a highly collective M1 state occurring at the energy MeV.

  8. Rotational state resolved photodissociation spectroscopy of translationally and vibrationally cold MgH+ ions: toward rotational cooling of molecular ions

    DEFF Research Database (Denmark)

    Højbjerre, Klaus; Hansen, Anders Kragh; Skyt, Peter Sandegaard


    The first steps toward the implementation of a simple scheme for rotational cooling of MgH+ ions based on rotational state optical pumping is considered. The various aspects of such an experiment are described in detail, and the rotational state-selective dissociation spectra of translationally...

  9. Is there objective evidence for quantized spin alignment in superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Feng, D.H.; Guidry, M. (Department of Physics, University of Tennessee, Knoxville, Tennessee 37996 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Accelerator, Oak Ridge, Tennessee 37831 (United States) Department of Physics and Atmospheric Sciences, Drexel University, Philadelphia, Pennsylvania 19104 (United States))


    It is impossible to determine spins for superdeformed bands by fitting the [gamma]-transition energies alone. It is necessary to introduce a model. By using a variable moment of inertia (VMI) model one can estimate spins but cannot rule out the possibility of a [plus minus][h bar] uncertainty. Therefore, no objective evidence exists requiring the presence of quantized spin alignment in superdeformed nuclei. An alternative hypothesis that all superdeformed nuclei in a given mass region have the same VMI core, and thus essentially no alignment until high-[ital N] Coriolis effects become significant, seems to explain the present data.

  10. On the rotational state of a Bose-Einstein condensate (United States)

    Kambe, Tsutomu


    A quantum liquid of an almost ideal Bose gas brought into rotation is investigated from a physical and mechanical point of view on the basis of the Gross-Pitaevskii (GP) equation by applying a quantum-mechanical scenario, i.e. the London scenario. This scenario allows a superfluid to have rotational states. Considering that the equation governs an interacting Bose gas, it is proposed that the GP equation admits rotational flows of a superfluid. This is carried out without incurring essential change of the equation. By this reformulation, a superfluid placed in a rotating vessel is able to have a solid body rotation with the same angular velocity as its container and also to have a meniscus approximated by a parabolic profile. The solid body rotation is accompanied by a density increase proportional to the square of its angular velocity. These are consistent with experimental observations. In addition, this formulation allows a vortex of quantized circulation with coaxial rotational core whose density does not necessarily vanish at its center.

  11. Non-Rotational States of 164Dy (United States)

    Běrziņš, J.; Bondarenko, V.; Krasta, T.; Hoyler, F.; Föhl, K.; Börner, H. G.; Krusche, B.; Robinson, S. J.; Schillenbeck, P.


    The level scheme of 164Dy up to about 2.6 MeV energy is analyzed, using experimental data obtained in (n, γ), (n, e-) and (n, nγγ) reaction measurements at the high-flux reactor ILL Grenoble, as well as the (n, n'γ) reaction data, measured at the IRT reactor in Salaspils. The structure of low-lying levels of 164Dy is interpreted in terms of two-quasiparticle states, interacting with collective excitations of axially-deformed core.

  12. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)


    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  13. Hybrid State-Space Time Integration of Rotating Beams

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre; Krenk, Steen


    . It is demonstrated that the equations of motion take a particularly simple form when starting from a hybrid state-space in terms of local displacements relative to the rotating frame and absolute velocities using similar interpolation. The equations of motion are formulated for small finit deformation beam elements...... in terms of translational as well as rotational degrees of freedom and include the effect of geometric stiffness. The dynamic equations are derived from Lagrange’s equation and combined with a kinematic relation into a convenient hybrid state-space format....

  14. Spin-rotor Interpretation of Identical Bands and Quantized Alignment in Superdeformed A $\\approx$ 190 Nuclei


    Cizewski, J. A.; Bijker, R.


    The ``identical'' bands in superdeformed mercury, thallium, and lead nuclei are interpreted as examples of orbital angular momentum rotors with the weak spin-orbit coupling of pseudo-$SU(3)$ symmetries and supersymmetries.

  15. Steady states of the parametric rotator and pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O, E-mail: abouzas@fis.mda.cinvestav.m [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)


    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, nonlinear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravity. The results presented here should be accessible to advanced undergraduates, and of interest to graduate students and specialists in the field of nonlinear mechanics.

  16. Optical Characterization of Deep-Space Object Rotation States (United States)


    curve data along with the rotation state parameters. The sizes of the facets can be modeled in terms of albedo -area products [24] or as projected...variations for non-specular rocket-bodies prompt an investigation of a shape-dependent spin-state estimation process. For this, brightnesses are...with Lambertian + specular reflectances. Each surface is parameterized using albedo -area (aA) products (see [24, 25]). The top and bottom surfaces

  17. Probable Rotation States of Rocket Bodies in Low Earth Orbit (United States)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.


    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  18. Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J


    The atomic nucleus can adopt a very elongated shape with an axis ratio 2:1, this is the superdeformation phenomenon. Nowadays more than 300 superdeformed bands have been identified at high spin, but the determination of excitation energies, spins and parities of the associated states have been established for only one tenth of these bands. The former quantities (E{sup *}, I, {pi}) can only be determined via the linking gamma-transitions between the superdeformed (sd) and the normally deformed (nd) states. Within the framework of this thesis, we have investigated the Hg{sup 192} nucleus in order to establish E{sup *}, I and {pi}. This nucleus is predicted to be doubly magic at superdeformation and hence is taken as a reference in the mass {approx} 190 region. The experiment was carried out at Strasbourg using the Euroball-IV array and the vivitron accelerator. The obtained results are not convincing and seem to be at the limit of the performances of Euroball. Next generation of arrays will abandon the Compton-shields and use tracking concept to reconstruct the trajectories of incident photons, and therefore we expect a huge increase of efficiency. The second part of this work was focused on the research and development work for the AGATA (Advanced GAmma Tracking Array) project. We have performed simulations with the GEANT-4 code and developed tracking methods to reconstruct pair-creation events. The full AGATA will be operational around 2015 and will enhance by around two orders of magnitude the observational limits. (author)

  19. Rotational band in 12C based on the Hoyle state

    Directory of Open Access Journals (Sweden)

    Ogloblin A.A.


    Full Text Available α + 12C inelastic differential cross-sections were measured at the energies 65 and 110 MeV. A new broad state at 13.75 MeV was observed. Its spin-parity has been determined as 4+ and the diffraction radius of the corresponding L = 4 transition is ~ 0.8 fm larger than that of the excitation of the 4+, 14.8 MeV level. The 13.75 MeV state was considered to be the third member of the rotational band based on the Hoyle state.

  20. Using Diffusion Monte Carlo to Probe Rotational Excited States (United States)

    Petit, Andrew S.; McCoy, Anne B.


    Since its inception in 1975 by Anderson, has been successfully applied to a wide range of electronic and vibrational problems. In the latter case, it has been shown to be a powerful method for studying highly fluxional systems exhibiting large amplitude vibrational motions. We report here our recent work developing a new DMC algorithm capable of treating rotational excited states. We first develop the appropriate coordinates, nodal structures, and re-crossing corrections for this problem. Then, using H_3O^+ and D_3O^+ as model systems, we show that our method can successfully describe a range of rotational states from mid0,0,0> to {1}/{√{2}} (mid10,10,0 > + mid 10,-10,0 >). In particular, we examine the combined effects of rotational and zero-point vibrational motion on the geometric structure of the molecules. Finally, we find the mid 10,0,0 > state to be somewhat problematic but show that the problem is straightforward to identify and has a well-defined solution. J. B. Anderson, J. Chem. Phys., 63, 1499 (1975). X. Huang, S. Carter, and J. Bowman, J. Chem. Phys., 118, 5431 (2003).

  1. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago


    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  2. Hybrid state-space time integration of rotating beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre


    An efficient time integration algorithm for the dynamic equations of flexible beams in a rotating frame of reference is presented. The equations of motion are formulated in a hybrid state-space format in terms of local displacements and local components of the absolute velocity. With inspiration...... of the system rotation enter via global operations with the angular velocity vector. The algorithm is based on an integrated form of the equations of motion with energy and momentum conserving properties, if a kinematically consistent non-linear formulation is used. A consistent monotonic scheme for algorithmic...... energy dissipation in terms of local displacements and velocities, typical of structural vibrations, is developed and implemented in the form of forward weighting of appropriate mean value terms in the algorithm. The algorithm is implemented for a beam theory with consistent quadratic non...

  3. The Rotation State of Comet 103P/Hartley 2 (United States)

    Farnham, Tony; Knight, Matthew M.; Schleicher, David G.


    On November 4, 2010, the Deep Impact (DI) spacecraft made its closest approach to comet 103P/Hartley 2, passing only 694 km from the nucleus. Observations of the coma produced a lightcurve that shows the nucleus is in a state of non-principal axis rotation that evolves with time, while other observations revealed a nucleus that has concentrated collimated jets driven by CO2 emission (A'Hearn et al., 2011), large variability in the production of H2O and CO2 (Besse et al. 2016), and ice patches on the surface (Sunshine et al. 2011). To properly interpret the significance of these phenomena, it is necessary to understand the rotation of the nucleus, so that its thermal history can be derived and properly modeled, while at the same time, it is likely that the comet's high activity levels play an important role in the nucleus dynamics.An analysis of the lightcurve by Belton et al (2013) described the comet's rotation state, with two periodicities (primary of 18 h, secondary of 28 or 55 h) that change with time. Although their solution describes the periodicities observed around closest approach, it is insufficient to reproduce the changes in coma morphology with time. We are performing an analysis of the structures in the coma (Farnham 2009), using Monte Carlo routines to model the outflowing dust produced by active sources on the nucleus, to derive a comprehensive solution for the nucleus' rotation.We are also obtaining new observations of Hartley 2 in June/July 2016 (r~3.2 AU) to measure the nucleus' primary component period before the comet becomes highly active. This will provide an end-state measure of the rotation from the 2010 apparition, as well as a starting value for the current apparition, to allow its continuing evolution to be monitored. We will present an update on the status and preliminary results of these analyses.This work is funded by NASA Grant NNX12AQ64G.A'Hearn, M.F., et al. (2011) Science 332, 1396-1400Belton M.J.S., et al. (2013) Icarus 222, 595

  4. Probable Rotation States of Rocket Bodies in Low Earth Orbit (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.


    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  5. Rotations (United States)

    John R. Jones; Wayne D. Shepperd


    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  6. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano


    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  7. The Lowest Vibrational States of Urea from the Rotational Spectrum (United States)

    Kisiel, Zbigniew; Thomas, Jessica; Medvedev, Ivan


    The urea molecule, (NH_2)_2CO, has a complex potential energy surface resulting from a combination of the NH_2 torsion and NH_2 inversion motions. This leads to a distribution of lowest vibrational states that is expected to be significantly different from the more familiar picture from simple inversion or normal mode models. The broadband 207-500 GHz spectrum of urea recorded in Dayton has signal to noise sufficient for assignment of rotational transitions in excited vibrational states up to at least 500 cm-1. In addition to the previously reported analysis of the ground and the lowest excited state we have been able to assign transitions in at least five other excited vibrational states. Strongly perturbed transitions in a close doublet of such states have been fitted to within experimental accuracy with a coupled fit and a splitting in the region of 1 cm-1. These assignments combined with vibrational energy estimates from relative intensity measurements allow for empirical discrimination between different models for the energy level manifestation of the large amplitude motions in urea.^b P.D.Godfrey, R.D.Brown, A.N.Hunter J. Mol. Struct., 413-414, 405-414 (1997). N.Inostroza, M.L.Senent, Chem. Phys. Lett., 524, 25 (2012).

  8. Octupole correlations in superdeformed nuclei; Correlations octupolaires dans les noyaux superdeformes

    Energy Technology Data Exchange (ETDEWEB)

    Dancer, H.; Meyer, J.; Perries, S. [Inst.. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Bonche, P. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Flocard, H. [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Heenen, P.H. [Universite Libre de Bruxelles (Belgium)


    Octupole correlations have been investigated within the Generator Coordinate Method based upon Hartree-Fock plus BCS wavefunctions. GCM states corresponding to the q{sub 30} and q{sub 32} modes have been built up to describe the SD excited bands which have been recently observed as negative parity bands. (authors) 4 refs., 1 fig. Short communication

  9. Mercury's rotational state from combined MESSENGER laser altimeter and image data (United States)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.


    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  10. Analytic continuation of the rotating black hole state counting

    Energy Technology Data Exchange (ETDEWEB)

    Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)


    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.

  11. Multiparticle excitations in the {sup 149} Gd superdeformed nucleus. Signature of new C{sub 4} nucleus symmetry; Excitations multiparticules dans le noyau superdeforme {sup 149}Gd. Signature d`une symetrie nouvelle C{sub 4} du noyau

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, C.


    The use of 8 {pi} and EUROGAM phase I multi-detectors for the study of high spin states of {sup 149} Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C{sub 4} symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs.

  12. An estimation of Envisat's rotational state accounting for the precession of its rotational axis caused by gravity-gradient torque (United States)

    Lin, Hou-Yuan; Zhao, Chang-Yin


    The rotational state of Envisat is re-estimated using the specular glint times in optical observation data obtained from 2013 to 2015. The model is simplified to a uniaxial symmetric model with the first order variation of its angular momentum subject to a gravity-gradient torque causing precession around the normal of the orbital plane. The sense of Envisat's rotation can be derived from observational data, and is found to be opposite to the sense of its orbital motion. The rotational period is estimated to be (120.674 ± 0.068) · exp((4.5095 ± 0.0096) ×10-4 · t) s , where t is measured in days from the beginning of 2013. The standard deviation is 0.760 s, making this the best fit obtained for Envisat in the literature to date. The results demonstrate that the angle between the angular momentum vector and the negative normal of the orbital plane librates around a mean value of 8.53 ° ± 0.42 ° with an amplitude from about 0.7 ° (in 2013) to 0.5 ° (in 2015), with the libration period equal to the precession period of the angular momentum, from about 4.8 days (in 2013) to 3.4 days (in 2015). The ratio of the minimum to maximum principal moments of inertia is estimated to be 0.0818 ± 0.0011 , and the initial longitude of the angular momentum in the orbital coordinate system is 40.5 ° ± 9.3 ° . The direction of the rotation axis derived from our results at September 23, 2013, UTC 20:57 is similar to the results obtained from satellite laser ranging data but about 20 ° closer to the negative normal of the orbital plane.

  13. Rotational Dynamics of Quantum State-Selected Symmetric-Top Molecules in Nonresonant Femtosecond Laser Fields. (United States)

    Luo, Sizuo; Hu, Wenhui; Yu, Jiaqi; Zhu, Ruihan; He, Lanhai; Li, Xiaokai; Ma, Pan; Wang, Chuncheng; Liu, Fuchun; Roeterdink, Wim G; Stolte, Steven; Ding, Dajun


    Rotational dynamics of quantum state selected and unselected CH3I molecules in intense femtosecond laser fields has been studied. The orientation and alignment evolutions are derived from a pump-probe measurement and in good agreement with the numerical results from the time-dependent Schrödinger equation (TDSE) calculation. The different rotational transitions through nonresonant Raman process have been assigned from the Fourier analysis of the orientation and alignment revivals. These revivals are derived from a pump-probe measurement and in good agreement with the numerical results from the TDSE calculation. For the molecules in rotational state |1, ±1, ∓1⟩, the transitions can be assigned to ΔJ = ±1, ±2, while for thermally populated molecules, the transitions are ΔJ = ±2. Our results illustrate that the orientation and alignment revivals of the rotational quantum-state-selected molecules give a deep insight into the rotational excitation pathways for the transition of different rotational states of molecules in ultrafast laser fields.

  14. High spin states in Cu

    Indian Academy of Sciences (India)

    up of high-spin configurations outlined above, a detailed and careful study of the medium spin, near yrast states in this nucleus is important for reliable assignments of spins and parities to states in superdeformed bands [1,6] in mass region 60. Also, the observation of direct proton decay from excited states in Cu nuclei [14] ...

  15. The quasi-continuum of gamma rays following the decay of superdeformed bands in the Hg region

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Janssens, R.V.F. [Argonne National Lab., IL (United States)] [and others


    The quasi-continuum part of the spectrum associated with the decay-out of the yrast superdeformed band in {sup 194}Hg has been extracted. It has for the first time been possible to compare the spin and excitation energy determined from the analysis of the quasi-continuum {gamma} rays to the exact result obtained from the one-step linking transitions.

  16. The rotational state of Mercury after four years of MESSENGER observations (United States)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Hussmann, Hauke


    We measured the rotational state of Mercury with orbital data from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. We use accurate co-registration of digital terrain models from stereo images (stereo DTMs) and laser altimeter data to measure the orientation of the rotation axis, the libration amplitude and the mean rotation rate with improved precision. In contrast to our previous study, we use the full four years of near-continuous Mercury Laser Altimeter (MLA) observations and stereo DTMs with a higher spatial coverage. We confirm a large libration amplitude and a mean rotation rate which is significantly higher than the assumed resonant rotation rate based on a perfect 3:2 spin orbit resonance. The estimated orientation of the rotation axis is consistent with the assumption that Mercury occupies a Cassini state. We compare our estimates with values based on Earth-based observations and MESSENGER radio science. Our results confirm that Mercury possesses a liquid outer core and we discuss further implications of our estimates on the interior structure of the planet.

  17. Exo-Milankovitch Cycles. I. Orbits and Rotation States (United States)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn


    The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.

  18. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. (United States)

    Zhao, Jianhua; Benlekbir, Samir; Rubinstein, John L


    Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.

  19. Rotational energy transfer of the A{sup 2}{Sigma}`({nu}`=1) state of OH

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P.; Radi, P.; Frey, H.B.; Mischler, B.; Tzannis, A.P.; Gerber, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Spectrally and temporally resolved laser excited fluorescence of OH is investigated in the picosecond time domain. The total rotational energy transfer (RET) rate from the excited state is determined from the experimental data. Simulated spectra obtained by modelling RET with the energy corrected sudden approximation agree well with the measured spectra. (author) 1 fig., 1 tab., 5 refs.

  20. Effect of triaxial deformations on the splitting of the M1 isovector rotational state

    Energy Technology Data Exchange (ETDEWEB)

    Lo Iudice, N.; Lipparini, E.; Stringari, S.; Palumbo, F.; Richter, A.


    A sum rule approach is proposed for investigating the effects of triaxially on the splitting of the M1 isovector rotational state. The explicit dependence of the energy and M1 strength of these states on the deformation parameters US and el is derived. It is shown that the splitting recently found in WUDy and XUYb might be explained by assuming that these nuclei deviate slightly from axial symmetry. (orig.).

  1. Calcific tendinitis of the rotator cuff: state of the art in diagnosis and treatment. (United States)

    Merolla, Giovanni; Singh, Sanjay; Paladini, Paolo; Porcellini, Giuseppe


    Calcific tendinitis is a painful shoulder disorder characterised by either single or multiple deposits in the rotator cuff tendon. Although the disease subsides spontaneously in most cases, a subpopulation of patients continue to complain of pain and shoulder dysfunction and the deposits do not show any signs of resolution. Although several treatment options have been proposed, clinical results are controversial and often the indication for a given therapy remains a matter of clinician choice. Herein, we report on the current state of the art in the pathogenesis, diagnosis and treatment of calcific tendinitis of the rotator cuff.

  2. Superdeformation, hyperdeformation and clustering in the actinide region

    NARCIS (Netherlands)

    Krasznahorkay, A; Habs, D; Hunyadi, M; Gassmann, D; Csatlos, M; Eisermann, Y; Faestermann, T; Graw, G; Gulyas, J; Hertenberger, R; Maier, HJ; Mate, Z; Metz, A; Ott, J; Thirolf, P; van der Werf, SY

    Excited states in the second minimum of Pu-240 were populated by the U-238(alpha, 2n) reaction at E-alpha=25 MeV. Conversion electrons from electromagnetic transitions preceding the fission of the 3.7 ns Pu-240f Shape isomer have been measured. In a combined analysis of e(-) and high resolution

  3. Equation of state effects on gravitational waves from rotating core collapse (United States)

    Richers, Sherwood; Ott, Christian D.; Abdikamalov, Ernazar; O'Connor, Evan; Sullivan, Chris


    Gravitational waves (GWs) generated by axisymmetric rotating collapse, bounce, and early postbounce phases of a galactic core-collapse supernova are detectable by current-generation gravitational wave observatories. Since these GWs are emitted from the quadrupole-deformed nuclear-density core, they may encode information on the uncertain nuclear equation of state (EOS). We examine the effects of the nuclear EOS on GWs from rotating core collapse and carry out 1824 axisymmetric general-relativistic hydrodynamic simulations that cover a parameter space of 98 different rotation profiles and 18 different EOS. We show that the bounce GW signal is largely independent of the EOS and sensitive primarily to the ratio of rotational to gravitational energy, T /|W | , and at high rotation rates, to the degree of differential rotation. The GW frequency (fpeak˜600 - 1000 Hz ) of postbounce core oscillations shows stronger EOS dependence that can be parametrized by the core's EOS-dependent dynamical frequency √{G ρ¯ c } . We find that the ratio of the peak frequency to the dynamical frequency fpeak/√{G ρc ¯ } follows a universal trend that is obeyed by all EOS and rotation profiles and that indicates that the nature of the core oscillations changes when the rotation rate exceeds the dynamical frequency. We find that differences in the treatments of low-density nonuniform nuclear matter, of the transition from nonuniform to uniform nuclear matter, and in the description of nuclear matter up to around twice saturation density can mildly affect the GW signal. More exotic, higher-density physics is not probed by GWs from rotating core collapse. We furthermore test the sensitivity of the GW signal to variations in the treatment of nuclear electron capture during collapse. We find that approximations and uncertainties in electron capture rates can lead to variations in the GW signal that are of comparable magnitude to those due to different nuclear EOS. This emphasizes the

  4. Controlling the Rotational and Hyperfine State of Ultracold $^{87}$Rb$^{133}$Cs Molecules

    CERN Document Server

    Gregory, Philip D; Hutson, Jeremy M; Cornish, Simon L


    We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave ?fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibronic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.

  5. Study of superdeformed bands in nuclei with A approx equal 150 by heavy-ion-. gamma. coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, L.; Adamides, E.; Corradi, L.; Moreno, H.; Napoli, D.R.; Prete, G.F.; Spolaore, P.; Stefanini, A.M. (Istituto Nazionale di Fisica Nucleare, Padua (Italy). Lab. di Legnaro); Soramel, F.; Beghini, S.; Scarlassara, F.; Segato, G.F.; Signorini, C. (Padua Univ. (Italy). Ist. di Fisica Istituto Nazionale di Fisica Nucleare, Padua (Italy)); LoBianco, G.; Million, B.; Molho, M.; Signorelli, S. (Milan Univ. (Italy). Ist. di Fisica Istituto Nazionale di Fisica Nucleare, Milan (Italy))


    Superdeformed (SD) bands in {sup 152}Dy, {sup 151}Dy and {sup 151}Tb have been populated via the 5n, 6n and 5np evaporation channels, respectively, with the {sup 33}S+{sup 124}Sn reaction at 160 and 170 MeV bombarding energies. Population intensities are in good agreement with existing data for SD bands in {sup 151,152}Dy and SD yrast band in {sup 151}Tb. The excited 'twin' SD band in {sup 151}Tb with the same {gamma}-transitions as the band in {sup 152}Dy is populated about 5 times more strongly than by the 6n evaporation channel. This might be explained in terms of competition between proton and {gamma} emission out of an intermediate, excited superdeformed configuration of {sup 152}Dy. (orig.).

  6. Short rotation woody crops: Using agroforestry technology for energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L L; Ranney, J W


    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

  7. Photoelectron angular distributions from rotationally resolved autoionizing states of N2 (United States)

    Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; Holland, D. M. P.; Gans, B.; Tang, Xiaofeng; Garcia, G. A.; Nahon, L.; Pratt, S. T.


    The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (˜1.5 cm-1) resolution in the region between the N2 + X Σ2g+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2 + X Σ2g+ ground state, and electronically autoionizing states converging to the N2 +A 2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.

  8. Coherent libration to coherent rotational dynamics via chimeralike states and clustering in a Josephson junction array. (United States)

    Mishra, Arindam; Saha, Suman; Hens, Chittaranjan; Roy, Prodyot K; Bose, Mridul; Louodop, Patrick; Cerdeira, Hilda A; Dana, Syamal K


    An array of excitable Josephson junctions under a global mean-field interaction and a common periodic forcing shows the emergence of two important classes of coherent dynamics, librational and rotational motion, in the weaker and stronger coupling limits, respectively, with transitions to chimeralike states and clustered states in the intermediate coupling range. In this numerical study, we use the Kuramoto complex order parameter and introduce two measures, a libration index and a clustering index, to characterize the dynamical regimes and their transitions and locate them in a parameter plane.

  9. Quantum non-equilibrium effects in rigidly-rotating thermal states

    Directory of Open Access Journals (Sweden)

    Victor E. Ambruş


    Full Text Available Based on known analytic results, the thermal expectation value of the stress-energy tensor (SET operator for the massless Dirac field is analysed from a hydrodynamic perspective. Key to this analysis is the Landau decomposition of the SET, with the aid of which we find terms which are not present in the ideal SET predicted by kinetic theory. Moreover, the quantum corrections become dominant in the vicinity of the speed of light surface (SOL. While rigidly-rotating thermal states cannot be constructed for the Klein–Gordon field, we perform a similar analysis at the level of quantum corrections previously reported in the literature and we show that the Landau frame is well-defined only when the system is enclosed inside a boundary located inside or on the SOL. We discuss the relevance of these results for accretion disks around rapidly-rotating pulsars.

  10. Quantum non-equilibrium effects in rigidly-rotating thermal states (United States)

    Ambruş, Victor E.


    Based on known analytic results, the thermal expectation value of the stress-energy tensor (SET) operator for the massless Dirac field is analysed from a hydrodynamic perspective. Key to this analysis is the Landau decomposition of the SET, with the aid of which we find terms which are not present in the ideal SET predicted by kinetic theory. Moreover, the quantum corrections become dominant in the vicinity of the speed of light surface (SOL). While rigidly-rotating thermal states cannot be constructed for the Klein-Gordon field, we perform a similar analysis at the level of quantum corrections previously reported in the literature and we show that the Landau frame is well-defined only when the system is enclosed inside a boundary located inside or on the SOL. We discuss the relevance of these results for accretion disks around rapidly-rotating pulsars.

  11. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. (United States)

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori


    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  12. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state (United States)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori


    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  13. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics


    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  14. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    Energy Technology Data Exchange (ETDEWEB)

    David R. Farley


    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  15. State-To Rotational and Vibrational Energy Transfers Following Vibrational Excitation of (1010000) and (0112000) in the Ground Electronic State of Acetylene (United States)

    Han, Jiande; Freel, Keith; Heaven, Michael C.


    We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (1010000) and (0112000) of C2H2 in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (1010000). The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.

  16. Lifetime measurements of strongly deformed rotational bands in {sup 133}Pm

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Uribarri, A.; Ward, D.; Andrews, H.R.; Ball, G.C.; Radford, D.C.; Janzen, V.P. [Atomic Energy of Canda Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (CANADA); Mullins, S.M.; Waddington, J.C. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Afanasjev, A.V.; Ragnarsson, I. [Department of Mathematical Physics, Lund. Institute of Technology, P.O. Box 118, S-221 00 Lund (Sweden)


    We have measured lifetimes and deduced deformation parameters for rotational bands in {sup 133}Pm by the Doppler-shift attenuation method. A strongly coupled band based on the configuration with a hole in the {ital g}{sub 9/2} orbital has deformation parameter {beta}{sub 2}=0.40 (5), which is comparable to or larger than typical superdeformed bands in the {ital A}{approximately}130 region. We observe this band in {sup 133}Pm down to its {ital I}={ital K}=9/2 bandhead. Calculations with a configuration-dependent shell correction to the cranked Nilsson potential can explain the existence of such low-spin superdeformed structures in the {ital A}{approximately}130 region. These shapes, which also occur in {sup 129,131}Pr, can be observed experimentally because of relatively low-lying shell gaps for {beta}{sub 2}=0.4 near {ital Z}=58, {ital N}=72. No high-spin intruder orbitals ({upsilon}{ital i}{sub 13/2}) are occupied (over the spin range observed), however the strongly deformation-driving properties of a hole in the extruder {pi}{ital g}{sub 9/2} orbital appear to be an essential ingredient in lowering the energy of the superdeformed shape. {copyright} {ital 1996 The American Physical Society.}

  17. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [IPN, Orsay (France)] [and others


    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  18. Stability of Steady-State Motion of an Isolated System Consisting of a Rotating Body and Two Pendulums (United States)

    Filimonikhin, G. B.; Filimonikhina, I. I.; Pirogov, V. V.


