WorldWideScience

Sample records for supercritical water oxidation

  1. Destruction of energetic materials by supercritical water oxidation

    International Nuclear Information System (INIS)

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-01-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400 degrees C and 650 degrees C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600 degrees C. The reactions produce primarily N 2 , N 2 O,CO 2 , and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525 degrees C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100 degrees C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented

  2. Kinetics and mechanism of methane oxidation in supercritical water

    International Nuclear Information System (INIS)

    Rofer, C.K.; Streit, G.E.

    1988-10-01

    This project, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to achieve an understanding of the technology for use in scaling up and applying oxidation in supercritical water as a viable process for treating a variety of Department of Energy Defense Programs (DOE-DP) waste streams. This report presents experimental results for the kinetics of the oxidation of methane and methanol in supercritical water and computer modeling results for the oxidation of carbonmonoxide and methane in supercritical water. The experimental and modeling results obtained to date on these one-carbon model compounds indicate that the mechanism of oxidation in supercritical water can be represented by free-radical reactions with appropriate modifications for high pressure and the high water concentration. If these current trends are sustained, a large body of existing literature data on the kinetics of elementary reactions can be utilized to predict the behavior of other compounds and their mixtures. 7 refs., 4 figs., 3 tabs

  3. ENGINEERING BULLETIN: SUPERCRITICAL WATER OXIDATION

    Science.gov (United States)

    This engineering bulletin presents a description and status of supercritical water oxidation technology, a summary of recent performance tests, and the current applicability of this emerging technology. This information is provided to assist remedial project managers, contractors...

  4. Successful treatment with supercritical water oxidation

    International Nuclear Information System (INIS)

    Jensen, R.

    1994-01-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described

  5. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  6. Oxidation behavior of austenitic iron-base ODS alloy in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Dong, Z.; Zahiri, R.; Kohandehghan, A.; Mitlin, D., E-mail: behnamia@ualberta.ca, E-mail: zdong@ualberta.ca, E-mail: kohandeh@ualberta.ca, E-mail: rzahiris@ualberta.ca, E-mail: dave.mitlin@ualberta.ca [Univ. of Alberta, Edmondon, AB (Canada); Zhou, Z., E-mail: zhouzhj@mater.ustb.edu.cn [Univ. of Science and Tech. Beijing, Beijing (China); Chen, W.; Luo, J., E-mail: weixing.chen@ualberta.ca, E-mail: Jingli.luo@ualberta.ca [Univ. of Alberta, Edmonton, AB (Canada); Zheng, W., E-mail: wenyue@nrcan.gc.ca [Natural Resources Canada, Canmet MATERIALS, Hamilton, ON (Canada); Guzonas, D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    In this study, the effect of exposure time on the corrosion of the 304 stainless steel based oxide dispersion strengthened alloy, SS304ODS, in supercritical water was investigated at 650 {sup o}C with constant dissolved oxygen concentration. The results show that the oxidation of SS304ODS in supercritical water followed a parabolic law at 650 {sup o}C. Discontinuous oxide scale with two distinct layers has formed after 550 hours. The inner layer was chromium-rich while the outer layer was iron-rich (Magnetite). The oxide islands grow with increasing the exposure time. With increasing exposure time, the quantity of oxide islands increased in which major preferential growth along oxide-substrate interface was observed. The possible mechanism of SS304ODS oxidation in supercritical water was also discussed. (author)

  7. Supercritical Water Oxidation Program (SCWOP)

    International Nuclear Information System (INIS)

    1994-02-01

    Purpose of SCWOP is to develop and demonstrate supercritical water oxidation as a viable technology for treating DOE hazardous and mixed wastes and to coordinate SCWO research, development, demonstration, testing, and evaluation activities. The process involves bringing together organic waste, water, and an oxidant (air, O 2 , etc.) to temperatures and pressures above water's critical point (374 C, 22.1 MPa); organic destruction is >99.99% efficient, and the resulting effluents (mostly water, CO 2 ) are relatively benign. Pilot-scale (300--500 gallons/day) SCWO units are to be constructed and demonstrated. Two phases will be conducted: hazardous waste pilot plant demonstration and mixed waste pilot demonstration. Contacts for further information and for getting involved are given

  8. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  9. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  10. Flow analysis in a supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Oh, C.H.; Kochan, R.J.; Beller, J.M.

    1996-01-01

    Supercritical water oxidation (SCWO), also known as hydrothermal oxidation (HTO), involves the oxidation of hazardous waste at conditions of elevated temperature and pressure (e.g., 500 C--600 C and 234.4 bar) in the presence of approximately 90% of water and a 10% to 20% excess amount of oxidant over the stoichiometric requirement. Under these conditions, organic compounds are completely miscible with supercritical water, oxygen and nitrogen, and are rapidly oxidized to carbon dioxide and water. The essential part of the process is the reactor. Many reactor designs such as tubular, vertical vessel, and transpiring wall type have been proposed, patented, and tested at both bench and pilot scales. These designs and performances need to be scaled up to a waste throughput 10--100 times that currently being tested. Scaling of this magnitude will be done by creating a numerical thermal-hydraulic model of the smaller reactor for which test data is available, validating the model against the available data, and then using the validated model to investigate the larger reactor performance. This paper presents a flow analysis of the MODAR bench scale reactor (vertical vessel type). These results will help in the design of the reactor in an efficient manner because the flow mixing coupled with chemical kinetics eventually affects the process destruction efficiency

  11. Oxidation of oily sludge in supercritical water

    International Nuclear Information System (INIS)

    Cui Baochen; Cui Fuyi; Jing Guolin; Xu Shengli; Huo Weijing; Liu Shuzhi

    2009-01-01

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O 2 excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O 2 excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10 14 (mol L -1 ) -0.405 s -1 ; the activation energy was 213.13 ± 1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  12. Oxidation behavior of steels and Alloy 800 in supercritical water

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordoni, R.; Dominguez, G.; Alvarez, M.G.

    2011-01-01

    The oxidation behavior of a ferritic-martensitic steel T91 and a martensitic steel AISI 403 up to 750 h, and of AISI 316L and Alloy 800 up to 336 h in deaerated supercritical water, 450ºC-25 MPa, was investigated in this paper. After exposure up to 750 h, the weight gain data, for steels T91 and AISI 403, was fitted by ∆W=k t n , were n are similar for both steels and k is a little higher for T91. The oxide films grown in the steels were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction. The films were adherent and exhibited a low porosity. For this low oxygen content supercritical water exposure, the oxide scale exhibited a typical duplex structure, in which the scale is composed of an outer iron oxide layer of magnetite (Fe 3 O 4 ) and an inner iron/chromium oxide layer of a non-stoichiometric iron chromite (Fe,Cr) 3 O 4 . Preliminary results, with AISI 316L and Alloy 800, for two exposure periods (168 and 336 h), are also reported. The morphology shown for the oxide films grown on both materials up to 336 h of oxidation in supercritical water, resembles that of a duplex layer film like that shown by stainless steels and Alloy 800 oxide films grown in a in a high temperature and pressure (220-350ºC) of a primary or secondary coolant of a plant. (author) [es

  13. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  14. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  15. Supercritical water oxidation data acquisition testing. Final report, Volume I

    International Nuclear Information System (INIS)

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included

  16. Supercritical water oxidation data acquisition testing. Final report, Volume II

    International Nuclear Information System (INIS)

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone ampersand Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology

  17. Ion exchange resins destruction in a stirred supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O.

    2010-01-01

    Spent ion exchange resins (IERs) are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable treatment alternative to destroy the organic structure of resins, used to remove radioactivity. Up to now, studies carried out in supercritical water for IER destruction showed that degradation rates higher than 99% are difficult to obtain even using a catalyst or a large oxidant excess. In this study, a co-fuel, isopropanol, has been used in order to improve degradation rates by initiating the oxidation reaction and increasing temperature of the reaction medium. Concentrations up to 20 wt% were tested for anionic and cationic resins. Total organic carbon reduction rates higher than 99% were obtained from this process, without the use of a catalyst. The influence of operating parameters such as IERs feed concentration, nature and counterions of exchanged IERs were also studied. (authors)

  18. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process

    International Nuclear Information System (INIS)

    Lavric, E.D.; Weyten, H.; Ruyck, J. de; Plesu, V.; Lavric, V.

    2005-01-01

    Supercritical water oxidation (SCWO) is a recent development aiming at the destruction of organic pollutants present with low concentrations in waste waters. The present paper focuses on the process simulation of SCWO with emphasis on the proper modelling of supercritical thermodynamic conditions and on the possibility to make the SCWO process self-sufficient from the energetic viewpoint. Self-sufficiency may be of interest to encourage more delocalization of waste water treatment. The process of SCWO for dilute waste water (no more than 5 wt.%) is modelled through the ASPEN Plus copyright process simulator. Studies were made to search for energetic self-sufficiency conditions using various technologies for power production from the heat of reaction, like supercritical water expansion in a turbine, use of a closed Brayton cycle (CBC) and use of an organic Rankine cycle (ORC). The results obtained showed that the process is energetically self-sufficient using either a small supercritical turbine, or an ORC. In less restrictive conditions regarding the component efficiencies, the CBC, in theory, also leads to self-sufficiency, but from the analysis, it appears that this solution is less realistic

  19. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Guo, Xianglong, E-mail: guoxianglong@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Shen, Zhao [Department of Materials Science, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer. - Highlights: • We evaluated the corrosion resistance of three different Cr content ODS steels at 650 °C in supercritical water. • Corrosion behavior of ODS steels is rarely reported and ODS steel may be promising material for generation IV reactors. • We found total opposite phenomenon compared to Lee's work before. Our result may be more reasonable.

  20. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste

  1. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  2. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  3. Method and apparatus for waste destruction using supercritical water oxidation

    Science.gov (United States)

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  4. Hazard classification for the supercritical water oxidation test bed. Revision 1

    International Nuclear Information System (INIS)

    Ramos, A.G.

    1994-10-01

    A hazard classification of ''routinely accepted by the public'' has been determined for the operation of the supercritical water oxidation test bed at the Idaho National Engineering Laboratory. This determination is based on the fact that the design and proposed operation meet or exceed appropriate national standards so that the risks are equivalent to those present in similar activities conducted in private industry. Each of the 17 criteria for hazards ''routinely accepted by the public,'' identified in the EG and G Idaho, Inc., Safety Manual, were analyzed. The supercritical water oxidation (SCWO) test bed will treat simulated mixed waste without the radioactive component. It will be designed to operate with eight test wastes. These test wastes have been chosen to represent a broad cross-section of candidate mixed wastes anticipated for storage or generation by DOE. In particular, the test bed will generate data to evaluate the ability of the technology to treat chlorinated waste and other wastes that have in the past caused severe corrosion and deposition in SCWO reactors

  5. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor

    International Nuclear Information System (INIS)

    Moussiere, S.

    2006-12-01

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  6. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B. [Supercritical fluids and membranes Laboratory, CEA Valrho, BP 17171, 30207 Bagnols/Ceze Cedex (France)

    2008-07-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  7. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B.

    2008-01-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  8. Identification of significant process variables for a flow-through supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Rossi, R.E.

    1992-05-01

    The effects of four process variables on the destruction efficiency of a flow-through supercritical water oxidation reactor were investigated. These process variables included: (1) reactor throughput (GPH), (2) concentration of the surrogate waste (% acetone), (3) maximum reactor tube-wall temperature (OC), and (4) applied stoichiometric oxygen. The analysis was conducted utilizing two-level factorial experiments, steepest ascent methods, and central composite designs. This experimental protocol assures efficient experimentation and allows for an empirical response surface model of the system to be developed. This experimentation identified a significant positive effect for stoichiometric oxygen applied and temperature variations between 400 to 500 degrees C. The increase in destruction efficiency due to stoichiometric 0 2 provides strong evidence that supercritical water oxidations are catalyzed by excess oxygen, and the strong temperature effect is a result of large increases in the kinetic rates for this temperature range. However, increasing temperature between 550 to 650 degrees C does not provide substantial increases in destruction efficiency. In addition, destruction efficiency is significantly unproved by increasing the Reynolds number and residence time. The destruction efficiency of the reactor is also dependent upon the initial concentration of surrogate waste. This concentration dependence may indicate first-order supercritical CO kinetics is inadequate for describing all waste types and reactor configurations. Alternatively, it may indicate reactant mixing, caused by local turbulence at the oxidation fronts of these higher concentration waste streams, results in higher destruction efficiencies

  9. Reacting flow simulations of supercritical water oxidation of PCB-contaminated transformer oil in a pilot plant reactor

    Directory of Open Access Journals (Sweden)

    V. Marulanda

    2011-06-01

    Full Text Available The scale-up of a supercritical water oxidation process, based on recent advancements in kinetic aspects, reactor configuration and optimal operational conditions, depends on the research and development of simulation tools, which allow the designer not only to understand the complex multiphysics phenomena that describe the system, but also to optimize the operational parameters to attain the best profit for the process and guarantee its safe operation. Accordingly, this paper reports a multiphysics simulation with the CFD software Comsol Multiphysics 3.3 of a pilot plant reactor for the supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil. The proposed model was based on available information for the kinetic aspects of the complex mixture and the optimal operational conditions obtained in a lab-scale continuous supercritical water oxidation unit. The pilot plant simulation results indicate that it is not feasible to scale-up directly the optimal operational conditions obtained in the isothermal lab-scale experiments, due to the excess heat released by the exothermic oxidation reactions that result in outlet temperatures higher than 600°C, even at reactor inlet temperatures as low as 400°C. Consequently, different alternatives such as decreasing organic flowrates or a new reactor set-up with multiple oxidant injections should be considered to guarantee a safe operation.

  10. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  11. Formation of ZnO at zinc oxidation by near- and supercritical water under the constant electric field

    Science.gov (United States)

    Shishkin, A. V.; Sokol, M. Ya.; Shatrova, A. V.; Fedyaeva, O. N.; Vostrikov, A. A.

    2014-12-01

    The work has detected an influence of a constant electric field (up to E = 300 kV/m) on the structure of a nanocrystalline layer of zinc oxide, formed on the surface of a planar zinc anode in water under supercritical (673 K and 23 MPa) and near-critical (673 K and 17. 5 MPa) conditions. The effect of an increase of zinc oxidation rate with an increase in E is observed under supercritical conditions and is absent at near-critical ones. Increase in the field strength leads to the formation of a looser structure in the inner part of the zinc oxide layer.

  12. Kinetics of Chemical Agents Destruction in Supercritical Water

    National Research Council Canada - National Science Library

    Tester, Jefferson

    2003-01-01

    .... An experimental study of methylphosphonic acid (MPA) oxidation has been completed that includes macroscopic modeling of the overall global rate law for MPA oxidation in supercritical water (SCW...

  13. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  14. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  15. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  16. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  17. Supercritical water oxidation benchscale testing metallurgical analysis report

    International Nuclear Information System (INIS)

    Norby, B.C.

    1993-02-01

    This report describes metallurgical evaluation of witness wires from a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corporation. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. The metallurgical evaluation described herein includes results of metallographic analysis and Scanning Electron Microscopy analysis of witness wires exposed to the SCWO environment for one test series

  18. A flow reactor for the flow supercritical water oxidation of wastes to mitigate the reactor corrosion problem

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1994-01-01

    We have designed a flow tube reactor for supercritical water oxidation of wastes that confines the oxidation reaction to the vicinity of the axis of the tube. This prevents high temperatures and reactants as well as reaction products from coming in intimate contact with reactor walls. This implies a lessening of corrosion of the walls of the reactor. We display numerical simulations for a vertical reactor with conservative design parameters that illustrate our concept. We performed our calculations for the destruction of sodium nitrate by ammonium hydroxide In the presence of supercritical water, where the production of sodium hydroxide causes corrosion. We have compared these results with that for a horizontal set-up where the sodium hydroxide created during the reaction ends up on the floor of the tube, implying a higher probability of corrosion

  19. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    Science.gov (United States)

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  20. Destruction of polyphasic systems in supercritical water reaction media

    International Nuclear Information System (INIS)

    Leybros, A.

    2009-12-01

    Spent ion exchange resins (IER) are, hence, radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable alternative treatment to destroy the organic structure of resins by using supercritical water properties. The reactor used in Supercritical Fluids and Membranes Laboratory is a double shell stirred reactor. Total Organic Carbon reduction rates higher than 99% were obtained thanks to POSCEA2 experimental set-up when using a co-fuel, isopropyl alcohol. Influence of operating parameters was studied. A detailed reactional mechanism for cationic and anionic resins is created. For the solubilization of the particles in supercritical water, a mechanism has been created with the identified rate determining species and implemented into Fluent software through the EDC approach. Experimental temperature profiles are well represented by EDC model. Reaction rates are hence controlled by the chemical species mixing. (author)

  1. Generic supercritical water technology; Generic technology to shite no chorinkaisui riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K; Ajiri, M; Inomata, H; Smith, R; Hakuta, Y [Tohoku University, Sendai (Japan). Faculty of Engineering; Yokoyama, C [Tohoku University, Sendai (Japan). The Institute forChemical Reaction Science; Chin, L [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the measurement and analysis for clarifying solution structure of supercritical water and exhibition mechanism of solvent functions. It also describes the development of new processes using supercritical water as reaction solvent. The PVT measurements were conducted in the supercritical region using pure water and NaCl aqueous solution, to confirm the reduction of molar volume of the electrolyte solution. The hydration structure was examined in the supercritical aqueous solution by the molecular dynamic simulation. As a result, presence of hydrogen bond structure, where the contribution of two branching hydrogen bond can not be ignored, was suggested under the supercritical condition. Characteristics of supercritical aqueous solutions are analyzed through in-situ Raman and scattered X-ray spectral measurements. Moreover, this paper introduces developments of some processes in the supercritical water, such as decomposition of wasted polymers, recovery of chemical materials, reforming of heavy hydrocarbons by contact hydrogenation, and synthesis of fine powders of metal oxide by reaction crystallization.

  2. Supercritical Water Mixture (SCWM) Experiment

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  3. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  4. Partial oxidation of municipal sludge with activited carbon catalyst in supercritical water

    International Nuclear Information System (INIS)

    Guo Yang; Wang Shuzhong; Gong Yanmeng; Xu Donghai; Tang Xingying; Ma Honghe

    2010-01-01

    The partial oxidation (POX) characteristics of municipal sludge in supercritical water (SCW) were investigated by using batch reactor. Effects of reaction parameters such as oxidant equivalent ratio (OER), reaction time and temperature were investigated. Activated carbon (AC) could effectively improve the mole fraction of H 2 in gas product at low OER. However, high OER (greater than 0.3) not only led to the combustion reaction of CO and H 2 , but also caused corrosion of reactor inner wall. Hydrogenation and polymerization of the intermediate products are possible reasons for the relative low COD removal rate in our tests. Metal oxide leached from the reactor inner wall and the main components of the granular sludge were deposited in the AC catalyst. Reaction time had more significant effect on BET surface area of AC than OER had. Long reaction time led to the methanation reaction following hydrolysis and oxidation reaction of AC in SCW in the presence of oxygen. Correspondingly, the possible reaction mechanisms were proposed.

  5. Can supercritical oxidation of sewage sludge be an alternative for supercritical gasification?; Kan superkritische oxidatie van zuiveringsslib een alternatief zijn voor superkritische vergassing?

    Energy Technology Data Exchange (ETDEWEB)

    Rulkens, W. [Wageningen UR, Wageningen (Netherlands); Wentink, J. [Horizon Solutions, Leiden (Netherlands)

    2013-05-15

    In the context of the development of The Energy Factory a number of technologies has been identified that may be interesting to develop further. Two of these techniques relate to the conversion of sludge in supercritical water: supercritical gasification of sludge and supercritical oxidation of sludge [Dutch] In het kader van de ontwikkeling van De Energiefabriek is een aantal technologieen geidentificeerd die mogelijk interessant zijn om verder te ontwikkelen. Twee van deze technieken hebben betrekking op de conversie van slib in superkritisch water: superkritische slibvergassing en superkritische sliboxidatie.

  6. Mechanism study of c.f.c Fe-Ni-Cr alloy corrosion in supercritical water

    International Nuclear Information System (INIS)

    Payet, M.

    2011-01-01

    Supercritical water can be use as a high pressure coolant in order to improve the thermodynamic efficiency of power plants. For nuclear concept, lifetime is an important safety parameter for materials. Thus materials selection criteria concern high temperature yield stress, creep resistance, resistance to irradiation embrittlement and also to both uniform corrosion and stress corrosion cracking.This study aims for supplying a new insight on uniform corrosion mechanism of Fe-Ni-Cr f.c.c. alloys in deaerated supercritical water at 600 C and 25 MPa. Corrosion tests were performed on 316L and 690 alloys as sample autoclaves taking into account the effect of surface finishes. Morphologies, compositions and crystallographic structure of the oxides were determined using FEG scanning electron microscopy, glow discharge spectroscopy and X-ray diffraction. If supercritical water is expected to have a gas-like behaviour in the test conditions, the results show a significant dissolution of the alloy species. Thus the corrosion in supercritical water can be considered similar to corrosion in under-critical water assuming the higher temperature and its effect on the solid state diffusion. For alloy 690, the protective oxide layer formed on polished surface consists of a chromia film topped with an iron and nickel mixed chromite or spinel. The double oxide layer formed on 316L steel seems less protective with an outer porous layer of magnetite and an inhomogeneous Cr-rich inner layer. For each alloy, the study of the inner protective scale growth mechanisms by marker or tracer experiments reveals that diffusion in the oxide scale is governed by an anionic process. However, surface finishes impact deeply the growth mechanisms. Comparisons between the results for the steel suggest that there is a competition between the oxidation of iron and chromium in supercritical water. Sufficient available chromium is required in order to form a thin oxide layer. Highly deformed or ultra fine

  7. Reactions of nitrate salts with ammonia in supercritical water

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.; Gloyna, E.F.; Buelow, S.J.

    1997-01-01

    Reactions involving nitrate salts and ammonia were investigated in supercritical water at temperatures from 450 to 530 C and pressures near 300 bar. Reaction products included nitrite, nitrogen gas, and nitrous oxide. Observed reaction rates and product distributions provided evidence for a free-radical reaction mechanism with NO 2 , NO, and NH 2 · as the primary reactive species at supercritical conditions. In the proposed elementary mechanism, the rate-limiting reaction step was determined to be the hydrolysis of MNO 3 species, which resulted in the formation of nitric acid and subsequently NO 2 . A simple second-order reaction model was used to represent the data. In developing an empirical kinetic model, nitrate and nitrate were lumped as an NO x - reactant. Empirical kinetic parameters were developed for four MNO x /NH 3 reacting systems, assuming first orders in both NH 3 and NO x - . Observed MNO x /NH 3 reaction rates and mechanisms suggest immediately a practical significance of these reactions for nitrogen control strategies in supercritical water oxidation processes

  8. Destruction of Energetic Materials in Supercritical Water

    Science.gov (United States)

    2002-06-25

    controls and difficulties associated with controlling processes and obtaining permits can negate potential advantages . Supercritical water oxidation...for H2 and an Alltech CTR-1 column with a temperature ramp program from -10 °C to 180 °C was used for the other gases. A mass spectrometer (HP 5971

  9. Disposition of nonflammable low-level radioactive wastes using supercritical water with ruthenium(IV) oxide catalyst

    International Nuclear Information System (INIS)

    Sugiyama, Wataru

    2013-01-01

    This paper presents the distribution behavior of iron, cobalt, cesium, iodine and strontium attached to nonflammable organic materials, in solid, liquid and gas phases during the decomposition of these materials using supercritical water with ruthenium(IV) oxide (RuO 2 ) catalyst. The distributions of these elements under various conditions (initial amounts, with/without precipitation reagent) were determined by using their radioisotopes as simulated low-level radioactive wastes (LLW) in order to ease the detection of trace amounts of elements even in solid and gas phases. Iron and cobalt were found only in the solid phase when iron hydroxide was added as a precipitation reagent before the supercritical water reaction. Cesium, iodine and strontium were found in the liquid phase after the reaction. Therefore, by adding precipitation reagents such as sodium tetraphenylborate, and sodium carbonate (Na 2 CO 3 ) (or sodium hydrogen carbonate (NaHCO 3 )) and silver nitrate (AgNO 3 ) aqueous solutions to each resultant liquid phase containing cesium, strontium and iodine, respectively, these elements can be successfully recovered only in the solid phase. The gases produced during the decomposition of the organic material contain no radioactivity under all conditions in this study. These results indicate that all of the elements investigated in this study (iron, cobalt, cesium, iodine and strontium) can be recovered successfully by this supercritical water process using RuO 2 Consequently, this process is suggested as a predominant candidate for the treatment of nonflammable organic materials in LLW. (author)

  10. Effect of yttria addition on the stability of porous chromium oxide ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2013-01-01

    Porous chromium oxide (Cr 2 O 3 ) ceramics were prepared by oxidizing highly porous chromium carbides that were obtained by a reactive sintering method, and were evaluated at temperatures ranging from 375 °C to 625 °C in supercritical water (SCW) environments with a fixed pressure of 25–30 MPa. Reactive element yttrium was introduced to the porous oxide ceramic by adding various amounts of yttria of 5, 10 and 20 wt.%, respectively, prior to reactive sintering. The exposure in SCW shows that the porous chromium oxide is quite stable in SCW at 375 °C. However, the stability decreased with increasing temperature. It is well known that chromium oxide can be oxidized to soluble chromium (VI) species in SCW when oxygen is present. Adding yttria increases the stability of chromium oxide in SCW environments. However, adding yttria higher than 5 wt.% increased the weight loss of porous chromium oxide samples because of the direct dissociation of Y 2 O 3 in SCW.

  11. Investigation of the precipitation of Na2SO4 in supercritical water

    DEFF Research Database (Denmark)

    Voisin, T.; Erriguible, A.; Philippot, G.

    2017-01-01

    solubility in sub-and supercritical water is determined on a wide temperature range using a continuous set-up. Crystallite sizes formed after precipitation are measured with in situ synchrotron wide angle X-ray scattering (WAXS). Combining these experimental results, a numerical modeling of the precipitation......SuperCritical Water Oxidation process (SCWO) is a promising technology for treating toxic and/or complex chemical wastes with very good efficiency. Above its critical point (374 degrees C, 22.1 MPa), water exhibits particular properties and organic compounds can be easily dissolved and degraded...... with the addition of oxidizing agents. But these interesting properties imply a main drawback regarding inorganic compounds. Highly soluble at ambient temperature in water, these inorganics (such as salts) are no longer soluble in supercritical water and precipitate into solids, creating plugs in SCWO processes...

  12. Stress corrosion cracking and oxidation of austenitic stainless steel 316 L and model alloy in supercritical water reactor

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Gomez-Briceno, D.; Diego, G.

    2015-01-01

    In this work, an austenitic stainless steel type 316 L was tested in deaerated supercritical water at 400 deg. C and 500 deg. C and 25 MPa to determine how variations in water conditions influence its stress corrosion cracking behaviour and to make progress in the understanding of mechanisms involved in SCC processes in this environment. Moreover, the influence of plastic deformation in the resistance of the material to SCC was also studied at both temperatures. In addition to this, previous oxidation experiments at 400 deg. C and 500 deg. C and at 25 MPa were taken into account to gain some insight in this kind of processes. Furthermore, a cold worked model alloy based on the stainless steel 316 L with some variations in the chemical composition in order to simulate the composition of the grain boundary after irradiation was tested at 400 deg. C and 25 MPa in deaerated supercritical water. (authors)

  13. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process

    International Nuclear Information System (INIS)

    Xiu Furong; Zhang Fushen

    2009-01-01

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu 2 O and β-PbO 2 in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11 h, 20 mA cm -2 , respectively. The recovery percentages of copper and lead under optimum SCWO + EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  14. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  15. Development of a porous wall reactor for Oxidation in Supercritical Water. Hydrodynamic Modelling and application to salty wastes

    International Nuclear Information System (INIS)

    Fauvel, E.

    2002-01-01

    This report deals with a transpiring wall reactor for supercritical water oxidation of organic effluents. The singularity of the reactor lies on the inner porous tube made of alumina to minimise both limiting problems, corrosion and salt precipitation. The presence of the inner tube implies a rather complex hydrodynamics. Thus, an hydrodynamic study was performed, in an original way, in a supercritical fluid using the method of the residence time distribution. It enabled to determine the hydrodynamic model of the reactor. Moreover, an inspecting device of the resistance of the inner tube to thermal gradients was developed. Lastly, the performances of the transpiring wall reactor were tested on model compounds such as sodium sulphate and the mixture of dodecane/tributylphosphate. (author) [fr

  16. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  17. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  18. Reactivities of polystyrenic polymers with supercritical water under nitrogen or air. Identification and formation of degradation compounds

    International Nuclear Information System (INIS)

    Dubois, M.A.; Dozol, J.F.; Massiani, C.; Ambrosio, M.

    1996-01-01

    Supercritical water oxidation (SCWO) could offer a viable treatment alternative to destroy the organic structure of ion-exchange resins (IER) that are radioactive process wastes and which contain radioactivity. The GC/MS technique was used successfully to identify the low-concentration degradation compounds that are present in the cold liquid effluent after SCWO of polystyrenic IER at 380 C (25.5 MPa). The study of the behavior of these IER in supercritical water enhances the role of temperature and the role of supercritical water in the degradation process. With the exception of acetic acid, the identified compounds are aromatic. The functional groups are released during the heating time, and they do not interfere in the degradation process. The oxidation involves a complex set of reaction pathways. A mechanism including parallel and competitive reactions is proposed

  19. Systems design of direct-cycle supercritical-water-cooled fast reactors

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP

  20. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  1. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario

    2017-08-24

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock can be a mineral such as a refractory mineral. The mineral can be an ore with high sulfide content or an ore rich in carbonaceous material. Waste can also be used as the metal-containing feedstock. The metal-containing feedstock can be used which is not subjected to ultrafine grinding. Relatively low temperatures and pressures can be used. The metal-containing feedstock can be fed into the reactor at a temperature below the critical temperature of the carbon dioxide, and an exotherm from the oxidation reaction can provide the supercritical temperature. The oxidant can be added to the reactor at a rate to maintain isothermal conditions in the reactor. Minimal amounts of water can be used as an extractive medium.

  2. Destruction of DOE/DP surrogate wastes with supercritical water oxidation technology

    International Nuclear Information System (INIS)

    Bramlette, T.T.; Mills, B.E.; Hencken, K.R.; Brynildson, M.E.; Johnston, S.C.; Hruby, J.M.; Freemster, H.C.; Odegard, B.C.; Modell, M.

    1990-11-01

    Surrogate wastes of specific interest to DOE/DP production facilities (Hanford and Rocky Flats), and the electronics industry have been successfully processed in a laboratory-scale, supercritical water oxidation flow reactor. In all cases, the observed destruction/reduction efficiencies for the organic components were in excess of 99.9%, limited by instrumentation detection capability. Separation of the inorganic components of the Hanford process stream was more difficult to accomplish than destruction of the organic component. Large fractions of all metals contained in this stream were found both in the solids separator effluent and in deposits removed from the reactor. Mass closure was not achieved. Of the process stream's non-metallic, inorganic components, the sulfates and phosphates precipitated, while the nitrates tended to stay in solution. The inorganic material that did precipitate from the simulated Hanford mixed waste accumulated in zones that may be associated with changes in the chemical and physical properties of the supercritical fluid. Corrosion is expected to be a significant problem. Witness wires of Inconel 625, Hastalloy C-276, and titanium placed in the preheater, reactor and cooldown exchanger indicated selective dissolution of chromium, nickel, and molybdenum for some conditions, and non-selective dissolution for others. While these results are very promising, further research is required to evaluate the scalability, reliability, and economics of SCWO reactor components and systems, particularly for mixed wastes. Future research must explore a parameter space (temperature, pressure, pH, residence time, etc.) focused on selecting conditions and materials for specific process streams

  3. Oxidation stability of biodiesel fuel as prepared by supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Jiayu Xin; Hiroaki Imahara; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science, Graduate School of Energy Science

    2008-08-15

    A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300{sup o}C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 32 refs., 8 figs., 3 tabs.

  4. Design requirements for the supercritical water oxidation test bed

    International Nuclear Information System (INIS)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG ampersand G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided

  5. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  6. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  7. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu

    2017-05-15

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  8. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    International Nuclear Information System (INIS)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-01-01

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO_4"2"− based film formed; however minor quantities of NiFe_xCr_2_-_xO_4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe_xCr_2_-_xO_4 spinel. The surface films on both alloys were identified as NiFe_2O_4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  9. Corrosion behavior of ceramic-coated ZIRLO™ exposed to supercritical water

    Science.gov (United States)

    Mandapaka, Kiran K.; Cahyadi, Rico S.; Yalisove, Steven; Kuang, Wenjun; Sickafus, K.; Patel, Maulik K.; Was, Gary S.

    2018-01-01

    The corrosion behavior of ceramic coated ZIRLO™ tubing was evaluated in a supercritical water (SCW) environment to determine its behavior in high temperature water. Two coating architectures were analyzed; a 4 bi-layer TiAlN/TiN coating with Ti bond coat, and a TiN monolithic coating with Ti bond layer on ZIRLO™ tubes using cathodic arc physical vapor deposition (CA-PVD) technique. Femtosecond laser ablation was used to introduce reproducible defects in some of the coated tubes. On exposure to deaerated supercritical water at 542 °C for 48 h, coated tubes exhibited significantly higher weight gain compared to uncoated ZIRLO™. Examination revealed formation of a uniform ZrO2 layer beneath the coating of a thickness similar to that on the uncoated tube inner surface. The defects generated during the coating process acted as preferential paths for diffusion of oxygen resulting in the oxidation of substrate ZIRLO™. However, there was no delamination of the coating. There were insignificant differences in the oxidation weight gain between laser ablated and non-ablated tubes and the laser induced defects did not spread beyond their original size.

