WorldWideScience

Sample records for supercritical methanol conditions

  1. Solvent adsorption in SFC : Adsorption of methanol under supercritical conditions

    OpenAIRE

    Edström, Emelie

    2015-01-01

    Chromatography is a widely used separation technique including many different modes, for example supercritical fluid chromatography (SFC) which uses a supercritical fluid as mobile phase. A supercritical fluid is achieved when a substance is subjected to a temperature and pressure above the critical point and the boundary between the liquid phase and gas phase is erased. The interest for SFC has increased in recent years, mainly for separation of chiral molecules in the pharmaceutical industr...

  2. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE.

  3. Molecular Dynamics Simulation of Na(+)-Cl(-) Ion-Pair in Water-Methanol Mixtures under Supercritical and Ambient Conditions.

    Science.gov (United States)

    Keshri, Sonanki; Sarkar, Atanu; Tembe, B L

    2015-12-17

    Constrained molecular dynamics simulations have been performed to investigate the structure and thermodynamics of Na(+)-Cl(-) ion-pair association in water-methanol mixtures under supercritical and ambient conditions in dilute solutions. From the computed potentials of mean force (PMFs) we find that contact ion pairs (CIPs) are more stable than all other associated states of the ion pairs in both ambient and supercritical conditions. Stabilities of CIPs increase with increase in the mole fraction of methanol. In supercritical conditions, major changes in PMFs occur as we go from x(methanol) = 0.00 to x(methanol) = 0.50. The stable solvent shared ion pair (SShIP) which occurs in x(methanol) = 0.00 and 0.25, vanishes when x(methanol) is 0.50 or greater. The stabilities of these ion pairs increase with increasing temperature. Local structures around the ions are studied using the radial distribution functions, density profiles, angular distribution functions, running coordination numbers and excess coordination numbers. Preferential solvation analysis shows that both Na(+) and Cl(-) ions are preferentially solvated by water. From the calculation of enthalpies and entropies, we find that Na(+)-Cl(-) ion-pair association in water-methanol binary mixtures is endothermic and driven by entropy both in ambient as well as under supercritical conditions.

  4. A New Process for Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol without any Catalyst under Supercritical Conditions

    Institute of Scientific and Technical Information of China (English)

    Xiu Juan FENG; Xiao Gang LI; Ren HE; Hui ZHOU

    2005-01-01

    Dimethyl carbonate was synthesized by transesterification reaction between ethylene carbonate and methanol under supercritical conditions without any catalyst. Experimental results showed that the residence time and the molar ratio of methanol to ethylene carbonate all can affect the conversion of ethylene carbonate. When the molar ratio of methanol to ethylene carbonate was 8:1, 81.2 % conversion can be achieved at 9.0 MPa and 250℃ after 8 h.

  5. Reactions of supercritical water and supercritical methanol with benzaldehyde; Chorinkaisui oyobi chorinkai methanol to benzaldehyde tono hanno

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, C.; Yasuda, T.; Nishi, K.; Takahashi, S. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-11-01

    The reactions of supercritical water and supercritical methanol with benzaldehyde have been examined in the temperature range from 553 to 693 K, and the reaction pathways have been examined from the temporal variations of the reaction products. For the reaction of benzaldehyde with supercritical water, the major product was benzene, which was formed from the pyrolysis of benzaldehyde. The benzoic acid and benzyl alcohol were the by-products, produced from the Cannizzaro-type disproportionation reaction of benzaldehyde with the hydrate formed from the reaction with water and benzaldehyde. The major product for the reaction of benzaldehyde with supercritical methanol was benzyl alcohol, and the by-product were dimethylacetal, benzene, and methyl benzoic acid. Under the reaction conditions of this study, a significant amount of acetal was produced from benzaldehyde and methanol. The pyrolysis of acetal yielded benzyl alcohol. 29 refs., 6 figs., 4 tabs.

  6. Depolymerization of polyethylene terephthalate in supercritical methanol

    Science.gov (United States)

    Goto, Motonobu; Koyamoto, Hiroshi; Kodama, Akio; Hirose, Tsutomu; Nagaoka, Shoji

    2002-11-01

    The degradation of polyethylene terephthalate (PET) in supercritical methanol was investigated with the aim of developing a process for chemical recycling of waste plastics. A batch reactor was used at temperatures of 573-623 K under an estimated pressure of 20 MPa for a reaction time of 2-120 min. PET was decomposed to its monomers, dimethyl terephthalate and ethylene glycol, by methanolysis in supercritical methanol. The reaction products were analysed using size-exclusion chromatography, gas chromatography-mass spectrometry, and reversed-phase liquid chromatography. The molecular weight distribution of the products was obtained as a function of reaction time. The yields of monomer components of the decomposition products including by-products were measured. Continuous kinetics analysis was performed on the experimental data.

  7. Biodiesel Production from Acidified Oils via Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Jianxin Li

    2011-12-01

    Full Text Available In biodiesel production, the vegetable oil used as raw material for transesterification should be free of water and free fatty acids (FFAs, which may consume catalyst and reduce catalyst efficiency. In this work biodiesel was prepared from acidified oils (AO through a supercritical methanol route, in which the esterification of FFAs and transesterification of glyceride with methanol occurred simultaneously. The effects of the mass ratio of methanol to AO, the operation temperature as well as the water content on the FFAs conversion and glycerol yield were investigated. The results indicated that the FFAs conversion for esterification under the condition of 1:1 methanol/oil ratio, 310 °C and 15 min reaction time reached 98.7%, and the glycerol yield for transesterification under 0.25:1 methanol/oil ratio, 290 °C and 20 min reaction time reached 63.5% respectively.

  8. Performance of supercritical methanol in polyurethane degradation

    Directory of Open Access Journals (Sweden)

    Liu Lu

    2016-01-01

    Full Text Available Polyurethane is a group of block copolymer which is composed of diisocyanate, chain extender, and polyol, including polyurethane foam, polyurethane elastomer, waterborne polyurethane, etc. This research focused on thermoplastic polyurethane elastomer (TPU which is formed with 4,4’-diphenylmethane diisocyanate (MDI, poly(1,4-butanediol-hexanedioic acid diolpolyester(PBA and extended with 1,4-butanediol(BDO.The degradation of TPU was carried out with the help of methanol as the supercritical solvent. The SEM of the reaction residues revealed the process of the depolymerisation. The products were measured by GC-MS and found out to be PBA, BDO and 4,4’-methylene diphenyl carbamate(MDC which is themethylate of MDI.GC-FID, HPLC-UV and GPC were used to further analysis. The experimental results showed that supercritical methanol performed outstandingly in TPU recycling, it needed lower temperature and shorter time than regular methods. At 230°C/70min, over 90% raw materials of TPU could be recovered.

  9. Biodiesel production from rice bran oil and supercritical methanol.

    Science.gov (United States)

    Kasim, Novy Srihartati; Tsai, Tsung-Han; Gunawan, Setiyo; Ju, Yi-Hsu

    2009-04-01

    In this study, production of biodiesel from low cost raw materials, such as rice bran and dewaxed-degummed rice bran oil (DDRBO), under supercritical condition was carried out. Carbon dioxide (CO2) was employed as co-solvent to decrease the supercritical temperature and pressure of methanol. The effects of different raw materials on the yield of biodiesel production were investigated. In situ transesterification of rice bran with supercritical methanol at 30MPa and 300 degrees C for 5 min was not a promising way to produce biodiesel because the purity and yield of fatty acid methyl esters (FAMEs) obtained were 52.52% and 51.28%, respectively. When DDRBO was reacted, the purity and yield were 89.25% and 94.84%, respectively. Trans-FAMEs, which constituted about 16% of biodiesel, were found. They were identified as methyl elaidate [trans-9], methyl linoleaidate [trans-9, trans-12], methyl linoleaidate [cis-9, trans-12], and methyl linoleaidate [trans-9, cis-12]. Hydrocarbons, which constituted about 3% of the reaction product, were also detected.

  10. Transesterification of rapeseed oil in supercritical methanol in a flow reactor

    Science.gov (United States)

    Anikeev, V. I.; Yakovleva, E. Yu.

    2012-11-01

    Transesterification reactions of rapeseed oil in supercritical methanol in a flow reactor over a wide range of variation of the methanol/oil ratio, pressure, and contact time are studied. Conditions ensuring selectivity and a high degree of rapeseed oil conversion are found. Experiments to study this reaction in the presence of zeolite heterogeneous catalyst are performed.

  11. Vapor–liquid equilibria of triglycerides–methanol mixtures and their influence on the biodiesel synthesis under supercritical conditions of methanol

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR ORLOVIC

    2007-01-01

    Full Text Available The non-catalytic synthesis of biodiesel (fatty acids methyl esters from triglycerides and methanol proceeds at elevated pressures above 100 bar and temperatures above 523 K. Kinetic investigations of the system revealed an unusual behavior of the reaction rate constant with increasing temperature and pressure. In order to explain this phenomenon, the phase behavior of the triglycerides–methanol mixture was investigated. The phase equilibria of the binary system sunflower oil–methanol were measured at different temperatures between 473 and 503 K, and a range of pressures between 10 and 56 bar. The experimental data were correlated using the Peng–Robinson, Soave–Redlich–Kwong and Redlich–Kwong–Aspen equations of state and different mixing rules. The best results were obtained with the RK–ASPEN equation of state and the Van derWaals mixing rule (VdW, which were then used to calculate the distribution of the phases at pressures and temperatures usual for the non-catalytic synthesis of biodiesel under high pressures. The obtained data indicated a strong influence of the phase equilibria on the reaction kinetics.

  12. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Saka, S.; Kusdiana, D. [Kyoto University, Kyoto (Japan). Dept. of Socio-Environmental Energy Science, Graduate School of Energy Science

    2001-01-01

    Transesterification reaction of rapeseed oil in supercritical methanol was investigated without using any catalyst. An experiment has been carried out in the batch-type reaction vessel preheated at 350 and 400{degree}C and at a pressure of 45-65 MPa, and with a molar ratio of 1:42 of the rapeseed oil to methanol. It was consequently demonstrated that, in a preheating temperature of 350{degree}C, 240 s of supercritical treatment of methanol was sufficient to convert the rapeseed oil to methyl esters and that, although the prepared methyl esters were basically the same as those of the common method with a basic catalyst, the yield of methyl esters by the former was found to be higher than that by the latter. In addition, it was found that this supercritical methanol process requires the shorter reaction time and simpler purification procedure because of the unused catalyst. 16 refs., 9 figs., 2 tabs.

  13. TRANSESTERIFICATION OF VEGETABLES OIL USING SUBAND SUPERCRITICAL METHANOL

    Directory of Open Access Journals (Sweden)

    Nyoman Puspa Asri

    2012-11-01

    Full Text Available A benign process, non catalytic transesterification in sub and supercritical methanol method was usedto prepare biodiesel from vegetables oil. The experiment was carried out in batch type reactor (8.8 mlcapacity, stainless steel, AKICO, JAPAN by changing the reaction condition such as reactiontemperature (from 210°C in subcritical condition to 290°C in supercritical state with of 20°Cinterval, molar ratio oil to methanol (1:12-1:42 and time of reaction (10-90 min. The fatty acidmethyl esters (FAMEs content was analyzed by gas chromatography-flame ionization detector (GCFID.Such analysis can be used to determine the biodiesel yield of the transesterification. The resultsshowed that the yield of biodiesel increases gradually with the increasing of reaction time atsubcritical state (210-230oC. However, it was drastically increased at the supercritical state (270-290oC. Similarly, the yield of biodiesel sharply increased with increasing the ratio molar of soy oilmethanolup to 1:24. The maximum yield 86 and 88% were achieved at 290oC, 90 min of reaction timeand molar ratio of oil to methanol 1:24, for soybean oil and palm oil, respectively.Proses transesterifikasi non katalitik dengan metanol sub dan superkritis,merupakan proses yang ramah lingkungan digunakan untuk pembuatan biodiesel dari minyak nabati.Percobaan dilakukan dalam sebuah reaktor batch (kapasitas 8,8 ml, stainless steel, AKICO, JAPAN,dengan variabel kondisi reaksi seperti temperatur reaksi (dari kondisi subkritis 210°C-kondisisuperkritis 290°C dengan interval 20°C, rasio molar minyak-metanol (1:12-1:42 dan waktu reaksi(10-90 menit. Kandungan metil ester asam lemak (FAME dianalisis dengan kromatografi gasdengan detektor FID (GC-FID. Hasil Analisis tersebut dapat digunakan untuk menentukan yieldbiodiesel dari proses transesterifikasi. Hasil penelitian menunjukkan bahwa yield biodiesel meningkatsecara perlahan dengan meningkatnya waktu reaksi pada keadaan subkritis (210-230oC. Namun

  14. Reforming of methanol and glycerol in supercritical water

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Assink, D.; Heeres, H. J.

    2011-01-01

    Reforming of pure glycerol, crude glycerin, and methanol (pure and in the presence of Na(2)CO(3)) in supercritical water was investigated. Continuous experiments were carried out at temperatures between 450 and 650 degrees C, residence times between 6 and 173 s, and feed concentrations of 3-20 wt%.

  15. Esterification condition of rapeseed oil fatty acid in supercritical methanol%菜籽油脂肪酸在超临界甲醇中酯化反应工艺条件研究

    Institute of Scientific and Technical Information of China (English)

    李一哲; 王华; 包桂蓉; 李法社

    2014-01-01

    以菜籽油在亚临界水解反应中制取的脂肪酸为原料,研究菜籽油脂肪酸在超临界甲醇中的酯化反应工艺条件及动力学模型。通过单因素试验考察了反应温度、醇酸体积比、反应压力、反应时间对酯化转化率的影响,并采用超高效液相色谱法分析油酸甲酯含量的变化情况。试验结果表明菜籽油脂肪酸在超临界甲醇中酯化反应的最佳工艺条件为:反应温度270℃,反应时间40 min,反应压力25 MPa,醇酸体积比2:1。在最佳工艺条件下菜籽油脂肪酸酯化转化率超过了98%,动力学模型为- dCA dt =62.98e-20.14/ RT C1.8A 。%With the fatty acid prepared by hydrolyzing rapeseed oil in subcritical water as raw material, the esterification conditions and kinetics model of rapeseed oil fatty acid in supercritical methanol were studied. The effects of reaction temperature, volume ratio of methanol to rapeseed oil fatty acid, reaction pressure and reaction time on the conversion rate of the esterification were investigated by single factor ex-periment,and the content change of methyl oleate was analyzed by ultra performance liquid chromatogra-phy. The results showed that the optimal esterification conditions of rapeseed oil fatty acid in supercritical methanol were obtained as follows: reaction temperature 270 ℃, reaction time 40 min, reaction pressure 25 MPa and volume ratio of methanol to rapeseed oil fatty acid 2: 1. Under the optimal conditions, the conversion rate of rapeseed oil fatty acid was over 98% and the kinetics model was - dCA 62. 98e - 20 . 14 / RTC1. 8A . dt =62. 98e-20. 14/ RT C1. 8 A .

  16. Biodiesel Production Using Supercritical Methanol with Carbon Dioxide and Acetic Acid

    Directory of Open Access Journals (Sweden)

    Chao-Yi Wei

    2013-01-01

    Full Text Available Transesterification of oils and lipids in supercritical methanol is commonly carried out in the absence of a catalyst. In this work, supercritical methanol, carbon dioxide, and acetic acid were used to produce biodiesel from soybean oil. Supercritical carbon dioxide was added to reduce the reaction temperature and increase the fats dissolved in the reaction medium. Acetic acid was added to reduce the glycerol byproduct and increase the hydrolysis of fatty acids. The Taguchi method was used to identify optimal conditions in the biodiesel production process. With an optimal reaction temperature of 280°C, a methanol-to-oil ratio of 60, and an acetic acid-to-oil ratio of 3, a 97.83% yield of fatty acid methyl esters (FAMEs was observed after 90 min at a reaction pressure of 20 MPa. While the common approach to biodiesel production results in a glycerol byproduct of about 10% of the yield, the practices reported in this research can reduce the glycerol byproduct by 30.2% and thereby meet international standards requiring a FAME content of >96%.

  17. Methane and methanol oxidation in supercritical water: Chemical kinetics and hydrothermal flame studies

    Energy Technology Data Exchange (ETDEWEB)

    Steeper, R.R.

    1996-01-01

    Supercritical water oxidation (SCWO) is an emerging technology for the treatment of wastes in the presence of a large concentration of water at conditions above water`s thermodynamic critical point. A high-pressure, optically accessible reaction cell was constructed to investigate the oxidation of methane and methanol in this environment. Experiments were conducted to examine both flame and non-flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video systems for visualization, and Raman spectroscopy for in situ measurement of species concentrations. Flame experiments were performed by steadily injecting pure oxygen into supercritical mixtures of water and methane or methanol at 270 bar and at temperatures from 390 to 510{degrees}C. The experiments mapped conditions leading to the spontaneous ignition of diffusion flames in supercritical water. Above 470{degrees}C, flames spontaneously ignite in mixtures containing only 6 mole% methane or methanol. This data is relevant to the design and operation of commercial SCWO processes that may be susceptible to inadvertent flame formation. Non-flame oxidation kinetics experiments measured rates of methane oxidation in supercritical water at 270 bar and at temperatures from 390 to 442{degrees}C. The initial methane concentration was nominally 0.15 gmol/L, a level representative of commercial SCWO processes. The observed methane concentration histories were fit to a one-step reaction rate expression indicating a reaction order close to two for methane and zero for oxygen. Experiments were also conducted with varying water concentrations (0 to 8 gmol/L) while temperature and initial reactant concentrations were held constant. The rate of methane oxidation rises steadily with water concentration up to about 5 gmol/L and then abruptly falls off at higher concentrations.

  18. Biodiesel II: A new concept of biodiesel production - transesterification with supercritical methanol

    Directory of Open Access Journals (Sweden)

    Skala Dejan U.

    2004-01-01

    Full Text Available Biodiesel is defined as a fuel that might be used as a pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated (about 60% and also, in a lower quantity, poly-unsaturated fatty acids (C 18:1 and C 18:3, as well as some amounts of undesired saturated fatty acids (palmitic and stearic acids. Other raw materials have also been used in the research and industrial production of biodiesel (palm-oil, sunflower-oil, soybean-oil, waste plant oil, animal fats, etc. The historical background of the biodiesel production, installed industrial capacities, as well as Directives of the European Parliament and of the Council (May 2003 regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article (Chem. Ind. 58 (2004. The second part focused on some new concepts and the future development of technology for biodiesel production based on the use of non-catalytic transesterification under supercritical conditions. A literature review, as well as original results based on the transesterification of animal fats, plant oil and used plant oil were discussed. Obtained results were compared with the traditional concept of transesterification based on base or acid catalysis. Experimental investigations of transesterification with supercritical methanol were performed in a 2 dm3 autoclave at 140 bar pressure and at 300°C with molar ratio of methanol to triglycerides of about 41. The degree of esterification strongly depends on the density of supercritical methanol and on the possibility of reaction occurring in one phase.

  19. In-situ Transesterification of Jatropha curcas L. Seeds for Biodiesel Production using Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Ishak M.A.M.

    2017-01-01

    Full Text Available In-situ supercritical methanol transesterification for production of biodiesel from Jatropha curcas L. (JCL seeds was successfully being carried out via batch-wise reactor system, under varying temperatures of 180 - 300 °C, pressures of 6 - 18 MPa, reaction time of 5 - 35 min and seeds-to-methanol ratio of 1:15 - 1:45 (w/v. In this study, the extracted oil obtained showed the presence of FAME referring as biodiesel, indicating that transesterification reaction had occurred during the extraction process. The results showed that the biodiesel yield was obtained at optimum conditions of 280 °C, 12 MPa, 30 min and 1:40 (w/v were 97.9%.

  20. Pulsed corona discharge at atmospheric and supercritical conditions

    Science.gov (United States)

    Lock, Evgeniya Hristova

    Pulsed corona discharge is one of the non-equilibrium plasma techniques, by which electrical power is mainly utilized to generate high-energy electrons. These react further with the background gas to produce radicals, which can be further employed in chemically selective reactions. Study of the initiation of pulsed corona discharge in carbon dioxide and air was conducted. Furthermore due to its high removal efficiency, energy yields and good economy, the pulsed corona discharge was employed for removal of methanol and dimethyl sulfide. These compounds are part of the volatile organic compounds (VOC) air pollutants, which are subject of severe environmental regulations due to their toxicity, environmental persistence and intensity of smell. The study provides experimental data for the destruction of methanol and dimethyl sulfide from dry and humid air streams. The effects of the process parameters, including applied voltage, pulse repetition rate, initial concentration of pollutants, temperature and humidity on the destruction and removal efficiency and energy cost are analyzed. Specific consideration is given to the formation of unwanted byproducts. The study on plasma application for pollution control showed that small amounts of dispersed liquid droplets increase the efficiency of the chemical utilization of the high-energy electrons and reduce the required power. So media that could facilitate homogeneous and heterogeneous chemistry at the same time would enhance the efficiency of the removal process. Such medium that has properties intermediate between the gas and liquid phase is the supercritical fluid. Generation of plasma in supercritical fluids is an unexplored area in plasma science. The generation of plasma at elevated pressures usually requires high voltages or small interelectrode distances. The supercritical phase is characterized by extensive cluster formation in the vicinity of the critical point. Typically the clusters have lower ionization

  1. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Öhlén, Kristina; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-04-15

    Surface excess adsorption isotherms of methanol on a diol silica adsorbent were measured in supercritical fluid chromatography (SFC) using a mixture of methanol and carbon dioxide as mobile phase. The tracer pulse method was used with deuterium labeled methanol as solute and the tracer peaks were detected using APCI-MS over the whole composition range from neat carbon dioxide to neat methanol. The results indicate that a monolayer (4Å) of methanol is formed on the stationary phase. Moreover, the importance of using the set or the actual methanol fractions and volumetric flows in SFC was investigated by measuring the mass flow respective pressure and by calculations of the actual volume fraction of methanol. The result revealed a significant difference between the value set and the actually delivered volumetric methanol flow rate, especially at low modifier fractions. If relying only on the set methanol fraction in the calculations, the methanol layer thickness should in this system be highly overestimated. Finally, retention times for a set of solutes were measured and related to the findings summarized above concerning methanol adsorption. A strongly non-linear relationship between the logarithms of the retention factors and the modifier fraction in the mobile phase was revealed, prior to the established monolayer. At modifier fractions above that required for establishment of the methanol monolayer, this relationship turns linear which explains why the solute retention factors are less sensitive to changes in modifier content in this region.

  2. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    NARCIS (Netherlands)

    Warner, Genoa; Hansen, Thomas S; Riisager, Anders; Beach, Evan S; Barta, Katalin; Anastas, Paul T

    An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin

  3. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol

    DEFF Research Database (Denmark)

    Hansen, Thomas Søndergaard; Barta, Katalin; Anastas, Paul T.

    2012-01-01

    Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions...

  4. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    NARCIS (Netherlands)

    Warner, Genoa; Hansen, Thomas S; Riisager, Anders; Beach, Evan S; Barta, Katalin; Anastas, Paul T

    2014-01-01

    An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin co

  5. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol

    NARCIS (Netherlands)

    Hansen, Thomas S.; Barta, Katalin; Anastas, Paul T.; Ford, Peter C.; Riisager, Anders

    2012-01-01

    Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions. The hydrog

  6. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    NARCIS (Netherlands)

    Warner, Genoa; Hansen, Thomas S; Riisager, Anders; Beach, Evan S; Barta, Katalin; Anastas, Paul T

    2014-01-01

    An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin co

  7. Petrophysical core characterization at supercritical geothermal conditions

    Science.gov (United States)

    Kummerow, Juliane; Raab, Siegfried

    2015-04-01

    There is a growing scientific interest in the exploitation of supercritical geothermal reservoirs to increase the efficiency of geothermal power plants. The utilisation of geothermal energy requires in any case the detailed knowledge of the reservoir. In reservoir engineering, the characterisation of the geothermal system by electrical resistivity tomography (ERT) is a common geophysical exploration and monitoring strategy. For a realistic interpretation of the field measurements it is necessary to know both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. While there have been made great effort in determine the physical and chemical properties of water above its critical point (Tcritical = 374.21° C and pcritical = 221.2 bar), the influence of fluid-rock interactions on petrophysical properties in supercritical aqueous systems is nearly unknown. At supercritical conditions the viscosity of the fluid is low, which enhances the mass transfer and diffusion-controlled chemical reactions. This may have considerable effects on the porosity and hydraulic properties of a rock. To investigate high-enthalpy fluid-rock systems, in the framework of the EU-funded project IMAGE we have built a new percolation set-up, which allows for the measurement of electrical resistivity and permeability of rock samples at controlled supercritical conditions of aqueous fluids (pore pressure = 400 bar and a temperature = 400° C). First results will be presented.

  8. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study

    Directory of Open Access Journals (Sweden)

    Nyoman Puspa Asri

    2013-03-01

    Full Text Available Non catalytic transesterification in sub and supercritical methanol have been used to produce biodiesel from palm oil and soybean oil. A kinetic study was done under reaction condition with temperature and time control. The experiments were carried out in a batch type reactor at reaction temperatures from 210 °C (subcritical condition to 290 °C (the supercritical state in the interval ranges of temperature of 20 °C and at various molar ratios of oil to methanol. The rate constants of the reaction were determined by employing a simple method, with the overall chemical reaction followed the pseudo-first–order reaction. Based on the results, the rate constants of vegetables oil were significantly influenced by reaction temperature, which were gradually increased at subcritical temperature, but sharply increased in the supercritical state. However, the rate constants of soybean oil were slightly higher than that of palm oil. The activation energy for transesterification of soybean oil was 89.32 and 79.05 kJ/mole for palm oil. Meanwhile, the frequency factor values of both oils were 72462892 and 391210 min-1, respectively. The rate reaction for both of oil were expressed as -rTG = 72462892 exp(-89.32/RTCTG for soybean oil and -rTG = 391210 exp(-79.05/RTCTG for palm oil. © 2013 BCREC UNDIP. All rights reservedReceived: 18th October 2012; Revised: 14th December 2012; Accepted: 16th December 2012[How to Cite: N.P. Asri, S. Machmudah, W. Wahyudiono, S. Suprapto, K. Budikarjono, A. Roesyadi, M. Goto, (2013. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 215-223. (doi:10.9767/bcrec.7.3.4060.215-223][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4060.215-223 ] View in  |

  9. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    DEFF Research Database (Denmark)

    Warner, Genoa; Hansen, Thomas Søndergaard; Riisager, Anders

    2014-01-01

    conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6. h at 310......An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin...

  10. Dynamics of supercritical methanol of varying density from first principles simulations: hydrogen bond fluctuations, vibrational spectral diffusion, and orientational relaxation.

    Science.gov (United States)

    Yadav, Vivek Kumar; Chandra, Amalendu

    2013-06-14

    A first principles study of the dynamics of supercritical methanol is carried out by means of ab initio molecular dynamics simulations. In particular, the fluctuation dynamics of hydroxyl stretch frequencies, hydrogen bonds, dangling hydroxyl groups, and orientation of methanol molecules are investigated for three different densities at 523 K. Apart from the dynamical properties, various equilibrium properties of supercritical methanol such as the local density distributions and structural correlations, hydrogen bonding aspects, frequency-structure correlations, and dipole distributions of methanol molecules are also investigated. In addition to the density dependence of various equilibrium and dynamical properties, their dependencies on dispersion interactions are also studied by carrying out additional simulations using a dispersion corrected density functional for all the systems. It is found that the hydrogen bonding between methanol molecules decreases significantly as we move to the supercritical state from the ambient one. The inclusion of dispersion interactions is found to increase the number of hydrogen bonds to some extent. Calculations of the frequency-structure correlation coefficient reveal that a statistical correlation between the hydroxyl stretch frequency and the nearest hydrogen-oxygen distance continues to exist even at supercritical states of methanol, although it is weakened with increase of temperature and decrease of density. In the supercritical state, the frequency time correlation function is found to decay with two time scales: One around or less than 100 fs and the other in the region of 250-700 fs. It is found that, for supercritical methanol, the times scales of vibrational spectral diffusion are determined by an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation of methanol molecules and the roles of these various components are found to vary with density of the supercritical solvent. Effects

  11. The study of correlations between hydrogen bonding characteristics in liquid, sub- and supercritical methanol. Molecular dynamics simulations and Raman spectroscopy analysis.

    Science.gov (United States)

    idrissi, Abdenacer; Oparin, Roman D; Krishtal, Sergey P; Krupin, Sergey V; Vorobiev, Evgeny A; Frolov, Andrey I; Dubois, Leo; Kiselev, Mikhail G

    2013-01-01

    Molecular dynamics (MD) studies of hydrogen bonding (H-bonding) in liquid, sub- and supercritical methanol have been performed in a wide range of thermodynamic parameters of state, using various potential models and two H-bond criteria. It was shown that there is the universal correlation between the average number of H-bonds per molecule (n(HB)) and the mole fraction of H-bonded molecules (X(HB)) for the studied thermodynamic parameters of state. The same feature was observed for the correlations between fractions of molecules forming one (f1), two (f2), three (f3) H-bonds and X(HB). These correlations served to fit experimental Raman spectra of methanol recorded under sub- and supercritical conditions. The advantage of the approach used here is that f1, f2, f3 values have a clear physical meaning and are dependent on the values of state parameters.

  12. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol.

    Science.gov (United States)

    Warner, Genoa; Hansen, Thomas S; Riisager, Anders; Beach, Evan S; Barta, Katalin; Anastas, Paul T

    2014-06-01

    An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6h at 310°C using a catalyst based on a Cu- and La-doped hydrotalcite-like precursor. Product mixtures were characterized by NMR spectroscopy, gel permeation chromatography, and GC-MS.

  13. Coal gasification with water under supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Vostrikov; S.A. Psarov; D.Yu. Dubov; O.N. Fedyaeva; M.Ya. Sokol [Russian Academy of Sciences, Novosibirsk (Russian Federastion). Kutateladze Institute of Thermophysics, Siberian Division

    2007-08-15

    The conversion of an array of coal particles in supercritical water (SCW) was studied in a semibatch reactor at a pressure of 30 MPa, 500-750{sup o}C, and a reaction time of 1-12 min. The bulk conversion, surface conversion, and random pore models were used to describe the conversion. The quantitative composition of reaction products was determined, and the dependence of the rate of reaction on the degree of coal conversion, reaction time, and reaction temperature was obtained on the assumption of a first-order reaction and the Arrhenius function. It was found that the gasification of coal under SCW conditions without the addition of oxidizing agents is a weakly endothermic process. The addition of CO{sub 2} to SCW decreased the rate of conversion and increased the yield of CO. It was found that, at a 90% conversion of the organic matter of coal (OMC) in a flow of SCW in a time of 2 min, the process power was 26 W/g per gram of OMC.

  14. Self-diffusion measurements of methanol and 1-decanol in supercritical CO{sub 2} by {sup 13}C pulsed field gradient NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bai, S.; Mayne, C.L.; Grant, D.M. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemistry; Taylor, C.M.V. [Los Alamos National Lab., NM (United States). Organic Analytical Chemistry Group

    1997-10-01

    A small amount of a highly polar compound, such as methanol, is frequently added to supercritical fluid (SCF) carbon dioxide to enhance its ability to dissolve polar molecules in SCF separation technology. Few diffusion coefficients in SCF mixtures have been reported in the literature. The pulsed field gradient spin-echo technique (PGSE) has been used extensively to measure self-diffusion in neat monohydric alcohols under pressure. Hurle et al. and Luedemann et al. showed that the experimental diffusion coefficients of methanol may be explained by a rough hard-sphere model (RHS) with a roughness parameter, A. In this paper, diffusion measurements are reported for CO{sub 2}-methanol and CO{sub 2}-decanol mixtures in supercritical fluids. Since methanol in CO{sub 2} is primarily monomeric at low concentration, the RHS model, that is accurate for most simple, non-associated liquids, should apply. Previous nuclear spin-lattice relaxation studies in SCF CO{sub 2} suggest a large local solvent density enhancement, or solvent clustering, near a alcohol solute molecule under SCF conditions. If solvent clustering occurs in the vicinity of alcohol solute molecules, it should affect the diffusion coefficients. The authors have made the requisite measurements and found that they corroborate their previous spin-relaxation data.

  15. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    Science.gov (United States)

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  16. Experimental study of elliptical jet from sub to supercritical conditions

    Science.gov (United States)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2014-04-01

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N2 gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  17. Experimental study of elliptical jet from sub to supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  18. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fulger, M. [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania)], E-mail: manuela.fulger@nuclear.ro; Ohai, D.; Mihalache, M.; Pantiru, M. [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Malinovschi, V. [University of Pitesti, Research Center for Advanced Materials, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2009-03-31

    For a correct design of supercritical water-cooled reactor (SCWR) components, data regarding the behavior of candidate materials in supercritical water are necessary. Corrosion has been identified as a critical problem because the high temperature and the oxidative nature of supercritical water may accelerate the corrosion kinetics. The goal of this paper is to investigate the oxidation behavior of Incoloy 800 exposed in autoclaves under supercritical water conditions for up to 1440 h. The exposure conditions (thermal deaerated water, temperatures of 723, 773, 823 and 873 K and a pressure of 25 MPa) have been selected as relevant for a supercritical power plant concept. To investigate the structural changes of the oxide films, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and electrochemical impedance spectroscopy (EIS) analyses were used. Results show changes in the oxides chemical composition, microstructure and thickness versus testing conditions (pressure, temperature and time). The oxide films are composed of two layers: an outer layer enriched in Fe oxide and an inner layer enriched in Cr and Ni oxides corresponding to small cavities supposedly due to internal oxidation.

  19. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae.

    Science.gov (United States)

    Jazzar, Souhir; Quesada-Medina, Joaquín; Olivares-Carrillo, Pilar; Marzouki, Mohamed Néjib; Acién-Fernández, Francisco Gabriel; Fernández-Sevilla, José María; Molina-Grima, Emilio; Smaali, Issam

    2015-08-01

    A coupled process combining microalgae production with direct supercritical biodiesel conversion using a reduced number of operating steps is proposed in this work. Two newly isolated native microalgae strains, identified as Chlorella sp. and Nannochloris sp., were cultivated in both batch and continuous modes. Maximum productivities were achieved during continuous cultures with 318mg/lday and 256mg/lday for Chlorella sp. and Nannochloris sp., respectively. Microalgae were further characterized by determining their photosynthetic performance and nutrient removal efficiency. Biodiesel was produced by catalyst-free in situ supercritical methanol transesterification of wet unwashed algal biomass (75wt.% of moisture). Maximum biodiesel yields of 45.62wt.% and 21.79wt.% were reached for Chlorella sp. and Nannochloris sp., respectively. The analysis of polyunsaturated fatty acids of Chlorella sp. showed a decrease in their proportion when comparing conventional and supercritical transesterification processes (from 37.4% to 13.9%, respectively), thus improving the quality of the biodiesel.

  20. Noncatalytic mono-N-methylation of aniline in supercritical methanol: the kinetics and acid/base effect.

    Science.gov (United States)

    Takebayashi, Yoshihiro; Morita, Yoshinori; Sakai, Hideki; Abe, Masahiko; Yoda, Satoshi; Furuya, Takeshi; Sugeta, Tsutomu; Otake, Katsuto

    2005-08-21

    Aniline is easily N-methylated in supercritical methanol without catalyst at 350 degrees C and 0.237 g cm-3 to give mono-N-methylaniline with high selectivity, and the reaction rate is increased by a small amount of base (LiOH, NaOH, KOH, and CH3ONa), indicating a difference in the reaction mechanism from the ordinary acid-catalyzed one.

  1. Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production

    OpenAIRE

    Imahara, Hiroaki; Xin, Jiayu; Saka, Shiro

    2009-01-01

    Addition of the third component to supercritical methanol has been studied in the literature for biodiesel production in order to reduce reaction temperature without deteriorating the reaction rate. However, effect of pressure had often been neglected in the discussion. In this paper, therefore, effect of pressure was examined with hexane, carbon dioxide (CO2) and nitrogen (N2) as one of the third components, using batch-type and flow-type reactors. As a result, it was found that an addition ...

  2. Comparison of large scale purification processes of naproxen enantiomers by chromatography using methanol-water and methanol-supercritical carbon dioxide mobile phases.

    Science.gov (United States)

    Kamarei, Fahimeh; Vajda, Péter; Guiochon, Georges

    2013-09-20

    This paper compares two methods used for the preparative purification of a mixture of (S)-, and (R)-naproxen on a Whelk-O1 column, using either high performance liquid chromatography or supercritical fluid chromatography. The adsorption properties of both enantiomers were measured by frontal analysis, using methanol-water and methanol-supercritical carbon dioxide mixtures as the mobile phases. The measured adsorption data were modeled, providing the adsorption isotherms and their parameters, which were derived from the nonlinear fit of the isotherm models to the experimental data points. The model used was a Bi-Langmuir isotherm, similar to the model used in many enantiomeric separations. These isotherms were used to calculate the elution profiles of overloaded elution bands, assuming competitive Bi-Langmuir behavior of the two enantiomers. The analysis of these profiles provides the basis for a comparison between supercritical fluid chromatographic and high performance liquid chromatographic preparative scale separations. It permits an illustration of the advantages and disadvantages of these methods and a discussion of their potential performance.

  3. Continuous esterification of free fatty acids in crude biodiesel by an integrated process of supercritical methanol and sodium methoxide catalyst.

    Science.gov (United States)

    Zeng, Dan; Li, Ruosong; Feng, Mingjun; Fang, Tao

    2014-10-01

    An integrated process of supercritical methanol (SCM) and sodium methoxide catalyst was developed to produce fatty acid methyl esters (FAMEs) via continuous esterification from crude biodiesel. The crude biodiesel with high free fatty acid (FFA) content must be refined to reduce the acid value (AV) for meeting the quality standards. The process parameters were studied by Box-Behnken design (BBD) of response surface methodology (RSM). The experimental results revealed that the AV of crude biodiesel decreased from 18.66 to 0.55 mg KOH g(-1) at the reaction conditions of 350 °C, 0.5 % amount of sodium methoxide catalyst, and 10 MPa. Temperature shows the most significant effect on the esterification, followed by pressure and amount of sodium methoxide catalyst. This integrated process proved to be a potential route to refine the crude biodiesel because of its continuity, high efficiency, and less energy consumption with relatively moderate reaction conditions compared with conventional methods.

  4. Process intensification using CO2 as cosolvent under supercritical conditions applied to the design of biodiesel production

    OpenAIRE

    Maçaira, Jose; Santana, Aline; Oliveira Costa, Ana Carolina; Ramírez, E.; Larrayoz Iriarte, María Angeles

    2014-01-01

    In this work, a new process for biodiesel production under supercritical conditions in presence of cosolvent (CO2) is designed and simulated using the process simulator Aspen Plus. The model was developed using experimental reaction data of continuous catalytic biodiesel synthesis at a 74:25:1 CO2 to methanol to triglycerides molar ratio, temperature range between 150 and 300 C, at 250 bar. To decrease the temperature and pressure of operation and increase the conversion efficiency of biodies...

  5. Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification

    Directory of Open Access Journals (Sweden)

    Yi-Wei Lin

    2012-07-01

    Full Text Available A supercritical methanol transesterification method was applied to produce biodiesel from the high-acid oil of soybean soapstock. The fuel properties of biodiesel produced with various molar ratios of methanol to raw oil were analyzed and compared in this experimental study. Oleic acid (C18:1, linoleic acid (C18:2, and palmitic acid (C16:0 were the three main compounds in the high-acid oil-biodiesel. The saturated fatty acid content of the high-acid oil increased significantly due to the supercritical-methanol transesterification reaction. The fuel characteristics of the resulting high-acid oil, including the specific gravity and kinematic viscosity, were also greatly improved. The saturated fatty acid content of the biodiesel produced from the high-acid oil was higher than that of biodiesel from waste cooking oil produced by the subcritical transesterification using a strongly alkaline catalyst. The high-acid oil-biodiesel that was produced with a molar ratio of methanol to raw oil of 42 had the best fuel properties, including a higher distillation temperature and cetane index and a lower kinematic viscosity and water content, among the biodiesels with different molar ratios.

  6. Optimization of supercritical methanol reactive extraction by response surface methodology and product characterization from Jatropha curcas L. seeds.