    An isolated mechanical system consisting of a rotating body and two pendulums fit on its longitudinal axis is studied. This system models how pendulum, ball, or fluid (ring) dampers decrease or increase the nutation angle of a spin-stabilized artificial satellite. The conditions of origin, existence, and cessation of the steady-state motion of the system, depending on its parameters, and the stability conditions for the primary motion (the body rotates about the longitudinal axis and the pendulums lie on the same line) and secondary motions (the body does not rotate around the longitudinal axis) are established. The residual nutation angle is estimated

  19. A transition-state based rotational sudden (TSRS) approximation for polyatomic reactive scattering (United States)

    Zhao, Bin; Manthe, Uwe


    A transition-state based rotational sudden (TSRS) approximation for the calculation of differential and integral cross sections is introduced. The TSRS approach only requires data obtained from reactive scattering calculations for the vanishing total angular momentum (J = 0). It is derived within the quantum transition state framework and can be viewed as a generalization and improvement of existing J-shifting schemes. The TSRS approach assumes a sudden decay of the activated complex and separability of the overall rotation and motion in the internal coordinates. Depending on the choice of the body fixed frame, different variants of the TSRS can be derived. The TSRS approach is applied to the calculation of integral cross sections of various isotopomers of the H 2 O + H → H 2 + OH reaction, the reverse reaction H 2 + OH → H 2 O + H , and the H 2 O + Cl → HCl + OH reaction. Comparison with accurate close-coupling calculations and established approximate schemes shows that a scattering frame based TSRS approximation yields more accurate results than the centrifugal sudden approximation and standard J-shifting for the H 2 O + H → H 2 + OH reaction and all isotopomers studied. For the H 2 + OH → H 2 O + H and the H 2 O + Cl → HCl + OH reactions, the TSRS results as well as the results of the other approximate schemes agree well with the exact ones. The findings are rationalized by an analysis of the different contributions to the moment of inertia matrix at the transition state geometry.

  20. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur


    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  1. Simulations of rotating neutron star collapse with the puncture gauge: end state and gravitational waveforms

    CERN Document Server

    Dietrich, Tim


    We reexamine the gravitational collapse of rotating neutron stars to black holes by new 3+1 numerical relativity simulations employing the Z4c formulation of Einstein equations, the moving puncture gauge conditions, and a conservative mesh refinement scheme or the general relativistic hydrodynamics. The end state of the collapse is compared to the vacuum spacetime resulting from the evolution of spinning puncture initial data. Using a local analysis for the metric fields, we demonstrate that the two spacetimes atually agree. Gravitational waveforms are analyzed in some detail. We connect the emission of radiation to the collapse dynamics using simplified spacetime diagrams, and discuss the similarity of the waveform structure with the one of black hole perturbation theory.

  2. Identification of Nilsson orbitals in the superdeformed minimum of {sup 237}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Thomas James


    In this thesis, a spectroscopy experiment in the second minimum of the double humped fission barrier of {sup 237}Pu is presented, in which, for the first time, single - particle states for a neutron - rich shape isomer with odd neutron number were identified and characterised by their Nilsson quantum numbers. While rotational ({sup 236f}U and {sup 240f}Pu) and vibrational excitations ({sup 240f}Pu) had already been identified earlier in the even-even neighbouring nuclei, now the fission isomers in {sup 237}Pu (t{sub 1/2}=115 ns/1.12 {mu}s) were investigated in a {gamma}-spectroscopy experiment at the Cologne Tandem accelerator. Using the {sup 235}U({alpha},2n) reaction with a pulsed R beam, states in the second minimum were populated. Following the prompt decay of excited states into the ground states of the two shape isomers, the nucleus decays with its halflife, the resulting fission fragments were detected in a specially built 4{pi} parallel plate detector. The extremely rare isomeric {gamma} decays were measured in coincidence with the fission fragments using the highly efficient MINIBALL spectrometer. The background-subtracted {gamma}-ray spectrum was disentangled into contributions from the two shape isomers and 9 excited rotational bands were identified built on the ground states of the two isomers. The ground state spins of the two shape isomers were determined to be I=5/2 (115 ns isomer) and I=9/2 (1120 ns isomer). From the 149 identified {gamma} transitions, independent level schemes were constructed for the two fission isomers in {sup 237}Pu. The consistency of these level schemes was supported by the connecting {gamma} transitions between rotational bands. Furthermore, both level schemes could be combined to a common level scheme, in which the ground state of the long-lived 9/2 isomer was placed 54.0(3) keV above the ground state of the short-lived 5/2 isomer. The resulting level scheme was compared to Hartree-Fock-Bogolyubov single

  3. Coherent control of polarization state rotation via Doppler broadening and Kerr nonlinearity in a spinning fast light medium (United States)

    Rahman, Habibur; Hizbullah; Jabar, M. S. Abdul; Khan, Anwar Ali; Ahmad, Iftikhar; Amin Bacha, Bakht


    We propose a four-level experimental N-type atomic configuration to observe the propagation of a light pulse in a spinning dispersive medium. In this model a fast propagating light pulse is observed in which the polarization states of the light and their transmitted images are rotated in the opposite direction to the spinning medium. We investigate the effects of Doppler broadening and Kerr nonlinearity on fast light propagation in a spinning medium. Doppler broadening and Kerr nonlinearity strongly influence the rotation of the polarization states of the light and images of fast light in a spinning medium. A pulse of group velocity -c/2000.5 ms-1 is enhanced to -c/80000 ms-1 due to the the Kerr effect and a significant increase is observed in the rotation of the polarization states of the light and images. At a specific parameter, a 25% fraction change is observed due to the Kerr effect. These results provide different rotation states for image coding.

  4. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  5. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor


    Limkumnerd, Surachate; Sethna, James P.


    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank's formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be wri...

  6. Methyl Group Tunneling Rotation in the Lowest nπ* Triplet State of Toluquinone. An Optically Detected ENDOR, LAC and CR Study

    NARCIS (Netherlands)

    Lichtenbelt, Jan H.; Wiersma, Douwe A.


    In this paper we report and discuss the effects of methyl group tunneling rotation on the methyl proton ENDOR, LAC and CR spectra in the lowest triplet state of toluquinone at 1.8 K. From a detailed analysis of the ENDOR spectra in the lowest rotational state (A) we obtain for the methyl protons the

  7. Anisotropic non-gaussianity from rotational symmetry breaking excited initial states

    Energy Technology Data Exchange (ETDEWEB)

    Ashoorioon, Amjad [INFN - Sezione di Bologna, IS FLAG,viale B. Pichat 6/2, I-40127 Bologna (Italy); Casadio, Roberto [INFN - Sezione di Bologna, IS FLAG,viale B. Pichat 6/2, I-40127 Bologna (Italy); Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); Koivisto, Tomi [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)


    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B|≲0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ≃0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach f{sub NL}∼30 in the preferred direction while disappearing from the correlations in the orthogonal plane.

  8. Properties of superdeformed bands in the {sup 151}Tb nucleus studied with the EUROGAM French-British spectrometer; Proprietes des bandes superdeformees dans le noyau de {sup 151}Tb etudiees avec le spectrometre franco-britannique EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    Finck, Christian [Centre de Recherches Nucleaires de Strasbourg-Cronenbourg, 67 (France)


    The subject of this thesis is the study of superdeformation (SD) of the atomic nucleus. In the mass region A {approx_equal} 150 those nuclei have a quadrupole deformation of about 0.6. However, this value is an average and the microscopic structure reflected in the band configurations, affects this deformation. Determination of this value by electric quadrupole moment studies is particularly useful especially for the identical SD bands (SD bands belonging to neighbouring nuclei and having the same moment of inertia). Knowledge of the different quadrupole deformation should shed light on the competition between mass difference, spin alignment and deformation of the nucleus. The electric quadrupole moments are deduced from lifetime measurements of the SD states using the Doppler Shift Attenuation Method. Experimentally, one observes a variation in the electric quadrupole moments of the lowest SD states which suggests a gradual change of the nuclear deformation towards normal less deformed shapes. The deexcitation mechanism is poorly understood in the A {approx_equal} 150 mass region due to lack of experimental information: up to now, no transition connecting the second and the first potential well has been observed for these SD states. Experimental studies of deexcitation patterns of SD bands are therefore crucial to fix the decay-out mechanism. Experimental data on the {sup 151}Tb nucleus were collected via fusion-evaporation reaction, using the EUROGAM phase II array. (author) 121 refs., 61 figs., 22 tabs.

  9. Instability of Non-vortex State toward a Quantized Vortex in Bose-Einstein Condensate under External Rotation


    Isoshima, Tomoya; Machida, Kazushige


    The instability condition of the non-vortex state toward vortex formation is exa mined within the Bogoliubov theory when a Bose-Einstein condensate is under exte rnally forced rotation. The obtained critical angular velocity combined with the previous stability cond itions for a votex yields a detailed phase diagram in the critical velocity vs t he system parameter. This facilitates vortex formation experiments for alkali atom gases confined in a harmonic potential.

  10. Structural transformations and temperature state of rotating blades of E1893 alloy under operation

    Energy Technology Data Exchange (ETDEWEB)

    Pigrova, G.D.; Rybnikov, A.I.; Kryukov, I.I. [Polzunov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)


    The composition and quantity of different phase component of EI893 alloy after long term operation as base metal for rotating blades of gas turbines GT-6, GTN-9, GTK-10 and GT-100 types were studied. The obtained date were analysed with regard to the chemical composition of alloys and of initial condition of heat treatment. Data of metal phase analysis owned alter operation can provide the basis for evaluation of tempera field of rotating blades in the course of operation since structural condition of phase components and redistribution of alloying elements are being specified by temperature and in-service time. (orig.)

  11. Spectroscopy of 9Be and observation of neutron halo structure in the states of positive parity rotational band

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.


    Full Text Available The differential cross sections of the 9Be + α inelastic scattering at 30 MeV were measured at the tandem of Tsukuba University. All the known states of 9Be up to energies ~ 12 MeV were observed and decomposed into three rotational bands, each of them having a cluster structure consisting of a 8Be core plus a valence neutron in one of the sub-shells: p3/2−, s1/2+ and p1/2−. Existence of a neutron halo in the positive parity states was confirmed.

  12. State-to-state rotational relaxation rate constants for CO+Ne from IR-IR double-resonance experiments: comparing theory to experiment. (United States)

    Hostutler, David A; Smith, Tony C; Hager, Gordon D; McBane, George C; Heaven, Michael C


    IR-IR double-resonance experiments were used to study the state-to-state rotational relaxation of CO with Ne as a collision partner. Rotational levels in the range Ji=2-9 were excited and collisional energy transfer of population to the levels Jf=2-8 was monitored. The resulting data set was analyzed by fitting to numerical solutions of the master equation. State-to-state rate constant matrices were generated using fitting law functions. Fitting laws based on the modified exponential gap (MEG) and statistical power exponential gap (SPEG) models were used; the MEG model performed better than the SPEG model. A rate constant matrix was also generated from scattering calculations that employed the ab initio potential energy surface of McBane and Cybulski [J. Chem. Phys. 110, 11 734 (1999)]. This theoretical rate constant matrix yielded kinetic simulations that agreed with the data nearly as well as the fitted MEG model and was unique in its ability to reproduce both the rotational energy transfer and pressure broadening data for Ne-CO. The theoretical rate coefficients varied more slowly with the energy gap than coefficients from either of the fitting laws. (c) 2004 American Institute of Physics

  13. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine. (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T


    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  14. The Spectrum of the Molecular Eigenstates of Pyrazine and the Reconstruction of Decays of Rotational States of the 1B3u (0-0) Transition of Pyrazine

    NARCIS (Netherlands)

    Meer, Barend J. van der; Jonkman, Harry Th.; Kommandeur, Jan


    The spectrum of the molecular eigenstates (ME) belonging to the various rotational members of the 1B3u (0-0) transition of pyrazine was measured with a very narrow band laser in a molecular beam with a Doppler width of 30 MHz. It is shown that, when the ME’s belonging to a single rotational state

  15. Collision energy dependence of state-to-state differential cross sections for rotationally inelastic scattering of H2O by He. (United States)

    Sarma, Gautam; Saha, Ashim Kumar; Bishwakarma, Chandan Kumar; Scheidsbach, Roy; Yang, Chung-Hsin; Parker, David; Wiesenfeld, Laurent; Buck, Udo; Mavridis, Lazaros; Marinakis, Sarantos


    The inelastic scattering of H2O by He as a function of collision energy in the range 381 cm-1 to 763 cm-1 at an energy interval of approximately 100 cm-1 has been investigated in a crossed beam experiment using velocity map imaging. Change in collision energy was achieved by varying the collision angle between the H2O and He beam. We measured the state-to-state differential cross section (DCS) of scattered H2O products for the final rotational states JKaKc = 110, 111, 221 and 414. Rotational excitation of H2O is probed by (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectroscopy. DCS measurements over a wide range of collision energies allowed us to probe the H2O-He potential energy surface (PES) with greater detail than in previous work. We found that a classical approximation of rotational rainbows can predict the collision energy dependence of the DCS. Close-coupling quantum mechanical calculations were used to produce DCS and partial cross sections. The forward-backward ratio (FBR), is introduced here to compare the experimental and theoretical DCS. Both theory and experiments suggest that an increase in the collision energy is accompanied with more forward scattering.

  16. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method (United States)

    Gray, Carl E., Jr.


    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  17. Does Maximal External Tibial Component Rotation Influence Tibiofemoral Load Distribution in the Primary Knee Arthroplasty Setting: A Comparison of Neutral vs Maximal Anatomical External Rotatory States. (United States)

    Manning, William A; Ghosh, Kanishka M; Blain, Alasdair P; Longstaff, Lee M; Rushton, Steven P; Deehan, David J


    Tibial component rotation at time of knee arthroplasty can influence conformity, load transmission across the polyethylene surface, and perhaps ultimately determined survivorship. Optimal tibial component rotation on the cut surface is reliant on standard per operative manual stressing. This subjective assessment aims to balance constraint and stability of the articulation through a full arc of movement. Using a cadaveric model, computer navigation and under defined, previously validated loaded conditions mimicking the in vivo setting, the influence of maximal tibial component external rotation compared with the neutral state was examined for changes in laxity and tibiofemoral continuous load using 3D displacement measurement and an orthosensor continuous load sensor implanted within the polyethylene spacer in a simulated single radius total knee arthroplasty. No significant difference was found throughout arc of motion (0-115 degrees of flexion) for maximal varus and/or valgus or rotatory laxity between the 2 states. The neutral state achieved equivalence for mediolateral load distribution at each point of flexion. We have found that external rotation of the tibial component increased medial compartment load in comparison with the neutral position. Compared with the neutral state, external rotation consistently effected a marginal, but not significant reduction in lateral load under similar loading conditions. The effects were most pronounced in midflexion. On the basis of these findings, we would advocate for the midtibial tubercle point to determine tibial component rotation and caution against component external rotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Peter [Laboratoire de Physique Statistique, Ecole Normale Superieure, UPMC Paris 06, Universite Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris (France); Institut Jean Le Rond D' Alembert, UMR 7190 CNRS-UPMC, 4 place Jussieu, F-75005 Paris (France); Aftalion, Amandine [CNRS and Universite Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Mathematiques de Versailles, CNRS UMR 8100, 45 avenue des Etats-Unis, F-78035 Versailles Cedex (France)


    We classify the ground states and topological defects of a rotating two-component condensate when varying several parameters: the intracomponent coupling strengths, the intercomponent coupling strength, and the particle numbers. No restriction is placed on the masses or trapping frequencies of the individual components. We present numerical phase diagrams which show the boundaries between the regions of coexistence, spatial separation, and symmetry breaking. Defects such as triangular coreless vortex lattices, square coreless vortex lattices, and giant skyrmions are classified. Various aspects of the phase diagrams are analytically justified thanks to a nonlinear {sigma} model that describes the condensate in terms of the total density and a pseudo-spin representation.

  19. Ground-state and rotational properties of a two-component Bose–Einstein condensate in a harmonic plus quartic trap

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guang-Ping [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhi-Yuan [The School of Physics and Mech-tronic Engineering, Sichuan University of Art and Science, DaZhou 635000 (China); Dong, Biao [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Lin-Xue [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Zhang, Xiao-Fei, E-mail: [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China); Zhang, Shou-Gang, E-mail: [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China)


    We consider a two-component Bose–Einstein condensate under extreme elongation in a harmonic plus quartic trap. The ground-state and rotational properties of such a system are numerically studied as a function of intra- and inter-component contact interactions, and of the rotational frequency. For the nonrotational case, we obtain the exact phase diagram showing the ground-state density distributions as contact-interactions varied. For both slowly and ultrarapidly rotational cases, we demonstrate that the vortex configurations depend strongly on the relative strength of the contact interactions, as well as on the rotational frequency. The controllable system may be used to investigate the interplay of interaction and rotation, and to explore more exotic quantum phases. - Highlights: • Quartic trap extends the parameter space to a fast rotating region. • Different ground state density distributions and novel vortex structures are obtained within the full parameter space. • Effects of the contact interactions and rotation are discussed in detail.

  20. An Analysis of the Torsion-Rotation-Vibration Rotational Spectrum of the Lowest In-Plane Bend and First Excited Torsional State of the C(3V) Internal Rotor C2H5CN (United States)

    Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.


    C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.

  1. Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3. (United States)

    Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N


    Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)2Te3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.

  2. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil. (United States)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio


    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  3. Quantum state-to-state rate constants for the rotationally inelastic collision of CH(B2Sigma(-), nu=0, N-->N') with Ar. (United States)

    Chao, Sheng Der; Lin, Sheng Hsien; Alexander, Millard H


    We have calculated the state-to-state integral cross sections and rate constants for the rotationally inelastic collision of CH(B (2)Sigma(-), nu=0, N-->N') with Ar using the quantum coupled-state and close-coupling methods on an ab initio potential-energy surface constructed by Alexander et al. [J. Chem. Phys. 101, 4547 (1994)]. Overall the calculated rate constants are in good agreements with the three available experimental results. The rate constants are comparable to the usual gas kinetic and decrease with increasing N and DeltaN. For the multiquantum transition cases, the theory underestimates the experiment. We discuss some possible causes to the discrepancies among the theory and the experiments.

  4. The relationship between the TMJ internal derangement state including rotational displacement and perforation and the clinical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Seok; You Dong Soo [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)


    This study was designed to reveal the correlationship between the internal derangement state of TMJ and clinical characteristics including pain and mandibular dysfuntion. One hundred and twenty five subjects with TMJ signs and symptoms were chosen for two years. The level of pain and mandibular dysfuntion were evaluated by Visual Analog Scale (VAS) and Craniomandibular Index (CMI). The diagnostic categories of TMJ internal derangement were determined by arthrography and they included normal disc position, anterior disc displacement with reduction (ADDR), rotational disc displacement with reduction (RDDR), andterior disc displacement without reduction (ADDNR), and rotational disc displacement without reduction (RDDNR). Also disc perforation was used as a criteria to divide the diagnostic subgroups. The obtained results were as follows: 1. The patient distribution of each group was 5 in normal disc position (4%), 40 in ADDR (32%), 30 in RDDR (24%), 34 in ADDNR (27%), and 16 in RDDNR (13%). 2. Perforation was observed in 8% of ADDR, 10% of RDDR, 32% of ADDNR, and 19% of RDDNR. 3. CMI of perforation group was higher than that of reduction or normal group(p<0.005), but vas showed no significant difference. 4. CMI of non-reduction group was higher than that of non-perforation group in reduction group(p<0.05). 5. There were no significant differences of CMI and VAS between anterior disc displacement group and rotational disc displacement group in both reduction and non-reduction group. 6. CMI of RDDNR group was higher than that of RDDR group (p<0.05). 7. There were no significant difference of CMI and VAS between bilateral involvement group and unilateral involvement group (p>0.05).

  5. Experimental determination of rotational constants of low-lying vibrational levels in the 0g- pure long-range state of ultracold Cs2 molecule (United States)

    Wu, Jizhou; Liu, Wenliang; Li, Yuqing; Ma, Jie; Xiao, Liantuan; Jia, Suotang


    We report an accurate experimental determination of rotational constants of the lowest vibrational levels in the purely long-range state of ultracold cesium molecules (Cs2). We engineer a precise reference of the frequency difference through double photoassociation spectroscopy (PAS). The PAS for the lowest vibrational levels, v=0-3, has been obtained with an enhanced sensitivity and accuracy, according to which the binding energies have been corrected. As deduced from the reference, the frequency intervals between neighboring rotational levels are fitted to a non-rigid rotor model, thus the rotational constants are precisely obtained. The experimental results show good agreement with theoretical expectations.

  6. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states. (United States)

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi


    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.

  7. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods (United States)

    Antoine, Xavier; Levitt, Antoine; Tang, Qinglin


    We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

  8. New temperature dependent hyperonic equation of state: Application to rotating neutron star models and I -Q relations (United States)

    Marques, Miguel; Oertel, Micaela; Hempel, Matthias; Novak, Jérôme


    In this work we present a newly constructed equation of state (EoS), applicable to stellar core collapse and neutron star mergers including the entire baryon octet. Our EoS is compatible with the main constraints from nuclear physics and, in particular, with a maximum mass for cold β -equilibrated neutron stars of 2 M⊙ in agreement with recent observations. As an application of our new EoS, we compute numerical stationary models for rapidly (rigidly) rotating hot neutron stars. We consider maximum masses of hot stars, such as protoneutron stars or hypermassive neutron stars in the postmerger phase of binary neutron star coalescence. The universality of I -Q relations at nonzero temperature for fast rotating models, comparing a purely nuclear EoS with its counterparts containing Λ hyperons or the entire baryon octet, respectively, is discussed, too. We find that the I -Q universality is broken in our models when thermal effects become important, independent on the presence of entropy gradients. Thus, the use of I -Q relations for the analysis of protoneutron stars or merger remnant data, including gravitational wave signals from the last stages of binary neutron star mergers, should be regarded with care.

  9. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review (United States)

    Kofsky, I. L.; Barrett, J. L.


    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  10. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos


    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  11. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting (United States)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng


    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  12. Torsion - Rotation - Vibration Effects in the Ground and First Excited States of Methacrolein and Methyl Vinyl Ketone (United States)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.


    Methacrolein and methyl vinyl ketone are the two major oxidation products of isoprene emitted in the troposphere. New spectroscopic information is provided with the aim to allow unambiguous identification of these molecules, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed. Comprehensive sets of molecular parameters have been obtained. The torsion-rotation-vibration effects will be discussed in detail. From the atmospheric application point of view the results provide precise ground state molecular constants essential as a foundation (by using the Ground State Combination Differences method) for the analysis of high resolution spectrum, recorded from 600 to 1600 wn. The infrared range can be then refitted using appropriate Hamiltonian parameters. The present work is funded by the French ANR through the PIA under contract ANR-11-LABX-0005-01 (Labex CaPPA), by the Regional Council Nord-Pas de Calais and by the European Funds for Regional Economic Development (FEDER).

  13. Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. (United States)

    Opella, Stanley J


    One of the most important topics in experimental structural biology is determining the structures of membrane proteins. These structures represent one-third of all of the information expressed from a genome, distinguished by their locations within the phospholipid bilayer of cells, organelles, or enveloped viruses. Their highly hydrophobic nature and insolubility in aqueous media means that they require an amphipathic environment. They have unique functions in transport, catalysis, channel formation, and signaling. Researchers are particularly interested in G-protein coupled receptors (GPCRs) because they modulate many biological processes, and about half of the approximately 800 of these proteins within the human genome are or can be turned into drug receptors that affect a wide range of diseases. Because of experimental difficulties, researchers have studied membrane proteins using a wide variety of artificial media that mimic membranes, such as mixed organic solvents or detergents. More sophisticated mimics include bilayer discs (bicelles) and the lipid cubic phase (LCP), but both of these contain a very large detergent component, which can disrupt the stability and function of membrane proteins. To have confidence in the resulting structures and their biological functions and to avoid disrupting these delicate proteins, the structures of membrane proteins should be determined in their native environment of liquid crystalline phospholipid bilayers under physiological conditions. This Account describes a recently developed general method for determining the structures of unmodified membrane proteins in phospholipid bilayers by solid-state NMR spectroscopy. Because it relies on the natural, rapid rotational diffusion of these proteins about the bilayer normal, this method is referred to as rotationally aligned (RA) solid-state NMR. This technique elaborates on oriented sample (OS) solid-state NMR, its complementary predecessor. These methods exploit the power of

  14. Steady-state rotational motions of a rigid body with a strong magnet in an alternating magnetic field in the presence of dissipation (United States)

    Il'in, A. A.; Kupriyanova, N. V.; Ovchinnikov, M. Yu.


    We consider steady-state rotational motions of a satellite, i.e., a rigid body with a passive magnetic attitude control system consisting of a strong constant magnet and a set of magnetic hysteresis rods. We use asymptotic methods to show that in the absence of dissipation there exists a one-parameter family of steady-state rotations of the rigid body with the strong magnet and that this one-parameter family passes into an isolated solution if a model dissipation is introduced. The motion thus obtained was discovered when processing the telemetry data from the first Russian nano-satellite TNS-0 launched in 2005.

  15. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vrakking, Marcus Johannes Jacobus [Univ. of California, Berkeley, CA (United States)


    The hydrogen exchange reaction H + H2 → H2 + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H2 reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H2 molecules. DH molecules formed in the D + H2 reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 103 molecules/cc. This thesis does not contain experimental results for the D + H2 reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  16. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vrakking, M.J.J.


    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  17. Translation-rotation states of H2 in C60: New insights from a perturbation-theory treatment. (United States)

    Felker, Peter M; Bačić, Zlatko


    We report an investigation of the translation-rotation (TR) level structure of H2 entrapped in C60, in the rigid-monomer approximation, by means of a low-order perturbation theory (PT). We focus in particular on the degree to which PT can accurately account for that level structure, by comparison with the variational quantum five-dimensional calculations. To apply PT to the system, the interaction potential of H2@C60 is decomposed into a sum over bipolar spherical tensors. A zeroth-order Hamiltonian, Hˆ0, is then constructed as the sum of the TR kinetic-energy operator and the one term in the tensor decomposition of the potential that depends solely on the radial displacement of the H2 center of mass (c.m.) from the cage center. The remaining terms in the potential are treated as perturbations. The eigenstates of Hˆ0, constructed to also account for the coupling of the angular momentum of the H2 c.m. about the cage center with the rotational angular momentum of the H2 about the c.m., are taken as the PT zeroth-order states. This zeroth-order level structure is shown to be an excellent approximation to the true one except for two types of TR-level splittings present in the latter. We then show that first-order PT accounts very well for these splittings, with respect to both their patterns and magnitudes. This allows one to connect specific features of the level structure with specific features of the potential-energy surface, and provides important new physical insight into the characteristics of the TR level structure.

  18. A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery. (United States)

    Xue, Xiaoming; Zhou, Jianzhong


    To make further improvement in the diagnosis accuracy and efficiency, a mixed-domain state features data based hybrid fault diagnosis approach, which systematically blends both the statistical analysis approach and the artificial intelligence technology, is proposed in this work for rolling element bearings. For simplifying the fault diagnosis problems, the execution of the proposed method is divided into three steps, i.e., fault preliminary detection, fault type recognition and fault degree identification. In the first step, a preliminary judgment about the health status of the equipment can be evaluated by the statistical analysis method based on the permutation entropy theory. If fault exists, the following two processes based on the artificial intelligence approach are performed to further recognize the fault type and then identify the fault degree. For the two subsequent steps, mixed-domain state features containing time-domain, frequency-domain and multi-scale features are extracted to represent the fault peculiarity under different working conditions. As a powerful time-frequency analysis method, the fast EEMD method was employed to obtain multi-scale features. Furthermore, due to the information redundancy and the submergence of original feature space, a novel manifold learning method (modified LGPCA) is introduced to realize the low-dimensional representations for high-dimensional feature space. Finally, two cases with 12 working conditions respectively have been employed to evaluate the performance of the proposed method, where vibration signals were measured from an experimental bench of rolling element bearing. The analysis results showed the effectiveness and the superiority of the proposed method of which the diagnosis thought is more suitable for practical application. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A stationary north-finding scheme for an azimuth rotational IMU utilizing a linear state equality constraint. (United States)

    Yu, Huapeng; Zhu, Hai; Gao, Dayuan; Yu, Meng; Wu, Wenqi


    The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically.

  20. Steady-state solutions for the motion of a globular cluster in an inhomogeneous, rotating elliptical galaxy (United States)

    Gasanov, S. A.