  10. Development of an Accelerated Methodology to Study Degradation of Materials in Supercritical Water for Application in High Temperature Power Plants

    Science.gov (United States)

    Rodriguez, David

    The decreasing supply of fossil fuel sources, coupled with the increasing concentration of green house gases has placed enormous pressure to maximize the efficiency of power generation. Increasing the outlet temperature of these power plants will result in an increase in operating efficiency. By employing supercritical water as the coolant in thermal power plants (nuclear reactors and coal power plants), the plant efficiency can be increased to 50%, compared to traditional reactors which currently operate at 33%. The goal of this dissertation is to establish techniques to characterize the mechanical properties and corrosion behavior of materials exposed to supercritical water. Traditionally, these tests have been long term exposure tests spanning months. The specific goal of this dissertation is to develop a methodology for accelerated estimation of corrosion rates in supercritical water that can be sued as a screening tool to select materials for long term testing. In this study, traditional methods were used to understand the degradation of materials in supercritical water and establish a point of comparison to the first electrochemical studies performed in supercritical water. Materials studied included austenitic steels (stainless steel 304, stainless steel 316 and Nitronic 50) and nickel based alloys (Inconel 625 and 718). Surface chemistry of the oxide layer was characterized using scanning electron microscopy, X-ray diffraction, FT-IR, Raman and X-ray photoelectron spectroscopies. Stainless steel 304 was subjected to constant tensile load creep tests in water at a pressure of 27 MPa and at temperatures of 200 °C, 315 °C and supercritical water at 450 °C for 24 hours. It was determined that the creep rate for stainless steel 304 exposed to supercritical water would be unacceptable for use in service. It was observed that the formation of hematite was favored in subcritical temperatures, while magnetite was formed in the supercritical region. Corrosion of

  11. 2D and 3D CFD modelling of a reactive turbulent flow in a double shell supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Moussiere, S.; Roubaud, A.; Fournel, B.; Joussot-Dubien, C.; Boutin, O.; Guichardon, P.

    2012-01-01

    In order to design and define appropriate dimensions for a supercritical oxidation reactor, a comparative 2D and 3D simulation of the fluid dynamics and heat transfer during an oxidation process has been performed. The solver used is a commercial code, Fluent 6.2 (R). The turbulent flow field in the reactor, created by the stirrer, is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modelled using the sliding mesh model and the moving reference frame model. This work allows comparing 2D and 3D velocity and heat transfer calculations. The predicted values (mainly species concentrations and temperature profiles) are of the same order in both cases. The reactivity of the system is taken into account with a classical Eddy Dissipation Concept combustion model. Comparisons with experimental temperature measurements validate the ability of the CFD modelling to simulate the supercritical water oxidation reactive medium. Results indicate that the flow can be considered as plug flow-like and that heat transfer is strongly enhanced by the stirring. (authors)

  12. Upgrading of bitumen using supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Kayukawa, T. [JGC Corp., Ibaraki (Japan)

    2009-07-01

    This presentation outlined the technical and economic aspects of thermal cracking by supercritical water. Supercritical water (SCW) is a commonly used method for upgrading heavy oil to produce pipeline-transportable oil from high-viscous bitumen. The process uses water and does not require hydrogen nor catalysts. Pre-heated bitumen and water enter a vertical reactor with flows of counter current at the supercritical point of water. The upgraded synthetic crude oil (SCO) and pitch are obtained from the top of the reactor when the bitumen is thermally cracked. Bench-scale studies have shown that Canadian oil sands bitumen can be converted to 80 volume per cent of SCO and 20 volume per cent of pitch. The SCO has satisfied Canadian pipeline specifications in terms of API gravity and kinetic viscosity. The kinetic viscosity of the pitch has also satisfied boiler fuel specifications. tabs., figs.

  13. Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor

    International Nuclear Information System (INIS)

    Bermejo, M.D.; Cocero, M.J.

    2006-01-01

    The supercritical water oxidation (SCWO) is a technology that takes advantage of the special properties of water in the surroundings of critical point of water to completely oxidize wastes in residence times lower than 1 min. The problems caused by the harsh operational conditions of the SCWO process are being solved by new reactor designs, such as the transpiring wall reactor (TWR). In this work, the operational parameters of a TWR have been studied for the treatment of an industrial wastewater. As a result, the process has been optimized for a feed flow of 16 kg/h with feed inlet temperatures higher than 300 deg. C and transpiring flow relation (R) between 0.2 and 0.6 working with an 8% (w/w) isopropanol (IPA) as a fuel. The experimental data and a mathematical model have been applied for the destruction of an industrial waste containing acetic acid and crotonaldehyde as main compounds. As the model predicted, removal efficiencies higher than 99.9% were obtained, resulting in effluents with 2 ppm total organic carbon (TOC) at feed flow of 16 kg/h, 320 deg. C of feed temperature and R = 0.32. An effluent TOC of 35 ppm under conditions feed flow of 18 kg/h, feed inlet temperatures of 290 deg. C, reaction temperatures of 570 deg. C and R = 0.6

  14. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Science.gov (United States)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-05-01

    Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  15. Subcritical and supercritical water oxidation of organic, wet wastes for carbon cycling in regenerative life support systems

    Science.gov (United States)

    Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim

    2016-07-01

    For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch

  16. Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Veriansyah, Bambang [Supercritical Fluid Research Laboratory, Clean Technology Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of) and Department of Green Process and System Engineering, University of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: vaveri@kist.re.kr; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Clean Technology Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of) and Department of Green Process and System Engineering, University of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: jdkim@kist.re.kr; Lee, Jong-Chol [Agency for Defense Development (ADD), P.O. Box 35-1, Yuseong-gu, Daejeon (Korea, Republic of)]. E-mail: jcleeadd@hanafos.com

    2007-08-17

    A new design of supercritical water oxidation (SCWO) bench-scale reactor has been developed to handle high-risk wastes resulting from munitions demilitarization. The reactor consists of a concentric vertical double wall in which SCWO reaction takes place inside an inner tube (titanium grade 2, non-porous) whereas pressure resistance is ensured by a Hastelloy C-276 external vessel. The performances of this reactor were investigated with two different kinds of chemical warfare agent simulants: OPA (a mixture of isopropyl amine and isopropyl alcohol) as the binary precursor for nerve agent of sarin and thiodiglycol [TDG (HOC{sub 2}H{sub 4}){sub 2}S] as the model organic sulfur heteroatom. High destruction rates based on total organic carbon (TOC) were achieved (>99.99%) without production of chars or undesired gases such as carbon monoxide and methane. The carbon-containing product was carbon dioxide whereas the nitrogen-containing products were nitrogen and nitrous oxide. Sulfur was totally recovered in the aqueous effluent as sulfuric acid. No corrosion was noticed in the reactor after a cumulative operation time of more than 250 h. The titanium tube shielded successfully the pressure vessel from corrosion.

  17. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    Science.gov (United States)

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  18. Supercritical waste oxidation pump investigation

    International Nuclear Information System (INIS)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications

  19. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  20. Corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takeo; Abe, Hiroaki

    2009-01-01

    The supercritical water-cooled reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy. Supercritical Water (SCW) has never been used in nuclear power applications. There are numerous potential problems, particularly with materials. As the operating temperature of SCWR will be between 553 K and 893 K with a pressure of 25 MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel has been developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. Austenitic Fe-base steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel was selected for possible use in supercritical water systems. The corrosion data of PNC1520 in SCW is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in SCW. The SCW corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520T) by using a SCW autoclave. The 1520S and 1520T are the first trial production materials of SCWR cladding candidate material in our group. Corrosion and compatibility tests on the austenitic 1520S and 1520T steels in supercritical water were performed at 673, 773 and 600degC with exposures up to 1000 h. We have evaluated the amount of weight gain, weight loss and weight of scale after the corrosion test in SCW for 1520S and 1520T austenitic steels. After 1000 h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m 2 at 400degC and 500degC. But 1520T weight increases more and weight loss than 1520S at 600degC. The SEM observation result of the surface after 1000 h corrosion of an test

  1. Oxidation performance of high temperature steels and coatings for future supercritical power plants

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma; Toivonen, Aki; Penttilae, Sami [VTT, Espoo (Finland); Haekkilae, Juha [Foster Wheeler Energia, Varkaus (Finland); Aguero, Alina; Gutierrez, Marcos; Muelas, Raul [INTA, Madrid (Spain); Fry, Tony [NPL (United Kingdom)

    2010-07-01

    The operating efficiency of current and future thermal power plants is largely dependent on the applied temperature and pressure, which are in part limited by the internal oxidation resistance of the structural materials in the steam systems. Alternative and reference materials for such systems have been tested within the COST 536 (ACCEPT) project, including bulk reference materials (ferritic P92 and austenitic 316 LN steels) and several types of coatings under supercritical combined (oxygen) water chemistry (150 ppb DO) at 650 C/300 bar. The testing results from a circulating USC autoclave showed that under such conditions the reference bulk steels performed poorly, with extensive oxidation already after relatively short term exposure to the supercritical medium. Better protection was attained by suitable coatings, although there were clear differences in the protective capabilities between different coating types, and some challenges remain in applying (and repairing) coatings for the internal surfaces of welded structures. The materials performance seems to be worse in supercritical than in subcritical conditions, and this appears not to be only due to the effect of temperature. The implications are considered from the point of view of the operating conditions and materials selection for future power plants. (orig.)

  2. FY1995 generic supercritical water technology; 1995 nendo generic technology to shite no chorinkai riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the establishment of the basis of supercritical fluid technology, we perform elucidation of the specific feature of the supercritical fluid as a reaction media and development of some new process. In this study, we first studied the fluid structure of SCF through in-situ spectroscopy and MD simulation. As a result, significant hydrogen bonding amongst water molecules and a solvation structure around the solute were observed in the supercritical state. This fluid structure has new features different from that of high temperature steam or liquid water. We found that this is closely related to the difference of bulk properties of SCF and local one around the solute. On the basis of these fundamental findings and with the better understanding of the specific features of SCF as a reaction media, development of some new process had been conducted more efficiently and successfully. The processes being developed in this study include 1) waste biomass and plastic conversion to recover chemicals, 2) hydrogenation of heavy oil for desulphurization through partial oxidation 1 and 3) hydrothermal synthesis of metal oxide fine particles. (NEDO)

  3. Assessment and comparison of oxides grown on 304l ods steel and 304l ss in water environment in supercritical conditions

    International Nuclear Information System (INIS)

    Mihalache, M.; Dinu, A.; Fulger, M.; Zhou, Z.; Mihalache, M.

    2013-01-01

    In order to fulfil superior cladding for new reactor generation G IV, the austenitic 3 04 L stainless steel was improved by oxide dispersion strengthening (ODS), using two nano-oxides: titanium and yttrium oxides. The behaviour of the new material resulted, 304 ODS, in water at supercritical temperature of about 550 O C and 25 MPa pressure, was considered. The oxidation kinetics by weigh gain measurements for both materials have been estimated and compared. The weight gain of ODS samples is higher than basic austenitic steel up to 1320 hours. The oxides developed on the ODS samples in SCPW are layered and more uniform than in 304 L SS. The protectively character of oxide films was estimated by different techniques. The morphology of oxide surface, the layering and chemical formula of oxides films were investigated by scanning electron microscopy (SEM), Energy Dispersion X-Ray Spectrometry (EDS), electrochemical impedance spectrometry (EIS) and by Small Angle X-ray Diffraction (SAXD). 1. (authors)

  4. Updated heat transfer correlations for supercritical water-cooled reactor applications

    International Nuclear Information System (INIS)

    Mokry, S.J.; Pioro, I.L.; Farah, A.; King, K.

    2011-01-01

    In support of the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently being conducted for heat-transfer at supercritical conditions. Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (Water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. A large set of experimental data, for supercritical water was analyzed and an updated heat-transfer correlation for forced-convective heat-transfer, in the normal heat transfer regime, was developed. This experimental dataset was obtained within conditions similar to those for proposed SCWR concepts. Thus, this new correlation can be used for preliminary heat-transfer calculations in SCWR fuel channels. It has demonstrated a good fit for the analyzed dataset. Experiments with SuperCritical Water (SCW) are very expensive. Therefore, a number of experiments are performed in modeling fluids, such as carbon dioxide and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Therefore, a correlation for supercritical carbon dioxide heat transfer was developed as a less expensive alternative to using supercritical water. The conducted analysis also meets the objective of improving our fundamental knowledge of the transport processes and handling of supercritical fluids. These correlations can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the cogeneration of hydrogen, for future comparisons with other independent datasets, with bundle data, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids. (author)

  5. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor; Etude par simulation numerique des ecoulements turbulents reactifs dans les reacteurs d'oxydation hydrothermale: application a un reacteur agite double enveloppe

    Energy Technology Data Exchange (ETDEWEB)

    Moussiere, S

    2006-12-15

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  6. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  7. Operation and Performance of the Supercritical Fluids Reactor (SFR)

    National Research Council Canada - National Science Library

    Hanush, R

    1996-01-01

    The Supercritical Fluids Reactor (SFR) at Sandia National Laboratories, CA has been developed to examine and solve engineering, process, and fundamental chemistry issues regarding the development of supercritical water oxidation (SCWO...

  8. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  9. Materials challenges for the supercritical water-cooled reactor (SCWR)

    International Nuclear Information System (INIS)

    Baindur, S.

    2008-01-01

    This paper discusses the materials requirements of the Supercritical Water-cooled Reactor (SCWR) which arise from its severe expected operating conditions: (i) Outlet Temperature (to 650 C); (ii) Pressure of 25 MPa for the coolant containment, (iii) Thermochemical stress in the presence of supercritical water, and (iv) Radiative damage (up to 150 dpa for the fast spectrum variant). These operating conditions are reviewed; the phenomenology of materials in the supercritical water environment that create the materials challenges is discussed; knowledge gaps are identified, and efforts to understand material behaviour under the operating conditions expected in the SCWR are described. (author)

  10. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  11. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    Science.gov (United States)

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  12. Data acquisition testing in supercritical water oxidation using machine cutting oils and metals

    International Nuclear Information System (INIS)

    Garcia, K.M.

    1996-01-01

    The Department of Energy, the Navy, and SERDP provided funding for an extensive series of testing of a Supercritical Water Oxidation (SCWO) system. The goal of the testing was to create performance data on the process when dealing with highly chlorinated wastes containing heavy metals, and radionuclides. The testing was performed in a MODAR vessel oxidizer. Performance was measured by the ability of the process to achieve greater than 99.99% destruction of the organic content, to partition the metals and radionuclide surrogates for mass balance, and survive the highly corrosive species in the effluent. The test data has shown that these goals were accomplished. 30 gal/day of highly chlorinated machine cutting oil was treated for 130 hrs. There were no significant corrosion or solids handling problems. This machine cutting oil, TRIM reg-sign SOL was chosen by DOE for its complex nature and has proven to be one of the more refractory organic feeds encountered by MODAR. The Navy provided 8 waste streams collected from their shore facilities operation. These paints varied in solids content with wastes such as paint chips, and adhesives. The ninth test run was with all 8 series of wastes combined. The MODAR system successfully treated all of these waste streams providing performance data on the ability of SCWO to treat difficult sludges

  13. US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-03-20

    A presentation of the US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids. Includes slides on Supercritical Steam, sCO2 Power Cycles – Indirect, sCO2 Power Cycles – Direct, Experimental Exposures, Alloys, Why Si, Results—Ni-xCr Alloys (5-24Cr), Fatigue Crack Growth$-$Experiment, and Alloys and Samples, Fatigue Crack Growth—Results (H282).

  14. Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.; Garrabos, Yves; Lecoutre, Carole; Zappoli, Bernard

    2013-01-01

    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground.

  15. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Feasibility analysis of the modified ATHLET code for supercritical water cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chong, E-mail: ch.zhou@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany); Yang Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cheng Xu [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Modification of system code ATHLET for supercritical water application. Black-Right-Pointing-Pointer Development and assessment of a heat transfer package for supercritical water. Black-Right-Pointing-Pointer Validation of the modified code at supercritical pressures with the theoretical point-hydraulics model and the SASC code. Black-Right-Pointing-Pointer Application of the modified code to LOCA analysis of a supercritical water cooled in-pile fuel qualification test loop. - Abstract: Since the existing thermal-hydraulic computer codes for light water reactors are not applicable to supercritical water cooled reactors (SCWRs) owing to the limitation of physical models and numerical treatments, the development of a reliable thermal-hydraulic computer code is very important to design analysis and safety assessment of SCWRs. Based on earlier modification of ATHLET for SCWR, a general interface is implemented to the code, which serves as the platform for information exchange between ATHLET and the external independent physical modules. A heat transfer package containing five correlations for supercritical water is connected to the ATHLET code through the interface. The correlations are assessed with experimental data. To verify the modified ATHLET code, the Edwards-O'Brian blow-down test is simulated. As first validation at supercritical pressures, a simplified supercritical water cooled loop is modeled and its stability behavior is analyzed. Results are compared with that of the theoretical model and SASC code in the reference and show good agreement. To evaluate its feasibility, the modified ATHLET code is applied to a supercritical water cooled in-pile fuel qualification test loop. Loss of coolant accidents (LOCAs) due to break of coolant supply lines are calculated for the loop. Sensitivity analysis of some safety system parameters is performed to get further knowledge about their influence on the function of the

  17. Supercritical water decontamination of town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Lee, S.

    1994-01-01

    Town gas sites represent a large environmental problem that exists in more than 2,000 sites across North America alone. The major contaminants in town gas sods are polycyclic aromatic hydrocarbons (PAHs). These are stable compounds that migrate deep into the soil and are traditionally very difficult to remove by conventional remediation processes. Supercritical fluids offer enhanced solvating properties along with reduced mass transfer resistances that make them ideal for removing compounds that are difficult or impossible to remove by conventional processes. Supercritical water is ideal for removing PAHs and other hydrocarbons from soil due to its high solvating power towards most hydrocarbon species. Supercritical water was investigated for its ability to remediate two different town gas sods containing from 3--20 wt% contamination. The sod was remediated in a 300-cc semi-continuous system to a more environmentally acceptable level

  18. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    International Nuclear Information System (INIS)

    Allen, T.R.; Was, G.S.

    2008-01-01

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept. The objective of the proposed research was to investigate degradation of materials in the supercritical water environment (SCW). First, representative alloys from the important classes of candidate materials were studied for their corrosion and stress-corrosion cracking (SCC) resistance in supercritical water. These included ferritic/martensitic (F/M) steels, austenitic stainless steels, and Ni-base alloys. Corrosion and SCC tests were conducted at various temperatures and exposure times, as well as in various water chemistries. Second, emerging plasma surface modification and grain boundary engineering technologies were applied to modify the near surface chemistry, microstructure, and stress-state of the alloys prior to corrosion testing. Third, the effect of irradiation on corrosion and SCC of alloys in the as-received and modified/engineered conditions were examined by irradiating samples using high-energy protons and then exposing them to SCW

  19. Predicted Variations of Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Liu, Hong-Ming; Lee, Min

    2012-09-01

    In response to the demand over a higher efficiency for a nuclear power plant, various types of Generation IV nuclear reactors have been proposed. One of the new generation reactors adopts supercritical light water as the reactor coolant. While current in-service light water reactors (LWRs) bear an average thermal efficiency of 33%, the thermal efficiency of a supercritical water reactor (SCWR) could generally reach more than 44%. For LWRs, the coolants are oxidizing due to the presence of hydrogen peroxide and oxygen, and the degradation of structural materials has mainly resulted from stress corrosion cracking. Since oxygen is completely soluble in supercritical water, similar or even worse degradation phenomena are expected to appear in the structural and core components of an SCWR. To ensure proper designs of the structural components and suitable selections of the materials to meet the requirements of operation safety, it would be of great importance for the design engineers of an SCWR to be fully aware of the state of water chemistry in the primary coolant circuit (PCC). Since SCWRs are still in the stage of conceptual design and no practical data are available, a computer model was therefore developed for analyzing water chemistry variation and corrosion behavior of metallic materials in the PCC of a conceptual SCWR. In this study, a U.S. designed SCWR with a rated thermal power of 3575 MW and a coolant flow rate of 1843 kg/s was selected for investigating the variations in redox species concentration in the PCC. Our analyses indicated that the [H 2 ] and [H 2 O 2 ] at the core channel were higher than those at the other regions in the PCC of this SCWR. Due to the self-decomposition of H 2 O 2 , the core channel exhibited a lower [O 2 ] than the upper plenum. Because the middle water rod region was in parallel with the core channel region with relatively high dose rates, the [H 2 ] and [H 2 O 2 ] in this region were higher than those in the other regions

  20. The effect of low-concentration inorganic materials on the behaviour of supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Imre, A.R., E-mail: imre@aeki.kfki.h [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Hazi, G.; Horvath, A.; Maraczy, Cs. [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Mazur, V.; Artemenko, S. [Odessa State Academy of Refrigeration, 1/3 Dvoryanslaya Str., 65026, Odessa (Ukraine)

    2011-01-15

    Research highlights: Small amount of inorganic materials (like corrosion products) can be dissolved in the supercritical water. Pseudo-critical temperature and other properties will be changed. Thermal and hydraulic behaviours of the SCW with small amount of contaminants differ in great extent from the behaviour of pure SCW. - Abstract: Supercritical water is a promising working fluid in the new Generation IV nuclear power plants. Due to the presence of the pseudo-critical line, the thermo-hydraulics (thermal and flow properties) and the physical chemistry of the supercritical water differ significantly from the pressurized hot water used in pressurized water reactors. In this study we would like to analyse the effect of small amount of inorganic material on the thermo-hydraulics of the supercritical water cooled nuclear reactors and other, non-nuclear supercritical water loops.

  1. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  2. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  3. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  4. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  5. Study on corrosion behavior of candidate materials in 650℃ supercritical water

    International Nuclear Information System (INIS)

    Ma Shuli; Luo Ying; Zhang Qiang; Wang Hao; Qiu Shaoyu

    2014-01-01

    The general corrosion behavior of three candidate materials (347, HR3C and In-718) was investigated in 650 ℃/25 MPa deionized water. Morphology and composition of the surface oxide film with different exposure time were observed through FEG-SEM and EDS. The phase constitute was analyzed by GIXRD. For all the test materials, the weight loss follows typical parabolic law and the weight loss of 347 shows more than 40 times higher than that of HR3C and In-718. The oxide film of three alloys mainly consists of Ni(Cr, Fe) 2 O 4 . In-718 shows severe pitting and the oxide film of 347 appears significant spalling, while HR3C has compact oxide film. In the high temperature supercritical water, the high Cr content may enhance the general corrosion property of the alloys, while addition of Nb may be detrimental to the pitting resistance of alloys. (authors)

  6. Effect of surface modification on the corrosion resistivity in supercritical water

    International Nuclear Information System (INIS)

    Penttila, S.; Horvath, A.; Toivonen, A.; Zolnai, Z.

    2011-01-01

    This paper summarizes the results of high temperature corrosion studies of the candidate austenitic alloys at relevant operating conditions for SCWR. The high temperature and pressure above the thermodynamic critical point of water result in higher oxidation rate which might be critical for thin-wall components like fuel cladding. The goal of this work was to study the effect of surface preparation on the oxidation rate on Ti-stabilized austenitic alloy 1.4970. Surfaces were prepared with ion implantation using He"+- and N"+-ions. Samples were immersed in supercritical water at 650"oC/25 MPa, for up to 2000 hours. Added to this, conventional surface treatments were conducted for austenitic alloy 316L tube samples in order to study the effect of cold work in sample surface on corrosion resistance. The corrosion rate was evaluated by measuring the weight change of the samples. The compositions of the oxide layers were analyzed using scanning electron microscope (SEM) in conjunction with Energy Dispersive Spectroscopy (EDS). (author)

  7. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  8. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    International Nuclear Information System (INIS)

    Arrington, C.A. Jr.

    1998-01-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  9. Pulse radiolysis study of supercritical water-G-value measurement up to 450 degree C

    International Nuclear Information System (INIS)

    Katsumura, Y.

    2006-01-01

    It is widely recognized that the understanding of water radiolysis at elevated temperatures is inevitably important in the field of water chemistry in light water reactors because water radiolysis is closely related to many subjects such as hydrogen water chemistry (H 2 injection), SCC (stress corrosion cracking), dose accumulation and so on. This situation would also be applied to the future reactor using supercritical water (>374 C, 22.1MPa) as a coolant, so called supercritical water-cooled reactor (SCWR). Therefore, it is important to investigate water radiolysis of supercritical water. In 1989 Prof. Oka, University of Tokyo, proposed the SCWR as a future reactor and done much design study. This reactor has many advantages such as high energy efficiency, applicability of experience accumulated in light water reactors and supercritical fissile plant, and compact structure. In 2002 the Department of Energy in USA has selected the SCWR as one of the six Generation IV reactors and fundamental research has started in different countries as a national or an international project. In the present research G-values of water radiolysis have been measured by using a pulse radiolysis method up to 450 degree C to obtain the fundamental data relevant to the development of the SCWR. In supercritical water, the pressure controls the density of water easily and it was found that the G-values are strongly dependent not only on temperature but also on density in supercritical water. After presentation of experimental method and its difficulties, temperature and density dependent G-values of water decomposition products in supercritical water would be summarized. (authors)

  10. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario; Buttner, Ulrich

    2017-01-01

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock

  11. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  12. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to

  13. Muonium kinetics in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Addison-Jones, B.; Brodovitch, J.C.; Kecman, S.; McKenzie, I.; Percival, P.W

    2003-02-01

    Muonium is long-lived in pure water and has been studied over a very wide range of temperatures and pressures, from 5 deg. C to over 400 deg. C and from 1 to 400 bar. We have determined rate constants for representative reactions of muonium in aqueous solution; equivalent data on H atom kinetics is sparse and stops well short of the maximum temperature and pressure attained in our experiments. The results show remarkable deviations from the predictions of standard reaction theories. In particular, rate constants pass through a maximum with temperature well below the critical point. This seems to be a general phenomenon, since we have observed it for spin-exchange and chemical reactions that are diffusion limited at low temperatures, as well as for activated reactions. We believe that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter. Whatever the reason, the implications are profound for both the efficiency of supercritical water oxidation reactors and for the modelling of radiation chemistry in pressurized water nuclear reactors.

  14. Muonium kinetics in sub- and supercritical water

    International Nuclear Information System (INIS)

    Ghandi, K.; Addison-Jones, B.; Brodovitch, J.C.; Kecman, S.; McKenzie, I.; Percival, P.W.

    2003-01-01

    Muonium is long-lived in pure water and has been studied over a very wide range of temperatures and pressures, from 5 deg. C to over 400 deg. C and from 1 to 400 bar. We have determined rate constants for representative reactions of muonium in aqueous solution; equivalent data on H atom kinetics is sparse and stops well short of the maximum temperature and pressure attained in our experiments. The results show remarkable deviations from the predictions of standard reaction theories. In particular, rate constants pass through a maximum with temperature well below the critical point. This seems to be a general phenomenon, since we have observed it for spin-exchange and chemical reactions that are diffusion limited at low temperatures, as well as for activated reactions. We believe that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter. Whatever the reason, the implications are profound for both the efficiency of supercritical water oxidation reactors and for the modelling of radiation chemistry in pressurized water nuclear reactors

  15. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  16. Preparation of minute particle using supercritical fluid; Chorinkai ryutai wo mochiita biryushi no chosei

    Energy Technology Data Exchange (ETDEWEB)

    Ajiri, T [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-03-05

    The metal oxide minute particle synthesis method according to the water-heat reaction in supercritical water was described. Metal salt liquid solution was subjected to hydrolysis when heated to become metal hydroxide but dehydration reaction was generated at a high temperature to generate metal oxide minute particle. Metal salt aqueous solution was supplied to a circulation system unit to contact heated water and was rapidly heated to supercritical state and then was subjected to hydrolysis/dehydration reaction, thus continuously collecting metal oxide minute particles. The hydrolysis speed was in first order for the metal ion concentration and the reaction speed was accelerated by several tens of times when entering supercritical region from subcritical region. When the temperature was rapidly increased to the supercritical state, a radical hydrolysis was generated and a high saturation was instantly reached and minute particles tended to be generated easily since the dissolution force of supercritical water for a product was small. A minute particle with a crystallizability of 5 nm was obtained by synthesizing ceria super-minute particle which was the abrasive of an optical glass material. A single phase of a high magnetization characteristic was synthesized continuously and quickly (faster than a conventional method by two orders or more) in the continuous synthesis of Ba ferrite as a magnetic recording material. 12 refs., 3 figs., 1 tab.

  17. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Güvenatam, B.; Heeres, E.H.J.; Pidko, E.A.; Hensen, E.J.M.

    2014-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400°C in water and ethanol. Lignin conversion in supercritical water led to formation of

  18. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  19. Oxidation of hazardous waste in supercritical water: A comparison of modeling and experimental results for methanol destruction

    International Nuclear Information System (INIS)

    Butler, P.B.; Bergan, N.E.; Bramlette, T.T.; Pitz, W.J.; Westbrook, C.K.

    1991-01-01

    Recent experiments at Sandia National Laboratories conducted in conjunction with MODEC Corporation have demonstrated successful clean- up of contaminated water in a supercritical water reactor. These experiments targeted wastes of interest to Department of Energy production facilities. In this paper we present modeling and experimental results for a surrogate waste containing 98% water, 2% methanol, and parts per million of chlorinated hydrocarbons and laser dyes. Our initial modeling results consider only methanol and water. Experimental data are available for inlet and outlet conditions and axial temperature profiles along the outside reactor wall. The purpose of our model is to study the chemical and physical processes inside the reactor. We are particularly interested in the parameters that control the location of the reaction zone. The laboratory-scale reactor operates at 25 MPa., between 300 K and 900 K; it is modeled as a plug-flow reactor with a specified temperature profile. We use Chemkin Real-Gas to calculate mixture density, with the Peng-Robinson equation of state. The elementary reaction set for methanol oxidation and reactions of other C 1 and C 2 hydrocarbons is based on previous models for gas-phase kinetics. Results from our calculations show that the methanol is 99.9% destroyed at 1/3 the total reactor length. Although we were not able to measure composition of the fluid inside the experimental reactor, this prediction occurs near the location of the highest reactor temperature. This indicates that the chemical reaction is triggered by thermal effects, not kinetic rates. Results from ideal-gas calculations show nearly identical chemical profiles inside the reactor in dimensionless distance. However, reactor residence times are overpredicted by nearly 150% using an ideal-gas assumption. Our results indicate that this oxidation process can be successfully modeled using gas-phase chemical mechanisms. 23 refs., 8 figs

  20. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  1. Steady state and linear stability analysis of a supercritical water natural circulation loop

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-01-01

    Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.

  2. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Khatkhatay, Fauzia [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Jiao, Liang [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Zhang, Wenrui [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Jiao, Zhijie [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Gan, Jian; Zhang, Hongbin [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Zhang, Xinghang [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843-3123 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States)

    2014-08-01

    Thin films of TiN and Ti{sub 0.35}Al{sub 0.65}N nanocomposite were deposited on polished Zircaloy-4 tubes. After exposure to supercritical water for 48 h, the coated tubes are remarkably intact, while the bare uncoated tube shows severe oxidation and breakaway corrosion. X-ray diffraction patterns, secondary electron images, backscattered electron images, and energy dispersive X-ray spectroscopy data from the tube surfaces and cross-sections show that a protective oxide, formed on the film surface, effectively prevents further oxidation and corrosion to the Zircaloy-4 tubes. This result demonstrates the effectiveness of thin film ceramics as protective coatings under extreme environments.

  3. Fundamental R and D program on water chemistry of supercritical pressure water under radiation field

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Kiuchi, Kiyoshi; Wada, Yoichi; Yotsuyanagi, Tadasu

    2003-01-01

    In a supercritical water-cooled reactor, property of water changes significantly around the critical point. It is expected that irradiation and change of water property will affect the chemistry and material corrosion. Deep understanding of interactions between supercritical water and materials under irradiation is important. However, comprehensive data on radiolysis, kinetics, corrosion and thermodynamics have not been obtained due to the severe experimental condition. To get such data by experiments and computer simulations, a national program funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT) has been started since December 2002. (author)

  4. Development status and application prospect of supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Li Manchang; Wang Mingli

    2006-01-01

    The Supercritical-pressure Light Water Cooled Reactor (SCWR) is selected by the Generation IV International Forum (GIF) as one of the six Generation IV nuclear systems that will be developed in the future, and it is an innovative design based on the existing technologies used in LWR and supercritical coal-fired plants. Technically, SCWR may be based on the design, construction and operation experiences in existing PWR and supercritical coal-fired plants, which means that there is no insolvable technology difficulties. Since PWR technology will be adopted in the near term and medium term projects in China, and considering the sustainable development of the technology, it is an inevitable choice to research and develop the nuclear system of supercritical light water cooled reactor. (authors)

  5. Flow method for rapid production of Batio3 nanoparticles in supercritical water

    International Nuclear Information System (INIS)

    Atashfaraz, M.; Shariati-Niassar, M.; Ohara, Satoshi; Takami, S.; Umetsu, M.; Naka, T.; Adschiri, T.

    2006-01-01

    Fine BaTiO 3 nanoparticles were obtained by hydrothermal synthesis under supercritical conditions with batch and flow type experimental methods. Mixture of barium hydroxide and titanium oxide starting solution was treated in the supercritical wafer at 400 d eg C and 30 MPa. The size of nanoparticles synthesized in the flow type experiment was smaller than that in the batch type. Rapid heating in a flow, reactor is effective to synthesize smaller size and narrower particle size distribution for the BaTiO 3 , nanoparticles. The mechanism for this result was discussed based on the solubility of titanium oxide

  6. Once-through cycle, supercritical-pressure light water cooled reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Koshizuka, S. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2001-07-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  7. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  8. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Yashar, E-mail: behnamia@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Mostafaei, Amir [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kohandehghan, Alireza [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Amirkhiz, Babak Shalchi [Canmet MATERIALS, Natural Resources Canada, Hamilton, Ontario L8P 0A5 (Canada); Serate, Daniel [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Zheng, Wenyue [Canmet MATERIALS, Natural Resources Canada, Hamilton, Ontario L8P 0A5 (Canada); Guzonas, David [Canadian Nuclear Laboratories, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 (Canada); Chmielus, Markus [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chen, Weixing, E-mail: Weixing@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Luo, Jing Li, E-mail: Jingli.luo@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada)

    2016-10-15

    The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) in the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.

