WorldWideScience

Sample records for supercritical extraction process

  1. Supercritical Extraction Process of Allspice Essential Oil

    Directory of Open Access Journals (Sweden)

    Yasvet Y. Andrade-Avila

    2017-01-01

    Full Text Available Allspice essential oil was extracted with supercritical carbon dioxide (SC-CO2 in a static process at three different temperatures (308.15, 313.15, and 318.15 K and four levels of pressure (100, 200, 300, and 360 bar. The amount of oil extracted was measured at intervals of 1, 2, 3, 4, 5, and 6 h; the most extraction yield reached was of 68.47% at 318.15 K, 360 bar, and 6 h of contact time. In this supercritical extraction process, the distribution coefficient (KD, the mean effective diffusion coefficient (Def, the energy of activation (Ea, the thermodynamic properties (ΔG0, ΔH0, and ΔS0, and the apparent solubility (S expressed as mass fraction (w/w were evaluated for the first time. At the equilibrium the experimental apparent solubility data were successfully correlated with the modified Chrastil equation.

  2. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    Directory of Open Access Journals (Sweden)

    Sujuan Pan

    2013-01-01

    Full Text Available Supercritical fluid extraction and expansion (SFEE patented technology combines the advantages of both supercritical fluid extraction (SFE and rapid expansion of supercritical solution (RESS with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid.

  3. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  4. using Supercritical Fluid Extraction

    African Journals Online (AJOL)

    Methods: Supercritical CO2 extraction technology was adopted in this experiment to study the process of extraction of volatile oil from Polygonatum odoratum while gas chromatograph-mass spectrometer ..... Saponin rich fractions from.

  5. Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2013-01-01

    Highlights: ► Investigation of supercritical reactive extraction process for biodiesel production. ► Focus is given on optimizing methyl esters yield for Jatropha curcas L. seeds. ► Influence of process parameters to the reaction are discussed thoroughly. ► Comparison between the novel reaction with conventional process are studied. ► High methyl esters yield can be obtained without pre-extraction and catalyst. -- Abstract: In a bid to increase the cost competitiveness of biodiesel production against mineral diesel, process intensification has been studied for numerous biodiesel processing technologies. Subsequently, reactive extraction or in situ transesterification is actively being explored in which the solid oil-bearing seeds are used as the reactant directly with short-chain alcohol. This eliminates separate oil extraction process and combines both extraction and transesterification in a single unit. Supercritical reactive extraction takes one step further by substituting the role of catalyst with supercritical conditions to achieve higher yield and shorter processing time. In this work, supercritical reactive extraction with methanol was carried out in a high-pressure batch reactor to produce fatty acid methyl esters (FAMEs) from Jatropha curcas L. seeds. Material and process parameters including space loading, solvent to seed ratio, co-solvent (n-hexane) to seed ratio, reaction temperature, reaction time and mixing intensity were varied one at a time and optimized based on two responses i.e. extraction efficiency, M extract and FAME yield, F y . The optimum responses for supercritical reactive extraction obtained were 104.17% w/w and 99.67% w/w (relative to 100% lipid extraction with n-hexane) for M extract and F y respectively under the following conditions: 54.0 ml/g space loading, 5.0 ml/g methanol to seeds ratio, 300 °C, 9.5 MPa (Mega Pascal), 30 min reaction time and without n-hexane as co-solvent or any agitation source. This proved that

  6. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    Science.gov (United States)

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    Science.gov (United States)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  8. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  9. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-12-01

    Full Text Available Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2 extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2. Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73% compared to SCCO2 extraction alone (1.81%. Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM. SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.

  10. Supercritical fluid extraction of uranium

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2017-01-01

    Uranium being strategic material, its separation and purification is of utmost importance in nuclear industry, for which solvent extraction is being employed. During solvent extraction significant quantity of radioactive liquid waste gets generated which is of environmental concern. In recent decades supercritical fluid extraction (SFE) has emerged as promising alternative to solvent extraction owing to its inherent advantage of reduction in liquid waste generation and simplification of process. In this paper a brief overview of research work carried out so far on SFE of uranium by BARC has been given

  11. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata; Benes, Nieck Edwin; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate

  12. Vaccinium meridionale Swartz Supercritical CO2 Extraction: Effect of Process Conditions and Scaling Up

    Directory of Open Access Journals (Sweden)

    Alexis López-Padilla

    2016-06-01

    Full Text Available Vaccinium meridionale Swartz (Mortiño or Colombian blueberry is one of the Vaccinium species abundantly found across the Colombian mountains, which are characterized by high contents of polyphenolic compounds (anthocyanins and flavonoids. The supercritical fluid extraction (SFE of Vaccinium species has mainly focused on the study of V. myrtillus L. (blueberry. In this work, the SFE of Mortiño fruit from Colombia was studied in a small-scale extraction cell (273 cm3 and different extraction pressures (20 and 30 MPa and temperatures (313 and 343 K were investigated. Then, process scaling-up to a larger extraction cell (1350 cm3 was analyzed using well-known semi-empirical engineering approaches. The Broken and Intact Cell (BIC model was adjusted to represent the kinetic behavior of the low-scale extraction and to simulate the large-scale conditions. Extraction yields obtained were in the range 0.1%–3.2%. Most of the Mortiño solutes are readily accessible and, thus, 92% of the extractable material was recovered in around 30 min. The constant CO2 residence time criterion produced excellent results regarding the small-scale kinetic curve according to the BIC model, and this conclusion was experimentally validated in large-scale kinetic experiments.