    Steady-state solutions for the motion of a passively gravitating globular cluster (GC) inside an inhomogeneous, rotating, ellipsoidal elliptical galaxy (EG) are considered. It is assumed that an EG with a halo is comprised of a triaxial ellipsoid consisting of two layers. The first is formed by an inner, uniform ellipsoid representing the luminous part of the galaxy, while the second corresponds to the space between an inner and outer ellipsoid, which is uniformly filled with dark matter. The triaxial ellipsoids are taken to be homothetic and to have a common center; the space between them is called a homeoid. The outer boundary of the homeoid is the boundary of the galaxy halo. The densities of the luminous part of the EG and the homeoid are different. This picture of an EG is in agreement with our current understanding of galactic structure. The motion of the GC occurs outside the luminous part of the EG, but inside the homeoid, which is treated like a perturbing body. Steady-state solutions (libration points) are found for the GC, and its Lyapunov stability determined. The elliptical galaxies NGC 4472 (M49), NGC 4636, and NGC 4374, which contain a large number of GCs, are used as examples. Analysis of these galaxies shows that the exact expression for the potential of the luminous part of the EG must be used to find the libration points and study their stability, rather than an approximate expression for this potential.

  1. Interaction of rigid C3N- with He: Potential energy surface, bound states, and rotational spectrum (United States)

    Lara-Moreno, Miguel; Stoecklin, Thierry; Halvick, Philippe


    A two-dimensional rigid rotor model of the potential energy surface is developed for the collision of C3N- with He. Ab initio calculations are performed at the coupled cluster level with single and double excitations and using a perturbative treatment of triple excitations. An augmented correlation consistent polarized valence quadruple zeta basis set complemented with a set of mid-bond functions is chosen for these calculations. The global T-shaped minimum (De = 62.114 cm-1) is found at the intermolecular distance R = 6.42 a0. A secondary minimum (De = 41.384 cm-1) is obtained for the linear configuration C3N--He and for R = 9.83 a0. Calculations of the rovibrational bound states are carried out by using a discrete variable representation method based on Sturmian functions. The first theoretical prediction of the absorption spectra for the He-C3N- complex in the microwave region is also provided.

  2. Structures of Superdeforemed States in Nuclei with A~60 Using Two-Parameter Collective Model

    Directory of Open Access Journals (Sweden)

    Gaballah N.


    Full Text Available Superdeformed (SD states in nuclei in mass region A ∼ 60 − 90 are investigated within the framework of two-parameter formula of Bohr and Motelson model. The concept of γ -ray transition energy E γ over spin (EGOS is used to assign the first order estimation of the bandhead spin. The model parameters and the true spin o f bandhead have been obtained by adopted best fit method in order to obtain a minimum root-mean-square deviation between the calculated and the experimental γ -ray transition energies. The transition energies E γ and the dynamical moment of inertia J (2 for data set include thir- teen SD bands in even-even nuclei are calculated. The result s agree with experimental data well. The behavior of J (2 as a function of rotational frequency ~ ω are discussed. By using the calculated bandhead moment of inertia, the predicted quadrupole moments of the studied yrast SD bands are calculated and agree well with the observed data.

  3. Impact of individualized learning plans on United States senior medical students advanced clinical rotations. (United States)

    Guardiola, Amalia; Barratt, Michelle S; Omoruyi, Emma A


    The individualized learning plan (ILP) is a tool that promotes self-directed learning. The aim of this pilot study was to look at the perception of the ILPs in United States senior medical school students as a way to improve their learning experience during their advanced practice clerkship. We conducted a survey of graduating medical students that contained both quantitative and open-ended questions regarding the students' experiences with the ILP during their advanced practice clerkship from July 2014 to March 2016. We systematically identified and compiled themes among the qualitative responses. Responses from 294 out of 460 subjects were included for analysis (63.9%). Ninety students (30.6%) reported that the ILP was definitely reviewed at the midpoint and 88 (29.9%) at the final evaluation. One hundred sixty one students (54.8%) felt the ILP provided a framework for learning. One hundred sixty one students (61.6%) felt it was a useful tool in helping open a discussion between the student and faculty. The qualitative data was grouped by areas most mentioned and these areas of concern centered on lack of faculty knowledge about ILP, time to complete ILP, and uncertainty of appropriate goal setting. The majority of students perceive the ILP to be helpful. Our results suggest that active intervention is needed by dedicated and trained faculty to improve ILP utilization. It is recommended that faculty gives students examples of learning goals to create their own learning framework and encourages them to discuss and review the ILP.

  4. Impact of individualized learning plans on United States senior medical students advanced clinical rotations

    Directory of Open Access Journals (Sweden)

    Amalia Guardiola


    Full Text Available The individualized learning plan (ILP is a tool that promotes self-directed learning. The aim of this pilot study was to look at the perception of the ILPs in United States senior medical school students as a way to improve their learning experience during their advanced practice clerkship. We conducted a survey of graduating medical students that contained both quantitative and open-ended questions regarding the students’ experiences with the ILP during their advanced practice clerkship from July 2014 to March 2016. We systematically identified and compiled themes among the qualitative responses. Responses from 294 out of 460 subjects were included for analysis (63.9%. Ninety students (30.6% reported that the ILP was definitely reviewed at the midpoint and 88 (29.9% at the final evaluation. One hundred sixty one students (54.8% felt the ILP provided a framework for learning. One hundred sixty one students (61.6% felt it was a useful tool in helping open a discussion between the student and faculty. The qualitative data was grouped by areas most mentioned and these areas of concern centered on lack of faculty knowledge about ILP, time to complete ILP, and uncertainty of appropriate goal setting. The majority of students perceive the ILP to be helpful. Our results suggest that active intervention is needed by dedicated and trained faculty to improve ILP utilization. It is recommended that faculty gives students examples of learning goals to create their own learning framework and encourages them to discuss and review the ILP.

  5. Galaxy cluster's rotation (United States)

    Manolopoulou, M.; Plionis, M.


    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  6. Rotation-Vibration Constants for the ν 1, ν 22, ν 24, ν 22+ ν 24, and Ground States in Pyrrole ( 12C 4H 5N) (United States)

    Mellouki, Abdeloihid; Vander Auwera, Jean; Herman, Michel


    We have recorded the infrared absorption spectrum of pyrrole at 0.005 cm-1spectral resolution using a Fourier transform interferometer. The rotational analysis of the symmetric out-of-plane C-H bend 2210fundamental band at 722.132993(5) cm-1was performed, allowing 6760 lines to be assigned. These lines were fitted simultaneously to literature data on ν1[A. Mellouki, R. Georges, M. Herman, D. L. Snavely, and S. Leytner,Chem. Phys.220, 311-322 (1997)] and microwave lines [G. Wlodarczak, L. Martinache, J. Demaison, and B. P. Van Eijck,J. Mol. Spectrosc.127, 200-208 (1988)]. A set of rotation parameters was determined for the ground state in Irand IIIrrepresentations, together with vibration-rotation constants for thev1= 1 andv22= 1 vibrational states. The fine structure in the strongest of the hot bands in that range was highlighted by division, from the experimental data, of the spectrum of the 2210band, computed using the vibration-rotation parameters. The rotational assignment of 930 lines in the strongest hot band was performed. The 22102411vibrational assignment is proposed, leading tox22,24= 1.90 cm-1. The transition dipole matrix element for the 2210band is estimated to ‖‖ = 2 × 10-4D.

  7. Rotation-Vibration Constants for the nu1, nu22, nu24, nu22 + nu24, and Ground States in Pyrrole (12C4H5N). (United States)

    Mellouki; Vander Auwera J; Herman


    We have recorded the infrared absorption spectrum of pyrrole at 0.005 cm-1 spectral resolution using a Fourier transform interferometer. The rotational analysis of the symmetric out-of-plane C-H bend 22(1)0 fundamental band at 722.132993(5) cm-1 was performed, allowing 6760 lines to be assigned. These lines were fitted simultaneously to literature data on nu1 [A. Mellouki, R. Georges, M. Herman, D. L. Snavely, and S. Leytner, Chem. Phys. 220, 311-322 (1997)] and microwave lines [G. Wlodarczak, L. Martinache, J. Demaison, and B. P. Van Eijck, J. Mol. Spectrosc. 127, 200-208 (1988)]. A set of rotation parameters was determined for the ground state in Ir and IIIr representations, together with vibration-rotation constants for the v1 = 1 and v22 = 1 vibrational states. The fine structure in the strongest of the hot bands in that range was highlighted by division, from the experimental data, of the spectrum of the 22(1)0 band, computed using the vibration-rotation parameters. The rotational assignment of 930 lines in the strongest hot band was performed. The 22(1)024(1)1 vibrational assignment is proposed, leading to x22,24 = 1.90 cm-1. The transition dipole matrix element for the 22(1)0 band is estimated to || || = 2 x 10(-4) D. Copyright 1999 Academic Press.

  8. Units of rotational information (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping


    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  9. Rotational seismology (United States)

    Lee, William H K.


    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  10. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S{sub 1} state

    Energy Technology Data Exchange (ETDEWEB)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki, E-mail: [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Hayashi, Masato [Institute for Molecular Science, National Institute of Natural Science, Myodaiji, Okazaki 444-8585 (Japan); Hasegawa, Hirokazu [Department of Basic Science, Graduated School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902 (Japan); Ohshima, Yasuhiro [Institute for Molecular Science, National Institute of Natural Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)


    High-resolution spectra of the S{sub 1}←S{sub 0} transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S{sub 1} state. The degenerate 6{sup 1} levels of C{sub 6}H{sub 6} or C{sub 6}D{sub 6} are split into 6a{sup 1} and 6b{sup 1} in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

  11. Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach (United States)

    Lu, Yongchuan; Wang, Chen


    We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization-delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit-cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.

  12. Combining rotation curves and gravitational lensing: How to measure the equation of state of dark matter in the galactic halo


    Faber, Tristan; Visser, Matt


    We argue that combined observations of galaxy rotation curves and gravitational lensing not only allow the deduction of a galaxy's mass profile, but also yield information about the pressure in the galactic fluid. We quantify this statement by enhancing the standard formalism for rotation curve and lensing measurements to a first post-Newtonian approximation. This enhanced formalism is compatible with currently employed and established data analysis techniques, and can in principle be used to...

  13. Torsion-rotation-vibration effects in the ground and first excited states of methacrolein, a major atmospheric oxidation product of isoprene

    Energy Technology Data Exchange (ETDEWEB)

    Zakharenko, O.; Motiyenko, R. A.; Aviles Moreno, J.-R.; Huet, T. R., E-mail: [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR8523 CNRS – Université Lille 1, Bâtiment P5, F- 59655 Villeneuve d’Ascq Cedex (France); Jabri, A. [Laboratoire Inter-universitaire des Systèmes Atmosphériques, CNRS - Universités Paris Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France); Institute for Physical Chemistry, RWTH Aachen University, Aachen (Germany); Kleiner, I. [Laboratoire Inter-universitaire des Systèmes Atmosphériques, CNRS - Universités Paris Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France)


    Methacrolein is a major oxidation product of isoprene emitted in the troposphere. New spectroscopy information is provided with the aim to allow unambiguous identification of this complex molecule, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed. For the most stable s-trans conformer of atmospheric interest, the torsional and rotational structures have been characterized for the ground state, the first excited methyl torsional state (ν{sub 27}), and the first excited skeletal torsional state (ν{sub 26}). The inverse sequence of A and E tunneling sub-states as well as anomalous A-E splittings observed for the rotational lines of v{sub 26} = 1 state clearly indicates a coupling between methyl torsion and skeletal torsion. A comprehensive set of molecular parameters has been obtained. The far infrared spectrum of Durig et al. [Spectrochim. Acta, Part A 42, 89–103 (1986)] was reproduced, and a Fermi interaction between ν{sub 25} and 2ν{sub 27} was evidenced.

  14. Rotating stars in relativity. (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos


    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  15. Rotating Bose-Einstein condensate with attractive interaction in one dimension : Single-L states and mesoscopics

    NARCIS (Netherlands)

    Kartsev, PF


    We present the results of an exact numeric simulation of N one-dimensional bosons with attractive delta-functional interaction in a rotating ring. We prove that even at intermediate values of N, the system can be described by conventional methods of weakly interacting gas, the dimensionless

  16. Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms (United States)

    Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.


    Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

  17. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei; Noller, Harry F. (UCSC)


    The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.

  18. Production of cold beams of ND3 with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams. (United States)

    Twyman, Kathryn S; Bell, Martin T; Heazlewood, Brianna R; Softley, Timothy P


    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND3 is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND3 beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND3 can be produced with rotational state populations corresponding to approximately T(rot) = 9-18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND3. The translational temperature of the guided ND3 is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  19. Rotating Wavepackets (United States)

    Lekner, John


    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  20. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Nikolaos Stergioulas


    Full Text Available Because of the information they can yield about the equation of state of matter at extremely high densities and because they are one of the more possible sources of detectable gravitational waves, rotating relativistic stars have been receiving significant attention in recentyears. We review the latest theoretical and numerical methods for modeling rotating relativistic stars, including stars with a strong magnetic field and hot proto-neutron stars. We also review nonaxisymmetric oscillations and instabilities in rotating stars and summarize the latest developments regarding the gravitational wave-driven (CFS instability in both polar and axial quasi-normal modes.

  1. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)


    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  2. Rotational elasticity (United States)

    Vassiliev, Dmitri


    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint

  3. Effects of rotation on the sleep state-dependent midlatency auditory evoked P50 potential in the human (United States)

    Dornhoffer, John L.; Mamiya, N.; Bray, P.; Skinner, Robert D.; Garcia-Rill, Edgar


    Sopite syndrome, characterized by loss of initiative, sensitivity to normally innocuous sensory stimuli, and impaired concentration amounting to a sensory gating deficit, is commonly associated with Space Motion Sickness (SMS). The amplitude of the P50 potential is a measure of level of arousal, and a paired-stimulus paradigm can be used to measure sensory gating. We used the rotary chair to elicit the sensory mismatch that occurs with SMS by overstimulating the vestibular apparatus. The effects of rotation on the manifestation of the P50 midlatency auditory evoked response were then assessed as a measure of arousal and distractibility. Results showed that rotation-induced motion sickness produced no change in the level of arousal but did produce a significant deficit in sensory gating, indicating that some of the attentional and cognitive deficits observed with SMS may be due to distractibility induced by decreased habituation to repetitive stimuli.

  4. Microcanonical transition state theory for activated gas-surface reaction dynamics: application to H2/CU(111) with rotation as a spectator. (United States)

    Abbott, Heather L; Harrison, Ian


    A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.

  5. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics. (United States)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan


    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  6. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+. (United States)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G


    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  7. The lowest rotation states of H/sub 3//sup +/ and symmetry considerations in dissociative e/sup -/ capture

    Energy Technology Data Exchange (ETDEWEB)

    Carney, G.D.; Porter, R.N.


    Symmetry of the lowest-lying internal states of H/sub 3//sup +/ and the selection rules governing transitions following electron capture by these states are considered. H/sub 3//sup +/ is a constituent of interstellar medium and lowest-lying states at temperatures of 3--30/sup 0/K play a significant role.(AIP)

  8. Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body (United States)

    Deuring, Paul; Galdi, Giovanni P.


    Consider the flow of a Navier-Stokes liquid past a body rotating with a prescribed constant angular velocity, {ω}, and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every "weak" solution corresponding to data of arbitrary "size" ( Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633-654, 1971) and Babenko and Vasil'ev (J Appl Math Mech 37:651-665, 1973) obtained in the case {ω=0}.

  9. Measurement of Rotational State-To Relaxation Coefficients by Raman-Raman Double Resonance. Application to Self-Collisions in Acetylene. (United States)

    Domenech, J. L.; Martinez, R. Z.; Bermejo, D.


    We have developed a technique for the measurement of state-to-state rotational relaxation rates due to collisions in the gas phase. A single J state of the v_{2}=1 vibrational level of acetylene is populated by a Stimulated Raman process. After a variable delay of a few ns we record high resolution (˜ 0.003 cm^{-1}) spectra of the Q-branch of the v_{2}=2← v_{2}=1 transition by a second Stimulated Raman process. The relative intensities of the lines of this Q-branch, recorded as a function of the the initially pumped J level and the number of collisions between the pump and probe stages (delay × pressure product), allows us to obtain a set of state-to-state energy transfer coefficients by fitting the evolution of the observed populations to that predicted by a master equation with adjustable coefficients. The experimental details and first results for odd-J levels of acetylene at 150 K will be presented.

  10. Minimal clinically important differences (MCID) and patient acceptable symptomatic state (PASS) for visual analog scales (VAS) measuring pain in patients treated for rotator cuff disease. (United States)

    Tashjian, Robert Z; Deloach, Julia; Porucznik, Christina A; Powell, Amy P


    The MCID is the smallest difference in an outcome score which a patient perceives as beneficial. The PASS is the score below which patients consider themselves well. The purpose of this study was to determine the MCID and PASS for a visual analog scale (VAS) measuring pain in patients treated for rotator cuff disease. 81 patients with rotator cuff disease were evaluated after 6 weeks of non-operative treatment with a VAS measuring pain and two transition questions utilized in determining the MCID and PASS. The MCID and PASS were estimated to be 1.4 cm (P = .0255) and 3 cm (95% CI - 22.69, 37.31) on a 10 cm VAS measuring pain, respectively. Age (P = .0492) and hand-dominance (P = .0325) affected the MCID while age (P = .0376) and duration of follow-up (P = .0131) affected the PASS. The MCID and PASS estimates provide the basis to determine if statistically significant changes in VAS pain scores after treatment are clinically important and if the treatment allowed patients to achieve a satisfactory state. Level 3; Nonconsecutive series of patients, diagnostic study.

  11. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}. (United States)

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P


    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  12. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. (United States)

    Kalogeris, E; Iniotaki, F; Topakas, E; Christakopoulos, P; Kekos, D; Macris, B J


    A laboratory bioreactor, designed for solid-state fermentation of thermophilic microorganisms, was operated for production of cellulases and hemicellulases by the thermophilic fungus Thermoascus aurantiacus. The suitability of the apparatus for the effective control of important operating variables affecting growth of microbes in solid-state cultivation was determined. Application of the optimum conditions found for the moisture content of the medium, growth temperature and airflow rate produced enzyme yields of 1709 U endoglucanase, 4 U cellobiohydrolase, 79 U beta-glucosidase, 5.5 U FPA, 4490 U xylanase and 45 U beta-xylosidase per g of dry wheat straw. The correlation between microorganism growth and production of enzymes was efficiently described by the Le Duy kinetic model.

  13. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul


    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  14. Rotator Cuff Exercises (United States)

    ... Home Prevention and Wellness Exercise and Fitness Injury Rehabilitation Rotator Cuff Exercises Rotator Cuff Exercises Share Print Rotator Cuff ... Best Rotator Cuff ExercisesNational Institutes of Health: MedlinePlus, ... and WellnessTags: Exercise Prescription, prevention, Shoulder Problems, ...

  15. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard


    and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...

  16. Rotational energy surfaces of molecules exhibiting internal rotation (United States)

    Ortigoso, Juan; Hougen, Jon T.


    Rotational energy surfaces [W. G. Harter and C. W. Patterson, J. Chem. Phys. 80, 4241 (1984)] for a molecule with internal rotation are constructed. The study is limited to torsional states at or below the top of the barrier to internal rotation, where the extra (torsional) degree of freedom can be eliminated by expanding eigenvalues of the torsion-K-rotation Hamiltonian as a Fourier series in the rotational degree of freedom. For acetaldehyde, considered as an example, this corresponds to considering vt=0, 1, and 2 (below the barrier) and vt=3 (just above the barrier). The rotational energy surfaces are characterized by locating their stationary points (maxima, minima, and saddles) and separatrices. Rather complicated catastrophe histories describing the creation and annihilation of pairs of stationary points as a function of J are found at moderate J for given torsional quantum number (vt) and symmetry species (A,E). Trajectories on the rotational energy surface which quantize the action are examined, and changes from rotational to vibrational trajectories caused by changes in the separatrix structure are found as a function of J for vt=2. The concept of a ``best'' quantization axis for the molecule-fixed component of the total angular momentum is examined from a classical point of view, and it is shown that labeling ambiguities encountered in the literature for torsion-rotation energy levels, calculated numerically in the rho-axis system, can be eliminated by reprojecting basis-set K values onto an axis passing through an appropriate stationary point on the rotational energy surface.

  17. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease. (United States)

    Han, Fei; Zhou, Ziwu; Han, Eric; Gao, Yu; Nguyen, Kim-Lien; Finn, J Paul; Hu, Peng


    To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P ROCK-MUSIC in the other anatomic locations. ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Rotating Cavitation Supression Project (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  19. a 1+1' Resonance-Enhanced Multiphoton Ionization Scheme for Rotationally State-Selective Detection of Formaldehyde via the ˜{A}^1A_2←˜{X}^1A_1 Transition (United States)

    Park, Barratt; Krueger, Bastian C.; Meyer, Sven; Wodtke, Alec; Schaefer, Tim


    The formaldehyde molecule is an important model system for understanding dynamical processes in small polyatomic molecules. However, prior to this work, there have been no reports of a resonance-enhanced multiphoton ionization (REMPI) detection scheme for formaldehyde suitable for rovibrationally state-selective detection in molecular beam scattering experiments. Previously reported tunable REMPI schemes are either non-rotationally resolved, involve multiple resonant steps, or involve many-photon ionization steps. In the current work, we present a new 1+1' REMPI scheme for formaldehyde. The first photon is tunable and provides rotational resolution via the vibronically allowed ˜{A}^1A_2←˜{X}^1A_1 transition. Molecules are then directly ionized from the ˜{A} state by one photon of 157 nm. The results indicate that the ionization cross section from the 4^1 vibrational level of the ˜{A} state is independent of the rotational level used as intermediate, to within experimental uncertainty. The 1+1' REMPI intensities are therefore directly proportional to the ˜{A}←˜{X} absorption intensities and can be used for quantitative measurement of ˜{X}-state population distributions.

  20. Broadband Rotational Spectroscopy (United States)

    Pate, Brooks


    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  1. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René


    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  2. Rotational Laser Cooling of MgH+ Ions and Rotational Rate Measurements

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Staanum, Peter; Højbjerre, Klaus

    blackbody radiation field. To undertake such modelling, we will carry out measurements of a series of transition rates between rotational states in the vibronic ground state at room temperature. The measurements will be performed by the same Resonance Enhanced Multi-Photon Dissociation (REMPD) process used......A method of laser cooling vibrationally and translationally cold trapped MgH+ ions to the rotational ground state using optical pumping was recently demonstrated in our group [1]. This method relies on the 293 K blackbody radiation to redistribute population among the rotational states, while...... exciting a single rovibrational transition within the X1Σ+ electronic ground state for optical pumping into the rovibrational ground state. To model the expected rotational state distributions after the application of the laser beam, one has to know the various rotational transitions rates in the present...

  3. Internal rotation, spin-orbit coupling, and low-frequency vibrations in the ? ground state of CH3-CC-CH+3 and CD3-CC-CD+3 (United States)

    Jacovella, Ugo; Gans, Bérenger; Merkt, Frédéric


    Pulsed-field-ionisation zero-kinetic-energy (PFI-ZEKE) photoelectron spectra of 2-butyne (CH3-CC-CH3) and its fully deuterated isotopomer have been recorded in the region of the origin band of the ? ionising transition. The spectral congestion originating from the combined effects of the internal rotation of the methyl groups, the spin-orbit coupling, and the Jahn-Teller effect prevented the full resolution of the rotational structure of the photoelectron spectra. A tentative analysis of the rotational branch structure of the photoelectron spectra using rovibronic photoionisation selection rules derived in the permutation-inversion spin double group G36(M2) suggests a splitting of ∼10.5 cm-1 between the two spin-orbit components E3/2 and E1/2 of the ? 2 E1 ground state and an almost free internal rotation of the methyl groups in the cations. Assignments are proposed for several low-lying vibrational levels of the cations.

  4. Cross-cultural perspectives on the patient-provider relationship: a qualitative study exploring reflections from Ghanaian medical students following a clinical rotation in the United States. (United States)

    Abedini, Nauzley C; Danso-Bamfo, Sandra; Kolars, Joseph C; Danso, Kwabena A; Donkor, Peter; Johnson, Timothy R B; Moyer, Cheryl A


    In international health experiences, learners are exposed to different culturally-based patient care models. Little is known about student perceptions of patient-provider interactions when they travel from low-to high-resource settings. The purpose of this study was to explore these reflections among a subset of Ghanaian medical students who participated in clinical rotations at the University of Michigan Medical School (UMMS). In-depth, semi-structured interviews lasting 60-90 min were conducted with 15 individuals who had participated in 3-to 4-week clinical rotations at UMMS between January 2008 and December 2011. Interviews were conducted from March to August 2012 and transcribed verbatim, then independently coded by three investigators. Investigators compared open codes and reached a consensus regarding major themes. Participating Ghanaian medical students reported that their perspectives of the patient-provider relationship were significantly affected by participation in a UMMS rotation. Major thematic areas included: (1) observations of patient care during the UMMS rotation, including patient comfort and privacy, physician behavior toward patients, and patient behavior; (2) reflections on the role of humanism and respect within patient care; (3) barriers to respectful care; and (4) transformation of student behaviors and attitudes. Students also reported integrating more patient-centered care into their own medical practice upon return to Ghana Participation in a US-based clinical rotation has the potential to introduce medical students from resource-limited settings to a different paradigm of patient-provider interactions, which may impact their future behavior and perspectives regarding patient care in their home countries. Students from under-resourced settings can derive tremendous value from participation in clinical electives in more affluent settings, namely through exposure to a different type of medical care.

  5. Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides. A Moessbauer spectroscopy and muon spin rotation/relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko


    In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy

  6. Rotational alignment in soft nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Yadrena Fizika i Yadrena Energetika)


    It is shown that in transitional odd-A nuclei, where the rotation-aligned coupling scheme usually takes place, the low collective angular momentum states of the decoupled band are not completely aligned due to core softness. This is illustrated on the example of La-nuclei.

  7. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    subspace of asymptotically free scattering states. 3. Evolution in a rotating frame. Here we study the time evolution in a rotating frame for potentials which no longer have to be smooth. This transformation yields an explicit formula for the propagator U(t,s) in terms of the unitary group for some time-independent generator.

  8. (1+1) Resonant Enhanced Multiphoton Ionization Via the A 2 Sigma(+) State of NO: Ionic Rotational Branching Ratios and Their Intensity Dependence (United States)


    1) does not adequately describe FIG. i.The poble rotational branch. originating from tbeJ 21.5 levelof saturation of the Xl rstate. The ,. brnches...0.804 + 2 2025 2.025 1.520 0.998 Mb) of the total cross section ( 1.158 Mb). These cross sec - tions are in agreement with our previous results," and

  9. Peculiar rotation of electron vortex beams. (United States)

    Schachinger, T; Löffler, S; Stöger-Pollach, M; Schattschneider, P


    Standard electron optics predicts Larmor image rotation in the magnetic lens field of a TEM. Introducing the possibility to produce electron vortex beams with quantized orbital angular momentum brought up the question of their rotational dynamics in the presence of a magnetic field. Recently, it has been shown that electron vortex beams can be prepared as free electron Landau states showing peculiar rotational dynamics, including no and cyclotron (double-Larmor) rotation. Additionally very fast Gouy rotation of electron vortex beams has been observed. In this work a model is developed which reveals that the rotational dynamics of electron vortices are a combination of slow Larmor and fast Gouy rotations and that the Landau states naturally occur in the transition region in between the two regimes. This more general picture is confirmed by experimental data showing an extended set of peculiar rotations, including no, cyclotron, Larmor and rapid Gouy rotations all present in one single convergent electron vortex beam. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rotational Preference in Gymnastics

    National Research Council Canada - National Science Library

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos


    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference...

  11. Rotational cooling of trapped polyatomic molecules

    CERN Document Server

    Glöckner, Rosa; Englert, Barbara G U; Rempe, Gerhard; Zeppenfeld, Martin


    Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH3F) by optically pumping the population of 16 M-sublevels in the rotational states J=3,4,5, and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J=4, K=3, M=4 from a few percent to over 70%, thereby generating a translationally cold (~30mK) and nearly pure state ensemble of about 10^6 molecules. Our scheme is extendable to larger sets of initial states, other final states and a variety of molecule species, thus paving the way for internal-state control of ever larger molecules.

  12. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  13. Isovector rotational model

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany))


    The explicit form of the canonical angle operator is found and the isovector rotor is quantized in canonical relative variables ensuring the exact separation of the spurious mode. The main characteristics of the resulting joint mode, together with the low- and high-frequency parts of the split mode are obtained. It is found that the isovector rotational mode exhausts all the non-spurious M1 strength at low and high energy, providing a strong support for the interpretation of all the orbital 1[sup +] excitations as a scissors mode. Self-consistent residual interactions do not change the non-spurious restoring force of the deformed potential. Simple numerical estimates, derived from a schematic deformed oscillator, are in a good qualitative agreement with microscopic RPA results. Relationships with the results of the two-rotor model and the microscopic realization of the scissors state are established. (orig.)