    Science.gov (United States)

    Lim, Steven; Lee, Keat Teong

    2013-08-01

    In this study, optimization of supercritical reactive extraction directly from Jatropha seeds in a high pressure batch reactor using Response Surface Methodology (RSM) coupled with Central Composite Rotatable Design (CCRD) was performed. Four primary variables (methanol to solid ratio (SSR), reaction temperature, time and CO2 initial pressure) were investigated under the proposed constraints. It was found that all variables had significant effects towards fatty acid methyl esters (FAME) yield. Moreover, three interaction effects between the variables also played a major role in influencing the final FAME yield. Optimum FAME yield at 92.0 wt.% was achieved under the following conditions: 5.9 SSR, 300°C, 12.3 min and 20 bar CO2. Final FAME product was discovered to fulfil existing international standard. Preliminary characterization analysis proved that the solid residue can be burnt as solid fuel in the form of biochar while the liquid product can be separated as specialty chemicals or burned as bio-oil for energy production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Droplet turbulence interactions under subcritical and supercritical conditions

    Science.gov (United States)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  8. Experimental study of choking flow of water at supercritical conditions

    Science.gov (United States)

    Muftuoglu, Altan

    Future nuclear reactors will operate at a coolant pressure close to 25 MPa and at outlet temperatures ranging from 500°C to 625°C. As a result, the outlet flow enthalpy in future Supercritical Water-Cooled Reactors (SCWR) will be much higher than those of actual ones which can increase overall nuclear plant efficiencies up to 48%. However, under such flow conditions, the thermal-hydraulic behavior of supercritical water is not fully known, e.g., pressure drop, forced convection and heat transfer deterioration, critical and blowdown flow rate, etc. Up to now, only a very limited number of studies have been performed under supercritical conditions. Moreover, these studies are conducted at conditions that are not representative of future SCWRs. In addition, existing choked flow data have been collected from experiments at atmospheric discharge pressure conditions and in most cases by using working fluids different than water which constrain researchers to analyze the data correctly. In particular, the knowledge of critical (choked) discharge of supercritical fluids is mandatory to perform nuclear reactor safety analyses and to design key mechanical components (e.g., control and safety relief valves, etc.). Hence, an experimental supercritical water facility has been built at Ecole Polytechnique de Montreal which allows researchers to perform choking flow experiments under supercritical conditions. The facility can also be used to carry out heat transfer and pressure drop experiments under supercritical conditions. In this thesis, we present the results obtained at this facility using a test section that contains a 1 mm inside diameter, 3.17 mm long orifice plate with sharp edges. Thus, 545 choking flow of water data points are obtained under supercritical conditions for flow pressures ranging from 22.1 MPa to 32.1 MPa, flow temperatures ranging from 50°C to 502°C and for discharge pressures from 0.1 MPa to 3.6 MPa. Obtained data are compared with the data given in

  9. Homogeneous catalysis of valeronitrile hydrolysis under supercritical conditions.

    Science.gov (United States)

    Sarlea, Michael; Kohl, Sabine; Blickhan, Nina; Vogel, Herbert

    2012-01-01

    Supercritical nitrile hydrolysis can be used for both, amide and acid production as well as waste water treatment, as the hydrolysis products show good biodegradability. The conventional process at ambient conditions requires large amounts of mineral acid or base. Approaches that use supercritical water as a green solvent without a catalyst have been investigated over recent years. Findings for valeronitrile hydrolysis presented recently showed promising reaction rates and valeric acid yields. In an attempt to further maximize product yield and to better understand the impact of the pH, reactions in dilute sulfuric acid (0.01 mol L(-1)) were performed in a continuous high-pressure laboratory-scale apparatus at 400-500 °C, 30 MPa, and a maximum residence time of 100 s. Results from both reaction media were compared with regard to productivity and sustainability.

  10. 超临界氨合成%AMMONIA SYNTHESIS AT SUPERCRITICAL CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    刘化章; 唐浩东; 李小年

    2004-01-01

    Ammonia synthesis at supercritical conditions was first studied over iron and active carbonsupported ruthenium catalysts in a fixed-bed reactor. The influences of 15 kinds of different supercritical media, such as alkanes of C7-C13, 1, 2, 3, 4-tetrahydronaphthalene, cis-decalin, o-xylene,ethylbenzene, quinolin, n-hexane and aniline etc. and reaction conditions (catalyst, temperature, space velocity, particial pressure of media) on ammonia at supercritical condition were investigated.Supercritical medium was decomposed under reaction conditions over Fe and Ru/AC catalysts. The decomposition products deactivated the catalysts. Alkane decomposed the least, and the rate of deactivation was the slowest. Therefore alklane was a relatively good medium. The decomposion of supercritical medium was the key for the deactivation of catalysts. Another important reason for the decrease of ammonia concentration was that the effective pressure of syngas decreased because of the presence of supercritical media. The active temperature of catalyst was the decisive factor in supercritical ammonia synthesis. Supercritical catalytic reaction was viable only at a lower temperature. Ammonia ynthesis at supercritical conditions is possible if a catalyst with active temperature lower than 573 K could e developed and the decomposition of supercritical media could be prevented.

  11. Estimation of the Isotherms of Phenol on Activated Carbons and Polymeric Adsorbents under Supercritical Condition

    Institute of Scientific and Technical Information of China (English)

    奚红霞; 谢兰英; 李祥斌; 李忠

    2003-01-01

    A method named as "volume-expanding and pressure-reducing adsorption" is proposed. It can be used to measure the isotherms under supercritical condition. The adsorption isotherms of phenol on activated carbons and polymeric adsorbents are estimated and compared respectively for the systems of "phenol-activated carbon-supercritical fluid CO2" and "phenol-polymeric adsorbent-supercritical fluid CO2". The results show that the amount of phenol adsorbed on the activated carbons and the polymeric adsorbents under the supercritical condition is much less than that under the general condition, which can be utilized to develop a technology regenerating the activated carbon with supercritical fluid. Moreover, the effects of ethyl alcohol, used as the third component, on the isotherms of phenol on the activated carbons and polymeric adsorbents under the supercritical condition are also investigated.

  12. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions.

    Science.gov (United States)

    Zhou, Dan; Qiao, Baoquan; Li, Gen; Xue, Song; Yin, Jianzhong

    2017-08-01

    Raw material for biodiesel has been expanded from edible oil to non-edible oil. In this study, biodiesel continuous production for two kinds of microalgae Chrysophyta and Chlorella sp. was conducted. Coupling with the supercritical carbon dioxide extraction, the oil of microalgae was extracted firstly, and then sent to the downstream production of biodiesel. The residue after decompression can be reused as the material for pharmaceuticals and nutraceuticals. Results showed that the particle size of microalgae, temperature, pressure, molar ration of methanol to oil, flow of CO2 and n-hexane all have effects on the yield of biodiesel. With the optimal operation conditions: 40mesh algae, extraction temperature 60°C, flow of n-hexane 0.4ml/min, reaction temperature: 340°C, pressure: 18-20MPa, CO2 flow of 0.5L/min, molar ration of methanol to oil 84:1, a yield of 56.31% was obtained for Chrysophyta, and 63.78% for Chlorella sp. due to the higher lipid content. Copyright © 2017. Published by Elsevier Ltd.

  13. Process conditions of preparing methanol from cornstalk gas

    Institute of Scientific and Technical Information of China (English)

    ZHU Ling-feng; DU Lei; LI Xin-bao; LI Guo-ting; ZHANG Jie

    2007-01-01

    The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfurization, catalytic cracking of tar, purification and hydrogenation were studied. The catalytic experiments of methanol synthesis with cornstalk syngas were carried out in a tubular-flow integral and isothermal reactor. The effect of reaction temperature, pressure, catalysttypes, catalyst particle size, syngas flow at entering end and composition of syngas was investigated. The optimum process conditions and yield of methanol from cornstalk syngas were obtained. The experimental results indicated that the proper catalyst of the synthetic reaction was C301 and the optimum catalyst size (φ) was 0.833 mm×0.351 mm. The optimum operating temperature and pressure were found to be 235℃ and 5 Mpa, respectively. The suitable syngas flow 0.9-1.10 mol/h at entering end was selected and the best composition of syngas were CO 10.49%, CO2 8.8%, N2 37.32%, CnHm 0.95% and H2 40.49%. The best methanol yield is 0.418 g/g cornstalk. The study provided the technical support for the industrial test of methanol production from biomass (cornstalk)gas.

  14. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    Science.gov (United States)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have

  15. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments

    NARCIS (Netherlands)

    Cartigny, M.J.B.; Ventra, D.; Postma, G.; Berg, J.H. van den

    2012-01-01

    Particulate density currents, such as pyroclastic flows and turbidity currents, are prone to flow in a supercritical state, due to their small density difference in relation to the ambient fluid. Facies deposited in supercritical-flow conditions are therefore likely to be common, yet their recogniti

  16. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Science.gov (United States)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-03-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  17. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  18. Drilling to Supercritical Conditions: the Iceland Deep Drilling Project (IDDP).

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.; Saito, S.

    2001-05-01

    Geothermal wells produce mixtures of water and steam in the range 200-350 C, however the high cost of drilling and completing these wells relative to the cost of oil and gas wells is a hindrance to the geothermal industry worldwide. Rather than trying only to reduce this cost, the Icelandic Deep Drilling Project (IDDP) is trying the approach of increasing the power output per well. Funded by a consortium of energy companies in Iceland, the IDDP plans to drill a series of boreholes, to depths greater than 4 to 5 km. The aim is to produce hydrothermal fluids systems at temperatures of 400-500 C, and to investigate the technical and economic aspects of producing supercritical fluids for use in power generation and other energy intensive processes, such as mineral recovery. The first phase feasibility and site selection study began in March 2001 and drilling of the first deep well is expected to begin in 2003. The IDDP faces difficult technical challenges to drill, complete, sample and maintain wells under hot, and potentially acid, conditions. However the IDDP also presents the opportunity to investigate very high-temperature hydrothermal regimes that have rarely been available for direct study. It will address important scientific issues, ranging from the coupling of magmatic and hydrothermal systems, supercritical phenomena, the transition from brittle to ductile behavior at relatively shallow depths, to land based analogues of submarine hot springs, the black smokers of the mid-ocean ridges. Fortunately, the IDDP industrial consortium is willing, or even anxious, to integrate its engineering activities with scientific investigations. The consortium will seek international participation by scientists and engineers to formulate a strategy to achieve both the engineering and scientific goals of the IDDP.

  19. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor

    NARCIS (Netherlands)

    Benito-Lopez, F.; Tiggelaar, Roald M.; Salblut, K.; Huskens, Jurriaan; Egberink, Richard J.M.; Reinhoudt, David; Gardeniers, Johannes G.E.; Verboom, Willem

    2007-01-01

    The esterification reaction of phthalic anhydride with methanol was performed at different temperatures in a continuous flow glass microreactor at pressures up to 110 bar and using supercritical CO2 as a co-solvent. The design is such that supercritical CO2 can be generated inside the microreactor.

  20. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials.

    Science.gov (United States)

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen; Chen, Mengjun

    2017-02-01

    In this study, supercritical methanol (SCM) process was successfully used for the preparation of ultrafine copper materials from waste printed circuit boards (PCBs) after nitric acid pretreatment. Waste PCBs were pretreated twice in nitric acid. Sn and Pb were recovered by the first nitric acid pretreatment. The leach liquor with a high concentration of copper ions after the second nitric acid leaching was subjected to SCM process. The mixture of Cu and Cu2O with poor uniformity of particle size was formed due to the effect of ferric iron contained in the leach liquor of waste PCBs, while more uniform and spherical Cu particles with high monodispersity and smaller size could be prepared after the removal of Fe. The size of Cu particles increased obviously with the decline of SCM temperature, and particles became highly aggregated when the reaction temperature decreased to 300°C. The size of Cu particles decreased markedly with the decrease of initial concentration of copper ion in the leach liquor of waste PCBs. It is believed that the process developed in this study is simple and practical for the preparation of ultrafine copper materials from waste PCBs with the aim of recycling these waste resources as a high value-added product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experiments and numerical simulation of mixing under supercritical conditions

    Science.gov (United States)

    Schmitt, T.; Rodriguez, J.; Leyva, I. A.; Candel, S.

    2012-05-01

    Supercritical pressure conditions designate a situation where the working fluid pressure is above the critical point. Among these conditions, it is interesting to identify a transcritical range which corresponds to cases where the pressure is above the critical point, but the injection temperature is below the critical value. This situation is of special interest because it raises fundamental issues which have technological relevance in the analysis of flows in liquid rocket engines. This situation is here envisaged by analyzing the behavior of a nitrogen shear coaxial jet comprising an inner stream injected at temperatures close to the critical temperature and a coaxial flow at a higher temperature. Experiments are carried out both in the absence of external modulation and by imposing a large amplitude transverse acoustic field. Real gas large eddy simulations are performed for selected experiments. The combination of experiments and calculations is used to evaluate effects of injector geometry and operating parameters. Calculations retrieve what is observed experimentally when the momentum flux ratio of the outer to the inner stream J= (ρ _eu_e^2)/(ρ _iu_i^2) is varied. Results exhibit the change in flow structure and the development of a recirculation region when this parameter exceeds a critical value. The instantaneous flow patterns for different momentum flux ratios are used in a second stage to characterize the dynamical behavior of the flow in terms of power spectral density of velocity and density fluctuations. Results obtained under acoustic modulation provide insight into mixing enhancement of coaxial streams with a view of its possible consequences in high frequency combustion instabilities. It is shown in particular that the presence of strong acoustic modulations notably reduces the high density jet core length, indicating an increased mixing efficiency. This behavior is more pronounced when the jet is placed at the location of maximum transverse

  2. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Anastasiadou, Kalliopi; Axiotis, Dimosthenis [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Chania, P.C. 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Chania, P.C. 73100 (Greece)

    2010-07-15

    The present research investigates, develops and evaluates the transformation of chrysotile asbestos into a non-hazardous material, such as forsterite, using an economically viable and safe method. The aim of this study is to convert fibrous chrysotile asbestos into an anhydrous magnesium silicate with a non-hazardous lamellar morphology using supercritical steam. The treatment method is characterized as hydrothermal in a temperature and pressure range of 300-700 deg. C and 1.75-5.80 MPa, respectively. Small amounts of asbestos (2.5 g) were treated in each experiment. Deionised water was used as the treatment solution. The treatment duration varied from approximately 1-5 h. Additional experiments took place using solutions of distilled water and small amounts of acetic acid, with the aim of attaining optimal treatment conditions. Crystal phases of the samples were determined by X-ray diffraction (XRD). The main phases present in the treated samples were forsterite, enstatite, and chrysotile asbestos. Lizardite and periclase were also found. The morphology of the treated chrysotile asbestos fibers was identified by scanning electron microscope (SEM). The fibrous form of chrysotile asbestos was converted into non-fibrous form of forsterite. In fact, none of the fibrous-needle-like morphology, with length equal to or greater than 5 {mu}m and diameter less than 3 {mu}m, which was responsible for the toxicity of the original material, was visible in the solid phase. The dissolution of magnesium from chrysotile asbestos was measured using volumetric determination by titration with EDTA. Leaching of magnesium into the liquid phase was observed. Clearly, the highest concentrations of dissolved magnesium are observed after hydrothermal treatment of chrysotile asbestos using acetic acid 1% (8.4-14.6%). Lowest concentrations of dissolved magnesium are obtained after hydrothermal treatment of chrysotile asbestos without using additives. Observing the results of the hydrothermal

  3. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions.

    Science.gov (United States)

    Anastasiadou, Kalliopi; Axiotis, Dimosthenis; Gidarakos, Evangelos

    2010-07-15

    The present research investigates, develops and evaluates the transformation of chrysotile asbestos into a non-hazardous material, such as forsterite, using an economically viable and safe method. The aim of this study is to convert fibrous chrysotile asbestos into an anhydrous magnesium silicate with a non-hazardous lamellar morphology using supercritical steam. The treatment method is characterized as hydrothermal in a temperature and pressure range of 300-700 degrees C and 1.75-5.80 MPa, respectively. Small amounts of asbestos (2.5 g) were treated in each experiment. Deionised water was used as the treatment solution. The treatment duration varied from approximately 1-5 h. Additional experiments took place using solutions of distilled water and small amounts of acetic acid, with the aim of attaining optimal treatment conditions. Crystal phases of the samples were determined by X-ray diffraction (XRD). The main phases present in the treated samples were forsterite, enstatite, and chrysotile asbestos. Lizardite and periclase were also found. The morphology of the treated chrysotile asbestos fibers was identified by scanning electron microscope (SEM). The fibrous form of chrysotile asbestos was converted into non-fibrous form of forsterite. In fact, none of the fibrous-needle-like morphology, with length equal to or greater than 5 microm and diameter less than 3 microm, which was responsible for the toxicity of the original material, was visible in the solid phase. The dissolution of magnesium from chrysotile asbestos was measured using volumetric determination by titration with EDTA. Leaching of magnesium into the liquid phase was observed. Clearly, the highest concentrations of dissolved magnesium are observed after hydrothermal treatment of chrysotile asbestos using acetic acid 1% (8.4-14.6%). Lowest concentrations of dissolved magnesium are obtained after hydrothermal treatment of chrysotile asbestos without using additives. Observing the results of the

  4. Study of safety relief valve operation under ATWS conditions. [Supercritical flow

    Energy Technology Data Exchange (ETDEWEB)

    Hutmacher, E.S.; Whitten, S.D.

    1979-09-01

    In March 1979, the NRC published a report (NUREG/CR-0687) prepared by the Energy Technology Engineering Center (ETEC-TDR-78-19). That report presented a literature survey which updated earlier NRC studies of saturated or subcooled water flow through relief valves, under ATWS conditions. This supplement expands upon that search to include supercritical steam-water flow. No applicable data for the supercritical conditions were found, nor were any newer data on saturated or subcooled conditions uncovered. This supplement also updates a look for facilities currently capable of simultaneously imposing all ATWS conditions upon test relief valves. Results confirmed the negative findings of NUREG/CR-0687.

  5. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  6. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada

    2012-07-01

    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  7. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  8. Thermal-hydraulic instabilities in natural circulation flow loops under supercritical conditions

    Science.gov (United States)

    Jain, Rachna

    In recent years, a growing interest has been generated in investigating the thermal hydraulics and flow stability phenomenon in supercritical natural circulation loops. These flow conditions are relevant to some of the innovative passive safety designs proposed for the Gen-IV Supercritical Water Reactor (SCWR) concepts. A computational model has been developed at UW Madison which provides a good basic simulation tool for the steady state and transient analysis of one dimensional natural circulation flow, and can be applied to conduct stability analysis. Several modifications and improvements were incorporated in an earlier numerical scheme before applying it to investigate the transient behavior of two experimental loops, namely, the supercritical water loop at UW-Madison and the supercritical carbon-dioxide (SCCO2) loop at Argonne National Laboratories. Although the model predicted development of instabilities for both SCW and SCCO2 loop which agrees with some previous work, the experiments conducted at SCCO2 loop exhibited stable behavior under similar conditions. To distinguish between numerical effects and physical processes, a linear stability approach has also been developed to investigate the stability characteristics associated with the natural circulation loop systems for various inlet conditions, input powers and geometries. The linear stability results for the SCW and SCCO2 loops exhibited differences with the corresponding transient simulations. This linear model also predicted the presence of instability in the SCCO 2 loop for certain high input powers contradictory to the experimental findings. Dimensionless parameters were proposed which would generalize the stability characteristics of the natural circulation flow loops under supercritical conditions.

  9. Extraction of coal with solvents in liquid and supercritical state under nonhydrogenating and hydrogenating conditions

    Science.gov (United States)

    Wilhelm, A.; Hedden, K.

    1982-10-01

    The basic steps of coal extraction to determine the optimum conditions for obtaining a higher coal conversion yield in a technical process of supercritical coal extraction were examined. A fixed bed of coal was slowly heated up in a current of pressurized solvent by a nonisothermal technique. The solvent changes its physical state during extraction from a liquid to a supercritical fluid. The formation rates of extract and gaseous products and their integral yields were measured under different extraction conditions. Various coals and lignites as well as different solvents including H-donor solvents and the effect of the addition of molecular hydrogen to the supercritical phase with and without catalyst were studied. Results are interpreted with an extraction scheme, comprising chemical reactions, phase equilibria and transport processes as single steps of the complex extraction procedure. Using a simplified mathematical model, the formation rates of extract as a function of temperature were quantitatively described with effective kinetic parameters. New process for the hydrogenating supercritical extraction of coal, which produces high coal conversion yields is proposed.

  10. Modeling of flow and heat transfer for fluids at supercritical conditions

    Science.gov (United States)

    Gallaway, Tara

    2011-12-01

    The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. At supercritical pressures, the working fluid does not undergo phase change as it is heated, but rather the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and uid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer as well as stability limits for future SCWRs. The goal of this work is to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core and to predict the potential onset of dynamic instabilities. CO2 at supercritical conditions is included in the current study due in some part to its use as a viable simulant fluid in place of water for experimental studies. The use of CO2 at supercritical conditions as a reactor coolant has also gained popularity in recent years. Spline-type property models have been developed for both water and CO2 at supercritical pressures in order to include the property variations into a numerical solver. Turbulence and heat transfer models for fluids at supercritical conditions have been developed and implemented into the NPHASE-CMFD computer code. The results of predictions using the proposed models have been compared to experimental data from the Korea Atomic Energy Research Institute (KAERI) for various heat transfer regimes. While no model is without some deficiency, the Chien Low-Reynolds k -- epsilon model performs best at predicting the experimental data. A stability model has been developed and is presented in this dissertation as well. This model utilizes three different solution methods and tests the effects of inlet temperature, mass flow rate, local loss

  11. The anaerobic conversion of methanol under thermophilic conditions: pH and bicarbonate dependence

    NARCIS (Netherlands)

    Paulo, P.L.; Villa, G.; Lier, van J.B.; Lettinga, G.

    2003-01-01

    The thermophilic (55degreesC) anaerobic conversion of methanol was studied in an unbuffered medium (pH 4 +/- 0.2) and in a phosphate buffered medium (pH 6.4 +/- 0.1), in both cases without bicarbonate addition. Our cultivated sludge consortium was unable to degrade methanol under acidic conditions.

  12. The anaerobic conversion of methanol under thermophilic conditions: pH and bicarbonate dependence

    NARCIS (Netherlands)

    Paulo, P.L.; Villa, G.; Lier, van J.B.; Lettinga, G.

    2003-01-01

    The thermophilic (55degreesC) anaerobic conversion of methanol was studied in an unbuffered medium (pH 4 +/- 0.2) and in a phosphate buffered medium (pH 6.4 +/- 0.1), in both cases without bicarbonate addition. Our cultivated sludge consortium was unable to degrade methanol under acidic conditions.

  13. Effects of injection temperature on the jet evolution under supercritical conditions

    Institute of Scientific and Technical Information of China (English)

    YIN YanMei; LU XiYun

    2009-01-01

    A nitrogen jet with subcritical and supercritical injection temperatures injected into a supercritical environment,in which both the pressure and temperature exceed those of the thermodynamic critical state,has been investigated numerically using large-eddy simulation technique.The effects of the injection temperature on the flow evolution are studied.We find that the jet surface is more unstable with the instability waves growing up and rolling into a succession of ring vortices for supercritical injection temperature,and the jet surface is nearly straight with the strong density stratification suppressing the development of the instability waves for subcritical injection temperature.With increasing injection temperature,the spatial growth rate of the surface instability wave strengthens and the frequency of the most unstable mode increases.This behavior is of importance in enhancing the fluid mixing effect.The results obtained in this study provide physical insight into the understanding of fundamental mechanisms of the jet evolution under supercritical conditions.

  14. 亚/超临界甲醇体系中磷钼酸催化液化木粉%Catalytic liquefaction of wood in sub/supercritical methanol under phosphomolybdic acid

    Institute of Scientific and Technical Information of China (English)

    曾常伟; 林星; 汪雪琴; 蔡政汉; 吕建华; 黄彪

    2016-01-01

    To discover bio-environmental and sustainable catalyst to effectively transform fir sawdust to biofuel, liquefaction process catalyzed by phosphomolybdic acid and using sub/supercritical methanol as solvent was evaluated. The optimum reaction condition was investigated in terms of temperature, duration, dosages of catalyst and sawdust. Results showed that phosphomolybdic acid to-gether with subcritical methanol significantly accelerated sawdust liquefaction. The optimum reaction condition was achieved at liquif-ying 1 g sawdust, 150 mL methanol and 0.5 g phosphomolybdic acid at 240℃ for 30 minutes, maximizing at 93.32%. Subsequent-ly, quantity and chemical composition of light bio-oil, heavy bio-oil and residue were characterized by scanning electron microscope, Fourier translation infrared spectrum and gas chromatography-mass spectrometer. Results showed that the residue was mainly consist of lignin and its derivatives, which was from the liquefaction of lignin from methanol. Light bio-oil obtained at optimum condition comprised of complex compounds such as ester, phenol, aldehyde and ketone, resulting from the reaction between cellulose and methanol. While, heavy bio-oil, mainly comprised of phenol, was obtained from lignin liquefaction.%以杉木屑为原料,研究磷钼酸在亚/超临界甲醇条件下的催化液化性能,并探讨反应温度、反应时间、催化剂用量和杉木屑用量对杉木屑液化率的影响.结果表明该磷钼酸在亚/超临界甲醇条件下具有很好的催化液化性能.在150 mL甲醇、0.5 g催化剂、1 g杉木屑、240℃条件下反应30 min,液化率达到93.32%.采用SEM、FT-IR和GC-MS对液化残渣、轻油和重油进行表征.结果表明,残渣主要是由木质素或木质素衍生物组成;而液化产物轻油主要是由酯类、酚类、醛类、酮类等组成,主要是由纤维素及半纤维素与甲醇反应得到;而液化产物重油中的酚类物质主要是由木质素液化反应得到.

  15. Experimental Evaluation of Permeability of Coal in Supercritical CO2 and N2 Injection Under Stress and Strain Restricted Conditions

    National Research Council Canada - National Science Library

    KIYAMA, Tamotsu; NISHIMOTO, Soshi; FUJIOKA, Masaji; XUE, Zique; MIYAZAWA, Daisuke; ISHIJIMA, Yoji

    2010-01-01

    .... In this study, the strain and stress constraint conditions were created in-laboratory and N2 and supercritical CO2 were injected repeatedly in a coal specimen for observation of the permeability, Vp...

  16. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Harvind K. [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.; Muppaneni, Tapaswy [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.; Patil, Prafulla D. [American Refining Group, Inc., Bradford, PA (United States); Ponnusamy, Sundaravadivelnathan [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.; Cooke, Peter [New Mexico State Univ., Las Cruces, NM (United States). Core University Research Resource Lab.; Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States). Bio Security and Food Safety Center; Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.

    2013-08-06

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel sample produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.

  17. CATALYTIC CONVERSION OF FORMIC ACID TO METHANOL WITH Cu AND Al UNDER HYDROTHERMAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Hansong Yao,

    2012-01-01

    Full Text Available Catalytic conversion of formic acid into methanol was investigated with Cu as a catalyst and Al as a reductant under hydrothermal conditions. It was found that formic acid can be converted into methanol by such means. The highest yield of methanol (30.4% was attained with a temperature of 300 °C and a reaction time of 9 h. The AlO(OH formed from Al oxidation may also play a catalytic role in the formation of methanol. This process may provide a promising solution to producing methanol from carbohydrate biomass combined with the process of converting the carbohydrate into formic acid, which is expected to emit no CO2.

  18. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  19. Flow of subcritical and supercritical CO2 in coal at variable insitu conditions

    Science.gov (United States)

    Vishal, V.

    2016-12-01

    Fluid flow in unconventional reservoirs is influenced by various conditions such as the insitu pressure, temperature, pore pressure, effective stresses, reservoir characteristics such as porosity, permeability, etc. Many laboratory, pilot scale and field scale activities have only enhanced the understanding of these reservoirs such as shale and coal. An important domain of investigation, however, is the phase of the fluid itself. CO2 that is being injected into the subsurface for the purpose of geologic sequestration is likely to experience a transition of phases in the reservoirs. The present work examines the effects of change in phase of CO2 on the permeability evolution of porous coal. Experiments were conducted to examine the effects of change of phase of CO2 from gas to liquid and gas to supercritical state on the flow and deformation of coal. It was found that the permeability of coal to supercritical CO2 was nearly half than that using liquid CO2. Further, upon saturation of the sample for two days using CO2, further reduction of permeability was observed. Saturation with liquid CO2 led to nearly 24% decline in permeability of coal while supercritical CO2 led to nearly 40% reduction in the same. It is hypothesized that liquid and supercritical CO2 lead to large amount of coal matrix deformation and in turn, the matrix swelling leads to the closure of path of fluid flow, resulting in high reduction of permeability. This study presents the real-term underground scenarios likely to be encountered during CO2 flow in coal.

  20. Pybox monolithic miniflow reactors for continuous asymmetric cyclopropanation reaction under conventional and supercritical conditions.

    Science.gov (United States)

    Burguete, M I; Cornejo, A; García-Verdugo, E; Gil, María J; Luis, S V; Mayoral, J A; Martínez-Merino, V; Sokolova, M

    2007-06-08

    Supported catalysts having pybox chiral moieties were prepared as macroporous monolithic miniflow systems. These catalysts are based on styrene-divinylbenzene polymeric backbones having different compositions and pybox chiral moieties. Their corresponding ruthenium complexes were tested for the continuous flow cyclopropanation reaction between styrene and ethyldiazoacetate (EDA) under conventional conditions and in supercritical carbon dioxide (scCO2). Ru-Pybox monolithic miniflow reactors not only provided a highly efficient and robust heterogeneous chiral catalyst but also allowed us to develop more environmental reaction conditions without sacrificing the global efficiency of the process.

  1. Supercritical fluid extraction of mercury species.

    Science.gov (United States)

    Foy, G P; Pacey, G E

    2003-12-23

    Supercritical fluid extraction was used to recover organic and inorganic mercury species. Variations in pressure, water, methanol, and chelator create methods that allowed separation of inorganic from organic mercury species. When extracted using a compromised set of extraction conditions, the order of extraction was methyl, phenyl and inorganic mercury. For the individually optimized conditions, quantitative recoveries were observed. Level as low as 20 ppb were extracted and then determined using ICP.

  2. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  3. Nanosized cobalt-based catalyst prepared by supercritical phase condition for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Jingmiao Li; Jingchang Zhang; Runduo Zhang; Weiliang Cao

    2009-01-01

    A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based catalysts were characterized by XRD,TEM and BET techniques. Their catalytic performances were tested in a slurry-bed reactor under FTS reaction conditions. The drying and crystallization were carded out simultaneously during SCFD,therefore,the catalysts prepared by SCFD method have ideal structure and show the FTS performance superior to the others prepared by CD method. The FTS activity and selectivity were improved via adding Zn,Mn and K promoters,and less CH_4 and CO_2 as well as higher yield of C~(5+) products were achieved. The optimal performance of a 92% CO conversion and a 65% C~(5+) product yield was obtained over a catalyst with the component of Co/Zn/Mn/K = 100/50/10/7. Furthermore,the catalytic performance was studied under the conditions of liquid-phase and supercriticai phase slurry-bed,and C~(5+) product yield were 57.4% and 65.4%,respectively. In summary,better catalytic performance was obtained using the nanosized catalyst prepared by SCFD method under supercritical reaction conditions,resulting in higher conversion of CO,less CO_2 byproduct,and higher yield of C~(5+) products,

  4. Methanolysis of Poly(ethylene terephthalate) in Supercritical Phase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The depolymerization of poly(ethylene terephthalate, PET) in supercritical methanol is studied using a stainless stirred autoclave at temperature of 255~260℃, pressure of 8.5~14.0 MPa, and methanol/PET weight ratio of 3~8. Under the optimal conditions, the PET is depolymerized completely to its monomers in 60 min. The main products of the reaction are dimethyl terephthalate and ethylene glycol. There are still some small amounts of byproducts, such as methyl-(2-hydroxyethyl) terephthalate, bis(hydroxyethyl) terephthalate, dimers and oligomers. Reversed-phase high performance liquid chrom- atography and gas chromatography are used to analyze solid products and liquid products respectively. The results of depolymerization show that the yield of dimethyl terephthalate and the degree of PET depolymerization are dependent on the reaction temperature, weight ratio of methanol to PET and reaction time. But the reaction pressure has little influence on the depolymerization as long as methanol is in supercritical state.

  5. Hydrothermal liquefaction of Spirulina and Nannochloropsis Salina under subcritical and supercritical water conditions

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, H.; Deng, S.

    2013-01-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220-375 °C, 20-255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid...... residue, and recycling process water for algae cultivation. GC-MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained...... on Nannochloropsis salina at 350 °C and 175 bar. For Spirulina platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for Nannochloropsis salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae...

  6. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    Science.gov (United States)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  7. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    Science.gov (United States)

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities.

  8. 生物油中反应性化合物对羧酸在超临界甲醇中酯化的影响%Effect of the reactive compounds in bio-oils on esterification of the contained carboxylic acids in supercritical methanol

    Institute of Scientific and Technical Information of China (English)

    崔洪友; 马成亮; 李志合; 易维明

    2011-01-01

    采用乙酸(AC)、丙烯酸(AR)、乙酰丙酮(AA)、糠醛、2-甲氧基苯酚(MP)和水等组分,研究了羧酸在超临界甲醇中的酯化反应,并考察了各种组分对酯化反应的影响.通过两种羧酸单独酯化和共同酯化的特性以及水分影响的考察发现,超临界酯化过程中存在着不同酸的酯交换作用;水分对酯化反应具有明显的抑制作用,但超临界酯化时具有更高的耐水性.水分的抑制作用主要是削弱了羰基正离子的亲电能力,降低酯化反应速率,而不是因为化学反应平衡移动.超临界酯化的高温可加快反应速率,较弱的氢键环境可部分抵消羰基正离子亲电能力的削弱作用.AA和糠醛对酯化反应基本没有影响,但AA自身会被转化为丙酮和乙酸甲酯,而糠醛会发生缩醛化反应.MP对AR的酯化具有促进作用,并抑制聚合,从而可以提高酯化的转化率和选择性.%Using acetic acid ( AC ), acrylic acid (AR), acetyl acetone (AA), furfural, 2-methoxy phenol (MP) and water as representative compounds and p-toluene sulfonic acid as catalyst, the esterification upgrading was examined in supercritical methanol and under atmosphere pressure. The comparison results of esterification and simultaneous esterification of AC and AR as well as the effect of water show that supercritical esterification is superior to normal liquid-phase esterification in view of acid removal. Furthermore, transesterification reaction could take place when simultaneously esterifying mixed acids in supercritical methanol, leading to relatively higher conversion for the acid like AR which hardly reacts with methanol at normal condition. The reason for low acid conversion in the presence of water is attributed to the retarding effect of water on esterification, rather than a result of equilibrium shifting, since water tends to weaken the electrophilicity of positive carbonyl ion. However, such effect in supercritical methanol is much

  9. Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Catalyzed by Potassium Hydroxide under Mild Conditions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide using potassium hydroxide as catalyst in the presence of CH3I and the effect of ionic liquid on the reaction were investigated. The results showed that KOH is an effective catalyst; the high selectivity and raised yield of DMC formation under mild conditions were achieved. However,the addition of the ionic liquid, 1-ethyl-3-methylimidazolium bromide (emimBr), can evidently accelerate the conversion of methanol and yield of the product.

  10. Formation of coke in thermal cracking of jet fuel under supercritical conditions

    Institute of Scientific and Technical Information of China (English)

    Yuhong ZHU; Caixiang YU; Zimu LI; Zhentao MI; Xiangwen ZHANG

    2008-01-01

    Continuous-flow reactor experiments were carried out to study coke formation from thermal crack-ing of home-made jet fuel RP-3 under supercritical con-ditions. The mechanism and precursor of coke forming were analyzed. The starting cracking temperature of RP-3 fuel was determined to be 471.8℃ by differential scan-ning calorimetry (DSC). Temperature-programmed oxidation and scanning electron microscopy (SEM) characterizations of the stressed tubes showed that there are three different coke species including chemisorbed carbon, amorphous carbon and filamentous coke in the solid deposits. More than 90% of coke deposits are carried away by the supercritical fluid, which has strong capabilities of extraction for coke deposits and their pre-cursors. There were 17.1 wt-% of iron and 11.1 wt-% of chromium found on the coke surface detected by energy dispersive spectroscopy (EDS) which suggests carbure-tion on alloy. RP-3 fuel and its cracking liquids were analyzed by GC-MS,which showed that the content of alkyl benzene and alkyl naphthalene increased evidently in cracking liquids.

  11. Effects of Reducing Convective Acceleration Terms in Modelling Supercritical and Transcritical Flow Conditions

    Directory of Open Access Journals (Sweden)

    Yared Abayneh Abebe

    2016-11-01

    Full Text Available Modelling floods and flood-related disasters has become priority for many researchers and practitioners. Currently, there are several options that can be used for modelling floods in urban areas and the present work attempts to investigate effectiveness of different model formulations in modelling supercritical and transcritical flow conditions. In our work, we use the following three methods for modelling one-dimensional (1D flows: the MIKE 11 flow model, Kutija’s method, and the Roe scheme. We use two methods for modelling two-dimensional (2D flows: the MIKE21 flow model and a non-inertia 2D model. Apart from the MIKE11 and MIKE21 models, the code for all other models was developed and used for the purposes of the present work. The performance of the models was evaluated using hypothetical case studies with the intention of representing some configurations that can be found in urban floodplains. The present work does not go into the assessment of these models in modelling various topographical features that may be found on urban floodplains, but rather focuses on how they perform in simulating supercritical and transcritical flows. The overall findings are that the simplified models which ignore convective acceleration terms (CATs in the momentum equations may be effectively used to model urban flood plains without a significant loss of accuracy.

  12. Van der Waals effects in ab initio water at ambient and supercritical conditions.

    Science.gov (United States)

    Jonchiere, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Saitta, A Marco; Vuilleumier, Rodolphe

    2011-10-21

    Density functional theory (DFT) within the generalized gradient approximation (GGA) is known to poorly reproduce the experimental properties of liquid water. The poor description of the dispersion forces in the exchange correlation functionals is one of the possible causes. Recent studies have demonstrated an improvement in the simulated properties when they are taken into account. We present here a study of the effects on liquid water of the recently proposed semi-empirical correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The difference between standard and corrected DFT-GGA simulations is rationalized with a detailed analysis upon modifying an accurate parameterised potential. This allows an estimate of the typical range of dispersion forces in water. We also show that the structure and diffusivity of ambient-like liquid water are sensitive to the fifth neighbor position, thus highlighting the key role played by this neighbor. Our study is extended to water at supercritical conditions, where experimental and theoretical results are much more scarce. We show that the semi-empirical correction by Grimme et al. improves significantly, although somewhat counter-intuitively, both the structural and the dynamical description of supercritical water.

  13. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    Science.gov (United States)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  14. Effect of storage time and conditions on the diene valepotriates content of the extract of Valeriana glechomifolia obtained by supercritical carbon dioxide.

    Science.gov (United States)

    Müller, Liz Girardi; de Andrade Salles, Luisa; Sakamoto, Satchie; Stein, Ana Cristina; Cargnin, Simone Tasca; Cassel, Eduardo; Vargas, Rubem Figueiró; Rates, Stela Maris Kuze; von Poser, Gilsane Lino

    2012-01-01

    Valepotriates (epoxy iridoid esters) represent an important group of constituents that contribute to pharmacological effects for the genus Valeriana. Storage and extraction of valepotriates is a demanding task, as these compounds are thermolabile and unstable: even when decomposition products are not formed, isovaleric acid liberation from the iridoid nucleus originate compounds with less complex substituents. To study the influence of time and storage conditions on the diene valepotriates (valtrate, isovaltrate, acevaltrate, 1-β-acevaltrate, 1-β-aceacevaltrate) content of the Valeriana glechomifolia (native to southern Brazil), extract was obtained by supercritical fluid extraction using CO₂ as the fluid (SF-CO₂). Above-ground and below-ground material of V. glechomifolia was extracted by SF-CO₂ (40 °C, 90 bar). The extract was stored under nitrogen atmosphere or solubilised in methanol. Valepotriates stability was accessed during storage at -20 °C over 8 months through reverse-phase HPLC (mobile phase acetonitrile:water 50:50 (v/v); 254 nm). A gradual increase in valtrate levels and decrease in acevaltrate, 1-β-acevaltrate and 1-β-aceacevaltrate, concentration were observed from the first month of storage for the dry extract. However, for the methanol solubilised extract these changes occurred only after the third month and were accompanied by reduction in isovaltrate levels and formation of decomposition products. SF-CO₂ showed high selectivity for valepotriates extraction. This is the first report on valepotriates molecular conversion, which was less accelerated when the extract was stored in methanol, but under this condition degradation products are also present, probably baldrinals, that are not observed in the dry extract. Copyright © 2011 John Wiley & Sons, Ltd.

  15. In situ gas fuel production during the treatment of textile wastewater at supercritical conditions.

    Science.gov (United States)

    Kıpçak, Ekin; Akgün, Mesut

    2013-01-01

    Supercritical water gasification has recently received much attention as a potential alternative to energy conversion methods applied to aqueous/non-aqueous biomass sources, industrial wastes or fossil fuels such as coal because of the unique physical properties of water above its critical conditions (i.e. 374.8 °C and 22.1 MPa). This paper presents the results obtained for the hydrothermal gasification of textile wastewater at supercritical conditions. The experiments were carried out at five reaction temperatures (between 450 and 650 °C) and five reaction times (between 30 and 150 s), under a constant pressure of 25 MPa. It was found that the gaseous products contained considerable amounts of hydrogen, carbon monoxide, carbon dioxide, and C(1)-C(4) hydrocarbons, such as methane, ethane, propane and propylene. The maximum amount of the obtained gaseous product was 1.23 mL per mL textile wastewater, at a reaction temperature of 600 °C, with a reaction time of 150 s. At this state, the product comprised 13.02% hydrogen, 38.93% methane, 4.33% ethane, 0.10% propane, 0.01% propylene, 7.97% carbon monoxide, 27.22% carbon dioxide and 8.00% nitrogen. In addition, a 62.88% decrease in the total organic carbon (TOC) content was observed and the color of the wastewater was removed. Moreover, for the hydrothermal decomposition of the textile wastewater, a first-order reaction rate was designated with an activation energy of 50.42 (±2.33) kJ/mol and a pre-exponential factor of 13.29 (±0.41) s(-1).

  16. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure.

  17. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions.

    Science.gov (United States)

    Toor, Saqib S; Reddy, Harvind; Deng, Shuguang; Hoffmann, Jessica; Spangsmark, Dorte; Madsen, Linda B; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-03-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins.