  9. Thermal aspects of mixed oxide fuel in application to supercritical water-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grande, L.; Peiman, W.; Rodriguez-Prado, A.; Villamere, B.; Mikhael, S.; Allison, L.; Pioro, I., E-mail: lisa.grande@mycampus.uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2010-07-01

    SuperCritical Water-cooled nuclear Reactors (SCWRs) are a renewed technology being developed as one of the Generation IV reactor concepts. This reactor type uses a light water coolant at temperatures and pressures above its critical point. These elevated operating conditions will improve Nuclear Power Plant (NPP) thermal efficiencies by 10 - 15% compared to those of current NPPs. Also, SCWRs will have the ability to utilize a direct cycle, thus decreasing NPP capital and operational costs. The SCWR core has 2 configurations: 1) Pressure Vessel (PV) -type enclosing a fuel assembly and 2) Pressure Tube (PT) -type consisting of individual pressurized channels containing fuel bundles. Canada and Russia are developing PT-type SCWRs. In particular, the Canadian SCWR reactor has an output of 1200 MW{sub el} and will operate at a pressure of 25 MPa with inlet and outlet fuel-channel temperatures of 350 and 625°C, respectively. These extreme operating conditions require alternative fuels and materials to be investigated. Current CANadian Deuterium Uranium (CANDU) nuclear reactor fuel-channel design is based on the use of uranium dioxide (UO{sub 2}) fuel; zirconium alloy sheath (clad) bundle, pressure and calandria tubes. Alternative fuels should be considered to supplement depleting world uranium reserves. This paper studies general thermal aspects of using Mixed OXide (MOX) fuel in an Inconel-600 sheath in a generic PT-type SCWR. The bulk fluid, sheath and fuel centerline temperatures along with the Heat Transfer Coefficient (HTC) profiles were calculated at uniform and non-uniform Axial Heat Flux Profiles (AHFPs). (author)

  10. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water

    International Nuclear Information System (INIS)

    Bai, Yongping; Wang, Zhi; Feng, Liqun

    2010-01-01

    The carbon fibers in carbon fibers reinforced epoxy resin composites were recovered in oxygen in supercritical water at 30 ± 1 MPa and 440 ± 10 o C. The microstructure of the recovered carbon fibers was observed using scanning electron microscopy (SEM) and atom force microscopy (AFM). The results revealed that the clean carbon fibers were recovered and had higher tensile strength relative to the virgin carbon fibers when the decomposition rate was above 85 wt.%, although the recovered carbon fibers have clean surface, the epoxy resin on the surface of the recovered carbon fibers was readily observed. As the decomposition rate increased to above 96 wt.%, no epoxy resin was observed on the surface of the carbon fibers and the oxidation of the recovered carbon fibers was readily measured by X-ray photoelectron spectroscopy (XPS) analysis. The carbon fibers were ideally recovered and have original strength when the decomposition rates were between 94 and 97 wt.%. This study clearly showed the oxygen in supercritical water is a promising way for recycling the carbon fibers in carbon fibers reinforced resin composites.

  11. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  12. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics and Thermal-Hydraulics

    International Nuclear Information System (INIS)

    Anderson, Mark; Corradini, M.L.; Sridharan, K.; Wilson, P.; Cho, D.; Kim, T.K.; Lomperski, S.

    2004-01-01

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers

  13. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  14. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  15. MIF-SCD computer code for thermal hydraulic calculation of supercritical water cooled reactor core

    International Nuclear Information System (INIS)

    Galina P Bogoslovskaia; Alexander A Karpenko; Pavel L Kirillov; Alexander P Sorokin

    2005-01-01

    Full text of publication follows: Supercritical pressure power plants constitute the basis of heat power engineering in many countries to day. Starting from a long-standing experience of their operation, it is proposed to develop a new type of fast breeder reactor cooled by supercritical water, which enables the economical indices of NPP to be substantially improved. In the Thermophysical Department of SSC RF-IPPE, an attempt is made to provide thermal-hydraulic validation of the reactor under discussion. The paper presents the results of analysis of the thermal-hydraulic characteristics of fuel subassemblies cooled by supercritical water based on subchannel analysis. Modification of subchannel code MIF - MIF-SCD Code - developed in the SSC RF IPPE is designed as block code and permits one to calculate the coolant temperature and velocity distributions in fuel subassembly channels, the temperature of fuel pin claddings and fuel subassembly wrapper under conditions of irregular geometry and non-uniform axial and radial power generation. The thermal hydraulics under supercritical pressure of water exhibits such peculiarities as abrupt variation of the thermal physical properties in the range of pseudo-critical temperature, the absence of such phenomenon as the critical heat flux which can lead to fuel element burnout in WWERs. As compared with subchannel code for light water, in order to take account of the variation of the coolant properties versus temperature in more detail, a block for evaluating the thermal physical properties of supercritical water versus the local coolant temperature in the fuel subassembly channels was added. The peculiarities of the geometry and power generation in the fuel subassembly of the supercritical reactor are considered as well in special blocks. The results of calculations have shown that considerable preheating of supercritical coolant (several hundreds degrees) can occur in the fuel subassembly. The test calculations according to

  16. A comparison of the mechanisms of photooxidative degradation of organic molecules on irradiated semiconductor powders and in aerated supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Marye Anne [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX (United States)

    1995-08-01

    It is the purpose of this paper to survey evidence that suggests that control of the local environment is important in both heterogeneous TiO{sub 2} photocatalysis and in thermal oxidation reactions taking place in supercritical fluids, i.e. that the expected influences of these very different methods for microcompartmentalization do indeed influence the observed reaction kinetics in an easily observable way. Variations in reaction kinetics and the photophysical properties are described for (1) small semiconductor clusters, including their altered photocatalytic activity in and on inert supports; and (2) molecular probes dispersed within the self-aggregating clusters formed within supercritical water

  17. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  18. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  19. Corrosion in the SCWR: insights from molecular dynamics simulations of the supercritical water - iron hydroxide interface

    Energy Technology Data Exchange (ETDEWEB)

    Kallikragas, D.; Plugatyr, A.; Svishchev, I.M., E-mail: dimitrioskallikragas@trentu.ca [Trent University, Peterborough, Ontario (Canada)

    2013-07-01

    The adsorption properties of supercritical water confined between parallel iron (II) hydroxide surfaces were determined through molecular dynamics simulations. Simulations were conducted at temperatures and water densities typically found in the heat transport system of the supercritical water cooled nuclear reactor (SCWR). Surface water layer densities were compared to those of the bulk water. Adsorption coverage was calculated as a function of the number of waters per surface OH group. Images of the water molecules configurations are provided along with the density profile of the adsorption layer. The observed localized adsorption and surface clustering of supercritical water, would likely produce more localized corrosion phenomena in the water bearing components of the SCWR. (author)

  20. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  1. SCRELA, LOCA Analysis of Super-Critical Light-Water Reactors

    International Nuclear Information System (INIS)

    Lee, J.H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    Description of program or function: LOCA Analysis Code for the Supercritical-Water Cooled Reactor. - Blowdown Module: Calculation of the Blowdown Phase and Refill Phase. - Reflood Module: Calculation of the Reflood Phase

  2. The research of materials and water chemistry for supercritical water-cooled reactors in Research Centre Rez

    International Nuclear Information System (INIS)

    Zychova, Marketa; Fukac, Rostislav; Vsolak, Rudolf; Vojacek, Ales; Ruzickova, Mariana; Vonkova, Katerina

    2012-09-01

    Research Centre Rez (CVR) is R and D company based in the Czech Republic. It was established as the subsidiary of the Nuclear Research Institute Rez plc. One of the main activities of CVR is the research of materials and chemistry for the generation IV reactor systems - especially the supercritical water-cooled one. For these experiments is CVR equipped by a supercritical water loop (SCWL) and a supercritical water autoclave (SCWA) serving for research of material and Supercritical Water-cooled Reactor (SCWR) environment compatibility experiments. SCWL is a research facility designed to material, water chemistry, radiolysis and other testing in SCWR environment, SCWA serves for complementary and supporting experiments. SCWL consists of auxiliary circuits (ensuring the required parameters as temperature, pressure and chemical conditions in the irradiation channel, purification and measurements) and irradiation channel (where specimens are exposed to the SCWR environment). The design of the loop is based on many years of experience with loop design for various types of corrosion/water chemistry experiments. Designed conditions in the test area of SCWL are 600 deg. C and 25 MPa. SCWL was designed in 2008 within the High Performance Light Water Reactor Phase 2 project and built during 2008 and 2009. The trial operations were performed in 2010 and 2011 and were divided into three phases - the first phase to verify the functionality of auxiliary circuits of the loop, the second phase to verify the complete facility (auxiliary circuits and functional irradiation channel internals) and the third phase to verify the feasibility of corrosion tests with the complete equipment and specimens. All three trial operations were very successful - designed conditions and parameters were reached. (authors)

  3. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  4. Experimental study of supercritical water flow and heat transfer in vertical tube

    International Nuclear Information System (INIS)

    Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng

    2012-01-01

    The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)

  5. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  6. Supercritical water: On a road from CFD to NPP simulations

    International Nuclear Information System (INIS)

    Rintala, Lauri; Danielyan, Davit; Salomaa, Rainer

    2010-01-01

    The Fission and Radiation Physics Group at the Aalto University is contributing to the Finnish SCWR activities within the GEN4FIN-network. Our research involves reactor core thermal hydraulics, and in particular, heat transfer phenomena in supercritical water including both theoretical studies and simulations with APROS and OpenFOAM. APROS is a software applicable to full-scale power plant simulations and OpenFOAM an open source CFD code. The complicated heat transfer in the supercritical region is a very challenging problem for the design of SCWRs and their safety assessment. The steam tables of APROS have been extended to the supercritical region and their functionality has been tested with, e.g. blowdown simulations where the transient is rapid, hence mainly challenging for numerical stability whereas heat transfer has negligible effects. Numerous different heat correlations for supercritical water have been suggested , but simulations of benchmark experiments have shown that for instance fuel clad temperatures generally cannot be described sufficiently accurately. This discrepancy has been encountered in several process simulation codes. The largest errors occur near the pseudo critical line, during the heat transfer deterioration. It turns out that the physics in supercritical water is clearly more intricate than in ordinary boiling heat transfer where rather satisfactory heat transfer correlations are available. Full 3D CFD calculations allow a better description of various aspects of heat transfer in the supercritical region, i.e., effects arising from turbulence , buoyancy , varying material properties etc. On the other hand, CFD calculations are not feasible for plant-scale simulations. We have selected some simplified geometries and parameter ranges to study SCW heat transfer in a reactor. Old experiments have been calculated with satisfactory results with OpenFOAM to check its validity. A steady state case of heat transfer in a circular pipe with upward

  7. Development Project of Supercritical-water Cooled Power Reactor

    International Nuclear Information System (INIS)

    Kataoka, K.; Shiga, S.; Moriya, K.; Oka, Y.; Yoshida, S.; Takahashi, H.

    2002-01-01

    A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'. The target of the 'plant conceptual design sub-theme' is simplify the whole plant systems compared with the conventional LWRs while achieving high thermal efficiency of more than 40 % without sacrificing the level of safety. Under the 'thermohydraulics sub-theme', heat transfer characteristics of supercritical-water as a coolant of the SCPR are examined experimentally and analytically focusing on 'heat transfer deterioration'. The experiments are being performed using fron-22 for water at a fossil boiler test facility. The experimental results are being incorporated in LWR analytical tools together with an extended steam/R22 table. Under the 'material and water chemistry sub-theme', material candidates for fuel claddings and internals of the SCPR are being screened mainly through mechanical tests, corrosion tests, and simulated irradiation tests under the SCPR condition considering water chemistry. In particular, stress corrosion cracking sensitivity is being investigated as well as uniform corrosion and swelling characteristics. Influences of water chemistry on the corrosion product characteristics are also being examined to find preferable water condition as well as to develop rational water chemistry controlling methods. (authors)

  8. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  9. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  10. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol

    NARCIS (Netherlands)

    Huang, X.; Ceylanpinar, A.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2015-01-01

    We investigate the role of Cu-Mg-Al mixed oxides in depolymerization of soda lignin in supercritical ethanol. A series of mixed oxides with varying Cu content and (Cu+Mg)/Al ratio were prepared. The optimum catalyst containing 20 wt% Cu and having a (Cu+Mg)/Al ratio of 4 yielded 36 wt% monomers

  11. Error analysis of supercritical water correlations using ATHLET system code under DHT conditions

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, J., E-mail: jeffrey.samuel@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is used for analysis of anticipated and abnormal plant transients, including safety analysis of Light Water Reactors (LWRs) and Russian Graphite-Moderated High Power Channel-type Reactors (RBMKs). The range of applicability of ATHLET has been extended to supercritical water by updating the fluid-and transport-properties packages, thus enabling the code to the used in analysis of SuperCritical Water-cooled Reactors (SCWRs). Several well-known heat-transfer correlations for supercritical fluids were added to the ATHLET code and a numerical model was created to represent an experimental test section. In this work, the error in the Heat Transfer Coefficient (HTC) calculation by the ATHLET model is studied along with the ability of the various correlations to predict different heat transfer regimes. (author)

  12. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada); Zheng, W. [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Guzonas, D.A. [Canadian Nuclear Laboratories Chalk River Laboratories, ON (Canada); Cook, W.G. [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB (Canada); Kish, J.R., E-mail: kishjr@mcmaster.ca [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada)

    2015-09-15

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe–Cr–Ni–Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M{sub 23}C{sub 6}), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  13. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Science.gov (United States)

    Jiao, Y.; Zheng, W.; Guzonas, D. A.; Cook, W. G.; Kish, J. R.

    2015-09-01

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe-Cr-Ni-Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  14. Supercritical water gasification of Victorian brown coal: Experimental characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Doki; Aye, Lu [Department of Civil and Environmental Engineering, The University of Melbourne, Vic 3010 (Australia); Sanderson, P. John; Lim, Seng [CSIRO Minerals, Clayton, Vic 3168 (Australia)

    2009-05-15

    Supercritical water gasification is an innovative thermochemical conversion method for converting wet feedstocks into hydrogen-rich gaseous products. The non-catalytic gasification characteristics of Victorian brown coal were investigated in supercritical water by using a novel immersion technique with quartz batch reactors. Various operating parameters such as temperature, feed concentration and reaction time were varied to investigate their effect on the gasification behaviour. Gas yields, carbon gasification efficiency and the total gasification efficiency increased with increasing temperature and reaction time, and decreasing feed concentration. The mole fraction of hydrogen in the product gases was lowest at 600 C, and increased to over 30 % at a temperature of 800 C. Varying parameters, especially reaction time, did not improve the coal utilisation for gas production significantly and the measured data showed a large deviation from the equilibrium level. (author)

  15. Investigation of R-134a as a modeling fluid for supercritical water

    International Nuclear Information System (INIS)

    Jouvin, J.C.; Pioro, I.

    2014-01-01

    The objective of this paper is to investigate the feasibility of using Refrigerant-134a (R-134a) as a potential modeling fluid by comparing the thermophysical properties with those of water. Operating conditions of SuperCritical Water-cooled Reactors (SCWRs) are scaled into those of R-134a, in order to provide proper SCWR-equivalent conditions. The thermophysical properties for R-134a are obtained from NIST REFPROP software. The results indicate that the thermophysical properties of R-134a undergo significant changes within the critical and pseudocritical regions similar to that of supercritical water. An investigation into the pseudocritical region of R-134a was also conducted. (author)

  16. Experiments in a natural circulation loop with supercritical water at low powers

    International Nuclear Information System (INIS)

    Pilkhwal, D.S.; Sharma, Manish; Jana, S.S.; Vijayan, P.K.

    2013-05-01

    Earlier, 1/2 ″ uniform diameter Supercritical Pressure Natural Circulation Loop (SPNL) was set-up in hall-7, BARC for carrying out experiments related to supercritical fluids. The loop is a rectangular loop having two heaters and two coolers. Experiments were carried out with CO 2 under supercritical conditions for various pressures and different combinations of heater and cooler orientations. Since, the design conditions are more severe for supercritical water (SCW) experiments, the loop was modified for SCW by installing new test sections, pressurizer and power supply for operation with supercritical water. Experimental data were generated on steady state, heat transfer and stability under natural circulation conditions for the horizontal heater and horizontal cooler (HHHC) orientation with SCW up to a heater power of 8.5 kW. The flow rate data and instability data were compared with the predictions of in-house developed 1-D code NOLSTA, which showed reasonable agreement. The heat transfer coefficient data were also compared with the predictions of various correlations exhibit peak at bulk temperature lower than that obtained in the experiments. Most of these correlations predicted experimental data well in the pseudo-critical region. However, all correlations are matching well with experimental data beyond the pseudo-critical region. The details of the experimental facility, Experiments carried out and the results presented in this report. (author)

  17. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  18. Power flattening and reactivity suppression strategies for the Canadian supercritical water reactor concept

    International Nuclear Information System (INIS)

    McDonald, M.; Colton, A.; Pencer, J.

    2015-01-01

    The Canadian supercritical water-cooled reactor (SCWR) is a conceptual heavy water moderated, supercritical light water cooled pressure tube reactor. In contrast to current heavy water power reactors, the Canadian SCWR will be a batch fuelled reactor. Associated with batch fuelling is a large beginning-of-cycle excess reactivity. Furthermore, radial power peaking arising as a consequence of batch refuelling must be mitigated in some way. In this paper, burnable neutron absorber (BNA) added to fuel and absorbing rods inserted into the core are considered for reactivity management and power flattening. A combination of approaches appears adequate to reduce the core radial power peaking, while also providing reactivity suppression. (author)

  19. Etching of glass microchips with supercritical water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-01

    Roč. 15, č. 1 (2015), s. 311-318 ISSN 1473-0197 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GBP206/12/G014; GA MŠk(CZ) EE2.3.20.0182 Institutional support: RVO:68081715 Keywords : glass microchips * channel etching * supercritical water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.586, year: 2015

  20. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  1. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  2. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in the code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.

  3. Muonium in sub- and supercritical water

    International Nuclear Information System (INIS)

    Percival, P.W.; Brodovitch, J.-C.; Ghandi, K.; Addison-Jones, B.; Schuth, J.; Bartels, D.M.

    1999-01-01

    Muonium has been studied in muon-irradiated water over a wide range of conditions, from standard temperature and pressure (STP) up to 350 bar and up to 420 o C, corresponding to water densities from 1.0 down to 0.1 g cm -3 . This is the first report of muonium in supercritical water. Muonium was unambiguously identified from its spin precession frequencies in small transverse magnetic fields. The hyperfine constant was determined and found to be similar to the published values for muonium in water at STP and in vacuum. Muonium was found to be long-lived over the whole range of conditions studied. The fraction of muons which form muonium was found to vary markedly over the density range studied. Correlation of the muonium fraction with the ionic product of water suggests a common cause, such as the rate of proton transfer between molecules involved in the radiolysis of water and the formation of MuOH, which competes with muonium formation

  4. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  5. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  6. Gasification of fruit wastes and agro-food residues in supercritical water

    International Nuclear Information System (INIS)

    Nanda, Sonil; Isen, Jamie; Dalai, Ajay K.; Kozinski, Janusz A.

    2016-01-01

    Highlights: • Supercritical water gasification of various fruit wastes and agro-food residues. • Coconut shell had superior carbon content and calorific value due to high lignin. • Maximum H_2 yields at 600 °C with 1:10 biomass-to-water ratio, 45 min and 23–25 MPa. • High H_2 yields from coconut shell, bagasse and aloe vera rind with 2 wt% K_2CO_3. • High CH_4 yields from coconut shell with 2 wt% NaOH due to methanation reaction. - Abstract: Considerable amounts of fruit wastes and agro-food residues are generated worldwide as a result of food processing. Converting the bioactive components (e.g., carbohydrates, lipids, fats, cellulose, hemicellulose and lignin) in food wastes to biofuels is a potential remediation approach. This study highlights the characterization and hydrothermal conversion of several fruit wastes and agro-food residues such as aloe vera rind, banana peel, coconut shell, lemon peel, orange peel, pineapple peel and sugarcane bagasse to hydrogen-rich syngas through supercritical water gasification. The agro-food wastes were gasified in supercritical water to study the impacts of temperature (400–600 °C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15–45 min) at a pressure range of 23–25 MPa. The catalytic effects of NaOH and K_2CO_3 were also investigated to maximize the hydrogen yields and selectivity. The elevated temperature (600 °C), longer reaction time (45 min) and lower feed concentration (1:10 biomass-to-water ratio) were optimal for higher hydrogen yield (0.91 mmol/g) and total gas yield (5.5 mmol/g) from orange peel. However, coconut shell with 2 wt% K_2CO_3 at 600 °C and 1:10 biomass-to-water ratio for 45 min revealed superior hydrogen yield (4.8 mmol/g), hydrogen selectivity (45.8%) and total gas yield (15 mmol/g) with enhanced lower heating value of the gas product (1595 kJ/Nm"3). The overall findings suggest that supercritical water gasification of fruit wastes and agro-food residues could serve as

  7. Sensitivity analysis of CFD code FLUENT-12 for supercritical water in vertical bare tubes

    Energy Technology Data Exchange (ETDEWEB)

    Farah, A.; Haines, P.; Harvel, G.; Pioro, I., E-mail: amjad.farah@yahoo.com, E-mail: patrickjhaines@gmail.com, E-mail: glenn.harvel@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science,Oshawa, Ontario (Canada)

    2012-07-01

    The ability to use FLUENT 12 or other CFD software to accurately model supercritical water flow through various geometries in diabatic conditions is integral to research involving coal-fired power plants as well as Supercritical Water-cooled Reactors (SCWR). The cost and risk associated with constructing supercritical water test loops are far too great to use in a university setting. Previous work has shown that FLUENT 12, specifically realizable k-ε model, can reasonably predict the bulk and wall temperature distributions of externally heated vertical bare tubes for cases with relatively low heat and mass fluxes. However, sizeable errors were observed for other cases, often those which involved large heat fluxes that produce deteriorated heat transfer (DHT) regimes. The goal of this research is to gain a more complete understanding of how FLUENT 12 models supercritical water cases and where errors can be expected to occur. One control case is selected where expected changes in bulk and wall temperatures occur and they match empirical correlations' predictions, and the operating parameters are varied individually to gauge their effect on FLUENT's solution. The model used is the realizable k-ε, and the parameters altered are inlet pressure, mass flux, heat flux, and inlet temperature. (author)

  8. Stability analysis of a heated channel cooled by supercritical water

    International Nuclear Information System (INIS)

    Magni, M. C.; Delmastro, D. F; Marcel, C. P

    2009-01-01

    A simple model to study thermal-hydraulic stability of a heated cannel under supercritical conditions is presented. Single cannel stability analysis for the SCWR (Supercritical Water Cooled Reactor) design was performed. The drastic change of fluid density in the reactor core of a SCWR may induce DWO (Density Wave Oscillations) similar to those observed in BWRs. Due to the similarities between subcritical and supercritical systems we may treat the supercritical fluid as a pseudo two-phase system. Thus, we may extend the modeling approach often used for boiling flow stability analysis to supercritical pressure operation conditions. The model developed in this work take into account three regions: a heavy fluid region, similar to an incompressible liquid; a zone where a heavy fluid and a light fluid coexist, similar to two-phase mixture; and a light fluid region which behaves like superheated steam. It was used the homogeneous equilibrium model (HEM) for the pseudo boiling zone, and the ideal gas model for the pseudo superheated steam zone. System stability maps were obtained using linear stability analysis in the frequency domain. Two possible instability mechanisms are observed: DWO and excursive Ledinegg instabilities. Also, a sensitivity analysis showed that frictions in pseudo superheated steam zone, together with acceleration effect, are the most destabilizing effects. On the other hand, frictions in pseudo liquid zone are the most important stabilizing effect. [es

  9. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    2014-08-01

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  10. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  11. Corrosion and deuterium uptake of Zr-based alloys in supercritical water

    International Nuclear Information System (INIS)

    Khatamian, D.

    2010-01-01

    To increase the thermodynamic efficiency above 40% in nuclear power plants, the use of supercritical water as the heat transport fluid has been suggested. Zircaloy-2, -4, Zr-Cr-Fe, Zr-1Nb and Zr-2.5Nb were tested as prospective fuel cladding materials in 30 MPa D 2 O at 500 o C. Zircaloy-2 showed the highest rates of corrosion and hydriding. Although Zr-Cr-Fe initially showed a very low corrosion rate, it displayed breakaway corrosion kinetics after 50 h exposure. The best-behaved material both from a corrosion and hydrogen uptake point of view was Zr-2.5Nb. However, the Zr-2.5Nb oxide growth rate was still excessive and beyond the current CANDU design allowance. Similar coupons, coated with Cr, were also tested. The coated layer effectively prevented oxidation of the coupons except on the edges, where the coating was thinner and had some flaws. In addition, the Cr-coated Zr-2.5Nb coupons had the lowest deuterium pickup of all the alloys tested and showed no signs of accelerated or nonuniform corrosion. (author)

  12. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    Science.gov (United States)

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. 1998 annual progress report

    International Nuclear Information System (INIS)

    Blake, D.M.

    1998-01-01

    'This report summarizes the results of work done during the first 1.3 years of a three year project. During the first nine months effort focussed on the design, construction and testing of a closed recirculating system that can be used to study photochemistry in supercritical carbon dioxide at pressures up to 5,000 psi and temperatures up to about 50 C. This was followed by a period of work in which the photocatalytic oxidation of benzene and acetone in supercritical, liquid, and gaseous carbon dioxide containing dissolved oxygen was demonstrated. The photocatalyst was titanium dioxide supported on glass spheres. This was the first time it was possible to observe photocatalytic oxidation in a supercritical fluid and to compare reaction in the three fluid phases of a solvent. This also demonstrated that it is possible to purify supercritical and liquid carbon dioxide using photochemical oxidation with no chemical additions other than oxygen. The oxidation of benzene produced no intermediates detectable using on line spectroscopic analysis or by gas chromatographic analysis of samples taken from the flow system. The catalyst surface did darken as the reaction proceeded indicating that oxidation products were accumulating on the surface. This is analogous to the behavior of aromatic compounds in air phase photocatalytic oxidation. The reaction of acetone under similar conditions resulted in the formation of low levels of by-products. Two were identified as products of the reaction of acetone with itself (4-methyl-3-penten-2-one and 4-hydroxy-4-methyl-2-pentanone) using gas chromatography with a mass spectrometer detector. Two other by-products also appear to be from the self-reaction of acetone. By-products of this type had not been observed in prior studies of the gas-phase photocatalytic oxidation of acetone. The by-products that have been observed can also be oxidized under the treatment conditions. The above results establish that photocatalytic oxidation of

  14. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  15. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Silva, Mário A. B. da; Lapa, Celso M.F.

    2016-01-01

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  16. Investigation on leaching of actinide oxides into supercritical fluids

    International Nuclear Information System (INIS)

    Shafikov, D.N.; Kamachev, V.A.; Babain, V.A.; Murzin, A.A.; Shadrin, A.Yu.; Podojnitsin, S.V.

    2006-01-01

    The extraction of actinide oxides into solutions of the TBP-HNO 3 complex in supercritical (SC) CO 2 was investigated. Experiments on the extraction of the TBP-HNO 3 complex into SC CO 2 were first conducted. It was found that a constant concentration of TBP in SC CO 2 of 13.5-14.8 % vol. can be attained using a constant molar ratio of [HNO 3 ]:[TBP] about 2.5 : 1. Joint leaching of uranium, plutonium and neptunium from mixtures of actinide oxides with solutions of TBP-HNO 3 in SC CO 2 was found feasible. If the leaching of uranium is about 95 %, its purification coefficients from major gamma-emitting radionuclides (Cs and Sr) exceed 100, while the purification coefficients of uranium from rare earth elements are 10-20

  17. Biodiesel from sunflower oil in supercritical methanol with calcium oxide

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2007-01-01

    In this study, sunflower seed oil was subjected to the transesterification reaction with calcium oxide (CaO) in supercritical methanol for obtaining biodiesel. Methanol is used most frequently as the alcohol in the transesterification process. Calcium oxide (CaO) can considerably improve the transesterification reaction of sunflower seed oil in supercritical methanol. The variables affecting the methyl ester yield during the transesterification reaction, such as the catalyst content, reaction temperature and the molar ratio of soybean oil to alcohol, were investigated and compared with those of non-catalyst runs. The catalytic transesterification ability of CaO is quite weak under ambient temperature. At a temperature of 335 K, the yield of methyl ester is only about 5% in 3 h. When CaO was added from 1.0% to 3.0%, the transesterification speed increased evidently, while when the catalyst content was further enhanced to 5%, the yield of methyl ester slowly reached to a plateau. It was observed that increasing the reaction temperature had a favorable influence on the methyl ester yield. In addition, for molar ratios ranging from 1 to 41, as the higher molar ratios of methanol to oil were charged, the greater transesterification speed was obtained. When the temperature was increased to 525 K, the transesterification reaction was essentially completed within 6 min with 3 wt% CaO and 41:1 methanol/oil molar ratio

  18. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues

    2006-06-01

    Full Text Available Techniques involving supercritical carbon dioxide have been successfully used for the formation of drug particles with controlled size distributions. However, these processes show some limitations, particularly in processing aqueous solutions. A diagram walking algorithm based on available experimental data was developed to evaluate the effect of ethanol on the efficiency of water removal processes under different process conditions. Ethanol feeding was the key parameter resulting in a tenfold increase in the efficiency of water extraction.

  19. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    Science.gov (United States)

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. CFD validation of a supercritical water flow for SCWR design heat and mass fluxes

    International Nuclear Information System (INIS)

    Roelofs, F.; Lycklama a Nijeholt, J.A.; Komen, E.M.J.; Lowenberg, M.; Starflinger, J.

    2007-01-01

    The applicability of Computational Fluid Dynamics (CFD) for water under supercritical conditions in supercritical water reactors (SCWR) has still to be verified. In the recent past, CFD validation analyses were performed by various institutes for supercritical water in vertical tubes based on the well known experimental data from Yamagata. However, validation using data from experiments with working conditions closer to the actual operational conditions of such reactors is needed. From a literature survey the experiments performed by Herkenrath are selected to perform validation analyses at higher heat fluxes and a higher mass flux. The accuracy of CFD using RANS (Reynolds Average Navier-Stokes) turbulence modelling for supercritical fluids under conditions close to the operational conditions of a supercritical water reactor is determined. It is concluded that the wall temperature can be predicted by RANS CFD, using the RNG k-ε turbulence model, with accuracy in the range of 5% for heat fluxes up to 1100 kW/m 2 and for a bulk enthalpy up to 2200 kJ/kg. For a bulk enthalpy exceeding 2200 kJ/kg, a significant lower accuracy of the CFD predictions (about 3%) is found for the simulations of the experiments of Yamagata in comparison with the simulations of the experiments of Herkenrath. For these experiments, the accuracy is about 18 per cent. This might be a result of the fact that the CFD analyses do not simulate the flattening of the temperature profile at about 2200 kJ/kg which is found in the experiments of Herkenrath. However, the obtained accuracies ranging from 3% to 18% are still deemed to be acceptable for many design purposes. (authors)

  1. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Divilio, R.J. [Combustion Systems Inc., Silver Spring, MD (United States)

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  2. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  3. Optimization of a fuel bundle within a CANDU supercritical water reactor

    International Nuclear Information System (INIS)

    Schofield, M.E.

    2009-01-01

    The supercritical water reactor is one of six nuclear reactor concepts being studied under the Generation IV International Forum. Generation IV nuclear reactors will improve the metrics of economics, sustainability, safety and reliability, and physical protection and proliferation resistance over current nuclear reactor designs. The supercritical water reactor has specific benefits in the areas of economics, safety and reliability, and physical protection. This work optimizes the fuel composition and bundle geometry to maximize the fuel burnup, and minimize the surface heat flux and the form factor. In optimizing these factors, improvements can be achieved in the areas of economics, safety and reliability of the supercritical water reactor. The WIMS-AECL software was used to model a fuel bundle within a CANDU supercritical water reactor. The Gauss' steepest descent method was used to optimize the above mentioned factors. Initially the fresh fuel composition was optimized within a 43-rod CANFLEX bundle and a 61-rod bundle. In both the 43-rod and 61-rod bundle scenarios an online refuelling scheme and non-refuelling scheme were studied. The geometry of the fuel bundles was then optimized. Finally, a homogeneous mixture of thorium and uranium fuel was studied in a 60-rod bundle. Each optimization process showed definitive improvements in the factors being studied, with the most significant improvement being an increase in the fuel burnup. The 43-rod CANFLEX bundle was the most successful at being optimized. There was little difference in the final fresh fuel content when comparing an online refuelling scheme and non-refuelling scheme. Through each optimization scenario the ratio of the fresh fuel content between the annuli was a significant determining cause in the improvements in the factors being optimized. The geometry optimization showed that improvement in the design of a fuel bundle is indeed possible, although it would be more advantageous to pursue it

  4. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  5. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol

  6. Thermal-Hydraulic Analysis of a Supercritical Water Reactor (SCWR) Core

    International Nuclear Information System (INIS)

    Kucukboyaci, V.N.; Oriani, L.

    2004-01-01

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor

  7. On the gasification of wet biomass in supercritical water : over de vergassing van natte biomassa in superkritiek water

    NARCIS (Netherlands)

    Withag, J.A.M.

    2013-01-01

    Supercritical water gasification (SCWG) is a challenging thermo-chemical conversion route for wet biomass and waste streams into hydrogen and/or methane. At temperatures and pressures above the critical point the physical properties of water differ strongly from liquid water or steam. Because of the

  8. Challenges of selecting materials for the process of biomass gasification in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Boukis, N.; Habicht, W.; Hauer, E.; Dinjus, E. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Chemie

    2010-07-01

    A new process for the gasification of wet biomass is the reaction in supercritical water. The product is a combustible gas, rich in hydrogen with a high calorific value. The reaction is performed under high temperatures - up to 700 C - and pressures up to 30 MPa. The combination of these physical conditions and the corrosive environment is very demanding for the construction materials of the reactor. Only few alloys exhibit the required mechanical properties, especially the mechanical strength at temperatures higher than 600 C. Ni-Base alloys like alloy 625 can be applied up to a temperature of 700 C and are common materials for application under supercritical water conditions. During gasification experiments with corn silage and other biomasses, corrosion of the reactor material alloy 625 appears. The gasification of an aqueous methanol solution in supercritical water at temperatures up to 600 C and 25 - 30 MPa pressure results in an product gas rich in hydrogen, carbon dioxide and some methane. Alloy 625 shows very low corrosion rates in this environment. It is obvious that the heteroatoms and salts present in biomass cause corrosion of the reactor material. (orig.)