  14. Properties of relativistically rotating quark stars (United States)

    Zhou, Enping


    In this work, quasi-equilibrium models of rapidly rotating triaxially deformed quark stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polynomial equation of state. Especially, since we are using a full 3-D numerical relativity initial data code, we are able to consider the triaxially deformed rotating quark stars at very high spins. Such triaxially deformed stars are possible gravitational radiation sources detectable by ground based gravitational wave observatories. Additionally, the bifurcation from axisymmetric rotating sequence to triaxially rotating sequence hints a more realistic spin up limit for rotating compact stars compared with the mass-shedding limit. With future observations such as sub-millisecond pulsars, we could possibly distinguish between equation of states of compact stars, thus better understanding strong interaction in the low energy regime.

  15. Cfd Modeling of the Steady-State Momentum and Oxygen Transport in a Bioreactor that is Driven by AN Aerial Rotating Disk (United States)

    Liow, K. Y. S.; Tan, B. T.; Thouas, G. A.; Thompson, M. C.

    This work considers the momentum transport and mass transfer of O2 in a novel aerial rotating disk bioreactor (RDB) for animal cell or tissue culture. Specifically, this design uses a rotating lid placed above the surface of the culture medium to provide a stirring mechanism, which has potential benefits of enhanced gas transfer, reducing possible contamination, and better access to the culture medium below. The aim of this study is to use CFD to characterize the flow field, shear stresses, and oxygen profiles at a range of Reynolds number that lies within the laminar flow regime. Ultimately, such data will aid the development of an aerial RDB for tumor progression. Numerical simulation is used whereby the two-phase flow, comprising air as the gaseous phase, and water as the aqueous phase, is obtained by solving the unsteady, axisymmetric, incompressible Navier Stokes equation. Having obtained an accurate flow field, a species transport equation is then used to predict the oxygen transfer from the gaseous phase to the aqueous phase. Results are presented for a rotation Reynolds number (Re) range that corresponds to the impeller speed range of 60 to 240 rpm. While the flow is primarily swirl-dominant, it is found that the secondary flow in the aqueous region consists of a single recirculation pattern. As the oxygen transfer in the aqueous phase is mainly driven by convection, there is a clear depletion of oxygen at the center of the recirculation region. Shear stress distributions along the bottom stationary wall indicate a shift in the peak towards the external cylinder wall with increasing Re.

  16. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.


    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  17. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard


    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...... than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy...

  18. Rotational isovector vibrations in titanium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.; Taigel, T.


    The strong M1 states with K/sup ..pi../ = 1/sup +/ in /sup 44,46,48,50/Ti are described microscopically with a deformed Woods-Saxon potential plus QRPA using a parameter-free self-consistent quadrupole force and an interaction, which restores the rotational symmetry. The available experimental data (energies, B(M1) values and (e,e') form factors in /sup 46,48/Ti) are well described in terms of isovector quadrupole rotational vibrations. These RPA states correspond to the scissor-type of isovector motion described by the two-rotor model, but they overlap only 20-30% with the collective isovector rotational state of this model since only few quasiparticle configurations take part in the RPA rotational vibration.


    Directory of Open Access Journals (Sweden)

    Mocanu Mihaela


    Full Text Available The present paper starts out from the challenge regarding auditor tenure launched in 2010 by the Green Paper of the European Commission Audit Policy: Lessons from the Crisis. According to this document, the European Commission speaks both in favor of the mandatory rotation of the audit firm, and in favor of the mandatory rotation of audit partners. Rotation is considered a solution to mitigate threats to independence generated by familiarity, intimidation and self-interest in the context of a long-term audit-client relationship. At international level, there are several studies on auditor rotation, both empirical (e.g. Lu and Sivaramakrishnan, 2009, Li, 2010, Kaplan and Mauldin, 2008, Jackson et al., 2008 and normative in nature (e.g. Marten et al., 2007, Muller, 2006 and Gelter, 2004. The objective of the present paper is to perform a critical and comparative analysis of the regulations on internal and external rotation in force at international level, in the European Union and in the United States of America. Moreover, arguments both in favor and against mandatory rotation are brought into discussion. With regard to the research design, the paper has a normative approach. The main findings are first of all that by comparison, all regulatory authorities require internal rotation at least in the case of public interest entities, while the external rotation is not in the focus of the regulators. In general, the most strict and detailed requirements are those issued by the Securities and Exchange Commission from the United States of America. Second of all, in favor of mandatory rotation speaks the fact that the auditor becomes less resilient in case of divergence of opinions between him and company management, less stimulated to follow his own interest, and more scrupulous in conducting the audit. However, mandatory rotation may also have negative consequences, thus the debate on the opportunity of this regulatory measure remains open-ended.

  20. Nonlinear dynamics of a rotating double pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Soumyabrata, E-mail: [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, 711103 (India); Roy, Jyotirmoy, E-mail: [UM-DAE Centre for Excellence in Basic Sciences, Santa Cruz, Mumbai, 400098 (India); Mallik, Asok K., E-mail: [Department of Applied Mechanics and Aerospace Engineering, Indian Institute of Engineering Science and Technology, Shibpur, 711103 (India); Bhattacharjee, Jayanta K., E-mail: [Harish-Chandra Research Institute, Allahabad, 211019 (India)


    Nonlinear dynamics of a double pendulum rotating at a constant speed about a vertical axis passing through the top hinge is investigated. Transitions of oscillations from chaotic to quasiperiodic and back to chaotic again are observed with increasing speed of rotation. With increasing speed, a pair of new stable equilibrium states, different from the normal vertical one, appear and the quasiperiodic oscillations occur. These oscillations are first centered around the origin, but with increasing rotation speed they cover the origin and the new fixed points. At a still higher speed, more than one pair of fixed points appear and the oscillation again turns chaotic. The onset of chaos is explained in terms of internal resonance. Analytical and numerical results confirm the critical values of the speed parameter at various transitions. - Highlights: • The rotating double pendulum shows transitions from chaos to order and back to chaos. • These transitions occur as the rotation speed is increased. • The dynamics is quasi-periodic in the ordered state. • Within the ordered state the nature of quasi-periodicity changes with rotation speed. • The chaotic state always emerges as a result of an internal resonance.

  1. Faraday rotation measure synthesis

    NARCIS (Netherlands)

    Brentjens, MA; de Bruyn, AG


    We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2)


    Baumgarten, A.; Karalis, A.J.


    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  3. Deconstructing Mental Rotation

    DEFF Research Database (Denmark)

    Larsen, Axel


    A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...

  4. SMAP Faraday Rotation (United States)

    Le Vine, David


    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  5. Rotating black holes in brane worlds

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P.; Stojkovic, Dejan; Fursaev, Dmitri V. E-mail:


    We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius r{sub 0} reaches this final stationary state is T {approx} r{sub 0}{sup p}'-'1/(G{sigma}), where G is the higher dimensional gravitational coupling constant, {sigma} is the brane tension, and p is the number of extra dimensions. (author)

  6. Rotating black holes in brane worlds


    Frolov, Valeri P.; Fursaev, Dmitri V.; Stojkovic, Dejan


    We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius $r_0$ reaches this final stationary state is $T\\sim r_0^{p-1}/(G\\sigma)$, where $G$ is the higher dimensional gr...

  7. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    Directory of Open Access Journals (Sweden)

    Ruben Ruiz-Gonzalez


    Full Text Available The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  8. Exotic rotational correlations in quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig


    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  9. First rotational analysis of the (111) and (021) vibrational state of S16O18O from the "hot" ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 bands (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Ziatkova, A. G.; Sklyarova, E. A.; Kuznetsov, S. I.; Sydow, C.; Bauerecker, S.


    The rotational structure of the (111) and (021) vibrational states is determined for the first time from the high resolution analysis of the ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 ;hot; bands. The 480 and 74 transitions of these bands (Jmax /Kamax = 45/14 and 15/12 respectively) were assigned in the spectra, which have been recorded with the Bruker IFS 120 Fourier transform infrared (FTIR) spectrometer. A weighted fit analysis allowed us to generate a set of 5 fitted parameters for the (111) state and 4 fitted parameters for the (021) state. Calculation with the 9 parameters, obtained from the fit, reproduces the initial 363 energy values (about 550 assigned experimental transitions) of two vibrational states with the drms deviations of 3.2 ×10-4 cm-1 , which is comparable with the experimental uncertainties of very weak transitions of the ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 ;hot; bands in our experiment.

  10. The relationship between normal and strike-slip faults in Valley of Fire State Park, Nevada, and its implications for stress rotation and partitioning of deformation in the east-central Basin and Range (United States)

    Aydin, Atilla; de Joussineau, Ghislain


    This study expands on our earlier studies of the evolution of fracturing and faulting in the Jurassic aeolian Aztec Sandstone exposed over a large area in the Valley of Fire State Park, southeastern Nevada. Based on a nearly three-dimensional data set collected from 200-m-high cliff-face exposures with stair-case morphology composed of steep and flat parts, we find that a series of inclined, relatively low-angle normal faults and their splay fractures are precursors of the strike-slip fault network that we previously documented. We discuss the significance of this finding in terms of the tectonics of the broader area, stress rotation, partitioning of deformation, and the development of fracture clusters with compartmentalization of the structures as a function of spatial, depositional and deformational domains.

  11. Rapidly rotating red giants (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric


    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  12. Rotator Cuff Injuries (United States)

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  13. Rotator cuff repair - slideshow (United States)

    ... presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  14. The Earth's rotation problem (United States)

    Brumberg, V. A.; Ivanova, T. V.


    The aim of the present paper is to find the trigonometric solution of the equations of the Earth's rotation around its centre of mass in the form of polynomial trigonometric series (Poisson series) without secular and mixed therms. For that the techniques of the General Planetary Theory (GPT) ( Brumberg, 1995) and the Poisson Series Processor (PSP) (Ivanova, 1995) are used. The GPT allows to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation in Euler parameters to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  15. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... to a non-linear manifold and re-normalization or orthogonalization must be applied to obtain proper rotations. These latter steps have been viewed as ad hoc corrections for the errors introduced by assuming a vector space. The article shows that the two approximative methods can be derived from natural...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation....

  16. Rotating Workforce Scheduling


    Granfeldt, Caroline


    Several industries use what is called rotating workforce scheduling. This often means that employees are needed around the clock seven days a week, and that they have a schedule which repeats itself after some weeks. This thesis gives an introduction to this kind of scheduling and presents a review of previous work done in the field. Two different optimization models for rotating workforce scheduling are formulated and compared, and some examples are created to demonstrate how the addition of...

  17. Ipsilateral Rotational Autokeratoplasty


    Yesim Altay


    Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opaci...

  18. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee


    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  19. Slowly rotating supercompact Schwarzschild stars (United States)

    Posada, Camilo


    The Schwarzschild interior solution, or 'Schwarzschild star', which describes a spherically symmetric homogeneous mass with a constant energy density, shows a divergence in pressure when the radius of the star reaches the Schwarzschild-Buchdahl bound. Recently, Mazur and Mottola showed that this divergence is integrable through the Komar formula, inducing non-isotropic transverse stresses on a surface of some radius R0. When this radius approaches the Schwarzschild radius Rs = 2 M, the interior solution becomes one of negative pressure evoking a de Sitter space-time. This gravitational condensate star, or gravastar, is an alternative solution to the idea of a black hole as the ultimate state of gravitational collapse. Using Hartle's model to calculate equilibrium configurations of slowly rotating masses, we report results of surface and integral properties for a Schwarzschild star in the very little studied region Rs < R < (9/8)Rs. We found that in the gravastar limit, the angular velocity of the fluid relative to the local inertial frame tends to zero, indicating rigid rotation. Remarkably, the normalized moment of inertia I/MR2 and the mass quadrupole moment Q approach the corresponding values for the Kerr metric to second order in Ω. These results provide a solution to the problem of the source of a slowly rotating Kerr black hole.

  20. Statics and rotational dynamics of composite beams

    CERN Document Server

    Ghorashi, Mehrdaad


    This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...

  1. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  2. Effectiveness of pre-admission data and letters of recommendation to predict students who will need professional behavior intervention during clinical rotations in the United States. (United States)

    Engelhard, Chalee; Leugers, Rebecca; Stephan, Jenna


    The study aimed at finding the value of letters of recommendation in predicting professional behavior problems in the clinical portion of a Doctor of Physical Therapy program learning cohorts from 2009-2014 in the United States. De-identified records of 137 Doctor of Physical Therapy graduates were examined by the descriptive statistics and comparison analysis. Thirty letters of recommendation were investigated based on grounded theory from 10 student applications with 5 randomly selected students of interest and 5 non-students of interest. Critical thinking, organizational skills, and judgement were statistically significant and quantitative differentiating characteristics. Qualitatively, significant characteristics of the student of interest included effective communication and cultural competency. Meanwhile, those of nonstudents of interest included conflicting personality descriptor, commitment to learning, balance, teamwork skills, potential future success, compatible learning skills, effective leadership skills, and emotional intelligence. Emerged significant characteristics did not consistently match common non-professional behavior issues encountered in clinic. Pre-admission data and letters of recommendation appear of limited value in predicting professional behavior performance in clinic.

  3. Effectiveness of pre-admission data and letters of recommendation to predict students who will need professional behavior intervention during clinical rotations in the United States

    Directory of Open Access Journals (Sweden)

    Chalee Engelhard


    Full Text Available The study aimed at finding the value of letters of recommendation in predicting professional behavior problems in the clinical portion of a Doctor of Physical Therapy program learning cohorts from 2009-2014 in the United States. De-identified records of 137 Doctor of Physical Therapy graduates were examined by the descriptive statistics and comparison analysis. Thirty letters of recommendation were investigated based on grounded theory from 10 student applications with 5 randomly selected students of interest and 5 non-students of interest. Critical thinking, organizational skills, and judgement were statistically significant and quantitative differentiating characteristics. Qualitatively, significant characteristics of the student of interest included effective communication and cultural competency. Meanwhile, those of nonstudents of interest included conflicting personality descriptor, commitment to learning, balance, teamwork skills, potential future success, compatible learning skills, effective leadership skills, and emotional intelligence. Emerged significant characteristics did not consistently match common non-professional behavior issues encountered in clinic. Pre-admission data and letters of recommendation appear of limited value in predicting professional behavior performance in clinic.

  4. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  5. Ipsilateral Rotational Autokeratoplasty

    Directory of Open Access Journals (Sweden)

    Yesim Altay


    Full Text Available Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opacity out of the visual axis. An important consideration when selecting cases for rotational autokeratoplasty is the dimensions of the corneal scar. Although ipsilateral autokeratoplasty may not provide as good a quality of vision as penetrating allokeratoplasty because of higher astigmatism and reduced corneal pupillary clear zone, these disadvantages are often outweighed when the risk of allograft rejection is high, as in pediatric patients and those with vascularised corneas. This technique would at least partially resolve the issue of scarcity of donor corneal tissue in developing countries.

  6. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel


    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  7. Renormalized vacuum polarization of rotating black holes

    CERN Document Server

    Ferreira, Hugo R C


    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  8. Rotational Seismology: AGU Session, Working Group, and Website (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.


    Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H

  9. Rotation of Giant Stars (United States)

    Kissin, Yevgeni; Thompson, Christopher


    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  10. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  11. Rotationally Actuated Prosthetic Hand (United States)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.


    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  12. Rotational waves in geodynamics (United States)

    Gerus, Artyom; Vikulin, Alexander


    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  13. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan


    The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...

  14. Rotator Cuff Injuries. (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  15. Chaotic Rotation of Nix and Hydra (United States)

    Showalter, Mark R.


    Disk-integrated photometry of Hydra and Nix from HST during 2010-2012 show large variations, which can be attributed to a combination of the phase function and the rotational light curves of the moons. After dividing out a model phase curve, variations by more than a factor of two remain, indicating that both Nix and Hydra are distinctly irregular in shape. Unexpectedly, Nix and Hydra's variations show no correlation with orbital longitude, as one would expect for bodies in synchronous rotation. In fact, Fourier analysis of the measurements does not reveal any fixed rotation periods compatible with the data. Compounding the mystery, Nix increased in absolute brightness by about 30% between 2010 and 2012, whereas Hydra was stable.I have developed a numeric integrator that tracks the position, velocity, orientation and rotation state of a moon as it orbits the Pluto-Charon "binary planet". The moons are represented by triaxial ellipsoids with arbitrary axial ratios. Pluto and Charon follow circular orbits about their common barycenter. I have run simulations for periods of up to 1000 years and for a variety of axial ratios and starting conditions. If an object is started in synchronous rotation with its long axis pointed toward the system barycenter, then it remains synchronously locked for the duration of the integrations. However, other initial conditions commonly lead to chaotic rotation, with Lyupanov times as brief as 30 days. Moons will sometimes temporarily lock into a nearly fixed rotation state, but commonly break out again within ~ 500 days. Depending on the axial ratios, polar flips are also commonly observed; this polar wander provides a plausible explanation for the year-by-year change in the observed brightness of Nix.Chaotic rotation is rare in the solar system, having previously been noted only for Hyperion and possibly Nereid. However, both photometry and dynamical simulations support the notion that chaotic rotation is a natural state for

  16. Collisional disruptions of rotating targets (United States)

    Ševeček, Pavel; Broz, Miroslav


    Collisions are key processes in the evolution of the Main Asteroid Belt and impact events - i.e. target fragmentation and gravitational reaccumulation - are commonly studied by numerical simulations, namely by SPH and N-body methods. In our work, we extend the previous studies by assuming rotating targets and we study the dependence of resulting size-distributions on the pre-impact rotation of the target. To obtain stable initial conditions, it is also necessary to include the self-gravity already in the fragmentation phase which was previously neglected.To tackle this problem, we developed an SPH code, accelerated by SSE/AVX instruction sets and parallelized. The code solves the standard set of hydrodynamic equations, using the Tillotson equation of state, von Mises criterion for plastic yielding and scalar Grady-Kipp model for fragmentation. We further modified the velocity gradient by a correction tensor (Schäfer et al. 2007) to ensure a first-order conservation of the total angular momentum. As the intact target is a spherical body, its gravity can be approximated by a potential of a homogeneous sphere, making it easy to set up initial conditions. This is however infeasible for later stages of the disruption; to this point, we included the Barnes-Hut algorithm to compute the gravitational accelerations, using a multipole expansion of distant particles up to hexadecapole order.We tested the code carefully, comparing the results to our previous computations obtained with the SPH5 code (Benz and Asphaug 1994). Finally, we ran a set of simulations and we discuss the difference between the synthetic families created by rotating and static targets.

  17. Strain effects on rotational property in nanoscale rotation system. (United States)

    Huang, Jianzhang; Han, Qiang


    This paper presents a study of strain effects on nanoscale rotation system consists of double-walls carbon nanotube and graphene. It is found that the strain effects can be a real-time controlling method for nano actuator system. The strain effects on rotational property as well as the effect mechanism is studied systematically through molecular dynamics simulations, and it obtains valuable conclusions for engineering application of rotational property management of nanoscale rotation system. It founds that the strain effects tune the rotational property by influencing the intertube supporting effect and friction effect of double-walls carbon nanotube, which are two critical factors of rotational performance. The mechanism of strain effects on rotational property is investigated in theoretical level based on analytical model established through lattice dynamics theory. This work suggests great potentials of strain effects for nanoscale real-time control, and provides new ideas for design and application of real-time controllable nanoscale rotation system.

  18. Search for and study of linking transitions between super- and normal deformed wells in the {sup 151}Tb nucleus; Recherche et etude de transitions de liaison entre les puits super- et normalement deformes dans le noyau {sup 151}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Robin, J


    While the superdeformation phenomenon has been observed many times in different mass regions, the excitation energy and angular momentum are not known for most of the superdeformed bands, mainly in the A {approx} 150 mass region. We have thus undertaken the search for and study of linking transitions between super and normal deformed potential wells in the Tb{sup 151} nucleus with the EUROBALL-IV spectrometer based at the subatomic research institute of Strasbourg. This nucleus presents the peculiarity of having an excited superdeformed band identical to the yrast one of Dy{sup 152}, which has recently been linked to normal deformed states. As the Dy{sup 152} nucleus exhibits a shape coexistence in the first potential well, we have also searched for collective rotational bands with prolate but moderate shape, coexisting with the oblate structure of Tb{sup 151}. The discovery of new superdeformed bands in the Tb{sup 151,152} isotopes, the extension to lower and higher spins of the previously known bands, and mean field calculations with a deformed Woods-Saxon potential have contributed to improve our knowledge as well as raise new questions on the orbitals configuration assignments of these bands. (author)

  19. Rotational spectrum of cis-cis HOONO (United States)

    Drouin, Brian J.; Fry, Juliane L.; Miller, Charles E.


    The pure rotational spectrum of cis-cis peroxynitrous acid, HOONO, has been observed. Over 220 transitions, sampling states up to J'=67 and Ka'=31, have been fitted with an rms uncertainty of 48.4 kHz. The experimentally determined rotational constants agree well with ab initio values for the cis-cis conformer, a five-membered ring formed by intramolecular hydrogen bonding. The small, positive inertial defect Δ=0.075667(60) amu Å2 and lack of any observable torsional splittings in the spectrum indicate that cis-cis HOONO exists in a well-defined planar structure at room temperature.

  20. Rotational spectrum of cis–cis HOONO


    Drouin, Brian J.; Fry, Juliane L.; Miller, Charles E.


    The pure rotational spectrum of cis-cis peroxynitrous acid, HOONO, has been observed. Over 220 transitions, sampling states up to J(')=67 and K-a(')=31, have been fitted with an rms uncertainty of 48.4 kHz. The experimentally determined rotational constants agree well with ab initio values for the cis-cis conformer, a five-membered ring formed by intramolecular hydrogen bonding. The small, positive inertial defect Delta=0.075667(60) amu A(2) and lack of any observable torsional splittings in ...

  1. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch


    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  2. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew


    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  3. Rotational disorder in lithium borohydride

    Directory of Open Access Journals (Sweden)

    Remhof Arndt


    Full Text Available LiBH4 has been discussed as a promising hydrogen storage material and as a solid-state electrolyte in lithium-ion batteries. It contains 18.5 wt% hydrogen and undergoes a structural phase transition at 381 K which is associated with a large increase in rotational disorder of the [BH4]− anion and the increase of [Li]+ conductivity by three orders of magnitude. We investigated the [BH4]− anion dynamic in bulk LiBH4, in LiBH4-LiI solid solutions and in nano-confined LiBH4 by quasielastic neutron scattering, complemented by DFT calculations. In all cases the H-dynamics is dominated by thermally activated rotational jumps of the [BH4]− anion in the terahertz range. The addition of LiI as well as nano-confinement favours the disordered high temperature phase and lowers the phase transition below room temperatures. The results are discussed on the basis of first principles calculations and in relation to ionic conductivity of [Li]+.

  4. The Pure Rotational Spectrum of KO (United States)

    Burton, Mark; Russ, Benjamin; Sheridan, Phillip M.; Bucchino, Matthew; Ziurys, Lucy M.


    The pure rotational spectrum of potassium monoxide (KO) has been recorded using millimeter-wave direct absorption spectroscopy. KO was synthesized by the reaction of potassium vapor, produced in a Broida-type oven, with nitrous oxide. No DC discharge was necessary. Eleven rotational transitions belonging to the ^{2}Π_{3/2} spin-orbit component have been measured and have been fit successfully to a case (c) Hamiltonian. Rotational and lambda-doubling constants for this spin-orbit component have been determined. It has been suggested that the ground electronic state of KO is either ^{2}Π (as for LiO and NaO) or ^{2}Σ (as for RbO and CsO), both of which lie close in energy. Recent computational studies favor a ^{2}Σ ground state. Further measurements of the rotational transitions of the ^{2}Π_{1/2} spin-orbit component and the ^{2}Σ state are currently in progress, as well as the potassium hyperfine structure.

  5. Quantum algebra U{sub qp}(u{sub 2}) and application to the rotational collective dynamics of the nuclei; Algebre quantique U{sub qp}(u{sub 2}) et application a la dynamique collective de rotation dans les noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, R.


    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U{sub qp}(u{sub 2}). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U{sub qp}(u{sub 2}) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U{sub qp}(u{sub 2}). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U{sub qp}(u{sub 2}), U{sub q{sup 2}}(su{sub 2}) and U{sub qp}(u{sub 1,1}). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U{sub qp}(u{sub 2}). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U{sub qp}(u{sub 2}) leads to a generalization of the U{sub q}(su{sub 2})-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U{sub qp}(u{sub 2}). We show that the system of the U{sub q}(su{sub 2})-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U{sub qp}(u{sub 2}). A ro-vibration energy formula and expansion `a la` Dunham are obtained. The aim of the last part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A{approx}130 - 150 and A{approx}190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies.

  6. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail:; Cabezas, Carlos, E-mail:; Mata, Santiago, E-mail:; Alonso, Josè L., E-mail: [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)


    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  7. Rotational Baroclinic Adjustment

    DEFF Research Database (Denmark)

    Holtegård Nielsen, Steen Morten

    the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...... with the horizontal extent of many other parts of the Danish inland waters implies that the dynamics of these should also be discussed in terms of rotational effects....

  8. Marginal deformations & rotating horizons (United States)

    Anninos, Dionysios; Anous, Tarek; D'Agnolo, Raffaele Tito


    Motivated by the near-horizon geometry of four-dimensional extremal black holes, we study a disordered quantum mechanical system invariant under a global SU(2) symmetry. As in the Sachdev-Ye-Kitaev model, this system exhibits an approximate SL(2, ℝ) symmetry at low energies, but also allows for a continuous family of SU(2) breaking marginal deformations. Beyond a certain critical value for the marginal coupling, the model exhibits a quantum phase transition from the gapless phase to a gapped one and we calculate the critical exponents of this transition. We also show that charged, rotating extremal black holes exhibit a transition when the angular velocity of the horizon is tuned to a certain critical value. Where possible we draw parallels between the disordered quantum mechanics and charged, rotating black holes.

  9. Isotropic stochastic rotation dynamics (United States)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten


    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  10. The Rotation of Europa (United States)

    Henrard, Jacques


    We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean.

  11. Method for Design Rotation (United States)


    central composite design and give the orthogonal matrix that yields the rotation, but they do not discuss how the orthogonal matrix was found. Doehlert ... Doehlert and Klee (1972) was to start with a known orthogonal matrix of simple form and then augment the matrix with additional rows and columns to get a...larger region, a symmetric treatment of the factors, or both. 114. SUBJECT TERMS 15. NUMBER OF PAGES Orthogonal matrix Response surface design 27

  12. Bioreactor rotating wall vessel (United States)


    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  13. Three-mode orthomax rotation

    NARCIS (Netherlands)

    Kiers, Henk A.L.


    Factor analysis and principal components analysis (PCA) are often followed by an orthomax rotation to rotate a loading matrix to simple structure. The simple structure is usually defined in terms of the simplicity of the columns of the loading matrix. In Three-made PCA, rotational freedom of the so

  14. Millimetre Wave Rotational Spectrum of Glycolic Acid (United States)

    Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.


    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.

  15. Polygon formation and surface flow on a rotating fluid surface

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.


    'wet' or with a 'dry' centre. For the dry structures, we present measurements of the surface shapes and the process of formation. We show experimental evidence that the formation can take place as a two-stage process: first the system approaches an almost stable rotationally symmetric state and from......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re......-establishes the rotational symmetry. For the rotationally symmetric state our theoretical analysis of the surface flow shows that it consists of two distinct regions: an inner, rigidly rotating centre and an outer annulus, where the surface flow is that of a point vortex with a weak secondary flow. This prediction...

  16. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing (United States)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds

  17. High-resolution FTIR and MMW study of the v4 = 2 (A1, E) excited state of 14NF3 near 985 cm-1: the axial ground state rotational constants derived by the “loop-method” (United States)

    Sari-Zizi, N. Ben; Najib, H.; Demaison, J.; Bakri, B.; Colmont, J. M.; Bürger, H.


    The two substates v4 = 2 0 ( A1, 983.702 cm -1) and v4 = 2 ±2 ( E, 986.622 cm -1) of the oblate symmetric top molecule, 14NF 3, have been studied by high-resolution (2.5 × 10 -3 cm -1) infrared spectroscopy of the 2ν40 and 2ν4±2 overtones and 2 ν4 - ν4 hot bands. Transitions of the 2ν4±2 overtone, the 2ν4±2-ν4±1 hot band, and the previously measured v4±1 fundamental band were combined to yield 585 ground state combination differences differing in K by ±3, with Kmax = 36. Using the "loop-method," a fit (standard deviation σ = 0.320 × 10 -3 cm -1) provided a complete set of the hitherto not experimentally known axial ground state constants. In units of cm -1 these have the following values: C0=0.19499250 (44),DK0=3.4343 (88)×10-7 and HK0=-1.0335 (481)×10-12. Upper state parameters were determined using a vibrationally isolated model. Considering l (2, 2) and l (2, -1) interactions between the v4 = 2 0 and v4 = 2 ±2 substates and effects accounting for the l (4, -2) interactions within the kl = -2 levels, 25 upper state parameters were obtained by fitting 2747 IR data (1842 transitions, 905 deduced energies, Jmax = 42, Kmax = 39) with σIR = 0.353 × 10 -3 cm -1. Moreover, millimeter-wave spectroscopy furnished 86 transitions ( Jmax = 16, Kmax = 13) measured on the v4 = 2 excited state. A merged fit, refining 24 parameters using the described model gave σIR = 0.365 × 10 -3 cm -1 and σMMW = 0.855 × 10 -6 cm -1 (26 kHz). The anharmonicity constants (in cm -1) are x44 = -0.84174 (2) and g44 = + 0.73014 (1). In addition to this model, the D, Q, and L reductions of the rovibrational Hamiltonian were tested. Standard deviations σIR = 0.375 × 10 -3 cm -1 and σMMW = 0.865 × 10 -6 cm -1 were obtained for both D and L reductions, and σIR = 0.392 × 10 -3 cm -1 and σMMW = 0.935 × 10 -6 cm -1 for Q reduction. The unitary equivalence of the majority of the 18 tested relations between the derived parameters was satisfactorily fulfilled. This confirms

  18. CISM Course on Rotating Fluids

    CERN Document Server


    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  19. On general Earth's rotation theory (United States)

    Brumberg, V.; Ivanova, T.