  18. Preparation of conductive polypyrrole (PPy) composites under supercritical carbon dioxide conditions

    Institute of Scientific and Technical Information of China (English)

    LI Gang; LIAO Xia; SUN Xinghua; YU Jian; HE Jiasong

    2007-01-01

    Electrically conductive composites were prepared via the chemical oxidative polymerization of the pyrrole monomer in polystyrene (PS) and zinc neutralized sulfonated polystyrene (Zn-SPS) films under supercritical carbon dioxide (SC-CO2) conditions.The strong swelling effect of SCCO2 made polypyrrole (PPy) particles not only form on the surface,but also become incorporated into the film,resulting in a homogeneous structure with a relatively higher conductivity.By comparison,the composite prepared in aqueous solutions shows a skin-core structure and a conductivity of 3 to 4 orders of magnitude lower than that of the former due to the diffusion-controlled process of the pyrrole monomer.The percolation thresholds of PS/PPy and Zn-SPS/PPy composites were 6.2% and 2.7% of the volume fraction of PPy,respectively,much lower than the theoretically predicted value of 16%.Moreover,the conductive composites prepared under SC-CO2 conditions showed higher thermal stability,especially in the high-temperature region.

  19. Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond.

    Science.gov (United States)

    Tomkins, Patrick; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2017-02-21

    In the recent years methane has become increasingly abundant. However, transportation costs are high and methane recovered as side product is often flared rather than valorized. The chemical utilization of methane is highly challenging and currently mainly based on the cost-intensive production of synthesis gas and its conversion. Alternative routes have been discovered in academia, though high temperatures are mostly required. However, the direct conversion of methane to methanol is an exception. It can already be carried out at comparably low temperatures. It is challenging that methanol is more prone to oxidation than methane, which makes high selectivities at moderate conversions difficult to reach. Decades of research for the direct reaction of methane and oxygen did not yield a satisfactory solution for the direct partial oxidation toward methanol. When changing the oxidant from oxygen to hydrogen peroxide, high selectivities can be reached at rather low conversions, but the cost of hydrogen peroxide is comparably high. However, major advancements in the field were introduced by converting methane to a more stable methanol precursor. Most notable is the conversion of methane to methyl bisulfate in the presence of a platinum catalyst. The reaction is carried out in 102% sulfuric acid using SO3 as the oxidant. This allows for oxidation of the platinum catalyst and prevents the in situ hydrolysis of methyl bisulfate toward the less stable methanol. With a slightly different motif, the stepped conversion of methane to methanol over copper-zeolites was developed a decade ago. The copper-zeolite is first activated in oxygen at 450 °C, and then cooled to 200 °C and reacts with methane in the absence of oxygen, thus protecting a methanol precursor from overoxidation. Subsequently methanol can be extracted with water. Several active copper-zeolites were found, and the active sites were identified and discussed. For a long time, the process was almost unchanged

  20. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    Directory of Open Access Journals (Sweden)

    M. Isabel Burguete

    2011-09-01

    Full Text Available This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs, to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  1. Vaccinium meridionale Swartz Supercritical CO2 Extraction: Effect of Process Conditions and Scaling Up

    Science.gov (United States)

    López-Padilla, Alexis; Ruiz-Rodriguez, Alejandro; Restrepo Flórez, Claudia Estela; Rivero Barrios, Diana Marsela; Reglero, Guillermo; Fornari, Tiziana

    2016-01-01

    Vaccinium meridionale Swartz (Mortiño or Colombian blueberry) is one of the Vaccinium species abundantly found across the Colombian mountains, which are characterized by high contents of polyphenolic compounds (anthocyanins and flavonoids). The supercritical fluid extraction (SFE) of Vaccinium species has mainly focused on the study of V. myrtillus L. (blueberry). In this work, the SFE of Mortiño fruit from Colombia was studied in a small-scale extraction cell (273 cm3) and different extraction pressures (20 and 30 MPa) and temperatures (313 and 343 K) were investigated. Then, process scaling-up to a larger extraction cell (1350 cm3) was analyzed using well-known semi-empirical engineering approaches. The Broken and Intact Cell (BIC) model was adjusted to represent the kinetic behavior of the low-scale extraction and to simulate the large-scale conditions. Extraction yields obtained were in the range 0.1%–3.2%. Most of the Mortiño solutes are readily accessible and, thus, 92% of the extractable material was recovered in around 30 min. The constant CO2 residence time criterion produced excellent results regarding the small-scale kinetic curve according to the BIC model, and this conclusion was experimentally validated in large-scale kinetic experiments. PMID:28773640

  2. Vaccinium meridionale Swartz Supercritical CO2 Extraction: Effect of Process Conditions and Scaling Up

    Directory of Open Access Journals (Sweden)

    Alexis López-Padilla

    2016-06-01

    Full Text Available Vaccinium meridionale Swartz (Mortiño or Colombian blueberry is one of the Vaccinium species abundantly found across the Colombian mountains, which are characterized by high contents of polyphenolic compounds (anthocyanins and flavonoids. The supercritical fluid extraction (SFE of Vaccinium species has mainly focused on the study of V. myrtillus L. (blueberry. In this work, the SFE of Mortiño fruit from Colombia was studied in a small-scale extraction cell (273 cm3 and different extraction pressures (20 and 30 MPa and temperatures (313 and 343 K were investigated. Then, process scaling-up to a larger extraction cell (1350 cm3 was analyzed using well-known semi-empirical engineering approaches. The Broken and Intact Cell (BIC model was adjusted to represent the kinetic behavior of the low-scale extraction and to simulate the large-scale conditions. Extraction yields obtained were in the range 0.1%–3.2%. Most of the Mortiño solutes are readily accessible and, thus, 92% of the extractable material was recovered in around 30 min. The constant CO2 residence time criterion produced excellent results regarding the small-scale kinetic curve according to the BIC model, and this conclusion was experimentally validated in large-scale kinetic experiments.

  3. Determination of extraction conditions of Ginkgo biloba L. leaves by supercritical CO2 using response surface methodology

    Directory of Open Access Journals (Sweden)

    Milošević Svetlana G.

    2011-01-01

    Full Text Available The effects of process parameters on the extraction of Ginkgo biloba L. leaves with supercritical carbon dioxide were investigated. The investigated parameters include particle size (mean particle diameter 0.19, 0.467 and 1.009 mm, solvent flow rate (1.5810-3, 3.2210-3 and 4.1610-3 kg CO2/min and pressure (100-300 bar, which were obtained by the response surface methodology (RSM under the following condition ranges: temperature 40-50-60ºC, pressure 100-140-180 bar and extraction time of 2-3-4 h at the flow rate of 3.2210-3 kg/min. Based on the experimental results of kinetics of Ginkgo biloba leaves extraction with supercritical carbon dioxide, modeling of the extraction system of Ginkgo biloba-supercritical CO2 was done. Two mathematical models (Reverchon-Sesti Osseo and Sovová were applied to correlate the experimental data. RSM was applied to optimize the process parameters of supercritical carbon dioxide extraction of Ginkgo biloba L. leaves. A second-order polynomial response surface equation was developed indicating the effect of variables on Ginkgo biloba extraction yield. The statistical analysis of the experiment indicated that pressure (X1, extraction time (X3, the quadratic of temperature (X22, and the interaction between pressure and extraction time (X1X3, show significant effect on the extraction yield. The results showed that the data were adequately fitted into the second-order polynomial model. It was predicted that the optimum extraction process parameters within the experimental ranges would be the extraction temperature of 52.7ºC, the pressure of 184.4 bar, and the extraction time of 3.86 h. Under these conditions, the predicted extraction yield is 2.39% (g/100 g drug.

  4. Critical temperatures and pressures of reacting mixture in synthesis of dimethyl carbonate with methanol and carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Xing Cui Guo; Zhang Feng Qin; Guo Fu Wang; Jian Guo Wang

    2008-01-01

    Critical temperatures and pressures of nominal reacting mixture in synthesis of dimethyl carbonate (DMC)from methanol and carbon dioxide(quaternary mixture of carbon dioxide+methanol+water+DMC)were measured using a high-pressure view cell.The results suggested that the critical properties of the reacting mixture depended on the reaction extent as well as its initial composition(initial ratio of carbon dioxide to methanol).Such information is essential for determining the reaction conditions when one intends to carry out the synthesis of DMC with CO2 and methanol under supercritical conditions.

  5. Gas chromatographic quantitative analysis of methanol in wine: operative conditions, optimization and calibration model choice.

    Science.gov (United States)

    Caruso, Rosario; Gambino, Grazia Laura; Scordino, Monica; Sabatino, Leonardo; Traulo, Pasqualino; Gagliano, Giacomo

    2011-12-01

    The influence of the wine distillation process on methanol content has been determined by quantitative analysis using gas chromatographic flame ionization (GC-FID) detection. A comparative study between direct injection of diluted wine and injection of distilled wine was performed. The distillation process does not affect methanol quantification in wines in proportions higher than 10%. While quantification performed on distilled samples gives more reliable results, a screening method for wine injection after a 1:5 water dilution could be employed. The proposed technique was found to be a compromise between the time consuming distillation process and direct wine injection. In the studied calibration range, the stability of the volatile compounds in the reference solution is concentration-dependent. The stability is higher in the less concentrated reference solution. To shorten the operation time, a stronger temperature ramp and carrier flow rate was employed. With these conditions, helium consumption and column thermal stress were increased. However, detection limits, calibration limits, and analytical method performances are not affected substantially by changing from normal to forced GC conditions. Statistical data evaluation were made using both ordinary (OLS) and bivariate least squares (BLS) calibration models. Further confirmation was obtained that limit of detection (LOD) values, calculated according to the 3sigma approach, are lower than the respective Hubaux-Vos (H-V) calculation method. H-V LOD depends upon background noise, calibration parameters and the number of reference standard solutions employed in producing the calibration curve. These remarks are confirmed by both calibration models used.

  6. Silica aerogels as support for lipase catalyzed esterifications at sub- and supercritical conditions

    OpenAIRE

    2012-01-01

    The enzymes (lipases from Candida rugosa and porcine pancreas) were immobilized on silica aerogels by sol-gel procedure followed by supercritical drying with CO2. Such immobilized enzymes were used as biocatalysts for esterification in supercritical CO2 and near critical propane at 40 °C and 100 bar. It was found out that the initial reaction rates in propane rose two to three times in comparison with the same reaction, catalyzed by free lipase. SC CO2 deactivated the non-immobilized lipase i...

  7. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon.

    Science.gov (United States)

    Katherine, L S Vaughn; Edgar, C Clausen; Jerry, W King; Luke, R Howard; Julie, Carrier Danielle

    2008-11-01

    Lycopene, a carotenoid linked to protection against certain forms of cancer, is found in produce such as papaya, red-fleshed tomatoes, grapefruit and watermelon. The preparation of a supercritical CO2 (SC-CO2) watermelon-lycopene extract could serve as a food grade source of this carotenoid. This study established preliminary conditions for enhancing SC-CO2 extraction of lycopene from watermelon. Freeze-dried watermelon was extracted with SC-CO2 and ethanol as an organic co-solvent. The lycopene concentration was determined by HPLC, with absorbance measured at 503 nm. In an initial set of experiments, the effects of extraction temperature (70-90 degrees C), pressure (20.7-41.4 MPa) and co-solvent ethanol addition (10-15%) were evaluated. A lycopene yield of 38 microg per gram of wet weight was obtained at 70 degrees C, 20.7 MPa, and 15% by volume ethanol. The extraction of fresh (non-freeze-dried) watermelon yielded 103+/-6 microg lycopene per gram fresh fruit weight. Of the parameters tested, temperature had the most effect on lycopene yield. Thus, in another set of experiments, the temperature was varied from 60-75 degrees C at an extraction pressure of 20.7 MPa in the presence of 15% ethanol. Studies showed that freeze-dried watermelon flesh loses lycopene in storage. In accounting for lycopene storage losses, lycopene yields at 60 degrees C extraction temperature were 14% greater than those obtained at 70 degrees C.

  8. Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions.

    Science.gov (United States)

    He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang

    2016-11-01

    Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of Rs /tR2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency.

  9. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.; Oostrom, Mart; Wietsma, Thomas W.; Yu, Qingchun

    2016-06-01

    In modeling of geological carbon storage, dissolution of supercritical CO2 (scCO2) is often assumed to be instantaneous with equilibrium phase partitioning. In contrast, recent core-scale imbibition experiments have shown a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In this study, eight pore-scale scCO2 dissolution experiments in a 2D heterogeneous, sandstone-analogue micromodel were conducted at supercritical conditions (9 MPa and 40 °C). The micromodel was first saturated with deionized (DI) water and drained by injecting scCO2 to establish a stable scCO2 saturation. DI water was then injected at constant flow rates after scCO2 drainage was completed. High resolution time-lapse images of scCO2 and water distributions were obtained during imbibition and dissolution, aided by a scCO2-soluble fluorescent dye introduced with scCO2 during drainage. These images were used to estimate scCO2 saturations and scCO2 depletion rates. Experimental results show that (1) a time-independent, varying number of water-flow channels are created during imbibition and later dominant dissolution by the random nature of water flow at the micromodel inlet, and (2) a time-dependent number of water-flow channels are created by coupled imbibition and dissolution following completion of dominant imbibition. The number of water-flow paths, constant or transient in nature, greatly affects the overall depletion rate of scCO2 by dissolution. The average mass fraction of dissolved CO2 (dsCO2) in water effluent varies from 0.38% to 2.72% of CO2 solubility, indicating non-equilibrium scCO2 dissolution in the millimeter-scale pore network. In general, the transient depletion rate decreases as trapped, discontinuous scCO2 bubbles and clusters within water-flow paths dissolve, then remains low with dissolution of large bypassed scCO2 clusters at their interfaces with longitudinal water flow, and finally increases with coupled transverse water flow and

  10. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Demetrio L Valle

    Full Text Available Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC and the minimum bactericidal concentrations (MBC of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus (VRE, extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn. Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant

  11. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Science.gov (United States)

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  12. Determination of the column hold-up volume in supercritical fluid chromatography using nitrous-oxide.

    Science.gov (United States)

    Vajda, Péter; Guiochon, Georges

    2013-09-27

    This study introduces a new tracer that is useful for the determination of the hold-up time or volume of packed columns, particularly of those used in supercritical fluid chromatography. The thermodynamic void volume of three columns packed with different adsorbents were determined using the weight difference method. These void volumes were used as the reference point in the further discussion. The hold-up volumes of these columns were determined under dynamic conditions, using nitrous oxide dissolved in methanol as the hold-up time marker. Changes in the hold-up volumes of these columns were monitored during changes of the volumetric flow rate of pure supercritical carbon dioxide and of dilute mixtures of organic modifier and supercritical carbon dioxide. The results suggest significant methanol enrichment on the adsorbent surface.

  13. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Science.gov (United States)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep

    2017-02-01

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes - scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 μm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints - are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded

  14. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep

    2017-02-01

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 µm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase

  15. Stress Distribution of CF/EP Laminated Composites under Supercritical Conditions

    Directory of Open Access Journals (Sweden)

    Haihong Huang

    2015-01-01

    Full Text Available Enormous amounts of wastes have been produced due to extensive use of carbon fiber/epoxy resin (CF/EP composites. The fact that the supercritical fluid can be used to recycle these composites efficiently has attracted widespread concerns. A three-dimensional model of CF/EP laminates considering the interfacial layers was established. The internal stress distribution of laminates was simulated based on a heat transfer model; and the change of shear stress with supercritical temperature and pressure was investigated. The results show that the shear stress concentration was located in the interfacial layers; the maximum shear stress can be expressed by a curve of convex parabola to the temperature; and the most serious damage occurred in interfacial layers when temperature approached the glass-transition temperature of resin.

  16. [Optimization of supercritical fluid extraction of bioactive components in Ligusticum chuanxiong by orthogonal array design].

    Science.gov (United States)

    Hu, Li-Cui; Wu, Xun; Yang, Xue-Dong

    2013-10-01

    With the yields of ferulic acid, coniferylferulate, Z-ligustilide, senkyunolide A, butylidenephthalide, butylphthalide, senkyunolide I, senkyunolide H, riligustilide, levistolide A, and total pharmacologically active ingredient as evaluation indexes, the extraction of Ligusticum chuanxiong by supercritical fluid technology was investigated through an orthogonal experiment L9 (3(4)). Four factors, namely temperature, pressure, flow rate of carbon dioxide, co-solvent concentration of the supercritical fluid, were investigated and optimized. Under the optimized conditions, namely 65 degrees C of temperature, 35 MPa of pressure, 1 L x min(-1) of CO2 flow rate, 8% of co-solvent concetration, supercritical fluid extraction could achieve a better yield than the conventional reflux extraction using methanol. And the supercritical fluid extraction process was validated to be stable and reliable.

  17. Supercritical water

    CERN Document Server

    Marcus, Yizhak

    2012-01-01

    Discover the many new and emerging applications of supercritical water as a green solvent Drawing from thousands of original research articles, this book reviews and summarizes what is currently known about the properties and uses of supercritical water. In particular, it focuses on new and emerging applications of supercritical water as a green solvent, including the catalytic conversion of biomass into fuels and the oxidation of hazardous materials. Supercritical Water begins with an introduction that defines supercritical fluids in general. It then defines supercritical wa

  18. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    Science.gov (United States)

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  19. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    Science.gov (United States)

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  20. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Magnusdottir, Lilja [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature and pressure conditions in magmatic geothermal systems.

  1. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Waste hops are good sources offlavonoids. Extraction offlavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50℃, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops.

  2. A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries

    Science.gov (United States)

    Choi, Mugyeom; Koppala, Siva Kumar; Yoon, Dohyeon; Hwang, Jieun; Kim, Seung Min; Kim, Jaehoon

    2016-03-01

    A simple and effective approach for the tight anchoring of molybdenum disulfide (MoS2) to the surface of supercritical-alcohol-reduced graphene oxide (SRGO) is developed. The MoS2-SRGO composites are synthesized by the one-pot deposition of MoO2 on SRGO and simultaneous reduction of GO to SRGO in supercritical methanol followed by sulfurization. The obtained MoS2-SRGO composites contain a crystalline MoS2 phase comprising 11-14 layers of MoS2. In addition, the composites have mesoporous structures with high porosities, ranging between 55 and 57%. In comparison with bare MoS2 and SRGO, the MoS2-SRGO composites have enhanced electrochemical performances due to their mesoporous structures and the synergetic effect between MoS2 and SRGO sheets. When tested as the anode in a secondary lithium battery, it shows high reversible capacity of 896 mAh g-1 at 50 mA g-1 after 50 cycles, a high rate capacity of 320 mAh g-1 at a high charge-discharge rate of 2.5 A g-1, and long-term cycling of 724 mAh g-1 at 50 mA g-1 after 200 cycles. This unique synthetic approach effectively and tightly anchors MoS2 nanoparticles to the SRGO surface, resulting in improved structural integrity, electron transfer efficiency between the SRGO sheets and MoS2, and Li-ion diffusion kinetics.

  3. Visualization Experiments of a Specific Fuel Flow Through Quartz-glass Tubes Under both Sub-and Supercritical Conditions

    Institute of Scientific and Technical Information of China (English)

    DENG Hongwu; ZHANG Chunben; XU Guoqiang; TAO Zhi; ZHU Kun; WANG Yingjie

    2012-01-01

    The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera.The experiments are accomplished at temperatures of 300-730 K under pressures from 0.107-5 MPa.Six distinctive two-phase flow patterns are observed in upward flow and the critical point of RP-3 is identified as critical pressure pc=2.33 MPa and critical temperature Tc=645.04 K and it is found that when the fluid pressure exceeds 2.33 MPa the flow can be considered as a single phase flow.The critical opalescence phenomenon of RP-3 is observed when the temperature is between 643.16 K and 648.61 K and the pressure is between 2.308 MPa and 2.366 MPa.The region filled by the critical opalescence in the upward flow is clearly larger than that in the downward flow due to the interaction between the buoyancy force and fluid inertia.Morecover,obvious layered flow phenomenon is observed in horizontal flow under supercritical pressures due to the differences of gravity and density.

  4. Swelling kinetics and impregnation of PLA with thymol under supercritical CO2 conditions

    Directory of Open Access Journals (Sweden)

    Milovanović Stoja L.

    2016-01-01

    Full Text Available The present work was aimed to study swelling kinetics of polylactic acid (PLA and its impregnation with thymol in supercritical carbon dioxide (scCO2 medium. The influences of temperature and soaking time on the swelling kinetics and impregnation yield of PLA cylindrical disc and film were investigated. Swelling experiments were performed in a high pressure view cell at 10 MPa and temperatures of 40°C, 60°C and 75°C for 2 to 24 h. On the basis of swelling kinetics, pressure of 10 MPa and temperature of 40°C were chosen for supercritical solvent impregnation (SSI of the PLA samples during 2 to24 h. The highest swelling extent was observed for the PLA monolith after 24 h treatment with pure scCO2 (7.5% and scCO2 with thymol (118.3%. It was shown that sufficiently high amount of thymol can be loaded into both PLA monolith and film using SSI after only 2 h (10.0% and 6.6%, respectively. Monolith and film of PLA impregnated with thymol could be suitable for active food packaging and sterile medical disposables.

  5. Large-eddy simulation of nitrogen injection at trans- and supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Hagen; Pfitzner, Michael [Institute of Thermodynamics, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Niedermeier, Christoph A.; Matheis, Jan [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching b. München (Germany); Hickel, Stefan, E-mail: S.Hickel@tudelft.nl [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching b. München (Germany); Faculty of Aerospace Engineering, Technische Universiteit Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2016-01-15

    Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid’s thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.

  6. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  7. Pore-scale Evaluation of Immiscible Fluid Characteristics and Displacements: Comparison Between Ambient- and Supercritical-Condition Experimental Studies

    Science.gov (United States)

    Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.

    2015-12-01

    The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the

  8. Electrochemistry in supercritical fluids

    Science.gov (United States)

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  9. Electrochemistry in supercritical fluids.

    Science.gov (United States)

    Branch, Jack A; Bartlett, Philip N

    2015-12-28

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs.

  10. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects.

    Science.gov (United States)

    Hartadi, Yeusy; Widmann, Daniel; Behm, R Jürgen

    2015-02-01

    The potential of metal oxide supported Au catalysts for the formation of methanol from CO2 and H2 under conditions favorable for decentralized and local conversion, which could be concepts for chemical energy storage, was investigated. Significant differences in the catalytic activity and selectivity of Au/Al2 O3 , Au/TiO2 , AuZnO, and Au/ZrO2 catalysts for methanol formation under moderate reaction conditions at a pressure of 5 bar and temperatures between 220 and 240 °C demonstrate pronounced support effects. A high selectivity (>50 %) for methanol formation was obtained only for Au/ZnO. Furthermore, measurements on Au/ZnO samples with different Au particle sizes reveal distinct Au particle size effects: although the activity increases strongly with the decreasing particle size, the selectivity decreases. The consequences of these findings for the reaction mechanism and for the potential of Au/ZnO catalysts for chemical energy storage and a "green" methanol technology are discussed.

  11. The Effects of Foliar Application of Methanol on Morphological Characteristics of Bean (Phaseolus vulgaris L. under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    N. Armand

    2016-02-01

    Full Text Available Introduction Available water is an important factor for plant growth in arid environments. Results indicated that foliar application of methanol is believed to be more important than the drought tolerance in C3 plant. Since bean is a C3 plant, it performs light respiration under intense heat, light and water stress due to internal leaf CO2 concentration reduction and oxygen concentration increase. Light respiration can cause up to 20% loss of carbon in plants and decrease the yield. Increasing concentration of carbon dioxide can neutralize the effect caused by drought stress. Thus, the use of substances that can cause an increase in the concentration of carbon dioxide in the plant, leads to improving the yield under the drought conditions. One of the ways of increasing the concentration of carbon dioxide in plants is by using compounds such as methanol, ethanol, propanol, butanol as well as use of the amino acids of glycine, glutamate and aspartate. Plants can easily absorb methanol sprayed on leaves and use it as a carbon source added to atmospheric carbon. Methanol is relatively smaller compared to the CO2 molecules, so it can be easily absorbed and utilized by plants. Materials and Methods In order to evaluate the effects of foliar application of methanol on some morphological characteristics of bean under drought stress, a factorial experiment was conducted based on completely randomized block design with three replications in 2014 at the Khatam Alanbia University of Behbahan. The treatment of spraying methanol was at 4 levels include control (without spraying, 10, 20 and 30% v/v methanol which added 2 g l-1 glycine to each of solutions. Adding glycine to aqueous solution of methanol leads to prevention of damages caused by the toxicity of methanol. The drought factors including control (100% field of capacity, moderate drought stress (50% field of capacity and severe drought stress (25% field of capacity were considered. In this experiment

  12. Supercritical multicomponent solvent coal extraction

    Science.gov (United States)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  13. Supercritical fluid extraction of Beauvericin from maize.

    Science.gov (United States)

    Ambrosino, P; Galvano, F; Fogliano, V; Logrieco, A; Fresa, R; Ritieni, A

    2004-02-27

    Beauvericin (BEA), a supercritical fluid extraction with supercritical carbon dioxide from maize was investigated. Extraction efficiencies under several different extraction conditions were examined. Pressure, temperature, extraction time, organic modifier and water matrix content (10%) were investigated. The best extraction conditions were at a temperature of 60 degrees C, 3200psi, for 30min static extraction time and methanol as modifier solvent. Extraction recovery of 36% without modifier by adding water to the matrix in the extraction vessel (reproducibility relative standard deviations (R.S.D.)=3-5%) were recorded. Extraction recovery of 76.9% with methanol as co-solvent (reproducibility R.S.D.=3-5%) was obtained. Data shows that SFE gives a lower BEA recovery compared to conventional extraction protocol with organic solvents while SFE with modifier and conventional extraction yields are comparable. BEA extract contents were determined by high pressure liquid chromatography (HPLC) with a diode array detector (DAD) at 205nm and BEA peak confirmed by LC-MS. Acetonitrile-water as mobile phase and column C-18 were both tested. Instrumental and analytical parameters were optimized in the range linear interval from 1 to 500mgkg(-1) and reached a detection limit of 2ng.

  14. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  15. Engineering solutions related to the furnace arrangement of a boiler designed for operating at supercritical steam conditions

    Science.gov (United States)

    Shtegman, A. V.; Ryzhii, I. A.; Sosin, D. V.; Kotler, V. R.

    2014-04-01

    When developing a coal-fired power unit designed for operating at supercritical steam conditions (SSCs), it is necessary not only to achieve high economic performance and the high reliability of a new power unit, but also to tackle many problems related to the efficient combustion of the solid fuel without exceeding the future standards for limitations on emissions of harmful substances into the atmosphere. The technological methods of suppression of nitrogen oxides capable of providing the permissible NO x emissions are discussed. The results of calculations are given that demonstrate the feasibility of achieving the purpose in view by means of installation of new low-NO x burners and staged injection of the fuel even on combustion of the Ekibastuz black coal high in ash content.

  16. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Zydziak, Nicolas, E-mail: nicolas.zydziak@kit.edu [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany); Zanin, Maria-Helena Ambrosio [Laboratory of Chemical Processes and Particle Technology Bionanomanufacturing, Institute for Technological Research of the State of São Paulo – IPT, Av. Prof. Almeida Prado 532, Cidade Universitária, CEP 05508-901 São Paulo, SP (Brazil); Trick, Iris [Environmental Biotechnology and Bioprocess Engineering Department, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstrasse 12, 70569 Stuttgart (Germany); Hübner, Christof [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany)

    2015-03-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO{sub 2}) as photocatalyst. TiO{sub 2} was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO{sub 2} dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO{sub 2}. The synthesized TiO{sub 2} dispersions and commercially available TiO{sub 2} particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO{sub 2} in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO{sub 2} as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO{sub 2} incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO{sub 2} via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology.

  17. Influence of Reaction Conditions on Methanol Synthesis and WGS Reaction in the Syngas-to-DME Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to-DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.

  18. Degradation Characteristics of Wood Using Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2012-11-01

    Full Text Available In this work, the characteristics of wood degradation using supercritical alcohols have been studied. Supercritical ethanol and supercritical methanol were used as solvents. The kinetics of wood degradation were analyzed using the nonisothermal weight loss technique with heating rates of 3.1, 9.8, and 14.5 °C/min for ethanol and 5.2, 11.3, and 16.3 °C/min for methanol. Three different kinetic analysis methods were implemented to obtain the apparent activation energy and the overall reaction order for wood degradation using supercritical alcohols. These were used to compare with previous data for supercritical methanol. From this work, the activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol for the different kinetic analysis methods used in this work. The activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol. This paper also includes the analysis of the liquid products obtained from this work. The characteristic analysis of liquid products on increasing reaction temperature and time has been performed by GC-MS. The liquid products were categorized according to carbon numbers and aromatic/aliphatic components. It was found that higher conversion in supercritical ethanol occurs at a lower temperature than that of supercritical methanol. The product analysis shows that the majority of products fall in the 2 to 15 carbon number range.

  19. Speed of sound measurements and mixing characterization of underexpanded fuel jets with supercritical reservoir condition using laser-induced thermal acoustics

    Science.gov (United States)

    Baab, S.; Förster, F. J.; Lamanna, G.; Weigand, B.

    2016-11-01

    The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The technique's capability to quantify the nonisothermal, turbulent mixing zone of small-scale jets is demonstrated for the first time. Consistent radially resolved speed of sound profiles are presented for different axial positions and varying injection temperatures. Furthermore, an adiabatic mixing model based on nonideal thermodynamic properties is presented to extract mixture composition and temperature from the experimental speed of sound data. High fuel mass fractions of up to 94 % are found for the centerline at an axial distance of 55 diameters from the nozzle followed by a rapid decay in axial direction. This is attributed to a supercritical fuel state at the nozzle exit resulting in the injection of a high-density fluid. The obtained concentration data are complemented by existing measurements and collapsed in a similarity law. It allows for mixture prediction of underexpanded jets with supercritical reservoir condition provided that nonideal thermodynamic behavior is considered for the nozzle flow. Specifically, it is shown that the fuel concentration in the farfield zone is very sensitive to the thermodynamic state at the nozzle exit. Here, a transition from supercritical fluid to subcritical vapor state results in strongly varying fuel concentrations, which implies high impact on the mixture formation and, consequently, on the combustion characteristics.

  20. Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis.

    Science.gov (United States)

    Topal, Ummihan; Sasaki, Mitsuru; Goto, Motonobu; Hayakawa, Kiro

    2006-07-26

    Supercritical carbon dioxide (SCCO2) extraction of lycopene from waste tomato skins was investigated. The experiments were carried out at pressures and temperatures ranging from 20 to 50 MPa and 313 to 373 K, respectively, without any modifiers. The flow rate of CO2 was maintained at 2.5 mL/min for 330 min extraction time. Solvent flow rate effect was examined for CO2 flow rates from 1.5 to 4.5 mL/min. The extracts were analyzed by high-performance liquid chromatography and UV-visible spectroscopy. The results showed that with optimized operating conditions, the maximum yield of lycopene (1.18 mg of lycopene/g of sample) was obtained at 40 MPa, 373 K, and 2.5 mL of CO2/min. Chromatographic analysis indicated that lycopene was extracted from tomato skin with negligible degradation at the optimum conditions and the amount extracted represented more than 94% of the total carotenoid content of the sample. The solubility of lycopene was modeled by use of the Chrastil equation.

  1. Extraction of copper ions by supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Complexation combined with supercritical fluid extraction was used to extract Cu2+ in this study. The effects of pressure, temperature, volume of CO2 on the efficiency of extraction were systematically investigated. At the optimum condition a 57.32% recovery was achieved. Addition of suitable amount of methanol(v/v = 5 % ) to the supercritical CO2 can increase in the extraction of Cu2+ (72.69 %, RSD = 2.12 %, n = 3). And the recovery can further increase in the presence of non-ionic surfactant Triton X-100 because of its function of solubilization. Surfactant was first used in the extraction of metal ions in the present study, and the results are satisfied (90.52%, RSD=2.20%, n =3).

  2. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method.

    Science.gov (United States)

    Lee, Jong Ho; Kwon, Cheong Hoon; Kang, Jeong Won; Park, Chulhwan; Tae, Bumseok; Kim, Seung Wook

    2009-05-01

    In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 degrees C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.

  3. Extraction of Genistein from Sophora flavescens with Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang-Nam; Kang, Choon-Hyoung [Chonnam National University, Gwangju (Korea, Republic of)

    2015-08-15

    This study was directed to finding an optimum extraction condition of genistein from the S. flavescens with supercritical carbon dioxide as a solvent. In this effort, effects of the extraction conditions including pressure, temperature and a co-solvent on the extraction efficiency were investigated. The aqueous ethanol and methanol solutions were used as co-solvents while the tested operating pressure and temperature ranges were from 200 bar to 300 bar and from 308.15 K to 323.15 K, respectively. The concentration of genistein was determined by means of HPLC equipped with a UV detector. From the results, it was observed that an increase in pressure led to the higher extraction efficiency. Further, methanol showed better performance as a co-solvent than ethanol. The DPPH radical scavenging activities were measured to compare antioxidant activities of S. flavescens extracts.

  4. Rhodium-catalyzed ketone methylation using methanol under mild conditions: formation of α-branched products.

    Science.gov (United States)

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-13

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  5. Reactions of inorganic nitrogen species in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Dell`Orco, P.C. [Texas Univ., Austin, TX (United States)

    1994-12-31

    Redox reactions of nitrate salts with NH3 and methanol were studied in near-critical and supercritical water at 350 to 530 C and constant pressure of 302 bar. Sodium nitrate decomposition reactions were investigated at similar conditions. Reactions were conducted in isothermal tubular reactor under plug flow. For kinetic modeling, nitrate and nitrite reactants were lumped into an NO{sub x}{sup -} reactant; kinetic expressions were developed for MNO{sub 3}/NH{sub 4}X and sodium nitrate decomposition reactions. The proposed elementary reaction mechanism for MNO{sub 3}/NH{sub 4}X reaction indicated that NO{sub 2} was the primary oxidizing species and that N{sub 2}/N{sub 2}O selectivities could be determined by the form of MNO{sub 3} used. This suggest a nitrogen control strategy for use in SCWO (supercritical water oxidation) processes; nitrate or NH3 could be used to remove the other, at reaction conditions far less severe than required by other methods. Reactions of nitrate with methanol indicated that nitrate was a better oxidant than oxygen in supercritical water. Nitrogen reaction products included NH3 and nitrite, while inorganic carbon was the major carbon reaction product. Analysis of excess experiments indicated that the reaction at 475 C was first order in methanol concentration and second order in NO{sub x}{sup -} concentration. In order to determine phase regimes for these reactions, solubility of sodium nitrate was determined for some 1:1 nitrate electrolytes. Solubilities were measured at 450 to 525 C, from 248 to 302 bar. A semi-empirical solvation model was shown to adequately describe the experimental sodium nitrate solubilities. Solubilities of Li, Na, and K nitrates revealed with cations with smaller ionic radii had greater solubilities with nitrate.

  6. Herschel observations of EXtra-Ordinary Sources (HEXOS) : Methanol as a probe of physical conditions in Orion KL

    NARCIS (Netherlands)

    Wang, S.; Bergin, E. A.; Crockett, N. R.; Goldsmith, P. F.; Lis, D. C.; Pearson, J. C.; Schilke, P.; Bell, T. A.; Comito, C.; Blake, G. A.; Caux, E.; Ceccarelli, C.; Cernicharo, J.; Daniel, F.; Dubernet, M-L; Emprechtinger, M.; Encrenaz, P.; Gerin, M.; Giesen, T. F.; Goicoechea, J. R.; Gupta, H.; Herbst, E.; Joblin, C.; Johnstone, D.; Langer, W. D.; Latter, W. B.; Lord, S. D.; Maret, S.; Martin, P. G.; Melnick, G. J.; Menten, K. M.; Morris, P.; Mueller, H. S. P.; Murphy, J. A.; Neufeld, D. A.; Ossenkopf, V.; Perault, M.; Phillips, T. G.; Plume, R.; Qin, S-L; Schlemmer, S.; Stutzki, J.; Trappe, N.; van der Tak, F. F. S.; Vastel, C.; Yorke, H. W.; Yu, S.; Zmuidzinas, J.

    2011-01-01

    We have examined methanol emission from Orion KL with the Herschel/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated Delta J = 0, K = -4 -> -3, v(t) = 0 Q branch, and includes 25 E-type

  7. Herschel observations of Extra-Ordinary Sources: Methanol as a probe of physical conditions in Orion KL

    CERN Document Server

    Wang, S; Crockett, N R; Goldsmith, P F; Lis, D C; Pearson, J C; Schilke, P; Bell, T A; Comito, C; Blake, G A; Caux, E; Ceccarelli, C; Cernicharo, J; Daniel, F; Dubernet, M -L; Emprechtinger, M; Encrenaz, P; Gerin, M; Giesen, T F; Goicoechea, J R; Gupta, H; Herbst, E; Joblin, C; Johnstone, D; Langer, W D; Latter, W B; Lord, S D; Maret, S; Martin, P G; Melnick, G J; Menten, K M; Morris, P; Muller, H S P; Murphy, J A; Neufeld, D A; Ossenkopf, V; Perault, M; Phillips, T G; Plume, R; Qin, S -L; Schlemmer, S; Stutzki, J; Trappe, N; van der Tak, F F S; Vastel, C; Yorke, H W; Yu, S; Zmuidzinas, J

    2011-01-01

    We have examined methanol emission from Orion KL with of the {\\em Herschel}/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated $\\Delta$J$=$0, K$=-4\\rightarrow$-3, v$_t

  8. Drug delivery goes supercritical

    Directory of Open Access Journals (Sweden)

    Patrick J. Ginty

    2005-08-01

    Full Text Available In the field of drug delivery, the ability to control the size, morphology, and release of drug particles is fundamental to good targeting, but is often hampered by harsh processing conditions or inadequate methods; likewise for the processing of polymeric controlled-release systems. However, the use of supercritical fluids such as supercritical CO2 (scCO2 has provided a ‘clean’ and effective alternative to traditional methods of drug and polymer processing. In particular, scCO2 has a number of unique properties that make it possible to process both bioactive molecules and amorphous polymers without using toxic organic solvents or elevated temperatures. Here, we review the positive impact that supercritical fluids have had on the micronization, encapsulation, and impregnation of molecules of interest to both the pharmaceutical and biotechnology industries.

  9. Swirl-Stabilized Injector Flow and Combustion Dynamics for Liquid Propellants at Supercritical Conditions

    Science.gov (United States)

    2007-02-08

    NUMBER Vigor Yang 5e. TASK NUMBER Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...6 1.2.2 Preconditioning M atrix ................................................................... 11 1.2.3 System Eigenvalues... structure interaction .......................................... 72 4.2.2 Computational domain and boundary conditions ........................... 73

  10. Physical and chemical conditions in methanol maser selected hot-cores and UCHII regions

    CERN Document Server

    Purcell, C R; Burton, M G; Walsh, A J; Minier, V; Cunningham, M R; Balasubramanyam, R

    2008-01-01

    We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star forming clumps observed by Purcell et al. 2006. In addition to the previously reported measurements of HCO+ (1 - 0), H13CO+ (1 - 0), and CH3CN (5 - 4) & (6 -5), we used the Mopra antenna to detect emission lines of N2H+ (1 - 0), HCN (1 - 0) and HNC (1 - 0) towards 82/83 clumps (99 per cent), and CH3OH (2 - 1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and LTE masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between sub-samples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact HII region, and `isolated' masers (without associated radio emission), and between clumps exhibiting CH3CN emission and those without. In particular, thermal CH3OH is ...

  11. Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

    OpenAIRE

    Wen Yicun; Zhang Rui; Cang Yu; Zhang Jianchao; Liu Lixiao; Guo Xuhong; Fan Bin

    2015-01-01

    The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper. As far as we know, it is the first time to use potassium bicarbonate only as the catalyst in the production process which is simple and cheap. Satisfactory conversion rate of propylene oxide and yield of the products could be achieved at the optimized conditions with quite a small ...

  12. Significance of droplet-droplet interactions in droplet streams: Atmospheric to supercritical conditions

    Science.gov (United States)

    Connon, Corinne Shirley

    In an effort to optimize liquid fuel combustion a considerable amount of research has been directed towards the atomization of large liquid masses into small droplets to increase the surface area available for vaporization. The current work uses a single linear array of moving droplets of uniform size and spacing to investigate the behavior of interacting droplets. A series of experiments, over a range of ambient conditions, demonstrate how a lead droplet alters the environment experienced by its trailing neighbor. This behavior is of particular interest for droplet groups under high pressure and temperature, where experimental data has been limited. Gas phase velocity and vapor concentration measurements show that as the space between adjacent droplets decreases entrainment of fluid towards the axis of motion is reduced. Trapped gases create a gaseous cylinder, composed of ambient gas and fuel vapor, which surrounds and moves with the droplet stream. As ambient pressure increase, the oscillatory behavior of the lead droplet wake begins to interfere with its trailing neighbor. Loss of stream stability and enhanced droplet stripping in part result from these oscillating wakes. However, acceleration of droplet stripping is mainly produced by liquid and gas density similarity, which increases the centrifugal stress and the growth rate of capillary waves. Further, injection of subcritical droplets into an ambient environment at temperatures and pressures above the liquid droplet critical point shows behavior not greatly different from the results obtained at high ambient pressures. The similarity results from thermal heatup times exceeding the breakup times generated from the severe aerodynamics encountered at high ambient density and high liquid-gas relative velocities.

  13. 超临界条件下苯酚在活性炭和聚合物吸附剂上吸附等温线的测定%Estimation of the Isotherms of Phenol on Activated Carbons and Polymeric Adsorbents under Supercritical Condition

    Institute of Scientific and Technical Information of China (English)

    奚红霞; 谢兰英; 李祥斌; 李忠

    2003-01-01

    A method named as "volume-expanding and pressure-reducing adsorption" is proposed. It can be usedto measure the isotherms under supercritical condition. The adsorption isotherms of phenol on activated carbonsand polymeric adsorbents are estimated and compared respectively for the systems of "phenol-activated carbon-supercritical fluid CO2" and "phenol-polymeric adsorbent-supercritical fluid CO2". The results show that theamount of phenol adsorbed on the activated carbons and the polymeric adsorbents under the supercritical conditionis much less than that under the general condition, which can be utilized to develop a technology regenerating theactivated carbon with supercritical fluid. Moreover, the effects of ethyl alcohol, used as the third component, on theisotherms of phenol on the activated carbons and polymeric adsorbents under the supercritical condition are alsoinvestigated.