  9. Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Boukis, N.; Kritzer, P.

    1997-01-01

    Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs

  10. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  11. Temperature feedback effects in a supercritical water reactor concept with multiple heat-up steps

    International Nuclear Information System (INIS)

    Barragan-Martinez, A.M.; Espinosa-Paredes, G.; Vazquez-Rodriguez, A.; Martin-del-Campo, C.; Francois, J.L.

    2014-01-01

    The Supercritical Water Cooled Reactor (SCWR) is one of the most promising and innovative designs selected by the Generation IV International Forum. One of the concepts being studied is the High Performance Light Water Reactor (HPLWR), which is the European version of the SCWR. In this paper we present the numerical analysis of the behavior of a HPLWR with temperature feedback effects. The neutronic process, the heat transfer in the fuel rod and the thermalhydraulics in the core of the HPLWR were considered in this study. The neutronic calculations were performed with HELIOS-2 and the obtained results were used to evaluate the reactivity due to fuel temperature and supercritical water density. (author)

  12. Temperature feedback effects in a supercritical water reactor concept with multiple heat-up steps

    Energy Technology Data Exchange (ETDEWEB)

    Barragan-Martinez, A.M., E-mail: albrm29@yahoo.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria, Jiutepec, Mor (Mexico); Espinosa-Paredes, G.; Vazquez-Rodriguez, A., E-mail: gepe@xanum.uam.mx, E-mail: vara@xanum.uam.mx [Universidad Autonoma Metropolitana-Iztapalapa, Area de Ingenieria en Rescursos Energeticos, Col. Vicentina (Mexico); Martin-del-Campo, C.; Francois, J.L., E-mail: cecilia.martin.del.campo@gmail.com, E-mail: juan.louis.francois@gmail.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria, Jiutepec, Mor (Mexico)

    2014-07-01

    The Supercritical Water Cooled Reactor (SCWR) is one of the most promising and innovative designs selected by the Generation IV International Forum. One of the concepts being studied is the High Performance Light Water Reactor (HPLWR), which is the European version of the SCWR. In this paper we present the numerical analysis of the behavior of a HPLWR with temperature feedback effects. The neutronic process, the heat transfer in the fuel rod and the thermalhydraulics in the core of the HPLWR were considered in this study. The neutronic calculations were performed with HELIOS-2 and the obtained results were used to evaluate the reactivity due to fuel temperature and supercritical water density. (author)

  13. FY 1998 'The New Sunshine Project' leading R and D. Report on the results of the leading R and D of supercritical fluid utilization technology; 1998 nendo 'New Sunshine Keikaku' sendo kenkyu kaihatsu. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the FY 1998 achievement of the supercritical fluid utilization leading R and D which started in FY 1997 on a 3-year plan. In the R and D, solvolysis reaction, oxidation reaction and hydrogenation reaction were taken up in the chemical process using supercritical fluid. In the study of solvolysis reaction, the basic data were obtained on decomposition conditions of thermoplastic and thermosetting plastics in supercritical water. Further, concerning the synthesis of environmental friendly type carbonate using CO2, a conversion rate of almost 100% was obtained. About the oxidation reaction, conditions were found out for burning low grade coal in supercritical water without emitting acid gas. This is considered to lead to a possibility of the supercritical water power generation. Relating to the hydrogenation reaction, a study was made on lightening technology of heavy distillate using supercritical water, and the conditions for effective emission of methane and hydrogen were found out. As to the base technology, a study was made of metal materials with high corrosion resistance against supercritical water. (NEDO)

  14. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  15. Research and development of the supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Oka, Yoshiaki

    2003-01-01

    The concept of high temperature reactor cooled by light water (SCR) has been developed at the University of Tokyo since 1989. Major elements of reactor conceptual design and safety were studied. It includes fuel rod design, core design of thermal and fast reactors, plant heat balance, safety design, accident and transient analysis, LOCA, PSA, plant control, start-up and stability. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical FPP in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil Fired Power Plants (FPP) will be fully utilized for SCR. Although the concept was developed at the University of Tokyo mostly with our own funds and resources, four funding was/is provided for the research in Japan so far. Those are TEPCO studies with Japanese vendors in 1994 and 1995. JSPS (Monbusho) funding of pulse radiolysis of supercritical water to the University of Tokyo, Japanese-NERI program of METI to Toshiba team on thermal hydraulics, corrosion and plant system and Japanese-NERI program of MEXT on water chemistry to the University of Tokyo. The concept was taken as the reference of HPLWR study in Europe with funding of EU in 2000 and 2001. The concept was evaluated in the Generation 4 reactor program in USA. It was selected as only one water-cooled Generation 4 reactor. This paper describes the overview of the conceptual design at the University of Tokyo and R and D in the world

  16. Thermo hydraulic analysis of narrow channel effect in supercritical-pressure light water reactor

    International Nuclear Information System (INIS)

    Zhou Tao; Chen Juan; Cheng Wanxu

    2012-01-01

    Highlights: ► Detailed thermal analysis with different narrow gaps between fuel rods is given. ► Special characteristics of narrow channels effect on heat transfer in supercritical pressure are shown. ► Reasonable size selection of gaps between fuel rods is proposed for SCWR. - Abstract: The size of the gap between fuel rods has important effects on flow and heat transfer in a supercritical-pressure light water reactor. Based on thermal analysis at different coolant flow rates, the reasonable value range of gap size between fuel rods is obtained, for which the maximum cladding temperature safety limits and installation technology are comprehensively considered. Firstly, for a given design flow rate of coolant, thermal hydraulic analysis of supercritical pressure light water reactor with different gap sizes is provided by changing the fuel rod pitch only. The results show that, by means of reducing the gap size between fuel rods, the heat transfer coefficients between coolant and fuel rod, as well as the heat transfer coefficient between coolant and water rod, would both increase noticeably. Furthermore, the maximum cladding temperature will significantly decrease when the moderator temperature is decreased but coolant temperature remains essentially constant. Meanwhile, the reduction in the maximum cladding temperature in the inner assemblies is much larger than that in the outer assemblies. In addition, the maximum cladding temperature could be further reduced by means of increasing coolant flow rate for each gap size. Finally, the characteristics of narrow channels effect are proposed, and the maximum allowable gap between fuel rods is obtained by making full use of the enhancing narrow channels effect on heat transfer, and concurrently considering installation. This could provide a theoretical reference for supercritical-pressure light water reactor design optimization, in which the effects of gap size and flow rate on heat transfer are both considered.

  17. Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Jiancheng Wang

    2014-01-01

    Full Text Available A series of manganese salts (Mn(NO32, MnCl2, MnSO4, and Mn(Ac2 and silicon materials (silica sand, silica sol, and tetraethyl orthosilicate were used to synthesize Mn/Si complexes in supercritical water using a tube reactor. X-ray diffraction (XRD, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, and scanning electron microscopy (SEM were employed to characterize the structure and morphology of the solid products. It was found that MnO2, Mn2O3, and Mn2SiO4 could be obtained in supercritical water at 673 K in 5 minutes. The roles of both anions of manganese salts and silicon species in the formation of manganese silicon complexes were discussed. The inorganic manganese salt with the oxyacid radical could be easily decomposed to produce MnO2/SiO2 and Mn2O3/SiO2. It is interesting to found that Mn(Ac2 can react with various types of silicon to produce Mn2SiO4. The hydroxyl groups of the SiO2 surface from different silicon sources enhance the reactivity of SiO2.

  18. Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes

    International Nuclear Information System (INIS)

    Pis'menny, E.N.; Razumovskiy, V.G.; Maevskiy, E.M.; Koloskov, A.E.; Pioro, I.L.

    2006-01-01

    The results on heat transfer to supercritical water heated above the pseudo-critical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m 2 s), inlet temperature from 100 to 415 deg. C and heat flux up to 3.2 MW/m 2 . Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudo-critical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re 2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data. (authors)

  19. Physico-chemical effects of supercritical carbon dioxide post polymerization treatment on HCl-doped polyaniline prepared via oxidative chemical polymerization

    Science.gov (United States)

    Fernando, J. G.; Vequizo, R. M.; Odarve, M. K. G.; Sambo, B. R. B.; Alguno, A. C.; Malaluan, R. M.; Candidato, R. T., Jr.; Gambe, J. E.; Jabian, M.; Paylaga, G. J.; Bagsican, F. R. G.; Miyata, H.

    2015-06-01

    Polyanilinefilms doped with varying HClconcentrations (0.2 M, 0.6 M and 1.0 M) were synthesized on glass substrates via oxidative polymerization of aniline. The films were treated with supercritical carbon dioxide (SC-CO2) at 30 MPa and 40°C for 30 minutes. Their structural, optical and morphological properties were studied and compared to conventionally prepared polyanilinefilms using FTIR analysis, UVVisspectroscopy and scanning electron microscopy. It was observed that supercritical carbon dioxide (SC-CO2) could interact with PANI films that consequently altered the bandgapsand changed the film thickness. SC-CO2 treatment also increased the oxidation level of polyanilinefilms and modified the morphology of polyanilinefilm doped with 1M HCl.

  20. Fiscal 1997 report on the results of the introductory R and D of the New Sunshine Project under a consignment from NEDO. Introductory R and D of the supercritical fluid use technology; 1997 nendo `New Sunshine keikaku` sendo kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The R and D of chemical reaction using supercritical fluids started in fiscal 1997. In the R and D of solvent reaction, as the research on polymer decomposition with supercritical water, studies were conducted of the mechanism of conversion reaction to chemical materials, cleavage mechanism of stable chemical bonds, and synthetic reaction in the supercritical state reaction field. In the research on oxidation reaction, as the study of complete oxidation in supercritical water for high efficiency energy recovery, studies of complete oxidation of liquid fuels, and complete oxidation of solid fuels. In the research on hydrogenation, studies of lightening of heavy oil in supercritical water, etc. In the R and D of the basic technology, studies of corrosion mechanism of metals in supercritical water, construction of the basic framework for technical database of supercritical fluids, etc. In the survey of technical trends and new research themes, the introductory R and D of element technology, etc. were conducted, and the results were described of the survey of technical trends and new research themes and the trend survey of overseas technology. 314 refs., 87 figs., 81 tabs.

  1. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  2. Experimental study on heat transfer to supercritical water flowing in 1- and 4-m-long vertical tubes

    International Nuclear Information System (INIS)

    Kirillov, Pavel; Pomet'ko, Richard; Smirnov, Aleksandr; Grabezhnaia, Vera; Pioro, Igor; Duffey, Romney; Khartabil, Hussam

    2005-01-01

    This paper presents selected on heat transfer to supercritical water flowing upward in 1- and 4-m-long vertical tubes. Supercritical water heat-transfer data were obtained at pressures of 24-25 MPa, mass fluxes of 200 - 1500 kg/m 2 s, heat fluxes up to 1050 kW/m 2 and inlet temperature from 300 to 380degC for several combinations of wall and bulk fluid temperatures that were below, at or above the pseudocritical temperature. In general, the experiments confirmed that there are three heat transfer modes for water at supercritical pressures: (1) normal heat transfer characterized in general with heat transfer coefficients (HTCs) similar to those of subcritical convective heat transfer far from critical or pseudocritical regions, which are calculated according to the Dittus-Boelter type correlations, (2) deteriorated heat transfer with lower values of the HTC and hence higher values of wall temperature within some part of a test section compared to those of normal heat transfer and (3) improved heat transfer with higher values of the HTC and hence lower values of wall temperature within some part of a test section compared to those of normal heat transfer. These new heat-transfer data are applicable as a reference dataset for future comparison with supercritical water bundle data and for the verification of scaling parameters between water and modelling fluids. (author)

  3. FY 1998 'The New Sunshine Project' leading R and D. Report on the results of the leading R and D of supercritical fluid utilization technology; 1998 nendo 'New Sunshine Keikaku' sendo kenkyu kaihatsu. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the FY 1998 achievement of the supercritical fluid utilization leading R and D which started in FY 1997 on a 3-year plan. In the R and D, solvolysis reaction, oxidation reaction and hydrogenation reaction were taken up in the chemical process using supercritical fluid. In the study of solvolysis reaction, the basic data were obtained on decomposition conditions of thermoplastic and thermosetting plastics in supercritical water. Further, concerning the synthesis of environmental friendly type carbonate using CO2, a conversion rate of almost 100% was obtained. About the oxidation reaction, conditions were found out for burning low grade coal in supercritical water without emitting acid gas. This is considered to lead to a possibility of the supercritical water power generation. Relating to the hydrogenation reaction, a study was made on lightening technology of heavy distillate using supercritical water, and the conditions for effective emission of methane and hydrogen were found out. As to the base technology, a study was made of metal materials with high corrosion resistance against supercritical water. (NEDO)

  4. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube

    International Nuclear Information System (INIS)

    Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan

    2009-01-01

    In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was

  5. Supercritical water oxidation of 2-, 3- and 4-nitroaniline: A study on nitrogen transformation mechanism.

    Science.gov (United States)

    Yang, Bowen; Cheng, Zhiwen; Fan, Maohong; Jia, Jinping; Yuan, Tao; Shen, Zhemin

    2018-08-01

    Supercritical water oxidation (SCWO) of 2-, 3- and 4-nitroaniline (NA) was investigated under residence time of 1-6 min, pressure of 18-26 MPa, temperature of 350-500 °C, with initial concentration of 1 mM and 300% excess oxygen. Among these operating conditions, temperature and residence time played a more significant role in decomposing TOC and TN than pressure. Moreover, the products of N-containing species were mainly N 2 , ammonia and nitrate. When temperature, pressure and retention time enhanced, the yields of NO 3 - and org-N were reduced, the amount of N 2 was increasing, the proportion of NH 4 + , however, presented a general trend from rise to decline in general. The experiment of aniline/nitrobenzene indicated that TN removal behavior between amino and nitro groups would prefer to happen in the molecule rather than between the molecules, therefore, the smaller interval between the amino and nitro group was the more easily to interreact. This might explain the reason why TN removal efficiency was in an order that 2-NA > 3-NA > 4-NA. The NH 4 + /NO 3 - experiment result demonstrated that ammonia and nitrate did convert into N 2 during SCWO, however, the formation of N 2 was little without auxiliary fuel. Density functional theory (DFT) method was used to calculate the molecular structures of 2-, 3- and 4-NA to further explore reaction mechanism, which verified that amino group was more easily to be attacked than nitro group. Based on these results, the conceivable reaction pathways of 2-, 3- and 4-NA were proposed, which contained three parts, namely denitrification, ring-open and mineralization. Copyright © 2018. Published by Elsevier Ltd.

  6. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  7. High-frequency dynamics of liquid and supercritical water

    International Nuclear Information System (INIS)

    Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Sette, F.; Ruocco, G.

    2007-01-01

    The dynamic structure factor S(Q,ω) of water has been determined by high-resolution inelastic x-ray scattering (IXS) in a momentum (Q) and energy (E) transfer range extending from 2 to 4 nm -1 and from ±40 meV. IXS spectra have been recorded along an isobaric path (400 bar) in a temperature (T) interval ranging from ambient up to supercritical (T>647 K) conditions. The experimental data have been described in the frame of the generalized hydrodynamic theory, utilizing a model based on the memory function approach. This model allows identifying the active relaxation processes which affect the time decay of density fluctuations, as well as a direct determination of the Q, T, and density (ρ) dependencies of the involved transport parameters. The experimental spectra are well described by considering three different relaxation processes: the thermal, the structural, and the instantaneous one. On approaching supercritical conditions, we observe that the microscopic mechanism responsible for the structural relaxation is no longer related to the making and breaking of intermolecular bonds, but to binary intermolecular collisions

  8. Numerical comparison of thermal hydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan Krishna Singhar; Basu, Dipankar Narayan [Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India)

    2017-02-15

    Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  9. Low Temperature Synthesis of Metal Oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process

    DEFF Research Database (Denmark)

    Jensen, Henrik; Brummerstedt Iversen, Steen; Joensen, Karsten Dan

    2006-01-01

    A novel method for producing crystalline nanosized metal oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process has been developed. The process is a modified sol-gel process taking place at temperatures as low as 95 ºC with supercritical CO2 as solvent and polypropylene as seeding...... material. The nanocrystalline product is obtained without having to resort to costly post-reaction processing and the product is obtained directly after the SSEC process. TiO2 powders produced by the SSEC process were shown to have a crystallinity of 60 % and a crystal size of 7.3 ± 2.6 nm....... The crystallinity can be controlled by changing the heating rate of the initial formation of the nanoparticles and the morphology can be altered by changing the process time....

  10. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    Science.gov (United States)

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  12. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).

  13. NOMAGE4 activities 2011, Part II, Supercritical water loop

    DEFF Research Database (Denmark)

    Vierstraete, Pierre; Van Nieuwenhove, Rudi; Lauritzen, Bent

    The supercritical water reactor (SCWR) is one of the six different reactor technologies selected for research and development under the Generation IV program. Several countries have shown interest to this concept but up to now, there exist no in-pile facilities to perform the required material...... and fuel tests. Working on this direction, the Halden Reactor Project has started an activity in collaboration with Risoe-DTU (with Mr. Rudi Van Nieuwenhove as the project leader) to study the feasibility of a SCW loop in the Halden Reactor, which is a Heavy Boiling Water Reactor (HBWR). The ultimate goal...

  14. NOMAGE4 activities 2011. Part II, Supercritical water loop

    Energy Technology Data Exchange (ETDEWEB)

    Vierstraete, P. (Ecole Nationale Superieure des mines, Paris (France)); Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (HRP), Kjeller (Norway)); Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2012-01-15

    The supercritical water reactor (SCWR) is one of the six different reactor technologies selected for research and development under the Generation IV program. Several countries have shown interest to this concept but up to now, there exist no in-pile facilities to perform the required material and fuel tests. Working on this direction, the Halden Reactor Project has started an activity in collaboration with Risoe-DTU (with Mr. Rudi Van Nieuwenhove as the project leader) to study the feasibility of a SCW loop in the Halden Reactor, which is a Heavy Boiling Water Reactor (HBWR). The ultimate goal of the project is to design a loop allowing material and fuel test studies at significant mass flow with in-core instrumentation and chemistry control possibilities. The present report focusses on the main heat exchanger required for such a loop in the Halden Reactor. The goal of this heat exchanger is to assure a supercritical flow state inside the test section (the core side) and a subcritical flow state inside the pump section. The objective is to design the heat exchanger in order to optimize the efficiency of the heat transfer and to respect several requirements as the room available inside the reactor hall, the maximal total pressure drop allowed and so on. (Author)

  15. A novel technique for hydrogen production from hog-manure in supercritical partial oxidation (SCWPO)

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Emhemmed A.; Charpentier, Paul [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Nakhla, George [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Elbeshbishy, Elsayed; Hafez, Hisham [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    In this study, the catalytic hydrogen production from hog manure using supercritical water partial oxidation was investigated in a batch reactor at a temperature of 500 C, and pressure of 28 MPa using several metallic catalysts. Hog manure was characterized by a total and soluble chemical oxygen demand (TCOD, SCOD) of 57000 and 28000 mg/L, total and volatile suspended solids (TSS, VSS) of 25000, 19000, and ammonia of 2400 mg/L, respectively. The order of H{sub 2} production was the following: Pd/AC > Ru/Al{sub 2}O{sub 3} > Ru/AC > AC > NaOH. The order of COD reduction efficiency was as follows: NaOH > Ru/AC > AC > Ru/Al{sub 2}O{sub 3} > Pd/AC. The behaviour of the volatile fatty acids (VFA's), ethanol, methanol, ammonia, H{sub 2}S, and Sulfate was investigated experimentally and discussed. A 35 % reduction in the H{sub 2} and CH{sub 4} yields was observed in the sequential gasification partial oxidation (oxidant at an 80 % of theoretical requirement) experiments compared to the gasification experiments (catalyst only). Moreover, this reduction in gas yields was coincided with a 45 % reduction in the liquid effluent chemical oxygen demand (COD), 60 % reduction of the ammonia concentration in the liquid effluent, and 20 % reduction in the H{sub 2}S concentration in the effluent gas. (orig.)

  16. A study on physical characteristics of supercritical light - water reactor loaded with (232U-238Th-238U) oxide fuel

    International Nuclear Information System (INIS)

    Kulikov, E. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, G. G.

    2007-01-01

    The attractiveness of using (U-Th)-fuel in supercritical light water reactor is considered. The dilution of 2 33U in 2 38U is proposed with the purpose of increasing non-proliferation of this fissile isotope. Comparison of different fuel compositions is accomplished from the point of view of fissile isotope breeding and achieved burn-up; parasitic neutron absorption cross-sections are also compared. It is analyzed the impact for neutron balance of both cladding materials: zirconium alloy and stainless steel

  17. Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water

    International Nuclear Information System (INIS)

    Takesue, Masafumi; Suino, Atsuko; Hakuta, Yukiya; Hayashi, Hiromichi; Smith, Richard Lee

    2008-01-01

    Luminescence appearance of Mn-doped zinc silicate (Zn 2 SiO 4 :Mn 2+ , ZSM) formed in supercritical water at 400 deg. C and 29 MPa at reaction times from 1 to 4320 min was studied in the relation to its phase formation mechanism. Appearance of luminescent ZSM from green emission by α-ZSM and yellow emission by β-ZSM occurred over the same time period during the onset of phase formation at a reaction time of 2 min. Luminescence appeared at a much lower temperature and at shorter reaction times than the conventional solid-state reaction. Needle-like-shaped α-ZSM was the most stable particle shape and phase in the supercritical water reaction environment and particles formed via two routes: a homogenous nucleation route and a heterogenous route that involves solid-state diffusion and recrystallization. - Graphical abstract: Luminescence appearance of Mn-doped zinc silicate (Zn 2 SiO 4 :Mn 2+ , ZSM) formed in supercritical water at 400 deg. C and 29 MPa were studied in the relation to its phase formation mechanism. Green emission by α-ZSM and yellow emission by β-ZSM occurred over the same time period during the onset of phase formation

  18. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery

    NARCIS (Netherlands)

    Acelas Soto, N.Y.; Lopez, D.P.; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2014-01-01

    In this study, the feasibility of the gasification of dewatered sewage sludge in supercritical water (SCW) for energy recovery combined with P-recovery from the solid residue generated in this process was investigated. SCWG temperature (400 °C, 500 °C, 600 °C) and residence time (15 min, 30 min, 60

  19. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  20. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    Yamada, K.; Aksan, S. N.

    2012-01-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  1. Hydrogen production by supercritical water gasification of alkaline black liquor

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Changqing; Guo, Liejin; Chen, Yunan; Lu, Youjun [Xi' an Jiatong Univ. (China)

    2010-07-01

    Black liquor was gasified continuously in supercritical water successfully and the main gaseous products were H{sub 2}, CO{sub 2} and CH{sub 4} with little amount of CO, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. The increase of the temperature and the decrease of the flow rate and black liquor concentration enhanced SCWG of black liquor. The change of the system pressure had limited influence on the gasification effect. The maximal COD removal efficiency of 88.69 % was obtained at the temperature of 600 C. The pH values of the aqueous residue were all decreased to the range of 6.4{proportional_to}8 while the pH value of cooling effluence below 360 C increased to about 11 and the sodium content was much higher than that in the aqueous residue. The reaction rate for COD degradation in supercritical water was obtained by assuming pseudo first order reaction. And the activation energy and pre-exponential for COD removal in SCWG were 74.38kJ/mol and 1.11 x 10{sup 4} s{sup -1} respectively. (orig.)

  2. Assessment of heat transfer correlations for supercritical water in the frame of best-estimate code validation

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Espinoza, Victor H. Sanchez; Schneider, Niko; Hurtado, Antonio

    2009-01-01

    Within the frame of the Generation IV international forum six innovative reactor concepts are the subject of comprehensive investigations. In some projects supercritical water will be considered as coolant, moderator (as for the High Performance Light Water Reactor) or secondary working fluid (one possible option for Liquid Metal-cooled Fast Reactors). Supercritical water is characterized by a pronounced change of the thermo-physical properties when crossing the pseudo-critical line, which goes hand in hand with a change in the heat transfer (HT) behavior. Hence, it is essential to estimate, in a proper way, the heat-transfer coefficient and subsequently the wall temperature. The scope of this paper is to present and discuss the activities at the Institute for Reactor Safety (IRS) related to the implementation of correlations for wall-to-fluid HT at supercritical conditions in Best-Estimate codes like TRACE as well as its validation. It is important to validate TRACE before applying it to safety analyses of HPLWR or of other reactor systems. In the past 3 decades various experiments have been performed all over the world to reveal the peculiarities of wall-to-fluid HT at supercritical conditions. Several different heat transfer phenomena such as HT enhancement (due to higher Prandtl numbers in the vicinity of the pseudo-critical point) or HT deterioration (due to strong property variations) were observed. Since TRACE is a component based system code with a finite volume method the resolution capabilities are limited and not all physical phenomena can be modeled properly. But Best -Estimate system codes are nowadays the preferred option for safety related investigations of full plants or other integral systems. Thus, the increase of the confidence in such codes is of high priority. In this paper, the post-test analysis of experiments with supercritical parameters will be presented. For that reason various correlations for the HT, which considers the characteristics

  3. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  4. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    NARCIS (Netherlands)

    Chakinala, A.G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; de Vlieger, Dennis; Seshan, Kulathuiyer; Brilman, Derk Willem Frederik

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni

  5. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  6. Thermodynamic analysis of a supercritical water reactor

    International Nuclear Information System (INIS)

    Edwards, M.

    2007-01-01

    A thermodynamic model has been developed for a hypothetical design of a Supercritical Water Reactor, with emphasis on Canadian design criteria. The model solves for cycle efficiency, mass flows and physical conditions throughout the plant based on input parameters of operating pressures and efficiencies of components. The model includes eight feedwater heaters, three feedwater pumps, a deaerator, a condenser, the core, three turbines and two reheaters. To perform the calculations, Microsoft Excel was used in conjunction with FLUIDCAL-IAPWS95 and VBA code. The calculations show that a thermal efficiency of 47.5% can be achieved with a core outlet temperature of 625 o C. (author)

  7. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  8. Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2012-01-01

    . The capabilities of the model are illustrated in the first two case studies: the phase behavior of mixtures used in the oxidation of 2-octanol in supercritical CO2 and the investigation of systems containing acetone, methanol, water, chloroform, and methyl acetate. In each case, both correlations of vapor...

  9. Thermophysical properties of supercritical water and bond flexibility.

    Science.gov (United States)

    Shvab, I; Sadus, Richard J

    2015-07-01

    Molecular dynamics results are reported for the thermodynamic properties of supercritical water using examples of both rigid (TIP4P/2005) and flexible (TIP4P/2005f) transferable interaction potentials. Data are reported for pressure, isochoric and isobaric heat capacities, the thermal expansion coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, speed of sound, self-diffusion coefficient, viscosities, and thermal conductivity. Many of these properties have unusual behavior in the supercritical phase such as maximum and minimum values. The effectiveness of bond flexibility on predicting these properties is determined by comparing the results to experimental data. The influence of the intermolecular potential on these properties is both variable and state point dependent. In the vicinity of the critical density, the rigid and flexible potentials yield very different values for the compressibilities, heat capacities, and thermal expansion coefficient, whereas the self-diffusion coefficient, viscosities, and thermal conductivities are much less potential dependent. Although the introduction of bond flexibility is a computationally expedient way to improve the accuracy of an intermolecular potential, it can be counterproductive in some cases and it is not an adequate replacement for incorporating the effects of polarization.

  10. Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles

    International Nuclear Information System (INIS)

    Thakre, Sachin; Lakshmanan, S.P.; Kulkarni, Vinayak; Pandey, Manmohan

    2009-01-01

    Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)

  11. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata; Benes, Nieck Edwin; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate

  12. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    DEFF Research Database (Denmark)

    Warner, Genoa; Hansen, Thomas Søndergaard; Riisager, Anders

    2014-01-01

    conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6. h at 310......An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin...

  13. Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions

    International Nuclear Information System (INIS)

    Cook, William G.; Olive, Robert P.

    2012-01-01

    Highlights: ► Pourbaix diagrams for iron–water are extended to low-supercritical temperatures. ► Thermodynamic properties for use in R-HKF model re-evaluated. ► Above the critical point, magnetite solubility is between 10 −11 and 10 −10 mol/kg. - Abstract: The supercritical water-cooled reactor (SCWR) is a Generation IV reactor concept that will operate at temperatures and pressures above water’s thermodynamic critical point. Pourbaix diagrams for the iron–water system at temperatures slightly below and above the critical point at 25 MPa have been constructed to aid the evaluation and development of potential construction materials. High temperature data extrapolation was performed using a revised Helgeson–Kirkham–Flowers model and fit to data on magnetite and hematite solubility in high-temperature water. A low-concentration diagram at 350 °C reveals the importance of water chemistry control to avoid transitioning to an active corrosion region.

  14. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  15. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)

    2005-02-15

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.

  16. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    International Nuclear Information System (INIS)

    Pyo, Dong Jin; Lim, Chang Hyun

    2005-01-01

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures

  17. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor Hugo; Hurtado, Antonio

    2011-01-01

    Highlights: → Implementation of heat transfer correlations for supercritical water into TRACE. → Simulation of several heat transfer experiments with modified TRACE version. → Most correlations are not able to reproduce the experimental results. → Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  18. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Rull, Jordi [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Nonglaton, Guillaume, E-mail: guillaume.nonglaton@cea.fr [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Costa, Guillaume; Fontelaye, Caroline [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Marchi-Delapierre, Caroline; Ménage, Stéphane [Université Grenoble Alpes, Grenoble F38000 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Marchand, Gilles [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France)

    2015-11-01

    Graphical abstract: - Highlights: • First example of grafting of 3,4-epoxybutyltrimethoxysilane (EBTMOS) onto silicon oxide by supercritical fluid deposition. • Extraordinary efficiency of the supercritical fluid deposition for the grafting of the EBTMOS compared with the conventional solution or vapor phase methodologies. • Demonstration of the efficiency of this functionalization process for the immobilization of amino-modified oligonucleotides. - Abstract: The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO{sub 2}) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric

  19. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  20. Practical Suggestions for Calculating Supercritical Water-Steam Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    A standard procedure for determining water-steam properties has been established through an international collaboration in addition to a domestic effort. The current accepted international standard for industrial application is based on the IAPWS-IF97 (International Association for the Properties of Water and Steam-Industrial Formation 97). Based on this standard, the ASME (American Society of Mechanical Engineers)/NIST (National Institute of Standard and Technology) developed the REPROP program in the USA, and the JSME (Japan Society of Mechanical Engineers) developed the steam table and calculation code. Upon applying this standard procedure, modified procedures were proposed for computational convenience, particularly in the supercritical pressure region where non-smooth variations of water-steam properties were distinctively observed. In this paper, the internationally adopted procedures and the progress of related activities are briefly summarized. Some practical considerations are presented for the efficient execution of computational code.

  1. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles

    International Nuclear Information System (INIS)

    Yang Jue; Oka, Yoshiaki; Ishiwatari, Yuki; Liu Jie; Yoo, Jaewoon

    2007-01-01

    Heat transfer in upward flows of supercritical water in circular tubes and in tight fuel rod bundles is numerically investigated by using the commercial CFD code STAR-CD 3.24. The objective is to have more understandings about the phenomena happening in supercritical water and for designs of supercritical water cooled reactors. Some turbulence models are selected to carry out numerical simulations and the results are compared with experimental data and other correlations to find suitable models to predict heat transfer in supercritical water. The comparisons are not only in the low bulk temperature region, but also in the high bulk temperature region. The two-layer model (Hassid and Poreh) gives a better prediction to the heat transfer than other models, and the standard k-ε high Re model with the standard wall function also shows an acceptable predicting capability. Three-dimensional simulations are carried out in sub-channels of tight square lattice and triangular lattice fuel rod bundles at supercritical pressure. Results show that there is a strong non-uniformity of the circumferential distribution of the cladding surface temperature, in the square lattice bundle with a small pitch-to-diameter ratio (P/D). However, it does not occur in the triangular lattice bundle with a small P/D. It is found that this phenomenon is caused by the large non-uniformity of the flow area in the cross-section of sub-channels. Some improved designs are numerically studied and proved to be effective to avoid the large circumferential temperature gradient at the cladding surface

  2. FY 1999 Advanced research and development project under New Sunshine Project. Study on supercritical solvolysis reaction; 1999 nendo chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for the chemical processes which utilize supercritical fluids, in order to establish the basic technologies for the environment-friendly chemical processes. For the solvolysis, the conditions under which plastics are hydrolyzed in supercritical water are investigated, and the basic data are obtained for the optimum conditions under which thermoplastic resins are hydrolyzed. The mechanisms involved in hydrolysis of polymers in supercritical water are elucidated to some extent. The environment-friendly process for synthesizing polycarbonate in supercritical carbon dioxide gas is investigated, and the continuous flow sheets are established for securing almost 100% conversion in the presence of an inexpensive catalyst. For the oxidation, the tests are conducted to burn low-grade coal in supercritical water, and the conditions under which it is burnt without releasing acid and toxic gases are found. For the hydrogenation, heavy fuel oil is treated in supercritical water to produce the lighter products. The conditions under which light oils and gases are produced are clarified, and the basic data are obtained for producing light gases from the resultant coke as the by-product. (NEDO)

  3. Effect of supercritical CO2 on the morphology and fluorescent behavior of fluorinated polyylidenefluorenes derivative/graphene oxide nanohybrids

    NARCIS (Netherlands)

    Li, Jing; Zheng, Shijun; Wang, Xiaobo; Yang, Hongxia; Loos, Katja; Xu, Qun

    2015-01-01

    Fluorinated polyylidenefluorenes derivative, poly [(9-ylidene-{2-tetradecyloxy-5-tetrafluorophthalimide-phenyl}fluorenyl-2,7-diyl)-alt-(1,4-phenyl)] (PFFB)/graphene oxide (GO) nanohybrids (SC-PFFB/GO) were successfully fabricated via a facile method with the assistance of supercritical CO2 (SC CO2).