    This paper dealing with the general problem of the rigid-body rotation of the three-axial Earth represents a straightforward extension of (Brumberg and Ivanova, 2007) where the simplified Poisson equations of rotation of the axially symmetrical Earth have been considered. The aim of the present paper is to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation around its centre of mass to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  20. On LAM's and SAM's for Halley's rotation (United States)

    Peale, Stanton J.


    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.


    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.


    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  2. Global robust image rotation from combined weighted averaging (United States)

    Reich, Martin; Yang, Michael Ying; Heipke, Christian


    In this paper we present a novel rotation averaging scheme as part of our global image orientation model. This model is based on homologous points in overlapping images and is robust against outliers. It is applicable to various kinds of image data and provides accurate initializations for a subsequent bundle adjustment. The computation of global rotations is a combined optimization scheme: First, rotations are estimated in a convex relaxed semidefinite program. Rotations are required to be in the convex hull of the rotation group SO (3) , which in most cases leads to correct rotations. Second, the estimation is improved in an iterative least squares optimization in the Lie algebra of SO (3) . In order to deal with outliers in the relative rotations, we developed a sequential graph optimization algorithm that is able to detect and eliminate incorrect rotations. From the beginning, we propagate covariance information which allows for a weighting in the least squares estimation. We evaluate our approach using both synthetic and real image datasets. Compared to recent state-of-the-art rotation averaging and global image orientation algorithms, our proposed scheme reaches a high degree of robustness and accuracy. Moreover, it is also applicable to large Internet datasets, which shows its efficiency.

  3. Simulations of Superrotation on Slowly Rotating Planets: Sensitivity to Rotation and Initial Condition (United States)

    Del Genio, Anthony D.; Zhou, Wei


    We use a simplified terrestrial general circulation model as a nonlinear process model to investigate factors that influence the extent of equatorial superrotation in statically stable atmospheres on slowly rotating planets such as Titan and Venus. The possibility of multiple equilibria is tested by running the same model to equilibrium from vastly different initial conditions. The final state is effectively independent of initial state, reinforcing the impression that equatorial superrotation is inevitable on slowly rotating planets with stable radiative equilibrium structures. Of particular interest is the fact that at Titan rotation, the model equilibrates with strong prograde winds even when initialized with strong retrograde winds. This suggests that reliable remote sensing inferences of latitudinal temperature gradients on Titan can unambiguously be interpreted as evidence for superrotation. We also demonstrate for the first time that significant equatorial superrotation can be produced at Venus' rotation rate in such models, given sufficient numerical precision. The strength of superrotating zonal winds increases with rotation rate in the slowly rotating regime when other parameters are held fixed. However, the efficiency of superrotation relative to the angular momentum of an atmosphere corotating with the solid planet increases with decreasing rotation rate instead, because the Hadley cell strengthens and expands poleward. This allows for the formation of stronger high latitude jets, which ultimately serve as the source for equatorial superrotation via barotropic instability. Estimates of relevant parameter settings for Triton and Pluto tentatively imply that their atmospheres may marginally be in the superrotating regime, but only if temperature decreases with height near the surface.

  4. Approximate Theoretical Model for the Five Electronic States (Ω = 5/2, 3/2, 3/2, 1/2, 1/2) Arising from the Ground 3d9 Configuration in Nickel Halide Molecules and for Rotational Levels of the Two Ω = 1/2 States in that Manifold (United States)

    Cheung, Allan S.-C.


    An effective Hamiltonian for a non-rotating diatomic molecule containing only crystal-field and spin-orbit operators has been set up to describe the energies of the five spin-orbit components that arise in the ground electronic configuration of the nickel monohalides. The model assumes that bonding in the nickel halides has the approximate form Ni+X-, with an electronic 3d9 configuration plus closed shells on the Ni+ moiety and a closed shell configuration on the X&- moiety. Least-squares fits of the observed five spin-orbit components of the three lowest electronic states in NiF and NiCl are then carried out in terms of the three crystal field parameters C0, C2, C4 and the spin-orbit coupling constant A. Following this, the usual effective Hamiltonian B(J-L-S)^2 for a rotating diatomic molecule is used to derive expressions for the unusually large Ω-type doubling parameter p in the two Ω = 1/2 states in the 3d9 manifold. These expressions show (for certain sign conventions) that the sum of the two p values should be -2B, but that their difference can vary between -10B and +10B. The theoretical magnitudes for p are in good agreement with the two observed p values for both NiF and NiCl, but the signs are not. The experimental signs can be brought into agreement with the theoretical signs by a fairly massive change in +/- parity assignments in the NiF and NiCl literature. The last part of the talk will focus on the theoretical and experimental implications of these parity changes.

  5. Rotating Wheel Wake (United States)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer


    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  6. Rotational Spectrum of Saccharine (United States)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.


    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).

  7. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee


    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  8. Rotational structures in {sup 107}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R.; Cybulska, E.W.; Oliveira, J.R.; Ribas, R.V.; Medina, N.H.; Rao, M.N.; Rizzutto, M.A.; Emediato, L.G.; Seale, W.A.; Botelho, S. [Laboratorio Pelletron, Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)


    The {sup 107}Ag nucleus has been investigated with the {sup 100}Mo({sup 11}B,4n{gamma}) reaction at 39 MeV beam energy. Gamma-gamma coincidences and angular correlations were measured. The ground state band has been extended to higher spins and a three-quasiparticle rotational band has been established. The results were interpreted within the cranked shell model and total Routhian surface predictions. {copyright} {ital 1997} {ital The American Physical Society}

  9. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann


    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  10. Earth's variable rotation (United States)

    Hide, Raymond; Dickey, Jean O.


    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  11. Asteroid Ida Rotation Sequence (United States)


    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  12. Rotational equilibria by Lagrangian variational principle: towards multidimensional stellar evolutions (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi


    We have developed a new formulation to obtain self-gravitating, axisymmetric configurations in permanent rotation. The formulation is based on the Lagrangian variational principle with a triangulated mesh. It treats not only barotropic but also baroclinic equations of state. We compare the various stellar equilibria obtained by our new scheme with those by Hachisu's self-consistent field scheme for the barotropic case, and those by Fujisawa's self-consistent field scheme for the baroclinic case. Included in these rotational configurations are those with shellular-type rotations, which are commonly assumed in the evolution calculation of rotating stars. Although radiation processes, convections and meridional flows have not been taken into account in this study, we have in mind the application of this method to the two-dimensional evolution calculations of rotating stars, for which the Lagrangian formulation is best suited.

  13. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L


    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  14. Surface dimpling on rotating work piece using rotation cutting tool (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard


    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  15. Investigation of intrinsic toroidal rotation scaling in KSTAR (United States)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.


    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  16. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu


    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  17. High-Current Rotating Contactor (United States)

    Hagan, David W.; Wolff, Edwin D.


    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  18. Rotation of the planet mercury. (United States)

    Jefferys, W H


    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.


    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)


    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  20. Rotator cuff repair: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Amini MH


    Full Text Available Michael H Amini,1 Eric T Ricchetti,1 Joseph P Iannotti,1 Kathleen A Derwin2 1Orthopaedic and Rheumatologic Institute, Cleveland Clinic, Cleveland, OH, USA; 2Department of Biomedical Engineering and Orthopaedic Surgery, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Abstract: Each year, 250,000 rotator cuff repairs are performed in the United States at a cost of $3 billion. Despite advancements in repair techniques and rehabilitation, 20%–70% of repairs continue to undergo structural failure; however, there is a poor correlation between clinical and structural outcomes, both before and after surgery. "Failure in continuity", or retraction of the repair site without a structural defect, is likely a common phenomenon after rotator cuff repair, and this retraction of the myotendinous unit and interposing scar tissue may be one explanation for the discordance between clinical and structural outcomes. Scaffolds, both synthetic and biologic, have shown promise in both augmentation of repairs and interposition of irreparable tears, but most studies are small retrospective case series without control groups. Future efforts will need to determine the ideal indications for use, methods of application, and comparative effectiveness between the devices. Platelet-rich plasma also has potential to improve rotator cuff healing, but current limitations include the significant variation in preparation methods, biologic makeup, and application methods. Future work may help us understand whether application of platelet-rich plasma and its growth factors should be done at the time of surgery or later during a more advanced stage of healing. Regardless of the device or technique, mechanical and/or biologic augmentation of rotator cuff repairs requires the surgeon to be technically proficient in its use and aware of its associated increased operative time and cost. In order to justify the use of these technologies and their associated incremental

  1. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  2. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu


    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  3. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke


    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  4. Precession relaxation of viscoelastic oblate rotators (United States)

    Frouard, Julien; Efroimsky, Michael


    Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.

  5. More quantum centrifugal effect in rotating frame (United States)

    Gazeau, J.-P.; Koide, T.; Murenzi, R.


    The behaviour of quantum systems in non-inertial frames is revisited from the point of view of affine coherent state (ACS) quantization. We restrict our approach to the one-particle dynamics confined in a rotating plane about a fixed axis. This plane is considered as punctured due to the existence of the rotation center, which is viewed as a singularity. The corresponding phase space is the affine group of the plane and the ACS quantization enables us to quantize the system by respecting the affine symmetry of the true phase space. Our formulation predicts the appearance of an additional quantum centrifugal term, besides the usual angular-momentum one, which prevents the particle to reach the singular rotation center. Moreover it helps us to understand why two different non-inertial Schrödinger equations are obtained in previous works. The validity of our equation can be confirmed experimentally by observing the harmonic oscillator bound states and the critical angular velocity for their existence.

  6. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs (United States)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.


    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin I ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin I and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin I ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  7. Rotational Twin Paradox (United States)

    Smarandache, Florentin


    Two twins settle on a massive spherical planet at a train station S. Let's consider that each twin has an accompanying clock, and the two clocks are synchronized. One twin T1 remains in the train station, while the other twin T2 travels at a uniform high speed with the train around the planet (on the big circle of the planet) until he gets back to the same train station S. Assume the planet is not rotating. Since the planet is massive, we can consider that on a very small part on its surface the train rail road is linear, so the train is in a linear uniform motion. The larger is the planet's radius the more the rail road approaches a linear trajectory. Because the GPS clocks are alleged to be built on the Theory of Relativity, one can consider the twin T2 train's circular trajectory alike the satellite's orbit. In addition, the gravitation is the same for the reference frames of T1 and T2. Each twin sees the other twin as traveling, therefore each twin finds the other one has aged slower than him. Thus herein we have a relativistic symmetry. When T2 returns to train station S, he finds out that he is younger than T1 (therefore asymmetry). Thus, one gets a contradiction between symmetry and asymmetry.

  8. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.


    Rotational augmentation of horizontal axis wind turbine blade aerodynamics currently remains incompletely characterized and understood. To address this, the present study concurrently analysed experimental measurements and computational predictions, both of which were unique and of high quality...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  9. Hysteresis of dynamos in rotating spherical shell convection (United States)

    Feudel, F.; Tuckerman, L. S.; Zaks, M.; Hollerbach, R.


    Bifurcations of dynamos in rotating and buoyancy-driven spherical Rayleigh-Bénard convection in an electrically conducting fluid are investigated numerically. Both nonmagnetic and magnetic solution branches comprised of rotating waves are traced by path-following techniques, and their bifurcations and interconnections for different Ekman numbers are determined. In particular, the question of whether the dynamo branches bifurcate super- or subcritically and whether a direct link to the primary pure convective states exists is answered.

  10. Cluster rotational bands in 11B

    Directory of Open Access Journals (Sweden)

    Danilov A.N.


    Full Text Available Differential cross-sections of 11B+α inelastic scattering at E(α =65 MeV leading to most of the known 11B states at excitation energies up to 14 MeV were measured [1]. The data analysis was done using Modified diffraction model (MDM [2] allowing determining radii of excited states. Radii of the states with excitation energies less than ∼ 7 MeV coincide with the radius of the ground state with an accuracy not less than 0.1 - 0.15 fm. This result is consistent with traditional view on shell structure of low-lying states in 11B. Most of the observed high-energy excited states are distributed among four rotational bands. Moments of inertia of band states are close to the moment of inertia of the Hoyle state of 12C. The calculated radii, related to these bands, are 0.7 - 1.0 fm larger than the radius of the ground state, and are close to the Hoyle state radius. These results are in agreement with existing predictions about various cluster structure of 11B at high excitation energies.

  11. Purely collective versus RPA rotational vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.


    The low-lying 1/sup +/ isovector state vertical strokeRPA> in /sup 48/Ti is calculated in RPA removing the spurious state due to rotations. Its excitation energy, the magnetic dipole transition B(M1; 0/sup +/->1/sup +/) and the (e, e') form factors are compared with experiment, with the purely collective scissor vibration of the deformed protons against the deformed neutrons vertical strokeROT>=N(ed /sub n/J/sub x//sup n/-ed /sub p/J/sub x//sup p/)vertical stroke> and with the purely orbital state vertical strokeORB>=N/sub L/(b/sub n/L/sub x//sup n/-b/sub p/L/sub x//sup p/)vertical stroke>. Although the collective state overlap only ty vertical strokevertical stroke/sup 2/=0.12 and vertical strokevertical stroke/sup 2/=0.07, the =+-1 residual quadrupole force is generated in RPA scissor type isovector rotational vibrations, but only very few nucleons are participating.

  12. Canonical elements of rotational motion (United States)

    Fukushima, T.


    We present a new set of canonical variables to describe general rotation of a triaxial rigid body. Explicit are both the forward and backward transformations from the new variables to the Andoyer canonical variables, which are universal. The rotational kinetic energy is expressed as a quadratic monomial of one new momentum. Consequently, the torque-free rotations are expressed as a linear function of time for the conjugate coordinate and constants of time for the rest two coordinates and three momenta. This means that the new canonical variables are universal elements in a broad sense.

  13. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)


    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  14. Optical wheel-rotation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Veeser, L.; Rodriguez, P.; Forman, P. [Los Alamos National Lab., NM (United States); Deeter, M. [National Inst. of Standards and Technology, Boulder, CO (United States)


    We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.

  15. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain


    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  16. Rotational properties of hypermassive neutron stars from binary mergers (United States)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst


    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  17. Dynamics of elastic nonlinear rotating composite beams with embedded actuators (United States)

    Ghorashi, Mehrdaad


    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  18. A low frequency rotational energy harvesting system (United States)

    Febbo, M.; Machado, S. P.; Ramirez, J. M.; Gatti, C. D.


    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation.

  19. Rotation Detection Using the Precession of Molecular Electric Dipole Moment (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun


    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  20. Turbulent convection in liquid metal with and without rotation. (United States)

    King, Eric M; Aurnou, Jonathan M


    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  1. Physics of untied rotating space elevators (United States)

    Knudsen, Steven; Golubović, Leonardo


    We explore fundamental aspects of the physics of a novel class of dynamical systems, Rotating Space Elevators (RSE) (L. Golubović, S. Knudsen, Europhys. Lett. 86, 34001 (2009) and S. Knudsen, L. Golubović, Eur. Phys. J. Plus 129, 242 (2014)). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a double rotating motion due to which the objects sliding along the RSE string (climbers) can be transported far away from the Earth's surface without using internal engines or propulsion. By extensive numerical simulations and analytic calculations, this study addresses an interesting and provocative question at the very heart of the RSE physics: What will happen if one unties the rotating space elevator from the Earth? We find that the untied RSE exhibits rich nonlinear dynamics. In particular, strikingly, we find that the untied RSE may still behave as if it were tied to the planet. Such a quasi-tied yet untied RSE remains close to the Earth and exhibits persistent shape and enduring double rotating motion. Moreover, the climbers sliding along such a quasi-tied RSE move in much the same way as they do along a tied RSE. Under some conditions however we find that the untied RSE may undergo an instability leading it to a dynamical state in which the RSE hops well above the Earth surface. By changing the untied RSE parameters, the maximum height reached during hopping may be made to diverge. Such an untied RSE unbinds from the Earth to infinity, i.e., to interplanetary space.

  2. Horizon quantum mechanics of rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)


    The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)

  3. Spline screw multiple rotations mechanism (United States)

    Vranish, John M. (Inventor)


    A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.

  4. Rotational Modes in Phononic Crystals (United States)

    Wu, Ying; Peng, Pai; Mei, Jun


    We propose a lumped model for the rotational modes in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model not only can reproduce the dispersion relations in a certain range with one fitted parameter, but also gives simple analytical expressions for the frequencies of the eigenmodes at the high symmetry points in the Brillouin zone. These expressions provide physical understandings of the rotational modes as well as certain translational and hybrid mode, and predict the presence of accidental degeneracy of the rotational and dipolar modes, which leads to a Dirac-like cone in the Brillouin zone center. Supported by KAUST Baseline Research Fund, National Natural Science Foundation of China (Grants No. 10804086 and No. 11274120), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0077).

  5. Instabilities in coaxial rotating jets (United States)

    Ivanic, Tanja; Foucault, Eric; Pecheux, Jean; Gilard, Virginie


    The aim of this study is the characterization of the cylindrical mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.

  6. Millimeter-Wave Rotational Spectrum of Deuterated Nitric Acid (United States)

    Butler, Rebecca A. H.; Coplan, Camren; Petkie, Doug; Medvedev, Ivan; De Lucia, Frank C.


    Previous studies of the pure rotational spectrum of deuterated nitric acid, DNO3, have focused on the ground and first excited state, νb{9}. This paper focuses on the next lowest energy vibrational states, covering the spectral range from 128-360 GHz. Two of them are unperturbed,νb{7} and νb{8}, and two of them, νb{6} and 2νb{9} are highly perturbed. The unperturbed states are fit separately, while the two perturbed states are fit together using both Coriolis and Fermi interaction terms. Each state is fit to within experimental accuracy. We also extend the assignments and update the rotational constants for νb{9}.

  7. Optimal rotation sequences for active perception (United States)

    Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin


    One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft

  8. Transverse mixing of ellipsoidal particles in a rotating drum

    Directory of Open Access Journals (Sweden)

    He Siyuan


    Full Text Available Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  9. Astrogeodynamic Studies of Earth Rotation (United States)

    Pacheco, A.; Alonso, E.; Podesta, R.; Actis, E.


    From OAFA's Photoelectric Astrolabe Pa II systematic observations of stellar fundamental groups on period 1992 - 2002 we have determined (UT0-UTC) Time Variation Curve corresponding to Earth Rotation and its comparison with data (UT1-UTC) given by International Earth Rotation Service (IERS) We have obtained values of the curve from the average of observations of each night with their respective weights, and have corrected them by Pole Movement. We have also studied the possibility of relations between anomalies on Time Variation (UT0-UTC) and important earthquakes happened on the neighborhood of the Astrolabe.

  10. Rotationally actuated prosthetic helping hand (United States)

    Norton, William E. (Inventor); Belcher, Jewell G., Jr. (Inventor); Carden, James R. (Inventor); West, Thomas W. (Inventor)


    A prosthetic device has been developed for below-the-elbow amputees. The device consists of a cuff, a stem, a housing, two hook-like fingers, an elastic band for holding the fingers together, and a brace. The fingers are pivotally mounted on a housing that is secured to the amputee's upper arm with the brace. The stem, which also contains a cam, is rotationally mounted within the housing and is secured to the cuff, which fits over the amputee's stump. By rotating the cammed stem between the fingers with the lower arm, the amputee can open and close the fingers.

  11. Mercury's rotation axis and period (United States)

    Klaasen, K. P.


    Recent measurements made from high-resolution Mariner 10 photography of the planet Mercury yield a rotation period of 58.6461 + or 0.005 days, in excellent agreement with the period required for a precise 2/3 resonance with its orbital period (58.6462 days). The axis of rotation of the planet was calculated to be offset about 2 deg from the perpendicular to its orbital plane within a 50% probability error ellipse of + or - 2.6 deg by + or - 6.5 deg. Dynamical considerations make it most likely that the true displacement from the orbit normal is less than 1 deg.

  12. Relativity on Rotated Graph Paper

    CERN Document Server

    Salgado, Roberto B


    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called "light-clock diamonds") represent units of measurement modeled on the ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra. We use the Doppler Effect, in the spirit of the Bondi k-calculus, to motivate the method.

  13. Strongly interacting matter under rotation

    Directory of Open Access Journals (Sweden)

    Jiang Yin


    Full Text Available The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.

  14. Counter-rotational effects on stability of 2 + 1-dimensional thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)


    The role of angular momentum in a 2 + 1-dimensional rotating thin-shell wormhole (TSW) is considered. Particular emphasis is given to stability when the shells (rings) are counter-rotating. We find that counter-rotating halves make the TSW supported by the equation of state of a linear gas more stable. Under a small velocity dependent perturbation, however, it becomes unstable. (orig.)

  15. Translational-rotational motion of a rigid body in the restricted problem of three rigid bodies (United States)

    Eremenko, E. N.


    The steady-state solutions of the averaged differential equations of translational-rotational motion of a passively gravitating body of arbitrary structure in the gravitational field of a triaxial body and a homogeneous sphere are investigated when there is resonance between the rotational motion of the triaxial body and the orbital and rotational motions of the passively gravitating body. The question of the stability of the solutions found on the strength of the averaged equations is considered.

  16. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry


    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  17. Dependence of locked mode behavior on frequency and polarity of a rotating external magnetic perturbation (United States)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.


    Active control and stabilization of locked modes (LM) via rotating external magnetic perturbations are numerically investigated under a realistic low resistivity condition. To explore plasma responses to rotating and/or static external magnetic perturbations, we have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’. By using AEOLUS-IT, dependencies of mode behavior on frequency and polarity of the rotating magnetic perturbation are successfully clarified. Here, the rotational direction of the rotating magnetic perturbation to the equilibrium plasma rotation in the laboratory frame is referred to as ‘polarity’. The rotating magnetic perturbation acts on the background rotating plasma in the presence of a static field. Under such circumstances, there exist bifurcated states of the background rotating plasma, which should be taken into account when studying the dependence of the mode behavior on the rotating magnetic perturbation. It is found that there exist an optimum frequency and polarity of the rotating magnetic perturbation to control the LM, and that the LM is effectively stabilized by a co-polarity magnetic perturbation in comparison with a counter-polarity one.

  18. Effects of uniform rotational flow on predator-prey system (United States)

    Lee, Sang-Hee


    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  19. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)


    3Moscow State University, Department of Physics, 119899 Moscow, Russia. * e mail: gbelvedere@alpha4. ct. astro, it. Key words. Sun: magnetic fields, rotation, activity. Extended abstract. Here we outline how asymptotic models may contribute to the investigation of mean field dynamos applied to the solar convective zone.

  20. Gravitational Jaynes–Cummings model beyond the rotating wave ...

    Indian Academy of Sciences (India)

    In this paper, the quantum properties of a two-level atom and the cavity-field in the Jaynes–Cummings model with the gravity beyond the rotating wave approximation are investigated. For this purpose, by solving the Schrödinger equation in the interaction picture, the evolving state of the system is found by which the ...


    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  2. Rotational dynamics with geometric algebra (United States)

    Hestenes, D.


    A new spinor formulation of rotational dynamics is developed. A general theorem is established reducing the theory of the symmetric top to that of the spherical top. The classical problems of Lagrange and Poinsot are treated in detail, along with a modern application to the theory of magnetic resonance.

  3. Rotational diffusion in dense suspensions

    NARCIS (Netherlands)

    Hagen, M. H. J.; Frenkel, D.; Lowe, C.P.


    We have computed the rotational diffusion coefficient for a suspension of hard spheres. We find excellent agreement with experimental results over a density range up to, and including, the colloidal crystal. However, we find that theories derived to second order in the volume fraction overestimate

  4. Rotating black hole and quintessence

    CERN Document Server

    Ghosh, Sushant G


    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole (BH), which has additional parameters ($\\alpha$ and $\\omega$) due to the quintessential matter, apart from the mass ($M$). In turn, we employ the Newman\\(-\\)Janis complex transformation to this spherical quintessence BH solution and present a rotating counterpart that is identified, for $\\alpha=-e^2 \

  5. Ultrasonography of the Rotator Cuff

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)


    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  6. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George


    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  7. BOOK REVIEW: Rotation and Accretion Powered Pulsars (United States)

    Kaspi, V. M.


    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  8. Controllable High-Speed Rotation of Nanowires (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.


    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  9. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro


    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  10. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2+(X2Σ: v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold. (United States)

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu


    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H2+(X2Σ: v+ = 1-3; N+ = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔElab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H2+(X2Σ: v+; N+) + Ne. Here, we present the integral cross sections [σ(v+; N+)'s] for the H2+(v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H reaction observed in the center-of-mass kinetic energy (Ecm) range of 0.05-2.00 eV. The σ(v+ = 1, N+ = 1) exhibits a distinct Ecm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v+-vibrational enhancements are observed for σ(v+ = 1-3, N+) in the Ecm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v+ = 3, N+), a careful search leads to the observation of moderate N+-rotational enhancements at v+ = 2: σ(v+ = 2; N+ = 0) v+ = 2; N+ = 1) v+ = 2; N+ = 2) v+ = 2; N+ = 3), where the formation of NeH+ is near thermal-neutral. The σ(v+ = 1-3, N+ = 0-3) values obtained here are compared with previous experimental results and the most recent state-of-the-art quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  11. Measurable quantum geometric phase from a rotating single spin. (United States)

    Maclaurin, D; Doherty, M W; Hollenberg, L C L; Martin, A M


    We demonstrate that the internal magnetic states of a single nitrogen-vacancy defect, within a rotating diamond crystal, acquire geometric phases. The geometric phase shift is manifest as a relative phase between components of a superposition of magnetic substates. We demonstrate that under reasonable experimental conditions a phase shift of up to four radians could be measured. Such a measurement of the accumulation of a geometric phase, due to macroscopic rotation, would be the first for a single atom-scale quantum system.

  12. Current reversals in rapidly rotating ultracold Fermi gases (United States)

    Bencheikh, K.; Medjedel, S.; Vignale, G.


    We study the equilibrium current density profiles of harmonically trapped ultracold Fermi gases in quantum Hall-like states that appear when the quasi-two-dimensional trap is set in fast rotation. The density profile of the gas (in the rotating reference frame) consists of incompressible strips of constant quantized density separated by compressible regions in which the density varies. Remarkably, we find that the atomic currents flow in opposite directions in the compressible and incompressible regions—a prediction that should be amenable to experimental verification.

  13. Broadband dispersionless polarization rotation with composite chiral metamaterials

    CERN Document Server

    Song, Kun; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng


    We propose a planar composite chiral metamaterial (CCMM) by symmetrically inserting a metallic mesh between two layers of conjugated gammadion resonators. As the elaborate CCMM operates in the frequency region of off-resonance, it therefore presents loss-less and dispersion-free features. It can achieve flat polarization rotation simultaneously accompanied with high transmission and extremely low ellipticity in a broad bandwidth. In the meanwhile, this intriguing CCMM shows more superiorities in polarization rotation power and operating bandwidth than the pure chiral metamaterial just composed of conjugated gammadions. Due to the fascinating properties, the proposed CCMM is greatly appealing for controlling the polarization state of the electromagnetic waves.

  14. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)


    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  15. Instabilities in electrically driven rotating MHD layers (United States)

    Mistrangelo, C.; Bühler, L.


    Flows of electrically conducting fluids exposed to intense magnetic fields exhibit a common feature i.e. the formation of uniform cores in which electromagnetic forces are dominant. Cores are separated from each other by thin layers that extend along magnetic field lines. Across these parallel layers strong gradients of flow variables are present, which can lead to the onset of instabilities and non-linear flow transitions. In this work we investigate dynamics and stability issues of rotating parallel layers driven by electromagnetic forces caused by the interaction of injected electric currents with an applied magnetic field. The geometry considered consists of two coaxial circular electrodes used for current injection. They are placed in parallel electrically insulating planes perpendicular to a uniform magnetic field. The basic axisymmetric steady state flow, characterized by a rotating velocity jet confined in a parallel layer that connects the rims of the electrodes, is rather well understood. By increasing the driving current above a critical value the basic flow becomes unstable and undergoes a sequence of supercritical bifurcations.