  14. Analysis of gamma irradiated pepper constituents, 3. The supercritical fluid extraction of pepper perfume

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kazuko; Okuyama, Tsuneo; Yamauchi, Yoshio; Saito, Muneo.

    1988-11-01

    The extraction of pepper perfume by use of supercritical fluid extraction (SFE) was investigated. Carbon dioxide was used as supercritical mobile phase. SFE was achieved by follow conditions, temperature was 40deg C, pressure was 200 kgf/cm/sup 2/, 5 % methanol was added to mobile phase and the extraction time was 60 minutes. The extracted fraction by this method was yellow oily substance and was pepper perfume rich fraction, while the residue of extraction had not only perfume but also any pungency. And it seems that most part of pepper perfume was extracted by Supercritical fluid extraction. The perfume fraction was analyzed by two way method, that is, supercritical fluid chromatography (SFC) and reversed phase HPLC. SFC conditions were same as SFE. HPLC conditions were described as the first report. By both methods, about 7 peaks were detected. According to their analysis of this fraction, the main component was identified as piperine. On the chromatogram of reversed phase HPLC of extract, most peaks were eluted later than piperine. And it is thought that most perfume components have high hydrophobicity more than piperine. The change of perfume of pepper was able to be discussed based on the extraction by SFE.

  15. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions

    Science.gov (United States)

    Ippen, Christian; Schneider, Benjamin; Pries, Christopher; Kröpke, Stefan; Greco, Tonino; Holländer, Andreas

    2015-02-01

    The synthesis of indium phosphide quantum dots (QDs) in toluene under supercritical conditions was carried out in a macroscopic continuous flow reaction system. The results of first experiments are reported in comparison with analogous reactions in octadecene. The reaction system is described and details are provided about special procedures that are enabled by the continuous flow system for the screening of reaction conditions. The produced QDs show very narrow emission peaks with full width at half maximum down to 45 nm and reasonable photoluminescence quantum yields. The subsequent purification process is facilitated by the ease of removal of toluene, and the productivity of the system is increased by high temperature and high pressure conditions.

  16. Computer simulation of argon adsorption on graphite surface from subcritical to supercritical conditions: the behavior of differential and integral molar enthalpies of adsorption.

    Science.gov (United States)

    Fan, Chunyan; Do, D D; Li, Zili; Nicholson, D

    2010-10-19

    We investigate in detail the computer simulation of argon adsorption on a graphite surface over a very wide range of temperature, from below the triple point to well above the critical point. Adsorption over such a wide temperature range has not been reported previously in the form of adsorption isotherms and enthalpy change during adsorption. The adsorption isotherms can be classified broadly into four categories: below the triple point, the isotherms show stepwise character (a strict layering mechanism) with 2D condensation; type II (according to the IUPAC classification) is followed by isotherms at temperatures above the triple point and below the critical point and a sharp spike is seen for isotherms in the neighborhood of the critical point; and finally the typical behavior of a maximum is observed for isotherms above the critical point. For the isosteric heat, the heat curve (plotted against loading) remains finite for subcritical conditions but is infinite (singularity) at the maximum in excess loading for supercritical adsorption. For the latter case, a better representation of the energy change is the use of the integral molecular enthalpy because this does not exhibit a singularity as in the case of isosteric heat. We compare the differential and integral molecular enthalpies for the subcritical and supercritical adsorptions.

  17. Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William G., E-mail: wcook@unb.ca [Department of Chemical Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, NB, E3B 5A3 (Canada); Olive, Robert P. [Department of Chemical Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, NB, E3B 5A3 (Canada)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Pourbaix diagrams for iron-water are extended to low-supercritical temperatures. Black-Right-Pointing-Pointer Thermodynamic properties for use in R-HKF model re-evaluated. Black-Right-Pointing-Pointer Above the critical point, magnetite solubility is between 10{sup -11} and 10{sup -10} mol/kg. - Abstract: The supercritical water-cooled reactor (SCWR) is a Generation IV reactor concept that will operate at temperatures and pressures above water's thermodynamic critical point. Pourbaix diagrams for the iron-water system at temperatures slightly below and above the critical point at 25 MPa have been constructed to aid the evaluation and development of potential construction materials. High temperature data extrapolation was performed using a revised Helgeson-Kirkham-Flowers model and fit to data on magnetite and hematite solubility in high-temperature water. A low-concentration diagram at 350 Degree-Sign C reveals the importance of water chemistry control to avoid transitioning to an active corrosion region.

  18. Effect of Particle Size Upon Pt/SiO2 Catalytic Cracking of n-Dodecane Under Supercritical Conditions: in situ SAXS and XANES Studies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi; Wiaderek, Kamila M.; Dumesic, James A; Winans, Randall E.

    2017-01-01

    The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability of the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.

  19. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  20. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  1. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice.

    Science.gov (United States)

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  2. Methanolic extract of Morinda citrifolia L. (noni unripe fruit attenuates ethanol-induced conditioned place preferences in mice

    Directory of Open Access Journals (Sweden)

    Yasmin Khan

    2016-09-01

    Full Text Available Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC, on compulsive ethanol-seeking behaviour using the mouse conditioned place preference (CPP test. CPP was established by injections of ethanol (2g/kg, i.p. in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM, on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3 and 5g/kg and ACAM (300 mg/kg 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction, during which the treatment groups received MMC (1, 3 and 5g/kg, p.o. or ACAM (300 mg/kg, p.o.. Finally, a priming injection of a low dose of ethanol (0.4g/kg, i.p. in the home cage (Reinstatement was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5g/kg, p.o and ACAM (300 mg/kg, p.o. significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  3. Real condition high throughput screening of Cu/ZnO/Al{sub 2}O{sub 3}. Catalysts for methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Baltes, C.; Vukojevic, S.; Schueth, F. [Max-Planck-Institut fuer Kohlenforschung, Muehlheim an der Ruhr (Germany)

    2006-07-01

    Ternary Cu/ZnO/Al{sub 2}O{sub 3} catalysts were systematically prepared via the co-precipitation route under strict control of parameters such as pH, precipitation temperature and calcination temperature. All catalysts were tested with respect to their methanol activity in a 49-fold multitubular high-throughput experimentation setup under conditions similar to the commercial methanol production route, using a syngas mixture of CO, CO{sub 2} and H{sub 2}. Statistically representative catalysts were chosen for more detailed structure and morphology analysis in order to study correlations between the catalyst ''preparation history'' and the methanol productivity. The highest catalyst performance was observed for catalysts obtained in the pH range from 6 to 8 at 70 C. XRD measurements allowed the ''grouping'' of catalysts based on their composition. It was found that a group of best-performance catalysts exhibited the characteristic XRD pattern of non-calcined Cu/Zn hydroxycarbonate residues, leading to the assumption that carbonate species in the final catalyst structure may enhance its productivity. Further investigations of these hydroxycarbonate containing catalysts gave more detailed insights into the dynamic aging process and its influence on the catalytic performance. Highest methanol activity was observed for catalysts aged between 20 and 60 minutes after an initial phase formation time. The optimum calcination temperature was found to be in the range from 250 to 300 C. Under these conditions the resulting Cu/Zn/Al hydroxycarbonates remained stable. Additionally, the syngas feed composition was varied under reaction conditions and correlated to catalytic activities. Highest methanol productivity over Cu/ZnO/Al{sub 2}O{sub 3} catalysts was observed for the following gas concentrations; H{sub 2}: 50-60 %, CO: 30-40 % and CO{sub 2}: 5-10 % at 4.5 MPa and 245 C. (orig.)

  4. Methanol emissions from maize: Ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux

    Science.gov (United States)

    Mozaffar, A.; Schoon, N.; Digrado, A.; Bachy, A.; Delaplace, P.; du Jardin, P.; Fauconnier, M.-L.; Aubinet, M.; Heinesch, B.; Amelynck, C.

    2017-03-01

    Because of its high abundance and long lifetime compared to other volatile organic compounds in the atmosphere, methanol (CH3OH) plays an important role in atmospheric chemistry. Even though agricultural crops are believed to be a large source of methanol, emission inventories from those crop ecosystems are still scarce and little information is available concerning the driving mechanisms for methanol production and emission at different developmental stages of the plants/leaves. This study focuses on methanol emissions from Zea mays L. (maize), which is vastly cultivated throughout the world. Flux measurements have been performed on young plants, almost fully grown leaves and fully grown leaves, enclosed in dynamic flow-through enclosures in a temperature and light-controlled environmental chamber. Strong differences in the response of methanol emissions to variations in PPFD (Photosynthetic Photon Flux Density) were noticed between the young plants, almost fully grown and fully grown leaves. Moreover, young maize plants showed strong emission peaks following light/dark transitions, for which guttation can be put forward as a hypothetical pathway. Young plants' average daily methanol fluxes exceeded by a factor of 17 those of almost fully grown and fully grown leaves when expressed per leaf area. Absolute flux values were found to be smaller than those reported in the literature, but in fair agreement with recent ecosystem scale flux measurements above a maize field of the same variety as used in this study. The flux measurements in the current study were used to evaluate the dynamic biogenic volatile organic compound (BVOC) emission model of Niinemets and Reichstein. The modelled and measured fluxes from almost fully grown leaves were found to agree best when a temperature and light dependent methanol production function was applied. However, this production function turned out not to be suitable for modelling the observed emissions from the young plants

  5. Combined supercritical fluid extraction/solid-phase extraction with octadecylsilane cartridges as a sample preparation technique for the ultratrace analysis of a drug metabolite in plasma.

    Science.gov (United States)

    Liu, H; Cooper, L M; Raynie, D E; Pinkston, J D; Wehmeyer, K R

    1992-04-01

    Supercritical fluid extraction was coupled with solid-phase extraction using octadecylsilane cartridges for the selective isolation of ultratrace levels of a drug metabolite, mebeverine alcohol, from plasma. Plasma was directly applied to the extraction cartridge, the cartridge was washed to remove protein and then extracted under supercritical conditions using CO2/5% methanol. The effluent from the extraction cell was bubbled through a small volume of 2-propanol to trap the extracted mebeverine alcohol. The effects of extraction pressure and temperature on analyte recovery were examined. The absolute recovery, selectivity, precision, and accuracy of the combined supercritical fluid extraction/solid-phase extraction approach were compared to those of conventional solid-phase extraction using gas chromatography/mass spectrometry in the selected-ion monitoring mode. Mebeverine alcohol was used as a model compound, and dog plasma was employed as the biological matrix for these studies.

  6. Extraction of essential oil from Pimpinella anisum using supercritical carbon dioxide and comparison with hydrodistillation.

    Science.gov (United States)

    Yamini, Yadollah; Bahramifar, Nader; Sefidkon, Fatemeh; Saharkhiz, Mohamad Jamal; Salamifar, Ehsan

    2008-02-15

    Supercritical fluid extraction (SFE) of essential oil from Pimpinella anisum, using carbon dioxide as a solvent is presented in this work. An orthogonal array design OA9 (3(4)) was applied to select the optimum extraction condition. The effects of pressure, temperature, dynamic extraction time and methanol volume on the extraction efficiency were investigated by the three-level orthogonal array design. Results show that pressure has a significant effect on the extraction efficiency. The extract obtained from P. anisum by using supercritical fluid extraction was compared with the essential oil obtained by hydrodistillation, considering both quantity and quality of the product. SFE products were found to be of markedly different composition, compared with the corresponding hydrodistilated oil. The total amount of extractable substances obtained in SFE (7.5%) is higher than that obtained by hydrodistillation (3.1%) and SFE is faster than hydrodistillation method.

  7. Methanol extract ofDesmodium gangeticumDC root mimetic post-conditioning effect in isolated perfused rat heart by stimulating muscarinic receptors

    Institute of Scientific and Technical Information of China (English)

    Gino A Kurian; Jose Paddikkala

    2012-01-01

    Objective:To evaluate pharmacological mimetic action of herbal extractDesmodium gangeticum (DG) roots on ischemia reperfusion injury.Methods:With the help of Langendroff perfusion technique, ischemic post condition (POC) mimetic action of DG methanol root extract was evaluated and compared by using standard drugs that acts as muscarinic receptor agonist and antagonist, namely acetylcholine (Ach) and atropine (Atr) respectively in an isolated rat heart. Results:The physiological parameters like left ventricular developed pressure, end diastolic pressure and working index of isolated rat heart showed significant recovery in DG root extract administrated rat heart, similar to the recovery by POC. Kymogram results showed muscarinic receptor agonist like action for DG methanol root extract, confirmed in rat heart by muscarnic receptor agonist (acetylcholine) and anatoginst (atropine). Administration of DG root extract prior to reperfusion showed better antioxidant status in myocardial tissue homogenate and mitochondrial, complemented by the levels of cardiac specific marker proteins in myocardial tissue and perfusate. Even though DG methanol root extract mimics its action similar to that of Ach, the myocardial protection mediated by the extract was superior to Ach, due to the presence of antioxidants in the crude extract.Conclusions: DG methanol root extract provides myocardial protection towards IRI by stimulating muscarinic receptors.

  8. Supercritical carbon dioxide extraction of Mentha pulegium L. essential oil.

    Science.gov (United States)

    Aghel, Nasrin; Yamini, Yadollah; Hadjiakhoondi, Abbas; Pourmortazavi, Seied Mahdi

    2004-02-06

    The dependence of Mentha pulegium L. (pennyroyal) essential oil composition, obtained by supercritical carbon dioxide (SC-CO(2)), with the following parameters: pressure, temperature, extraction time (dynamic), and modifier (methanol) was studied. The results were also compared with those obtained by conventional hydrodistillation method in laboratory conditions. Regarding the percentages of menthone (30.3%) and pulegone (52.0%), the optimum SFE results were obtained at the following experimental conditions: pressure=100atm, T=35 degrees C, dynamic time=10min, and V(modifier)=0mul. The results of hydrodistillation showed that the major components of M. pulegium L. were pulegone (37.8%), menthone (20.3%), and piperitenone (6.8%). The evaluation of the composition of each extract was performed by gas chromatography-mass spectrometry.

  9. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    Science.gov (United States)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  10. Development of Crystalline Peroxisomes in Methanol-Grown Cells of the Yeast Hansenula polymorpha and Its Relation to Environmental Conditions

    NARCIS (Netherlands)

    Veenhuis, M.; Dijken, J.P. van; Pilon, S.A.F.; Harder, W.

    1978-01-01

    The development of peroxisomes has been studied in cells of the yeast Hansenula polymorpha during growth on methanol in batch and chemostat cultures. During bud formation, new peroxisomes were generated by the separation of small peroxisomes from mature organelles in the mother cells. The number of

  11. Development of Crystalline Peroxisomes in Methanol-Grown Cells of the Yeast Hansenula polymorpha and Its Relation to Environmental Conditions

    NARCIS (Netherlands)

    Veenhuis, M.; Dijken, J.P. van; Pilon, S.A.F.; Harder, W.

    1978-01-01

    The development of peroxisomes has been studied in cells of the yeast Hansenula polymorpha during growth on methanol in batch and chemostat cultures. During bud formation, new peroxisomes were generated by the separation of small peroxisomes from mature organelles in the mother cells. The number of

  12. Dynamic transition in supercritical iron.

    Science.gov (United States)

    Fomin, Yu D; Ryzhov, V N; Tsiok, E N; Brazhkin, V V; Trachenko, K

    2014-11-26

    Recent advance in understanding the supercritical state posits the existence of a new line above the critical point separating two physically distinct states of matter: rigid liquid and non-rigid gas-like fluid. The location of this line, the Frenkel line, remains unknown for important real systems. Here, we map the Frenkel line on the phase diagram of supercritical iron using molecular dynamics simulations. On the basis of our data, we propose a general recipe to locate the Frenkel line for any system, the recipe that importantly does not involve system-specific detailed calculations and relies on the knowledge of the melting line only. We further discuss the relationship between the Frenkel line and the metal-insulator transition in supercritical liquid metals. Our results enable predicting the state of supercritical iron in several conditions of interest. In particular, we predict that liquid iron in the Jupiter core is in the "rigid liquid" state and is highly conducting. We finally analyse the evolution of iron conductivity in the core of smaller planets such as Earth and Venus as well as exoplanets: as planets cool off, the supercritical core undergoes the transition to the rigid-liquid conducting state at the Frenkel line.

  13. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    Science.gov (United States)

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples.

  14. Supercritical CO2 extraction of essential oils from Chamaecyparis obtusa.

    Science.gov (United States)

    Jin, Yinzhe; Han, Dandan; Tian, Minglei; Row, Kyung-Ho

    2010-03-01

    Supercritical carbon dioxide (SC-CO2) extraction and hydrodistillation (HD) were used to determine the essential oil composition of the trunks and leaves of Chamaecyparis obtusa. The optimal extraction conditions for the oil yield within the experimental range of variables examined were temperature 50 degrees C, pressure 12 MPa, carbon dioxide flow rate 40 mL/min and extraction time 90 min. The maximum measured extraction yield was 2.9%. Entrainer solvents, such as methanol in water, had no additional effect on the extraction of essential oils. The chemical composition of the essential oils was analyzed by GC-MS. The major components were alpha-terpinyl acetate (>10.9%), 1-muurolol (>13.2%) and elemol (>8.1%). Sesquiterpenoids formed the major class of compounds present.

  15. Survey of Antibacterial Effect of Methanolic Extract of Fulgensia fulgens through in Vitro and in Vivo Conditions

    Directory of Open Access Journals (Sweden)

    tahereh valdbeigi

    2016-06-01

    Full Text Available Introduction: Daily increasing of bacteria resistance (specially Staphylococcus aureus to various antibiotics in particular penicillin and methicillin has always led the scientists to look for new medicines. Materials and methods: 600 g of Fulgensia fulgens was collected from KaneGonbad mountains in Ilam province, the methanol extract was prepared by soxhle. In vitro antimicrobial activity of the extract against two gram-positive bacteria (S. aureus and Entrococcus faecalis and two gram-negative bacteria (Pseudomonas aeruginosa and Escherchia coli was tested by the use of disc diffusion method and microdilution (with determination of MIC and MBC. Wound was made on the dorsal surface of therat and wound infections caused by S.aureus for determination of in vivo antibacterial effect. Than rats were randomly divided into three groups; control, treated with tetracycline ointment and treated with 10% ointment of F. fulgens extract. Finally, wound areas wear measured on days 3, 5, 7, 9 and 11. Results: Average inhibitory zone diameter of methanolic F. fulgens extract against S. aureus ranged between 11.21 mm to 33.01 mm. According to the wound area on 11th day, it could be concluded that there was a statistically significant difference between the control group (0.63 cm2 and two treatment groups (0 (p<0.05. There was no significant difference between a group treated with tetracycline ointment and a group treated with 10% ointment of extract. Discussion and conclusion: According to the results, the methanol extract of F. fulgens in the treatment of infections as S. aureus can be replaced by chemical antibiotics.

  16. ICDP supported coring in IDDP-2 at Reykjanes - the DEEPEGS demonstrator in Iceland - Supercritical conditions reached below 4.6 km depth.

    Science.gov (United States)

    Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-04-01

    The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6

  17. Electrochemistry in Near-Critical and Supercritical Fluids. 8. Methyl Viologen, Decamethylferrocene, Os(bpy)3(2+) and Ferrocene in Acetonitrile and the Effect of Pressure on Diffusion Coefficients under Supercritical Conditions

    Science.gov (United States)

    1989-07-20

    Electroanalytical Chemistry The Univeristy of Texas at Austin _rCTEDepartment of Chemistry OT1 isAustin, Texas 78712 0 C T July 20, 1989 Reproduction in whole or...correlated to values calculated by the Stokes- Einstein relation.(’ : (end of abstract) -I--- IM~t I I Submitted to the Journal of Electroanalytical ... Chemistry June 1989 2 INTRODUCTION We report here further studies of electrode reactions in near-critical and supercritical acetonitrile (MeCN). We

  18. Assessment of the endogenous respiration rate and the observed biomass yield for methanol-fed denitrifying bacteria under anoxic and aerobic conditions.

    Science.gov (United States)

    Alikhani, Jamal; Al-Omari, Ahmed; De Clippeleir, Haydee; Murthy, Sudhir; Takacs, Imre; Massoudieh, Arash

    2017-01-01

    In this study, the endogenous respiration rate and the observed biomass yield of denitrifying methylotrophic biomass were estimated through measuring changes in denitrification rates (DNR) as a result of maintaining the biomass under methanol deprived conditions. For this purpose, activated sludge biomass from a full-scale wastewater treatment plant was kept in 10-L batch reactors for 8 days under fully aerobic and anoxic conditions at 20 °C without methanol addition. To investigate temperature effects, another biomass sample was placed under starvation conditions over a period of 10 days under aerobic conditions at 25 °C. A series of secondary batch tests were conducted to measure DNR and observed biomass yields. The decline in DNR over the starvation period was used as a surrogate to biomass decay rate in order to infer the endogenous respiration rates of the methylotrophs. The regression analysis on the declining DNR data shows 95% confidence intervals of 0.130 ± 0.017 day(-1) for endogenous respiration rate under aerobic conditions at 20 °C, 0.102 ± 0.013 day(-1) under anoxic conditions at 20 °C, and 0.214 ± 0.044 day(-1) under aerobic conditions at 25 °C. Results indicated that the endogenous respiration rate of methylotrophs is 20% slower under anoxic conditions than under aerobic conditions, and there is a significant temperature dependency, with an Arrhenius coefficient of 1.10. The observed biomass yield value showed an increasing trend from approximately 0.2 to 0.6 when the starvation time increased from 0 to 10 days.

  19. Using supercritical fluids to refine hydrocarbons

    Science.gov (United States)

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  20. Evaluation of scale-up from analytical to preparative supercritical fluid chromatography.

    Science.gov (United States)

    Enmark, Martin; Åsberg, Dennis; Leek, Hanna; Öhlén, Kristina; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2015-12-18

    An approach for reliable transfer from analytical to preparative scale supercritical fluid chromatography was evaluated. Here, we accounted for the conditions inside the columns as well as to the fact that most analytical instruments are volume-controlled while most preparative scale units are mass-controlled. The latter is a particular problem when performing pilot scale experiments and optimizations prior to scaling up to production scale. This was solved by measuring the mass flow, the pressure and the temperature on the analytical unit using external sensors. Thereafter, it was revealed with a design of experiments approach that the methanol fraction and the pressure are the two most important parameters to control for preserved retention throughout the scale-up; for preserved selectivity the temperature was most important in this particular system. Using this approach, the resulting chromatograms from the preparative unit agreed well with those from the analytical unit while keeping the same column length and particles size. A brief investigation on how the solute elution volume varies with the volumetric flow rate revealed a complex dependency on pressure, density and apparent methanol content. Since the methanol content is a parameter of great importance to control during the scale up, we must be careful when changing operational and column design conditions which generates deviations in pressure, density and methanol content between different columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Stability of wheat germ oil obtained by supercritical carbon dioxide ...

    African Journals Online (AJOL)

    심정은

    with 1,3-regiospecific lipase at different temperatures (40 to 70°C) to produce diglycerides and ... Key words: Supercritical carbon dioxide, wheat germ oil, ethanolysis, .... Methanol (1 mL), replacing the extract, was used as the blank. The.

  2. Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

    National Research Council Canada - National Science Library

    Yicun Wen; Rui Zhang; Yu Cang; Jianchao Zhang; Lixiao Liu; Xuhong Guo; Bin Fan

    2015-01-01

    The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper...

  3. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-01-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 seconds. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  4. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-05-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 s. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  5. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.

    Science.gov (United States)

    Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-11-16

    We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH4OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH4OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.

  6. 从超临界二氧化碳和甲醇直接合成碳酸二甲酯%DIRECT SYNTHESIS OF DIMETHYL CARBONATE FROM SUPERCRITICAL CARBON DIOXIDE AND METHANOL

    Institute of Scientific and Technical Information of China (English)

    赵天生; 韩怡卓; 孙予罕; 杨彩虹; 李文彬

    1999-01-01

    @@ Dimethyl carbonate (DMC), an environmentally benign intermediate for organic synthesis, has been mainly synthesized through non-phosgene route of oxidative carbonylation[1]. Direct synthesis of DMC from carbon dioxide and methanol is of more significance due to atom economy. Organometallic compounds of formulae R2M(OR)2, M(OR)2 or M(OR)4[2,3] were employed as catalysts in direct synthesis of DMC, where an activation mechanism of CO2 insertion into metal-oxygen bond was supposed. Unfortunately, the yield of DMC was low even in the presence of chemical dehydrants because mainly of thermodynamic limit.

  7. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  8. Bio-oil production from biomass via supercritical fluid extraction

    Science.gov (United States)

    Durak, Halil

    2016-04-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  9. Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Wen Yicun

    2015-03-01

    Full Text Available The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper. As far as we know, it is the first time to use potassium bicarbonate only as the catalyst in the production process which is simple and cheap. Satisfactory conversion rate of propylene oxide and yield of the products could be achieved at the optimized conditions with quite a small amount of by-products. Our new method offers an attractive choice for the production of dimethyl carbonate in large-scale industry efficiently and environmental friendly.

  10. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  11. The effect of the operation conditions and the extraction techniques on the yield, kinetics and composition of methanol extracts of Hieracium pilosella L.

    Directory of Open Access Journals (Sweden)

    Stanojević Ljiljana P.

    2009-01-01

    Full Text Available The optimal operational extraction conditions were determined by investigating the influence of the methanol concentration, solvomodule and temperature of the maceration extraction on the yield and kinetics of total extractive matter, chlorogenic acid, umbelliferone and apigenin-7-O-glucoside from Hieracium pilosella L. Based on the results of Soxhlet and Tillepape extraction kinetics investigations of the total extractive matter and the components under the optimal maceration operation conditions it was found that the highest yields of the extractive matter and investigated bioactive components extracted from the dry plant material were obtained by using the Soxhlet extraction method. The contents of chlorogenic acid, umbelliferone and apigenin-7-O-glucoside in the extracts were determined by HPLC method. Chlorogenic acid is the component with the highest share in all the extracts.

  12. Development of direct methanol fuel cells for the applications in mining and tunnelling. Automation and power conditioning of a fuel cell-battery hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Kulakarni, Sreekantha Rao

    2012-07-01

    appropriate option for applications in underground mining and tunneling. The specific advantages of DMFCs are simple structure, higher energy density of the fuel (i.e. methanol), low operating temperature, lower weight, clean and quiet operation. Methanol is in liquid form so it is easy to transport and store. Moreover, methanol is a renewable fuel that can be produced from biomass. This doctoral research work focused on the construction of a DMFC stack of 30 W electrical power and the testing of the fuel cell stack in underground mining for the applications discussed above. Not only the stack itself, but also the automated system for the fuel cell and battery hybrid system was developed. For automation of the system, a micro-controller monitoring system was developed, which uses sensors for voltage, current, temperature, methanol concentration and liquid level. Development and testing of the methanol concentration sensor was considered as the heart of the research work. Last but not least, the power conditioning of the fuel cell stack as well as the battery charging techniques developed were also part of the research work.

  13. Electro-oxidation of methanol in alkaline conditions using Pd-Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Science.gov (United States)

    Manzo-Robledo, A.; Costa, Natália J. S.; Philippot, K.; Rossi, Liane M.; Ramírez-Meneses, E.; Guerrero-Ortega, L. P. A.; Ezquerra-Quiroga, S.

    2015-12-01

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i- E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i- E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions' interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  14. Analysis of antioxidants extracted from polypropylene by supercritical fluid extraction.

    Science.gov (United States)

    Garde, J A; Catalá, R; Gavara, R

    1998-01-01

    Maximal potential migration of six antioxidants (AO) from five polypropylene (PP) formulations was determined by two supercritical fluid extraction (SFE) procedures, both of which contained static and dynamic steps. All analytical conditions affecting the extraction were studied and optimized using Irgafos 168 as standard. SFE was more efficient as temperature and fluid density increased. During the static step in which the samples were exposed to the fluid without flux, the introduction of hexane and methanol as fluid modifiers significantly improved the extraction. Hexane appears to facilitate polymer swelling while methanol solvates the antioxidants. In the dynamic step (in which the extraction actually occurs) time is the key parameter. Extraction for 90 min results in an efficiency of around 75%. The introduction of modifiers during this step (by an HPLC-SFE procedure) did not produce any significant improvement. When SFE was carried out on all samples, extraction efficiency was around 75% except for Irganox 1010 and Hostanox O3. The large molecular volume of these antioxidants may be responsible for the considerable reduction of extraction efficiency. Particle size and shape of polymer sample were also important. The greater the surface to volume ratio the greater the extraction efficiency.

  15. Supercritical fluid extraction

    Science.gov (United States)

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  16. Supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Penninger, J.M.L.; McHugh, M.A.; Radosz, M.; Krukonis, V.J.

    1985-01-01

    This book presents the state-of-the-art in the science and technology of supercritical fluid (scf) processing. Current research as described in the book, focuses on developments in equations of state for binary and multicomponent mixtures (including polymer solutions), solubility measurements at near-critical conditions, measurements of critical properties of binary mixtures and their correlation with equations of state. Progress in thermodynamics, coupled with advances in the design and construction of high pressure equipment, has opened up a wide avenue of commercial application (e.g. decaffeination of coffee beans, extractions of flavours and spices, purification of pharmaceutical products, separations of polymeric materials, deodorization and deacidification of vegetable oils, fractionation of fatty acids, coal liquefaction, wood delignitication, etc.)

  17. Role of Cations in CO 2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO 2 Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey M.; Schaef, H. Todd; Loring, John S.; Hoyt, David W.; Burton, Sarah D.; Walter, Eric D.; Kirkpatrick, R. James

    2017-01-12

    This paper explores the molecular-scale interactions between CO2 and the representative smectite mineral hectorite under supercritical conditions (90 bar, 50°C) using novel in situ X-ray diffraction (XRD), infrared (IR) spectroscopy, and magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. Particular emphasis is placed on understanding the roles of the smectite charge balancing cation (CBC) and H O in these interactions. The data show that supercritical CO2 (scCO2) can be adsorbed on external surfaces and in the confined interlayer spaces of hectorite at 50°C and 90 bar, with the uptake of CO2 into the interlayer favored at low H2O content and when the basal spacing is similar to a monolayer hydrate of hectorite (1WL, ~12.5 Å). These results are in agreement with published spectroscopic and molecular modeling data for the related smectite Na-montmorillonite.Charge balancing cations with small radii, large hydration energies, and low polarizabilities tend to scavenge H2O from humid scCO2 or retain the H2O they held before scCO2 exposure, swelling spontaneously to a bilayer hydrate (2WL) dominated state that largely prevents CO2-ion interactions and influences the extent of CO2 intercalation into the interlayer. In contrast, ions with large radii, low hydration energies, and large polarizabilities more readily form close associations with CO2 with the energetics enabling coexistence of CO2 and H2O in the interlayer over a wide range of scCO2 humidities. Integrating our results with those from molecular dynamics simulations of wet CO2-bearing montmorillonites suggest that adsorbed CO2 in 1WL-type interlayers is oriented with its long axis parallel to the clay sheets and experiences dynamics dominated by anisotropic rotation about the axis perpendicular to the CO2

  18. Topics in Chemical Instrumentation--An Introduction to Supercritical Fluid Chromatography: Part 1: Principles and Instrumentation.

    Science.gov (United States)

    Palmieri, Margo D.

    1988-01-01

    Identifies the properties and characteristics of supercritical fluids. Discusses the methodology for supercritical fluid chromatography including flow rate, plate height, column efficiency, viscosity, and other factors. Reviews instruments, column types, and elution conditions. Lists supercritical fluid data for 22 compounds, mostly organic. (MVL)

  19. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D

    2002-11-01

    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  20. Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Rathore; Giridhar Madras [Indian Institute of Science, Bangalore (India). Department of Chemical Engineering

    2007-12-15

    Biodiesel is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. The synthesis of biodiesel from edible oils like palm oil and groundnut oil and from crude non-edible oils like Pongamia pinnata and Jatropha curcas was investigated in supercritical methanol and ethanol without using any catalyst from 200 to 400{sup o}C at 200 bar. The variables affecting the conversion during transesterification, such as molar ratio of alcohol to oil, temperature and time were investigated in supercritical methanol and ethanol. Biodiesel was also synthesized enzymatically with Novozym-435 lipase in presence of supercritical carbon dioxide. The effect of reaction variables such as temperature, molar ratio, enzyme loading and kinetics of the reaction was investigated for enzymatic synthesis in supercritical carbon dioxide. Very high conversions (>80%) were obtained within 10 min and nearly complete conversions were obtained at within 40 min for the synthesis of biodiesel in supercritical alcohols. However, conversions of only 60-70% were obtained in the enzymatic synthesis even after 8 h. 48 refs., 8 figs., 1 tab.

  1. Supercritical Water Mixture (SCWM) Experiment

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  2. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  3. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  4. Effects of supercritical environment on hydrocarbon-fuel injection

    Science.gov (United States)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  5. Method for making methanol

    Science.gov (United States)

    Mednick, R. Lawrence; Blum, David B.

    1986-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  6. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant

    National Research Council Canada - National Science Library

    Pollardo, Aldricho Alpha; Lee, Hong-shik; Lee, Dohoon; Kim, Sangyong; Kim, Jaehoon

    2017-01-01

    .... However, enzymatic reaction still has some drawbacks such as lower reaction rates than base-catalyzed transesterification and the limitation of reactant concentration due to the enzyme inhibition of methanol. Supercritical CO.sub...

  7. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  8. Review on Corrosion Behaviors of Steels under Supercritical CO2 Condition%超临界CO2条件下钢的腐蚀行为研究进展

    Institute of Scientific and Technical Information of China (English)

    张玉成; 屈少鹏; 庞晓露; 高克玮

    2011-01-01

    低压CO2腐蚀规律已经被人们广泛认识,而超临界CO2腐蚀方面的研究却非常有限。国内外的研究主要集中在钢在超临界CO2环境中的腐蚀速率、腐蚀产物膜的结构、形貌、组成及电化学行为等。然而,现有的研究均未涉及到超临界CO2腐蚀机理问题。本文综述了目前国内外超临界CO2条件下钢的腐蚀行为的研究成果,指出了现有研究中的不足,并对超临界CO2腐蚀的研究前景进行了展望,期望能对科研工作者全面了解超临界CO2腐蚀提供参考和借鉴,并能够为油气工业中管道的选材提供理论指导。%The CO2 corrosion under low partial pressure has been recognized widely, but the researches on supercritical carbon dioxide (SC CO2) corrosion were very limited. By far, investigations on steel corrosion under SC CO2 conditions were mainly about the corrosion rate, structure, morphology and composition of corrosion scales, and the electrochemical behaviors. However, present studies were not related to the corrosion mechanism in SC CO2. This paper reviews the research results on corrosion behaviors of steel under supercritical COe conditions, points out the shortcomings in the present investigations and finally looks forward to the research prospects on supercritical CO2 corrosion. It is expected that this paper can not only provide reference for the workers in the field of supercritical CO2 corrosion, but also be served as a theoretical guidance for materials selection in oil and gas industry.

  9. Supercritical Airfoil Coordinates

    Data.gov (United States)

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  10. Characteristics of compressible flow of supercritical kerosene

    Institute of Scientific and Technical Information of China (English)

    Feng-Quan Zhong; Xue-Jun Fan; Jing Wang; Gong Yu; Jian-Guo Li

    2012-01-01

    In this paper,compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally.The thermophysical properties of supercritical kerosene are calculated using a 10-species surrogate based on the principle of extended corresponding states (ECS).Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically.It has been found that the isentropic relationships of supercritical kerosene are significantly different from those of ideal gases.A two-stage fuel heating and delivery system is used to heat the kerosene up to a temperature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s.The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally.The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.

  11. Extraction of lignite coal fly ash for polynuclear aromatic hydrocarbons: modified and unmodified supercritical fluid extraction, enhanced-fluidity solvents, and accelerated solvent extraction.

    Science.gov (United States)

    Kenny, D V; Olesik, S V

    1998-02-01

    A comparison among modified and unmodified supercritical fluid extraction (SFE), enhanced-fluidity liquid extraction, and accelerated solvent extraction (ASE) techniques was made for the extraction of polynuclear aromatic hydrocarbons (PAHs) from an aged, spiked lignite coal fly ash. All of the attempted extraction conditions allowed the extraction of the PAHs to some degree, but no single extraction technique proved to be superior for all of the PAHs used. Three groups of PAHs with similar extraction efficiencies were identified. The group with the lowest molecular weights was best recovered using a 90% CO2-10% methanol mixture at 70 degrees C and 238 atm. The group of medium-molecular-weight PAHs was recovered equally well using any of three extraction conditions: SFE (100% CO2, 90 degrees C, and 238 atm), enhanced-fluidity liquid mixture (60% CO2-40% methanol, 70 degrees C, and 238 atm), and a methanol ASE mixture. The group of high-molecular-weight PAHs seemed to be equally well recovered with all of the attempted extraction conditions, but the enhanced-fluidity conditions (60% CO2-40% methanol, 70 degrees C, and 238 atm) had extraction recoveries (> 85%) with the lowest standard deviations (approximately 5%).

  12. Genomic insights into growth and survival of supercritical-CO2 tolerant bacterium MIT0214 under conditions associated with geologic carbon dioxide sequestration

    Science.gov (United States)

    Peet, K. C.; Freedman, A. J.; Hernandez, H.; Thompson, J. R.

    2011-12-01

    Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emissions of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2 we have enriched for a microbial consortium from the saline formation waters of the Frio 2 project site (Texas Gulf Coast) that is capable of growth in nutrient media under a supercritical CO2 headspace (Hernandez, et al). The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. We have isolated strain MIT0214 from this supercritical CO2 based enrichment and have sequenced its genome using the Illumina platform followed by de novo assembly of reads and targeted Sanger sequencing to reduce gaps in the draft assembly. The genome of strain MIT0214 is approximately 5,551,062 base pairs with 35% GC-content and is most similar to nonpathogenic Bacillus cereus strain ATCC 14597. Annotation of the draft assembly of the MIT0214 genome by the Rapid Annotation using Subsystem Technology (RAST) server revealed 5538 coding sequences where 4145 of the coding sequences were assigned putative functions. These functions were enriched in cell wall and capsule formation, phage/prophage and plasmids, gene regulation and signaling, and nitrogen and sulfur metabolism relative to the genome of the most closely-related surface-isolated B. cereus reference (ATCC 14597) and in total 773,416 bp of the MIT0214 genome content was distinct from the B. cereus reference. Notably, this set of distinct sequences were most

  13. [Harmful elements removal from Polygonum multiflorum by supercritical CO2 extraction].

    Science.gov (United States)

    Wen, Zhen; Liu, Bo; Zheng, Zong-Kun; You, Xin-Kui; Pu, Yi-Tao; Dang, Zhi

    2008-10-01

    To remove harmful elements as copper, lead and arsenic from Polygonum multiflorum, a Chinese traditional medicine, by supercritical carbon dioxide extraction. With sodium diethyldithiocarbamate (NaDDC) as a chelating agent and ethanol as a modifier, the effects of extraction style, time, pressure, temperature and amount of chelating agent on chelating extraction process were discussed. The condition was optimized as following: 28 MP as extraction pressure, 60 degrees C as extraction temperature, 1 h as static extraction time, 2 h as dynamic extraction time, m(herb) : m(NaDDC) = 5 : 1, m(herb) : m(ethanol) = 1 : 1. Under this condition, the extraction rate of Cu, Pb and As were up to 60% which achieved US FDA standard, while the physioloically active substance of 2,3,5,4'-tetrahydroxy-silbene-2-O-beta-D-glucoside was not extracted. The results show chelating extraction by supercritical CO2 can provide a non-destructive method to decrease the content of harmful elements from Chinese traditional medicines.

  14. Supercritical fluid mixing in Diesel Engine Applications

    Science.gov (United States)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  15. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol.

    Science.gov (United States)

    Alberico, E; Nielsen, M

    2015-04-21

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.

  16. Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vieitez, Ignacio; Grompone, Maria A.; Jachmanian, Ivan [Laboratorio de Grasas y Aceites, Departamento de Alimentos, Facultad de Quimica, Universidad de la Republica, Montevideo 11800 (Uruguay); da Silva, Camila; Alckmin, Isabella; Borges, Gustavo R.; Corazza, Fernanda C.; Oliveira, J. Vladimir [Department of Food Engineering, URI-Campus de Erechim, Erechim 99700-000 (Brazil)

    2010-09-15

    This work investigates and compares the reaction performance of soybean oil transesterification under supercritical methanol and ethanol, in a continuous catalyst-free process, as a cleaner alternative to conventional chemically catalyzed process. Reactions were performed in a tubular reactor, at 20 MPa, with oil to alcohol ratio of 1:40, varying the temperature in the range from 250 C to 350 C, and at two levels of water concentrations, 0 and 10 wt%. Although both processes proceeded with a relatively high reaction rate, conversion achieved by methanolysis was higher than that obtained by ethanolysis. Water positively affected both process: higher ester content and triacylglycerols depletion occurred when 10 wt% water was used compared with anhydrous conditions. Temperature increase favored the conversion of soybean oil to the corresponding methyl or ethyl esters, although temperatures above 300 C increased the fatty acid degradation degree, a phenomenon responsible for the low ester contents obtained at the highest temperatures and lowest flow rates studied. (author)

  17. Design of experiments for enantiomeric separation in supercritical fluid chromatography.

    Science.gov (United States)

    Landagaray, Elodie; Vaccher, Claude; Yous, Saïd; Lipka, Emmanuelle

    2016-02-20

    A new chiral melatoninergic ligand, potentially successor of Valdoxan(®), presenting an improved pharmacological profile with regard to agomelatine, was chosen as a probe for a supercritical fluid chromatographic separation carried-out on an amylose tris[(S)-1-α-methylbenzylcarbamate] based stationary phase. The goal of this work was to optimize simultaneously three factors identified to have a significant influence to obtain the best resolution in the shortest analysis time (i.e., retention time of the second eluting enantiomer) for this chiral compound. For this purpose a central circumscribed composite (CCC) design was developed with three factors: the flow-rate, the pressure outlet and the percentage of ethanol to optimize of two responses: shortest analysis time and best resolution. The optimal conditions obtained via the optimizer mode of the software (using the Nelder-Mead method) i.e., CO2/EtOH 86:14 (v:v), 104bar, 3.2mLmin(-1) at 35°C lead to a resolution of 3.27 in less than 6min. These conditions were transposed to a preparative scale where a concentrated methanolic solution of 40mM was injected with a sample loop of 100μL. This step allowed to separate an amount of around 65mg of racemic melatonin ligand in only 3h with impressive yields (97%) and enantiomeric excess (99.5%).