  4. Assessment of hydrogen bonding effect on ionization of water from ambient to supercritical region–MD simulation approach

    International Nuclear Information System (INIS)

    Swiatla-Wojcik, D.; Mozumder, A.

    2014-01-01

    We present a novel, molecular dynamics (MD) simulation based, strategy to analyze how the degree of hydrogen bonding may influence the ionization and dissociation of water upon heating from ambient to supercritical temperatures. Calculations show a negligible change in the ionization energy up to 200 °C. At higher temperatures the ionization energy increases due to the decreasing degree of hydrogen bonding. The influence of density (pressure) is pronounced in the supercritical region. The ionization is more energy consuming in the less dense fluid. We also show that high temperature and low density may promote dissociation of the electronically excited water molecules. Implications on the initial radiation chemical yields of the hydrated electron, hydrogen atom and hydroxyl radical are discussed. - Highlights: • Up to 200 °C changes in the vertical and adiabatic ionization potentials are negligible. • At higher temperatures ionization is more energy consuming. • Ionization potential increases with decreasing density of supercritical water. • High temperature and low density promote dissociation of the excited molecules

  5. Development of a test facility for analyzing supercritical fluid blowdown

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2015-01-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO 2 ) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO 2 (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  6. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    Directory of Open Access Journals (Sweden)

    A. Ruiz

    2016-06-01

    Full Text Available This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  7. Supercritical water-treated fused silica capillaries in analytical separations: Status review

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Planeta, Josef; Roth, Michal

    2018-01-01

    Roč. 1539, MAR (2018), s. 1-11 ISSN 0021-9673 R&D Projects: GA MV VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  8. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  9. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    International Nuclear Information System (INIS)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.

    2015-01-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  10. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  11. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  12. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Shoucheng, Wen

    2014-01-01

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  13. Simulation of Thermal Hydraulic at Supercritical Pressures with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Joona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI02044 VTT (Finland)

    2008-07-01

    The proposed concepts for the fourth generation of nuclear reactors include a reactor operating with water at thermodynamically supercritical state, the Supercritical Water Reactor (SCWR). For the design and safety demonstrations of such a reactor, the possibility to accurately simulate the thermal hydraulics of the supercritical coolant is an absolute prerequisite. For this purpose, the one-dimensional two-phase thermal hydraulics solution of APROS process simulation software was developed to function at the supercritical pressure region. Software modifications included the redefinition of some parameters that have physical significance only at the subcritical pressures, improvement of the steam tables, and addition of heat transfer and friction correlations suitable for the supercritical pressure region. (author)

  14. Assessment and development of an industrial wet oxidation system for burning waste and low upgrade fuels. Final report, Phase 2B: Pilot demonstration of the MODAR supercritical water oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Stone & Webster Engineering Corporation is Project Manager for the Development and Demonstration of an Industrial Wet Oxidation System for Burning Wastes and Low Grade Fuel. This program has been ongoing through a Cooperative Agreement sponsored by the Department of Energy, initiated in June 1988. This report presents a comprehensive discussion of the results of the demonstration project conducted under this cooperative agreement with the overall goal of advancing the state-of-the-art in the practice of Supercritical Water Oxidation (SCWO). In recognition of the Government`s support of this project, we have endeavored to include all material and results that are not proprietary in as much detail as possible while still protecting MODAR`s proprietary technology. A specific example is in the discussion of materials of construction where results are presented while, in some cases, the specific materials are not identified. The report presents the results chronologically. Background material on the earlier phases (Section 2) provide an understanding of the evolution of the program, and bring all reviewers to a common starting point. Section 3 provides a discussion of activities from October 1991 through July 1992, during which the pilot plant was designed; and various studies including computational fluid dynamic modeling of the reactor vessel, and a process HAZOP analyses were conducted. Significant events during fabrication are presented in Section 4. The experimental results of the test program (December 1992--August 1993) are discussed in Section 5.

  15. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  16. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    Science.gov (United States)

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The

  17. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Edward Shitsi

    2017-11-01

    Full Text Available Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated.An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature values in the NHT (normal heat transfer, EHT (enhanced heat transfer, DHT (deteriorated heat transfer and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the

  18. Investigation in justification of innovation supercritical water-cooled reactor - WWER-SCP

    International Nuclear Information System (INIS)

    Kirillov, P.L.; Baranaev, Yu.D.; Bogoslovskaya, G.P.; Glebov, A.P.; Grabezhnaya, V.A.; Kartashov, K.V.; Klushin, A.V.; Popov, V.V.

    2014-01-01

    State-of-the-art, gathered experience and development prospects of water-cooled reactors of next generation are considered. It is pointed out that development of SCWR is more attractive from the viewpoint of the basis principle of infrastructure - NPP adaptation without excessive investments. The results of experimental and calculational study of reactor installations on supercritical parameters (SCP) of water and freon are given. Consideration is given to the data on heat transfer at SCP of coolant, optimization of thermodynamic cycle, codes for thermohydraulic calculations, processes of heat and mass transfer at SCP, mass transfer and corrosion in SCP water, fuel elements and martials [ru

  19. Nuclear and thermal analyses of supercritical-water-cooled solid breeder blanket for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshihiko; Sato, Satoshi; Enoeda, Mikio; Hatano, Toshihisa; Kikuchi, Shigeto; Kuroda, Toshimasa; Kosaku, Yasuo; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    Within a design study of a fusion DEMO reactor aiming at demonstrating technologies of fusion power plant, supercritical water is applied as a coolant of solid breeder blanket to attain high thermal efficiency. The blanket has multi-layer composed of solid breeder pebbles (Li{sub 2}O) and neutron multiplier pebbles (Be) which are radially separated by cooling panels. The first wall and the breeding region are cooled by supercritical water below and above the pseudo-critical temperature, respectively. Temperature distribution and tritium breeding ratio (TBR) have been estimated by one-dimensional nuclear and thermal calculations. The local TBR as high as 1.47 has been obtained after optimization of temperature distribution in the breeder region under the following conditions: neutron wall loading of 5 MW/m{sup 2}, {sup 6}Li enrichment of 30% and coolant temperature at inlet of breeder region of 380degC. In the case of the higher coolant temperature 430degC of the breeder region the local TBR was reduced to be 1.40. This means that the net TBR higher than 1.0 could be expected with the supercritical-water-cooled blanket, whose temperature distribution in the breeder region would be optimized by following the coolant temperature, and where a coverage of the breeder region is assumed to be 70%. (author)

  20. Startup of a high-temperature reactor cooled and moderated by supercritical-pressure light water

    International Nuclear Information System (INIS)

    Yi, Tin Tin; Ishiwatari, Yuki; Koshizuka, Seiichi; Oka, Yoshiaki

    2003-01-01

    The startup schemes of high-temperature reactors cooled and moderated by supercritical pressure light water (SCLWR-H) with square lattice and descending flow type water rods are studied by thermal-hydraulic analysis. In this study, two kinds of startup systems are investigated. In the constant pressure startup system, the reactor starts at a supercritical pressure. A flash tank and pressure reducing valves are necessary. The flash tank is designed so that the moisture content in the steam is less than 0.1%. In sliding pressure startup system, the reactor starts at a subcritical pressure. A steam-water separator and a drain tank are required for two-phase flow at startup. The separator is designed by referring to the water separator used in supercritical fossil-fired power plants. The maximum cladding surface temperature during the power-raising phase of startup is restricted not to exceed the rated value of 620degC. The minimum feedwater flow rate is 25% for constant pressure startup and 35% for sliding pressure startup system. It is found that both constant pressure startup system and sliding pressure startup system are feasible in SCLWR-H from the thermal hydraulic point of view. The core outlet temperature as high as 500degC can be achieved in the present design of SCLWR-H. Since the feedwater flow rate of SCLWR-H (1190 kg/s) is lower than that of the previous SCR designs the weight of the component required for startup is reduced. The sliding pressure startup system is better than constant pressure startup system in order to reduce the required component weight (and hence material expenditure) and to simplify the startup plant system. (author)

  1. Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

    International Nuclear Information System (INIS)

    Watanabe, Yutaka

    2008-01-01

    Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of 'physical properties of water' in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena

  2. Development of liquefaction process of coal and biomass in supercritical water; Chorinkaisui wo mochiita sekitan biomass doji ekika process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, H.; Matsumura, Y.; Tsutsumi, A.; Yoshida, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Masuno, Y.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Liquefaction of coal and biomass in supercritical water has been investigated, in which strong solubilization force of supercritical water against hydrocarbons is utilized. Free radicals are formed through the cleavage of covalent bonds in coal under the heating condition at around 400{degree}C during coal liquefaction. It is important to stabilize these unstable intermediate products by hydrogen transfer. On the other hand, hydrogen is not required for the liquefaction of biomass having higher H/C atomic ratio and oxygen content than those of coal. Co-liquefaction of coal and biomass was conducted using supercritical water, in which excess hydrogen from the liquefaction of biomass would be transferred to coal, resulting in the effective liquefaction of coal. Mixture of coal and cellulose was liquefied in supercritical water at 390{degree}C under the pressure of 25 MPa using a semi-continuous reactor, and the results were compared with those from the separate liquefaction of them. The co-liquefaction of coal and cellulose did not show any difference in the residue yield from the separate liquefaction of these, but led to the increased production of compounds with lower molecular weight. The liquefaction was completed in 15 minutes. 5 refs., 3 figs., 3 tabs.

  3. Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: A review.

    Science.gov (United States)

    Tyśkiewicz, Katarzyna; Dębczak, Agnieszka; Gieysztor, Roman; Szymczak, Tomasz; Rój, Edward

    2018-01-01

    Vitamins are compounds that take part in all basic functions of an organism but also are subject of number of studies performed by different researchers. Two groups of vitamins are distinguished taking into consideration their solubility. Chromatography with supercritical CO 2 has found application in the determination, separation, and quantitative analyses of both fat- and water-soluble vitamins. The methods of vitamins separation have developed and improved throughout the years. Both groups of compounds were separated using supercritical fluid chromatography with different detection on different stationary phases. The main aim of this review is to provide an overview of the studies of vitamins separation that have been determined so far. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Heat-Transfer characteristics of Supercritical Water flowing upward in bare-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Sidawi, K., E-mail: khalil.sidawi@uoit.ca [University of Ontario Institute of Technology, Faculty of Energy Systems and Nuclear Sciences, Oshawa, ON (Canada)

    2015-07-01

    There has been many correlations developed for Supercritical Water (SCW) flowing in bare-tubes. These correlations, generally, have limits based on the experimental trials. However, this does not indicate the true range to which these correlations can be applied. Furthermore, increases in heat flux and decreases in mass flux have been known to lead to Deteriorated Heat-Transfer (DHT). One way to classify fluids in the supercritical region is to use the Eckert Number to differentiate between two different sub-states{sup 1} ; when T < T{sub pc}, SCW is considered to be liquid-like, whereas at T > T{sub pc}, SCW is considered to be gas-like. There is a significant decrease in RMS error for calculated HTC in trials where there is a single sub-state across the cross-section. Trials where there is a combination of sub-states have drastically higher RMS error for HTC. Furthermore, some trials indicate a decrease in HTC at the interphase between the two sub-states. (author)

  5. Synergy in lignin upgrading by a combination of Cu-based mixed oxide and Ni-phosphide catalysts in supercritical ethanol

    NARCIS (Netherlands)

    Koranyi, T.I.; Huang, X.; Coumans, A.E.; Hensen, E.J.M.

    2017-01-01

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu–Mg–Al oxide (CuMgAlOx) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e.

  6. Supercritical fluid extraction of selected pharmaceuticals from water and serum.

    Science.gov (United States)

    Simmons, B R; Stewart, J T

    1997-01-24

    Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.

  7. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  8. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  9. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tylczak, Joseph [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carney, Casey [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dogan, Omer N. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  10. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  11. Solubility of fused silica in sub- and supercritical water: Estimation from a thermodynamic model

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Šťavíková, Lenka; Planeta, Josef; Hohnová, Barbora; Roth, Michal

    2013-01-01

    Roč. 83, NOV (2013), s. 72-77 ISSN 0896-8446 R&D Projects: GA ČR(CZ) GAP106/12/0522 Institutional support: RVO:68081715 Keywords : amorphous silica * fused silica * supercritical water * aqueous solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.571, year: 2013

  12. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  13. Supercritical fluid technologies for ceramic-processing applications

    International Nuclear Information System (INIS)

    Matson, D.W.; Smith, R.D.

    1989-01-01

    This paper reports on the applications of supercritical fluid technologies for ceramic processing. The physical and chemical properties of these densified gases are summarized and related to their use as solvents and processing media. Several areas are identified in which specific ceramic processes benefit from the unique properties of supercritical fluids. The rapid expansion of supercritical fluid solutions provides a technique for producing fine uniform powders and thin films of widely varying materials. Supercritical drying technologies allow the formation of highly porous aerogel products with potentially wide application. Hydrothermal processes leading to the formation of large single crystals and microcrystalline powders can also be extended into the supercritical regime of water. Additional applications and potential applications are identified in the areas of extraction of binders and other additives from ceramic compacts, densification of porous ceramics, the formation of powders in supercritical micro-emulsions, and in preceramic polymer processing

  14. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  15. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  16. Supercritical water-cooled reactor fuel management and economic comparison and analysis

    International Nuclear Information System (INIS)

    Cai Guangming; Ruan Liangcheng; Liu Xuechun

    2014-01-01

    The supercritical water-cooled reactor (SCWR) is expected to have an excellent fuel economical efficiency because of its high thermal efficiency. This article compares CSR1OOO with the current mainstream PWR and ABWR on the aspect of the economical efficiency of fuel management, and finally makes an unexpected conclusion that the SCWR has worse fuel economy than others. And it remains to be deliberated whether the SCWR will be the fourth generation of nuclear system. (authors)

  17. Reactivity of micas and cap-rock in wet supercritical CO_2 with SO_2 and O_2 at CO_2 storage conditions

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Dawson, Grant K.W.; Law, Alison C.K.; Biddle, Dean; Golding, Suzanne D.

    2016-01-01

    Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO_2, O_2, and NOx, may be present in CO_2 streams from coal combustion sources. SO_2 and O_2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO_2 fluid may also come into contact with the base of cap-rock after CO_2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation. The first observation of mineral dissolution and precipitation on phyllosilicates and CO_2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO_2 reactions with industrial impurities SO_2 and O_2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO_2 containing SO_2, or SO_2 and O_2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO_2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO_2 containing SO_2 or in pure supercritical CO_2. In the presence of SO_2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was

  18. Materials identification and surveillance project item evaluation: Items, impure plutonium oxide (ATL27960) and pure plutonium oxide (PEOR3258)

    International Nuclear Information System (INIS)

    Allen, T.; Appert, Q.; Davis, C.

    1997-03-01

    In this report, Los Alamos scientists characterize properties relevant to storage of an impure plutonium oxide (74 mass % plutonium) in accordance with the Department of Energy (DOE) standard DOE-STD-3013-96. This oxide is of interest because it is the first impure plutonium oxide sample to be evaluated and it is similar to other materials that must be stored. Methods used to characterize the oxide at certain points during calcination include surface-area analyses, mass loss-on-ignition (LOI) measurements, elemental analysis, moisture-adsorption measurements, and quantitative supercritical-CO 2 extraction of adsorbed water. Significant decreases in the LOI and surface area occurred as the oxide was calcined at progressively increasing temperatures. Studies indicate that supercritical-CO 2 extraction is an effective method for removing adsorbed water from oxides. We extracted the water from powdered oxides (high-purity ZrO 2 , pure PuO 2 , and impure plutonium oxide) using CO 2 at 3000 psi pressure and 75 degrees C, and we quantitatively determined it by using gravimetric and dew-point procedures. The effectiveness of the extraction method is demonstrated by good agreement between the amounts of water extracted from pure zirconium and plutonium dioxides and the mass changes obtained from LOI analyses. However, the amount of moisture (0.025 mass %) extracted from the impure plutonium oxide after it had been calcined at 950 degrees C and stored for a period of months is much less than the LOI value (0.97 mass %). These results imply that the impure plutonium oxide is free of adsorbed water after calcination at 950 degrees C, even though the sample does not satisfy the LOI requirement of <0.50 mass % for storage

  19. Canadian supercritical water reactor modeling using G4STORK

    International Nuclear Information System (INIS)

    Ford, W.; Buijs, A.

    2015-01-01

    The Canadian Supercritical Water Reactor design was simulated using G4STORK. The results showed the expected trends but the determined Keff of 1.253±0.001 with a Coolant Void Reactivity (CVR) of -25mk differed greatly from the results achieved using MCNP of Keff=1.2914 and a CVR of -14mk. This discrepancy is partly due to the different data libraries used and the mixing of different temperature libraries in MCNP, but is also likely due to a difference in the physics methodology. Work is ongoing to further clarify reasons for discrepancies and improve the efficiency of the simulation. (author)

  20. Canadian supercritical water reactor modeling using G4STORK

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.; Buijs, A. [McMaster University, Hamilton, ON (Canada)

    2015-07-01

    The Canadian Supercritical Water Reactor design was simulated using G4STORK. The results showed the expected trends but the determined Keff of 1.253±0.001 with a Coolant Void Reactivity (CVR) of -25mk differed greatly from the results achieved using MCNP of Keff=1.2914 and a CVR of -14mk. This discrepancy is partly due to the different data libraries used and the mixing of different temperature libraries in MCNP, but is also likely due to a difference in the physics methodology. Work is ongoing to further clarify reasons for discrepancies and improve the efficiency of the simulation. (author)

  1. An Energy Analysis on Gasification of Sewage Sludge by a Direct Injection in Supercritical Water

    NARCIS (Netherlands)

    Yukananto, Riza; Louwes, Alexander Charnchai; Bramer, Eduard A.; Brem, Gerrit

    2017-01-01

    Supercritical Water Gasification is an efficient technology in converting wet biomass into H2 and CH4 in comparison to other conventional thermochemical processes. Coke deposition, however, remains as a major challenge in this technology. Coke formation is the result of polymerization reactions that

  2. Isoelectric focusing in continuously tapered fused silica capillary prepared by etching with supercritical water

    Czech Academy of Sciences Publication Activity Database

    Šlais, Karel; Horká, Marie; Karásek, Pavel; Planeta, Josef; Roth, Michal

    2013-01-01

    Roč. 85, č. 9 (2013), s. 4296-4300 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : capillary isoelectric focusing * resolution of ampholytes * supercritical water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.825, year: 2013

  3. Numerical investigation of supercritical water-cooled nuclear reactor in horizontal rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Zhi, E-mail: shangzhi@tsinghua.org.c [Faculty of Engineering, Kingston University, London SW15 3DW (United Kingdom); Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Lo, Simon, E-mail: simon.lo@uk.cd-adapco.co [CD-adapco, Trident House, Basil Hill Road, Didcot OX11 7HJ (United Kingdom)

    2010-04-15

    The commercial CFD code STAR-CD v4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round rods and rod bundles. Reactors with vertical or horizontal flow in the core can be found. In vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal rods and rod bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. In the rod bundle simulations, it is found that the geometry and orientation of the rod bundle have strong effects on the wall temperature distributions and heat transfers. In one orientation the square bundle has a higher wall temperature difference than other bundles. However, when the bundles are rotated by 90 deg. the highest wall temperature difference is found in the hexagon bundle. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR.

  4. CFD investigation of vertical rod bundles of supercritical water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Shang Zhi

    2009-01-01

    The commercial CFD code STAR-CD v4.02 is used as the numerical simulation tool for the supercritical water-cooled nuclear reactor (SCWR). The numerical simulation is based on the real full 3D rod bundles' geometry of the nuclear reactors. For satisfying the near-wall resolution of y + ≤ 1, the structure mesh with the stretched fine mesh near wall is employed. The validation of the numerical simulation for mesh generation strategy and the turbulence model for the heat transfer of supercritical water is carried out to compare with 3D tube experiments. After the validation, the same mesh generation strategy and the turbulence model are employed to study three types of the geometry frame of the real rod bundles. Through the numerical investigations, it is found that the different arrangement of the rod bundles will induce the different temperature distribution at the rods' walls. The wall temperature distributions are non-uniform along the wall and the values depend on the geometry frame. At the same flow conditions, downward flow gets higher wall temperature than upward flow. The hexagon geometry frame has the smallest wall temperature difference comparing with the others. The heat transfer is controlled by P/D ratio of the bundles.

  5. Conceptual design of solid breeder blanket system cooled by supercritical water

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Akiba, Masato; Ohara, Yoshihiro

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li 2 TiO 3 or Li 2 O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for the energy

  6. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  7. Continuous Hydrothermal Flow Synthesis of LaCrO3 in Supercritical Water and Its Application in Dual-Phase Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Xu, Yu; Pirou, Stéven; Zielke, Philipp

    2018-01-01

    The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation of this p......The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation...

  8. Supercritical carbon dioxide for textile applications and recent developments

    Science.gov (United States)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  9. Optimization of the fuel assembly for the Canadian Supercritical Water-cooled Reactor (SCWR)

    Energy Technology Data Exchange (ETDEWEB)

    French, C.; Bonin, H.; Chan, P., E-mail: Corey.French@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    A parametric optimization of the Canadian Supercritical Water-cooled Reactor (SCWR) lattice geometry and fresh fuel content is performed in this work. With the potential to improve core physics and performance, significant gains to operating and safety margins could be achieved through slight progressions. The fuel performance codes WIMS-AECL and SERPENT are used to calculate performance factors, and use them as inputs to an optimization algorithm. (author)

  10. Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Xinggang LI; Qingzhi YAN; Rong MA; Haoqiang WANG; Changchun GE

    2009-01-01

    Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

  11. Heat transfer in a seven-rod test bundle with supercritical pressure water (1). Experiments

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Seki, Yohji; Dairaku, Masayuki; Suzuki, Satoshi; Enoeda, Mikio; Akiba, Masato; Mori, H.; Oka, Y.

    2009-01-01

    Heat transfer experiments in a seven-rod test bundle with supercritical pressure water has been carried out. The pressure drop and heat transfer coefficients (HTCs) in the test section are evaluated. In the present limited conditions, difference between HTCs at the surface facing the sub-channel center and those at the surface in the narrowest region between rods is not observed. (author)

  12. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li{sub 2}TiO{sub 3} or Li{sub 2}O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for

  13. Introduction to supercritical fluids a spreadsheet-based approach

    CERN Document Server

    Smith, Richard; Peters, Cor

    2013-01-01

    This text provides an introduction to supercritical fluids with easy-to-use Excel spreadsheets suitable for both specialized-discipline (chemistry or chemical engineering student) and mixed-discipline (engineering/economic student) classes. Each chapter contains worked examples, tip boxes and end-of-the-chapter problems and projects. Part I covers web-based chemical information resources, applications and simplified theory presented in a way that allows students of all disciplines to delve into the properties of supercritical fluids and to design energy, extraction and materials formation systems for real-world processes that use supercritical water or supercritical carbon dioxide. Part II takes a practical approach and addresses the thermodynamic framework, equations of state, fluid phase equilibria, heat and mass transfer, chemical equilibria and reaction kinetics of supercritical fluids. Spreadsheets are arranged as Visual Basic for Applications (VBA) functions and macros that are completely (source code) ...

  14. An experimental investigation of flow instability between two heated parallel channels with supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xi; Xiao, Zejun, E-mail: fabulous_2012@sina.com; Yan, Xiao; Li, Yongliang; Huang, Yanping

    2014-10-15

    Highlights: • Flow instability experiment between two heated channels with supercritical water is carried out. • Two kinds of out of phase flow instability are found and instability boundaries under different working conditions are obtained. • Dynamics characteristics of flow instability are analyzed. - Abstract: Super critical water reactor (SCWR) is the generation IV nuclear reactor in the world. Under normal operation, water enters SCWR from cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change of temperature, there is a huge density change in the core, which could result in potential flow instability and the safety of reactor would be threatened consequently. So it is necessary to carry out relevant investigation in this field. An experimental investigation which concerns with out of phase flow instability between two heated parallel channels with supercritical water has been carried out in this paper. Due to two INCONEL 625 pipes with a thickness of 6.5 mm are adopted, more experimental results are attained. To find out the influence of axial power shape on the onset of flow instability, each heated channel is divided into two sections and the heating power of each section can be controlled separately. Finally the instability boundaries are obtained under different inlet temperatures, axial power shapes, total inlet mass flow rates and system pressures. The dynamics characteristics of out of phase oscillation are also analyzed.

  15. Prediction and analysis of onset of turbulent convective heat transfer deterioration in supercritical water flows

    International Nuclear Information System (INIS)

    Anglart, H.; Gallaway, T.; Antal, St.P.; Podowski, M.Z.

    2007-01-01

    Supercritical water is considered as a coolant in one of the six systems defined as Generation IV reactors. Such reactor will operate at pressures higher than the thermodynamic critical point of water (374 C degrees and 22.1 MPa), allowing for a significant increase of the system thermal efficiency. During normal operation no boiling crisis will occur, thereby sudden temperature excursions will be avoided. However, since the physical properties of supercritical fluids change rapidly with temperature in the pseudo critical region, the local heat transfer coefficient may still show unusual behaviour depending upon the heat flux. It can be either enhanced or deteriorated, depending on flow conditions and heat flux. It has been shown that the complexity of the phenomena involved makes it very difficult to develop acceptable predictive capabilities solely based on phenomenological models and correlations. It has also been shown that a multidimensional approach based on CFD (computational fluid dynamics) concepts is capable of properly capturing local effects that may lead to either heat transfer deterioration or enhancement

  16. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  17. Thermal performance and efficiency of supercritical nuclear reactors

    International Nuclear Information System (INIS)

    Romney Duffey; Tracy Zhou; Hussam Khartabil

    2009-01-01

    The paper reviews the major advances and innovative aspects of the thermal performance of recent concepts for super-critical water-cooled nuclear reactors (SCWR). The concepts are based on the extensive experience in the thermal power industry with super and ultra-supercritical boilers and turbines. The challenges and goals of increased efficiency, reduced cost, enhanced safety and co-generation have been pursued over the last ten years, and have resulted both in viable concepts and a vibrant defined R and D effort. The supercritical concept has wide acceptance among industry, as it reflects standard engineering practices and current thermal plant technology that is being already deployed. The SCWR concept represents a continuous development of water-cooled reactor technology, which utilizes the best and latest advances made in the thermal power industry. (author)

  18. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    Science.gov (United States)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  19. Computational fluid dynamic model for glycerol gasification in supercritical water in a tee junction shaped cylindrical reactor

    NARCIS (Netherlands)

    Yukananto, Riza; Pozarlik, Artur K.; Brem, Gerrit

    2018-01-01

    Gasification in supercritical water is a very promising technology to process wet biomass into a valuable gas. Providing insight of the process behavior is therefore very important. In this research a computational fluid dynamic model is developed to investigate glycerol gasification in

  20. In-Situ Synchrotron Radiation Study of Formation and Growth of Crystalline CexZr1-xO2 Nanoparticles Synthesized in Supercritical Water

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Becker-Christensen, Jacob; Hald, Peter

    2010-01-01

    -zirconia system, the growth of ceria and zirconia nanoparticles is fundamentally different under supercritical water conditions. For comparison, ex situ synthesis has also been performed using an in-house supercritical flow reactor. The resulting samples were analyzed using PXRD, small-angle X-ray scattering......In situ synchrotron powder X-ray diffraction (PXRD) measurements have been conducted to follow the nucleation and growth of crystalline CexZr1-xO2 nanoparticles synthesized in supercritical water with a full substitution variation (x = 0, 0.2, 0.5, 0.8, and 1.0). Direction-dependent growth curves...... are determined and described using reaction kinetic models. A distinct change in growth kinetics is observed with increasing cerium content. For x = 0.8 and 1.0 (high cerium content), the growth is initially limited by the surface reaction kinetics; however, at a size of ∼6 nm, the growth changes and becomes...

  1. Elements of Design Consideration of Once-Through Cycle, Supercritical-Pressure Light Water Cooled Reactor

    International Nuclear Information System (INIS)

    Yoshiaki Oka; Sei-ichi Koshizuka; Yuki Ishiwatari; Akifumi Yamaji

    2002-01-01

    The paper describes elements of design consideration of supercritical-pressure, light water cooled reactors as well as the status and prospects of the research and development. It summarizes the results of the conceptual design study at the University of Tokyo from 1989. The research and development started in Japan, Europe and USA. The major advantages of the reactors are 1. Compact reactor and turbines due to high specific enthalpy of supercritical water 2.Simple plant system because of the once-through coolant cycle 3.Use of the experience of LWR and fossil-fired power plants. The temperatures of the major components such as reactor pressure vessel, coolant pipes, pumps and turbines are within the experience, in spite of the high outlet coolant temperature. 4.Similarity to LWR safety design and criteria, but no burnout phenomenon 5.Potential cost reduction due to smaller material expenditure and short construction period 6.The smallest reactor not in power rating, but in plant sizes. 7.High-thermal efficiency and low coolant flow rate because of high enthalpy rise. 8.Water cooled reactors potentially free from SCC (stress corrosion cracking) problems. 9.Compatibility of tight-fuel-lattice fast reactor core due to small coolant flow rate, potentially easy shift to fast breeder reactor without changing coolant technology. 10.Potential of producing energy products such as hydrogen and high quality hydro carbons. (authors)

  2. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  3. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Supercritical heat transfer phenomena in nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.

    2005-01-01

    A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer

  5. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    Science.gov (United States)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  6. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  7. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  8. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    In this study, waste cooking oil has subjected to transesterification reaction by potassium hydroxide (KOH) catalytic and supercritical methanol methods obtaining for biodiesel. In catalyzed methods, the presence of water has negative effects on the yields of methyl esters. In the catalytic transesterification free fatty acids and water always produce negative effects since the presence of free fatty acids and water causes soap formation, consumes catalyst, and reduces catalyst effectiveness. Free fatty acids in the waste cooking oil are transesterified simultaneously in supercritical methanol method. Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment and operating costs. The effects of methanol/waste cooking oils ratio, potassium hydroxide concentration and temperature on the biodiesel conversion were investigated

  9. Development of Nordic Standard for analysis of oil and fat in water based on supercritical fluid extraction. Preliminary study, part 2

    International Nuclear Information System (INIS)

    Jenssen, L.

    1994-06-01

    This report describes a preliminary study of a method of determining oil in water. The method is based on solid phase extraction and supercritical fluid extraction (SPE-SFE). The oil is extracted from the water by absorption to extraction disks from which it is then desorbed by supercritical carbon dioxide and detected by means of infrared spectrophotometry or gas chromatography. The results of the study will indicate if the method is suitable as a future substitute for the present Norwegian Standard, NS 9803 (Swedish Standard, SS 02 8145). The method has been validated using water samples with addition of real oil to 1-100 ppm. The accuracy is almost 70%, and the method has good repeatability and is linear in the 1-100 ppm range. 5 refs., 6 figs., 10 tabs

  10. Near- and supercritical water as a diameter manipulation and surface roughening agent in fused silica capillaries

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2013-01-01

    Roč. 85, č. 1 (2013), s. 327-333 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.825, year: 2013

  11. Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery

    International Nuclear Information System (INIS)

    Wang Xiuyu; Alvarado, Vladimir; Swoboda-Colberg, Norbert; Kaszuba, John P.

    2013-01-01

    Highlights: ► Dolomite reactivity with wet and dry supercritical CO 2 were evaluated. ► Dolomite does not react with dry CO 2 . ► H 2 O-saturated supercritical CO 2 dissolves dolomite and precipitates carbonate mineral. ► Temperature/reaction time control morphology and extent of carbonate mineralization. ► Reaction with wet CO 2 may impact trapping, caprock integrity, and CCS/EOR injectivity. - Abstract: Carbon dioxide injection in porous reservoirs is the basis for carbon capture and storage, enhanced oil and gas recovery. Injected carbon dioxide is stored at multiple scales in porous media, from the pore-level as a residual phase to large scales as macroscopic accumulations by the injection site, under the caprock and at reservoir internal capillary pressure barriers. These carbon dioxide saturation zones create regions across which the full spectrum of mutual CO 2 –H 2 O solubility may occur. Most studies assume that geochemical reaction is restricted to rocks and carbon dioxide-saturated formation waters, but this paradigm ignores injection of anhydrous carbon dioxide against brine and water-alternating-gas flooding for enhanced oil recovery. A series of laboratory experiments was performed to evaluate the reactivity of the common reservoir mineral dolomite with water-saturated supercritical carbon dioxide. Experiments were conducted at reservoir conditions (55 and 110 °C, 25 MPa) and elevated temperature (220 °C, 25 MPa) for approximately 96 and 164 h (4 and 7 days). Dolomite dissolves and new carbonate mineral precipitates by reaction with water-saturated supercritical carbon dioxide. Dolomite does not react with anhydrous supercritical carbon dioxide. Temperature and reaction time control the composition, morphology, and extent of formation of new carbonate minerals. Mineral dissolution and re-precipitation due to reaction with water-saturated carbon dioxide may affect the contact line between phases, the carbon dioxide contact angle, and the

  12. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  13. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  14. Electrodeposition of germanium from supercritical fluids.