  16. SU(3) gauge theory of nuclear rotations (United States)

    Rosensteel, G.; Sparks, N.


    The legacy Bohr-Mottelson model of collective rotational modes has a hidden differential geometric structure that enables its natural generalization to a nuclear model that has the mathematical structure of Yang-Mills theory. The essential differential geometry ingredients for Yang-Mills are a base manifold, a gauge group, and a connection or covariant derivative. In this letter, the base manifold is the space of nuclear orientations and quadrupole-monopole deformations, the gauge group is either SO(3) or SU(3), and the covariant derivative determines a new gauge-invariant “magnetic-type” interaction. The high-lying energy states of the legacy irrotational flow model enter, as a direct result of gauge coupling, the domain of low-energy yrast rotational bands, as observed by experiment. Although the relevant SU(3) representation for a deformed nucleus is the same as the Elliott model, the non-Abelian SU(3) gauge group's physical interpretation is very different and concerns the Kelvin circulation.

  17. Rotating hydraulic adjustment in a parabolic channel (United States)

    Helfrich, K.


    Rotating hydraulics forms the basis of our interpretation of flows through oceanic straits and abyssal passages. These theories are used to predict overflow transport and characteristics of hydraulic features such as jumps. However, details of the transient hydraulic adjustment and the properties of hydraulic jumps and bores have been explored only for unrealistic rectangular cross-section channel geometry. Here the classic problem of upstream influence due to the introduction of an obstacle is extended to a rotating channel with parabolic cross-section. The critical obstacle height for upstream influence as a function of Froude number is found under the assumptions of single-layer (reduced-gravity) semi-geostrophic flow with uniform potential vorticity. The theoretical development is supplemented with two-dimensional numerical simulations of the transient adjustment to hydraulically controlled states. The numerical results reveal novel features including upstream propagating disturbances that consist of both a localized shock-like feature and non-local rarefaction upstream of the shock. The non-locality poses an impediment for the development of a shock-joining theory. Downstream hydraulic jumps from super to subcritical flow occur as both depth and width transitions. However, the lateral expansions in a parabolic channel are not as abrupt as their rectangular channel counterparts. This may help explain the lack of oceanic observations of abrupt hydraulic jumps downstream of abyssal sills.

  18. Switchable tri-band THz polarizing rotator based on chiral metamaterials (United States)

    Lu, Yuying; Li, Jining; Yao, Jianquan


    One kind of switchable, tri-band, terahertz linear polarizing rotator is presented in this paper, which consists of sandwiched metal chiral metamaterial structure composed of twisted electric field-coupled resonators in C4 symmetry and a VO2 film on substrate for active controlling. The polarizing rotation is switchable with the state change of VO2 from an insulator to metal. Simulated results consistently demonstrate that the switchable rotator exhibits extremely low loss, high polarization conversion ratio and optical activity at the three resonance frequencies. The influence of different geometric parameters of the chiral metamaterial structure is investigated to optimize the multiband rotating response of the polarizing rotator. This switchable terahertz metamaterial-based rotator has various potential applications in terahertz wave controlling and the terahertz functional devices.

  19. Integrated Optics Rotation Sensor (IORS) (United States)

    Fitzpatrick, Colleen M.; Vali, Victor; Youmans, Bruce R.; Yang, Ching Mei; Milbrodt, Michele; Minford, William J.


    The Integrated Optics Rotation SEnsor (IORS) is a rugged, lightweight, and low cost gyro instrument which is currently being sponsored by the Defense Advanced Research Projects Agency under funding from Small Business Innovative Research/Technology Reinvestment Program. It uses glass-on- silicon optical waveguide technology. The design of the IORS is quite simple, and can potentially be adapted to a number of military and commercial applications, including yaw rate sensing for an anti-skid safety device in automobiles, rotation rate sensing for robotics, weapon aiming,and guidance of smart munitions. The basic design is presented, along with preliminary performance specifications for an IORS prototype. The characteristics of the IORS is also compared to other gyros in terms of performance, size, weight, and price.

  20. Faraday rotation system. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, L.E.; Wang, W.


    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  1. Rotating concave eddy current probe (United States)

    Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM


    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  2. Gravitational lensing by rotating wormholes (United States)

    Jusufi, Kimet; Ã-vgün, Ali


    In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.

  3. Tidal variations of earth rotation (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.


    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  4. Rotation sensing with trapped ions (United States)

    Campbell, W. C.; Hamilton, P.


    We present a protocol for rotation measurement via matter-wave Sagnac interferometry using trapped ions. The ion trap based interferometer encloses a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without contrast loss. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, Doppler laser cooling should be sufficient to reach a sensitivity of { S }=1.4× {10}-6 {{rad}} {{{s}}}-1 {{{H}}{{z}}}-1/2. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Wes Campbell was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  5. Non-Hamiltonian perturbation theory for deformable fast rotators (United States)

    Varadi, F.; Moore, W. B.


    Deformable fast rotators, such as the Earth and Mars, change both their rotational states (spin axis direction) and shapes due to external forces and internal material motions. The standard approach to rigid-body dynamics is Hamiltonian perturbation theory in canonical action-angle (Andoyer) variables which incorporate the moments of inertia form the outset. Dealing with deformations is usually based on linear perturbation theory around rigid-body reference solutions which yields transfer functions from the rigid to the deformable case. We present the elements of a general, non-Hamiltonian perturbation theory in non-canonical variables based on Lie series. First, we present general results on non-Hamiltonian perturbation theory and averaging, such as a coordinate-free formula for the solution of the homological equation of the Lie series in the case of perturbed periodic orbits. In general, the averaged system does not fully Lie-commute with the unperturbed system and the reduction of the averaged system to the orbit space of unperturbed system has to allow for drift along the unperturbed orbits. In the case of a fast rotator, we start with rotation around the spin axis as the unperturbed system. The orientation of the body is represented as a rotation matrix and we derive the appropriate Lie bracket. After averaging over the rotation period, we reduce the system by eliminating the phase variable associated with pure rotation around the spin axis. The reduced system is expressed in terms of the spin axis in both inertial and body frames. We compare our results to those of traditional Hamiltonian theories and numerical simulations. This work is supported by NSF Planetary Astronomy.

  6. Shoulder Impingement/Rotator Cuff Tendinitis (United States)

    ... by the American Academy of Orthopaedic Surgeons. .org Shoulder Impingement/Rotator Cuff Tendinitis cont. Page ( 2 ) Symptoms Rotator cuff pain commonly causes local swelling and tenderness in the ...

  7. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob


    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  8. Area spectrum of slowly rotating black holes


    Myung, Yun Soo


    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  9. Rotating optical coupler for signal transmission (United States)

    Ivie, C. V.


    Optical coupler using Dove prism assembly to form stationary image of rotating object, transmits data across rotating interface without sliprings or other mechanical contacts. Device can handle many high-bit-rate data channels.

  10. TERA for Rotating Equipment Selection


    Khan, Raja S. R.


    This thesis looks at creating a multidisciplinary simulation tool for rotating plant equipment selection, specifically gas turbines, for the liquefaction of natural gas (LNG). This is a collaborative project between Shell Global Solutions and Cranfield University in the UK. The TERA LNG tool uses a Techno-economic, Environmental and Risk Analysis (TERA) approach in order to satisfy the multidisciplinary nature of the investigation. The benefits of the tool are to act as an aid ...

  11. 'Coronae' of rotating interstellar clouds (United States)

    Rosner, R.; Hartquist, T. W.


    This letter considers differential rotation of cool interstellar clouds in the presence of internal magnetic fields, and shows that because of the relative ineffectiveness of field dissipation within the clouds, magnetized gas experiences buoyant forces. The resulting field loops emerge from the cloud and dissipate their energy by field reconnection. The consequent heating is sufficient to produce relatively hot (T approximately 10,000 K) 'coronae' about the clouds.

  12. Rotation of a Moonless Earth (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.


    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  13. Crop rotations for grain production


    Olesen, Jørgen E.; Rasmussen, Ilse Ankær; Askegaard, Margrethe


    There is an increasing demand for organically grown cereal grains in Denmark, which is expected to cause a change in the typical organic farm structure away from dairy farming and towards arable farming. Such a change may reduce the stability of the farming systems, because of decreasing soil fertility and problems with weed control. There have only been a limited number of studies under temperate conditions in Europe and North America, where different crop rotations have been compared under ...

  14. Semiclassics of rotation and torsion.


    Braun, Petr A.; Gerwinski, Peter; Haake, Fritz; Schomerus, Henning


    We discuss semiclassical approximations of the spectrum of the periodically kicked top, both by diagonalizing the semiclassically approximated Floquet matrix F and by employing periodic-orbit theory. In the regular case when F accounts only for a linear rotation periodic-orbit theory yields the exact spectrum. In the chaotic case the first method yields the quasienergies with an accuracy of better than 3% of the mean spacing. By working in the representation where the torsional part of the Fl...

  15. Developing an Asteroid Rotational Theory (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald


    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  16. Simultaneity on the Rotating Disk (United States)

    Koks, Don


    The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".

  17. Microseismic sources of rotational type (United States)

    Pasternak, Elena; Dyskin, Arcady; He, Junxian


    Traditionally the sources of seismic and microseismic events are related to shear fractures. The analysis of the seismic moment tensors of the sources associated with rock fracturing and hydraulic fracturing in the laboratory experiments and in-situ reveals that while there exist tensile and compressive sources, the shear sources prevail. The appearance of multiple shear sources, accompanied rock fracturing contradicts the results of the direct experiments suggesting that the rock as well as other materials not exhibiting clear plastic flow fail in tension. This contradiction is conventionally resolved by assuming the presence of multiple pre-existing shear fractures (faults or microfaults) whose sudden sliding provides microseismic events of shear type. We consider alternative mechanisms associated with bending of links between rotating particles and fragments of geomaterial and bending of bridges connecting opposite sides of hydraulic fractures. In both cases the fracturing is caused by the action of moments (or moment stresses) leading to bending, while at microscale the failure is associated with tensile microstresses leading to formation of tensile microcracks. In other words, at microscale the moment-related failure is failure in tension, as routinely observed in materials even in compression. It is easy to demonstrate that from a distance the sources of rotational type are equivalent to a standard double couple, similar to the one associated with shear fracturing. In other words what is currently interpreted as shear microseismic sources can in fact be rotational sources. This calls for new methods of detecting and interpreting microseismic sources; some possible methods are discussed.

  18. Gravity controlled anti-reverse rotation device (United States)

    Dickinson, Robert J.; Wetherill, Todd M.


    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  19. Rotating structures and Bryan’s effect

    CSIR Research Space (South Africa)

    Joubert, SV


    Full Text Available In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes...

  20. What Is Rotating in Exploratory Factor Analysis? (United States)

    Osborne, Jason W.


    Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what "rotation" is, what exactly is rotating, and why we use rotation when performing…

  1. Visualizing Compound Rotations with Virtual Reality (United States)

    Flanders, Megan; Kavanagh, Richard C.


    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  2. Rotational versions of the Crofton formula

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel


    Inspired by recent developments in stereology, rotational versions of the Crofton formula are derived. The first version involves rotation averages of Minkowski functionals. It is shown that for the special case where the Minkowski functional is surface area, the rotation average can be expressed...

  3. Measuring Stellar Rotation Periods with Kepler

    DEFF Research Database (Denmark)

    Nielsen, M. B.; Gizon, L.; Schunker, H.


    We measure rotation periods for 12151 stars in the Kepler field, based on photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study rotation periods...

  4. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface (United States)

    Pashitskii, E. A.


    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in

  5. Flow instabilities behind rotating bluff bodies for moderate Reynolds number (United States)

    Goujon-Durand, Sophie; Gibi?Ski, Kornel; Skarysz, Maciej; Wesfreid, Jose Eduardo


    We present experiments to study the flow behind 3D bodies (spheres, disks and propellers) rotating about an axis aligned with the streamwise direction. The experiments has been performed in a water channel using LIF visualizations and PIV measurements. We study the flow evolution and the different flow regimes as a function of two control parameters: the Reynolds number Re and the dimensionless rotation or swirl rate Ω which is the ratio of the maximum azimuthal velocity of the body to the free stream velocity. In the present investigation, we covers the range of Re smaller than 400 and Ω from 0 to 4 in some cases. Different wakes regimes such as an axisymmetric base flow (or n-symmetric in the case of propellers), low frequency helicoidal states and higher frequency state are observed. The transitions between states are studied measuring the amplitude of the azimuthal modes components of the streamwise vorticity obtained by Fourier decomposition.

  6. Rotational Doppler Effect: A Probe for Molecular Orbitals Anisotropy. (United States)

    Miao, Quan; Travnikova, Oksana; Gel'mukhanov, Faris; Kimberg, Victor; Sun, Yu-Ping; Thomas, T Darrah; Nicolas, Christophe; Patanen, Minna; Miron, Catalin


    The vibrationally resolved X-ray photoelectron spectra of X2Σg+(3σg−1) and B2Σu+(2σu−1) states of N2+ were recorded for different photon energies and orientations of the polarization vector. Clear dependencies of the spectral line widths on the X-ray polarization as well as on the symmetry of the final electronic states are observed. Contrary to the translational Doppler, the rotational Doppler broadening is sensitive to the photoelectron emission anisotropy. On the basis of theoretical modeling, we suggest that the different rotational Doppler broadenings observed for gerade and ungerade final states result from a Young's double-slit interference phenomenon.

  7. Unconventional rotational responses of hadronic superfluids in a neutron star caused by strong entrainment and a Sigma- hyperon gap. (United States)

    Babaev, Egor


    I show that the usual model of the rotational response of a neutron star, which predicts rotation-induced neutronic vortices and no rotation-induced protonic vortices, does not hold (i) beyond a certain threshold of entrainment interaction strength nor (ii) in the case of nonzero Sigma(-) hyperon gap. I show that in both of these cases the rotational response involves the creation of phase windings in an electrically charged condensate. Lattices of bound states of vortices which result from these phase windings can (for a range of parameters) strongly reduce the interaction between rotation-induced vortices with magnetic-field carrying superconducting components.

  8. The global rotating scalar field vacuum on anti-de Sitter space–time

    Directory of Open Access Journals (Sweden)

    Carl Kent


    Full Text Available We consider the definition of the global vacuum state of a quantum scalar field on n-dimensional anti-de Sitter space–time as seen by an observer rotating about the polar axis. Since positive (or negative frequency scalar field modes must have positive (or negative Klein–Gordon norm respectively, we find that the only sensible choice of positive frequency corresponds to positive frequency as seen by a static observer. This means that the global rotating vacuum is identical to the global nonrotating vacuum. For n≥4, if the angular velocity of the rotating observer is smaller than the inverse of the anti-de Sitter radius of curvature, then modes with positive Klein–Gordon norm also have positive frequency as seen by the rotating observer. We comment on the implications of this result for the construction of global rotating thermal states.

  9. The global rotating scalar field vacuum on anti-de Sitter space–time

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Carl, E-mail:; Winstanley, Elizabeth, E-mail:


    We consider the definition of the global vacuum state of a quantum scalar field on n-dimensional anti-de Sitter space–time as seen by an observer rotating about the polar axis. Since positive (or negative) frequency scalar field modes must have positive (or negative) Klein–Gordon norm respectively, we find that the only sensible choice of positive frequency corresponds to positive frequency as seen by a static observer. This means that the global rotating vacuum is identical to the global nonrotating vacuum. For n≥4, if the angular velocity of the rotating observer is smaller than the inverse of the anti-de Sitter radius of curvature, then modes with positive Klein–Gordon norm also have positive frequency as seen by the rotating observer. We comment on the implications of this result for the construction of global rotating thermal states.

  10. Experimental and theoretical investigations of rotational energy transfer in HBr + He collisions. (United States)

    Kabir, Md Humayun; Antonov, Ivan O; Merritt, Jeremy M; Heaven, Michael C


    Rotational relaxation rates for HBr(v = 1) colliding with helium atoms at room temperature have been measured using a time-resolved optical-optical double resonance technique. Rotational state selective excitation of v = 1 for rotational levels in the range J = 1-9 was achieved by stimulated Raman pumping. The population decay in the prepared states and the transfer of population to nearby rotational states was monitored via 2 + 1 resonance-enhanced multiphoton ionization (REMPI) spectroscopy using the g(3)Σ(-)-X(1)Σ(+) (0-1) band. Collision-induced population evolution for transfer events with |ΔJ| ≤ 8 was observed at pressures near 0.7 Torr. The experimental data were analyzed using fitting and scaling functions to generate state-to-state rotational energy transfer rate constant matrices. Total depopulation rate constants were found to be in the range (1.3 to 2.0) × 10(-10) cm(3) s(-1). As a test of current computational methods, state-to-state rotational energy transfer rate constants were calculated using ab initio theory. The total removal rate constants were in good agreement with the measured values, but the transfer probabilities for events with |ΔJ| ≥ 3 were underestimated. Inspection of the anisotropic characteristics of the potential energy surface did not yield an obvious explanation for the discrepancies, but it is most likely that the problem stems from inaccuracies in the potential surface.

  11. The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO (United States)

    Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.


    The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.

  12. Drag and lift forces on a counter-rotating cylinder in rotating flow

    NARCIS (Netherlands)

    Sun, Chao; Mullin, Tom; van Wijngaarden, L.; van Wijngaarden, L.; Lohse, Detlef


    Results are reported of an experimental investigation into the motion of a heavy cylinder free to move inside a water-filled drum rotating around its horizontal axis. The cylinder is observed to either co-rotate or, counter-intuitively, counter-rotate with respect to the rotating drum. The flow was

  13. Rotational joint assembly and method for constructing the same (United States)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)


    A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.

  14. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov


    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  15. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui


    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  16. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen


    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  17. Nuclear-spin optical rotation in xenon (United States)

    Savukov, I.


    The nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger along the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. The resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.

  18. Interaction of higher-dimensional rotating black holes with branes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P [Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton T6G 2J1 (Canada); Fursaev, Dmitri V [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, 141 980 Dubna (Russian Federation); Stojkovic, Dejan [MCTP, Department of Physics, University of Michigan, Ann Arbor, MI (United States)


    We study interaction of rotating higher-dimensional black holes with a brane in spacetimes with large extra dimensions. We demonstrate that in a general case a rotating black hole attached to a brane can lose bulk components of its angular momenta. A stationary black hole can have only those components of the angular momenta which are connected with Killing vectors generating transformations preserving a position of the brane. In a final stationary state the null Killing vector generating the black hole horizon is tangent to the brane. We discuss first the interaction of a cosmic string and a domain wall with the 4D Kerr black hole. We then prove the general result for slowly rotating higher-dimensional black holes interacting with branes. The characteristic time when a rotating black hole with gravitational radius r{sub 0} reaches this final stationary state is T {approx} r{sup p-1}{sub 0}/(G{sigma}), where G is the higher-dimensional gravitational coupling constant, {sigma} is the brane tension and p is the number of extra dimensions.

  19. Rotational Orientation Effects in NO(X) + Ar Inelastic Collisions. (United States)

    Brouard, M; Chadwick, H; Gordon, S D S; Hornung, B; Nichols, B; Aoiz, F J; Stolte, S


    Rotational angular momentum orientation effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated both experimentally and theoretically at a collision energy of 530 cm(-1). The collision-induced orientation has been determined experimentally using a hexapole electric field to select the ϵ = -1 Λ-doublet level of the NO(X) j = 1/2 initial state. Fully quantum state resolved polarization-dependent differential cross sections were recorded experimentally using a crossed molecular beam apparatus coupled with a (1 + 1') resonance-enhanced multiphoton ionization detection scheme and subsequent velocity-map imaging. To determine the NO sense of rotation, the probe radiation was circularly polarized. Experimental orientation polarization-dependent differential cross sections are compared with those obtained from quantum mechanical scattering calculations and are found to be in good agreement. The origin of the collision-induced orientation has been investigated by means of close-coupled quantum mechanical, quantum mechanical hard shell, quasi-classical trajectory (QCT), and classical hard shell calculations at the same collision energy. Although there is evidence for the operation of limiting classical mechanisms, the rotational orientation cannot be accounted for by QCT calculations and is found to be strongly influenced by quantum mechanical effects.

  20. Thermal activated rotation of graphene flake on graphene (United States)

    Peymanirad, F.; Singh, Sandeep Kumar; Ghorbanfekr-Kalashami, H.; Novoselov, K. S.; Peeters, F. M.; Neek-Amal, M.


    The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about  ∼4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA- or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than {{2}\\circ} . Our results are in agreement with recent experiments.

  1. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)


    Abstract of WO 2008138346  (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  2. A quantum-rovibrational-state-selected study of the reaction in the collision energy range of 0.05-10.00 eV: translational, rotational, and vibrational energy effects. (United States)

    Xu, Yuntao; Xiong, Bo; Chang, Yih-Chung; Pan, Yi; Lo, Po Kam; Lau, Kai Chung; Ng, C Y


    We report detailed absolute integral cross sections (σ's) for the quantum-rovibrational-state-selected ion-molecule reaction in the center-of-mass collision energy (Ecm) range of 0.05-10.00 eV, where (vvv) = (000), (100), and (020), and . Three product channels, HCO+ + OH, HOCO+ + H, and CO+ + H2O, are identified. The measured σ(HCO+) curve [σ(HCO+) versus Ecm plot] supports the hypothesis that the formation of the HCO+ + OH channel follows an exothermic pathway with no potential energy barriers. Although the HOCO+ + H channel is the most exothermic, the σ(HOCO+) is found to be significantly lower than the σ(HCO+). The σ(HOCO+) curve is bimodal, indicating two distinct mechanisms for the formation of HOCO+. The σ(HOCO+) is strongly inhibited at Ecm 0.4 eV by (100) vibrational excitation. The Ecm onsets of σ(CO+) determined for the (000) and (100) vibrational states are in excellent agreement with the known thermochemical thresholds. This observation, along with the comparison of the σ(CO+) curves for the (100) and (000) states, shows that kinetic and vibrational energies are equally effective in promoting the CO+ channel. We have also performed high-level ab initio quantum calculations on the potential energy surface, intermediates, and transition state structures for the titled reaction. The calculations reveal potential barriers of ≈0.5-0.6 eV for the formation of HOCO+, and thus account for the low σ(HOCO+) and its bimodal profile observed. The Ecm enhancement for σ(HOCO+) at Ecm ≈ 0.5-5.0 eV can be attributed to the direct collision mechanism, whereas the formation of HOCO+ at low Ecm < 0.4 eV may involve a complex mechanism, which is mediated by the formation of a loosely sticking complex between HCO+ and OH. The direct collision and complex mechanisms proposed also allow the rationalization of the vibrational inhibition at low Ecm and the vibrational enhancement at high Ecm observed for the σ(HOCO+).

  3. Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating pipe (United States)

    Rusak, Zvi; Wang, Shixiao


    The axisymmetric dynamics of perturbations on a solid-body rotation flow with a uniform axial velocity in a rotating, finite-length circular pipe is studied via global analysis methods and numerical simulations. We first describe the bifurcation diagram of steady-state solutions of the flow problem as a function of the swirl ratio ω. We prove that the base columnar flow is a unique steady-state solution when ω is below a critical level, ω1. This state is asymptotically stable and a global attractor of the flow dynamics. However, when ω >ω1 , we reveal, in addition to the base columnar flow, the co-existence of states that describe swirling flows around either centerline stagnant breakdown zones or wall pseudo-stagnant zones. The base columnar flow is a min-max point of the energy functional that governs the problem while the swirling flows with wall-separation and breakdown zones are global and local minimizer states and attractors of the flow dynamics. We also find additional min-max states that are transient attractors of the flow dynamics. The wall-separation states have same chance to appear as that of the breakdown states and there is no hysteresis loop between these states.

  4. Optical wheel-rotation sensor (United States)

    Veeser, Lynn R.; Rodriguez, Patrick A.; Forman, Peter; Deeter, Merritt N.


    We describe a fiber-optic rotation sensor being developed for anti-lock braking systems. The basis of the sensor is the magneto-optic detection of the magnetic fields generated by a wheel of alternating magnetized magnets fixed to a wheel of the automobile. Highly sensitive iron garnet crystals serve as the magneto-optic sensing elements. For films with perpendicularly- magnetized domains, the domain structure produces diffraction which is magnetic-field dependent. Exploitation of this effect permits the construction of magneto-optic magnetic field sensors requiring no polarization elements or lenses.

  5. Generalization of stochastic visuomotor rotations.

    Directory of Open Access Journals (Sweden)

    Hugo L Fernandes

    Full Text Available Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty.

  6. Parallel computation of rotating flows

    DEFF Research Database (Denmark)

    Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær


    This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...

  7. Generalization of Stochastic Visuomotor Rotations (United States)

    Fernandes, Hugo L.; Stevenson, Ian H.; Kording, Konrad P.


    Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty. PMID:22916198

  8. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria


    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  9. Metalloproteases and rotator cuff disease. (United States)

    Del Buono, Angelo; Oliva, Francesco; Longo, Umile Giuseppe; Rodeo, Scott A; Orchard, John; Denaro, Vincenzo; Maffulli, Nicola


    The molecular changes occurring in rotator cuff tears are still unknown, but much attention has been paid to better understand the role of matrix metalloproteinases (MMP) in the development of tendinopathy. These are potent enzymes that, once activated, can completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediatethe development of painful tendinopathy and tendon rupture. To control the local activity of activated proteinases, the same cells produce tissue inhibitors of metalloproteinases (TIMP) that bind to the enzymes and prevent degradation. The balance between the activities of MMPs and TIMPs regulates tendon remodeling, whereas an imbalance produces a collagen dis-regulation and disturbances intendons. ADAMs (a disintegrin and metalloproteinase) are cell membrane-linked enzymes with proteolytic and cell signaling functions. ADAMTSs (ADAM with thrombospondin motifs) are secreted into the circulation, and constitute a heterogenous family of proteases with both anabolic and catabolic functions. Biologic modulation of endogenous MMP activity to basal levels may reduce pathologic tissue degradation and favorably influence healing after rotator cuff repair. Further studies are needed to better define the mechanism of action, and whether these new strategies are safe and effective in larger models. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  10. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.


    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  11. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons


    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  12. Differentiating the differential rotation effect. (United States)

    Boyarskaya, Evgenia; Hecht, Heiko


    As an observer views a picture from different viewing angles, objects in the picture appear to maintain their orientation relative to the observer. For instance, the eyes of a portrait appear to follow the observer as he or she views the image from different angles. We have explored this rotation effect, often called the Mona Lisa effect. We report three experiments that used portrait photographs to test variations of the Mona Lisa effect. The first experiment introduced picture displacements relative to the observer in directions beyond the horizontal plane. The Mona Lisa effect remained robust for vertical and/or diagonal observer displacements. The experiment also included conditions in which the portrait had averted gaze directions. An interaction between picture position relative to the observer and gaze direction was found. The second experiment followed up on very pronounced individual differences, suggesting that the Mona Lisa effect is even stronger than it should be for half of all observers (over-rotators). These individual differences do not correlate with any of the standard personality dimensions (Big Five) or with spatial intelligence. In the third experiment, we extended the experiment to virtual 3D heads using the same gaze directions and picture displacements as for the 2D portrait faces. Besides the picture displacements relative to the observer, we also added observer displacements relative to the picture. 3D pictures showed the Mona Lisa effect, but to a smaller extent than did 2D pictures. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Internal rotation in peroxynitrous acid (ONOOH) (United States)

    McGrath, Mark P.; Rowland, F. Sherwood


    Using higher levels of wave-function-based electronic structure theory than previously applied, as well as density functional theory (B-LYP and B3-LYP functionals), all theoretical models conclude that three ONOOH conformers are stationary point minima, in disagreement with some of the previous studies that we survey. In order of increasing energy, these are the cis-cis, cis-perp, and trans-perp conformers. Basis sets including diffuse functions seem to be needed to obtain a qualitatively correct representation of the internal rotation potential energy surface at higher levels of theory. Internal rotation about the peroxide bond involving the cis-cis, cis-gauche transition structure (TS), cis-perp, and cis-trans TS conformers is studied in detail. To help ascertain the relative stability of the cis-perp conformer, multireference configuration interaction energy calculations are carried out, and rule of thumb estimates of multireference character in the ground-state wave functions of the ONOOH conformers are considered. CCSD(T)/aug-cc-pVTZ physical properties (geometries, rotational constants, electric dipole moments, harmonic vibrational frequencies, and infrared intensities) are compared with the analogous experimental data wherever possible, and also with density functional theory. Where such experimental data are nonexistent, the CCSD(T) and B3-LYP results are useful representations. For example, the electric dipole moment ∣μe∣ of the cis-cis conformer is predicted to be 0.97±0.03D. CCSD(T) energies, extrapolated to the aug-cc-pVNZ limit, are employed in isodesmic reaction schemes to derive zero Kelvin heats of formation and bond dissociation energies of the ONOOH stationary point minima. In agreement with recent gas-phase experiments, the peroxide bond dissociation energies of the cis-cis and trans-perp conformers are calculated as 19.3±0.4 and 16.0±0.4kcal/mol, respectively. The lowest energy cis-cis conformer is less stable than nitric acid by 28.1±0

  14. Stellar Midlife Crises: Challenges and Advances in Simulating Convection and Differential Rotation in Sun-like Stars (United States)

    Nelson, Nicholas J.; Payne, Charles; Sorensen, Cameron Michael


    Low mass, main sequence stars like our Sun exhibit a wide variety of rotational and magnetic states. Observational and theoretical advances have led to a renewed emphasis on understanding the rotational and magnetic evolution of sun-like stars has become a pressing problem in stellar physics. We use global 3D convection and convective dynamo simulations in rotating spherical shells and with realistic stellar stratification to explore the behavior of ``middle-aged'' stars. We show that for stars with slightly less rotational influence than our Sun a transition occurs from solar-like (fast equator, slow poles) to anti-solar (slow equator, fast poles) differential rotation. We investigate this transition using two different treatments for the upper boundary of our simulations and we hypothesize that this transition from solar-like to anti-solar differential rotation may be responsible for observations of anomalously rapid rotation for stars older than our Sun.