  18. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    Science.gov (United States)

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  19. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    Science.gov (United States)

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  20. Equilibrium phase experimental determination of petroleum + gas systems at supercritical condition using ultrasonic technology; Estudo experimental do equilibrio de fases de sistemas de fracoes de petroleo e gases em condicoes supercriticas utilizando tecnicas de ultra-som: aparato experimental

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, Ana; Pessoa, Fernando L.P.; Silva, Silvia M.C. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Feiteira, Jose F. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Engenharia

    2008-07-01

    In separation process of multicomponent systems based on phase equilibrium is essential know the phase behavior and the critical points of the system for determination and optimization of the operational conditions. The experimental apparatus presents the challenge of determine the equilibrium phase dates of a system composed by petroleum residua and supercritical solvent. The used method, named acoustic method, allows the composition identification of the phases in equilibrium also in cloudy systems as they are the systems formed by residues of crude oil. For this reason, the acoustic methodology, based on the ultra-sound technology will be used in the study of the phase equilibrium and experimental characterization of the system, in benches scale, operating in severe conditions of temperature and pressure.The acoustic method is one not invasive and not subjective technique, what becomes the work in high pressures safer. (author)

  1. Generic supercritical water technology; Generic technology to shite no chorinkaisui riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Ajiri, M.; Inomata, H.; Smith, R.; Hakuta, Y. [Tohoku University, Sendai (Japan). Faculty of Engineering; Yokoyama, C. [Tohoku University, Sendai (Japan). The Institute forChemical Reaction Science; Chin, L. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the measurement and analysis for clarifying solution structure of supercritical water and exhibition mechanism of solvent functions. It also describes the development of new processes using supercritical water as reaction solvent. The PVT measurements were conducted in the supercritical region using pure water and NaCl aqueous solution, to confirm the reduction of molar volume of the electrolyte solution. The hydration structure was examined in the supercritical aqueous solution by the molecular dynamic simulation. As a result, presence of hydrogen bond structure, where the contribution of two branching hydrogen bond can not be ignored, was suggested under the supercritical condition. Characteristics of supercritical aqueous solutions are analyzed through in-situ Raman and scattered X-ray spectral measurements. Moreover, this paper introduces developments of some processes in the supercritical water, such as decomposition of wasted polymers, recovery of chemical materials, reforming of heavy hydrocarbons by contact hydrogenation, and synthesis of fine powders of metal oxide by reaction crystallization.

  2. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  3. Hydrogenation of diesel aromatic compounds in supercritical solvent environment

    Directory of Open Access Journals (Sweden)

    E.P. Martins

    2000-09-01

    Full Text Available Reactions under supercritical conditions have been employed in many processes. Furthermore, an increasing number of commercial reactions have been conducted under supercritical or near critical conditions. These reaction conditions offer several advantages when compared to conditions in conventional catalytic processes in liquid-phase, gas-liquid interface, or even some gas-phase reactions. Basically, a supercritical solvent can diminish the reactant’s transport resistance from the bulk region to the catalyst surface due to enhancement of liquid diffusivity values and better solubility than those in different phases. Another advantage is that supercritical solvents permit prompt and easy changes in intermolecular properties in order to modify reaction parameters, such as conversion or selectivity, or even proceed with the separation of reaction products. Diesel fractions from petroleum frequently have larger than desirable quantities of aromatic compounds. Diesel hydrogenation is intended to decrease these quantities, i.e., to increase the quantity of paraffin present in this petroleum fraction. In this work, the hydrogenation of tetralin was studied as a model reaction for the aromatic hydrogenation process. A conventional gas-liquid-solid catalytic process was compared with that of supercritical carbon dioxide substrate under similar conditions. Additionally, an equilibrium conversion diagram was calculated for this reaction in a wide range of temperature and reactant ratios, so as to optimize the operational conditions and improve the results of subsequent experiments. An increase in the rate of reaction at 493 K in supercritical fluid, as compared to that in the conventional process, was observed.

  4. Hydrogenation of diesel aromatic compounds in supercritical solvent environment

    Energy Technology Data Exchange (ETDEWEB)

    Martins, E.P.; Aranda, D.A.G.; Pessoa, F.L.P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Quimica. E-mail: donato@h2o.eq.ufrj.br; pessoa@h2o.eq.ufrj.br; Zotin, J.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. E-mail: zotin@cenpes.petrobras.com.br

    2000-09-01

    Reactions under supercritical conditions have been employed in many processes. Furthermore, an increasing number of commercial reactions have been conducted under supercritical or near critical conditions. These reaction conditions offer several advantages when compared to conditions in conventional catalytic processes in liquid-phase, gas-liquid interface., or even some gas-phase reactions. basically, a supercritical solvent can diminish the reactant's transport resistance from the bulk region to the catalyst surface due to enhancement of liquid diffusivity values and better solubility than those in different phases. Another advantage is that supercritical solvents permit prompt and easy changes in intermolecular properties in order to modify reaction parameters, such as conversion or selectivity, or even proceed with the separation of reaction products. Diesel fractions from petroleum frequently have larger than desirable quantities of aromatic compounds. Diesel hydrogenation is intended to decrease these quantities, to increase the quantity of paraffin present in this petroleum fraction. In this work, the hydrogenation of tetralin was studied as a model reaction for the aromatic hydrogenation process. A conventional gas-liquid-solid catalytic process was compared with that of supercritical carbon dioxide substrate under similar conditions. Additionally, an equilibrium conversion diagram was calculated for this reaction in a wide range of temperature and reactant ratios, so as to optimize the operational conditions and improve the results of subsequent experiments. An increase in the rate of reaction at 493 K in supercritical fluid, as compared to that in the conventional process, was observed. (author)

  5. Influence of process conditions on methanol dehydration to dimethyl ether%工艺条件对甲醇脱水制二甲醚反应的影响

    Institute of Scientific and Technical Information of China (English)

    赵国良; 滕加伟; 金文清; 何万仁; 徐建军; 杨为民

    2015-01-01

    The process conditions of methanol dehydration to dimethyl ether(DME)on La / Al2 O3 catalyst was investigated in a simulated adiabatic fixed-bed reactor. The results indicated that methanol dehydration reaction was violent and the adiabatic temperature rise was about 130 ℃ when methanol inlet temperature was 210 ℃. The selectivity to DME was over 98% when the highest catalyst bed temperature was less than 380 ℃. Excessively high temperature resulted in the formation of a lot of byproduct methane. Reaction pres-sure had little influence on methanol dehydration reaction. Under the condition of methanol inlet temperature 240 ℃( the highest catalyst bed temperature 370 ℃),methanol space velocity 1. 5 h - 1 , reaction pressure 50 kPa,methanol conversion of over 84% and the selectivity to DME of more than 98. 5% were attained. The catalytic activity of La / Al2 O3 catalyst did not exhibit obvious change after running for 2 000 h.%以 La 改性氧化铝为催化剂,在模拟绝热固定床反应器中考察工艺条件对甲醇气相脱水制二甲醚反应的影响。结果表明,甲醇进料温度210℃时,甲醇脱水反应剧烈,绝热温升约130℃。催化剂床层热点温度低于380℃时,二甲醚选择性大于98%,过高温度产生大量副产物甲烷。反应压力对反应影响甚微。在甲醇进料温度240℃(热点温度370℃)、甲醇进料空速1.5 h -1和反应系统压力为50 kPa 条件下,甲醇转化率大于84%,二甲醚选择性大于98.5%,连续运转2000 h,催化剂无明显失活迹象。

  6. Continuous production of fatty acid ethyl esters from soybean oil at supercritical conditions - doi: 10.4025/actascitechnol.v34i2.11255

    Directory of Open Access Journals (Sweden)

    Camila da Silva

    2012-03-01

    Full Text Available This work reports the production of fatty acid ethyl esters (FAEE from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a tubular reactor in one-step reaction and experimentally simulating two reactors, one operated in series and the other a recycle reactor. The reaction products were analyzed for their content of residual triglycerides, glycerol, monoglycerides, diglycerides, ethyl esters and decomposition. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to their fatty acid ethyl esters derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (< 5.0 wt%.

  7. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  8. Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2012-01-01

    . The capabilities of the model are illustrated in the first two case studies: the phase behavior of mixtures used in the oxidation of 2-octanol in supercritical CO2 and the investigation of systems containing acetone, methanol, water, chloroform, and methyl acetate. In each case, both correlations of vapor...

  9. 179 Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Meyer

    Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide. .... methanol in vials that were cooled with a mixture of ice and sodium chloride to avoid the loss of .... The data produced by our experiments may be utilised in a kinetic study of the.

  10. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    Science.gov (United States)

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate (Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2(4-1)) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  11. Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery

    Directory of Open Access Journals (Sweden)

    Pardis Kalantarian

    2010-09-01

    Full Text Available Pardis Kalantarian1,2, Abdolhosein Rouholamini Najafabadi1, Ismaeil Haririan2, Alireza Vatanara1, Yadollah Yamini3, Majid Darabi1, Kambiz Gilani11Aerosol Research Laboratory and 2Pharmaceutical Laboratory, School of Pharmacy, Tehran University of Medical Sciences, 3Department of Chemistry, Tarbiat Modarres University, Tehran, IranAbstract: This study concerns the supercritical antisolvent process which allows single-step production of 5-fluorouracil (5-FU nanoparticles. This process enhances the physical characteristics of 5-FU in order to deliver it directly to the respiratory tract. Several mixtures of methanol with dichloromethane, acetone, or ethanol were used for particle preparation, and their effects on the physical characteristics of the final products were studied. The conditions of the experiment included pressures of 100 and 150 bar, temperature of 40°C, and a flow rate of 1 mL/min. The particles were characterized physicochemically before and after the process for their morphology and crystallinity. In spite of differences in size, the particles were not very different regarding their morphology. The resulting particles were of a regular shape, partly spherical, and appeared to have a smooth surface, whereas the mechanically milled particles showed less uniformity, had surface irregularities and a high particle size distribution, and seemed aggregated. Particles of 5-FU precipitated from methanol-dichloromethane 50:50 had a mean particle size of 248 nm. In order to evaluate the aerodynamic behavior of the nanoparticles, six 5-FU dry powder formulations containing mixtures of coarse and fine lactose of different percentages were prepared. Deposition of 5-FU was measured using a twin-stage liquid impinger and analyzed using a validated high pressure liquid chromatography method. Addition of fine lactose improved the aerodynamic performance of the drug, as determined by the fine particle fraction.Keywords: supercritical antisolvent, 5

  12. Fischer-Tropsch synthesis in supercritical fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Akgerman, A.; Bukur, D.B.

    1998-12-31

    The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.

  13. Scaledown of a methanol reactor

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1983-07-01

    This article shows how it is possible to define operating conditions for pilot plants and development labs by scaling down a commercial reactor. Points out that scaledown consideration and experiment planning can be done in a similar manner for the boiling water-cooled, Lurgi-type reactor. Explains that although the design of large, single-train plants to produce methanol for fuel use has different economic objectives, product specifications, and technical constraints from the traditional commercial methanol plants, the same fundamental laws of thermodynamics and reaction kinetics apply to both types of operation.

  14. Numerical modeling of deposition condition in heat exchanger for coal gasification in supercritical water%超临界水煤气化过程换热器沉积状况数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    姜华

    2015-01-01

    A 3D model of shell and tube heat exchanger used in super critical water coal gasification was established including supercritical phase and solid phases. IAPWS data base has been used to simulate the physical properties of supercritical water. Numerical simulation was studied adopting CFX in terms of deposition condition under varied feed and different structure of vertical heat exchanger tube box and the structure of the exchanger was optimized. The model has been validated by experiment results. The results showed that vertical inlet type was better than the other type and proper height of the tube box could reduce the deposition mass. The percentage of the particle whose size larger than 1 mm should be reduced to the greatest extent. The results provided significant guide to the design of the heat exchanger in supercritical water coal gasification process.%建立了超临界水煤气化换热器在超临界水与煤颗粒体系下的三维瞬态 CFD 模型,利用 IAPWS物性数据库计算超临界水的物性,应用 CFX 软件模拟研究了竖直放置的超临界水煤气化管壳式换热器的管箱在不同进料条件和换热器结构下的沉积状况并对其结构进行了优化。利用已有的实验结果对模型进行了验证。研究表明,立式换热器管箱垂直进料在减少颗粒沉积方面优于侧边进料和倾斜进料,合适的管箱高度可以减少颗粒的沉积,应尽量减少1 mm 以上的大颗粒的含量。研究结果对超临界水煤气化过程中使用的换热器的研究设计具有一定的理论意义和工程实用价值。

  15. Extraction of olive oil with supercritical carbon dioxide / Ilana Geerdts

    OpenAIRE

    Geerdts, Ilana

    2005-01-01

    The principal objective of this study was to extract olive oil from the fruit of Olea europaea by means of supercritical carbon dioxide (sc-C02) as an alternative to traditional methods. Extractions were performed on a laboratory scale supercritical fluid extractor of the latest design, featuring three mutually independent flow systems and extremely high flow rates. A number of extraction runs based on a statistical design was performed to establish the conditions (time, pressu...

  16. Watching Nanoparticles Form: An In Situ (Small-/Wide-Angle X-ray Scattering/Total Scattering) Study of the Growth of Yttria-Stabilised Zirconia in Supercritical Fluids

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Pauw, Brian; Jensen, Kirsten Marie Ørnsbjerg

    2012-01-01

    Understanding nanoparticle formation reactions requires multitechnique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nano...... of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25%....

  17. Suitable operating conditions improving hydrogen production from pine wood sawdust in supercritical water%适宜操作条件提高松木屑超临界水气化制氢效果

    Institute of Scientific and Technical Information of China (English)

    罗威; 廖传华; 陈海军; 朱跃钊

    2015-01-01

    efficient hydrogen production technology, which has been developed recently. It can directly handle the biomass with high moisture content, and need not the drying process with high energy consumption; it can obtain the high gasification rate and effectively overcome the above problems of biomass gasification technology and biomass pyrolysis technology. Therefore, it has become an international hot technology for biomass utilization. The technology is based on a series of unique properties of supercritical water, such as low dielectric constant, low viscosity and high diffusion coefficient, and uses supercritical water as the reaction medium; and the conversion from biomass to H2 is completed in hot compressed water with the temperature and pressure above the critical values (647 K and 22.1 MPa). Many researches of hydrogen production from biomass with supercritical water gasification technology have focused on the effects of different operating conditions (reaction temperature, reaction pressure, reactant mass fraction, residence time, catalyst, etc.) on the biomass (mainly the compound concentration, such as cellulose and glucose) and its inherent mechanism, but the researches on real biomass (such as wood sawdust and straw) are few. In order to understand the effect of operating conditions on hydrogen production process of biomass gasification in supercritical water, the catalytic activities of hydrogen production of Fe, Na2CO3 and CuSO4were explored. The result showed that the order of effects was Fe > Na2CO3 > CuSO4 under the conditions of 500℃ reaction temperature, 30 MPa reaction pressure, 30 min residence time, wood sawdust mass fraction of 8% and particle size from 8 to 16 mesh with pine wood sawdust as raw material. The effects of reaction pressure 30 MPa, residence time 30 min, reaction temperature (420-500℃), wood sawdust mass fraction (8%-40%)and particle size (2-1000 mesh) on the hydrogen production processes with Fe as catalyst were investigated. The

  18. A search for extragalactic methanol masers

    CERN Document Server

    Ellingsen, S P; Whiteoak, J B; Vaile, R A; McCulloch, P M; Price, M

    1994-01-01

    A sensitive search for 6.7--GHz methanol maser emission has been made towards 10 galaxies that have yielded detectable microwave molecular--line transitions. These include several which show OH megamaser or superluminous \\water\\/ maser emission. Within the Galaxy, \\methanol\\/ and OH masers often occur in the same star formation regions and, in most cases, the \\methanol\\/ masers have a greater peak flux density than their OH counterparts. Thus we might expect \\methanol\\/ masers to be associated with extragalactic OH maser sources. We failed to detect any emission or absorption above our 60--mJy detection limit. We conclude that if the physical conditions exist to produce \\methanol\\/ megamaser emission, they are incompatible with the conditions which produce OH megamaser emission.

  19. Optimization of supercritical fluid extraction of essential oils and fatty acids from flixweed (Descurainia Sophia L.) seed using response surface methodology and central composite design.

    Science.gov (United States)

    Ara, Katayoun Mahdavi; Jowkarderis, Mina; Raofie, Farhad

    2015-07-01

    Essential oils and fatty acids of Descurainia sophia L. seed were obtained by supercritical CO2 extraction and steam distillation methods. The effect of different parameters such as pressure, temperature, modifier volume, dynamic and static extraction timeon the extraction yield were optimized using a central composite design after a 2 (n-1) fractional factorial design. The results showed that under the pressure of 355 bar, temperature of 65 °C, methanol volume of 150 μL, dynamic and static extraction times of 35 and 10 min, respectively, the major components were methyl linoleate (18.2 %), camphor (12.32 %), cis-thujone (11.3 %) and trans-caryophyllene (9.17 %). The results indicated that by using the proper conditions, the supercritical fluid extraction is more selective than the steam distillation method. Extraction yields based on supercritical fluid extraction varied in the range of 0.68 to 17.1 % (w/w), and the extraction yield based on the steam distillation was 0.25 % (v/w).

  20. Development of a Facility for Combustion Stability Experiments at Supercritical Pressure

    Science.gov (United States)

    2013-12-01

    Supercritical Pressure 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wegener, Leyva, Forliti, Talley 5d... supercritical pressures that are relevant to high-performance liquid rocket engines, accurately-controlled and cryogenically-conditioned propellants, and... Supercritical Pressure Jeffrey L. Wegener1 University of California at Los Angeles, CA 90095 Ivett A. Leyva2 AFRL/RQRE, Edwards AFB, CA 93524

  1. Down-regulation of GST and CAT gene expression by methanolic ...

    African Journals Online (AJOL)

    DELL

    2013-07-03

    Jul 3, 2013 ... This in-vitro study reveals the effects of NS plant extract on GST and CAT gene ... with methanol using a Soxhlet apparatus as described previously. (Shafi et .... Extraction of Nigella sativa L. using Supercritical CO2: A Study of.

  2. Bridging the Time Gap: A Copper/Zinc Oxide/Aluminum Oxide Catalyst for Methanol Synthesis Studied under Industrially Relevant Conditions and Time Scales.

    Science.gov (United States)

    Lunkenbein, Thomas; Girgsdies, Frank; Kandemir, Timur; Thomas, Nygil; Behrens, Malte; Schlögl, Robert; Frei, Elias

    2016-10-01

    Long-term stability of catalysts is an important factor in the chemical industry. This factor is often underestimated in academic testing methods, which may lead to a time gap in the field of catalytic research. The deactivation behavior of an industrially relevant Cu/ZnO/Al2 O3 catalyst for the synthesis of methanol is reported over a period of 148 days time-on-stream (TOS). The process was investigated by a combination of quasi in situ and ex situ analysis techniques. The results show that ZnO is the most dynamic species in the catalyst, whereas only slight changes can be observed in the Cu nanoparticles. Thus, the deactivation of this catalyst is driven by the changes in the ZnO moieties. Our findings indicate that methanol synthesis is an interfacially mediated process between Cu and ZnO.

  3. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different current...... to the anode after pure hydrogen operation at 180°C. A decrease in the total resistance corresponding to the voltage improvement is observed from the impedance spectra. There is minimal variation in performance with the introduction of 3% and 5% methanol along with water vapour in the anode feed at all current...

  4. Physical properties of the benchmark models program supercritical wing

    Science.gov (United States)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.

    1993-01-01

    The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.

  5. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  6. Applied orthogonal design for filtrating conditions of ultrasonic ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... ultrasonic-assisted extraction from plant-chicory. Yuyan Liu1 ...... nutritional value and biological activities of the acetone, methanol and water extracts of .... of mass transfer in supercritical CO2 extraction processes. Ultrasonics ...

  7. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Da Sun

    2011-10-01

    Full Text Available Supercritical carbon dioxide (SC-CO2 extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34, and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and ferrous ion chelating (FIC assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v, and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v. Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems.

  8. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest.

  9. Structural Transition in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Boris I. Sedunov

    2011-01-01

    Full Text Available The extension of the saturation curve ( on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves st( for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.

  10. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  11. The Methanol Miracle

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Methanol already makes a good fuel for camp stoves and even for a few cars. But in the future,say botanist Arthur Nonomura and biochemist Andrew Benson,methanol may fuel an agricultural revolution in hot and dry regions of the world. When the researchers recently sprayed diluted solutions of methanol on crops at Nonomura’s Arizona farm,they found they could double yields in some cases and halve water consumption in others.

  12. Supercritical Fluid Extraction of Flavonoids from Dandelion

    Directory of Open Access Journals (Sweden)

    Wu Jun

    2014-01-01

    Full Text Available In this study, the total flavonoids from dandelion was extracted by supercritical CO2 and the total flavonoids content in the extract was investigated by the sodium nitrite-aluminum nitrate method with Rutin as a standard product. Single-factor experiments were carried out to map the effects of extraction pressure, temperature, time and entrainer amount on the yield of flavonoids. The orthogonal experiments on the optimum technology parameters demonstrated that the influence of the experimental conditions over the yield from high to low was: (a pressure, (b temperature, (c entrainer amount, (d time. The optimization result showed that under the conditions of 50°C, 35 MPa, 80 min and 4.0 mL/g entrainer amount, the yield of the preparative supercritical fluid extraction was 4.974%.

  13. Methanol Asinger's vision today

    CERN Document Server

    Bertau, Martin; Plass, Ludolf; Schmidt, Friedrich; Wernicke, Hans-Jürgen

    2014-01-01

    Methanol - The Chemical and Energy Feedstock of the Future offers a visionary yet unbiased view of methanol technology. Based on the groundbreaking 1986 publication ""Methanol"" by Friedrich Asinger, this book includes contributions by more than 40 experts from industry and academia. The authors and editors provide a comprehensive exposition of methanol chemistry and technology which is useful for a wide variety of scientists working in chemistry and energy related industries as well as academic researchers and even decision-makers and organisations concerned with the future of chemical and e

  14. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  15. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  16. Extraction of tannin by Acacia mearnsii with supercritical fluids

    Directory of Open Access Journals (Sweden)

    Marcia Regina Pansera

    2004-11-01

    Full Text Available Studies were carried out on solvent and supercritical extraction to obtain natural tannins. The results showed that the best co-solvent to extract tannin with CO2 supercritical was water with a concentration of 5.0% and the best trap rinse solvent was methanol.Neste trabalho foram utilizados dois processos de extração de tanino vegetal: extração a quente em aparelho Soxhlet e extração com CO2 supercítico. Os resultados mostraram que o melhor co-solvente para extração de taninos com CO2 supercrítico foi a água na concentração de 5% e o melhor solvente para lavagem do trap foi o metanol.

  17. Dye solubility in supercritical carbon dioxide fluid

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2015-01-01

    Full Text Available Supercritical carbon dioxide fluid is an alternative solvent for the water of the traditional dyeing. The solubility of dyestuff affects greatly the dyeing process. A theoretical model for predicting the dye solubility is proposed and verified experimentally. The paper concludes that the pressure has a greater impact on the dyestuff solubility than temperature, and an optimal dyeing condition is suggested for the highest distribution coefficient of dyestuff.

  18. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  19. Supercritical solvent coal extraction

    Science.gov (United States)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  20. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  1. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  2. Effect of Co-solvent and Pressure on the Thermal Decomposition of 2, 2' Azobis - (isobutyronitrile) in Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermal decomposition of 2, 2'-azobis (isobutyronitrile) (AIBN) in supercritical CO2 with cosolvent methanol or cyclohexane has been studied by using UV/Vis spectroscopic method at 335.15 K and at 12.0 MPa and 14.0 MPa. Both of the cosolvents can accelerate the decomposition rate, and the effect of methanol is more significant than that of the cyclohexane.

  3. Molecular Dynamics Investigation of Benzene in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.

  4. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant.

    Science.gov (United States)

    Pollardo, Aldricho Alpha; Lee, Hong-Shik; Lee, Dohoon; Kim, Sangyong; Kim, Jaehoon

    2017-09-09

    Waste animal fat is a promising feedstock to replace vegetable oil that widely used in commercial biodiesel process, however the high content of free fatty acid in waste fat makes it unfeasible to be processed with commercial base-catalytic process. Enzymatic process is preferable to convert waste fat into biodiesel since enzyme can catalyze both esterification of free fatty acid and transesterification of triglyceride. However, enzymatic reaction still has some drawbacks such as lower reaction rates than base-catalyzed transesterification and the limitation of reactant concentration due to the enzyme inhibition of methanol. Supercritical CO2 is a promising reaction media for enzyme-catalyzed transesterification to overcome those drawbacks. The transesterification of waste animal fat was carried out in supercritical CO2 with varied concentration of feedstock and methanol in CO2. The CO2 to feedstock mass ratio of 10:1 showed the highest yield compared to other ratios, and the highest FAME yield obtained from waste animal fat was 78%. The methanol concentration effect was also observed with variation 12%, 14%, and 16% of methanol to feedstock ratio. The best yield was 87% obtained at the CO2 to feedstock ratio of 10: 1 and at the methanol to feedstock ratio of 14% after 6 h of reaction. Enzymatic transesterification to produce biodiesel from waste animal fat in supercritical fluid media is a potential method for commercialization since it could enhance enzyme activity due to supercritical fluid properties to remove mass transfer limitation. The high yield of FAME when using high mass ratio of CO2 to oil showed that supercritical CO2 could increase the reaction and mass transfer rate while reducing methanol toxicity to enzyme activity. The increase of methanol concentration also increased the FAME yield because it might shift the reaction equilibrium to FAME production. This finding describes that the application of supercritical CO2 in the enzymatic reaction

  5. Methanol partial oxidation reformer

    Science.gov (United States)

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  6. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to format

  7. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to

  8. Methanol in diesel engines with increased efficiency by means of methanol dissociation. Methanol in dieselmotoren met verhoogd rendement door middel van methanoldissociatie

    Energy Technology Data Exchange (ETDEWEB)

    Ter Rele, R.R.J.; Van Asch, R.; Van der Does, C.

    1988-06-01

    The methanol dissociation project had the purpose to demonstrate a system in a diesel engine in which a part of the diesel fuel is replaced by dissociated methanol. The demonstration has been executed in a DAF 615 diesel engine under pressure. A previous developed diesel mixing operating system provided for correct gas quantity for all the load conditions. The Dutch State Mines (DSM) did research on the most appropriate catalyst and designed a methanol dissociation reactor. Descriptions of the fuel system, methanol evaporator and methanol dissociation reactor are given. Results of several measurements are presented: measurements on the diesel motor as a standard design, measurements for evaporated methanol as a substitute fuel for diesel and measurements for dissociated methanol or synthetic dissociation gas as substitute fuels. Differences between diesel and the substitutes are discussed. 12 figs., 4 ills., 3 tabs., 10 apps.

  9. Stochastic simulation of supercritical fluid extraction processes

    Directory of Open Access Journals (Sweden)

    Mizutani F. T.

    2000-01-01

    Full Text Available Process simulation involves the evaluation of output variables by the specification of input variables and process parameters. However, in a real process, input data and parameters cannot be known without uncertainty. This fact may limit the utilization of simulation results to predict plant behavior. In order to achieve a more realistic analysis, the procedure of stochastic simulation can be conducted. This technique is based on a large set of simulation runs where input variables and parameters are randomly selected according to adequate probability density functions. The objective of this work is to illustrate the application of a stochastic simulation procedure to the process of fractionation of orange essential oil, using supercritical carbon dioxide in a multistage extraction column. Analysis of the proposed example demonstrates the importance of the stochastic simulation to develop more reliable designs and operating conditions for a supercritical fluid extraction process.

  10. Using supercritical fluids to refine hydrocarbons

    Science.gov (United States)

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  11. Thermodynamic behaviour of supercritical matter.

    Science.gov (United States)

    Bolmatov, Dima; Brazhkin, V V; Trachenko, K

    2013-01-01

    Since their discovery in 1822, supercritical fluids have been of enduring interest and have started to be deployed in many important applications. Theoretical understanding of the supercritical state is lacking and is seen to limit further industrial deployment. Here we study thermodynamic properties of the supercritical state and discover that specific heat shows a crossover between two different regimes, an unexpected result in view of currently perceived homogeneity of supercritical state in terms of physical properties. We subsequently formulate a theory of system thermodynamics above the crossover, and find good agreement between calculated and experimental specific heat with no free-fitting parameters. In this theory, energy and heat capacity are governed by the minimal length of the longitudinal mode in the system only, and do not explicitly depend on system-specific structure and interactions. We derive a power law and analyse supercritical scaling exponents in the system above the Frenkel line.

  12. Wettability-Water/brine Film Thickness Relationship and the Effect of Supercritical CO2 Pre-contact for CO2/brine/mineral Systems under Geologic CO2 Sequestration Conditions: Insights from Molecular Dynamics Simulations

    Science.gov (United States)

    Chen, C.; Song, Y.; Li, W.

    2016-12-01

    Injection CO2 into deep saline aquifers is one of the main options for geologic carbon sequestration (GCS). A successful GCS in saline aquifers requires full knowledge about CO2/brine/mineral systems under sequestration conditions to reduce uncertainties during subsurface storage of CO2. Adsorbed water film thickness and wettability on mineral surfaces are two key characteristics for CO2/brine/mineral systems. Wettability and water/brine film thickness have been measured experimentally and predicted by molecular simulation (MD) studies. However, these studies only consider the films apart from contact angles. Investigations on wettability for CO2/brine/mineral systems only consider contact angles without measurements on film thickness. The relationship between film thicknesses with water contact angles is open to questions. In this paper, MD simulations have been performed to investigate the interrelationship between water film thicknesses and water contact angles. Three silica surfaces with different silanol group number densities (Q3, Q3-50%, Q3/Q4) were selected to represent silica surfaces with different wettabilities. We found that as water contact angle increases, the film thickness decreases. We also studied the effect of CO2-mineral pre-contact and found that: on Q3 surface, if a CO2 bubble was pre-contacted with the surface, it can remain on the surface without forming a water film; however, if a CO2 bubble was placed certain distances away from the surface, it formed a water film. Wettability analysis revealed that on the same surface, water contact angle was larger when there was no water film. These findings show that on some silica surfaces, water film may be destroyed by supercritical CO2 even the silica surfaces are hydrophilic. A water film rupture mechanism was propsed for CO2 adhesion on mineral surfaces [Wang (2013) Environ. Sci. Technol. 47, 11858; Zhang (2016) Environ. Sci. Technol. Lett. 10.1021/acs.estlett.5b00359]. The rupture of water film

  13. Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2017-02-01

    Full Text Available In this work, the characteristics of waste pig fat degradation using supercritical alcohols have been studied. Comparative analysis of the influence of supercritical methanol and supercritical ethanol as solvents on the transesterification was the primary focus of this research. The experiments were carried out with waste pig fat to alcohol weight ratios of 1:1.5 (molar ratio: 1:40.5 for methanol and 1:28 for ethanol, 1:2.0 (molar ratio: 1:54 for methanol and 1:37.5 for ethanol and 1:2.5 (molar ratio: 1:67.5 for methanol and 1:47 for ethanol at transesterification temperatures 250, 270 and 290 °C for holding time 0, 15, 30, 45 and 60 min. Increase in the transesterification and holding time increased the conversion while increase in alcohol amount from 1:1.5 to 1:2.0 and 1:2.5 had minimal effect on the conversion. Further, majority of the ester composition in using SCM as solvent falls in the carbon range of C17:0, C19:1 and C19:2 while that for SCE falls in the carbon range of C18:0, C20:1 and C20:2. Glycerol was only present while using SCM as solvent.

  14. Methanol production from fermentor off-gases

    Science.gov (United States)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  15. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  16. Dietary methanol and autism.

    Science.gov (United States)

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted.

  17. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  18. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    2015-01-01

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable fo

  19. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    Science.gov (United States)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  20. Liquefaction of Typha latifolia by supercritical fluid extraction.

    Science.gov (United States)

    Aysu, Tevfik; Turhan, Mehmet; Küçük, Mehmet Maşuk

    2012-03-01

    Milled Typha latifolia stalk mill was converted to liquid products by using organic solvents (methanol, ethanol, acetone and 2-butanol) with catalysts (10% NaOH or Na(2)CO(3)) and without catalyst in an autoclave at temperatures of 518, 538 and 558 K. The products were extracted by liquid-liquid extraction (benzene and diethyl ether). The percentage yields from supercritical methanol, ethanol, 2-butanol and acetone conversions were 55.0, 58.5, 62.7 and 70.5 at 538 K, respectively. In the catalytic run with NaOH, the highest conversion was obtained by using ethanol as a solvent at the same temperature. Conversion yields were analyzed by GC-MS. The aim of the present study was to obtain an alternative for petroleum derived fuels or chemical raw materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Methanol Cannon Demonstrations Revisited.

    Science.gov (United States)

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  2. Antioxidative effects of stabilized and unstabilized defatted rice bran methanolic extracts on the stability of rice bran oil under accelerated conditions

    Directory of Open Access Journals (Sweden)

    Adam Mariod, Abdalbasit

    2010-12-01

    Full Text Available The present research assessed the antioxidant activity against the synthetic 1, 1-diphenyl-2-picrylhydrazyl radical, and β-carotene–linoleic acid assay of the methanolic extracts of defatted rice bran from stabilized and unstabilized rice bran. The effects of the extracts (0.1 and 0.25% w/w on the oxidative stability of refined-bleached rice bran oil were determined and compared with those of BHA (synthetic antioxidant. The study was carried out over a 168 hr period at 70°C and the progression of oxidation was measured by peroxide value, p-anisidine value, and thiobarbituric acid-reactive substances (TBARS. The relative % of residual α-tocopherol and γ-oryzanol of the rice bran oil containing methanolic extracts of stabilized and unstabilized defatted rice bran during storage at 70°C were studied.

    La presente investigación evalúa la actividad antioxidante mediante el radical sintético 1,1-difenil-2-picrilhidrazil y el ensayo β-caroteno–ácido linoleico de extractos metanólicos de salvado de arroz desengrasado procedente de salvado de arroz estabilizado y no-estabilizado. El efecto de los extractos (0.1 y 0.25% w/w sobre la estabilidad oxidativa del aceite refinado de salvado de arroz fue determinado y comparado con el del BHA (antioxidante sintético. El estudio fue llevado a cabo durante un periodo de 168 hr a 70°C y la progresión de la oxidación fue medida mediante el valor de peróxidos, valor de p-anisidine y substancias reactivas del ácido tiobarbitúrico (TBARS. El porcentaje relativo del α-tocoferol y γ-orizanol residual en el aceite de germen de arroz conteniendo extracto metanólico de germen de arroz desengrasado estabilizado y no estabilizado durante el almacenamiento a 70°C fueron estudiados.

  3. Regulating low-NOx and high-burnout deep-air-staging combustion under real-furnace conditions in a 600 MWe down-fired supercritical boiler by strengthening the staged-air effect.

    Science.gov (United States)

    Kuang, Min; Wang, Zhihua; Zhu, Yanqun; Ling, Zhongqian; Li, Zhengqi

    2014-10-21

    A 600 MW(e) down-fired pulverized-coal supercritical boiler, which was equipped with a deep-air-staging combustion system for reducing the particularly high NOx emissions, suffered from the well-accepted contradiction between low NOx emissions and high carbon in fly ash, in addition to excessively high gas temperatures in the hopper that jeopardized the boiler's safe operations. Previous results uncovered that under low-NOx conditions, strengthening the staged-air effect by decreasing the staged-air angle and simultaneously increasing the staged-air damper opening alleviated the aforementioned problems to some extent. To establish low-NOx and high-burnout circumstances and control the aforementioned hopper temperatures, a further staged-air retrofit with horizontally redirecting staged air through an enlarged staged-air slot area was performed to greatly strengthen the staged-air effect. Full-load industrial-size measurements were performed to confirm the availability of this retrofit. The present data were compared with those published results before the retrofit. High NOx emissions, low carbon in fly ah, and high hopper temperatures (i.e., levels of 1036 mg/m(3) at 6% O2, 3.72%, and about 1300 °C, respectively) appeared under the original conditions with the staged-air angle of 45° and without overfire air (OFA) application. Applying OFA and reducing the angle to 20° achieved an apparent NOx reduction and a moderate hopper temperature decrease while a sharp increase in carbon in fly ash (i.e., levels of 878 mg/m(3) at 6% O2, about 1200 °C, and 9.81%, respectively). Fortunately, the present staged-air retrofit was confirmed to be applicable in regulating low-NOx, high-burnout, and low hopper temperature circumstances (i.e., levels of 867 mg/m(3) at 6% O2, 5.40%, and about 1100 °C, respectively).

  4. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  5. Thermodynamic properties of direct methanol polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ji Yun; Bae, Young Chan [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Sungdonggu Haengdangdong 17, Seoul 133-791 (Korea, Republic of); Sun, Yang Kook [Division of Chemical Engineering and Center for Information and Communication, Materials, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2005-08-18

    A new semi-empirical model is established to describe the cell voltage of a direct methanol fuel cell (DMFC) as a function of current density. The model equation is validated experimental data over a wide range of a methanol concentration and temperatures. A number of existing models are semi-empirical. They, however, have a serious mathematical defect. When the current density, j, becomes zero, the equation should reduce to the open circuit voltage, E{sub 0}. These models, however, do not meet the mathematical boundary condition. The proposed model focuses on very unfavorable conditions for the cell operation, i.e. low methanol solution concentrations and relatively low cell temperatures. A newly developed semi-empirical equation with reasonable boundary conditions includes the methanol crossover effect that plays a major role in determining the cell voltage of DMFC. Also, it contains methanol activity based on thermodynamic functions to represent methanol crossover effect. (author)

  6. Bifunctional activation of a direct methanol fuel cell

    Science.gov (United States)

    Kulikovsky, A. A.; Schmitz, H.; Wippermann, K.; Mergel, J.; Fricke, B.; Sanders, T.; Sauer, D. U.

    We report a novel method for performance recovery of direct methanol fuel cells. Lowering of air flow rate below a critical value turns the cell into bifunctional regime, when the oxygen-rich part of the cell generates current while the rest part works in electrolysis mode (electrolytic domain). Upon restoring the normal (super-critical) air flow rate, the galvanic performance of the electrolytic domain increases. This recovery effect is presumably attributed to Pt surface cleaning on the cathode with the simultaneous increase in catalyst utilization on the anode.

  7. Calculation of partial molar volume of components in supercritical ammonia synthesis system

    Institute of Scientific and Technical Information of China (English)

    Cunwen WANG; Chuanbo YU; Wen CHEN; Weiguo WANG; Yuanxin WU; Junfeng ZHANG

    2008-01-01

    The partial molar volumes of components in supercritical ammonia synthesis system are calculated in detail by the calculation formula of partial molar volume derived from the R-K equation of state under different conditions. The objectives are to comprehend phase beha-vior of components and to provide the theoretic explana-tion and guidance for probing novel processes of ammonia synthesis under supercritical conditions. The conditions of calculation are H2/N2= 3, at a concentra-tion of NH3 in synthesis gas ranging from 2% to 15%, Concentration of medium in supercritical ammonia syn-thesis system ranging from 20% to 50%, temperature ran-ging from 243 K to 699 K and pressure ranging from 0.1 MPa to 187 MPa. The results show that the ammonia synthesis system can reach supercritical state by adding a suitable supercritical medium and then controlling the reaction conditions. It is helpful for the supercritical ammonia synthesis that medium reaches supercritical state under the conditions of the corresponding total pres-sure and components near the normal temperature or near the critical temperature of medium or in the range of tem-perature of industrialized ammonia synthesis.

  8. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Desmet, Gert; Broeckhoven, Ken

    2013-08-30

    Although supercritical fluid chromatography (SFC) is becoming a technique of increasing importance in the field of analytical chromatography, methods to compare the performance of SFC-columns and separations in an unbiased way are not fully developed. The present study uses mathematical models to investigate the possibilities and limitations of the kinetic plot method in SFC as this easily allows to investigate a wide range of operating pressures, retention and mobile phase conditions. The variable column length (L) kinetic plot method was further investigated in this work. Since the pressure history is identical for each measurement, this method gives the true kinetic performance limit in SFC. The deviations of the traditional way of measuring the performance as a function of flow rate (fixed back pressure and column length) and the isopycnic method with respect to this variable column length method were investigated under a wide range of operational conditions. It is found that using the variable L method, extrapolations towards other pressure drops are not valid in SFC (deviation of ∼15% for extrapolation from 50 to 200bar pressure drop). The isopycnic method provides the best prediction but its use is limited when operating closer towards critical point conditions. When an organic modifier is used, the predictions are improved for both methods with respect to the variable L method (e.g. deviations decreases from 20% to 2% when 20mol% of methanol is added).