    Science.gov (United States)

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  15. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water

    International Nuclear Information System (INIS)

    Wang, Han; Bi, Qincheng; Yang, Zhendong; Wang, Linchuan

    2015-01-01

    Highlights: • Heat transfer of supercritical water in a narrow annulus is investigated. • Effects of system parameters and flow direction on heat transfer are studied. • Deteriorated heat transfer is analyzed both experimentally and numerically. - Abstract: Heat transfer characteristics of supercritical pressure water in a narrow annulus with vertically upward and downward flows were investigated experimentally and numerically. The outer diameter of the inner heated rod is 8 mm with an effective heated length of 620 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 400–1000 kg/m 2 s and heat flux on the outer surface of the heated rod from 200 to 1000 kW/m 2 . The general heat transfer behaviors were discussed with respect to various mass fluxes and pressures. According to the experimental data, it was found that the effect of flow direction on heat transfer depends on the heat-flux to mass-flux ratio (q/G). Heat transfer is much improved in the downward flow compared to that of upward flow at high q/G ratios. At the pressure of 25 MPa, low-mass-flux deteriorated heat transfer occurred in the upward flow but not in the downward flow. At the same test parameters, however, heat transfer deterioration was observed at both of the two flow directions when the pressure was lowered to 23 MPa. The experimental results indicate that buoyancy plays an important role for this type of deterioration, but is not the only mechanism that leads to the heat transfer deterioration. Three turbulence models were assessed against the annulus test data, it was found that the SST k-ω model gives a satisfying prediction of heat transfer deterioration especially for the case of downward flow. The mechanisms for the low-mass-flow heat transfer deterioration were investigated from the viewpoints of buoyancy and property variations of the supercritical water

  16. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  17. CFD in supercritical water-cooled nuclear reactor (SCWR) with horizontal tube bundles

    International Nuclear Information System (INIS)

    Shang, Zhi; Lo, Simon

    2009-01-01

    The commercial CFD code STAR-CD 4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round tubes and tube bundles. Reactors with vertical or horizontal flow in the core can be found. In vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal tubes and tube bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. From the study of single round tubes, the Speziale quadratic non-linear high-Re k-ε turbulence model with the two-layer model for near wall treatment is found to produce the best results in comparison with experimental data. In tube bundle simulations, it is found that the temperature is higher in the top half of the bundle and the highest tube wall temperature is located at the outside tubes where the flow rate is the lowest. The secondary flows across the bundle are highly complex. Their main effect is to even out the temperature over the area within each individual recirculating region. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR. (author)

  18. CFD in supercritical water-cooled nuclear reactor (SCWR) with horizontal tube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Shang, E-mail: zhi.shang@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Lo, Simon, E-mail: simon.lo@uk.cd-adapco.com [CD-adapco, Trident House, Basil Hill Road, Didcot OX11 7HJ (United Kingdom)

    2011-11-15

    The commercial CFD code STAR-CD 4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round tubes and tube bundles. Reactors with vertical or horizontal flow in the core can be found. In a vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in a horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal tubes and tube bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. From the study of single round tubes, the Speziale quadratic non-linear high-Re k-{epsilon} turbulence model with the two-layer model for near wall treatment is found to produce the best results in comparison with experimental data. In tube bundle simulations, it is found that the temperature is higher in the top half of the bundle and the highest tube wall temperature is located at the outside tubes where the flow rate is the lowest. The secondary flows across the bundle are highly complex. Their main effect is to even out the temperature over the area within each individual recirculation region. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR.

  19. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    Science.gov (United States)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  20. Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection

    International Nuclear Information System (INIS)

    Chen, Lin; Zhang, Xin-Rong

    2014-01-01

    Highlights: • Supercritical CO 2 flow is proposed for natural circulation solar water heater system. • Experimental system established and consists of supercritical fluid high pressure side and water side. • Stable supercritical CO 2 natural convective flow is well induced and water heating process achieved. • Seasonal solar collector system efficiency above 60% achieved and optimization discussed. - Abstract: Solar collector has become a hot topic both in scientific research and engineering applications. Among the various applications, the hot water supply demand accounts for a large part of social energy consumption and has become one promising field. The present study deals with a novel solar thermal conversion and water heater system achieved by supercritical CO 2 natural circulation. Experimental systems are established and tested in Zhejiang Province (around N 30.0°, E 120.6°) of southeast China. The current system is designed to operate in the supercritical region, thus the system can be compactly made and achieve smooth high rate natural convective flow. During the tests, supercritical CO 2 pipe flow with Reynolds number higher than 6700 is found. The CO 2 fluid temperature in the heat exchanger can be as high as 80 °C and a stable supply of hot water above 45 °C is achieved. In the seasonal tests, relative high collector efficiency generally above 60.0% is obtained. Thermal and performance analysis is carried out with the experiment data. Comparisons between the present system and previous solar water heaters are also made in this paper

  1. Oxidation and stress corrosion cracking of stainless steels in SCWRs

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castro, L.; Blazquez, F.

    2008-01-01

    SCWRs are high-temperature, high-pressure, water-cooled reactors that operate above the thermodynamic critical point of water (374 deg C, 22.1 MPa). The SCWR offers many advantages compared to state-of- the-art LWRs including the use of a single phase coolant with high enthalpy, the elimination of components such as steam generators and steam separators and dryers, a low coolant mass inventory resulting in smaller components, and a much higher efficiency ∼ 44% vs. 33% in current LWRs). In these systems high pressure (25 MPa) coolant enters the vessel at 280 deg C which is heated to about 500 deg C and delivered to a power conversion cycle. Supercritical water (SCW) exhibits properties significantly different from those of liquid water below the critical point. Supercritical water acting essentially as a non-polar dense gas with solvation properties approaching those of a low-polarity organic. In this conditions, can dissolve gases like oxygen to complete miscibility. Depending upon what species are present and how much oxygen is present in the solution can becomes a very aggressive oxidising environment. Most of the data on corrosion in supercritical water are from fossil plant or oxidation waste disposal systems. However there is very limited data on corrosion in low conductivity de-aerated SCW and less on stress corrosion cracking behaviour under operating conditions foreseen for SCWR. Candidate materials for structural components are materials for high temperatures and include ferritic-martensitic alloys; oxide dispersion strengthened (ODS) ferritic/martensitic steels and strengthened steels by precipitation and for lower temperatures the austenitic stainless steels, such as 304 and 316, used in the LWR. Low swelling austenitic steels are also of high interest for areas with high dpa and high temperature. A review of the available information on corrosion and stress corrosion behaviour of different types of stainless steels in supercritical water at high

  2. Safety system consideration of a supercritical-water cooled fast reactor with simplified PSA

    International Nuclear Information System (INIS)

    Lee, J.H.; Oka, Y.; Koshizuka, S.

    1999-01-01

    The probabilistic safety of the supercritical-water cooled fast reactor (SCFR) is evaluated with the simplified probabilistic safety assessment (PSA) methodology. SCFR has a once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure. There are no recirculation loops in the once-through direct cycle system, which is the most important difference from the current light water reactor (LWR). The main objective of the present study is to assess the effect of this difference on the safety in the stage of conceptual design study. A safety system configuration similar to the advanced boiling water reactor (ABWR) is employed. At loss of flow events, no natural recirculation occurs. Thus, emergency core flow should be quickly supplied before the completion of the feedwater pump coastdown at a loss of flow accident. The motor-driven high pressure coolant injection (MD-HPCI) system cannot be used for the quick core cooling due to the delay of the emergency diesel generator (D/G) start-up. Accordingly, an MD-HPCI system in an ABWR is substituted by a turbine-driven (TD-) HPCI system for the SCFR. The calculated core damage frequency (CDF) is a little higher than that of the Japanese ABWR and a little lower than that of the Japanese BWR when Japanese data are employed for initiating event frequencies. Four alternatives to the safety system configurations are also examined as a sensitivity analysis. This shows that the balance of the safety systems designed here is adequate. Consequently, though the SCFR has a once-through coolant system, the CDF is not high due to the diversity of feedwater systems as the direct cycle characteristics

  3. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  4. Supercritical Regeneration of an Activated Carbon Fiber Exhausted with Phenol

    OpenAIRE

    M. Jesus Sanchez-Montero; Jennifer Pelaz; Nicolas Martin-Sanchez; Carmen Izquierdo; Francisco Salvador

    2018-01-01

    The properties of supercritical CO2 (SCCO2) and supercritical water (SCW) turn them into fluids with a great ability to remove organic adsorbates retained on solids. These properties were used herein to regenerate an activated carbon fiber (ACF) saturated with a pollutant usually contained in wastewater and drinking water, phenol. Severe regeneration conditions, up to 225 bar and 400 °C, had to be employed in SCCO2 regeneration to break the strong interaction established between phenol and th...

  5. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  6. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  7. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  8. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  9. Titania aerogel prepared by low temperature supercritical drying

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Šubrt, Jan; Szatmáry, Lórant

    2006-01-01

    Roč. 91, 1-3 (2006), s. 1-6 ISSN 1387-1811 R&D Projects: GA MŠk(CZ) 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : aerogels * titanium oxide * supercritical drying Subject RIV: CA - Inorganic Chemistry Impact factor: 2.796, year: 2006

  10. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  11. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R.

    2011-01-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  12. Corrosion behaviour of porous chromium carbide/oxide based ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong, Z.; Xin, T.; Chen, W.; Zheng, W.; Guzonas, D.

    2011-01-01

    Porous chromium carbide with a high density of open pores was fabricated by a reactive sintering method. Chromium oxide ceramics were obtained by re-oxidizing the porous chromium carbides formed. Some samples were added with yttria at 5 wt. %, prior to reactive sintering to form porous structures. Corrosion tests in SCW were performed at temperatures ranging from 375 o C to 625 o C with a fixed pressure at around 25∼30 MPa. The results show that chromium carbide is stable in SCW environments at temperatures up to 425 o C, above which disintegration of carbides through oxidation occurs. Porous chromium oxide samples show better corrosion resistance than porous chromium carbide, but disintegrate in SCW at around 625 o C. Among all the samples tested, chromium oxide ceramics with added yttria exhibited much better corrosion resistance compared with the pure chromium carbide/oxides. No evidence of weight change or disintegration of porous chromium oxides with 5 wt % added yttria was observed after exposure at 625 o C in SCW for 600 hours. (author)

  13. Stable Organic Monolayers on Oxide-Free Silicon/Germanium in a Supercritical Medium: A New Route to Molecular Electronics.

    Science.gov (United States)

    Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Yeong, Sai Hooi; Troadec, Cedric; Srinivasan, M P

    2013-05-02

    Oxide-free Si and Ge surfaces have been passivated and modified with organic molecules by forming covalent bonds between the surfaces and reactive end groups of linear alkanes and aromatic species using single-step deposition in supercritical carbon dioxide (SCCO2). The process is suitable for large-scale manufacturing due to short processing times, simplicity, and high resistance to oxidation. It also allows the formation of monolayers with varying reactive terminal groups, thus enabling formation of nanostructures engineered at the molecular level. Ballistic electron emission microscopy (BEEM) spectra performed on the organic monolayer on oxide-free silicon capped by a thin gold layer reveals for the first time an increase in transmission of the ballistic current through the interface of up to three times compared to a control device, in contrast to similar studies reported in the literature suggestive of oxide-free passivation in SCCO2. The SCCO2 process combined with the preliminary BEEM results opens up new avenues for interface engineering, leading to molecular electronic devices.

  14. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  15. Studies on supercritical hydrothermal syntheses of uranium and lanthanide oxide particles and their reaction mechanisms

    Science.gov (United States)

    Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa

    2015-11-01

    In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.

  16. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    Science.gov (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Research and development of supercritical water-cooled reactor (SCWR) in Japan

    International Nuclear Information System (INIS)

    Yamada, Katsumi; Oka, Yoshiaki

    2005-01-01

    The SCWR is an innovative LWR operating at supercritical pressure with a once-through direct cycle. It has the potential advantage of low capital cost due to its high thermal efficiency and substantial plant system simplifications. This paper outlines the completed and on-going R and D in Japan, and describes plans of the next phase projects for SCWR development. The concept was born at the University of Tokyo fifteen years ago. After a feasibility study by an industry team, a project for key technology development and plant conceptual design was launched in fiscal year (FY) 2000 funded by METI, followed by another project for fundamental study on supercritical water chemistry under radiation field and an I-NERI project for material development, and was completed in FY 2004 presenting an SCWR plant concept. To advance and optimize the plant concept, a new project is proposed in Japan. In addition, another project for developing the SCWR with fast spectrum core is proposed. The SCWR concept has acquired worldwide interest and was selected as one of the six Generation IV nuclear energy systems under GIF Program in FY 2002, and international collaboration for the SCWR RD and D is being established with an aggressive target of constructing a prototype reactor in the next fifteen years. The projects in Japan are expected to promote the development of the SCWR and to contribute the GIF activities. (author)

  18. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  19. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  20. Analysing supercritical water reactor's (SCWR's) special safety systems using probabilistic tools

    International Nuclear Information System (INIS)

    Ituen, I.; Novog, D.R.

    2011-01-01

    The next generation of reactors, termed Generation IV, has very attractive features -- its superior safety characteristics, high thermal efficiency, and fuel cycle sustainability. A key element of the Generation IV designs is the improvement in safety, which in turn requires improvements in safety system performance and reliability, as well as a reduction in initiating event frequencies. This study compares the response of the systems important to safety in the CANDU-Supercritical Water Reactor to those of the generic CANDU under a main steamline break accident and loss of forced circulation events -- to quantify the improvements in safety for the pre-conceptual CANDU SCWR design. Probabilistic safety analysis is the tool used in this study to test the behavior of the pre- conceptual design during these events. (author)

  1. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  2. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  3. Development of sub-channel/system coupled code and its application to a supercritical water-cooled test loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Yang, T.; Cheng, X.

    2014-01-01

    To analyze the local thermal-hydraulic parameters in the supercritical water reactor-fuel qualification test (SCWR-FQT) fuel bundle with a flow blockage, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code and system code are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal-hydraulic parameters are predicted by the sub-channel code COBRA-SC. Sensitivity analysis are carried out respectively in ATHLET-SC and COBRA-SC code, to identify the appropriate models for description of the flow blockage phenomenon in the test loop. Some measures to mitigate the accident consequence are also trialed to demonstrate their effectiveness. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel assembly can be reduced effectively by the safety measures of SCWR-FQT. (author)

  4. Supercritical water gasification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Yamaguchi, D. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Supercritical water gasification (SCWG) is an attractive technology for producing fuels from biomass and waste materials. As a result of greenhouse gas emissions and issues related to local air pollutants, hydrogen production from these renewable energy resources has been gaining in popularity. Disposal of sewage sludge is another environmental problem that have led to severe regulations. Incineration has been one of the most commonly used means of sewage sludge disposal. Thermal gasification produces gaseous fuel, making it a better option over incineration. However, due to its high moisture content, this process is not feasible to make use of sewage sludge directly. In order to analyze SCWG of sewage sludge, it has been determined that equilibrium analysis is most suitable since the maximum achievable amount of hydrogen in a given reacting condition can be estimated. The equilibrium model can be divided into two types of models, namely stoichiometric and non-stoichiometric. This paper presented the results of a study that used a computer program to develop a nonstoichiometric model with the direct Gibbs free energy minimization technique. In addition, various biomass were simulated for comparisons in order to identify if sewage sludge is a potential feedstock for hydrogen production. Last, the effects of reaction pressure and temperature on product distribution were also examined. It was shown that the proposed model is capable of estimating the product distribution at equilibrium. 33 refs., 4 tabs., 6 figs.

  5. Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments

    Directory of Open Access Journals (Sweden)

    Daniele Castello

    2017-10-01

    Full Text Available Supercritical water gasification (SCWG is an emerging technology for the valorization of (wet biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG (T > 375 °C, p > 22 MPa are definitely a challenge for the manufacturing of the reactors. Metal surfaces are indeed subject to corrosion under hydrothermal conditions, and expensive special alloys are needed to overcome such drawbacks. A ceramic reactor could be a potential solution to this issue. Finding a suitable material is, however, complex because the catalytic effect of the material can influence the gas yield and composition. In this work, a research reactor featuring an internal alumina inlay was utilized to conduct long-time (16 h batch tests with real biomasses and model compounds. The same experiments were also conducted in batch reactors made of stainless steel and Inconel 625. The results show that the three devices have similar performance patterns in terms of gas production, although in the ceramic reactor higher yields of C2+ hydrocarbons were obtained. The SEM observation of the reacted alumina surface revealed a good resistance of such material to supercritical conditions, even though some intergranular corrosion was observed.

  6. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol

    DEFF Research Database (Denmark)

    Hansen, Thomas Søndergaard; Barta, Katalin; Anastas, Paul T.

    2012-01-01

    Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions. The hyd......Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions....... The hydrogen equivalents needed for the reductive deoxygenation of HMF originate from the solvent itself upon its reforming. Dimethylfuran, dimethyltetrahydrofuran and 2-hexanol were obtained in good yields. At milder reaction temperatures, a combined yield (DMF + DMTHF) of 58% was achieved. Notably...

  7. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  8. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Haehner, P.; Ripplinger, S.; Siegl, J.; Penttilae, Sami; Toivonen, Aki

    2009-01-01

    Within the 6th Framework Program HPLWR-2 project (High Performance Light Water Reactor - Phase 2), stress corrosion cracking (SCC) susceptibilities of selected austenitic stainless steels, 316L and 316NG, were studied in supercritical water (SCW) with the aim to identify and describe the specific failure mechanisms prevailing during slow strain-rate tensile (SSRT) tests in ultra-pure demineralised SCW water solution. The SSRT tests were performed using a step-motor controlled loading device in an autoclave at 350 deg. C, 500 deg. C and 550 deg. C. Besides water temperature, the pressure, the oxygen content and the strain rate (resp. crosshead speed) were varied in the series of tests. The specimens SSRT tested to failure were subjected to fractographic analysis, in order to characterise the failure mechanisms. The fractography confirmed that failure was due to a combination of transgranular SCC and transgranular ductile fracture. The share of SCC and ductile fracture in the failure process of individual specimens was affected by the parameters of the SSRT tests, so that the environmental influence on SCC susceptibility could be assessed, in particular, the SCC sensitising effects of increasing oxygen content, decreasing strain rate and increasing test temperature. (author)

  9. A numerical thermal-hydraulic model to simulate the fast transients in a supercritical water channel subjected to sharp pressure variations

    NARCIS (Netherlands)

    Dutta, G.; Jiang, J.; Maitri, R.; Zhang, C.

    2016-01-01

    The present work demonstrates the extension of a thermal-hydraulic model, THRUST, with an objective to simulate the fast transient flow dynamics in a supercritical water channel of circular cross section. THRUST is a 1-D model which solves the nonlinearly coupled mass, axial momentum and energy

  10. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-01-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  11. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  12. Extraction of Stevia rebaudiana bertoni sweetener glycosides by supercritical fluid methods.

    Directory of Open Access Journals (Sweden)

    Juan José Hinojosa-González

    2017-05-01

    Full Text Available Aim. The aim was to evaluate the supercritical carbon dioxide extraction method with and without the addition of co-solvent to the system (mixture water: ethanol to obtain the glycosides from leaves of Stevia rebaudiana Bertoni. Methods. A SFT-150 SFE / SFR model with CO2 as a fluid was used for the supercritical extraction. The variables studied were temperature, pressure, extraction time and the presence or absence of the co-solvent (water-ethanol mixture in a concentration of 70:30 v/v, incorporated in different proportions to determine the effect on yield. The amount of glycoside sweeteners was analyzed by High Performance Liquid Chromatography (HPLC. Results. The pressure was the factor that favored the extraction, which was selective in obtaining Rebaudioside A with yields no greater than 2%. The inclusion of the co-solvent achieved an increase in yield to values of 2.9% Conclusion. Supercritical CO2 individually and mixed with ethanol-water as a co-solvent was not efficient to extract Stevia rebaudiana stevioside sweeteners

  13. γ-Radiolysis of benzophenone aqueous solution at elevated temperatures up to supercritical condition

    International Nuclear Information System (INIS)

    Miyazaki, Toyoaki; Katsumura, Yosuke; Lin Mingzhang; Muroya, Yusa; Kudo, Hisaaki; Asano, Masaharu; Yoshida, Masaru

    2006-01-01

    A product analysis study of γ-irradiated benzophenone aqueous solutions from room temperature to 400 deg. C has been carried out by the combination of a flow irradiation system and a liquid chromatographic method. At room temperature, the main decomposition products are phenol and hydroxybenzophenone isomers. In high temperature and supercritical water solutions, 9-fluorenone appears as an important product and the G-value of benzophenone consumption depends significantly on the water density under supercritical conditions

  14. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  15. Supercritical Carbon Dioxide–Based Sterilization of Decellularized Heart Valves

    Directory of Open Access Journals (Sweden)

    Ryan S. Hennessy, MD

    2017-02-01

    Full Text Available Summary: Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid– and supercritical carbon dioxide–treated valves were found to be sterile using histology, microbe culture, and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide–treated valves were higher compared with valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Key Words: decellularized, decontamination, heart valve, tensile properties, tissue engineering

  16. Decontamination of solid substrates using supercritical carbon dioxide - Application with trade hydro-carbonated surfactants

    International Nuclear Information System (INIS)

    Galy, J.; Fournel, B.; Sawada, K.; Lacroix-Desmazes, P.; Lagerge, S.; Persin, M.

    2007-01-01

    The phase behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) tri-block copolymers (PEO-PPO-PEO Pluronics) in liquid and supercritical carbon dioxide has been studied by cloud point measurements. It shows that such trade hydro-carbonated surfactants are fairly soluble (0.1 wt.%) in carbon dioxide in relatively mild conditions of temperature and pressure (T ≤ 65 degrees C, P ≤ 30 MPa). An empirical model based on the molecular weight of the copolymer has been proposed to predict the pressure-temperature phase diagram for a series of Pluronics (10 wt.% of ethylene oxide). Furthermore, the water/CO 2 interfacial tension has been measured to investigate the interactions between water and the polar moieties of the surfactants (PEO blocks and hydroxyl end-groups) as well as the interactions between CO 2 and the 'CO 2 -philic' moiety of the surfactants (PPO block). An interfacial saturation concentration was evidenced and it was shown to depend on the temperature at a given pressure. The cloud point curves and interfacial tension data are fully consistent with a change in the affinity of the surfactant for CO 2 versus pressure and temperature. A correlation between CO 2 -philic characteristics and surface active properties of the copolymers is given. (authors)

  17. Heat Transfer Experiment with Supercritical CO2 Flowing Upward in a Circular Tube

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong

    2005-01-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO 2 are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations

  18. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    Science.gov (United States)

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  19. CFD analysis of supercritical water flow and heat transfer in single channel with mixing vane

    International Nuclear Information System (INIS)

    Zuo Guoping; Xie Hongyan; Yu Tao

    2012-01-01

    Three-dimensional rectangular channel with the mixing wane in supercritical water reactor is investigated with CFX. The mixing vane elevation influenced on temperature distribution and flow field are simulated in the model. The results showed the mixing vane cause fluid circumferential flow, making flow hot and cold fluids mixed and fluid temperature uniform distribution, effectively improve the fuel rod surface temperature distribution and reduced hot temperature. Among the mixing wing elevation of 15, 30, 45, 50, 60 and 70 angle, the 30 angle is the best case in improving temperature distribution. (authors)

  20. Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Ian [Wright HT Inc., Denver, CO (United States); Kung, Steven [Electric Power Research Inst. (EPRI), Charlotte, NC (United States); Shingledecker, John [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    This project was the first research to address oxidation of alloys under supercritical CO2 conditions relevant to a semi-open Allam Cycle system. The levels of impurities expected in the CO2 for typical operation were determined by thermodynamic and mass balance calculations, and a test rig was assembled and used to run corrosion tests at temperatures from 650 to 750°C in CO2 at 200 bar for up to 5,000h, with and without impurities. Oxidation rates were measured for seven alloys representing high-strength ferritic steels, standard austenitic steels, and Ni-based alloys with higher-temperature capabilities. The very thin, protective scales formed on the high-temperature alloys provided significant challenges in characterization and thickness measurement. The rates of mass gain and scale thickening were possibly slower when oxidizing impurities were present in the sCO2, and the scale morphologies formed on the ferritic and austenitic steels were consistent with expectations, and similar to those formed in high-pressure steam, with some potential influences of C. Some surface hardening (possibly due to carbon uptake) was identified in ferritic steels Grade 91 and VM12, and appeared more severe in commercially-pure CO2. Hardening was also observed in austenitic steel TP304H, but that in HR3C appeared anomalous, probably the result of work-hardening from specimen preparation. No hardening was found in Ni-base alloys IN617 and IN740H. An existing EPRI Oxide Exfoliation Model was modified for this application and used to evaluate the potential impact of the scales grown in sCO2 on service lifetimes in compact heat exchanger designs. Results suggested that reduction in flow area by simple oxide growth as well as by accumulation of exfoliated scale may have a major effect on the design of small-channel heat exchangers. In addition, the specific oxidation behavior of each alloy strongly influences the

  1. Numerical investigation of flow instability in parallel channels with supercritical water

    International Nuclear Information System (INIS)

    Shitsi, Edward; Debrah, Seth Kofi; Agbodemegbe, Vincent Yao; Ampomah-Amoako, Emmanuel

    2017-01-01

    Highlights: •Supercritical flow instability in parallel channels is investigated. •Flow dynamics and heat transfer characteristics are analyzed. •Mass flow rate, pressure, heating power, and axial power shape have significant effects on flow instability. •Numerical results are validated with experimental results. -- Abstract: SCWR is one of the selected Gen IV reactors purposely for electricity generation in the near future. It is a promising technology with higher efficiency compared to current LWRs but without the challenges of heat transfer and its associated flow instability. Supercritical flow instability is mainly caused by sharp change in the coolant properties around the pseudo-critical point of the working fluid and research into this phenomenon is needed to address concerns of flow instability at supercritical pressures. Flow instability in parallel channels at supercritical pressures is investigated in this paper using a three dimensional (3D) numerical tool (STAR-CCM+). The dynamics characteristics such as amplitude and period of out-of-phase inlet mass flow oscillation at the heated channel inlet, and heat transfer characteristic such as maximum outlet temperature of the heated channel outlet temperature oscillation are discussed. Influences of system parameters such as axial power shape, pressure, mass flow rate, and gravity are discussed based on the obtained mass flow and temperature oscillations. The results show that the system parameters have significant effect on the amplitude of the mass flow oscillation and maximum temperature of the heated outlet temperature oscillation but have little effect on the period of the mass flow oscillation. The amplitude of mass flow oscillation and maximum temperature of the heated channel outlet temperature oscillation increase with heating power. The numerical results when compared to experiment data show that the 3D numerical tool (STAR-CCM+) could capture dynamics and heat transfer characteristics of

  2. State of the art on the heat transfer experiments under supercritical pressure condition

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO 2 showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO 2 and Freon used for an alternating fluid are presented

  3. State of the art on the heat transfer experiments under supercritical pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO{sub 2} showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO{sub 2} and Freon used for an alternating fluid are presented.

  4. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    Science.gov (United States)

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  5. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  6. Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size.

    Science.gov (United States)

    Min, Yujia; Li, Qingyun; Voltolini, Marco; Kneafsey, Timothy; Jun, Young-Shin

    2017-11-07

    The performance of geologic CO 2 sequestration (GCS) can be affected by CO 2 mineralization and changes in the permeability of geologic formations resulting from interactions between water-bearing supercritical CO 2 (scCO 2 ) and silicates in reservoir rocks. However, without an understanding of the size effects, the findings in previous studies using nanometer- or micrometer-size particles cannot be applied to the bulk rock in field sites. In this study, we report the effects of particle sizes on the carbonation of wollastonite (CaSiO 3 ) at 60 °C and 100 bar in water-bearing scCO 2 . After normalization by the surface area, the thickness of the reacted wollastonite layer on the surfaces was independent of particle sizes. After 20 h, the reaction was not controlled by the kinetics of surface reactions but by the diffusion of water-bearing scCO 2 across the product layer on wollastonite surfaces. Among the products of reaction, amorphous silica, rather than calcite, covered the wollastonite surface and acted as a diffusion barrier to water-bearing scCO 2 . The product layer was not highly porous, with a specific surface area 10 times smaller than that of the altered amorphous silica formed at the wollastonite surface in aqueous solution. These findings can help us evaluate the impacts of mineral carbonation in water-bearing scCO 2 .

  7. Accelerated evaporation of water on graphene oxide.

    Science.gov (United States)

    Wan, Rongzheng; Shi, Guosheng

    2017-03-29

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  8. Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids

    Directory of Open Access Journals (Sweden)

    Smirnova Marina Yu.

    2017-12-01

    Full Text Available Ce0.5Zr0.5O2 mixed oxides were prepared in a flow reactor in supercritical isopropanol with acetylacetone as a complexing agent. Variation of the nature of the Zr salt and the temperature of synthesis affected the phase composition, morphology and specific surface area of oxides. X-ray diffraction and Raman spectroscopy studies revealed formation of metastable t” and t’ phases. Oxides are comprised of agglomerates with sizes depending on the synthesis parameters. Loading NiO decreases the specific surface area without affecting X-ray particle sizes of supports. Such sintering was the most pronounced for a support with the highest specific surface area, which resulted in the lowest surface content of Ni as estimated by X-ray photoelectron spectroscopy and in the formation of flattened NiO particles partially embedded into the support. The catalytic activity and stability of these samples in the dry reforming of methane were determined by the surface concentration of Ni and the morphology of its particle controlled by the metal-support interaction, which also depends on the type of catalyst pretreatment. Samples based on ceria-zirconia oxides prepared under these conditions provide a higher specific catalytic activity as compared with the traditional Pechini route, which makes them promising for the practical application.

  9. PFC Performance Improvement of Ultra-supercritical Secondary Reheat Unit

    Directory of Open Access Journals (Sweden)

    Li Jun

    2018-01-01

    Full Text Available Ultra-supercritical secondary reheat unit has been widely used in the world because of its advantages of large capacity, low consumption and high efficiency etc., but rapid load change ability of the turbines to be weakened which caused by its system organization, cannot meet the requirements of power grid frequency modulation. Based on the analysis of the control characteristics of ultra-supercritical once-through reheat unit, the primary frequency control based on feed-water flow overshoot compensation is proposed. The main steam pressure generated by the feed-water is changed to improve the primary frequency control capability. The relevant control strategy has been applied to the 1000MW secondary reheating unit. The results show that the technology is feasible and has high economical efficiency.

  10. Numerical experiment on different validation cases of water coolant flow in supercritical pressure test sections assisted by discriminated dimensional analysis part I: the dimensional analysis

    International Nuclear Information System (INIS)

    Kiss, A.; Aszodi, A.

    2011-01-01

    As recent studies prove in contrast to 'classical' dimensional analysis, whose application is widely described in heat transfer textbooks despite its poor results, the less well known and used discriminated dimensional analysis approach can provide a deeper insight into the physical problems involved and much better results in all cases where it is applied. As a first step of this ongoing research discriminated dimensional analysis has been performed on supercritical pressure water pipe flow heated through the pipe solid wall to identify the independent dimensionless groups (which play an independent role in the above mentioned thermal hydraulic phenomena) in order to serve a theoretical base to comparison between well known supercritical pressure water pipe heat transfer experiments and results of their validated CFD simulations. (author)

  11. Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Qiuhui Yan

    2014-01-01

    Full Text Available The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system.

  12. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  13. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  14. Heat Transfer Experiment with Supercritical CO{sub 2} Flowing Upward in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO{sub 2} are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations.

  15. The solubilities of phosphate and sulfate salts in supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    Inorganic compounds are regularly present in aqueous streams. To understand their influence and behavior on these streams at supercritical conditions, little to no property data is available, which can be used as starting point for further research or application design. Since inorganic compounds

  16. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  17. Subchannel analysis with turbulent mixing rate of supercritical pressure fluid

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2015-01-01

    Highlights: • Subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out. • Turbulent mixing rate is enhanced, compared with that calculated by the law of pressurized water reactor (PWR). • Increase in maximum cladding surface temperature (MCST) is smaller comparing with PWR model. • The sensitivities of MCST on non-uniformity of subchannel area and power peaking are reduced by using SPF model. - Abstract: The subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out for supercritical-pressurized light water cooled and moderated reactor (Super LWR). It is different from the turbulent mixing rate law of pressurized water reactor (PWR), which is widely adopted in Super LWR subchannel analysis study, the density difference between adjacent subchannels is taken into account for turbulent mixing rate law of SPF. MCSTs are evaluated on three kinds of fuel assemblies with different pin power distribution patterns, gap spacings and mass flow rates. Compared with that calculated by employing turbulent mixing rate law of PWR, the increase in MCST is smaller even when peaking factor is large and gap spacing is uneven. The sensitivities of MCST on non-uniformity of the subchannel area and power peaking are reduced

  18. Heat transfer test in a tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2005-01-01

    Heat transfer test facility, which is named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), has been constructed in KAERI for the study of heat transfer and pressure drop characteristics in a single tube, single rod and rod bundle at supercritical CO 2 conditions. The tests with supercritical water are difficult it terms of cost and effort, since the critical pressure and temperature of water are as high as 22.12 MPa and 374.14degC. As a substitute for water, CO 2 is selected for the test since the critical pressure and temperature of CO 2 are 7.38 MPa and 31.05degC that are much lower than those of water. This paper describes the design characteristics of the SPHINX and the experimental investigations on the heat transfer and pressure drop of a vertical single tube with an inside diameter of 4.4 mm with upward flow of supercritical CO 2 . The geometry of the single tube is the same as that of Kyushu University test performed with Freon (R22) for the direct comparison of a medium effect. The tests were performed with various heat and mass fluxes at a given pressure. The range of mass flux is 400∼1200 kg/m 2 s and the heat flux is chosen up to 150 kW/m 2 . The selected pressure are 7.75, 8.12, and 8.85 MPa. The test results are investigated and compared with the previous tests. (author)

  19. Heat transfer to sub- and supercritical water flowing upward in a vertical tube at low mass fluxes: numerical analysis and experimental validation

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; Koster, P.; van der Ham, Aloysius G.J.; van der Hoef, Martin Anton; Kersten, Sascha R.A.

    2016-01-01

    Heat transfer to supercritical water (SCW) flowing upward in a vertical heated tube at low mass fluxes (G ≤ 20 kg/m2 s) has been numerically investigated in COMSOL Multiphysics and validated with experimental data. The turbulence models, essential to describing local turbulence, in COMSOL have been

  20. Corrosion behavior of porous chromium carbide in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2012-01-01

    Highlights: ► Corrosion behavior of porous Cr 3 C 2 in various SCW conditions was investigated. ► Cr 3 C 2 is stable in SCW at temperature below 420–430 °C. ► Cracks and disintegration were observed at elevated testing temperatures. ► Degradation of Cr 3 C 2 is related to the intermediate product CrOOH. - Abstract: The corrosion behavior of highly porous chromium carbide (Cr 3 C 2 ) prepared by a reactive sintering process was characterized at temperatures ranging from 375 °C to 625 °C in a supercritical water environment with a pressure of 25–30 MPa. The test results show that porous chromium carbide is stable in SCW environments at temperatures under 425 °C, above which disintegration occurred. The porous carbide was also tested under hydrothermal conditions of pressures between 12 MPa and 50 MPa at constant temperatures of 400 °C and 415 °C, respectively. The pressure showed little effect on the stability of chromium carbide in the tests at those temperatures. The mechanism of disintegration of chromium carbide in SCW environments is discussed.