  15. Rotation and neoclassical ripple transport in ITER (United States)

    Paul, E. J.; Landreman, M.; Poli, F. M.; Spong, D. A.; Smith, H. M.; Dorland, W.


    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the variational moments equilibrium code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the stellarator Fokker-Planck iterative neoclassical conservative solver (SFINCS). These calculations fully account for E r , flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of E r , we study its behavior over a plausible range of E r . We estimate the toroidal flow, and hence E r , using a semi-analytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV from the \\vert{n}\\vert = 18 ripple dominates that from lower n perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts, finding appreciable differences only for superbanana-plateau transport at small E r . We find the scaling of calculated NTV torque with ripple magnitude to indicate that ripple-trapping may be a significant mechanism for NTV in ITER. The computed NTV torque without ferritic components is comparable in magnitude to the NBI and intrinsic turbulent torques and will likely damp rotation, but the NTV torque is significantly reduced by the planned ferritic inserts.

  16. Vector correlations in rotationally inelastic molecular collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lemeshko, Mikhail


    The thesis presents an analytic model that describes scalar and vector properties of molecular collisions, both field-free and in fields. The model is based on the sudden approximation and treats molecular scattering as the Fraunhofer diffraction of matter waves from the hard-core part of the interaction potential. The theory has no fitting parameters and is inherently quantum, rendering fully state- and energy-resolved scattering amplitudes and all the quantities that unfold from them in analytic form. This allows to obtain complex polarization moments inherent to quantum stereodynamics, and to account for interference and other non-classical effects. The simplicity and analyticity of the model paves a way to understanding the origin of the features observed in experiment and exact computations, such as the angular oscillations in the state-to-state differential cross sections and the polarization moments, the rotational-state dependent variation of the integral cross sections, and change of these quantities as a function of the applied field. The theory was applied to study the k - k{sup '} vector correlation (differential cross section) for the following collision systems: Ar-NO(X{sup 2}{pi}) and Ne-OCS(X{sup 1}{sigma}) in an electrostatic field, Na{sup +}-N{sub 2}(X{sup 1}{sigma}) in a laser field, and He-CaH({sup 2}{sigma}), He-O{sub 2}(X{sup 3}{sigma}), and He-OH(X{sup 2}{pi}) in a magnetic field. The model was able to reproduce the behavior of the differential cross sections and their variation with field strength. Combining the Fraunhofer model with the quantum theory of vector correlations made it possible to study three- and four-vector properties. The model results for the k-k{sup '}-j{sup '} vector correlation in Ar-NO(X{sup 2}{pi}) and He-NO(X{sup 2}{pi}) scattering were found to be in good agreement with experiment and exact computations. This allowed to demonstrate that the stereodynamics of such collisions is contained solely in the

  17. Counter-rotating cavity solitons in a silicon nitride microresonator (United States)

    Joshi, Chaitanya; Klenner, Alexander; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.


    We demonstrate the generation of counter-rotating cavity solitons in a silicon nitride microresonator using a fixed, single-frequency laser. We demonstrate a dual 3-soliton state with a difference in the repetition rates of the soliton trains that can be tuned by varying the ratio of pump powers in the two directions. Such a system enables a highly compact, tunable dual comb source that can be used for applications such as spectroscopy and distance ranging.

  18. Electromagnetically driven zonal flows in a rapidly rotating spherical shell


    Hollerbach, Rainer; Wei, Xing; Noir, Jérõme; JACKSON, Andrew


    We consider the flow of an electrically conducting fluid confined in a rotating spherical shell. The flow is driven by a directly imposed electromagnetic body force, created by the combination of an electric current flowing from the inner sphere to a ring-shaped electrode around the equator of the outer sphere and a separately imposed predominantly axial magnetic field. We begin by numerically computing the axisymmetric basic states, which consist of a strong zonal flow. We nex...

  19. Structure of rotational bands in {sup 253}No

    Energy Technology Data Exchange (ETDEWEB)

    Herzberg, R.D.; Moon, S.; Butler, P.A.; Page, T.; Amzal, N.; Bastin, J.E.; Cocks, J.F.C.; Darby, I.G.; Gray-Jones, C.; Hammond, N.J.; Herzberg, A.; Humphreys, R.D.; Jones, G.D.; Page, R.D.; Page, T.; Pritchard, A. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Eeckhaudt, S.; Greenlees, P.T.; Dorvaux, O.; Jones, P.M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; LeCoz, Y.; Leino, M.; Leppaenen, A.P.; Muikku, M.; Nieminen, P.; Nyman, M.; Rahkila, P.; Sandzelius, M.; Saren, J.; Scholey, C.; Trzaska, W.H.; Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Afanasjev, A.V. [Mississippi State University, Department of Physics and Astronomy, Mississippi, MS (United States); Becker, F.; Houry, M.; Huerstel, A.; Korten, W.; Lucas, R.; Theisen, C. [DAPNIA/SPhN CEA-Saclay, Saclay (France); Bender, M. [Universite Bordeaux and CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Bordeaux (France); Bruyneel, B.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Eskola, K. [University of Helsinki, Department of Physics, Helsinki (Finland); Gerl, J.; Hessberger, F.; Schlegel, C.; Wollersheim, H.J. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Grahn, T.; Pakarinen, J. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [IN2P3-CNRS, CSNSM, Orsay Campus (France); Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique, Bruxelles (Belgium); Helariutta, K. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Khoo, T.L.; Lister, C.J. [Argonne National Laboratory, Argonne, IL (United States)


    In-beam gamma-ray and conversion electron spectroscopic studies have been performed on the {sup 253} No nucleus. A strongly coupled rotational band has been identified and the improved statistics allows an assignment of the band structure as built on the 9/2{sup -}[734]{sub {nu}} ground state. The results agree with previously known transition energies but disagree with the tentative structural assignments made in earlier work. (orig.)

  20. Rotating Polygons on a Fluid Surface

    DEFF Research Database (Denmark)

    Bohr, Tomas; Jansson, Thomas; Haspang, Martin

    The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can bre...... and R. Miraghaie, ”Symmetry breaking in free-surface cylinder flows”, J. Fluid Mech., 502, 99 (2004)). The polygons occur at much larger Reynolds numbers, for water around 500.000. Correspondingly, the dependence on viscosity is rather small.......The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can break...

  1. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch


    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  2. Capacity for visual features in mental rotation (United States)

    Xu, Yangqing; Franconeri, Steven L.


    Although mental rotation is a core component of scientific reasoning, we still know little about its underlying mechanism. For instance - how much visual information can we rotate at once? Participants rotated a simple multi-part shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low – only one feature could remain attached to one part. Behavioral and eyetracking data showed that this single feature remained ‘glued’ via a singular focus of attention, typically on the object’s top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of the capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science education contexts. PMID:26174781

  3. Rotations with Rodrigues' vector

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E, E-mail: [Prof. Eugenio Mendez Docurro de la, Escuela Superior de Fisica y Matematicas del IPN, Zacatenco 07738, Mexico DF (Mexico)


    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  4. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André


    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  5. Giant Faraday Rotation in Mesogenic Organic Molecules


    Vandendriessche, Stefaan; Cleuvenbergen, Stijn,; Willot, Pieter; Hennrich, Gunther; Srebro, Monika; V. K. Valev, Ventsislav; Koeckelberghs, Guy; Clays, Koen; Autschbach, Jochen; Verbiest, Thierry


    Faraday rotation, the rotation of the polarization of light due to a magnetic field in the direction of propagation of the light, is used in applications ranging from quantum memory to the detection of biomagnetic fields. For these applications large Faraday rotation is necessary, but absorption of light is detrimental. In search of these properties, we have characterized the Verdet constant of a so far unexplored class of mesogenic organic molecules. We report their spectra and provide an in...

  6. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.


    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  7. Inertial-Hall effect: the influence of rotation on the Hall conductivity

    Directory of Open Access Journals (Sweden)

    Julio E. Brandão


    Full Text Available Inertial effects play an important role in classical mechanics but have been largely overlooked in quantum mechanics. Nevertheless, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. In this paper, we consider a rotating non-interacting planar two-dimensional electron gas with a perpendicular uniform magnetic field and investigate the effects of the rotation in the Hall conductivity. The rotation introduces a shift and a split in the Landau levels. As a consequence of the break of the degeneracy, the counting of the states fully occupied below the Fermi energy increases, tuning the Hall quantization steps. The rotation also changes the quantum Hall plateau widths. Additionally, we find the Hall quantization steps as a function of rotation at a fixed value of the magnetic field.

  8. Spontaneous Toroidal Rotation in Tokamaks (United States)

    Haines, Malcolm


    When two-fluid MHD theory of stability is employed the resulting growth rates are complex, and the perturbing magnetic fields move with a velocity that depends both on the components of the electron drift and heat flux perpendicular to the equilibrium magnetic field and on the diamagnetic velocity. On diffusing into a resistive wall a drag force is exerted on the wall which is proportional to the square-root of the velocity of the perturbing fields. The equal and opposite force or torque will be on the plasma, centred at the singular rational surface for each mode[1]. For typical experimental conditions this leads to a spontaneous, or intrinsic toroidal rotation of 20km/s occurring in a few milliseconds for perturbing magnetic fields of 0.0025tesla. The induced poloidal rotation by this mechanism is generally much larger, but there is considerable poloidal damping due to trapped particles on the ion-ion collision time- scale[2]. Furthermore poloidal angular momentum is in general not conserved for an isolated plasma, and any up-down asymmetry can act as a source or sink[3]; for example, Pfirsch-Schluter diffusion [3 damping by trapped particles[2] and the Ware pinch[4]. [1] J.B.Taylor, Phys.Rev.Lett. 91, 115002 (2003). [2] R.C.Morris, M.G.Haines and R.J.Hastie, Phys.Plasmas 3, 4513 (1996). [3] M.G.Haines, Phys.Rev.Lett. 25, 1480 (1970). [4] M.G.Haines and P.Martin, Phys.Plasmas 3, 4536 (1996).

  9. Convective flow patterns in inclined rectangular cavities with rotation (United States)

    Avila, Ruben; Perez-Espejel, Diana


    The natural convection in inclined three dimensional rectangular cavities with rotation is numerically investigated by using a spectral element method. When the rate of rotation (Ta number) is equal to zero, the critical Rayleigh number Rac for the onset of transverse or longitudinal rolls is obtained by solving (using the Tau-Chebyshev spectral method) the equations of the linear stability theory. In the numerical approach, the rotation is imposed once the steady state of the longitudinal or transverse rolls is attained. The cavity rotates around an axis that is orthogonal to its cold and hot surfaces, and passes through the center of these surfaces. In all the analyzed cases, the tilted angle δ, from the horizontal, varies in the interval 0° <= δ <90° (the cavity is heated from its lower surface, then an unstable condition prevails) and 90° < δ <= 180° (the cavity is heated from its upper surface, then a stable condition prevails). We report the influence of the Ta number on the critical Ra number, the average Nusselt number (evaluated at the hot surface), and the flow patterns in the tilted cavity. DGAPA-PAPIIT Project: IN117314-3.

  10. Periodic motion near non-principal-axis rotation asteroids (United States)

    Shang, Haibin; Wu, Xiaoyu; Qin, Xiao; Qiao, Dong


    The periodic motion near non-principal-axis (NPA) rotation asteroids is proved to be markedly different from that near uniformly rotating bodies due to the complex spin state with precession, raising challenges in terms of the theoretical implications of dynamical systems. This paper investigates the various periodic motions near the typical NPA asteroid 4179 Toutatis, which will contribute to the understanding of the dynamical environments near the widespread asteroids in the Solar system. A novel method with the incorporation of the ellipsoid-mascon gravitational field model and global optimization is developed to efficiently locate periodic solutions in the system. The numerical results indicate that abundant periodic orbits appear near the NPA asteroids. These various orbits are theoretically classified into five topological types with special attention paid to the cycle stability. Although the concept of classical family disappears in our results, some orbits with the same topological structure constitute various generalized `families' as the period increases. Among these `families' a total of 4 kinds of relationships between orbits, including rotation, evolution, distortion and quasi-symmetry, are found to construct the global mapping of these types. To cover the rotation statuses of various NPA asteroids, this paper also discusses the variation of periodic orbits with diverse asteroid spin rates, showing that the scales of some orbits expand, shrink or almost annihilate as the system period changes; meanwhile, their morphology and topology remain unchanged.

  11. Translational and rotational dynamic analysis of a superconducting levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A [Electric-Electronic Engineering Department, Ataturk University, Erzurum (Turkey); Hull, J R [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Gundogdu, Oe [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)


    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  12. Rotating space elevators: Physics of celestial scale spinning strings (United States)

    Knudsen, Steven; Golubović, Leonardo


    We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubović, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.

  13. Confirmation of bistable stellar differential rotation profiles (United States)

    Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.


    Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (Λ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 102. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main

  14. Onset of chaos in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, S. (Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN (USA) Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund (Sweden))


    The onset of chaos is investigated for excited, rapidly rotating nuclei, utilizing a schematic two-body residual interaction added to the cranked Nilsson Hamiltonian. Dynamical effects at various degrees of mixing between regularity and chaos are studied in terms of fragmentation of the collective rotational strength. It is found that the onset of chaos is connected to a saturation of the average standard deviation of the rotational strength function. Still, the rotational-damping width may exhibit motional narrowing in the chaotic regime.

  15. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.


    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  16. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah


    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  17. Disentangling rotational velocity distribution of stars (United States)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra


    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  18. Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics (United States)

    Chernodub, M. N.


    Recently, we have demonstrated that for a certain class of Casimir-type systems (“devices”) the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested “zero-point-driven” devices—which have no internally moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.

  19. Rotating With Rotated Text: A Natural Behavior Approach to Investigating Cognitive Offloading

    National Research Council Canada - National Science Library

    Risko, Evan F; Medimorec, Srdan; Chisholm, Joseph; Kingstone, Alan


    ...) as a strategy in letter naming and reading stimuli that are upright or rotated. We demonstrate that the frequency of this natural behavior is modulated by the cost of stimulus rotation on performance...

  20. Rotação de culturas no sistema plantio direto em Tibagi (PR: I - Sequestro de carbono no solo Crop rotation under no-tillage in Tibagi (Paraná State, Brazil: I - Soil carbon sequestration

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto


    experiment was installed on the farm Santa Branca in Tibagi (Paraná State, Brazil, on a clayey Oxisol (Typic Hapludox. The treatments were conducted in non-random strips with subdivided plots: no-tillage with corn/wheat and soybean/wheat crop successions (NT12 M/T and NT12 S/T, respectively for 12 years and no-tillage (NT22 M/T and NT22 S/T, respectively for 22 years. The soil C stock increased with the time of no-tillage adoption; the increase in soil C in 10 years was 35 % and the annual accumulation rate 1.94 t ha-1 yr-1. The simulation of the soil C stock with the use of the unicompartmental model showed that the high input of crop residues and cropping systems with legume species reduced the soil organic matter mineralization that favored soil C accumulation. The N-N2O emissions were 25 % higher in corn/wheat than in soybean/wheat succession, and the different period of NT adoption did not induce higher N-N2O emissions. The balance between the soil C accumulation rate and nitrous oxide emissions indicated a positive balance of the system in the soil C accumulation, representing a CO2 sequestration of 6 t ha-1 yr-1

  1. Rotational spectra of vibrationally excited CCH and CCD. (United States)

    Killian, T C; Gottlieb, C A; Thaddeus, P


    The millimeter-wave rotational spectra of the lowest bending and stretching vibrational levels of CCH and CCD were observed in a low pressure discharge through acetylene and helium. The rotational, centrifugal distortion, and fine structure constants were determined for the (02(0)0) and (02(2)0) bending states, the (100) and (001) stretching levels, and the (011) combination level of CCH. The same pure bending and stretching levels, and the (110) combination level were observed in CCD. Apparent anomalies in the spectroscopic constants in the bending states were shown to be due to l-type resonances. Hyperfine constants, which in CCH are sensitive to the degree of admixture of the A 2Pi excited electronic state, were determined in the excited vibrational levels of both isotopic species. Theoretical Fermi contact and dipole-dipole hyperfine constants calculated by Peric et al. [J. Mol. Spectrosc. 150, 70 (1991)] were found to be in excellent agreement with the measured constants. In CCD, new rotational lines tentatively assigned to the (100) level largely on the basis of the observed hyperfine structure support the assignment of the C-H stretching fundamental (nu1) by Stephens et al. [J. Mol. Struct. 190, 41 (1988)]. Rotational lines in the excited vibrational levels of CCH are fairly intense in our discharge source because the vibrational excitation temperatures of the bending vibrational levels and the (110) and (011) combination levels are only about 100 K higher than the gas kinetic temperature, unlike the higher frequency stretching vibrations, where the excitation temperatures are five to ten times higher.


    Directory of Open Access Journals (Sweden)

    M. M. Achmedov


    Full Text Available In work results of researches on development of a new way of determination of optimum frequency of rotation of cans at rotational sterilization are presented.Optimum frequencies of rotation for various product range are specified in various banks. It is established that the optimum speed of rotation of cans can be determined on the maximum speed of heating of a product in the least warmed up point.

  3. Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone


    Li, Guanglin; Kuiken, Todd A.


    We proposed a new approach to improve the control of prosthetic arm rotation in amputees. Arm rotation is sensed by implanting a small permanent magnet into the distal end of the residual bone, which produces a magnetic field. The position of the bone rotation can be derived from magnetic field distribution detected with magnetic sensors on the arm surface, and then conveyed to the prosthesis controller to manipulate the rotation of the prosthesis. Proprioception remains intact for residual l...


    Energy Technology Data Exchange (ETDEWEB)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D. [Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany); Stergioulas, Nikolaos, E-mail: [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)


    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.

  5. On the stability and maximum mass of differentially rotating relativistic stars (United States)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano


    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that 'quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  6. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement (United States)

    Rhim, Won-Kyu; Ishikawa, Takehiko


    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  7. A cognitive model of second-year organic chemistry students' conceptualizations of mental molecular rotation (United States)

    Briggs, Michael W.

    The goal of this research was to answer the question, "What is a plausible explanation (model) of the cognitive structure and processes that facilitate mental molecular rotation?". This work used phenomenographic methodology and techniques of interview and think-aloud protocol. Constructivism was the theoretical framework. At the outset of the research, I designed nine tasks to obtain participant articulations of conceptualizations of mental molecular rotations. Articulations from five second-year organic chemistry students attending a Midwestern research university became the research data. Analysis produced four emerging themes along two axes: visualization representation and modeling cognition. These two axes formed a mental space, which was modeled by structure and processes that facilitated mental molecular rotation. A theoretical cognitive model of mental molecular rotation was based on the work of two researchers: Robbie Case and Richard Lesh. Lesh's "mental model" is composed of cognitive elements and operations, which are distributed over heeded local and global cognitive sub-models whereas Case deals with unheeded central conceptual structures. The models and structures interact to produce new knowledge and facilitate the use of existing knowledge. Two predictions of the theory of mental molecular rotation were elaborated. Students without a set of operations in a central conceptual structure will not be able to mentally rotate molecules. This is true even if a set of components, other than "operation", is constructed. The artifacts of mental molecular rotation can be used to determine the state of construction of the central conceptual structure responsible for mental molecular rotation.

  8. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael


    an excellent alternative to atomic qubits in the realization of a practical ion trap based quantum computer due to favourable internal state decoherence rates. In chemistry, state prepared molecular targets are an ideal starting point for uni-molecular reactions, including coherent control...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...

  9. Rotational excitation of methanol by helium at interstellar temperatures

    CERN Document Server

    Pottage, J


    Calculations have been performed to obtain accurate cross-sections and thermally averaged rate coefficients for the rotational excitation of methanol by helium, using the Coupled States quantum-mechanical approach. Transitions within the ground and first torsionally excited states of A and E-type methanol were considered. The 'propensity rules' governing the collisional transitions were examined and compared with the results of microwave double resonance experiments. Predictions are made of line intensity ratios which are sensitive to the density of the He perturber and which lend themselves to the determination of the perturber densities in astrophysically interesting regions of molecular clouds.

  10. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)


    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  11. Regolith on Super Fast Rotators (United States)

    Sanchez Lana, Diego Paul; Scheeres, Daniel J.


    The current understanding of small asteroids in the Solar System is that they are gravitational aggregates held together by gravitational, cohesive and adhesive forces. Results from the Hayabusa mission to Itokawa along with in situ, thermal and radar observations of asteroids have shown that they can be covered in a size distribution of grains that spans from microns to tens of meters. Before the Hayabusa mission, it was generally thought that smaller asteroids would likely be “regolith-free,” due to impact seismic shaking removing the loose covering. Given the regolith-rich surface of that body, it is now an open question whether even smaller bodies, down to a few meters in size, could also retain regolith covering. The question is especially compelling for the small-fast rotators, whose surface centripetal accelerations exceed their gravitational attraction. When the physical theory of cohesion is considered, it becomes possible for small-fast rotators to retain regolith.We use a Soft-Sphere discrete element method (SSDEM) code to simulate a longitudinal slice of a spherical monolith covered by cohesive regolith. The simulations are carried out in the body frame. Tensile strength is varied to span the observed strength of asteroids and spin rate is elevated in small steps until the majority of regolith is removed from the surface. The simulations show that under an increasing spin rate (such as due to the YORP effect), the regolith covering on an otherwise monolithic asteroid is preferentially lost across certain regions of the body. In general, regolith from the mid latitudes is the first to fail at high spin rates. This failure happens either by regolith flowing towards the equator or by detachment of large coherent chunks of material depending on the tensile strength of the regolith. Regolith from the equator region fails next, usually by the detachment of large pieces. Regolith from the poles stays in place unless the spin rates are extremely high. With

  12. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. (United States)

    Majumder, Apratim; Shen, Bing; Polson, Randy; Menon, Rajesh


    Polarization controlling devices such as polarization splitters and rotators are critical elements in integrated-photonic circuits that function via polarization-diversity schemes. Here, we present the design of an ultra-compact nanophotonic-polarization rotator (NPR) that rotates the polarization state from TE to TM with a simulated extinction ratio of 23dB over a coupling length of 5µm and an operating bandwidth of 40nm. This all-silicon device can be fabricated in a single lithography step and we have fabricated and characterized a preliminary device exhibiting 9dB extinction ratio. To emphasize the generality of our methodology, we also designed a NPR that can rotate the polarization state from TM to TE as well. A small device footprint is enabled by the evanescent coupling of guided modes enabled by computationally designed digital metamaterials.

  13. The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths (United States)

    Auclair-Desrotour, P.; Laskar, J.; Mathis, S.; Correia, A. C. M.


    The competition between the torques induced by solid and thermal tides drives the rotational dynamics of Venus-like planets and super-Earths orbiting in the habitable zone of low-mass stars. The resulting torque determines the possible equilibrium states of the planet's spin. Here we have computed an analytic expression for the total tidal torque exerted on a Venus-like planet. This expression is used to characterize the equilibrium rotation of the body. Close to the star, the solid tide dominates. Far from it, the thermal tide drives the rotational dynamics of the planet. The transition regime corresponds to the habitable zone, where prograde and retrograde equilibrium states appear. We demonstrate the strong impact of the atmospheric properties and of the rheology of the solid part on the rotational dynamics of Venus-like planets, highlighting the key role played by dissipative mechanisms in the stability of equilibrium configurations.

  14. An Improved Triangular Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars; Grønne, Mikael


    by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST...

  15. Swordplay: an exercise in rotational dynamics (United States)

    Denny, Mark


    The historical evolution of European swords can be understood by applying physical principles that must have been recognized empirically in antiquity. Here we show how rotational dynamics permits a quantitative evaluation of sword effectiveness and ease of use. Swords provide a historically important and familiar vehicle for teaching rotational dynamics concepts such as moment of inertia and centre of percussion.

  16. Treatment alternative for irreparable rotator cuff ruptures ...

    African Journals Online (AJOL)

    Background: The treatment of massive irreparable rotator cuff rupture has still no consensus among shoulder surgeons. It is assumed that symptomatic rotator cuff tendon rupture is accepted as irreparable if retraction amount of tendon is Patte stage 3 on MRI; degree of fatty atrophy is Goutallier stage 3 or 4; narrowing of ...

  17. Expressing intrinsic volumes as rotational integrals

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel; Jensen, Eva Bjørn Vedel


    A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms...

  18. Slowly Rotating Black Holes with Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    S. H. Hendi


    4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameter a as well as the nonlinearity parameter β. In the limit β→∞, the solution describes slowly rotating AdS type black holes.

  19. Rotationally Vibrating Electric-Field Mill (United States)

    Kirkham, Harold


    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  20. Identifying Broadband Rotational Spectra with Neural Networks (United States)

    Zaleski, Daniel P.; Prozument, Kirill


    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  1. Probabilistic stellar rotation periods with Gaussian processes (United States)

    Angus, Ruth; Aigrain, Suzanne; Foreman-Mackey, Daniel


    Stellar rotation has many applications in the field of exoplanets. High-precision photometry from space-based missions like Kepler and K2 allows us to measure stellar rotation periods directly from light curves. Stellar variability produced by rotation is usually not sinusoidal or perfectly periodic, therefore sine-fitting periodograms are not well suited to rotation period measurement. Autocorrelation functions are often used to extract periodic information from light curves, however uncertainties on rotation periods measured by autocorrelation are difficult to define. A ‘by eye’ check, or a set of heuristic criteria are used to validate measurements and rotation periods are only reported for stars that pass this vetting process. A probabilistic rotation period measurement method, with a suitable generative model bypasses the need for a validation stage and can produce realistic uncertainties. The physics driving the production of variability in stellar light curves is still poorly understood and difficult to model. We therefore use an effective model for stellar variability: a Gaussian process with a quasi-periodic covariance function. By injecting fake signals into Kepler light curves we show that the GP model is well suited to quasi-periodic, non-sinusoidal signals, is capable of modelling noise and physical signals simultaneously and provides probabilistic rotation period measurements with realistic uncertainties.

  2. Short rotation coppice: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, N.


    This Report summarises scientific literature relating to the influence of coppice management upon wildlife. Where information is available, special attention is given to short rotation coppice. The Report also summarises the literature regarding coppice woodland management techniques which could be applied to enhance the nature conservation interest of short rotation coppice sites generally. (2 tables, 57 references) (author)

  3. Design of a piezoelectric rotation actuator

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Babakhani, B.; Brouwer, Dannis Michel


    In order to facilitate active damping within a linear motion system, a self-sensing piezoelectric rotation actuator has been designed. The rotation actuator consists of two piezoelectric stacks that function as linear actuators, embedded in a mechanical interface with several elastic elements, thus

  4. Trade Space Analysis: Rotational Analyst Research Project (United States)


    A., & Sundararaj, G. J. (2000, May). Interactive Physical Programming: Tradeoff Analysis and Decision Making in Multicriteria Optimization. AIAA...TRAC-M-TR-15-028 September 2015 Trade Space Analysis : Rotational Analyst Research Project TRADOC Analysis ...PAGE INTENTIONALLY LEFT BLANK TRAC-M-TR-15-028 September 2015 Trade Space Analysis : Rotational Analyst Research Project

  5. Spontaneous generation of rotation in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Parra Diaz, Felix [Oxford University


    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  6. Rotational image deblurring with sparse matrices

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos


    We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary cond...