  9. Supercritical fluid extraction of vapor-deposited pyrene from carbonaceous coal stack ash.

    Science.gov (United States)

    Mauldin, R F; Vienneau, J M; Wehry, E L; Mamantov, G

    1990-11-01

    The efficiencies of extraction of vapor-deposited pyrene from a high-carbon coal stack ash by Soxhlet extraction with methanol, ultrasonic extraction with toluene, acid pretreatment and subsequent ultrasonic extraction with toluene, batch extraction with toluene, and supercritical fluid extraction (SFE) are compared. SFE using CO(2) or isobutane yielded extraction recoveries virtually identical with those obtained using ultrasonic or Soxhlet extraction processes. Collection of the SFE extract was performed by expansion into a solvent or onto the head of a gas chromatography (GC) column. No loss of extracted pyrene was observed upon collection of methanol-modified CO(2) SFE by expansion into methanol. Also, no loss of pure CO(2) SFE extract was observed upon collection on the head of a GC column. However, use of a methanol or toluene modifier for CO(2) SFE directly coupled to GC effected complete loss of extracted pyrene.

  10. ENGINEERING BULLETIN: SUPERCRITICAL WATER OXIDATION

    Science.gov (United States)

    This engineering bulletin presents a description and status of supercritical water oxidation technology, a summary of recent performance tests, and the current applicability of this emerging technology. This information is provided to assist remedial project managers, contractors...

  11. The fate of methanol in thermophilic-anaerobic environments

    NARCIS (Netherlands)

    Paulo, P.L.

    2002-01-01

    Methanol is a simple C1-compound, which sustains a complex web of possible degradation routes under anaerobic conditions. Methanol can be the main pollutant in some specific wastewaters, but it is also a compound that may be formed under natural conditions, as intermediate in the decomposition of or

  12. Extending the range of supercritical fluid chromatography by use of water-rich modifiers.

    Science.gov (United States)

    Liu, Jinchu; Regalado, Erik L; Mergelsberg, Ingrid; Welch, Christopher J

    2013-08-14

    In this study we investigate the recently reported use of water-containing modifiers for separation and purification of hydrophilic compounds by supercritical fluid chromatography. Improved peak shape is obtained for a variety of glycosides and otherwise hydrophilic compounds when 5% water is added to the methanol co-solvent used in SFC separations, and examples of the use of this approach in preparative SFC purifications are presented.

  13. SOLID PHASE TRANSITION OF SYNDIOTACTIC POLYSTYRENE IN SUPERCRITICAL CO2

    Institute of Scientific and Technical Information of China (English)

    Yu-ying Li; Jia-song He

    2002-01-01

    Solid phase transition of the a form crystals to the β form crystals in syndiotactic polystyrene (sPS) samples has occurred in supercritical CO2. This transformation is different from those detected under other conditions. The effects of some factors (e.g. time, temperature, and pressure) on the solid phase transformation of sPS in supercritical CO2 were analyzed in detail. Experimental results show that longer time, higher temperature or higher pressure favors the transformation of the α form crystals to the β form crystals.

  14. Research Progress on Preparation of Graphene by Supercritical Fluid Exfoliation

    Directory of Open Access Journals (Sweden)

    HU Sheng-fei

    2017-03-01

    Full Text Available As a new type of two-dimensional carbonaceous material, graphene has excellent physical properties and great application potential. The key problem to realize graphene industrialization is to find a large-scale preparing method of graphene with high quality and low cost. In this paper, the advantages and disadvantages of preparation methods for graphene were first reviewed, and then the mechanism, research status and characterization methods of supercritical fluids exfoliated method were introduced in details. And the features of supercritical fluids exfoliated method with the assistance of ultrasonication and pyrene-polymers were summarized. The advantages of supercritical fluids exfoliated method are simple equipment, processing conditions easy to achieve and products with high quality, and a new way of thinking for the industrial production of graphene is provided.

  15. Application of Neutron Radiography to Flow Visualization in Supercritical Water

    Science.gov (United States)

    Takenaka, N.; Sugimoto, K.; Takami, S.; Sugioka, K.; Tsukada, T.; Adschiri, T.; Saito, Y.

    Supercritical water is used in various chemical reaction processes including hydrothermal synthesis of metal oxide nano-particles, oxidation, chemical conversion of biomass and plastics. Density of the super critical water is much less than that of the sub-critical water. By using neutron radiography, Peterson et al. have studied salt precipitation processes in supercritical water and the flow pattern in a reverse-flow vessel for salt precipitation, and Balasko et al. have revealed the behaviour of supercritical water in a container. The nano-particles were made by mixing the super critical flow and the sub critical water solution. In the present study, neutron radiography was applied to the flow visualization of the super and sub critical water mixture in a T-junction made of stainless steel pipes for high pressure and temperature conditions to investigate their mixing process. Still images by a CCD camera were obtained by using the neutron radiography system at B4 port in KUR.

  16. Application of supercritical antisolvent method in drug encapsulation: a review

    Directory of Open Access Journals (Sweden)

    Kalani M

    2011-07-01

    Full Text Available Mahshid Kalani, Robiah YunusChemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor Darul Ehsan, MalaysiaAbstract: The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer, nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution.Keywords: supercritical antisolvent method, drug encapsulation, particle size, drug release mechanisms, drug delivery

  17. Fischer-Tropsch Reaction Kinetics of Cobalt Catalyst in Supercritical Phase

    Institute of Scientific and Technical Information of China (English)

    Abdullah Irankhah; Ali Haghtalab; Ebrahim Vasheghani Farahani; Kambiz Sadaghianizadeh

    2007-01-01

    Fischer-Tropsch synthesis under supercritical phase condition was examined in a continuous and a high-pressure fixed bed reactor by employing a cobalt catalyst (Co-Ru/γ-Al2O3). An integral reactor model involving Fischer-Tropsch reaction kinetics in the supercritical fluid n-hexane was used to describe the overall performance. On the basis of Langmuir-Hinshelwood-Hougen-Watson (LHHW) model, the reaction rate constants were obtained for the rate equations of CO conversion to CH4 formation under supercritical conditions.

  18. Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions.

    Science.gov (United States)

    García-Pérez, Teresa; Le Borgne, Sylvie; Revah, Sergio

    2016-12-01

    The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H2S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O3) and hydrogen peroxide (H2O2). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m(-3) h (-1) (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m(-3) h(-1) of O3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m(-3) h(-1) (81 % RE) and 15.8 g m(-3) h(-1) (97 % RE) for MeOH and H2S, respectively. After O3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O3 load of 4.8 ± 0.1 g m(-3) h(-1) for 7 days, followed by H2O2 addition for 23 days, registering 607.5 gbiomass L(-1)packing before and 367.5 gbiomass L(-1)packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O3 was present while the fungal population was less affected.

  19. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  20. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    Directory of Open Access Journals (Sweden)

    A Vatanara

    2009-03-01

    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  1. Manometric determination of supercritical gas sorption in coal

    NARCIS (Netherlands)

    Van Hemert, P.

    2009-01-01

    The characteristics of the manometric method are investigated so that it can be used to obtain accurate data of sorption of supercritical gas in coal. Furthermore, data of the sorption of carbon dioxide, methane and nitrogen in coal at in situ conditions have been determined. Accurate data are req

  2. The solubilities of phosphate and sulfate salts in supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2010-01-01

    Inorganic compounds are regularly present in aqueous streams. To understand their influence and behavior on these streams at supercritical conditions, little to no property data is available, which can be used as starting point for further research or application design. Since inorganic compounds te

  3. Nanotechnology and supercritical fluids | Hamidreza | Journal of ...

    African Journals Online (AJOL)

    Several techniques have been proposed to produce nanomaterials using ... of the supercritical based techniques applied to the production of nanoparticles materials. Keywords: Supercritical fluids; Nanoparticles; SCF technology; RESS; SAS.

  4. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale.

    Science.gov (United States)

    Song, Wei; Qiao, Xue; Liang, Wen-fei; Ji, Shuai; Yang, Lu; Wang, Yuan; Xu, Yong-wei; Yang, Ying; Guo, De-an; Ye, Min

    2015-10-01

    Curcumin is the major constituent of turmeric (Curcuma longa L.). It has attracted widespread attention for its anticancer and anti-inflammatory activities. The separation of curcumin and its two close analogs, demethoxycurcumin and bisdemethoxycurcumin, has been challenging by conventional techniques. In this study, an environmentally friendly method based on supercritical fluid chromatography was established for the rapid and facile separation of the three curcuminoids directly from the methanol extract of turmeric. The method was first developed and optimized by ultra performance convergence chromatography, and was then scaled up to preparative supercritical fluid chromatography. Eluted with supercritical fluid CO2 containing 8-15% methanol (containing 10 mM oxalic acid) at a flow rate of 80 mL/min, curcumin, demethoxycurcumin and bisdemethoxycurcumin could be well separated on a Viridis BEH OBD column (Waters, 250 mm × 19 mm, 5 μm) within 6.5 min. As a result, 20.8 mg of curcumin (97.9% purity), 7.0 mg of demethoxycurcumin (91.1%), and 4.6 mg of bisdemethoxycurcumin (94.8%) were obtained after a single step of supercritical fluid chromatography separation with a mean recovery of 76.6%. Showing obvious advantages in low solvent consumption, large sample loading, and easy solvent removal, supercritical fluid chromatography was proved to be a superior technique for the efficient separation of natural products.

  5. Low temperature extraction and upgrading of oil sands and bitumen in supercritical fluid mixtures.

    Science.gov (United States)

    Brough, Sarah A; Riley, Sandra H; McGrady, G Sean; Tanhawiriyakul, Supaporn; Romero-Zerón, Laura; Willson, Christopher D

    2010-07-21

    Preliminary results are reported for the extraction and catalytic hydrocracking of Alberta bitumen and oil sands using supercritical fluid mixtures; high levels of extraction and upgrading were attained using reaction conditions significantly milder than those previously reported.

  6. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    Science.gov (United States)

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  8. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  9. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    Science.gov (United States)

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated.

  10. Destruction of energetic materials by supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-10-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400{degrees}C and 650{degrees}C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600{degrees}C. The reactions produce primarily N{sub 2}, N{sub 2}O,CO{sub 2}, and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525{degrees}C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100{degrees}C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented.

  11. Supercritical CO2 extraction of Schinus molle L with co-solvents: mathematical modeling and antimicrobial applications

    OpenAIRE

    Rodrigo Scopel; Roberto Góes Neto; Manuel Alves Falcão; Eduardo Cassel; Rubem Mário Figueiró Vargas

    2013-01-01

    This work investigates the antimicrobial activity of the Schinus molle L. leaves extracts obtained under supercritical conditions using carbon dioxide and co-solvents. Antimicrobial qualitative evaluation was carried out through the bioautography technique and the microorganisms studied were Staphylococcus aureus, Pseudomonas aeruginosas, Escherichia coli, Micrococcus luteus, and Salmonella choleraesuis. The supercritical fluid extraction was carried out in a pilot scale equipment using carbo...

  12. Sterion membranes in Direct Methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J. J.; Lobato, J.; Canizares, P.; Rodrigo, M. A.; Fernandez, A.

    2005-07-01

    Direct Methanol Fuel Cells (DMFCs) has been postulated as an alternative to traditional hydrogen fed Polymer Electrolyte Membrane Fuel Cells (H2-PEMFCs). Among their advantages, it can be pointed out the low cost of the fuel, simplicity of design, large availability, easy handling and distribution. However, there are still some challenges in this field, such as the development of electrocatalysts which can enhance the electrokinetics of methanol oxidation, the discovery of an electrolyte membrane with high conductivity and low methanol crossover at the same time and the production of methanol-tolerant electrocatalysts with high activity for oxygen reduction. So far, Nafion 117 has been the polymer membrane most widely used in DMFCs. Yet, it is well known that Nafion (Du Pont Inc.) membranes are not good barrier for methanol, so that the coulombic efficiency of Nafion-based DMFCs is significantly reduced by the chemical oxidation of methanol in the cathode. Recently, a new perfluorinated polymer with sulphonic acid groups (PFSA) has been developed, under the commercial name of Sterion (David Fuel Cell Components). As a difference as opposed to Nafion, this membrane is cast by the solution casting method, which provides a different sulphonic cluster configuration as compared to the extrusion cast Nafion membranes, which may give rise to different methanol crossover behaviour. In this work, it has been studied and analysed the suitability of Sterion in the DMFCs field. For that, it has been measured the methanol permeability of this membrane at different solute concentration and temperature, and its performance in an actual fuel cell at different operational conditions, such as methanol concentration, temperature and back pressure. Tests have been made using both oxygen and air in the cathode and half-cell potentials have been evaluated in some measurements in order to discriminate the contribution of both semi-reactions to the overall cell overvoltage. A lifetime

  13. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  14. Hollow nano-particles formation for CuO-CeO2-ZrO2 via a supercritical anti-solvent process

    Institute of Scientific and Technical Information of China (English)

    姜浩锡; 周佳丽; 孙焕花; 李永辉; 张敏华

    2016-01-01

    Hollow CuO-CeO2-ZrO2nano-particles were prepared with supercritical anti-solvent apparatus by using methanol as sol-vent and supercritical carbon dioxide as anti-solvent. Two key factors (i.e., pressure and temperature) were investigated to explore the effects of catalyst structure and physic-chemical properties (i.e., morphology, reducing property, oxygen storage capacity and specific surface area). The resulting materials were characterized with X-ray diffraction (XRD), high resolution transmission electron micros-copy (HRTEM), Brunauer-Emmett-Teller (BET),hydrogen temperature programmed reduction (H2-TPR) and oxygen storage capac-ity (OSC) measurement, respectively. The experimental results showed that lower temperatures promoted production of hollow struc-ture nano-particulates. The particle morphology also changed significantly, i.e. the solid construction was first transferred to hollow structure then back to solid construction. The optimal conditions for obtaining hollow nano-particles were determined at 45 °C, 18.0–24.0 MPa.

  15. Experimental study on heat transfer characteristics of supercritical carbon dioxide in horizontal tube

    Institute of Scientific and Technical Information of China (English)

    Jing LV; Meng FU; Na QIN; Bin DONG

    2008-01-01

    The heat transfer characteristics of supercrit-ical carbon dioxide in a horizontal tube with water in the vertical cross flow form were experimentally investi-gated. The results indicate that the changes of inlet pres-sure, mass flow rate, and cooling water flow rate have major effects on heat transfer performance. The varia-tions of Reynolds number and Prandtl number were obtained in counter flow and vertical cross flow. The four conventional correlations for convection heat transfer of supercritical carbon dioxide were verified by the experi-mental data in this study and the correlation agree with this experimental condition was determined.

  16. Conversion of a deasphalting unit for use in the process of supercritical solvent recovery

    Directory of Open Access Journals (Sweden)

    Waintraub S.

    2000-01-01

    Full Text Available In order to reduce energy consumption and to increase deasphalted oil yield, an old PETROBRAS deasphalting unit was converted for use in the process of supercritical solvent recovery. In-plant and pilot tests were performed to determine the ideal solvent-to-oil ratio. The optimum conditions for separation of the supercritical solvent from the solvent-plus-oil liquid mixture were determined by experimental tests in PVT cells. These tests also allowed measurement of the dew and bubble points, determination of the retrograde region, observation of supercritical fluid compressibility and as a result construction of a phase equilibrium diagram.

  17. Effect of cobalt on the Anaerobic Thermophilic Conversion of Methanol

    NARCIS (Netherlands)

    Paulo, P.L.; Jiang, B.; Cysneiros, D.; Stams, A.J.M.

    2004-01-01

    The importance of cobalt on the anaerobic conversion of methanol under thermophilic conditions was studied in three parallel lab-scale UASB-reactors and in cobalt-limited enriched cultures. Reactors R1, R2, and R3 were fed with methanol in a bicarbonate-buffered medium, supplied with iron and

  18. Supercritical Fluid Reactions for Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  19. Supercritical Water Oxidation Data Acquisition Testing

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Garcia

    1996-08-01

    Supercritical Water Oxidation (SCWO) is a high pressure oxidation process that blends air, water, and organic waste material in an oxidizer in which where the temperature and pressure in the oxidizer are maintained above the critical point of water. Supercritical water mixed with hydrocarbons, which would be insoluble at subcritical conditions, forms a homogeneous phase which possesses properties associated with both a gas and a liquid. Hydrocarbons in contact with oxygen and SCW are readily oxidized. These properties of SCW make it an attractive means for the destruction of waste streams containing organic materials. SCWO technology holds great promise for treating mixed wastes in an environmentally safe and efficient manner. In the spring of 1994 the U.S. Department of Energy (DOE) initiated a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the SCWO technology. The program concentrated on the acquisition of data through pilot plant testing. The Phase I DOE testing used a simulated waste stream that contained a complex machine cutting oil and metals, that acted as surrogates for radionuclides. The Phase II Navy testing included pilot testing using hazardous waste materials to demonstrate the effectiveness of the SCWO technology. The SCWODAT program demonstrated that the SCWO process oxidized the simulated waste stream containing complex machine cutting oil, selected by DOE as representative of one of the most difficult of the organic waste streams for which SCWO had been applied. The simulated waste stream with surrogate metals in solution was oxidized, with a high destruction efficiency, on the order of 99.97%, in both the neutralized and unneutralized modes of operation.

  20. Toward Better Modeling of Supercritical Turbulent Mixing

    Science.gov (United States)

    Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth

    2008-01-01

    study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.

  1. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.

    Science.gov (United States)

    Zhao, Yan; Lu, Wen-Jing; Wu, Hua-Yong; Liu, Jin-Wen; Wang, Hong-Tao

    2012-12-01

    A flow reaction system was utilized to investigate lignocellulose conversion using combined supercritical/subcritical conditions for hexose production. Initially, investigation of cellulose hydrolysis in supercritical water and optimization of reaction parameters were done. Oligosaccharide yields reached over 30% at cellulose concentrations of 3-5 gL(-1) and reaction times of 6-10s at 375 °C, and 2.5-4 gL(-1) and 8-10s at 380 °C. Temperatures above 380 °C were not appropriate for the supercritical phase in the combined process. Subsequently, conversion of lignocellulosic materials under combined supercritical/subcritical conditions was studied. Around 30% hexose was produced from corn stalks under the optimal parameters for supercritical (380 °C, 23-24 MPa, 9-10s) and subcritical (240 °C, 8-9 MPa, 45-50s) phases. Flow systems utilizing the combined supercritical/subcritical technology present a promising method for lignocellulosic conversion. The results of this study provide an important guide for the operational optimization and practical application of the proposed system.

  2. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography.

    Science.gov (United States)

    West, Caroline; Khalikova, Maria A; Lesellier, Eric; Héberger, Károly

    2015-08-28

    The identification of a suitable stationary phase in supercritical fluid chromatography (SFC) is a major source of difficulty for those with little experience in this technique. Several protocols have been suggested for column classification in high-performance liquid chromatography (HPLC), gas chromatography (GC), and SFC. However, none of the proposed classification schemes received general acceptance. A fair way to compare columns was proposed with the sum of ranking differences (SRD). In this project, we used the retention data obtained for 86 test compounds with varied polarity and structure, analyzed on 71 different stationary phases encompassing the full range in polarity of commercial packed columns currently available to the SFC chromatographer, with a single set of mobile phase and operating conditions (carbon dioxide-methanol mobile phase, 25°C, 150bar outlet pressure, 3ml/min). First, a reference column was selected and the 70 remaining columns were ranked based on this reference column and the retention data obtained on the 86 analytes. As these analytes previously served for the calculation of linear solvation energy relationships (LSER) on the 71 columns, SRD ranks were compared to LSER methodology. Finally, an external comparison based on the analysis of 10 other analytes (UV filters) related the observed selectivity to SRD ranking. Comparison of elution orders of the UV filters to the SRD rankings is highly supportive of the adequacy of SRD methodology to select similar and dissimilar columns.

  3. Measurement and estimation of species distribution in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Selahattin; Mat, Mahmut D. [Nigde University, Mechanical Engineering Department, 51100 Nigde (Turkey)

    2010-03-15

    Determination of methanol concentration in a direct methanol fuel cell is crucial for design improvement and performance enhancement. Methanol and water concentrations in a direct methanol fuel cell are experimentally and numerically investigated. In the experimental program, a single cell direct methanol fuel cell is developed and an experimental setup is devised to measure methanol and water concentrations and performance of the cell depending on operating conditions. In theoretical program a mathematical model which includes fluid flow, species distribution, electric field and electrochemistry is adapted and numerically solved. The results showed that the performance of a Direct Methanol Fuel Cell (DMFC) is mainly influenced by operating temperature. A large drop in methanol concentration methanol is measured at the inlet section of cell. The mathematical model is found to satisfactorily capture main physics involved in a DMFC. (author)

  4. Improvement of biodiesel methanol blends

    Directory of Open Access Journals (Sweden)

    Y. Datta Bharadwaz

    2016-06-01

    Full Text Available The main objective of this work was to improve the performance of biodiesel–methanol blends in a VCR engine by using optimized engine parameters. For optimization of the engine, operational parameters such as compression ratio, fuel blend, and load are taken as factors, whereas performance parameters such as brake thermal efficiency (Bth and brake specific fuel consumption (Bsfc and emission parameters such as carbon monoxide (CO, unburnt hydrocarbons (HC, Nitric oxides (NOx and smoke are taken as responses. Experimentation is carried out as per the design of experiments of the response surface methodology. Optimization of engine operational parameters is carried out using Derringers Desirability approach. From the results obtained it is inferred that the VCR engine has maximum performance and minimum emissions at 18 compression ratio, 5% fuel blend and at 9.03 kg of load. At this optimized operating conditions of the engine the responses such as brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburnt hydrocarbons, nitric oxide, and smoke are found to be 31.95%, 0.37 kg/kW h, 0.036%, 5 ppm, 531.23 ppm and 15.35% respectively. It is finally observed from the mathematical models and experimental data that biodiesel methanol blends have maximum efficiency and minimum emissions at optimized engine parameters.

  5. The toxicity of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Tephly, T.R. (Univ. of Iowa, Iowa City (USA))

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  6. Supercritical fluid extraction and gas chromatography or electroanalysis of metal chelates from different sample matrices

    Science.gov (United States)

    Arancibia; Segura; Leiva; Contreras; Valderrama

    2000-01-01

    The supercritical fluid extraction of Pb(DDC)2 and MoO2(acac)2 complexes is performed. The previously formed complexes are used in order to simplify the extraction process. In the extraction cell, 9.0 mg of Pb(DDC)2 or 30.0 mg of MoO2(acac)2 is added. With these two complexes, a study of static and dynamic extraction as a function of pressure (1000-2500 psi), temperature (40-160 degrees C), and presence of modifier (methanol) is performed. Under the best conditions, 5.6 mg of Pb(DDC)2 (2.3 mg of Pb2+) is recovered. The parameters are 2500 psi of pressure, 160 degrees C of temperature, 0.5 mL methanol (placed in a 10-mL extraction cell), 60.0 min of static extraction, and 2.0 min of dynamic extraction. It is necessary to add 3.0 mL of methanol to enhance efficiency on the MoO2(acac)2 complex recovery. Quantitative extractions of MoO2(acac)2 (9.0 mg of MoVI) are obtained when the experiments are carried out under 1000-2500 psi of pressure, 140 degrees C, and times no longer than 10.0 min. Then, the study is carried out forming the in situ complexes. For this purpose, metallic ion and ligand are added. Under these conditions, the Pb2+ recovery decreases from 2.3 to 1.9 mg, and the MoVI recovery decreases from 9.0 to 1.0 mg. When 1.9 mg of Pb2+ and 1.0 mg of MoVI or less is placed in the extraction cell, the recoveries are always 100%. The Pb2+ extracts are directly accomplished using gas chromatography-flame ionization detection (GC-FID), and the MoVI extracts are analyzed using GC-FID and catalytic adsorption voltammetry. The quantitation of pure extracts is carried out by constructing calibration curves with complex solutions and sample solutions using the standard addition method. This method is applied by determination of Pb2+ in sodium alginate extracted from algae and blood, urine, and human milk from patients with diagnosed plumbunemy. MoVI is determined in irrigation water and pasture of animal intake.

  7. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  8. Electrochemistry in Near-Critical and Supercritical Fluids. 7. SO2

    Science.gov (United States)

    1989-05-12

    Supercritical Fluids. 7. S02 N | By C.R. Cabrera, E. Garcia, and A.J. Bard Prepared for Publication in Journal of Electroanalytical Chemistry DTICS ELECTE MAY...Submitted to the Journal of Electroanalytical Chemistry as a Note December 1988 waves at all temperatures, including supercritical conditions, are...1988) 4377. (7) R. M. Wightman and D. D. Wipf in " Electroanalytical Chemistry ’, A. J. Bard, ed., Marcel Dekker, New York, 1988, Vol. 15, p. 267. (8

  9. Development of Theoretical Methods for Predicting Solvent Effects on Reaction Rates in Supercritical Water Oxidation Processes

    Science.gov (United States)

    2007-11-02

    Tucker, manuscript in preparation. “Examination of Nonequilibrium Solvent Effects on an SN2 Reaction in Supercritical Water,” R. Behera, B...DATES COVERED Final: 7/1/99 - 12/31/02 4. TITLE AND SUBTITLE Development of theoretical methods for predicting solvent effects on reactions ...computational methods for predicting how reaction rate constants will vary with thermodynamic condition in supercritical water (SCW). Towards this

  10. Supercritical Fluid Extraction: Present Status and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    King, J. W.

    2002-07-01

    Supercritical extraction (SFE), using primarily environmentally-benign carbon dioxide (CO{sub 2}) as the extraction agent, is reviewed with respect to its present status and future use. SFE was developed for analytical application in the mid 1980's in response to the desire to reduce the use of organic solvents in the laboratory environment and is becoming a standard method for the preparation and analysis of lipid-containing sample matrices. Currently, analytical SFE is predominately practiced in the off-line mode, using both sequential and parallel extraction modes. Depending on the instrumental configuration, the preparation of up to 24 samples can be accomplished on one instrument on a daily basis. Several other benefits can be achieved using SFE, such as the processing of thermally-sensitive analytes and rapid analyte extraction kinetics relative to extraction with liquid solvents. Examples are provided not only of the analytical SFE of oils and fats, but of volatile solutes from an array of sample types. Finally, the relevance of analytical SFE to processing with supercritical fluids (SFs) is documented using examples from our own research involving a combinatorial approach to optimising processing conditions. (Author) 70 refs.

  11. Supercritical Fluid Extraction of Palm Carotenoids

    Directory of Open Access Journals (Sweden)

    Puah C. Wei

    2005-01-01

    Full Text Available The extraction of carotenoids from crude palm oil was carried out in a dynamic (flow- through supercritical fluid extraction system. The carotenoids obtained were quantified using off-line UV-visible spectrophotometry. The effects of operating pressure and temperature, flow rate of the supercritical carbon dioxide (SC-CO2, sample size of feed used on the solubility of palm carotenoids were investigated. The results showed that the extraction of carotenoids was governed by its solubility in the SC-CO2 and can be enhanced by increasing pressure at a constant temperature or decreasing temperature at a constant pressure. Increasing the flow rate and decreasing the sample size can reduce the extraction time but do not enhance the solubility. Palm carotenoids have very low solubility in SC-CO2 in the range of 1.31 x 10-4 g kg-1 to 1.58 x 10-3 g kg-1 for the conditions investigated in this study. The experimental data obtained were compared with those published by other workers and correlated by a density-based equation as proposed by Chrastil.

  12. Removing Solids From Supercritical Water

    Science.gov (United States)

    Hong, Glenn T.

    1992-01-01

    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  13. Supercritical fluid chromatography for lipid analysis in foodstuffs.

    Science.gov (United States)

    Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi

    2017-01-01

    The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids.

  14. Preparation of Aromatic Polycarbonate Nanoparticles using Supercritical Carbon Dioxide

    Science.gov (United States)

    Lee, Jun-Young; Song, Cheong-Hun; Kim, Joong-In; Kim, Jung-Hyun

    2002-04-01

    A novel synthetic process for producing aromatic polycarbonate (PC) nanoparticles using supercritical CO2 was developed. The objective of the present research work was to synthesize high molecular weight PC nanoparticles using transesterification between bisphenol-A (BPA) and diphenyl carbonate (DPC) in supercritical CO2 which is an excellent plasticizing agent and a good solvent for phenol, a by-product of the reaction. Poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) tri-block copolymer with CO2-phobic anchor and CO2-philic tail group was used as a stabilizer for the preparation of stable dispersions of BPA-DPC mixture in a CO2 continuous phase. As the reaction was proceeding, phenol formed from the reaction was dissolved and diffused into supercritical CO2 phase. The PC nanoparticles were isolated by simple venting of the supercritical CO2 from the reactor. Spherical morphology of PC particles was confirmed by scanning electron microscopy. Particle size and morphology of PC particles were modified upon variation of the process conditions. The resulting PC particles with a nano-size of 30-140 nm have a high molecular weight ( M w) of 3.1×105 (g/mol).

  15. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  16. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.; Hulshoff Pol, L.W.; Lettinga, G.

    2000-01-01

    Sulfate reduction outcompeted methanogenesis at 65°C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 3.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors

  17. Time- and space-resolved high energy operando X-ray diffraction for monitoring the methanol to hydrocarbons reaction over H-ZSM-22 zeolite catalyst in different conditions

    Science.gov (United States)

    del Campo, Pablo; Slawinski, Wojciech Andrzej; Henry, Reynald; Erichsen, Marius Westgård; Svelle, Stian; Beato, Pablo; Wragg, David; Olsbye, Unni

    2016-06-01

    The conversion of methanol to hydrocarbons (MTH) over H-ZSM-22 was studied by operando time- and space-resolved X-ray diffraction (XRD) at 370-385 °C and WHSV = 2 g/g h at the Swiss-Norwegian Beamline at ESRF. The performance of a commercial H-ZSM-22 sample was compared before and after acid-base treatment, and with and without propanol co-feed, respectively. N2 adsorption, Scanning Electron Microscopy and propyl amine desorption experiments showed that acid-base treatment led to enhanced accessibility of acid sites, mainly due to the formation of mesopores between agglomerated H-ZSM-22 crystals. The catalytic set-up allowed us to simultaneously observe the catalyst activity and unit cell volume variations by time- and space-resolved HXRD in operando conditions. The expansion of the unit cell and final flattening at different positions in the catalytic bed matched very nicely with the catalytic activity gradients. Different scenarios provided different behaviors and gave insights in the effect of morphology and co-feed process on the activity in the MTH process. This technique is the only one which has so far been able to provide direct evidence of the behavior of the species inside the catalytic reactor.

  18. Initial instability of round liquid jet at subcritical and supercritical environments

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2016-07-15

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N{sub 2}) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N{sub 2} environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N{sub 2} and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N{sub 2} as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  19. Initial instability of round liquid jet at subcritical and supercritical environments

    Science.gov (United States)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-07-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  20. Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

    Science.gov (United States)

    Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.

    2006-01-01

    Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.

  1. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    P. Zacchi

    2006-03-01

    Full Text Available Wheat germ oil was obtained by mechanical pressing using a small-scale screw press and by supercritical extraction in a pilot plant. With this last method, different pressures and temperatures were tested and the tocopherol concentration in the extract was monitored during extraction. Then supercritical extracted oil as well as commercial pressed oil were deacidified in a countercurrent column using supercritical carbon dioxide as solvent under different operating conditions. Samples of extract, refined oil and feed oil were analyzed for free fatty acids (FFA and tocopherol contents. The results show that oil with a higher tocopherol content can be obtained by supercritical extraction-fractionation and that FFA can be effectively removed by countercurrent rectification while the tocopherol content is only slightly reduced.

  2. Measurement and theoretical analysis of the adsorption of supercritical methane on superactivated carbon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0 10 MPa and 233 333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ±2%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsorbate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.

  3. Measurement and theoretical analysis of the adsorption of supercritical methane on superactivated carbon

    Institute of Scientific and Technical Information of China (English)

    周理; 李明; 周亚平

    2000-01-01

    Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0-10 MPa and 233-333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ?%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsor-bate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.

  4. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    Science.gov (United States)

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  5. Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number

    CERN Document Server

    Battista, Francesco; Casciola, Carlo Massimo

    2014-01-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations (DNS) of a coaxial jet of a slightly supercritical Van der Waals fluid. Since acoustic effects are irrelevant in the Low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly superc...

  6. Supercritical fluid chromatography for the separation of isoflavones.

    Science.gov (United States)

    Ganzera, Markus

    2015-03-25

    The first protocol for the analysis of isoflavones by supercritical fluid chromatography is reported. Optimum results were obtained on an Acquity UPC(2) BEH 1.7 μm column, using a solvent gradient of supercritical carbon dioxide and methanol (with phosphoric acid as additive) for elution. The method enables the baseline separation of nine isoflavones (aglyca and glycosides) in 8 min, and is suitable for their quantitative determination in dietary supplements containing soy (Glycine max), red glover (Trifolium pratense) and kudzu (Pueraria lobata). Method validation confirmed that the assay is selective, linear (R(2)≥0.9994), accurate (recovery rates from 97.6 to 102.4%), as well as precise on the short- and long-term level (intra-day precision ≤2.1%), and shows an on-column detection limit of 0.2 ng and below. This, together with an excellent performance shown in the analysis of real samples, indicates that SFC is well suited for the fast and accurate determination of isoflavones in complex matrices. Disadvantages compared to the established approaches were not observed, so that SFC has to be considered in this case as an (at least) equivalent analytical alternative.

  7. Supercritical biodiesel production and power cogeneration: technical and economic feasibilities.

    Science.gov (United States)

    Deshpande, A; Anitescu, G; Rice, P A; Tavlarides, L L

    2010-03-01

    An integrated supercritical fluid technology with power cogeneration to produce biodiesel fuels, with no need for the costly separations involved with the conventional technology, is proposed, documented for technical and economic feasibility, and preliminarily designed. The core of the integrated system consists of the transesterification of various triglyceride sources (e.g., vegetable oils and animal fats) with supercritical methanol/ethanol. Part of the reaction products can be combusted by a diesel power generator integrated in the system which, in turn, provides the power needed to pressurize the system and the heat of the exhaust gases necessary in the transesterification step. The latter energy demand can also be satisfied by a fired heater, especially for higher plant capacities. Different versions of this system can be implemented based on the main target of the technology: biodiesel production or diesel engine applications, including power generation. The process options considered for biodiesel fuel production estimate break-even processing costs of biodiesel as low as $0.26/gal ($0.07/L) with a diesel power generator and $0.35/gal ($0.09/L) with a fired heater for a plant capacity of 15,000 gal/day (56,775 L/day). Both are significantly lower than the current processing costs of approximately $0.51/gal ($0.13/L) of biodiesel produced by conventional catalytic methods. A retail cost of biodiesel produced by the proposed method is likely to be competitive with the prices of diesel fuels.

  8. Universal scaling behavior of supercritical matter

    CERN Document Server

    Bolmatov, Dima; Trachenko, K

    2013-01-01

    Properties of supercritical fluids have been of enduring interest since the critical phenomena were discovered by Cagniard de la Tour in 1822, stimulating fundamental theoretical work and development of experimental techniques. Here, we study the thermodynamic properties of the supercritical state, and discover that specific heat shows a crossover between two different dynamic regimes of the low-temperature rigid liquid and high-temperature non-rigid supercritical fluid. We formulate a theory of heat capacity above the crossover, and find good agreement between calculated and experimental data for rare-gas supercritical liquids (Ne, Ar, Kr and Xe) with no free fitting parameters. We derive the relationship between scaling exponents of heat capacity and viscosity in the supercritical region, and show that these exponents exhibit universality. The universality is explained by the universal temperature behavior of the maximal length of the longitudinal phonons that can exist in the supercritical system and that ...

  9. Methanol - alternative fuel road traffic

    Energy Technology Data Exchange (ETDEWEB)

    Muendler, H.

    1980-09-01

    This brochure names the fuel properties that are required for road traffic, discusses the replacement of petrol by methanol, discusses the possibilities of manufacturing methanol, draws up a timetable and an organigram for a (M-15) large scale test and compares costs of petrol, methanol, synthesis process petrol and hydrogenation process petrol. Furthermore, the technical requirements of vehicles as well as test results of exhaust gas emissions are also discussed.

  10. Pulsed discharge plasmas in supercritical carbon dioxide

    OpenAIRE

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C. H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C.; Sasaki, M.; Goto, M.; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ

    2005-01-01

    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...

  11. Supercritical Water Reactor Cycle for Medium Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  12. Exploration of the gasification of Spirulina algae in supercritical water.

    Science.gov (United States)

    Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

    2012-09-01

    This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported.

  13. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Lipidomics by Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Laurent Laboureur

    2015-06-01

    Full Text Available This review enlightens the role of supercritical fluid chromatography (SFC in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC. It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering or highly specific (mass spectrometry detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides defined by the LIPID MAPS consortium.

  15. Lipidomics by Supercritical Fluid Chromatography

    Science.gov (United States)

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  16. Inhibitory effect of monogalactosyldiacylglycerol, extracted from spinach using supercritical CO2, on mammalian DNA polymerase activity.

    Science.gov (United States)

    Iijima, Hiroshi; Musumi, Keiichi; Hada, Takahiko; Maeda, Naoki; Yonezawa, Yuko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2006-03-08

    We investigated the effective extraction of monogalactosyldiacylglycerol (MGDG) from dried spinach (Spinacia oleracea) using supercritical fluid carbon dioxide (SC-CO(2)) with a modifier/entrainer. The yield of MGDG in the SC-CO(2) extract was not influenced by increasing temperature at a constant pressure, although the total extract yield was decreased. The total extract yield and MGDG yield in the extract from commercially purchased spinach (unknown subspecies), were greatly influenced by lower pressure. In a modifier (i.e., ethanol) concentration range of 2.5-20%, both the extract and MGDG yield increased as the ethanol concentration rose. The highest total extract yield (69.5 mg/g of spinach) and a good MGDG yield (16.3 mg/g of spinach) were obtained at 80 degrees C, 25 MPa, and 20% ethanol. The highest MGDG concentration (76.0% in the extract) was obtained at 80 degrees C, 25 MPa, and 2.5% ethanol, although the total extract yield under these conditions was low (5.2 mg/g of spinach). The optimal conditions for the extraction of MGDG were 80 degrees C, 20 MPa, and 10% ethanol. Of the 11 subspecies of spinach tested under these conditions, "Ujyou" had the highest concentration of MGDG. The total extract yield and MGDG concentration of Ujyou were 20.4 mg of the extract/g of spinach and 70.5%, respectively. The concentration of MGDG was higher in the SC-CO(2) extract than in the extract obtained using solvents such as methanol and n-hexane. The extract of Ujyou, which was the optimal subspecies for the extraction of MGDG, inhibited the activity of calf DNA polymerase alpha with IC(50) values of 145 microg/mL but was not effective against DNA polymerase beta.

  17. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  18. Gasification of cyanobacterial in supercritical water.

    Science.gov (United States)

    Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

    2014-01-01

    Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG.

  19. Etching of glass microchips with supercritical water.

    Science.gov (United States)

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  20. Effect of process parameters on the recrystallization and size control of puerarin using the supercritical fluid antisolvent process

    Directory of Open Access Journals (Sweden)

    Ying Li

    2016-04-01

    Full Text Available The purpose of this study was to investigate the influence of the supercritical CO2 processing on the particle size and morphology of puerarin crystals. The process parameters included solvents, temperature, pressures, antisolvent times, addition volumes, antisolvent addition rates and solute concentrations. After being processed, the dramatic reduction of the dimensions and the change of the crystal shape were noticed. Decreasing the antisolvent addition rate, increasing the temperature and the addition volume below 50 ml led to a decrease in size. The new crystal of puerarin generated at the optimal conditions was 30.34 µm. The solvent of methanol and the concentration of 60 mg/ml were found to determine the type and degree of crystallinity of particles. These results showed that this process has the potential to produce a drug recrystallization product with newly generated crystal forms and the size of drug particles could be controlled through the tuning of various experimental conditions.

  1. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  2. Synthesis of siliceous hollow spheres with large mesopore wall structure by supercritical CO2-in-water interface templating.

    Science.gov (United States)

    Wang, Jiawei; Xia, Yongde; Wang, Wenxin; Mokaya, Robert; Poliakoff, Martyn

    2005-01-14

    Hollow silica spheres with large mesopore wall structures have been synthesized via CO(2)-in-water emulsion templating in the presence of PEO-PPO-PEO block copolymers under supercritical fluid conditions.

  3. Supercritical Fluid Chromatography, Pressurized Liquid Extraction and Supercritical Fluid Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Matthew C.; Yonker, Clement R.

    2006-06-15

    In this review we examine the related fields of supercritical fluid chromatography (SFC) and supercritical fluid extraction (SFE). We reviewed the published literature in the period from November 2003 to November 2005. Well over 300 papers were published in this period. This large body of work indicates continuing active growth of the field, but an exhaustive review is beyond the scope of this work. We have chosen to include a sampling of publications that best represent the continuing trends and new ideas in the field. In keeping with past reviews on this subject1, we have broadened our scope to include fluid systems operating at high temperature and pressure, but below the critical point. Various terms have been applied to this state: sub-critical fluid extraction, pressurized liquid extraction, and accelerated solvent extraction. The term accelerated solvent extraction has been used by instrument manufacturers to refer to this process, but we will use the more descriptive term pressurized liquid extraction (PLE) to refer to these systems. Most of the research in the field is of an “evolutionary” rather than “revolutionary” nature. As in the previous review period, applications papers make up a majority of the published work. Pharmaceutical applications continue to be a strong theme. Most of the pharmaceutical work has centered on preparative, rather than analytical, separations. Chiral separations are an exception, as analytical scale separations of chiral compounds are an area of intense interest. Food and natural products represent the next largest body of work. Major themes are the isolation and characterization of high-value added foodstuffs, fragrances, and flavor compounds from novel natural materials or agricultural by-products. The areas of food, natural products, and pharmaceutical separation science converge in the area of so-called nutraceuticals. These are typically high-value products, either sold alone or as part of a fortified food, that

  4. Methylnaltrexone bromide methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Xinbo Zhou

    2012-03-01

    Full Text Available In the title compound [systematic name: (4R,4aS,7aR,12bS-3-cyclopropylmethyl-4a,9-hydroxy-7-oxo-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-3-ium bromide methanol monosolvate], C21H26NO4+·Br−·CH3OH, two of the three six-membered rings adopt chair conformations while the third, which contains a C=C double bond, adopts an approximate half-boat conformation. The 2,3-dihydrofuran ring adopts an envelope conformation. In the crystal, the components are linked by O—H...O and O—H...Br hydrogen bonds. The absolute stereochemistry was inferred from one of the starting materials.