  1. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    NJD

    2005-12-17

    Dec 17, 2005 ... a Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Hexing Road 26, 150040, ... Carbon dioxide, the most commonly used supercritical fluid, has ... absorb the remaining water that the chloroform layer had.

  2. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment

    Directory of Open Access Journals (Sweden)

    Nediljko Budisa

    2014-08-01

    Full Text Available Supercritical fluids have different properties compared to regular fluids and could play a role as life-sustaining solvents on other worlds. Even on Earth, some bacterial species have been shown to be tolerant to supercritical fluids. The special properties of supercritical fluids, which include various types of selectivities (e.g., stereo-, regio-, and chemo-selectivity have recently been recognized in biotechnology and used to catalyze reactions that do not occur in water. One suitable example is enzymes when they are exposed to supercritical fluids such as supercritical carbon dioxide: enzymes become even more stable, because they are conformationally rigid in the dehydrated state. Furthermore, enzymes in anhydrous organic solvents exhibit a “molecular memory”, i.e., the capacity to “remember” a conformational or pH state from being exposed to a previous solvent. Planetary environments with supercritical fluids, particularly supercritical carbon dioxide, exist, even on Earth (below the ocean floor, on Venus, and likely on Super-Earth type exoplanets. These planetary environments may present a possible habitat for exotic life.

  3. Assessment for development of an industrial wet oxidation system for burning waste and low-grade fuels. Final report, October 18, 1989--February 28, 1995

    International Nuclear Information System (INIS)

    Sundback, C.

    1995-05-01

    The ultimate goal of this program was to demonstrate safe, reliable, and effective operation of the supercritical water oxidation process (SCWO) at a pilot plant-level throughput. This program was a three phase program. Phase 1 of the program preceded MODEC's participation in the program. MODEC did participate in Phases 2 and 3 of the program. In Phase 2, the target waste and industry were pulp mill sludges from the pulp and paper industry. In Phase 3, the target was modified to be DOE-generated mixed low level waste; wastes containing RCRA hazardous constituents and radionuclide surrogates were used as model wastes. The paper describes the research unit planning and design; bench-scale development of SCWO; research and development of wet oxidation of fuels; and the design of a super-critical water pilot plant

  4. Separation of methicillin-resistant from methicillin-susceptible staphylococcus aureus by electrophoretic methods in fused silica capillaries etched with supercritical water

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Růžička, F.; Dvořáčková, M.; Sittová, M.; Roth, Michal

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9701-9708 ISSN 0003-2700 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP106/12/0522 Institutional support: RVO:68081715 Keywords : Staphylococcus aureus strains * capillary zone electrophoresis * supercritical water-treated capillary Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014 http://hdl.handle.net/11104/0236865

  5. Numerical assessment and comparison of heat transfer characteristics of supercritical water in bare tubes and tubes with heat transfer enhancing appendages

    International Nuclear Information System (INIS)

    Farah, Amjad; Harvel, Glenn; Pioro, Igor

    2015-01-01

    Computational Fluid Dynamics (CFD) is a numerical approach to model fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system. A numerical study on heat transfer to supercritical water (SCW) flowing in a vertical tube is carried out using the ANSYS FLUENT code and employing the SST k-ω turbulence model. The 3D mesh consists of a 1/8 section (45deg radially) of a bare tube. The numerical results on wall temperature distributions under normal and deteriorated heat transfer conditions are compared to experimental results. The same geometry is then simulated with an orifice to study the effect of geometrical perturbation on the flow and heat transfer characteristics of SCW. The orifice is placed areas to test the effect on normal, deteriorated and enhanced heat transfer regimes. The flow effects and heat transfer characteristics will be studied around the appendages to arrive at a fundamental understanding of the phenomena related to supercritical water turbulence. (author)

  6. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  7. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    International Nuclear Information System (INIS)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-01-01

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process

  8. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Qi, Yingying [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Zhang, Fu-Shen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  9. Optimization of the fuel assembly for the Canadian SuperCritical Water-cooled Reactor (SCWR)

    Energy Technology Data Exchange (ETDEWEB)

    French, C., E-mail: Corey.French@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada); Bonin, H.; Chan, P.K. [Royal Military College of Ontario, Kingston, Ontario (Canada)

    2013-07-01

    An approach to develop a parametric optimization tool to support the Canadian Supercritical Water-cooled Reactor (SCWR) fuel design is presented in this work. The 2D benchmark lattices for 78-pin and 64-pin fuel assemblies are used as the initial models from which fuel performance and subsequent optimization stem from. A tandem optimization procedure is integrated which employs the steepest descent method. The physics codes WIMS-AECL, MCNP6 and SERPENT are used to calculate and verify select performance factors. The results are used as inputs to an optimization algorithm that yield optimal fresh fuel isotopic composition and lattice geometry. Preliminary results on verifications of infinite lattice reactivity are demonstrated in this paper. (author)

  10. Advanced Materials Deposition for Semiconductor Nanostructures Using Supercritical Fluids

    National Research Council Canada - National Science Library

    Wai, Chien M

    2007-01-01

    ... able to dissolve solutes like a liquid and transport dissolved materials like a gas. Metal and metal sulfide nanoparticles of controllable size can be synthesized in supercritical fluid carbon dioxide using water-in-CO2 microemulsion as template...

  11. A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency

    International Nuclear Information System (INIS)

    Xu, X.; Lei, M.; Huang, K.; Liang, C.; Xu, J.C.; Shangguan, Z.C.; Yuan, Q.X.; Ma, L.H.; Du, Y.X.; Fan, D.Y.; Yang, H.J.; Wang, Y.G.; Tang, W.H.

    2015-01-01

    Highlights: • A facile route was developed to fabricate porous β-Ga 2 O 3 NWs-rGO hybrids. • Supercritical water can act as an efficient reductant to situ-reduce GO into RGO. • The Ga 2 O 3 NWs attach on the surface of RGO through a strong coupling forces. • The photocatalytic performance of the hybrids can be obviously improved. - Abstract: A facile route was developed to fabricate porous beta-gallium oxide nanowires (β-Ga 2 O 3 NWs)-reduced graphene oxide (rGO) hybrids using β-Ga 2 O 3 NWs and graphene oxide (GO) as raw materials. The characterization results indicate that supercritical water can act as an efficient reductant to situ-reduce GO into rGO, and porous β-Ga 2 O 3 NWs can further attach on the surface of as-reduced rGO through a strong coupling forces between the β-Ga 2 O 3 NWs and rGO. The photocatalytic performance of the hybrids can be obviously improved (about 74%) for the decomposition of methylene blue (MB) solution after coupling with 1 wt% rGO compared with the pure β-Ga 2 O 3 NWs. The enhanced photocatalytic activity can be attributed to the synergistic effect of extended optical absorption band, the enrichment of MB molecular on the rGO and the valid inhibition of recombination of photo-generated electron–hole pairs induced by the strong coupling interaction between rGO nanosheets and porous β-Ga 2 O 3 NWs

  12. Supercritical heat transfer correlation for carbon dioxide flowing upward in a vertical tube

    International Nuclear Information System (INIS)

    Mokry, S. J.; Pioro, I. L.; Farah, A.; King, K.

    2010-01-01

    The objective of the current study was to analyze heat-transfer at supercritical conditions using carbon dioxide as a modeling fluid, and to develop a heat-transfer correlation based on data published in open literature. Supercritical (SC) fluids have unique properties. Beyond the critical point (22.1 MPa and 374.1 deg.C for water and 7.38 MPa and 31.0 deg.C for carbon dioxide), the fluid resembles a dense gas. The transition from single-phase liquid to single-phase gas does not involve a distinct phase change under these conditions. Phenomena such as dryout (or critical heat flux) are therefore not relevant. However, at supercritical conditions, deteriorated heat-transfer regime, (i.e., lower Heat Transfer Coefficient (HTC) values, compared to those for the normal or regular heat-transfer regime) may exist. Experiments with Supercritical Water (SCW) are very expensive due to high critical parameters. Therefore, a number of experiments are performed in modeling fluids such as carbon dioxide or/and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Thus, the objective of this work was to generalize SC carbon dioxide data with a new correlation, and also, to compare these data with SCW correlations The experimental data was analyzed, and a new correlation was developed as part of a larger project assessing the feasibility of Generation IV SCW reactor concepts. Results are given for supercritical heat-transfer for several combinations of wall and bulk-fluid temperatures that were below, at or above the pseudo critical temperature. Uncertainties of all primary parameters were estimated. Two modes of heat transfer at supercritical pressures have been identified: (I) Normal Heat Transfer (NHT), and (2) Deteriorated Heat Transfer (DHT) characterized by lower-than-expected HTCs (i.e., higher-than-expected wall temperatures) than in the normal heat-transfer regime. These heat-transfer data are

  13. Reaction rate prediction in the supercritical region of H · + OH"- → e"-_a_q + H_2O using μSR

    International Nuclear Information System (INIS)

    Du, T.; Liu, G.; Beninger, J.; Ghandi, K.

    2015-01-01

    Knowledge of reaction rates in the supercritical region for reactions caused by the radiolysis of water is needed to prevent damage to future Supercritical Water-Cooled reactors. In particular, the H · + OH"- → e"-_a_q + H_2O reaction is examined experimentally within the supercritical region by usage of muon spin rotation spectroscopy. Using the obtained data and the 'cage effect' theory, the reaction was modelled and plateau-like behaviour near the critical point was accounted for. (author)

  14. Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel

    International Nuclear Information System (INIS)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol

    2010-01-01

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  15. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO2

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae

    2007-01-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed

  16. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  17. Exfoliation Propensity of Oxide Scale in Heat Exchangers Used for Supercritical CO2 Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Shingledecker, John P. [Electric Power Research Institute (EPRI); Kung, Steve [Electric Power Research Institute (EPRI); Wright, Ian G. [WrightHT, Inc.; Nash, Jim [Brayton Energy, LLC, Hampton, NH

    2016-01-01

    Supercritical CO2 (sCO2) Brayton cycle systems offer the possibility of improved efficiency in future fossil energy power generation plants operating at temperatures of 650 C and above. As there are few data on the oxidation/corrosion behavior of structural alloys in sCO2 at these temperatures, modeling to predict the propensity for oxide exfoliation is not well developed, thus hindering materials selection for these novel cycles. The ultimate goal of this effort is to provide needed data on scale exfoliation behavior in sCO2 for confident alloy selection. To date, a model developed by ORNL and EPRI for the exfoliation of oxide scales formed on boiler tubes in high-temperature, high-pressure steam has proven useful for managing exfoliation in conventional steam plants. A major input provided by the model is the ability to predict the likelihood of scale failure and loss based on understanding of the evolution of the oxide morphologies and the conditions that result in susceptibility to exfoliation. This paper describes initial steps taken to extend the existing model for exfoliation of steam-side oxide scales to sCO2 conditions. The main differences between high-temperature, high-pressure steam and sCO2 that impact the model involve (i) significant geometrical differences in the heat exchangers, ranging from standard pressurized tubes seen typically in steam-producing boilers to designs for sCO2 that employ variously-curved thin walls to create shaped flow paths for extended heat transfer area and small channel cross-sections to promote thermal convection and support pressure loads; (ii) changed operating characteristics with sCO2 due to the differences in physical and thermal properties compared to steam; and (iii) possible modification of the scale morphologies, hence properties that influence exfoliation behavior, due to reaction with carbon species from sCO2. The numerical simulations conducted were based on an assumed sCO2 operating schedule and several

  18. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    Science.gov (United States)

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  19. Development of out-of-core concepts for a supercritical-water, pressure-tube reactor

    International Nuclear Information System (INIS)

    Diamond, W.T.

    2010-01-01

    One of the Generation IV programs at Chalk River Laboratories has as its prime focus the development of out-of-core concepts for the SuperCritical Water (SCW) pressure tube reactor under development in Canada. A number of technical issues associated with the interface of out-of-core components and the pressure tubes of a SCW pressure tube reactor are being investigated. This article focuses on several aspects of out-of-core components and layouts, building upon concepts that have been developed during the past few years. The efforts are strongly focused on concepts for a fuel channel that can be fabricated with the tight lattice pitch (typically 230 to 250 mm) that may be required for some applications such as utilization of a thorium fuel cycle. It is not practical to adapt concepts with a tight lattice pitch while using the thicker materials required for the higher temperatures and pressures required for supercritical operation. A change in lattice pitch or configuration is required to accommodate the component size increases. This presentation will cover a number of new concepts developed to produce feeders and end fittings for the harsh conditions of a SCW pressure tube reactor. These components are then developed into conceptual models of a Gen IV pressure tube reactor mounted in both horizontal and vertical orientations. Full 3-D solid models of both concepts will be demonstrated as well as a 1/10th-scale model of one face of a horizontal concept that has been built from components made with a 3-D printer. (author)

  20. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  1. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  2. Analysis of product distribution and characteristics in hydrothermal liquefaction of barley straw in subcritical and supercritical water

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this study, hydrothermal liquefaction of barley straw in subcritical and supercritical water with potassium carbonate catalyst was performed in the temperatures range of 280-400°C. The influence of final reaction temperature on products yield was investigated and some physicochemical properties...... yield (35.24 wt %) as well as the maximum energy recovery of 55.33% were obtained at 300°C. The products obtained were characterized in terms of CHNS elemental composition, higher heating values (HHVs), Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometer (GC...

  3. Kinetics experiments and bench-scale system: Background, design, and preliminary experiments

    International Nuclear Information System (INIS)

    Rofer, C.K.

    1987-10-01

    The project, Supercritical Water Oxidation of Hazardous Chemical Waste, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to obtain information for use in understanding the basic technology and for scaling up and applying oxidation in supercritical water as a viable process for treating a variety of DOE-DP waste streams. This report gives the background and rationale for kinetics experiments on oxidation in supercritical water being carried out as a part of this HAZWRAP Research and Development task. It discusses supercritical fluid properties and their relevance to applying this process to the destruction of hazardous wastes. An overview is given of the small emerging industry based on applications of supercritical water oxidation. Factors that could lead to additional applications are listed. Modeling studies are described as a basis for the experimental design. The report describes plug flow reactor and batch reactor systems, and presents preliminary results. 28 refs., 4 figs., 5 tabs

  4. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  5. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    Highlights: • Non-linear model of supercritical CFB boiler with annular furnace is developed. • Many empirical correlations are used to solve the model. • The thermal–hydraulic characteristics of boiler are analyzed. • The results show that the design of the annular furnace is reasonable. - Abstract: The development of supercritical Circulating Fluidized Bed (CFB) boiler has great economic and environmental value. An entirely new annular furnace structure with outer and inner ring sidewalls for supercritical CFB boiler has been put forward by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences and Dongfang Boiler Group Co., Ltd. (DBC). Its outer and inner ring furnace structure makes more water walls arranged and reduces furnace height availably. In addition, compared with other additional evaporating heating surface structures such as mid-partition and water-cooled panels, the integrative structure can effectively avoid the bed-inventory overturn and improve the penetrability of secondary air. The conditions of the 600 MW supercritical CFB boiler including capability, pressure and mass flux are harsh. In order to insure the safety of boiler operation, it is very necessary to analyze the thermal–hydraulic characteristics of water-wall system. The water-wall system with complicated pipe arrangement is regarded as a network consisting of series-parallel circuits, pressure nodes and linking circuits, which represent vertical water-wall tubes, different headers and linking tubes, respectively. Based on the mass, momentum and energy conservation, a mathematical model is built, which consists of some simultaneous nonlinear equations. The mass flux in circuits, pressure drop between headers, outer vapor temperature of water-wall system and metal temperature data of tubes at the boiler maximum continuous rating (BMCR), 75% BMCR and 30% BMCR loads are obtained by solving the mathematical model. The results show that the vertical water

  6. Supercritical fluids processing: emerging opportunities

    International Nuclear Information System (INIS)

    Kovaly, K.A.

    1985-01-01

    This publication on the emerging opportunities of supercritical fluids processing reveals the latest research findings and development trends in this field. These findings and development trends are highlighted, and the results of applications of technology to the business of supercritical fluids are reported. Applications of supercritical fluids to chemical intermediates, environmental applications, chemical reactions, food and biochemistry processing, and fuels processing are discussed in some detail

  7. Bedforms formed by experimental supercritical density flows

    Science.gov (United States)

    Naruse, Hajime; Izumi, Norihiro; Yokokawa, Miwa; Muto, Tetsuji

    2014-05-01

    This study reveals characteristics and formative conditions of bedforms produced by saline density flows in supercritical flow conditions, especially focusing on the mechanism of the formation of plane bed. The motion of sediment particles forming bedforms was resolved by high-speed cameras (1/1000 frame/seconds). Experimental density flows were produced by mixtures of salt water (1.01-1.04 in density) and plastic particles (1.5 in specific density, 140 or 240 mm in diameter). Salt water and plastic particles are analogue materials of muddy water and sand particles in turbidity currents respectively. Acrylic flume (4.0 m long, 2.0 cm wide and 0.5 m deep) was submerged in an experimental tank (6.0 m long, 1.8 m wide and 1.2 m deep) that was filled by clear water. Features of bedforms were observed when the bed state in the flume reached equilibrium condition. The experimental conditions range 1.5-4.2 in densimetric Froude number and 0.2-0.8 in Shields dimensionless stress. We report the two major discoveries as a result of the flume experiments: (1) Plane bed under Froude-supercritical flows and (2) Geometrical characteristics of cyclic steps formed by density flows. (1) Plane bed was formed under the condition of supercritical flow regime. In previous studies, plane bed has been known to be formed by subcritical unidirectional flows (ca. 0.8 in Froude number). However, this study implies that plane bed can also be formed by supercritical conditions with high Shields dimensionless stress (>0.4) and very high Froude number (> 4.0). This discovery may suggest that previous estimations of paleo-hydraulic conditions of parallel lamination in turbidites should be reconsidered. The previous experimental studies and data from high-speed camera suggest that the region of plane bed formation coincides with the region of the sheet flow developments. The particle transport in sheet flow (thick bedload layer) induces transform of profile of flow shear stress, which may be

  8. Industrial waste water treatment by advanced oxidation processes; Tratamiento de aguas residuales industriales mediante procesos de oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Gasso, S.; Baldasano, J.M.

    1996-06-01

    Advanced Oxidation Technologies have been defined as processes which involve the generation of highly reactive oxy radicals. These systems show promise for the destruction of non biodegradable and hazardous organic substances in industrial wastewater. Two types of advanced oxidation processes are considered in this paper: (1) systems that use high energy oxidants (O{sub 3}, H{sub 2}O{sub 2}, UV, etc) at ambient temperature to initiate the oxidation reaction, and (2) processes that use molecular oxygen and high temperature and pressure to initiate the reaction (wet oxidation at subcritical and supercritical conditions). The fundamental aspects of these oxidation technologies are discussed, the application framework is defined and the technology development is indicated. (Author) 33 refs.

  9. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  10. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed.

  11. Electrochemistry in supercritical fluids

    Science.gov (United States)

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  12. Modeling the outflow of liquid with initial supercritical parameters using the relaxation model for condensation

    Directory of Open Access Journals (Sweden)

    Lezhnin Sergey

    2017-01-01

    Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.

  13. Heat Transfer Experiments with Supercritical CO{sub 2} in a Vertical Circular Tube (9.0 mm)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Woo Gun; Bae, Yoon Yeong [Hannam University, Daejeon (Korea, Republic of)

    2008-10-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic behaviors of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has critical pressure and temperature which is much lower than water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical circular tube with and inner diameter of 9.0mm has been performed. CO{sub 2} flows downward through the vertical circular tube for the simulation of the water rod which may be used for a moderation of the reactor. The heat transfer characteristics were analyzed and compared with the upward flow test results previously performed at the same test section at KAERI.

  14. Experimental studies on heat transfer to supercritical water in 2 × 2 rod bundle with two channels

    International Nuclear Information System (INIS)

    Gu, H.Y.; Hu, Z.X.; Liu, D.; Xiao, Y.; Cheng, X.

    2015-01-01

    Highlights: • Heat transfer to supercritical water in a 2 × 2 rod bundle is investigated. • Effects of system parameters on heat transfer in bundle are analyzed. • The test data were compared with twenty heat transfer correlations. - Abstract: The experiment of heat transfer to supercritical water in 2 × 2 rod bundle is performed at Shanghai Jiao Tong University. The test section consists of two channels separated by a square steel assembly box with rounded corners. Water flows downward in the first channel and then turns upward in the second channel to cool the 2 × 2 rod bundle installed inside the assembly box. The bundle consists of four heated rods of 10 mm in O.D. and 1.18 in pitch-to-diameter ratio. The fluid enthalpy in the first channel increases due to the heat transfer through the assembly box when flowing downward. The minimum fluid enthalpy increase in the first channel appears at the pseudo-critical region due to the small temperature difference between the two channels. Effects of various parameters on heat transfer behavior inside the 2 × 2 rod bundle are similar to those observed in tube or annuli. No special phenomenon in heat transfer is observed during the mass flux and power transient. The steady-state heat transfer correlation is applicable to predict the heat transfer in the mass or power transient sequence. In addition, the importance of several dimensionless numbers and the accuracy of 20 heat transfer correlations are assessed. It is concluded that the buoyancy parameter proposed by Cheng et al. (2009) shows unique effect on heat transfer coefficient. Among the 20 selected heat transfer correlations, the correlations of Jackson and Fewster (1975) and Bishop et al. (1964) give the best predictions when compared with the experimental data

  15. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification

    NARCIS (Netherlands)

    Kasteren, van J.M.N.; Nisworo, A.P.

    2007-01-01

    This paper describes the conceptual design of a production process in which waste cooking oil is converted via supercritical transesterification with methanol to methyl esters (biodiesel). Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great

  16. Design and study of water supply system for supercritical unit boiler in thermal power station

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    In order to design and optimize the boiler feed water system of supercritical unit, the establishment of a highly accurate controlled object model and its dynamic characteristics are prerequisites for developing a perfect thermal control system. In this paper, the method of mechanism modeling often leads to large systematic errors. Aiming at the information contained in the historical operation data of the boiler typical thermal system, the modern intelligent identification method to establish a high-precision quantitative model is used. This method avoids the difficulties caused by the disturbance experiment modeling for the actual system in the field, and provides a strong reference for the design and optimization of the thermal automation control system in the thermal power plant.

  17. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  18. A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, M., E-mail: minglei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Huang, K.; Liang, C.; Xu, J.C.; Shangguan, Z.C. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yuan, Q.X. [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Ma, L.H. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Du, Y.X., E-mail: duyinxiao@zzia.edu.cn [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Fan, D.Y.; Yang, H.J.; Wang, Y.G.; Tang, W.H. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-02-25

    Highlights: • A facile route was developed to fabricate porous β-Ga{sub 2}O{sub 3} NWs-rGO hybrids. • Supercritical water can act as an efficient reductant to situ-reduce GO into RGO. • The Ga{sub 2}O{sub 3} NWs attach on the surface of RGO through a strong coupling forces. • The photocatalytic performance of the hybrids can be obviously improved. - Abstract: A facile route was developed to fabricate porous beta-gallium oxide nanowires (β-Ga{sub 2}O{sub 3} NWs)-reduced graphene oxide (rGO) hybrids using β-Ga{sub 2}O{sub 3} NWs and graphene oxide (GO) as raw materials. The characterization results indicate that supercritical water can act as an efficient reductant to situ-reduce GO into rGO, and porous β-Ga{sub 2}O{sub 3} NWs can further attach on the surface of as-reduced rGO through a strong coupling forces between the β-Ga{sub 2}O{sub 3} NWs and rGO. The photocatalytic performance of the hybrids can be obviously improved (about 74%) for the decomposition of methylene blue (MB) solution after coupling with 1 wt% rGO compared with the pure β-Ga{sub 2}O{sub 3} NWs. The enhanced photocatalytic activity can be attributed to the synergistic effect of extended optical absorption band, the enrichment of MB molecular on the rGO and the valid inhibition of recombination of photo-generated electron–hole pairs induced by the strong coupling interaction between rGO nanosheets and porous β-Ga{sub 2}O{sub 3} NWs.

  19. Supercritical water gasification of biomass for H2 production: process design.

    Science.gov (United States)

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    International Nuclear Information System (INIS)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-01-01

    . A chemical polishing operation can reduce the release of CO 2 from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO 2 . The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO 2 should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  1. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  2. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  3. Analysis of potential component cleaning techniques. Final report, July 6, 1992 - July 5, 1995

    International Nuclear Information System (INIS)

    Hess, D.W.

    1997-01-01

    Elevated temperature, elevated pressure water, supercritical carbon dioxide and helical resonator plasmas were investigated for potential use in surface cleaning. A surface analysis system consisting of X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy was used to evaluate surfaces exposed to water and supercritical carbon dioxide. Langmuir probe and silicon oxidation studies were used to evaluate the effect of oxygen plasmas on silicon surfaces. Silicon oxides were removed from silicon surfaces by water at temperatures above 260 degrees C and pressures above 2000 psi; silicon oxidation and simultaneous dissolution of the oxide grown occurred under these conditions. A new approach for in-situ monitoring of subcritical and supercritical fluid density was devised

  4. Present status of study on super-critical water cooled reactor

    International Nuclear Information System (INIS)

    Ookawa, Masahiro; Shiga, Shigenori; Moriya, Kumiaki; Oka, Yoshiaki; Yoshida, Suguru; Takahashi, Heishichiro

    2003-01-01

    Reactor structure design, the core design and coolant flow in sub-channel of fuel assembly are evaluated in the subtitle of plant concepts of the 2002 fiscal year. High temperature parts and high pressure parts are separated on the reactor structure design. Reactor pressure vessel (RPV) is designed under the condition of low temperature and high pressure, while, apparatuses and instruments in the reactor core are designed under the condition of high temperature and low pressure. Design of control rods for cold shut down of the reactor are estimated by using monte carlo computation code (MCNP). It reveals that the number of 16 control rods (0.7 cm in dia) per a fuel assembly is needed for getting control rod worth of conventional light water reactor. Radial power peaking factor reduces to 1.27 by using a load pattern of fuel assembly, number and load position of fuel elements with burnable poison and control rod pattern. Distributions of coolant flow rate in the fuel assembly are studied by sub-channel analysis code, SILFEED, for BWR. The fuel assembly with 1.0 mm gaps between fuel rod and water keeps an uniform flow distribution in which no sub-channel below 90% of flow rate appears in the fuel assembly. Heat transfer experiments for a single test fuel are carried out in the subtitle of heat transfer. The heat transfer data obtained by the experiments are fitted well to Watts' formula. Slow strain rate tests (SSRT) for SUS 304 and SUS 316L steels in the subtitle of materials are carried out for studying stress corrosion cracking (SCC) of the materials under the super-critical pressure water environment. Intergranular stress corrosion cracking (IGSCC) takes place in SUS 304, but doesn't take place in SUS 316L. (M. Suetake)

  5. Extraction of Lepidium apetalum Seed Oil Using Supercritical Carbon Dioxide and Anti-Oxidant Activity of the Extracted Oil

    Directory of Open Access Journals (Sweden)

    Xuchong Tang

    2011-12-01

    Full Text Available The supercritical fluid extraction (SFE of Lepidium apetalum seed oil and its anti-oxidant activity were studied. The SFE process was optimized using response surface methodology (RSM with a central composite design (CCD. Independent variables, namely operating pressure, temperature, time and flow rate were evaluated. The maximum extraction of Lepidium apetalum seed oil by SFE-CO2 (about 36.3% was obtained when SFE-CO2 extraction was carried out under the optimal conditions of 30.0 MPa of pressure, 70 °C of temperature, 120 min of extraction time and 25.95 L/h of flow rate. GC-MS analysis showed the presence of four fatty acids in Lepidium apetalum seed oil, with a high content (91.0% of unsaturated fatty acid. The anti-oxidant activity of the oil was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical-scavenging assay and 2,2′-azino- bis(3-ethylbenzthiazoline-6-sulphonic acid diammonium salt (ABTS test. Lepidium apetalum seed oil possessed a notable concentration-dependent antioxidant activity, with IC50 values of 1.00 and 3.75 mg/mL, respectively.

  6. Study on neutronics performance of flower shape advanced supercritical water cooled fast reactor with different solid moderators

    International Nuclear Information System (INIS)

    Yu Tao; Li Zhifeng; Xie Jinsen; Peng Honghua

    2015-01-01

    The supercritical water cooled fast reactors worked at such harsh condition with high temperature and high pressure, huge hydrogen balance pressure and thermal shock can result in a great loss of hydrogen. The released hydrogen would be out of control under accident situations. K_e_f_f, conversion ratio, moderator temperature effect, Doppler effect and void effect of different material such as ZrH_1_._7, Bp, BeO, C and SiC are discussed. BeO and SiC hold better integrated performance among these materials. Besides, moderators have less effect on the Doppler effect of fuel. (authors)

  7. Method of producing deuterium-oxide-enriched water

    International Nuclear Information System (INIS)

    Mandel, H.

    1976-01-01

    A method and apparatus for producing deuterium-oxide-enriched water (e.g., as a source of deuterium-rich gas mixtures) are disclosed wherein the multiplicity of individual cooling cycles of a power plant are connected in replenishment cascade so that fresh feed water with a naturally occurring level of deuterium oxide is supplied to replace the vaporization losses, sludge losses and withdrawn portion of water in a first cooling cycle, the withdrawn water being fed as the feed water to the subsequent cooling cycle or stage and serving as the sole feed-water input to the latter. At the end of the replenishment-cascade system, the withdrawn water has a high concentration of deuterium oxide and may serve as a source of water for the production of heavy water or deuterium-enriched gas by conventional methods of removing deuterium oxide or deuterium from the deuterium-oxide-enriched water. Each cooling cycle may form part of a thermal or nuclear power plant in which a turbine is driven by part of the energy and air-cooling of the water takes place in the atmosphere, e.g., in a cooling tower

  8. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  9. Study on parallel-channel asymmetry in supercritical flow instability experiment

    International Nuclear Information System (INIS)

    Xiong Ting; Yu Junchong; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang

    2013-01-01

    Due to the urgent need for experimental study on supercritical water flow instability, the parallel-channel asymmetry which determines the feasibility of such experiments was studied with the experimental and numerical results in parallel dual channel. The evolution of flow rates in the experiments was analyzed, and the steady-state characteristics as well as transient characteristics of the system were obtained by self-developed numerical code. The results show that the asymmetry of the parallel dual channel would reduce the feasibility of experiments. The asymmetry of flow rates is aroused by geometrical asymmetry. Due to the property variation characteristics of supercritical water, the flow rate asymmetry is enlarged while rising beyond the pseudo critical point. The extent of flow rate asymmetry is affected by the bulk temperature and total flow rate; therefore the experimental feasibility can be enhanced by reducing the total flow rate. (authors)

  10. Long term steam oxidation of TP 347H FG in power plants

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Korcakova, Leona; Hald, John

    2005-01-01

    The long term oxidation behaviour of TP 347H FG at ultra supercritical steam conditions was assessed by exposing the steel in test superheater loops in a Danish coal-fired power plant. The steamside oxide layer was investigated with scanning electron microscopy and energy dispersive Xray diffract......The long term oxidation behaviour of TP 347H FG at ultra supercritical steam conditions was assessed by exposing the steel in test superheater loops in a Danish coal-fired power plant. The steamside oxide layer was investigated with scanning electron microscopy and energy dispersive Xray...

  11. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    The power generation efficiency of nuclear plants is mainly determined by the permissible temperatures and pressures of the nuclear reactor fuel and coolants. These parameters are limited by materials properties and corrosion rates and their effect on nuclear reactor safety. The advanced materials for the next generation of CANDU reactors, which employ steam as a coolant and heat carrier, permit the increased steam parameters (outlet temperature up to 625 degree C and pressure of about 25 MPa). Supercritical water-cooled (SCW) nuclear power plants are expected to increase the power generation efficiency from 35 to 45%. Supercritical water-cooled nuclear reactors can be linked to thermochemical water splitting cycles for hydrogen production. An increased steam temperature from the nuclear reactor makes it also possible to utilize its energy in thermochemical water splitting cycles. These cycles are considered by many as one of the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require a heat supply at the temperatures over 550-600 degree C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump which increases the temperature the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. A high temperature chemical heat pump which employs the reversible catalytic methane conversion reaction is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with a SCW nuclear plant on one side and thermochemical water splitting cycle on the other, increases the temperature level of the 'nuclear' heat and, thus, the intensity of

  12. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  13. Technology with Supercritical Fluid. Part 2. Applications

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    The present article is based on a bibliographical analysis of the main applications of the supercritical fluid in various fields, as: extraction from solid matrices, division of liquid charges, chromatography HPLC with supercritical eluent, chemical and biochemical reactions in supercritical solvents etc [it

  14. Supercritical transitiometry of polymers.

    Science.gov (United States)

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  15. A rapid supercritical fluid extraction method for the qualitative detection of 2-alkylcyclobutanones in gamma-irradiated fresh and sea water fish

    International Nuclear Information System (INIS)

    Tewfik, I.H.; Ismail, H.M.; Sumar, S.