  7. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H


    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  8. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    Energy Technology Data Exchange (ETDEWEB)

    Kickermann, Andreas


    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  9. The 50 Most Cited Articles in Rotator Cuff Repair Research. (United States)

    Kraeutler, Matthew J; Freedman, Kevin B; MacLeod, Robert A; Schrock, John B; Tjoumakaris, Fotios P; McCarty, Eric C


    Analysis of the number of citations within a given specialty provides information on the classic publications of that specialty. The goals of this study were to identify the 50 most cited articles on rotator cuff repair and to analyze various characteristics of these articles. The ISI Web of Science (Thomson Reuters, Philadelphia, Pennsylvania) was used to conduct a search for the term rotator cuff repair. The 50 most cited articles were retrieved, and the following objective characteristics of each article were recorded: number of times cited, citation density, journal, country of origin, and language. The following subjective characteristics of each article were also recorded: article type (clinical vs basic science), article subtype, and level of evidence for clinical articles. Of the 50 most cited articles on rotator cuff repair, the number of citations ranged from 138 to 677 (mean, 232±133 citations) and citation density ranged from 3.8 to 53.5 citations per year (mean, 16.9±9.2 citations per year). The articles were published between 1974 and 2011, with most of the articles published in the 2000s (29 articles), followed by the 1990s (16 articles). The articles originated from 8 countries, with the United States accounting for 30 articles (60%). Overall, 66% of the articles were clinical and 34% were basic science. The most common article subtype was the clinical case series (48%). Of the 33 clinical articles, 24 (73%) were level IV. Among the 50 most cited articles on rotator cuff repair, the case series was the most common article subtype, showing the effect that publication of preliminary outcomes and new surgical techniques has had on surgeons performing rotator cuff repair. [Orthopedics. 2016; 39(6):e1045-e1051.]. Copyright 2016, SLACK Incorporated.

  10. Multiply quantized and fractional skyrmions in a binary dipolar Bose-Einstein condensate under rotation (United States)

    Dong, Biao; Sun, Qing; Liu, Wu-Ming; Ji, An-Chun; Zhang, Xiao-Fei; Zhang, Shou-Gang


    We consider a binary dipolar Bose-Einstein condensate with repulsive contact and dipolar interactions under rotation. Our results show that the interplay among short-range interaction, long-range interaction, and rotation can give rise to a rich variety of topological configurations, including giant skyrmions with multiply topological charges and skyrmion-vortex lattices. In particular, we find that for fixed rotation frequencies, tuning the short- and long-range interactions can derive novel ground-state phases, such as a meron pair composed of two fractional skyrmions and a skyrmion with topological charge Q =2 centered in giant skyrmions.

  11. Rotational structure of small 4He clusters seeded with HF, HCl, and HBr molecules. (United States)

    Ramilowski, Jordan A; Mikosz, Aleksandra A; Farrelly, David; Fajín, José Luis Cagide; Fernandez, Berta


    Diffusion Monte Carlo calculations are performed for ground and excited rotational states of HX(4He)N, complexes with NHBr in a 4He nanodroplet will be smaller than that observed for HF, despite HF's having the largest (by far) gas-phase rotational constant of the three molecules. This suggests that the specifics of the solvation dynamics of a molecule in a 4He cluster are the result of a delicate interplay between the magnitude of the gas-phase rotational constant of the molecule and the anisotropic contributions to the atom-molecule potential energy.

  12. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review. (United States)

    Budinski, Vedran; Donlagic, Denis


    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.

  13. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review † (United States)

    Budinski, Vedran; Donlagic, Denis


    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510

  14. Influence of toroidal rotation on tearing modes (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding


    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  15. Slow Rotating Trojans: Tidally Synchronized Binaries? (United States)

    Noll, Keith


    We propose HST observations of six slow-rotating Trojans to search for tidally synchronous binaries similar to the Patroclus binary system. A significant excess of slow rotators over Maxwellian suggests that additional binaries may be present. If any of the targets are binary, they can be resolved by HST. This target selection strategy has recently yielded the third known resolved Trojan binary, detected in a sample of seven slow-rotating Trojans. We wish to extend this successful strategy with another similarly selected sample. Even one additional resolved binary in the Trojans, which would become the fourth, would be of extreme interest. The discovery of no binaries among this group of slow rotators would challenge the understanding of the source of the excess slow rotators in the Trojans.

  16. Solar Interior Rotation and its Variation

    Directory of Open Access Journals (Sweden)

    Howe Rachel


    Full Text Available This article surveys the development of observational understanding of the interior rotation of the Sun and its temporal variation over approximately forty years, starting with the 1960s attempts to determine the solar core rotation from oblateness and proceeding through the development of helioseismology to the detailed modern picture of the internal rotation deduced from continuous helioseismic observations during solar cycle 23. After introducing some basic helioseismic concepts, it covers, in turn, the rotation of the core and radiative interior, the “tachocline” shear layer at the base of the convection zone, the differential rotation in the convection zone, the near-surface shear, the pattern of migrating zonal flows known as the torsional oscillation, and the possible temporal variations at the bottom of the convection zone. For each area, the article also briefly explores the relationship between observations and models.

  17. Hindered internal rotation in some singly methylated trans-stilbenes

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, L.H.; Bosma, W.B.; van Zee, R.D.; Zwier, T.S.


    The fluorescence excitation and several dispersed fluorescence spectra for supersonically cooled p-methyl-trans-stilbene and the two m-methyl-trans-stilbenes are presented. Despite significant spectral congestion present in these molecules which contain low frequency modes and internal rotation structure, nearly complete assignments of the excitation spectra are given. One notable transition is assigned as a combination of a nontotally symmetric vibration and a nontotally symmetric level of the methyl rotor. All three species have a ground state barrier to internal rotation of approx.28 cm/sup -1/. Excited state barriers and conformational changes observed on excitation are 150 cm/sup -1/ and 35/sup 0/ for p-Me, and 80 cm/sup -1/ and 60/sup 0/, and 186 cm/sup -1/ and 30/sup 0/ for the two m-Me compounds. The p-Me compound shows a threefold barrier to internal rotation rather than a sixfold one, indicating that the two meta positions are inequivalent. The large differences in barrier height and conformational change on excitation between the two meta isomers, whose origins are separated by 207 cm/sup -1/, confirm this inequivalence.

  18. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, Nick [Univ. of California, Berkeley, CA (United States)


    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm-1 intermolecular vibration of the water dimer-d4. Each of the VRT subbands originate from Ka''=0 and terminate in either Ka'=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the Ka' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D2

  19. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.


    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.

  20. Rotational band structure in sup 75 Se

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.D.; Glasmacher, T.; Holcomb, J.W.; Womble, P.C.; Tabor, S.L. (Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States)); Nazarewicz, W. (Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831 (United States))


    The high-spin states of {sup 75}Se have been investigated using the {sup 59}Co ({sup 19}F, 2{ital pn}) reaction at 55 MeV. The positive-parity band has been extended to {ital I}{sup {pi}}=29/2{sup +} and the unfavored signature has been identified. The negative-parity band has been extended to {ital I}{sup {pi}}=19/2{sup {minus}} and band crossings were observed for the first time in both bands. Eleven new lifetimes were measured using the Doppler-shift attenuation method which allowed for extraction of transition strengths and transition quadrupole moments. The {ital B}({ital M}1) strengths exhibit a staggering dependent on the signature splitting. Calculations based on the Woods-Saxon-Bogolyubov cranking model explain the signature-dependent alignment process in the {ital g}{sub 9/2} bands and predict signature inversion in all bands at high rotational frequencies. It is argued that the data are consistent with the transition from triaxial shapes with {gamma}{similar to}{minus}30{degree}, characteristic of one-quasiparticle configurations, to triaxial shapes with {gamma}{similar to}30{degree}, characteristic of a three-quasiparticle configuration containing one aligned pair of {ital g}{sub 9/2} protons.

  1. Ipsilateral rotational autokeratoplasty: a review. (United States)

    Arnalich-Montiel, F; Dart, J K G


    Corneal opacity is a major cause of monocular blindness and, after cataract, is also a leading cause of blindness worldwide. Keratoplasty techniques for the treatment of corneal opacities include deep anterior lamellar allokeratoplasty, penetrating allokeratoplasty, penetrating bilateral autokeratoplasty, and ipsilateral rotational autokeratoplasty (IRA). This review describes the indications, technique, and outcomes of IRA. IRA is only indicated for patients with a localised opacity leaving a minimum diameter of 4-5 mm of uninvolved clear cornea. For these few patients in whom the procedure is practicable, the surgery can be planned by manipulating digital images to estimate the trephine size and location and/or by the use of formulas. IRA may not provide either as good spectacle acuity or as good quality of vision as penetrating keratoplasty because of higher astigmatism and a reduced corneal pupillary clear zone, but these disadvantages are often outweighed when the risk of allograft rejection is high, as in paediatric patients and those with vascularised corneas. The main benefits of IRA are the retention of host endothelium, thereby eliminating both the risk of endothelial rejection and the prolonged attrition of endothelial cell numbers that occurs following penetrating keratoplasty, and the reduced requirement for postoperative steroid therapy with its associated complications.

  2. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres (United States)

    Tan, Xianyu; Showman, Adam P.


    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  3. Calculated rotational and vibrational g factors of LiH X 1S+ and evaluation of parameters in radial functions from rotational and vibration-rotational spectra

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens


    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...... functions, these calculations yielded also the rotational g factor, the electric dipolar moment, and its gradient with internuclear distance for LiH in its electronic ground state X (1)Sigma(+). The vibrational g factor g(v) exhibits a pronounced minimum near internuclear distance R = 3.65 x 10(-10) m...

  4. First instabilities of the wake behind a rotating sphere (United States)

    Wesfreid, Jose Eduardo; Skarysz, Maciej; Goujon-Durand, Sophie; Rokicki, Jacek


    The wake behind a sphere, rotating about an axis aligned with the streamwise direction, has been experimentally investigated in a water tunnel using LIF visualizations and PIV measurements. The measurements focused on the evolution of the flow regimes that appears depending of two control parameters, namely the Reynolds number Re and the dimensionless rotation or swirl rate Ω which is the ratio of the maximum azimuthal velocity of the body to the free stream velocity. In the present investigation, we covers the range of Re smaller than 400 and Ω from 0 and 1.5. Different wakes regimes such as an axisymmetric base flow, a low frequency frozen state, and an single and double helicoidal mode are represented in the (Re, Ω) parameter plane.

  5. Rotation invariant deep binary hashing for fast image retrieval (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen


    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  6. A rotating disk study of gold dissolution by bromine (United States)

    Pesic, Batric; Sergent, Rodney H.


    Gold dissolution with bromine was studied using the rotating disk technique with Geobrom™ 3400 as a source of bromine. The parameters studied were speed of rotation, lixiviant concentration, pH, temperature, sulfuric acid and hydrochloric acid concentrations, and the concentrations of various cations (i.e., copper, iron, zinc, aluminum, manganese, potassium, and sodium) and anions (i.e., chloride, bromide, sulfate, nitrate, and iodide). According to the Lavich plot and activation energy, gold dissolution is controlled by a chemical reaction rate. Copper, iron, and manganese in their highest oxidation states, as well as aluminum, zinc, sodium, and potassium, have no effect on the rate of gold dissolution. The presence of manganous ion substantially decreases the gold dissolution rate. The kinetic performance of bromine was found to be dramatically better than the performance of cyanide and thiourea.

  7. Packing Different Cuboids with Rotations and Spheres into a Cuboid

    Directory of Open Access Journals (Sweden)

    Y. G. Stoyan


    Full Text Available The paper considers a packing optimization problem of different spheres and cuboids into a cuboid of the minimal height. Translations and continuous rotations of cuboids are allowed. In the paper, we offer a way of construction of special functions (Φ-functions describing how rotations can be dealt with. These functions permit us to construct the mathematical model of the problem as a classical mathematical programming problem. Basic characteristics of the mathematical model are investigated. When solving the problem, the characteristics allow us to apply a number of original and state-of-the-art efficient methods of local and global optimization. Numerical examples of packing from 20 to 300 geometric objects are given.

  8. Spherical convective dynamos in the rapidly rotating asymptotic regime

    CERN Document Server

    Aubert, Julien; Fournier, Alexandre


    Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a unidimensional path in parameter space between classical models and asymptotic conditions from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical simulations performed along this path show that the spatial structure of the solution at scales larger than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are irrelevant to the determination of the large-scale asymptotic state...

  9. Entanglement of molecular-orientation, rotational and orbital degrees of freedom in multiphoton orientational wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Mainos, C; Dutier, G; Grucker, J; Perales, F; Baudon, J; Ducloy, M [Laboratoire de Physique des Lasers, Universite Paris 13 Av JB Clement, 93430 Villetaneuse (France)


    Multiphoton orientational wave packets induced by short resonant polarized laser pulses in a rotationally-frozen interacting molecule contain relevant information. The entanglement of the orbital, rotational and orientational degrees of freedom shows a strong dependence on the polarization state of the absorbed photons and the space orientation of the interacting molecule and enables one to assign the orbital state of the excited molecular electron, to measure the space orientation of the interacting molecule from the orientational recurrences, to relate the measured temporal widths to the angular momentum photon state and the coherence of the laser pulse, to obtain information on the ground rotational state, or to measure the effective temperature of an isotropic molecular assembly. The space orientation of a small number of independent molecules can be distinguished from their distinct orientational dependence in the formation of the individual orientational wave packets.

  10. Entanglement of molecular-orientation, rotational and orbital degrees of freedom in multiphoton orientational wave packets (United States)

    Mainos, C.; Dutier, G.; Grucker, J.; Perales, F.; Baudon, J.; Ducloy, M.


    Multiphoton orientational wave packets induced by short resonant polarized laser pulses in a rotationally-frozen interacting molecule contain relevant information. The entanglement of the orbital, rotational and orientational degrees of freedom shows a strong dependence on the polarization state of the absorbed photons and the space orientation of the interacting molecule and enables one to assign the orbital state of the excited molecular electron, to measure the space orientation of the interacting molecule from the orientational recurrences, to relate the measured temporal widths to the angular momentum photon state and the coherence of the laser pulse, to obtain information on the ground rotational state, or to measure the effective temperature of an isotropic molecular assembly. The space orientation of a small number of independent molecules can be distinguished from their distinct orientational dependence in the formation of the individual orientational wave packets.

  11. Rotational character of the 12C spectrum investigated through inelastic cross sections via photon emission

    Directory of Open Access Journals (Sweden)

    Garrido E.


    Full Text Available In this work the bremsstrahlung and photon dissociation cross sections for transitions between 0+, 2+, and 4+ states in 12C are computed. The nucleus is described within the three-alpha model, and the wave functions are computed by means of the hyperspherical adiabatic expansion method. The continuum states are discretized by imposing a box boundary condition. The transition strengths are obtained from the cross sections, and compared to schematic rotational model predictions. The computed results strongly suggest that the two lowest bands are made, respectively, by the states with angular momentum and parity {01+, 21+, 42+} and {02+, 22+, 41+}. The transitions between the states in the first band are consistent with the rotational pattern corresponding to three alphas in an equilateral triangular structure. For the second band, the transitions are also consistent with a rotational pattern, but with the three alphas in an aligned distribution.

  12. Controllable rotating behavior of individual dielectric microrod in a rotating electric field. (United States)

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming


    We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polarization Sensitive CARS Investigations of Controlled Molecular Rotations (United States)

    Ujj, Laszlo; Bartha, Ferenc; Chen, Zengjun; Prayaga, Chandra; Royappa, Timothy; Amos, Charles; Tsukuda, Mauricio


    The emerging field of nanotechnology requires new methodologies to be developed in order to address the needs of fabrication, manipulation, control, and measurement of motions of molecules and devices on the nanoscale. Optical excitation and control of translational, vibrational, and rotational motions can offer a unique way to achieve the desired goals by using a sequence of short laser pulses, e.g., tuned to initiate certain nuclear motions of well studied photo active proteins (e.g. PYP or Rhodopsin) or engineered larger molecular structures. Measuring nuclear motions requires structurally sensitive spectroscopy methods, and therefore spontaneous Raman and coherent Raman spectroscopies can be applied to qualitatively test and quantitatively measure such motions. Polarization Sensitive Resonance Coherent anti-Stokes Raman Spectroscopy (PSCARS), steady state or time-resolved, can measure controlled dipole moment reorientation through the anisotropic third order nonlinear optical susceptibility. The measured vibrational spectra are sensitive to photo induced isomerization or internal molecular rotation if the rotating chemical group is coupled to or interacting with internal normal modes or to the surrounding molecules e.g. in solutions. In our study, the method was applied to measure the vibrational manifold and reorientation of DCVJ for the first time. DCVJ is a charge transfer molecular rotor showing a viscosity dependent fluorescence quantum yield. This dependence is attributed to the "friction" type interaction between the 90 degree internal rotation of the molecule upon photo-excitation and the solvent cage surrounding it. Quantum chemical studies using DFT and normal mode calculations support our findings related to the conformational evolution of the molecule. Theoretical and experimental principles associated with CARS with an emphasis on points relevant to the interpretation of the results will be presented. The design and operation of an all solid-state

  14. An investigation of the rotational properties of magnetic chemically peculiar stars (United States)

    Netopil, Martin; Paunzen, Ernst; Hümmerich, Stefan; Bernhard, Klaus


    The magnetic chemically peculiar (mCP) stars of the upper main sequence exhibit strong, globally organized magnetic fields that are inclined to the rotational axis and facilitate the development of surface abundance inhomogeneities resulting in photometric and spectroscopic variability. Therefore, mCP stars are perfectly suited for a direct measurement of the rotational period without the need for any additional calibrations. We have investigated the rotational properties of mCP stars based on an unprecedentedly large sample consisting of more than 500 objects with known rotational periods. Using precise parallaxes from the Hipparcos and Gaia satellite missions, well-established photometric calibrations and state-of-the-art evolutionary models, we have determined the location of our sample stars in the Hertzsprung-Russell diagram and derived astrophysical parameters such as stellar masses, effective temperature, radii, inclinations and critical rotational velocities. We have confirmed the conservation of angular momentum during the main sequence evolution; no signs of additional magnetic braking were found. The inclination angles of the rotational axes are randomly distributed, although an apparent excess of fast rotators with comparable inclination angles has been observed. We have found a rotation rate of υ/υcrit ≥ 0.5 for several stars, whose characteristics cannot be explained by current models. For the first time, we have derived the relationship between mass and rotation rate of mCP stars, and provide an analysis that links mass and rotation with magnetic field strength. Our sample is unique and offers crucial input for forthcoming evolutionary models that include the effects of magnetic fields for upper main sequence stars.

  15. Electroexcitation of rotational vibrations in sup 164 Dy

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, F.G.; Nojarov, R.; Faessler, A. (Institut fur Theoretische Physik, Universitat Tubingen, Auf der Morgenstelle 14, D-7400 Tubingen 1, Federal Republic of Germany (DE))


    We calculate the {ital M}1 spectrum and the distorted-wave Born-approximation ({ital e},{ital e}{prime}) form factors of the strong {ital K}{sup {pi}}=1{sup +} states in {sup 164}Dy, using a deformed Woods-Saxon potential and the quasiparticle random-phase approximation with quadrupole, spin, and spin-quadrupole interactions. A residual rotation-vibrational coupling ensures the exclusion of the spurious state. We find strongly orbital {ital M}1 states at 3.1 MeV which fit the experimental spectrum very well and exhaust 40% of the collectivity of the 1{sup +} mode. The form factor of the lowest one of these states is also in a good agreement with the experimental form factor.

  16. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt

    Energy Technology Data Exchange (ETDEWEB)

    Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya; Hurtt, George C.


    Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.

  17. Heisenberg-limited Sagnac Interferometer with Multi-particle States


    Luo, Chengyi; Huang, Jiahao; Zhang, Xiangdong; Lee, Chaohong


    The Sagnac interferometry has been widely used to measure rotation frequency. Beyond the conventional single-particle Sagnac interferometry, we propose an atomic Sagnac interferometry via multi-particle entangled states. In our scheme, an ensemble of entangled two-state Bose atoms are moved in a ring by a state-dependent rotating potential and then are recombined for interference via Ramsey pulses after a specific time determined by the state-dependent rotating potential. The ultimate rotatio...

  18. Current Biomechanical Concepts for Rotator Cuff Repair (United States)


    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  19. Quantitative rotating frame relaxometry methods in MRI. (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo


    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Rotating Reverse-Osmosis for Water Purification (United States)

    Lueptow, RIchard M.


    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  1. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)


    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.


    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy


    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  3. Rotational nuclear models and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moya de Guerra, E.


    A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.

  4. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)


    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  5. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)


    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  6. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou


    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  7. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær


    -Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been......This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier...

  8. Rotating saddle trap as Foucault's pendulum (United States)

    Kirillov, Oleg N.; Levi, Mark


    One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note, we show that this precession is due to a Coriolis-like force caused by the rotation of the potential. To our knowledge, this is the first example where such a force arises in an inertial reference frame. We also propose a simple mechanical demonstration of this effect.

  9. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  10. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.


    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  11. Rotationally-Resolved Scattering of Formaldehyde from the 111Au Surface: AN Axis Specific Rotational Rainbow and its Role in Trapping Probability (United States)

    Park, Barratt; Krueger, Bastian C.; Meyer, Sven; Kandratsenka, Alexander; Wodtke, Alec; Schaefer, Tim


    The conversion of translational to rotational motion often plays a major role in the trapping of small molecules at surfaces, a crucial first step for a wide variety of chemical processes that occur at gas-surface interfaces. However, to date most quantum-state resolved surface scattering experiments have been performed on diatomic molecules, and very little detailed information is available about how the structure of non-linear polyatomic molecules influences the mechanisms for energy exchange with surfaces. In the current work, we employ a new rotationally-resolved 1+1' resonance-enhanced multiphoton ionization (REMPI) scheme to measure rotational distribution in formaldehyde molecules directly scattered from the Au(111) surface at incident kinetic energies in the range 0.3-1.2 eV. The results indicate a pronounced propensity to excite a-axis rotation (twirling) rather than b- or c-axis rotation (tumbling or cartwheeling), and are consistent with a rotational rainbow scattering model. Classical trajectory calculations suggest that the effect arises--to zeroth order--from the three-dimensional shape of the molecule (steric effects). The results have broad implications for the enhanced trapping probability of prolate and near-prolate molecules at surfaces.

  12. Crop rotation and tillage system effects on reducing ryegrass ...

    African Journals Online (AJOL)

    rotation treatments under minimum-tillage differed significantly from the control. In the field wheat–medic–wheat–medic rotations under no-tillage out-performed all other rotations, followed by wheat–lupin–wheat–canola under minimumtillage.

  13. Short-rotation coppices. State of the realizability, organisation and a model for the evaluation of the production and supply of rapidly growing wood from short-rotation coppices als a biofuel for biomass-fuelled heating power stations in Bavaria; Kurzumtriebsplantagen. Stand der Umsetzbarkeit, Organisation und ein Modell zur oekonomischen Bewertung von Produktion und Bereitstellung schnell wachsenden Holzes aus Kurzumtriebsplantagen als biogener Festbrennstoff fuer Biomasse(heiz)kraftwerke in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Paschlau, Helmut F.


    The study examines most aspects of Short-rotation Coppice Crops (SRC), mainly from willows (Salix sp.) and poplars (Populus sp.), for energetic use in big biomass powerstations in Bavaria (southern Germany). In addition to the compilation of framework conditions concerning environmental and agrarian politics as well as legal issues, every link in the process chain of SRC will be considered - from planting to harvesting, treatment of the wood chips and Just-in-time delivery to the powerplant - followed by an evaluation of SRC in ecological terms. The basic aim of this study is to evaluate every single link with regard to organisational und economic issues, analysis of relevant markets and to develop a comprehensive calculation model for the amount of annuities of the whole process chain.

  14. Self-rotations in simulated microgravity: performance effects of strategy training. (United States)

    Stirling, Leia; Newman, Dava; Willcox, Karen


    This research studies reorientation methodologies in a simulated microgravity environment using an experimental framework to reduce astronaut adaptation time and provide for a safety countermeasure during extravehicular activity. There were 20 subjects (10 men, 10 women, mean age of 23.6 +/- 3.5) who were divided into 2 groups, fully trained and minimally trained, which determined the amount of motion strategy training received. Subjects performed a total of 48 rotations about their pitch, roll, and yaw axes in a suspension system that simulated microgravity. In each trial subjects either rotated 90 degrees in pitch, 90 degrees in roll, or 180 degrees in yaw. Experimental measures include subject coordination, performance time, cognitive workload assessments, and qualitative motion control strategies. Subjects in the fully trained group had better initial performance with respect to performance time and workload scores for the pitch and yaw rotations. Further, trained subjects reached a steady-state performance time in fewer trials than those with minimal training. The subjects with minimal training tended to use motions that were common in an Earth environment since no technique was provided. For roll rotations they developed motions that would have led to significant off-axis (pitch and yaw) rotations in a true microgravity environment. We have shown that certain body axes are easier to rotate about than others and that fully trained subjects had an easier time performing the body rotations than the minimally trained subjects. This study has provided the groundwork for the development of an astronaut motion-control training program.

  15. Generation of slowly rotating microwave plasma by amplitude-modulated resonant cavity (United States)

    Hotta, Masaya; Hasegawa, Yuichi; Nakamura, Keiji; Lubomirsky, Dima; Park, Soonam; Kobayashi, Satoru; Sugai, Hideo


    Slow rotation of microwave plasma at a rotational frequency of Ω/2π = 0.1–1000 Hz is realized to improve plasma uniformity by using a resonant cylindrical cavity and a solid-state microwave generator at a frequency of ω/2π = 2.4–2.5 GHz. The microwave at ω/2π is modulated in amplitude at Ω/2π and injected into the cavity from two orthogonal positions, exciting the TE111 mode. The cavity fields rotate either clockwise or anticlockwise at a frequency of Ω/2π when the phase differences, Δϕ at ω and ΔΦ at Ω, between the input microwaves are properly set as calculated by a theoretical analysis and finite-difference time-domain simulation. Rotating plasmas are experimentally measured in the microwave discharges of argon at 0.1–20 Torr. When the rotational frequency is low (Ω/2π 1000 Hz, the electron density measurement by a curling probe reveals that the plasma rotation disappears in the downstream region. This observation is supported by a simplified analysis based on the diffusion equation, proving a characteristic distance of plasma rotation disappearance to be \\sqrt{D\\text{a}/Ω } (D a: ambipolar diffusion coefficient).

  16. Fourier analysis for rotating-element ellipsometers. (United States)

    Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo


    We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

  17. Rotational Rebound Attacks on Reduced Skein

    DEFF Research Database (Denmark)

    Khovratovich, Dmitry; Nikolić, Ivica; Rechberger, Christian


    number of rounds. We also use neutral bits and message modification methods from the practice of collision search in MD5 and SHA-1 hash functions. These methods push the rotational property through more rounds than previous analysis suggested, and eventually establish a distinguishing property......In this paper we combine two powerful methods of symmetric cryptanalysis: rotational cryptanalysis and the rebound attack. Rotational cryptanalysis was designed for the analysis of bit-oriented designs like ARX (Addition-Rotation-XOR) schemes. It has been applied to several hash functions and block...... ciphers, including the new standard SHA-3 (Keccak). The rebound attack is a start-from-the-middle approach for finding differential paths and conforming pairs in byte-oriented designs like Substitution-Permutation networks and AES. We apply our new compositional attack to the reduced version of the hash...

  18. Rotating mandrel speeds assembly of plastic inflatables (United States)

    Mac Fadden, J. A.; Stenlund, S. J.; Wendt, A. J.


    Rotating mandrel permits the accurate cutting, forming, and sealing of plastic gores for assembly of an inflatable surface of revolution. The gores remain on the mandrel until the final seam is reached. Tolerances are tightly controlled by the mandrel configuration.

  19. Ferrofluid drops in rotating magnetic fields

    CERN Document Server

    Lebedev, A V; Morozov, K I; Bauke, H


    Drops of a ferrofluid floating in a non-magnetic liquid of the same density and spun by a rotating magnetic field are investigated experimentally and theoretically. The parameters for the experiment are chosen such that different stationary drop shapes including non-axis-symmetric configurations could be observed. Within an approximate theoretical analysis the character of the occurring shape bifurcations, the different stationary drop forms, as well as the slow rotational motion of the drop is investigated. The results are in qualitative, and often quantitative agreement, with the experimental findings. It is also shown that a small eccentricity of the rotating field may have a substantial impact on the rotational motion of the drop.

  20. Suggested notation conventions for rotational seismology (United States)

    Evans, J.R.


    We note substantial inconsistency among authors discussing rotational motions observed with inertial seismic sensors (and much more so in the broader topic of rotational phenomena). Working from physics and other precedents, we propose standard terminology and a preferred reference frame for inertial sensors (Fig. 1) that may be consistently used in discussions of both finite and infinitesimal observed rotational and translational motions in seismology and earthquake engineering. The scope of this article is limited to observations because there are significant differences in the analysis of finite and infinitesimal rotations, though such discussions should remain compatible with those presented here where possible. We recommend the general use of the notation conventions presented in this tutorial, and we recommend that any deviations or alternatives be explicitly defined.