  5. Alternative energies for road traffic - methanol. Alternative Energien fuer den Strassenverkehr - Methanol

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Methanol motor fuels are alternative fuels which can supplement to the supply with petrol and diesel fuel from mineral oil to a greater extent. Since 1979, a fleet comprising more than 1,000 vehicles is being tested by customers in a practical large-scale test involving the motor fuels M15 and M100. The study on hand was produced by means of forecasts and facts based on today's technology and state of experience. The part concerning demand development and availability demonstrates in what quantities methanol could be available till the year 2000 (demand tendencies, future methanol production capacity in the world). The part concerning technology examines how the methanol quantities mentioned before could be used in road traffic (Otto engine, diesel engine, state of testing and trial, fuel technology) introduction phase, cost). The part concerning framework conditions notes that, in principle, there are no unsurmountable obstacles with setting up or amending methanol-specific technical and legal regulations.

  6. Methanol synthesis beyond chemical equilibrium

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Winkelman, J. G. M.; Wilbers, E.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2013-01-01

    In commercial methanol production from syngas, the conversion is thermodynamically limited to 0.3-0.7 leading to large recycles of non-converted syngas. This problem can be overcome to a significant extent by in situ condensation of methanol during its synthesis which is possible nowadays due to the

  7. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  8. Analysis of supercritical CO{sub 2} cooling in macro- and micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lixin; Thome, John R. [Laboratory of Heat and Mass Transfer (LTCM), Faculty of Engineering Science (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Station 9, Lausanne CH-1015 (Switzerland); Ribatski, Gherhardt [Laboratory of Heat and Mass Transfer (LTCM), Faculty of Engineering Science (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Station 9, Lausanne CH-1015 (Switzerland); Department of Mechanical Engineering, Escola de Engenharia de Sao Carlos (EESC), University of Sao Paulo (USP), Sao Carlos, SP 13566-590 (Brazil)

    2008-12-15

    A comprehensive analysis of heat transfer and pressure drop experimental data and correlations for supercritical CO{sub 2} cooling in macro- and micro-channels is presented in this article. First, the physical and transport properties of CO{sub 2} at supercritical conditions are discussed and then their influence on heat transfer and pressure drops. Next, a review of experimental studies on heat transfer and pressure drops of supercritical CO{sub 2} cooling is provided and detailed comparisons and analysis relative to the available heat transfer and pressure drop correlations for supercritical CO{sub 2} cooling were done where possible. Furthermore, noting the lack of all pertinent experimental details required to use the data published in many of these studies, comments are given on how to reduce and present supercritical CO{sub 2} experimental data properly in the future. In addition, the effect of oil on heat transfer and pressure drops for supercritical CO{sub 2} is shown to significantly decrease the former and to increase the latter. Comparison of experimental data to a selection of heat transfer correlations shows that the Fang et al. [2001b. Modeling and analysis of gas coolers. ASHRAE Trans. 107 (1), 4-13] correlation gives the closest values to the experimental data but is still not satisfactory. According to the comparison and analysis, it is recommended that further efforts be made to develop good heat transfer methods for supercritical CO{sub 2} cooling based on accurate database in the future. To achieve this, more careful experiments should be done over a wide range of test parameters to meet the requirement in practical applications. In addition, four experimental studies show that the Blasius equation works well for CO{sub 2} cooling in the near supercritical region. More careful experimental data are still needed to further validate this conclusion because some experimental data are much different from others. (author)

  9. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    Science.gov (United States)

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively.

  10. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    Science.gov (United States)

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  11. THE ASYMPTOTIC PROPERTIES OF SUPERCRITICAL BISEXUAL GALTON-WATSON BRANCHING PROCESSES WITH IMMIGRATION OF MATING UNITS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for the L1 convergence are given for the process with the suitably normed condition.

  12. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

  13. A comparative study using HPLC and packed column supercritical fluid chromatography for the assay of three anti-psychotic dosage forms.

    Science.gov (United States)

    Patela, Y P; Dhorda, U J; Sundaresan, M

    1998-11-01

    A reproducible and selective method was developed for the analysis of three anti-pschycotics, i.e. haloperidol, trifluoperazine and trihexyphenidyl in bulk and dosage forms using packed column supercritical fluid chromatography (SFC). The analytes were resolved by elution with supercritical fluid carbon dioxide doped with 16.67% (v/v) methanol containing 0.8% isopropylamine. Parallel studies were performed by HPLC using ion pairing reagent and a comparison is discussed. The method was successfully used for the assay of three formulations containing a combination of: (1) haloperidol-trihexyphenidyl; (2) haloperidol-trifluoperazine; (3) trifluoperazine-trihexyphenidyl.

  14. INTEGRATED SUPERCRITICAL FLUID EXTRACTION AND BIOPROCESSING

    Directory of Open Access Journals (Sweden)

    Owen Catchpole

    2012-01-01

    Full Text Available Supercritical fluids are increasingly being used and promoted at a laboratory and pilot scale to produce high value, natural bioactives from biologically based raw materials. Supercritical CO2 is overwhelmingly the solvent of choice for these operations, but is largely limited to the processing of dry raw materials and the extraction of low polarity, low molecular weight compounds. The use of co-solvents and the use of alternative ‘near-critical’ extraction fluids such as dimethyl ether show potential to mitigate these limitations. Commercialisation of new supercritical extraction processes has arguably been limited because the supercritical extraction process has been developed in isolation of other processing steps necessary to achieve a successful product. This study reviews recent developments in integrated processing that incorporate the use of supercritical fluids for bioseparations and in particular process schemes that produce high value natural bioactives. Integrated processes include prior operation (fermentation, extraction, enzyme pre-treatment, physical fractionation or size reduction followed by supercritical extraction or fractionation and processes in which operations are carried out in situ in supercritical fluids (supercritical chromatography, enzymatic conversion, precipitation and coating of solutes. The use of co-solvents and alternative extraction solvents in these processes is discussed. Prospects for future developments are also discussed.

  15. Methanol/air fuel cells: catalytic aspects and experimental diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.F.; Sieben, J.M.; Pilla, A.S.; Duarte, M.M.E.; Mayer, C.E. [Instituto de Ingenieria Electroquimica y Corrosion, Depto. de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Methanol/air fuel cell with direct feed of methanol has received growing attention due to the possibility of using a liquid fuel of simple storing. This work comments studies on the preparation of PtRu catalysts for methanol oxidation and on the influence of different operative parameter on the performance of a lab scale fuel cell. The best conditions for PtRu catalysts preparation using metal electrodeposition techniques were found. Different carbon materials were used, such as glassy carbon, carbon paper and graphite fiber cloths and felts. The more active materials were found to be graphite felts after being preoxidized electrochemically to obtain a higher surface oxide concentration. Acceptable performance of the fuel cell was obtained working at 90 C and low methanol concentration, because in these conditions the potential, the transport process rates and the electrode reaction kinetics increase. (author)

  16. Application of supercritical antisolvent method in drug encapsulation: a review.

    Science.gov (United States)

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO(2) flow rate, and the liquid phase flow rate on particle size and its distribution.

  17. Supercritical Saltwater Spray for Marine Cloud Brightening (MCB)

    Science.gov (United States)

    Neukermans, A.; Cooper, G. F.; Foster, J.; Galbraith, L. K.; Johnston, D.; Ormond, B.; Wang, Q.

    2012-12-01

    Solar Radiation Management (SRM), including both stratospheric sulfur aerosol delivery and MCB, has emerged as the leading contender for geoengineering. Field research in MCB would require a technique capable of producing 1017 salt nuclei/sec from a single source on a seagoing vessel. Spraying supercritical saltwater has emerged as a viable technology, at least for research purposes. Under optimum conditions a single 50-μm nozzle produces 1014 suitable nuclei/sec. Power consumption is high (1-2 MW), but 95% of the required energy is in the form of heat that can probably be obtained from wasted ship-engine heat. While its implementation is conceptually simple, the corrosive nature of supercritical saltwater makes the material requirements very demanding. Progress on this work is detailed.

  18. Supercritical water oxidation - Microgravity solids separation

    Science.gov (United States)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  19. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  20. Solubility in supercritical solvents: A comparison of theory and simulation

    Science.gov (United States)

    Tomberli, Bruno Luca

    1998-12-01

    Solubility at supercritical conditions is studied using thermodynamics and statistical mechanics. The Redlich- Kwong equation of state, virial equation of state and fluctuation theory are used to predict the chemical potential for pure and mixed Lennard-Jones fluids. Where literature results are unavailable, Monte Carlo simulations employing the Widom particle insertion method are also carried out to determine the chemical potential at the same conditions. Several methods are shown to achieve an accuracy on the order of five percent. Based on the success of these theories, qualitative studies of cavity-interaction contributions to the chemical potential and the effect of clustering in supercritical solvation are conducted. Finally, fluctuation theory is shown to be the only available method suitable for ab initio calculations of the chemical potential involving anisotropic potentials. A suitable potential for naphthalene-carbon dioxide systems is developed from existing multi-site exp-6-1 potentials and predictions of the chemical potential of infinitely- dilute naphthalene in supercritical carbon dioxide are made as an example of a possible application of this method.

  1. Crystal size growth in the liquid phase methanol synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, A.; Lee, S.; Foos, A.

    1988-01-01

    The phenomenon of crystal growth in the methanol synthesis catalyst has been studied. Crystallite size distributions in the CuO/ZnO/Al/sub 2/O/sub 3/ methanol synthesis catalyst have been determined. The effects of temperature, reaction environment and time under reaction conditions have been studied. It is observed that water in the reaction mixture promotes crystal growth. 26 refs., 10 figs., 1 tab.

  2. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  3. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 2. Proton-transferred fragmentation of dimethyl ether to formaldehyde in competition with hydrolysis.

    Science.gov (United States)

    Nagai, Yasuharu; Matubayasi, Nobuyuki; Nakahara, Masaru

    2005-04-28

    Noncatalytic reaction pathways and rates of dimethyl ether (DME) in supercritical water are determined in a tube reactor made of quartz according to liquid- and gas-phase 1H and 13C NMR observations. The reaction is studied at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.1-0.6 g/cm3. The supercritical water reaction is compared with the neat one (in the absence of solvent) at 0.1 M and 400 degrees C. DME is found to decompose through (i) the proton-transferred fragmentation to methane and formaldehyde and (ii) the hydrolysis to methanol. Formaldehyde from reaction (i) is consecutively subjected to four types of redox reactions. Two of them proceed even without solvent: (iii) the unimolecular proton-transferred decarbonylation forming hydrogen and carbon monoxide and (iv) the bimolecular self-disproportionation generating methanol and carbon monoxide. When the solvent water is present, two additional paths are open: (v) the bimolecular self-disproportionation of formaldehyde with reactant water, producing methanol and formic acid, and (vi) the bimolecular cross-disproportionation between formaldehyde and formic acid, yielding methanol and carbonic acid. Methanol is produced through the three types of disproportionations (iv)-(vi) as well as the hydrolysis (ii). The presence of solvent water decelerates the proton-transferred fragmentation of DME; the rate constant is reduced by 40% at 0.5 g/cm3. This is caused by the suppression of low-frequency concerted motion corresponding to the reaction coordinate for the simultaneous C-O bond scission and proton transfer from one methyl carbon to the other. In contrast to the proton-transferred fragmentation, the hydrolysis of DME is markedly accelerated by increasing the water density. The latter becomes more important than the former in supercritical water at densities greater than 0.5 g/cm3.

  4. Hydroaminomethylation in supercritical ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Kant, M. [Leibniz-Institute for Catalysis, Berlin (Germany); Klein, H.; Jackstell, R.; Beller, M. [Leibniz-Institute for Catalysis, Rostock (Germany)

    2006-07-01

    Thermodynamic measurements were carried in the reaction system of hydroaminomethylation of olefins. Mixtures of ammonia, olefins, co-solvents, syngas and products such as nonylamine used as model and water were studied. In dependence on the reaction conditions and the mixtures selected opalescence points in a region from 92-290 bar and 120-172 C were found. (orig.)

  5. Continuous-flow Heck synthesis of 4-methoxybiphenyl and methyl 4-methoxycinnamate in supercritical carbon dioxide expanded solvent solutions

    Directory of Open Access Journals (Sweden)

    Phei Li Lau

    2013-12-01

    Full Text Available The palladium metal catalysed Heck reaction of 4-iodoanisole with styrene or methyl acrylate has been studied in a continuous plug flow reactor (PFR using supercritical carbon dioxide (scCO2 as the solvent, with THF and methanol as modifiers. The catalyst was 2% palladium on silica and the base was diisopropylethylamine due to its solubility in the reaction solvent. No phosphine co-catalysts were used so the work-up procedure was simplified and the green credentials of the reaction were enhanced. The reactions were studied as a function of temperature, pressure and flow rate and in the case of the reaction with styrene compared against a standard, stirred autoclave reaction. Conversion was determined and, in the case of the reaction with styrene, the isomeric product distribution was monitored by GC. In the case of the reaction with methyl acrylate the reactor was scaled from a 1.0 mm to 3.9 mm internal diameter and the conversion and turnover frequency determined. The results show that the Heck reaction can be effectively performed in scCO2 under continuous flow conditions with a palladium metal, phosphine-free catalyst, but care must be taken when selecting the reaction temperature in order to ensure the appropriate isomer distribution is achieved. Higher reaction temperatures were found to enhance formation of the branched terminal alkene isomer as opposed to the linear trans-isomer.

  6. Polarization and spectral shift of benzophenone in supercritical water.

    Science.gov (United States)

    Fonseca, T L; Georg, H C; Coutinho, K; Canuto, S

    2009-04-30

    Monte Carlo simulation and quantum mechanics calculations based on the INDO/CIS and TD-DFT methods were utilized to study the solvatochromic shift of benzophenone when changing the environment from normal water to supercritical (P = 340.2 atm and T = 673 K) condition. Solute polarization increases the dipole moment of benzophenone, compared to gas phase, by 88 and 35% in normal and supercritical conditions, giving the in-solvent dipole value of 5.8 and 4.2 D, respectively. The average number of solute-solvent hydrogen bonds was analyzed, and a large decrease of 2.3 in normal water to only 0.8 in the supercritical environment was found. By using these polarized models of benzophenone in the two different conditions of water, we performed MC simulations to generate statistically uncorrelated configurations of the solute surrounded by the solvent molecules and subsequent quantum mechanics calculations on these configurations. When changing from normal to supercritical water environment, INDO/CIS calculations explicitly considering all valence electrons of the 235 solvent water molecules resulted in a solvatochromic shift of 1425 cm(-1) for the most intense pi-pi* transition of benzophenone, that is, slightly underestimated in comparison with the experimentally inferred result of 1700 cm(-1). TD-B3LYP/6-311+G(2d,p) calculations on the same configurations but with benzophenone electrostatically embedded in the 320 water molecules resulted in a solvatochromic shift of 1715 cm(-1) for this transition, in very good agreement with the experimental result. When using the unpolarized model of the benzophenone, this calculated solvatochromic shift was only 640 cm(-1). Additional calculations were also made by using BHandHLYP/6-311+G(2d,p) to analyze the effect of the asymptotic decay of the exchange functional. This study indicates that, contrary to the general expectation, there is a sizable solute polarization even in the low-density regime of supercritical condition and

  7. Biodegradation of methanol vapor in a biofilter

    Institute of Scientific and Technical Information of China (English)

    Durai Arulneyam; T. Swaminathan

    2003-01-01

    Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m3.h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.

  8. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... Among them, Ni-Ga has been chosen, primarily due to low price of constituent metals. After the preliminary optimization work, an optimal catalyst composition and preparation method has been suggested. Indeed, for an optimal catalyst, which is a SiO2 supported Ni-Ga prepared from a solution of nitrates...... due to carbon formation) and under accelerated ageing conditions (due to dealloying). However, the initial activity could always be restored after treatment in hydrogen flow at elevated temperatures. The work in the direction of suppression of deactivation and by-product formation is still in progress....

  9. Dynamic simulation model for ultra supercritical 1 000 MW unit boilers%Dynamic simulation model for ultra supercritical 1000 MW unit boilers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; XU Ershu

    2013-01-01

    On the basis of heat transfer characteristics of working fluid at different pressures inside the water wall tube and structure of the ultra supercritical 1 000 MW unit once through boiler in Jianbi Power Plant,the varying phase transformation point method was adopted to establish the moving-boundary dynamic simulation model of water wall in ultra supercritical once through boilers,especially the length variation of hot water section,evaporation section and superheat section against the load changing.On this basis,the real-time dynamic simulation model for ultra-supercritical 1 000 MW unit boiler in Jianbi Power Plant was built on the STAR-90 simulation platform.The dynamic and static characteristics test showed that,this model can simulate the unit's startup/shutdown process and some typical fault conditions accurately,and had good dynamic and static performance.

  10. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    Science.gov (United States)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  11. Studies of methanol maser rings

    CERN Document Server

    Bartkiewicz, A; van Langevelde, H J; De Buizer, J M; Pihlström, Y

    2011-01-01

    We present the results of studies of a new class of 6.7 GHz methanol maser sources with a ring-like emission structure discovered recently with the EVN. We have used the VLA to search for water masers at 22 GHz and radio continuum at 8.4 GHz towards a sample of high-mass star forming regions showing a ring-like distribution of methanol maser spots. Using the Gemini telescopes we found mid-infrared (MIR) counterparts of five methanol rings with a resolution of 0."15. The centres of methanol maser rings are located within, typically, only 0."2 of the MIR emission peak, implying their physical relation with a central star. These results strongly support a scenario wherein the ring-like structures appear at the very early stage of massive star formation before either water-maser outflows or H II regions are seen.

  12. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  13. Studies on Catalyst Deactivation Rate and Byproducts Yield during Conversion of Methanol to Olefins

    Institute of Scientific and Technical Information of China (English)

    Yan Dengchao; Munib Shahda; Weng Huixin

    2006-01-01

    The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425 ℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster.Adding water to methanol could slow down the catalyst deactivation rate.

  14. Accidental methanol ingestion: Case report

    Directory of Open Access Journals (Sweden)

    Bakker Jan

    2010-02-01

    Full Text Available Abstract Background The incidence of methanol (CH3OH intoxication differs enormously from country to country. Methanol intoxication is extremely rare in the Dutch population. Even a low dose can already be potentially lethal. Patients are conventionally treated with hemodialysis. Therefore we'd like to present a report of a foreign sailor in Rotterdam who accidentally caused himself severe methanol intoxication, with a maximum measured concentration of 4.4 g/L. Case presentation The patient presented with hemodynamic instability and severe metabolic acidosis with pH 6.69. The anion gap was 39 mmol/L and the osmol gap 73 mosmol/kg. Treatment with ethanol and continuous venovenous hemodiafiltration (CVVH-DF was initiated. Despite the hemodynamic instability it is was possible to achieve rapid correction of pH and methanol concentration with CVVH-DF while maintaining a stable and therapeutic ethanol serum concentration. Despite hemodynamic and acid-base improvement, our patient developed massive cerebral edema leading to brain death. Permission for organ donation was unfortunately not ascertained. Conclusions We conclude that in a hemodynamic instable situation high methanol concentrations and methanol-induced derangements of homeostasis are safely and effectively treated with CVVH-DF and that severe cerebral edema is another possible cause of death rather than the classical bleeding in the putamen area.

  15. Acute methanol toxicity in minipigs

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, D.C.; Dye, J.A.; Nassise, M.P.; Ekuta, J.; Bolon, B.

    1993-01-01

    The pig has been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its low liver tetrahydrofolate levels and slower rate of formate metabolism compared to those of humans. To examine the validity of this animal model, 12 4-month-old female minipigs (minipig YU) were given a single oral dose of water or methanol at 1.0, 2.5, or 5.0 g/kg body wt by gavage (n = 3 pigs/dose). Dose-dependent signs of acute methanol intoxication, which included mild CNS depression, tremors, ataxia, and recumbency, developed within 0.5 to 2.0 hr, and resolved by 52 hr. Methanol- and formate-dosed pigs did not develop optic nerve lesions, toxicologically significant formate accumulation, or metabolic acidosis. Based on results following a single dose, female minipigs do not appear to be overtly sensitive to methanol and thus may not be a suitable animal model for acute methanol-induced neuroocular toxicosis.

  16. HPLC Method for the Simultaneous Determination of Ten Annonaceous Acetogenins after Supercritical Fluid CO2 Extraction.

    Science.gov (United States)

    Yang, Haijun; Zhang, Ning; Zeng, Qingqi; Yu, Qiping; Ke, Shihuai; Li, Xiang

    2010-09-01

    Annonaceous acetogenins (ACGs) isolated from Annonaceae plants exhibited a broad range of biological bioactivities such as cytotoxic, antitumoral, antiparasitic, pesticidal and immunosuppresive activities. However, their structures were liable to change at more than 60°C and their extraction yields were low using traditional organic solvent extraction. In the present study, all samples from Annona genus plant seeds were extracted by supercritical carbon dioxide under optimized conditions and a high-performance liquid chromatography (HPLC) method was established for simultaneously determining ten ACGs. All of the ten compounds were simultaneously separated on reversed-phase C18 column (250 mm × 4.6 mm, 5 μm) with the column temperature at 30°C. The mobile phase was composed of (A) methanol and (B) distilled water, the flow rate was 1.0 ml/min and the detection wavelength was set at 220 nm. All calibration curves showed good linear regression (γ>0.9995) within the test range. The established method showed good precision and accuracy with overall intra-day and inter-day variations of 0.99-2.56% and 1.93-3.65%, respectively, and overall recoveries of 95.16-105.01% for the ten compounds analyzed. The established method can be applied to evaluate the intrinsic quality of Annonaceae plant seeds. The determination results recover the content-variation regularities of various ACGs in different species, which are helpful to choose the good-quality Annonaceae plant seeds for anticancer lead compound discovery.

  17. Adsorption of ethyl acetate onto modified clays and its regeneration with supercritical CO2

    Directory of Open Access Journals (Sweden)

    A. M. Cavalcante

    2005-03-01

    Full Text Available Modified clays were used to remove ethyl acetate from aqueous solutions. These clays were regenerated using supercritical CO2. Structural changes in the montmorillonite clay after treatment with quaternary amines were studied. The surface properties of the modified clay changed from highly hydrophilic to highly organophilic. The clay was regenerated by percolation of a stream of CO2 through the porous montmorillonite matrix. Different pressures and temperatures were employed, resulting in different fluid conditions (gas, liquid, and supercritical. The experimental data was fitted with a simplified model. The best desorption result was found under supercritical conditions. A crossover effect was observed. The capacity of the modified clay as a pollutant attenuator remained almost unchanged after a regeneration cycle.

  18. Safety study of an experimental apparatus for extraction with supercritical CO2

    Directory of Open Access Journals (Sweden)

    V. B. Soares

    2012-09-01

    Full Text Available During the process of supercritical CO2 extraction it is necessary to use high pressures in the procedure. The explosion of a pressure vessel can be harmful to people and cause serious damage to the environment. The aim of this study is to investigate the probability of death and injury in a laboratory unit for supercritical fluid extraction in the case of an explosion of the extractor vessel. The procedure is explained via a case study involving fatty acid extraction from vegetable oils with carbon dioxide above its supercritical conditions and under optimum operating conditions. According to the results, more importance should be given to the use of a protective headset because the probability of eardrum injury is superior to the probability of death from lung injury.

  19. [Extraction of 10-Deacetyl Baccatin by Supercritical CO2 from Taxus yunnanensis Branches and Leaves].

    Science.gov (United States)

    Tang, Yang-qin; Li, Hai-chi; Huang, Wen-jie; Xiong, Yan; Ge, Fa-huan

    2015-04-01

    To study the supercritical CO2 fluids extraction (SFE) method to extract the components from Taxus yunnanensis. Medicinal meterials were extracted by supercritical CO2, and then purified by industrial chromatography. Using the extraction yield of 10-DAB as the index,single factor test was carried out to investigate the effect of co-solvent, extraction time, extraction pressure, extraction temperature, pressure and temperature of separation kettle I. Then orthogonal experiment was used to optimize the best extraction condition. The suitable extraction condition was as follows: the ratio of co-solvent (80% ethanol) amount and the madicinal materials was 3: 1, Separation kettle I pressure was 14 MPa, separation kettle I temperature was 40 °C, extraction pressure was 25 MPa, extraction temperature was 60 T and extraction time was 90 min. The extract was separated by industrial chromatographic and then crystallized. The supercritical CO2 extraction and purification process of 10-DAB were simple and feasible.

  20. Positive Singular Solutions for Quasilinear Elliptic Equations With Supercritical Growth

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In this paper we study the existence of positive singular solutions of the following problems div(|(△)u|p-2(△)u)+f(u)=0 in Ω\{0}(1) limx→0u(x)=∞.(2) Where 1supercritical condition as u→∞ , that is f satisfies that following conditions:

  1. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    Science.gov (United States)

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water.

  2. Unusual case of methanol poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, L.; Henderson, M. (St. James' s Univ. Hospital, Leeds (United Kingdom). Dept. of Chemical Pathology); Madi, S.; Mellor, L. (St. James' s Univ. Hospital, Leeds (United Kingdom). Dept. of Medicine, and Pharmacy)

    1993-01-09

    A 31-year-old man with a history of alcohol abuse presented to the accident and emergency department complaining of blurred vision. 4 h previously he had drunk 300 mL de-icer fluid. Electrolytes, urea, creatinine, glucose, and blood-gas analysis were normal. Measured osmolality, however, was 368 mosmol/kg with a calculated osmolality of 300 mosmol/kg, which indicated a greatly increased osmolar gap. He was therefore given 150 mL whisky and admitted. Methanol was later reported as 200 mg/dL. Ethylene glycol was not detected, but another glycol, propylene glycol, was present at 47 mg/dL. 10 h after ingestion an intravenous infusion of ethanol was started and he was hemodialysed for 7 h. After dialysis he was given a further 100 mL whisky and the rate of ethanol infusion was reduced to 11 g per h. Methanol and ethanol were measured twice daily until methanol was under 10/mg/dL: The recommendation is that blood ethanol be maintained between 100 and 200 mg/dL during treatment of methanol poisoning. This concentration was not achieved, presumably because of the high rate of ethanol metabolism often found in alcoholics. Antifreeze solutions commonly contain methanol and ethylene glycol. Sometimes propylene glycol is substituted because it has properties similar to those of ethylene glycol but is less toxic. The authors postulate that propylene glycol inhibited the metabolism of methanol in the patient, thus sparing him from the toxic effects of methanol.

  3. Recent progress in supercritical fluid science for biofuel production from woody biomass

    Institute of Scientific and Technical Information of China (English)

    Shiro Saka

    2006-01-01

    Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides,oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.

  4. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  5. Oxy-combustor operable with supercritical fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  6. Extraction of azadirachtin A from neem seed kernels by supercritical fluid and its evaluation by HPLC and LC/MS.

    Science.gov (United States)

    Ambrosino, P; Fresa, R; Fogliano, V; Monti, S M; Ritieni, A

    1999-12-01

    A new supercritical extraction methodology was applied to extract azadirachtin A (AZA-A) from neem seed kernels. Supercritical and liquid carbon dioxide (CO(2)) were used as extractive agents in a three-separation-stage supercritical pilot plant. Subcritical conditions were tested too. Comparisons were carried out by calculating the efficiency of the pilot plant with respect to the milligrams per kilogram of seeds (ms/mo) of AZA-A extracted. The most convenient extraction was gained using an ms/mo ratio of 119 rather than 64. For supercritical extraction, a separation of cuticular waxes from oil was set up in the pilot plant. HPLC and electrospray mass spectroscopy were used to monitor the yield of AZA-A extraction.

  7. Supercritical CO2 generation of nanometric structure from Ocimum basilicum mucilage prepared for pharmaceutical applications.

    Science.gov (United States)

    Akbari, Iman; Ghoreishi, Seyyed M; Habibi, Neda

    2015-04-01

    Plant-derived polymers are widely used in the pharmaceutical industry due to their emollient, lack of toxicity, and irritating nature and low cost. In this work, basil seed mucilage was dried using supercritical carbon dioxide phase inversion technique to form a nanometric structure. The obtained polymeric structures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method, and Fourier transform infrared spectroscopy (FTIR) and compared with the oven-derived sample group. It was demonstrated that the product morphology could be controlled by altering the composition of methanol which functioned as the co-solvent in the nonsolvent stream. The most homogeneous product (60-nm mean pore size diameter, 78 m(2)/g BET surface area with no agglomeration) was obtained with 2.5% methanol. The FTIR data showed that the presence of hydroxyl and carboxyl groups suggested the bioadhesive property of basil seed mucilage was good and many active pharmaceutical compounds might be loaded to the resultant nanometric structure to enhance drug release. Furthermore, the FTIR analyses indicated that the nature of the final product did not change during the supercritical drying procedure.

  8. Determination of solvation kinetics in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Bright, F.V.

    1993-01-01

    Objective was to study solvation processes in pure and entrainer-modified supercritical fluids. Specific topics were: Kinetics for solvation in supercritical media, influence on entrainers on solvation, reversibility of solvation, effects of solvation on intramolecular solute-solute interaction kinetics, and impact of fluid density on these processes. Time-resolved fluorescence spectroscopy was used as the main analytical tool. A summary is given of the 2.5 years' research.

  9. Charting the landscape of supercritical string theory.

    Science.gov (United States)

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  10. Water in supercritical carbon dioxide dyeing

    Directory of Open Access Journals (Sweden)

    Zheng Lai-Jiu

    2015-01-01

    Full Text Available This paper investigates the effect of water serving as entrainer on the dyeing of wool fabrics in supercritical carbon dioxide. Compared with previous supercritical dyeing methods, addition of water makes the dyeing process more effective under low temperature and low pressure. During dyeing process, dyestuff can be uniformly distributed on fabrics’s surface due to water interaction, as a result coloration is enhanced while color difference is decreased.

  11. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  12. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T. [Los Alamos National Lab., NM (United States). Physical Organic Chemistry Group; Tiefert, K. [Hewlett-Packard Co., Inc., Santa Clara, CA (United States)

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  13. Study on elution ability of salicylic acid on ion exchange resins in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Ping YUAN; Jianguo CAI; Junjie GONG; Xiu DENG

    2009-01-01

    The elution ability of salicylic acid on ion exchange resins in supercritical carbon dioxide has been studied. Some factors influencing elution recovery,including entrainer, temperature, pressure and the flow rate of supercritical fluid CO2 are discussed in this work.The addition of a small amount of entrainer, such as ethanol, triethanolamine and their mixture to supercritical CO2 can cause dramatic effects on the elution ability. The results show that the salicylic acid can be only slightly eluted from the resin with supercritical CO2 alone with temperatures ranging from 307.15 to 323.15K and pressures ranging from 10 to 30MPa. Meanwhile, with the same T, P conditions, 40.58% and 73.08% salicylic acid can be eluted from the ion exchange resin with ethanol and ethanol + triethanolamine as the entrainer, respec-tively. An improved PR equation of state with VDWl mixing rules is used to calculate the elution recovery of salicylic acid in supercritical CO2 and the results agree well with the experimental data.

  14. Effect of methanol on the biofiltration of n-hexane.

    Science.gov (United States)

    Zehraoui, Abderrahman; Hassan, Ashraf Aly; Sorial, George A

    2012-06-15

    This study investigated the removal of recalcitrant compounds in the presence of a hydrophilic compound. n-Hexane is used as a model compound to represent hydrophobic compounds. Methanol has been introduced in mixture with n-hexane in order to increase the bioavailability of n-hexane in trickle-bed-air-biofilters (TBABs). The mixing ratios investigated were: 70% methanol:30% n-hexane, and 80% methanol:20% n-hexane by volume. n-Hexane loading rates (LRs) ranged from 0.9 to 13.2 g m(-3) h(-1). Methanol LRs varied from 4.6 to 64.5 g m(-3) h(-1) and from 2.3 to 45.2 g m(-3) h(-1) depending upon the mixing ratio used. Biofilter performance, effect of mixing ratios of methanol to n-hexane, removal profile along biofilter depth, COD/nitrogen consumption and CO(2) production were studied under continuous loading operation conditions. Results have shown that the degradation of n-hexane is significantly enhanced by the presence of methanol for n-hexane LRs less than 13.2 g m(-3) h(-1). For n-hexane LR greater than 13.2 g m(-3) h(-1), even though methanol had impacted n-hexane biodegradation, its removal efficiency was higher than our previous study for biodegradation of n-hexane alone, in presence of surfactant, or in presence of benzene. On the other hand, the degradation of methanol was not impacted by the presence of n-hexane.

  15. Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Milan Krishna Singha Sarkar

    2017-02-01

    Full Text Available Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  16. Numerical comparison of thermal hydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan Krishna Singhar; Basu, Dipankar Narayan [Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India)

    2017-02-15

    Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  17. Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    OpenAIRE

    Kosuke Kawaguchi; Hiroya Yurimoto; Masahide Oku; Yasuyoshi Sakai

    2011-01-01

    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes ...

  18. Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology

    OpenAIRE

    Nogueira, João Humberto Gonçalves Francisco

    2015-01-01

    A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was c...

  19. Super-critical phasematching for photon pair generation in structured light modes

    CERN Document Server

    Saaltink, Rebecca Y; Boyd, Robert W; Karimi, Ebrahim; Lundeen, Jeff S

    2016-01-01

    We propose a method for directly producing radially and azimuthally polarized photon pairs through spontaneous parametric downconversion (SPDC). This method constitutes a novel geometry for SPDC, in which a radially polarized Bessel-Gauss pump beam is directed into a nonlinear crystal, with the central propagation direction parallel to the crystal axis. The phasematching conditions are controlled by changing the opening angle of the pump beam; as the crystal axis cannot be tuned, we refer to this process as super-critical phasematching. We model and plot the spatial and polarization output distributions for Type-I and Type-II super-critical phasematching.

  20. [Supercritical CO2 fluid extraction of Rosmarinus officinalis and capability of extracts eliminate OH radical].

    Science.gov (United States)

    Zhang, Chong; Li, Jia-Cheng; Zhang, De-La; Feng, Yu-Hong; Zhang, Ya-Nan; Chen, Si-Li

    2008-05-01

    Supercritical CO2 fluid extraction process of antioxidation active components from Rosmarinus officinalis was studied. A new extraction process of components extracted from R. officinalis by supercritical CO2 fluid extraction (SFE-CO2 ) was studied in detail. The capability of that the extract eliminate *OH radical was tested by electron paramagnetic resonance (EPR) technique and spin catch technique. With free radical clearance as index, by range and variance analysis, the optimum extraction process conditions were: keeping pressure at 30 MPa and temperature at 75 degrees C for 1 h, in the same time adding alcohol 0.30 mL x g(-1).

  1. Use of reverse osmosis membranes for the separation of lemongrass essential oil and supercritical CO2

    Directory of Open Access Journals (Sweden)

    L.A.V. Sarmento

    2004-06-01

    Full Text Available Although it is still used very little by industry, the process of essential oil extraction from vegetable matrices with supercritical CO2 is regarded as a potentially viable technique. The operation of separating the extract from the solvent is carried out by reducing the pressure in the system. Separation by membranes is an alternative that offers lower energy consumption and easier operation than traditional methods of separation. Combining the processes essential oil extraction with supercritical CO2 and separation by membranes permits the separation of solvent and oil without the need for large variations in extraction conditions. This results in a large energy savings in the case of solvent repressurisation and reuse. In this study, the effectiveness of reverse osmosis membranes in separating lemongrass essential oil from mixtures with supercritical CO2 was tested. The effects of feed oil concentration and transmembrane pressure on CO2 permeate flux and oil retention were studied for three membrane models.

  2. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [Hiroshima Univ., Dept. of Mechanical System Engineering, Hiroshima (Japan)

    2002-08-01

    Two wet biomass gasification processes, supercritical water gasification and biomethanation, were evaluated from energy, environmental, and economic aspects. Gasification of 1 dry-t/d of water hyacinth was taken as a model case. Assumptions were made that system should be energetically independent, that no environmentally harmful material should be released, and that carbon dioxide should be removed from the product gas. Energy efficiency, carbon dioxide payback time, and price of the product gas were chosen as indices for energy, environmental, and economic evaluations, respectively. Under the conditions assumed here, supercritical water gasifications is evaluated to be more advantageous over biomethanation, but the cost of the product gas is still 1.86 times more expensive than city gas in Tokyo. To improve efficiency of supercritical water gasification, improvement of heat exchanger efficiency is effective. Utilization of fermentation sludge will make biomethanation much more advantageous. (Author)

  3. [Optimize the extraction process with supercritical CO2 fluid from lotus leaves by the uniform design and analysis on the chemical constituents by GC-MS].

    Science.gov (United States)

    Yin, Hui-jing; Qian, Yi-fan; Pu, Cun-hai

    2007-04-01

    To study the optimum parameters of the supercritical CO, fluid extraction of lotus leaves and chemical constituents of extractive matters. Supercritical CO2 fluid extraction condition was selected by uniform design. The extraction pressure, extraction temperature, extraction time were three factors in the experiment. GC-MS was applied for analyzing the extraction. The optimum condition were obtained: the extraction pressure was 26 Mpa, the extraction temperature was 40 degrees C, the extracion time was 90 minutes. The major constituent was 1H-Pyrrole-2-carboxaldehyde, 1-ethyl-in extractive matters. Uniform design can optimize the CO2 Supercritical Fluid Extraction process quickly and accuratly with satisfactory results.

  4. A Study on the Optimization of Indoor Culture Conditions and Effect of Methanol on the Growth in Chlorella vulgaris%小球藻室内培养条件优化及甲醇对其生长影响研究

    Institute of Scientific and Technical Information of China (English)

    杨平; 拜彦茹; 张炜; 遆晓南

    2015-01-01

    The aims of this paper were to reveal the influence of carbon source,nitrigen source,phosphor-us source,pH conditions and exogenous methanol on the growth of Chlorella vulgaris indoor,based on BG-1 1 culture medium.The result indicated that the optimal conditions of culture Chlorella vulgaris was that Na2 CO 3 ,NaNO 3 ,K2 HPO 4 were 0.02 g/L,3.00 g/L and 0.80 g/L respectively.Under the optimal cul-ture conditions,different concentrations of methanol were added to the culture medium.It was found that the concentration of methanol was 0.3%,which can promote the growth of Chlorella vulgaris .%以 BG-11培养液为基础,在室内研究培养液中碳源、氮源、磷源、pH 值条件及外源甲醇对小球藻(Chlo-rella vulgaris )生长的影响,结果表明,培养小球藻的最优培养条件为:Na2 CO 3为0.02 g/L、NaNO 3为3.00 g/L、K2 HPO 4为0.80 g/L、pH 值为7.0.在最优培养条件下,将不同浓度的甲醇添加至小球藻培养液,发现当甲醇浓度为0.3%时,小球藻生长繁殖最快.

  5. Some Organic Reactions in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    JIANG Huan-feng; YANG Xiao-yue; LI Guo-ping; ZOU Gang

    2004-01-01

    Organic reactions in supercritical carbon dioxide (scCO2) have facilitated great progress in recent years 1. ScCO2, as an environmentally friendly reaction medium, may be a substitute for volatile and toxic organic solvents and show some special advantages. Firstly, CO2 is inexpensive,nonflammable, nontoxic and chemical inert under many conditions. Secondly, scCO2 possesses hybrid properties of both liquid and gas, to the advantage of some reactions involving gaseous reagents. Control of the solvent density by variation of the temperature and pressure enables the solvent properties to be "tuned" to reactants. Finally, separating of CO2 from the reaction mixture is energy-efficient and simple. Here we disclose our new work on some organic reactions involving small molecules in scCO2.The results showed that the upper reactions in scCO2 could be carried out smoothly and thepressure of CO2 had a remarkable effect on the conversion and selectivity.

  6. Digested sewage sludge gasification in supercritical water.

    Science.gov (United States)

    Zhai, Yunbo; Wang, Chang; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2013-04-01

    Digested sewage sludge gasification in supercritical water was studied. Influences of main reaction parameters, including temperature (623-698 K), pressure (25-35 Mpa), residence time (10-15 min) and dry matter content (5-25 wt%), were investigated to optimize the gasification process. The main gas products were methane, carbon monoxide, carbon dioxide and traces of ethene, etc. Results showed that 10 wt% dry matter content digested sewage sludge at a temperature of 698 K and residence time of 50 min, with a pressure of 25 MPa, were the most favorable conditions for the sewage sludge gasification and carbon gasification efficiencies. In addition, potassium carbonate (K2CO3) was also employed as the catalyst to make a comparison between gasification with and without catalyst. When 2.6 g K2CO3 was added, a gasification efficiency of 25.26% and a carbon gasification efficiency of 20.02% were achieved, which were almost four times as much as the efficiencies without catalyst. K2CO3 has been proved to be effective in sewage sludge gasification.