    1999-01-01

    2-Alkylcyclobutanones are routinely used as chemical markers for irradiated foods containing lipids. However, current extraction procedures (soxhlet-Florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to GC-MS identification. A simple and rapid method for the isolation of these markers using carbon dioxide as a super critical fluid is described for low lipid content fish samples (fresh and sea water) irradiated up to 8kGy. The presence of 2-dodecylcyclobutanone (2-DCB), a radiolytic marker, was confirmed in all irradiated fish samples at all doses. This was a clear indication that the fish samples had been irradiated and that both methods of isolation (florisil and supercritical fluid extraction) were capable of qualitatively extracting this marker. Supercritical fluid extraction is proposed as an alternative extraction procedure to the florisil chromatography method currently in use and has the added advantage of a considerably shorter extraction time

  16. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  17. Pressure drop and friction factor correlations of supercritical flow

    International Nuclear Information System (INIS)

    Fang Xiande; Xu Yu; Su Xianghui; Shi Rongrong

    2012-01-01

    Highlights: ► Survey and evaluation of friction factor models for supercritical flow. ► Survey of experimental study of supercritical flow. ► New correlation of friction factor for supercritical flow. - Abstract: The determination of the in-tube friction pressure drop under supercritical conditions is important to the design, analysis and simulation of transcritical cycles of air conditioning and heat pump systems, nuclear reactor cooling systems and some other systems. A number of correlations for supercritical friction factors have been proposed. Their accuracy and applicability should be examined. This paper provides a comprehensive survey of experimental investigations into the pressure drop of supercritical flow in the past decade and a comparative study of supercritical friction factor correlations. Our analysis shows that none of the existing correlations is completely satisfactory, that there are contradictions between the existing experimental results and thus more elaborate experiments are needed, and that the tube roughness should be considered. A new friction factor correlation for supercritical tube flow is proposed based on 390 experimental data from the available literature, including 263 data of supercritical R410A cooling, 45 data of supercritical R404A cooling, 64 data of supercritical carbon dioxide (CO 2 ) cooling and 18 data of supercritical R22 heating. Compared with the best existing model, the new correlation increases the accuracy by more than 10%.

  18. A Review of Laboratory-Scale Research on Upgrading Heavy Oil in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Ning Li

    2015-08-01

    Full Text Available With the growing demand for energy and the depletion of conventional crude oil, heavy oil in huge reserve has attracted extensive attention. However, heavy oil cannot be directly refined by existing processes unless they are upgraded due to its complex composition and high concentration of heteroatoms (N, S, Ni, V, etc.. Of the variety of techniques for heavy oil upgrading, supercritical water (SCW is gaining popularity because of its excellent ability to convert heavy oil into valued, clean light oil by the suppression of coke formation and the removal of heteroatoms. Based on the current status of this research around the world, heavy oil upgrading in SCW is summarized from three aspects: Transformation of hydrocarbons, suppression of coke, and removal of heteroatoms. In this work, the challenge and future development of the orientation of upgrading heavy oil in SCW are pointed out.

  19. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  20. Degradation Characteristics of Wood Using Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2012-11-01

    Full Text Available In this work, the characteristics of wood degradation using supercritical alcohols have been studied. Supercritical ethanol and supercritical methanol were used as solvents. The kinetics of wood degradation were analyzed using the nonisothermal weight loss technique with heating rates of 3.1, 9.8, and 14.5 °C/min for ethanol and 5.2, 11.3, and 16.3 °C/min for methanol. Three different kinetic analysis methods were implemented to obtain the apparent activation energy and the overall reaction order for wood degradation using supercritical alcohols. These were used to compare with previous data for supercritical methanol. From this work, the activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol for the different kinetic analysis methods used in this work. The activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol. This paper also includes the analysis of the liquid products obtained from this work. The characteristic analysis of liquid products on increasing reaction temperature and time has been performed by GC-MS. The liquid products were categorized according to carbon numbers and aromatic/aliphatic components. It was found that higher conversion in supercritical ethanol occurs at a lower temperature than that of supercritical methanol. The product analysis shows that the majority of products fall in the 2 to 15 carbon number range.

  1. Reaction rate prediction in the supercritical region of H · + OH{sup -} → e{sup -}{sub aq} + H{sub 2}O using μSR

    Energy Technology Data Exchange (ETDEWEB)

    Du, T., E-mail: tdu@mta.ca [Mount Allison University, Sackville, NB (Canada); Liu, G., E-mail: gliu@mta.ca [Mount Allison University, Sackville, NB (Canada); Beninger, J., E-mail: jgbeninger@mta.ca [Mount Allison University, Sackville, NB (Canada); Ghandi, K., E-mail: kghandi@mta.ca [Mount Allison University, Sackville, NB (Canada)

    2015-07-01

    Knowledge of reaction rates in the supercritical region for reactions caused by the radiolysis of water is needed to prevent damage to future Supercritical Water-Cooled reactors. In particular, the H · + OH{sup -} → e{sup -}{sub aq} + H{sub 2}O reaction is examined experimentally within the supercritical region by usage of muon spin rotation spectroscopy. Using the obtained data and the 'cage effect' theory, the reaction was modelled and plateau-like behaviour near the critical point was accounted for. (author)

  2. Impact of neutron thermal scattering laws on the burn-up analysis of supercritical LWR's fuel assemblies

    International Nuclear Information System (INIS)

    Conti, Andrea

    2011-10-01

    This work is a contribution to the HPLWR2 (High Performance Light Water Reactor Phase 2), a research project having the goal to investigate the technical feasibility of the High Performance Light Water Reactor. The basic idea of the HPLWR is that of an LWR working at supercritical pressure, which would allow heating up the coolant to a temperature of about 500 C without having phase transition and sending the coolant directly to the turbine. One issue aroused by this design, deserving to be addressed by research, is the behaviour of thermal neutrons in supercritical water. At thermal energies, the De Broglie wavelength associated with the neutron is comparable to the interatomic distances in crystals and molecules and the scattering is fully governed by the laws of quantum mechanics, according to which the geometry of the aggregates the nuclei are bound to and their intra- and intermolecular dynamics are of crucial importance. It can be shown that there is a certain mathematical relation between the Fourier-transform of the hydrogen atoms' velocity autocorrelation function and their double-differential scattering cross section. This Fourier-transform, called ''generalized frequency distribution'', can be derived from experimental measurements and, effectively, Bernnat et al. of the Institut fuer Kernenergetik und Energiesysteme of the University of Stuttgart derived the generalized frequency distribution for liquid water on the basis of experimental results of Page and Haywood. Unfortunately there exists no experimental facility nowadays to support a thorough work of this type on supercritical water and therefore the scattering kernel for thermal neutrons in supercritical water is unknown. In criticality calculations involving supercritical water one can turn to one of the thermal scattering kernels available nowadays for hydrogen bound to the H 2 O molecule: for liquid water, for vapour or considering the nuclei of hydrogen as unbound. The third, most naive option

  3. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  4. PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS

    International Nuclear Information System (INIS)

    HOLROYD, R.

    2007-01-01

    Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications

  5. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.

    Science.gov (United States)

    Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang

    2009-01-01

    Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.

  6. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    International Nuclear Information System (INIS)

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  7. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.

    2014-11-05

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system p-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.

  8. Supercritical fluid chromatography

    Science.gov (United States)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  9. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  10. Extraction of Phytochemical Compounds from Eucheuma cottonii and Gracilaria sp using Supercritical CO2 Followed by Subcritical Water

    Directory of Open Access Journals (Sweden)

    Setyorini Dwi

    2018-01-01

    Full Text Available Extraction of phytochemical compounds (such as β-carotene, linoleic acids, carrageenan, and polyphenols from algae Eucheuma cottonii and Gracilaria sp with supercritical CO2 followed by subcritical water has been investigated. Supercritical CO2 extraction was carried out at pressure of 25 MPa, temperature of 60°C, CO2 flowrate of 15 ml/min, and ethanol flowrate of 0.25 ml/min. To determine the content of carotenoids and linoleic acids, the extracted compounds were analyzed using a spectrophotometer UV-Vis. The residue of algae starting material was subsequently extracted by subcritical water at pressures of 3, 5, and 7 MPa, and temperatures of 120, 140, 160, and 180 °C. Carrageenan extracted by subcritical water was analyzed using Fourier Transform Infra Red (FTIR, while the total phenolic compound was analyzed with UV-vis spectrophotometer. Moreover, the antioxidant efficiency of extract was also examined by DPPH assay method. Based on the analytical result, β-carotene and linoleic acid content in Eucheuma cottonii were 209.91 and 321.025 μg/g sample, respectively. While β-carotene and linoleic acid content in Gracilaria sp were 219.99 and 286.52 μg/g sample, respectively. The optimum condition of subcritical water extraction was at 180°C and 7 MPa. At this condition, the highest TPC content in the extract from Eucheuma cottonii and Gracilaria sp were 18.51 mg GAE/g sample and 22.47 mg GAE/g sample, respectively; while the highest yield of carrageenan extracted from Eucheuma cottonii and Gracilaria sp were 61.33 and 65.54 g/100 g dried algae, respectively. At the same condition, the antioxidant efficiency was 0.513 min-1 for Eucheuma cottonii and 0,277 min-1 for Gracilaria sp. Based on the results the extraction method effectively separated non-polar and polar compounds, then increased the antioxidant efficiency of extract.

  11. Subcritical to supercritical flow transition in a horizontal stratified flow

    International Nuclear Information System (INIS)

    Asaka, H.; Kukita, Y.

    1995-01-01

    The conditions for a transition from hydraulically subcritical to supercritical flow in the hot legs of a pressurized water reactor (PWR) were studied using data obtained from a two-phase natural circulation experiment conducted at the ROSA-IV Large Scale Test Facility (LSTF). The LSTF is a 1/48 volumetrically-scaled simulator of a Westinghouse-type PWR. The conditions for the transition were compared with the theory of Gardner. While the model explains the trend in the experimental data, the quantitative agreement was not satisfactory. It was found that the conditions for the transition from the subcritical to supercritical flow were predicted well by introducing energy loss term into the theory. (author)

  12. Assessment of a general methodology for the analysis of natural circulation stability with water at supercritical pressure

    International Nuclear Information System (INIS)

    Debrah, K. S.

    2014-07-01

    To advance nuclear energy to meet future energy needs, the concept of Super Critical Water-Cooled Reactor (SCWR) as part or Generation IV (Gen IV) reactors was introduced with plans to deploy by 2030. Supercritical water-cooled reactors pose new challenges in stability and natural circulation phenomena at supercritical pressures because of the strong variability of thermodynamic and thermo-physical properties. ln this research, included in the frame work of the International Atomic Energy Agency (lAEA) fellowship and Coordinated Research Project (CRP) on H eat transfer Behavior and Thermo hydraulics Codes Testing for SCWRs , the natural circulation H 2 O experimental data at supercritical pressures of 25 MPa obtained at the China Institute of Atomic Energy (CIAE) of China, was used to evaluate the predictions of different system codes: RELAP5/MOD3.3, STAR-CCM+ as well as three (3) different and independent developed in-house codes (Ishii-sup loop, NCLoop T ran and NCLoop L ine). Stability analyses of an idealized loop (loop equivalent to CIAE natural circulation loop) of uniform diameter equivalent to the CIAE natural circulation loop at 25 MPa was performed using RELAP5 and an in-house code (Ishii-sup Loop). It was found for both RELAP and Ishii-sup Loop that, when heat structures are accounted for in models equipped with heat transfer and friction correlations for 'normal' fluids, the comparison with experimental data is not completely satisfactory because the observed experimental oscillations were delayed in simulation. It has also been found that the stability margin was slightly earlier than the peak of the flow rate-power curve at a given inlet enthalpy. Results from STAR-CCM+ was also compared with results obtained with RELAP5 and the in-house code of NCLoop. Even though STAR-CCM+ predicted a lower flow rate than the in-house codes, all codes exhibited the ability to predict the instability and results from all codes compared favorably. Stability

  13. Design of Supercritical Carbon Dioxide Compressor Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoon Han; Lee, Je Kyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoon, Ho Joon; Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2012-05-15

    For small and medium-sized reactors and Generation IV reactors such as sodium-cooled fast reactor are recently under development actively. The supercritical CO{sub 2} Brayton cycle is considered as an attractive cycle for the above mentioned nuclear systems. This is because the supercritical CO{sub 2} Brayton cycle (S-CO{sub 2} cycle) is especially effective to reduce the volume of power generation system, which occupies 1.5{approx}2 times more space than the primary nuclear system in general. Comparing to traditional water-vapor cycle and helium cycle, the S-CO{sub 2} system has relatively much less volume and component size. Therefore, S-CO{sub 2} cycle can be used for many purposes such as nuclear ship propulsion where volume requirement is strict, or a small nuclear reactor when it is constructed on geographically limited area

  14. Supercritical CO 2 -philic nanoparticles suitable for determining the viability of carbon sequestration in shale

    KAUST Repository

    Xu, Yisheng

    2015-01-01

    © The Royal Society of Chemistry. A fracture spacing less than a decimeter is probably required for the successful sequestration of CO2 in shale. Tracer experiments using inert nanoparticles could determine if a fracturing this intense has been achieved. Here we describe the synthesis of supercritical CO2-philic nanoparticles suitable for this application. The nanoparticles are ~50 nm in diameter and consist of iron oxide (Fe3O4) and silica (SiO2) cores functionalized with a fluorescent polymeric corona. The nanoparticles stably disperse in supercritical carbon dioxide (scCO2) and are detectable to concentrations of 10 ppm. This journal is

  15. The initial study on supercritical water flow and heat transfer in square rod bundle channel with mixing vane

    International Nuclear Information System (INIS)

    Zuo Guoping; Cao Can; Yu Tao

    2010-01-01

    Three-dimensional rectangular channel with the mixing wine in supercritical water reactor was studied in the paper using the FLUENT software. The mixing wing elevation influence on temperature distribution and flow field were studied in the model. The results showed the mixing wing caused fluid circumferential flow, making flow hot and cold fluids mixed and fluid temperature uniform distribution, effectively improved the fuel rod surface temperature distribution and reduced hot temperature. Among the four cases of mixing wing elevation of 15, 30, 45 and 50 angle, 30 angle is the best case in improving temperature distribution. (authors)

  16. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.

    Science.gov (United States)

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-10-03

    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system. Copyright © 2014. Published by Elsevier B.V.

  17. The effect of outflowing water coolant with supercritical parameters on a barrier

    Directory of Open Access Journals (Sweden)

    Alekseev Maksim

    2017-01-01

    Full Text Available The outflow of supercritical coolant with different initial parameters and its impact on the barrier have been numerically simulated. Spatial and axial distributions of pressure and steam quality are presented. The force acting on the barrier at different parameters of the outflow has been calculated.

  18. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  19. Risk analysis for a radiolysis gas detonation in an in-pile loop with supercritical water

    International Nuclear Information System (INIS)

    Zeiger, T.; Raque, M.; Kuznetsov, M.; Redlinger, R.; Schulenberg, T.

    2012-01-01

    The SCWR (supercritical water reactor) -FQT project is a cooperation between European and Chinese partners aimed to test the fuel SCWR elements under reactor conditions. In the frame of this work the risk of radiolysis gas production in the active range of the test track was assessed. The radiolysis gas could accumulate in an emergency cooling system with stagnating coolant. The ignition of this radiolysis gas could cause pressure peaks that are able to damage the primary coolant circuit. Pressure increase and deformations in case of ignition of accumulated gas were investigated. As piping material the Ti stabilized austenitic steel 08Ch18N10T was assumed, the simulation was performed using the ANSYS code. The results show that pipes without significant wall thickness enhancement cannot withstand the radiolysis gas detonation.

  20. Antioxidant effects of supercritical fluid garlic extracts in canned artichokes.

    Science.gov (United States)

    Bravi, E; Marconi, O; Sileoni, V; Rollo, M R; Perretti, G

    2016-10-01

    The effects of adding supercritical carbon dioxide extracts of garlic (at two different concentrations of allicin) on select chemical indices in extra-virgin olive oil used to canned artichokes were studied. Tests were performed after processing and over a storage period of 1 year. A sensorial test was also conducted on the canned artichokes to establish the impact on flavor (in particular perceptions of rancidity and garlic flavor). Acidity, peroxide levels and p -anisidine values were measured as quality analytical parameters. Radical scavenging activity was also evaluated using the DPPH assay. The samples containing supercritical garlic extracts were compared with several other formulations, including control sample (prepared by mixing artichokes with powdered chili pepper and fresh garlic), artichokes with only garlic or only chili pepper, and artichokes treated with the synthetic antioxidant BHT. The results suggested that the allicin extract may be superior, or at least comparable, with BHT in preserving canned artichokes as demonstrated by its positive effects on oxidative stability and sensory profile.

  1. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  2. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  3. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    Science.gov (United States)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  4. Visualization study for forced convection heat transfer of supercritical carbon dioxide near pseudo-boiling point

    International Nuclear Information System (INIS)

    Sakurai, K.; Ko, H.S.; Okamoto, K.; Madarame, H.

    2001-01-01

    For development of new reactor, supercritical water is expected to be used as coolant to improve thermal efficiency. However, the thermal characteristics of supercritical fluid is not revealed completely because its difficulty for experiment. Specific phenomena tend to occur near the pseudo-boiling point which is characterised by temperature corresponding to the saturation point in ordinary fluid. Around this point, the physic properties such as density, specific heat and thermal conductivity are drastically varying. Although there is no difference between gas and liquid phases in supercritical fluids, phenomena similar to boiling (with heat transfer deterioration) can be observed round the pseudo-boiling point. Experiments of heat transfer have been done for supercritical fluid in forced convective condition. However, these experiments were mainly realised inside stainless steel cylinder pipes, for which flow visualisation is difficult. Consequently, this work has been devoted to the development of method allowing the visualisation of supercritical flows. The experiment setup is composed of main loop and test section for the visualisation. Carbon dioxide is used as test fluid. Supercritical carbon dioxide flows upward in rectangular channel and heated by one-side wall to generate forced convection heat transfer. Through window at mid-height of the test section, shadowgraphy was applied to visualize density gradient distribution. The behavior of the density wave in the channel is visualized and examined through the variation of the heat transfer coefficient. (author)

  5. Application of the GRI 1.2 Methane Oxidation Model to Methane and Methanol Oxidation in Supercritical Water

    National Research Council Canada - National Science Library

    Rice, Steven

    1997-01-01

    The Gas Research Institute (GRI) has been leading an effort over the past few years to consolidate recent developments in the elementary reaction modeling of the oxidation of methane for combustion applications into a single...

  6. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  7. Effect of property variations on the mixing of turbulent supercritical water streams in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Bu, L.; Zhao, J. [Centre for E-City, School of Electrical and Electronics Engineering, Nanyang Technological Univ., Singapore, 639798 (Singapore)

    2012-07-01

    The supercritical water mixing phenomenon is investigated with a wide range of conditions, i.e. the inlet temperature of the streams ranges from 323.15 K to 723.15 K and the pressure ranges from 25 MPa to 45 MPa. A sensitivity study is carried out for the jet and main flow velocity ratio (VR) which is varying from 1 to 40. In addition, the effect of the inject angles of branch flow to main flow on the mixing is conducted by varying the inject angle from 80 deg. to 100 deg.. The results show that the maximum temperature gradient appears on the wall of the upstream side in all the cases, and the inclined angles can be optimized to mitigate the thermal stress. (authors)

  8. Effects of Supercritical Environment on Hydrocarbon-fuel Injection

    Institute of Scientific and Technical Information of China (English)

    Bongchul Shin; Dohun Kim; Min Son; Jaye Koo

    2017-01-01

    In this study,the effects of environment conditions on decane were investigated.Decane was injected in subcritical and supercritical ambient conditions.The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions.For supercritical ambient conditions,the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K.The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method.A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions.Conversely,for supercritical injection in supercritical ambient conditions,a small density gradient was observed at the jet interface.In a manner similar to that observed in other cases,supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid.Additionally,there were changes in the interface,and the supercritical injection core width was thicker than that in the subcritical injection.Furthermore,in cases with the same injection conditions,the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface.Therefore,the interface was affected by the changing ambient condition.Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine,the effects of the ambient conditions were investigated experimentally.

  9. Effects of supercritical environment on hydrocarbon-fuel injection

    Science.gov (United States)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  10. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  11. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  12. Heat transfer test in a vertical tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2007-01-01

    Heat transfer test facility, SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), was constructed at KAERI (Korea Atomic Energy Research Institute) for an investigation of the thermal-hydraulic behaviors of supercritical CO 2 at the various geometries of the test section. The test data will be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). As a working fluid, CO 2 was selected to make use of the low critical pressure and temperature of CO 2 compared with water. An experimental study was carried out in the SPHINX to investigate the characteristics of heat transfer and pressure drop at a vertical single tube with an inside diameter of 4.4 mm in case of an upward flow of supercritical CO 2 . The heat and mass fluxes were varied at a given pressure. The mass flux was in the range of 400-1,200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75, 8.12, and 8.85 MPa. A heat transfer deterioration occurred at the lower mass fluxes. The experimental heat transfer coefficients were compared with the ones predicted by several existing correlations. The standard deviation was about 20% for each correlation and an apparent discrepancy was not found among the correlations. The major components of the pressure drop were a gravitational pressure drop and a frictional pressure drop. The frictional pressure drop increases as the mass flux and heat flux increase. (author)

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  14. Numerical Investigation on Supercritical Heat Transfer of RP3 Kerosene Flowing inside a Cooling Channel of Scramjet

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2014-06-01

    Full Text Available Supercritical convective heat transfer characteristics of hydrocarbon fuel play a fundamental role in the active cooling technology of scramjet. In this paper, a 2D-axisymmetric numerical study of supercritical heat transfer of RP3 flowing inside the cooling channels of scramjet has been conducted. The main thermophysical properties of RP3, including density, specific heat, and thermal conductivity, are obtained from experimental data, while viscosity is evaluated from a commercial code with a ten-species surrogate. Effects of heat flux, mass flow rate, and inlet temperature on supercritical heat transfer processes have been investigated. Results indicate that when the wall temperature rises above the pseudocritical temperature of RP3, heat transfer coefficient decreases as a result of drastic decrease of the specific heat. The conventional heat transfer correlations, that is, Gnielinski formula, are no longer proper for the supercritical heat transfer of RP3. The modified Jackson and Hall formula, which was proposed for supercritical CO2 and water, gives good prediction except when the wall temperature is near or higher than the pseudocritical temperature.

  15. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  16. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  17. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  18. Supercritical heat transfer in an annular channel with two-sided heaing

    International Nuclear Information System (INIS)

    Sergeev, V.V.; Remizov, O.V.; Gal'chenko, Eh.F.

    1986-01-01

    The paper deals with experimental inestigation into worsening of heat transfer at forced up flow in steam-water mixture in a vertical annular channel with two-sided heating and development of technique for calculation of supercritical heat exchange in this channel. Bench-scale experiments are carried out at high-pressure at mass rates of the coolant equal to 300-865 kg/(m 2 x s), pressure of 9.8-17.8 MPa and heat flux on the internal surface - 20-400 kW/m 2 , on the external surface - 35-450 kW/m 2 . Technique for calculation of supercritical heat exchange in channels with one- and two-sided heating is suggested. Analysis of the obtained experimental data permits to determine conditions for arising departure nucleate boiling on the internal and external surfaces and on both surfaces simultaneously. It is concluded that the suggested technique of calculation adequately reflects the effect of regime parameters of coolant flow on temperature regime of heat transferring surfaces in the supercritical area

  19. In situ mid-infrared spectroscopic titration of forsterite with water in supercritical CO2: Dependence of mineral carbonation on quantitative water speciation

    Science.gov (United States)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2011-12-01

    Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.

  20. Supercritical CO2 Brayton cycle compression and control near the critical point

    International Nuclear Information System (INIS)

    Wright, S. A.; Fuller, R.; Noall, J.; Radel, R.; Vernon, M. E.; Pickard, P. S.

    2008-01-01

    This report describes the supercritical compression and control issues, the analysis, and the measured test results of a small-scale supercritical CO 2 (S-CO 2 ) compression test-loop. The test loop was developed by Sandia and is described in a companion paper in this conference. The results of these experiments will for the first time evaluate and experimentally demonstrate supercritical compression and the required compressor inlet control approaches on an appropriate scale in a series of test loops at Sandia National Laboratories. The Sandia effort is focused on the main compressor of a supercritical Brayton loop while a separate DOE Gen lV program focus is on studying similar behavior in re-compression Brayton cycles that have dual compressors. One of the main goals of this program is to develop and demonstrate the ability to design, operate, and control the supercritical compression process near the critical point due to highly non-linear behavior near this point. This Sandia supercritical test-loop uses a 50 kW radial compressor to pump supercritical CO 2 (S-CO 2 ) through an orifice and through a water-cooled gas-chiller. At the design point the compressor flow rate is 3.5 kg/s, the inlet pressure is 7, 690 kPa, the pressure ratio is 1.8, the inlet temperature is 305 K, and the shaft speed is 75, 000 rpm. The purpose of the loop is to study the compression and control issues near the critical point. To study compression we intend to compare the design code predictions for efficiency and change in enthalpy (or pressure ratio / head) of the radial compressor with the measured results from actual tests. In the tests the inlet flow, temperature, and pressure, will be varied around the critical point of CO 2 (Tc=304.2 K, and Pc=7.377 MPa). To study control, the test loop will use a variety of methods including inventory control, shaft speed control, and cooling water flow rate, and cooling water temperature control methods to set the compressor inlet temperature

  1. Semiconductor photocatalysts for water oxidation: current status and challenges.

    Science.gov (United States)

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.

  2. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  3. Near-critical and supercritical fluid extraction of polycyclic aromatic hydrocarbons from town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Cutright, T.J.; Lee, S.

    1995-01-01

    The contamination of soil by hazardous and toxic organic pollutants is an ever-growing problem facing the global community. One particular family of contaminants that are of major importance are polycyclic aromatic hydrocarbons (PAHs). PAHs are the result of coal gasification and high-temperature processes. Sludges from these town gas operations were generally disposed of into unlined pits and left there for eventual biodegradation. However, the high levels of PAH contained in the pits prevented the occurrence of biodegradation. PAH contaminated soil is now considered hazardous and must be cleaned to environmentally acceptable standards. One method for the remediation is extraction with supercritical water. Water in or about its critical region exhibits enhanced solvating power toward most organic compounds. Contaminated soil containing 4% by mass of hydrocarbons was ultra-cleaned in a 300-cm 3 semicontinuous system to an environmentally acceptable standard of less than 200 ppm residual hydrocarbon concentration. The effects of subcritical or supercritical extraction, solvent temperature, pressure, and density have been studied, and the discerning characteristics of this type of fluid have been identified. The efficiencies of subcritical and supercritical extraction have been discussed from a process engineering standpoint

  4. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  5. Fused silica capillaries with two segments of different internal diameters and inner surface roughnesses prepared by etching with supercritical water and used for volume coupling electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel

    2017-01-01

    Roč. 38, 9-10 (2017), s. 1260-1267 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : fused silica capillary * supercritical water * volume coupling electrophoresis Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  6. Supercritical Regeneration of an Activated Carbon Fiber Exhausted with Phenol

    Directory of Open Access Journals (Sweden)

    M. Jesus Sanchez-Montero

    2018-01-01

    Full Text Available The properties of supercritical CO2 (SCCO2 and supercritical water (SCW turn them into fluids with a great ability to remove organic adsorbates retained on solids. These properties were used herein to regenerate an activated carbon fiber (ACF saturated with a pollutant usually contained in wastewater and drinking water, phenol. Severe regeneration conditions, up to 225 bar and 400 °C, had to be employed in SCCO2 regeneration to break the strong interaction established between phenol and the ACF. Under suitable conditions (regeneration temperature, time, and pressure, and flow of SCCO2 the adsorption capacity of the exhausted ACF was completely recovered, and even slightly increased. Most of the retained phenol was removed by thermal desorption, but the extra percentage removed by extraction allowed SCCO2 regeneration to be significantly more efficient than the classical thermal regeneration methods. SCCO2 regeneration and SCW regeneration were also compared for the first time. The use of SCW slightly improved regeneration, although SCW pressure was thrice SCCO2 pressure. The pathways that controlled SCW regeneration were also investigated.

  7. Transport properties of supercritical carbon dioxide

    NARCIS (Netherlands)

    Lavanchy, F.; Fourcade, E.; de Koeijer, E.A.; Wijers, J.G.; Meyer, T.; Keurentjes, J.T.F.; Kemmere, M.F.; Meyer, T.

    2005-01-01

    Recently, supercritical fluids have emerged as more sustainable alternatives for the organic solvents often used in polymer processes. This is the first book emphasizing the potential of supercritical carbon dioxide for polymer processes from an engineering point of view. It develops a

  8. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  9. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM

  10. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  11. Supramolecular water oxidation with Ru-bda-based catalysts.

    Science.gov (United States)

    Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni

    2014-12-22

    Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Prediction of supercritical carbon dioxide drying of food products in packed beds

    NARCIS (Netherlands)

    Almeida-Rivera, C.; Khalloufi, S.; Bongers, P.M.M.

    2010-01-01

    Drying assisted by supercritical carbon dioxide is foreseen to become a promising technology for sensitive food products. In this contribution, a mathematical model is derived to describe the changes in water concentration in both a solid food matrix and a fluid carrier during drying. Finite

  13. Numerical Analysis of Flow and Heat Transfer Characteristics of CO2 at Vapour and Supercritical Phases in Micro-Channels

    Directory of Open Access Journals (Sweden)

    Rao N.T.

    2016-01-01

    Full Text Available Supercritical carbon dioxide (CO2 has special thermal properties with better heat transfer and flow characteristics. Due to this reason, supercritical CO2 is being used recently in air-condition and refrigeration systems to replace non environmental friendly refrigerants. Even though many researches have been done, there are not many literatures for heat transfer and flow characteristics of supercritical CO2. Therefore, the main purpose of this study is to develop flow and heat transfer CFD models on two different phases; vapour and supercritical of CO2 to investigate the heat transfer characteristics and pressure drop in micro-channels. CO2 is considered to be in different phases with different flow pressures but at same temperature. For the simulation, the CO2 flow was assumed to be turbulent, nonisothermal and Newtonian. The numerical results for both phases are compared. From the numerical analysis, for both vapour and supercritical phases, the heat energy from CO2 gas transferred to water to attain thermal equilibrium. The temperature of CO2 at vapour phase decreased 1.78% compared to supercritical phase, which decreased for 0.56% from the inlet temperature. There was a drastic increase of 72% for average Nu when the phase changed from vapour to supercritical. The average Nu decreased rapidly about 41% after total pressure of 9.0 MPa. Pressure drop (ΔP increased together with Reynolds number (Re for vapour and supercritical phases. When the phase changed from vapour to supercritical, ΔP was increased about 26%. The results obtained from this study can provide information for further investigations on supercritical CO2.

  14. Aluminizing of steel 316L and the nickel-base alloy inconel 625 and followed by a high-temperature oxidation process

    International Nuclear Information System (INIS)

    Skokanova, P.; Glasbrenner, H.; Zimmermann, H.

    1995-03-01

    The supercritical water oxidation process of hazardous waste has to be carried out in a reactor which is resistant against corrosion and high pressure and temperature. Pressure tube materials are coated for protection against corrosion. In this work, the reactor materials Inconel 625 and steel 316L have been powder pack aluminized. These coated specimens were subsequently oxidized. Powder mixtures of different composition were tested, time and temperature of the coating and the oxidation processes were varied. Good results were obtained on the steel 316L in respect to thickness of the layer, composition, and adherence on the steel. (orig.)

  15. A Heat Transfer Correlation in a Vertical Upward Flow of CO2 at Supercritical Pressures

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol

    2006-01-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations

  16. Solubility behavior of quartz and corundum in supercritical water: A quantitative thermodynamic interpretation

    International Nuclear Information System (INIS)

    Ziemniak, S.E.

    1995-05-01

    Dissolution reaction equilibria for α-quartz (SiO 2 ) and corundum (α-Al 2 0 3 ) in pure, supercritical water are quantified using a density-dependent thermodynamic model. The database of existing solubility literature for α-quartz (0.2-10 kb, 200--575 degrees C) is shown to be consistent with the presence of two hydrolyzed SI(IV) ion forms: Si(OH) 4 (aq) and Si 2 O(OH) 6 (aq); the corundum database (1-20 kb, 400--700 degrees C) is consistent with Al(OH) 3 (aq) and Al(OH) 4 - . A third Si(IV) ion hydroxocomplex, Si 2 O 2 (OH) 5 - , is indicated at lower pressures (0.03-0.10 kb). The characteristic sigmoidal nature of the solubility isobars is explained by dimerization of Si(OH) 4 (aq) (at high densities) or the formation of anionic hydrolysis products, Si 2 0 2 (OH) 5 - and Al(OH) 4 - , in the low density region (p 2 O(OH) 6 (aq) and Si 2 O 2 (OH) 5 - are made available for the first time

  17. Local density inhomogeneities and dynamics in supercritical water: A molecular dynamics simulation approach.

    Science.gov (United States)

    Skarmoutsos, Ioannis; Samios, Jannis

    2006-11-02

    Molecular dynamics atomistic simulations in the canonical ensemble (NVT-MD) have been used to investigate the "Local Density Inhomogeneities and their Dynamics" in pure supercritical water. The simulations were carried out along a near-critical isotherm (Tr = T/Tc = 1.03) and for a wide range of densities below and above the critical one (0.2 rho(c) - 2.0 rho(c)). The results obtained reveal the existence of significant local density augmentation effects, which are found to be sufficiently larger in comparison to those reported for nonassociated fluids. The time evolution of the local density distribution around each molecule was studied in terms of the appropriate time correlation functions C(Delta)rhol(t). It is found that the shape of these functions changes significantly by increasing the density of the fluid. Finally, the local density reorganization times for the first and second coordination shell derived from these correlations exhibit a decreasing behavior by increasing the density of the system, signifying the density effect upon the dynamics of the local environment around each molecule.

  18. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2007-01-01

    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  19. Water oxidation catalysts and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2017-12-05

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  20. CFD study of convective heat transfer to carbon dioxide and water at supercritical pressures in vertical circular pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Novog, D.R. [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Computational simulations of convective heat transfer of both carbon dioxide and water at supercritical pressures have been carried out using the commercial Computational Fluid Dynamics code STAR-CCM+. Detailed comparisons between four turbulence models, including two low-Reynolds k-ε models, SST k-ω model and the Reynolds Stress Transport (RST) model, are made under different flow conditions against two independent experiments on upward flow in vertical circular pipes. The heat-flux effect and mass-flux effect on the occurrence of heat transfer deterioration (HTD) are discussed, along with sensitivity studies of the boundary conditions and turbulent Prandtl number. The thresholds and mechanisms of HTD are also investigated using selected turbulence models. (author)