  7. A Supercritical 250 kW Industrial Air Compressor Prototype

    Science.gov (United States)

    Lantto, Erkki; Tommila, Ville

    This paper presents the active magnetic bearing control system synthesis and practical rotor dynamic experiences with a supercritical 250 kW turbo compressor. First, the physical boundary conditions of passing the first bending critical speed and feasible bearing characteristics near the critical speed are considered. Then, the control system is synthesized and analyzed using complex formulation. A synchronous response controller is added in parallel with the position controller in order to achieve the preferred bearing characteristics. Finally, measured performance of the control system when passing the critical speed with a real life compressor is presented.

  8. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.

    Science.gov (United States)

    Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín

    2013-05-14

    Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).

  9. Length scales in cryogenic injection at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Branam, R.; Mayer, W. [German Aerospace Center, DLR Lampoldshausen, 74239 Hardthausen (Germany)

    2002-09-01

    Length scales provide some understanding of the injection of cryogenic propellants in rocket chambers on mixing efficiency, which translates to burning efficiency and performance. This project uses supercritical cryogenic nitrogen to look at high-density core flows such as those of coaxial injectors used in rocket engines. The investigation considers test conditions from 4.0 to 6.0 MPa chamber pressure at two injection velocities and temperatures. Experimental data taken by using shadowgraph images provides a means of characterizing turbulent flow structures using a two-point correlation method to determine length scales and structure shapes. The experimental results are compared to computational models. (orig.)

  10. Water Extractable Arabinoxylan Aerogels Prepared by Supercritical CO2 Drying

    Directory of Open Access Journals (Sweden)

    Agustín Rascón-Chu

    2013-05-01

    Full Text Available Water extractable arabinoxylan (WEAX aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54.

  11. Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol

    NARCIS (Netherlands)

    Chakinala, Anand G.; Brilman, Derk Willem Frederik; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2009-01-01

    In this study, we present the gasification of microalgae (Chlorella vulgaris) and glycerol in supercritical water (SCW) using batch (quartz capillaries) and continuous flow reactors. Preliminary tests of algae gasification were done with quartz capillaries at varying operating conditions such as

  12. A comparative study of solvent and supercritical CO2 extraction of Simarouba gluaca seed oil

    National Research Council Canada - National Science Library

    B. Anjaneyulu; S. Satyannarayana; Sanjit Kanjilal; V. Siddaiah; K. N. Prasanna Rani

    2017-01-01

    In the present study, the supercritical carbon dioxide (CO2) extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar), temperature (50–70 °C) and CO2 flow rate (10–30 g·min-1...

  13. Supercritical carbon dioxide (CO2) assisted preparation of hydrogen-bonded interpolymer complexes

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2010-10-01

    Full Text Available The use of supercritical CO2 as medium in polymer processing eliminates many of disadvantages associated with other means of processing, i.e. high temperatures or toxic solvents. The “soft” processing conditions make CO2 specifically suitable...

  14. Supercritical Fluid Facilitated Growth of Copper and Aluminum Oxide Nanoparticles

    Science.gov (United States)

    Williams, Geoffrey L.; Vohs, Jason K.; Brege, Jonathan J.; Fahlman, Bradley D.

    2005-01-01

    Supercritical fluids (SCFs) possess properties that are intermediate between liquids and gases. The combination of supercritical fluid technology with advanced characterization techniques such as electron microscopy provided a practical and rewarding undergraduate laboratory experiment.

  15. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Science.gov (United States)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  16. Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Kumeev, R. S.; Golubev, V. A.

    2016-07-01

    Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm-3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid-ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.

  17. Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO2 and Au-TiO2

    Science.gov (United States)

    2013-05-23

    aerogel, while Au−TiO2 aerogel remains highly active for methanol photooxidation. The wavelength dependence of formate production on Au−TiO2 tracks the...under acetone into a supercritical dryer (Fisons Bio-Rad E3100). The gels were rinsed with liquid CO2 before taking the liquid CO2 above its critical... methanol as the test reactant because it is a common product of the oxidation of more complex species56 yet is simple enough structurally that its

  18. Supercritical Extraction of Lycopene from Tomato Industrial Wastes with Ethane

    OpenAIRE

    Mendes, Rui L.; Cristino, Ana F.; Nobre, Beatriz P.; Luisa Gouveia; António F. Palavra; Patricia G. S. Matos

    2012-01-01

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO2...

  19. Supercritical Extraction of Lycopene from Tomato Industrial Waste with Ethane

    OpenAIRE

    Nobre, Beatriz P.; Gouveia, L.; Patricia G. S. Matos; Cristino, Ana F.; António F. Palavra; Mendes, Rui L.

    2012-01-01

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO2 and a near critical mixture of ethane and p...

  20. Supercritical water pyrolysis of sewage sludge.

    Science.gov (United States)

    Ma, Wenchao; Du, Guiyue; Li, Jian; Fang, Yuanhao; Hou, Li'an; Chen, Guanyi; Ma, Degang

    2017-01-01

    Municipal sewage sludge (SS) from wastewater treatment plant containing high water content (>85wt.%), lead to the difficulty of co-combustion with MSW or coal due to the high cost of drying. This study explores an alternative method by supercritical water (SCW) pyrolysis of sewage sludge (SS) in a high pressure reaction vessel. The effects of temperature and moisture content of SS on yield and composition of the products (bio-oil, bio char and non-condensable gas) were studied. A temperature of 385°C and moisture content of 85wt.% were found to be the optimum conditions for the maximum bio-oil production of 37.23wt.%, with a higher heating value of 31.08MJ/kg. In the optimum condition, the yields of aliphatic hydrocarbon and phenols were about 29.23wt.% and 12.51wt.%, respectively. The physical and chemical properties of bio-char were analyzed by using XRF and BET. Results of GC analyses of NCG showed that it has the maximum HHV of 13.39MJ/m(3) at 445°C and moisture content of 85wt.%. The reaction path from SS to bio-oil through SCW pyrolysis was given. Moreover, carbon balance was calculated for the optimal condition, and finding out that 64.27wt.% of the carbon content was transferred from SS to bio-oil. Finally, this work demonstrates that the SCW pyrolysis is a promising disposal method for SS. Copyright © 2016. Published by Elsevier Ltd.

  1. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  2. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    Science.gov (United States)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  3. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  4. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  5. Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube

    Science.gov (United States)

    Hsieh, Jui-Ching; Lin, David T. W.; Lee, Bo-Heng; Chung, Ming-Che

    2017-03-01

    The heat transfer phenomena of supercritical carbon dioxide were experimentally investigated in a vertical tube containing silica-based porous media. The experiment was conducted at various levels of static pressure, flow rates, and initial wall temperatures as well as with silica sand of porous media in a long test section to study the heat transfer characteristics of supercritical carbon dioxide (CO2). The results indicated that the average heat transfer coefficient and outlet temperature at an initial wall temperature of 150 °C were higher and lower than that of 200 °C. The heat transfer performance was significantly influenced by flow rate of supercritical CO2. The porous media was provided large heat exchange surface between particles and CO2 to increase the heat transfer coefficient, especially when small diameter of particles. When the inlet temperature was higher than the pseudocritical temperature, the heat transfer coefficient sharply dropped when x/L ≥ 0.5, because of the development of a thermal boundary and the decrease of CO2 thermophysical properties of CO2 in a far pseudocritical temperature. When the pseudocritical temperature was higher than the inlet temperature of the fluid, the local heat transfer coefficient was affected by a thermal boundary and thermophysical properties of CO2 in pseudocritical point at a higher initial wall temperature or lower supercritical pressure when x/L ≤ 0.75; only the thermophysical properties of supercritical CO2 in pseudocritical point played a pivotal role when x/L > 0.75 at a lower initial wall temperature or higher supercritical pressure. In the present study, the supercritical pressure of 10.5 MPa constituted an optimal operating condition for supercritical CO2 a long silica-based porous-media tube because of the high heat transfer performance at 150 and 200 °C.

  6. Continuous supercritical water gasification of isooctane: A promising reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Susanti, Ratna F.; Kim, Jae-Duck; Kim, Jaehoon [Supercritical Fluid Research Laboratory, Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seoungbuk-gu, Seoul 136-791 (Korea); Department of Green Process and System Engineering, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon 305-333 (Korea); Veriansyah, Bambang [Supercritical Fluid Research Laboratory, Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seoungbuk-gu, Seoul 136-791 (Korea); Lee, Youn-Woo [School of Chemical and Biological Engineering, Seoul National University, Gwanangro 599, Gwanak-gu, Seoul 151-744 (Korea)

    2010-03-15

    A new design of supercritical water gasification system was developed to achieve high hydrogen gas yield and good gas-liquid flow stability. The apparatus consisted of a reaction zone, an insulation zone and a cooling zone that were directly connected to the reaction zone. The reactor was set up at an inclination of 75 from vertical position, and feed and water were introduced at the bottom of the reactor. The performances of this new system were investigated with gasification of isooctane at various experimental conditions - reaction temperatures of 601-676 C, residence times of 6-33 s, isooctane concentrations of 5-33 wt%, and oxidant (hydrogen peroxide) concentrations up to 4507 mmol/L without using catalysts. A significant increase in hydrogen gas yield, almost four times higher than that from the previous up-down gasifier configuration (B. Veriansyah, J. Kim, J.D. Kim, Y.W. Lee, Hydrogen Production by Gasification of Isooctane using Supercritical Water, Int. J. Green Energy. 5 (2008) 322-333) was observed with the present gasifier configuration. High hydrogen gas yield (6.13 mol/mol isooctane) was obtained at high reaction temperature of 637 C, a low feed concentration of 9.9 wt% and a long residence time of 18 s in the presence of 2701.1 mmol/L hydrogen peroxide. At this condition, the produced gases mainly consisted of hydrogen (59.5 mol%), methane (14.8 mol%) and carbon dioxide (22.0 mol%), and a small amount of carbon monoxide (1.6 mol%) and C{sub 2}-C{sub 3} species (2.1 mol%). Reaction mechanisms of supercritical water gasification of isooctane were also presented. (author)

  7. Transient behavior of Cu/ZnO-based methanol synthesis catalysts

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida;

    2009-01-01

    Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...... for a gas mixture of H2:CO = 1:1. The gas-dependent morphology of the Cu nanoparticles provides a consistent explanation of the observed coupling between the transient methanol production and pretreatment conditions within the framework of the dynamic microkinetic model by Ovesen et al. [J. Catal. 168 (1997...

  8. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.

    Science.gov (United States)

    Hwang, In Yeub; Hur, Dong Hoon; Lee, Jae Hoon; Park, Chang-Ho; Chang, In Seop; Lee, Jin Won; Lee, Eun Yeol

    2015-03-01

    Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30°C. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

  9. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata T.; Benes, N.E.; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate water-l

  10. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

    DEFF Research Database (Denmark)

    Alberico, E.; Nielsen, Martin

    2015-01-01

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous...

  11. Matching and optimization of working condition of liquid feed direct methanol fuel cell%液体进料直接甲醇燃料电池工况的匹配及优化

    Institute of Scientific and Technical Information of China (English)

    刘桂成; 张浩; 王一拓; 王新东

    2012-01-01

    The effects on the performance of direct methanol fuel cell(DMFC)with oxygen humidifying, oxygen preheating at the cathode and placement ways of the cell were studied. Electrochemical impedance spectroscopy (EIS) test results revealed that oxygen humidifying led to a 10.3% reduction of internal resistance and improvement of the cell performance at low temperature,but oxygen humidifying resulted in flooding in the cathode and decreased the cell performance at high temperature. Oxygen preheating could ensure temperature balance in the cathode and avoid the condensation of H2O steam produced from cathode into water,improving the mass transfer ability and then enhanced the power density of cell from 46.70 Mw/cm2 to 52.48 Mw/cm2 at 55 t, which was especially notable at higher running temperature. Four feeding patterns were designed, the vertical feeding way promoted CO2 being emitted,reduced methanol crossover and obtained the maximum performance(54.13 Mw/cm2)at lower rate of methanol.%研究阴极氧气加湿、预热及电池放置方式对直接甲醇燃料电池(DMFC)性能的影响.电化学阻抗谱(EIS)测试结果显示:氧气加湿使电池内阻降低10.3%,改善了低温运行时的电池性能;在较高温度下,氧气加湿导致阴极出现水淹,降低了电池性能;氧气预热在保证阴极温度平衡的同时,避免了产物水分遇冷凝结,改善了阴极的传质性能,电池的功率密度在55℃时从46.70 mW/cm2提高到52.48 mW/cm2;运行温度越高,氧气预热对性能的改善越显著.设计了4种进料方式,其中垂直进料方式使CO2最易排出、甲醇渗透最少,甲醇流速较低时可得到最高的功率密度(54.13 mW/cm2).

  12. Spatial and Orientational Structure of the Hydration Shell of Benzene in Sub- and Supercritical Water.

    Science.gov (United States)

    Choudhary, Ashu; Chandra, Amalendu

    2015-07-09

    The spatial and orientational structure of the solvation shell of benzene in sub- and supercritical water are investigated by means of molecular dynamics simulations. The present study reveals different local organization of water molecules at different parts of the solute. The π-hydrogen-bonding between benzene and water along the axial direction is found to exist even at supercritical conditions although to a reduced extent. The coordination number of benzene decreases substantially on increase of temperature and decrease of density. While the π-hydrogen-bonded part in the axial region shows a slight expansion, the hydrophobically solvated part in the equatorial plane shows an opposite behavior as the temperature is increased from normal to the supercritical temperature. Two other distribution functions, namely the radial/angular and spatial orientational functions (SOFs) are calculated to explore the spatially resolved angular preferences of water molecules around the benzene solute. Water molecules located axial to the benzene are found to have strong inward orientation toward the solute, however an opposite behavior is found in the equatorial region. Although at supercritical conditions, the orientational distributions of water molecules are broadened, the preferential orientations in the axial and equatorial regions remain similar to that under ambient condition on average.

  13. Pharmaceutical applications of supercritical carbon dioxide.

    Science.gov (United States)

    Kaiser, C S; Römpp, H; Schmidt, P C

    2001-12-01

    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials.

  14. Phase equilibria modeling of methanol-containing systems with the CPA and sPC-SAFT equations of state

    DEFF Research Database (Denmark)

    Tybjerg, Peter Chr. V.; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    Proper representation at various conditions of phase equilibria of methanol-containing mixtures (with hydrocarbons, water, etc.) is Important for oil flow assurance purposes In this work two association equations of state. CPA and sPC-SAFT, are applied to methanol-containing mixtures The purpose...... density, enthalpy of vaporization and compressibility factor data at e used Methanol-alkane vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) data. water-methanol VLE as well as water-methanol-hydrocarbon LLE are considered. It is concluded that the two association equations of state...

  15. Methanol metabolism in a peroxisome-deficient mutant of Hansenula polymorpha : A physiological study

    NARCIS (Netherlands)

    Klei, Ida J. van der; Harder, Willem; Veenhuis, Marten

    1991-01-01

    We have studied methanol-utilization in a peroxisome-deficient (PER) mutant of Hansenula polymorpha. In spite of the fact that in carbon-limited chemostat cultures under induced conditions the enzymes involved in methanol metabolism were present at wildtype (WT) levels, this mutant is unable to grow

  16. Enhanced methanol utilization in direct methanol fuel cell

    Science.gov (United States)

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  17. Fermentation of methanol in the sheep rumen.

    OpenAIRE

    Pol, A.; Demeyer, D. I.

    1988-01-01

    Sheep fed a hay-concentrate diet were adapted to pectin administration and ruminal infusion of methanol. Both treatments resulted in a strong increase in the rate of methanogenesis from methanol. Quantitative data show that methanol was exclusively converted into methane. Treatments did not influence ruminal volatile fatty acid percentages.

  18. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  19. The fate of methanol in anaerobic bioreactors.

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen dema

  20. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  1. Supercritical fluid extraction of hops

    Directory of Open Access Journals (Sweden)

    ZORAN ZEKOVIC

    2007-01-01

    Full Text Available Five cultivars of hop were extracted by the method of supercritical fluid extraction using carbon dioxide (SFE–CO2 as extractant. The extraction (50 g of hop sample using a CO2 flow rate of 97.725 L/h was done in the two steps: 1. extraction at 150 bar and 40°C for 2.5 h (sample of series A was obtained and, after that, the same sample of hop was extracted in the second step: 2. extraction at 300 bar and 40 °C for 2.5 h (sample of series B was obtained. The Magnum cultivar was chosen for the investigation of the extraction kinetics. For the qualitative and quantitative analysis of the obtained hop extracts, the GC-MS method was used. Two of four themost common compounds of hop aroma (a-humulene and b-caryophyllene were detected in samples of series A. In addition, isomerized a-acids and a high content of b-acids were detected. The a-acids content in the samples of series B was the highest in the extract of the Magnum cultivar (it is a bitter variety of hop. The low contents of a-acids in all the other hop samples resulted in extracts with low a-acids content, i.e., that contents were under the prescribed a-acids content.

  2. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  3. Supercritical waste oxidation pump investigation

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  4. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  5. Efficient Nd Promoted Rh Catalysts for Vapor Phase Methanol Carbonylation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng ZHANG; Qing Li QIAN; Ping Lai PAN; Yi CHEN; Guo Qing YUAN

    2005-01-01

    A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.

  6. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, Anders; Lynggaard, Hasse Harloff; Stegelmann, Carsten;

    2005-01-01

    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5–23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  7. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.;

    2005-01-01

    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  8. Comparison of Nitronic 50 and Stainless Steel 316 for use in Supercritical Water Environments

    Science.gov (United States)

    Karmiol, Zachary

    Increased efficiency can greatly benefit any mode of power production. Many proposed coal, natural gas, and nuclear reactors attempt to realize this goal through the use of increased operating temperatures and pressures, and as such require materials capable of withstanding extreme conditions. One such design employs supercritical water, which in addition to high temperatures and pressures is also highly oxidizing. A critical understanding of both mechanical and oxidation characteristics of candidate materials are required to determine the viability of materials for these reactors. This work investigates two potential materials, austenitic stainless steels, namely, Nitronic-50 and stainless steel 316, for use in these conditions. The supercritical water loop at the University of Nevada, Reno allowed for the study of materials at both subcritical and supercritical conditions. The materials were investigated mechanically using slow strain rate tests under conditions ranging from an inert nitrogen atmosphere, to both subcritical and supercritical water, with the failed samples surface characterized by optical microscopy, scanning electron microscopy, and Raman spectroscopy. Electrochemical studies were performed via potentiodynamic polarization in subcritical water only, and characterized using Raman spectroscopy. The samples were also exposed to supercritical water, and characterized using Raman spectroscopy. Nitronic-50 was found to have superior mechanical characteristics to stainless steel 316. SS-316 was found to have a surface film consisting of iron oxides, while the surface film of N-50 consisted predominantly of nickel-iron spinel. The crack interior of the sample was different from the exterior, indicating that the time and temperature of the exposure might play a defining role in determining the chemistry of the film.

  9. Hydrodynamics and Mass Transfer Performance in Supercritical Fluid Extraction Columns

    Institute of Scientific and Technical Information of China (English)

    石冰洁; 张泽廷; 等

    2002-01-01

    New models for describing hydrodynamics and mass transfer performance in supercritical fluid extraction columns were proposed.Those models were proved by experimental data,which were obtained in supercritical fluid extraction packed column,spray column and sieve tray column respectively.The inner diameter of those columns areΦ25mm,These experimental systems include supercritical carbon dioxideisopropanol-water and supercritical carbon dioxide-ethanol-water,in which supercritical carbon dioxide was dispersed phase,and another was continuous phase.The extraction processes were operated with continuous countercurrent flow.The predicted values are agreed well with experimental data.

  10. DNS of High Pressure Supercritical Combustion

    Science.gov (United States)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  11. Supercritical fluid thermodynamics for coal processing

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, F. (Illinois Univ., Urbana, IL (United States). Dept. of Chemical Engineering); Eckert, C.A. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering)

    1988-09-15

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  12. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  13. New OH Observations toward Northern Class I Methanol Masers

    Science.gov (United States)

    Val'tts, I. E.; Litovchenko, I. D.; Bayandina, O. S.; Alakoz, A. V.; Larionov, G. M.; Mukha, D. V.; Nabatov, A. S.; Konovalenko, A. A.; Zakharenko, V. V.; Alekseev, E. V.; Nikolaenko, V. S.; Kulishenko, V. F.; Odincov, S. A.

    2012-07-01

    Maser emission of OH(1720) is formed, according to modern concepts, under the influence of collisional pumping. Class I methanol masers (MMI) are also formed by a collisional mechanism of the inversion of the molecular levels. It is not excluded in this case that physical conditions in the condensations of the interstellar medium where masers are formed may be similar for MMI and OH(1720) masers, and they can associate with each other. To establish a possible association between these two kinds of masers, and obtain reliable statistical estimates, a survey of class I methanol masers at a frequency of 1720 MHz has been carried out.

  14. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  15. The separation of particles from supercritical water oxidation effluents

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Orco, P.C.

    1991-08-01

    The development of a solids separation system is essential to the implementation of supercritical water oxidation as a commercial process. Like all waste disposal processes, supercritical water oxidation produces a residue. This final ash must eventually be removed from the effluent stream. Limited studies have investigated solids separations near supercritical water conditions (374.2 {degrees}C, 3205 psi). Therefore, a ten millimeter diameter hydrocyclone with an underflow receiver was evaluated for its ability to achieve the separation of fine particles from water. Temperature was varied from 20{degrees}C to 389{degrees}C while pressure was maintained at 3600 psi (24.8 MPa). Mass flow rates varied from 0.015 to 0.049 kg/s. Particle concentrations in feed streams ranged from 400 to 1200 mg/L. Three different particulates, Min-U-Sil 5 (quartz SiO{sub 2}), zirconium dioxide (ZrO{sub 2}), and titanium dioxide (TiO{sub 2}) were studied. These particles ranged in diameter from below one micron to ten microns. Low pressure (0-200 psi), room temperature (20{degrees}C) studies were also conducted where flow rate and feed concentration were variables. Solids removal efficiencies were determined for all experiments. Solid removals were as high as 99% at elevated temperatures. Particle size distributions provided information on particle sizes separated. Particles removed with efficiencies of 50, 90, and 95 per cent (cut sizes) were determined. Ninety per cent cut sizes below one micron were reported for several elevated temperature experiments. Empirical models for use in engineering design were developed for the prediction of solid removal efficiencies and pressure drops.

  16. Ultra supercritical pressure. Cho rinkaiatsu kara chocho rinkaiatsu e

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, T. (Mitsubishi Heavy Industries Ltd., Tokyo (Japan))

    1992-10-05

    In Japanese thermoelectric power plants the steam condition was made higher in pressure and temperature with a rise in the requirement to enhance the plant efficiency being spurred by a rapid increasement in the demand of electric power since 1955. It was 1967 when a supercritical power plant of 24.2 MPa steam pressure started its operation. Afterwards, the enhancement of the plant efficiency by upgrading the steam condition was again paid attention against the sharp rise in fuel cost caused by oil shock in two times originating from 1973. In 1989 Japan's first ultra supercritical pressure plant of 31.1 MPa steam pressure, Kawagoe No.1 of Chubu Electric Power Co.,Inc. began its operation and achieved an efficiency of 41.9 %, approximately 5 % higher than hitherto. In Kawagoe No.1 boiler, a 9Cr-1 Mo system material excellent in high temperature strength was put to practical use and applied to main steam tubes and super-heater tube exit headers, also a fine grained 18Cr-11Ni-Nb-Ta steel excellent in high temperature strength as well as steam oxidizing property was developed and adopted to super-heater tubes. Thus, the reduction of thermal stress and the improvement of responsiveness were attained by thinning the thickness of tube with these materials. 3 refs., 2 figs.

  17. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    Science.gov (United States)

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%.

  18. Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review

    Science.gov (United States)

    Deng, Bi-Li; Kanda, Yuki; Chen, Lin; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2017-08-01

    Supercritical fluids have become a hot topic in recent years, due to their wide applications in chemical and energy systems. With its sensitive thermal-transport properties in the near-critical region, supercritical/near-critical fluids behaviors, under both microgravity and terrestrial conditions, have become very interesting and challenging topic. This brief review is focused on the visualization experiments of fluid convection and heat transfer related critical phenomena by interferometer. Due to the sensitive property changes of critical fluids, it is very difficult to control and measure the supercritical fluid behaviors. In this review, non-intrusive visualization systems by interferometry are introduced and analyzed for experimental studies of fluids in the near-critical region. For near-critical and supercritical experiments, the temperature/density control and parameter analysis are of critical importance. The analysis of boundary conditions, convection behaviors and energy transfer modes of critical fluids, mainly under weightlessness, are also reviewed with recent opinions toward future development. It is hoped that this review could be helpful for related studies.

  19. Eco-Friendly Disperse Dyeing and Functional Finishing of Nylon 6 Using Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Tarek Abou Elmaaty

    2015-08-01

    Full Text Available In this work, a supercritical carbon dioxide assembly was successfully constructed for dyeing Nylon6 fabric. Primary experiments were carried out to confirm the possibility of bringing the dyeing up to factory scale. A series of disperse azo dyes with potential antibacterial activity were applied to dye the fabric under our study in supercritical carbon dioxide (scCO2. The factors affecting the dyeing conditions (i.e., dye concentration, time, temperature and pressure and functional properties were discussed and compared with those in aqueous dyeing. The comparison revealed that elimination of auxiliary chemicals such as salt, carrier or dispersing agent has no diverse effect on dyeing. The color strength of the dyed fabric evaluated by using K/S measurements increased by increasing dye concentration from 2% to 6% owf. (on weight of fabric. The nylon6 fabrics dyed in supercritical carbon dioxide have good fastness properties, and especially light fastness compared with conventional exhaustion dyeing. Antibacterial activity of the dyed samples under supercritical conditions was evaluated and the results showed excellent antibacterial efficiency.

  20. A comparative study of solvent and supercritical CO2 extraction of Simarouba gluaca seed oil

    Directory of Open Access Journals (Sweden)

    B. Anjaneyulu

    2017-09-01

    Full Text Available In the present study, the supercritical carbon dioxide (CO2 extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar, temperature (50–70 °C and CO2 flow rate (10–30 g·min-1. The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1 extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1. Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1 was found to be higher than the solvent extracted oil (111 mg·kg-1. The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil.

  1. Methanol production method and system

    Science.gov (United States)

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  2. Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: a comparative study.

    Science.gov (United States)

    Baudelet, Davy; Schifano-Faux, Nadège; Ghinet, Alina; Dezitter, Xavier; Barbotin, Florent; Gautret, Philippe; Rigo, Benoit; Chavatte, Philippe; Millet, Régis; Furman, Christophe; Vaccher, Claude; Lipka, Emmanuelle

    2014-10-10

    Analytical enantioseparation of three pyroglutamide derivatives with pharmacological activity against the purinergic receptor P2X7, was run in both high-performance liquid chromatography and supercritical fluid chromatography. Four polysaccharide based chiral stationary phases, namely amylose and cellulose tris (3,5-dimethylphenylcarbamate), amylose tris ((S)-α-methylbenzylcarbamate) and cellulose tris (4-methylbenzoate) with various mobile phases consisted of either heptane/alcohol (ethanol and 2-propanol) or carbon dioxide/alcohol (methanol or ethanol) mixtures, were investigated. After analytical screenings, the best conditions were transposed, for compound 1, to semi-preparative scale. Each approach was fully validated to meet the International Conference on Harmonisation requirements and compared. Whereas the limits of detection and quantification were near six-fold better in HPLC than in SFC (respectively 0.20 and 0.66 μM versus 1.11 and 3.53 μM for one of the enantiomers), in terms of low solvent consumption (7.2 mL of EtOH versus 3.2 mL of EtOH plus 28.8 mL of toxic and inflammable heptane per injection in SFC and HPLC, respectively), time effective cost (9 min versus 40 min per injection in SFC and HPLC, respectively) and yields (98% versus 71% in SFC and HPLC, respectively), the latter method proved its ecological superiority.

  3. Study on Optimization of Extraction Conditions of Catechin from Roasted Green Tea by Supercritical-CO2 Fluid Extraction%炒青绿茶儿茶素超临界CO2萃取工艺优化研究

    Institute of Scientific and Technical Information of China (English)

    毛世红; 邱涛涛

    2014-01-01

    The extraction conditions of catechin from roasted green tea by supercritical-CO 2 fluid extraction (SFE-CO2)were studied. Influences of extraction temperature, extraction pressure, materiel-liquid ratio, and extraction time on the content of catechin were investigated, and the effect of extraction conditions on the extraction rate of catechin from extracts was evaluated by single factor and orthogonal tests.Experimental results showed that the successive order of diferent effect factors on yield of catechin was extraction pressure>materiel-liquid ratio>extraction time>materiel granularity. The optimal extraction conditions of catechin from roasted green tea as follows:extraction temperature 50℃, extraction time 120 min, extraction pressure 25 MPa, 1∶2.5 of solid to liquid ratio was used as a modifier, and 0.65 mm of particle size. The maximum SFE-CO2 extracting rate of catechin 6.053 6%.%采用单因素试验和正交试验对炒青绿茶儿茶素超临界CO2萃取工艺进行探讨,确定萃取效果影响的程度从高到低依次为:萃取压力>夹带剂乙醇用量>萃取时间>萃取粒度,最佳萃取工艺为:底物与夹带剂(乙醇)之比为100 g/250 mL,萃取压力25 MPa,萃取温度50℃,粒度为60目,萃取120 min。按照该工艺茶叶中儿茶素粗提物的得率为6.0536%。

  4. Adsorption from Experimental Isotherms of Supercritical Gases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical method was proposed for the determination of absolute adsorption from experimental isotherms. The method is based on the numerical equality of the absolute and the excess adsorption when either the gas phase density or the amount adsorbed is not quite considerable. The initial part of the experimental isotherms, which represents the absolute adsorption, became linear with some mathematical manipulations. The linear isotherms were reliably formulated. As consequence, either the volume or the density of the supercritical adsorbate could be determined by a non-empirical way. This method was illustrated by the adsorption data of supercritical hydrogen and methane on a superactivated carbon in large ranges of temperature and pressure.

  5. Charting the landscape of supercritical string theory

    CERN Document Server

    Hellerman, Simeon

    2007-01-01

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions (via dimension quenching) and different amounts of worldsheet supersymmetry (via c-duality). These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions, and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c-duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories. We describe some of these networks in detail and discuss general consistency constraints on the types of transitions that arise in this framework.

  6. Withanolide artifacts formed in methanol.

    Science.gov (United States)

    Cao, Cong-Mei; Zhang, Huaping; Gallagher, Robert J; Timmermann, Barbara N

    2013-11-22

    Methanol solutions of the main withanolides (6-8) naturally present in Physalis longifolia yielded five artificial withanolides (1-5), including three new compounds (1-3). Withanolides 1 and 2 were identified as intramolecular Michael addition derivatives, while withanolides 3-5 were the result of intermolecular Michael addition. A comprehensive literature investigation was conducted to identify potential withanolide Michael addition artifacts isolated from Solanaceous species to date.

  7. Catalysts for the Selective Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Catherine Brookes

    2016-06-01

    Full Text Available In industry, one of the main catalysts typically employed for the selective oxidation of methanol to formaldehyde is a multi-component oxide containing both bulk Fe2(MoO43 and excess MoO3. It is thought that the excess MoO3 primarily acts to replace any molybdenum lost through sublimation at elevated temperatures, therefore preventing the formation of an unselective Fe2O3 phase. With both oxide phases present however, debate has arisen regarding the active component of the catalyst. Work here highlights how catalyst surfaces are significantly different from bulk structures, a difference crucial for catalyst performance. Specifically, Mo has been isolated at the surface as the active surface species. This leaves the role of the Fe in the catalyst enigmatic, with many theories postulated for its requirement. It has been suggested that the supporting Fe molybdate phase enables lattice oxygen transfer to the surface, to help prevent the selectivity loss which would occur in the resulting oxygen deficit environment. To assess this phenomenon in further detail, anaerobic reaction with methanol has been adopted to evaluate the performance of the catalyst under reducing conditions.

  8. Development of an Accelerated Methodology to Study Degradation of Materials in Supercritical Water for Application in High Temperature Power Plants

    Science.gov (United States)

    Rodriguez, David

    stainless steel 316, Nitronic 50, Inconel 625 and Inconel 718 was exposed to supercritical water at 530 °C and ultra-supercritical water at 600 °C and was studied as a function exposure time. When exposed to supercritical water, Nitronic 50 and stainless steel 316 were observed to have similar mass gains; however, stainless steel 316 was found to gain less mass than Nitronic 50 in exposure tests performed in ultra-supercritical water. Stainless steel 316 developed surface films primarily composed of iron oxides, while the surface of Nitronic 50 contained a mixture of iron, chromium and manganese oxides. Inconels 625 and 718 samples were exposed to these temperatures for 24, 96, and 200 hours. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. For the first time, corrosion rates in supercritical water were determined using electrochemical techniques. The corrosion rates of stainless steel 316, Nitronic 50, Inconel 625 and Inconel 718 were estimated in supercritical and ultra-supercritical water using electrochemical impedance spectroscopy and electrochemical frequency modulation. For all conditions tested, the corrosion rates obtained from electrochemical testing followed similar trends to the long-term gravimetric results. As a screening tool, this protocol can potentially reduce the time required for corrosion rate studies from thousands of hours to 24 hours.

  9. The toxicity of inhaled methanol vapors

    Energy Technology Data Exchange (ETDEWEB)

    Kavet, R.; Nauss, K.M. (Environmental Research Information, Inc., Palo Alto, CA (USA))

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  10. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.

    Science.gov (United States)

    Lesellier, E; Mith, D; Dubrulle, I

    2015-12-01

    Analyses of complex samples of cosmetics, such as creams or lotions, are generally achieved by HPLC. These analyses are often multistep gradients, due to the presence of compounds with a large range of polarity. For instance, the bioactive compounds may be polar, while the matrix contains lipid components that are rather non-polar, thus cosmetic formulations are usually oil-water emulsions. Supercritical fluid chromatography (SFC) uses mobile phases composed of carbon dioxide and organic co-solvents, allowing for good solubility of both the active compounds and the matrix excipients. Moreover, the classical and well-known properties of these mobile phases yield fast analyses and ensure rapid method development. However, due to the large number of stationary phases available for SFC and to the varied additional parameters acting both on retention and separation factors (co-solvent nature and percentage, temperature, backpressure, flow rate, column dimensions and particle size), a simplified approach can be followed to ensure a fast method development. First, suited stationary phases should be carefully selected for an initial screening, and then the other operating parameters can be limited to the co-solvent nature and percentage, maintaining the oven temperature and back-pressure constant. To describe simple method development guidelines in SFC, three sample applications are discussed in this paper: UV-filters (sunscreens) in sunscreen cream, glyceryl caprylate in eye liner and caffeine in eye serum. Firstly, five stationary phases (ACQUITY UPC(2)) are screened with isocratic elution conditions (10% methanol in carbon dioxide). Complementary of the stationary phases is assessed based on our spider diagram classification which compares a large number of stationary phases based on five molecular interactions. Secondly, the one or two best stationary phases are retained for further optimization of mobile phase composition, with isocratic elution conditions or, when

  11. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor.

  12. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  13. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study.

    Science.gov (United States)

    Ma, Haibo; Ma, Jing

    2011-08-07

    Molecular dynamics simulation have been performed with a wide range of densities along a near critical isotherm of supercritical water (SCW) in order to study the density dependence of the structure order and hydrogen bonding (HB). It is revealed that the translational structure order is nearly invariant while the orientational tetrahedral structure order is very sensitive to the bulk density under supercritical conditions. Meanwhile, some energetically unfavorable intermediate water dimer structures are found to appear under supercritical conditions due to the reduced energy difference and the enhanced energy fluctuation. As a consequence, a general geometrical criterion or the inclusion of a energy-based criterion instead of currently widely adopted pure r(OH)-based geometric criterion is suggested to be used in the HB statistics under supercritical conditions. It is found that the average HB number per H(2)O molecule (n(HB)) reduces with the decreasing SCW bulk density although a given pair of H(2)O molecules are shown to have a stronger ability to form a hydrogen bond under lower SCW bulk densities. Accordingly, the orientational tetrahedral structure order q decreases with the reducing bulk density under supercritical conditions. However, when the fluid is dilute with ρ ≤ 0.19ρ(c) (ρ(c) = 0.322 g/cm(3)), the energy fluctuation increases sharply and the short-range order is destroyed, signifying the supercritical fluid (SCF)-gas state transition. Accordingly, the orientational tetrahedral structure order q gets reversal around ρ = 0.19ρ(c) and approaches zero under very dilute conditions. The sensitivity of the orientational order to the density implies the microscopic origin of the significant dependence of SCF's physicochemical properties on the pressure.

  14. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  15. NMR study comparing capillary trapping in Berea sandstone of air, carbon dioxide, and supercritical carbon dioxide after imbibition of water

    Science.gov (United States)

    Prather, Cody A.; Bray, Joshua M.; Seymour, Joseph D.; Codd, Sarah L.

    2016-02-01

    Nuclear magnetic resonance (NMR) techniques were used to study the capillary trapping mechanisms relevant to carbon sequestration. Capillary trapping is an important mechanism in the initial trapping of supercritical CO2 in the pore structures of deep underground rock formations during the sequestration process. Capillary trapping is considered the most promising trapping option for carbon sequestration. NMR techniques noninvasively monitor the drainage and imbibition of air, CO2, and supercritical CO2 with DI H2O at low capillary numbers in a Berea sandstone rock core under conditions representative of a deep underground saline aquifer. Supercritical CO2 was found to have a lower residual nonwetting (NW) phase saturation than that of air and CO2. Supercritical CO2 behaves differently than gas phase air or CO2 and leads to a reduction in capillary trapping. NMR relaxometry data suggest that the NW phase, i.e., air, CO2, or supercritical CO2, is preferentially trapped in larger pores. This is consistent with snap-off conditions being more favorable in macroscale pores, as NW fluids minimize their contact area with the solid and hence prefer larger pores.

  16. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris.

    Science.gov (United States)

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris.

  17. Hazelnut oil production using pressing and supercritical CO2 extraction

    Directory of Open Access Journals (Sweden)

    Jokić Stela

    2016-01-01

    Full Text Available In the hazelnut oil production it is very important to find an appropriate method to recover the oil from kernels. The objective of this study was to evaluate the oil extraction process from hazelnuts by screw pressing followed by extraction with supercritical CO2. The effects of temperature head presses, frequency and nozzle size in pressing experiments on oil temperature and recovery were monitored. The optimal pressing condition using response surface methodology was determined. In obtained hazelnut oil the following quality parameters were determined: peroxide value 0 mmol O2/kg, free fatty acids 0.23%, insoluble impurities 0.42%, moisture content 0.045%, iodine value 91.55 g I2/100 g, saponification value 191.46 mg KOH/g and p-anisidine value 0.19. Rosemary extract was the most effective in protecting the oil from oxidative deterioration. The residual oil that remained in the cake after pressing was extracted totally with supercritical CO2 and such defatted cake, free of toxic solvents, can be used further in other processes.

  18. Analysis of supercritical vapor explosions using thermal detonation wave theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamoun, B.I.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.

  19. Computational Fluid Dynamics Analysis of Canadian Supercritical Water Reactor (SCWR)

    Science.gov (United States)

    Movassat, Mohammad; Bailey, Joanne; Yetisir, Metin

    2015-11-01

    A Computational Fluid Dynamics (CFD) simulation was performed on the proposed design for the Canadian SuperCritical Water Reactor (SCWR). The proposed Canadian SCWR is a 1200 MW(e) supercritical light-water cooled nuclear reactor with pressurized fuel channels. The reactor concept uses an inlet plenum that all fuel channels are attached to and an outlet header nested inside the inlet plenum. The coolant enters the inlet plenum at 350 C and exits the outlet header at 625 C. The operating pressure is approximately 26 MPa. The high pressure and high temperature outlet conditions result in a higher electric conversion efficiency as compared to existing light water reactors. In this work, CFD simulations were performed to model fluid flow and heat transfer in the inlet plenum, outlet header, and various parts of the fuel assembly. The ANSYS Fluent solver was used for simulations. Results showed that mass flow rate distribution in fuel channels varies radially and the inner channels achieve higher outlet temperatures. At the outlet header, zones with rotational flow were formed as the fluid from 336 fuel channels merged. Results also suggested that insulation of the outlet header should be considered to reduce the thermal stresses caused by the large temperature gradients.

  20. CFD Analysis of a supercritical carbon dioxide compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoon Han; Lee, Jek Young; Cha, Jae Eun; Addad, Yacine [KAIST, Daejeon (Korea, Republic of)

    2012-10-15

    The supercritical carbon dioxide Brayton cycle is considered as an attractive cycle for the next generation nuclear systems. It was identified that the compressor can achieve very small compressing work as operating conditions become closer to the critical point. Smaller amount of input work contributes to the enhancement of overall net cycle efficiency. Comparing to traditional water vapor cycle and helium cycle, the S CO{sup 2} cycle has relatively much less volume and component size. Therefore, S CO{sup 2} cycle can be used for many purposes such as nuclear ship propulsion where volume requirement is strict, or a small nuclear reactor when it is constructed on geographically limited area One of the main factors for determining the supercritical Brayton cycle efficiency is the performance of turbomachineries. Many research organizations already obtained experimental data of S CO{sup 2} cycle turbomachineries, but the amount of data is still limited. Our research team is conducting a S CO{sup 2} compressor test to obtain fundamental data for advanced compressor design and measure the performance of the compressor near the critical point. The S CO{sup 2} compressor testing loop is specially designed to test main compressor of the loop. The S CO{sup 2} fluid shows the properties of gases and liquids at the same time, but its behavior is closer to the liquid rather than gas near the critical point. Therefore, we are performing compressor test with canned motor pump which is unique from other previous studies.