  13. Vaccinium meridionale Swartz Supercritical CO2 Extraction: Effect of Process Conditions and Scaling Up

    Science.gov (United States)

    López-Padilla, Alexis; Ruiz-Rodriguez, Alejandro; Restrepo Flórez, Claudia Estela; Rivero Barrios, Diana Marsela; Reglero, Guillermo; Fornari, Tiziana

    2016-01-01

    Vaccinium meridionale Swartz (Mortiño or Colombian blueberry) is one of the Vaccinium species abundantly found across the Colombian mountains, which are characterized by high contents of polyphenolic compounds (anthocyanins and flavonoids). The supercritical fluid extraction (SFE) of Vaccinium species has mainly focused on the study of V. myrtillus L. (blueberry). In this work, the SFE of Mortiño fruit from Colombia was studied in a small-scale extraction cell (273 cm3) and different extraction pressures (20 and 30 MPa) and temperatures (313 and 343 K) were investigated. Then, process scaling-up to a larger extraction cell (1350 cm3) was analyzed using well-known semi-empirical engineering approaches. The Broken and Intact Cell (BIC) model was adjusted to represent the kinetic behavior of the low-scale extraction and to simulate the large-scale conditions. Extraction yields obtained were in the range 0.1%–3.2%. Most of the Mortiño solutes are readily accessible and, thus, 92% of the extractable material was recovered in around 30 min. The constant CO2 residence time criterion produced excellent results regarding the small-scale kinetic curve according to the BIC model, and this conclusion was experimentally validated in large-scale kinetic experiments. PMID:28773640

  14. Supercritical fluid extraction of silicone oil from uranate microspheres prepared by sol-gel process

    International Nuclear Information System (INIS)

    Kumar, R.; Venkatakrishnan, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2005-01-01

    Supercritical fluid extraction of silicone oil from urania microspheres prepared through sol-gel route was investigated. The influence of pressure, temperature, and flow rate on the extraction efficiency was studied. Experimental conditions were optimised for the complete removal of silicone oil from urania microspheres. (author)

  15. Theoretical models for supercritical fluid extraction.

    Science.gov (United States)

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  17. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Da Sun

    2011-10-01

    Full Text Available Supercritical carbon dioxide (SC-CO2 extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34, and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and ferrous ion chelating (FIC assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v, and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v. Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems.

  18. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  19. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  20. Elastic properties of silica aerogels from a new rapid supercritical extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gross, J.; Coronado, P.R.; Hair, L.M.; Hrubesh, L.W.

    1997-08-11

    Silica aerogels were produced by a new process from Tetramethoxysilane (TMOS) with ammonia as base catalyst. the process involves pouring the liquid sol in a stainless steel mold and immediately heating it to supercritical conditions. Gelation and aging occurs during heating and reaction rates are high die to high average temperatures. the gel fills the container completely, which enables relatively fast venting of the supercritical fluid by providing a constraint for swelling and failure of the gel monolith. The whole process can be completed in 6 h or less. Longitudinal and shear moduli were measured in the dried aerogels by ultrasonic velocity measurements both as a function of chemical composition of the original sol and of position in the aerogel. It was found that the sound velocity exhibits marked maxima on the surface of the cylindrical specimens and specifically close to the ends, where the fluid left during venting. Specimens with high catalyst concentration and high water:TMOS ratio exhibited higher average moduli.

  1. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  2. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  3. Supercritical fluid extraction of hops

    Directory of Open Access Journals (Sweden)

    ZORAN ZEKOVIC

    2007-01-01

    Full Text Available Five cultivars of hop were extracted by the method of supercritical fluid extraction using carbon dioxide (SFE–CO2 as extractant. The extraction (50 g of hop sample using a CO2 flow rate of 97.725 L/h was done in the two steps: 1. extraction at 150 bar and 40°C for 2.5 h (sample of series A was obtained and, after that, the same sample of hop was extracted in the second step: 2. extraction at 300 bar and 40 °C for 2.5 h (sample of series B was obtained. The Magnum cultivar was chosen for the investigation of the extraction kinetics. For the qualitative and quantitative analysis of the obtained hop extracts, the GC-MS method was used. Two of four themost common compounds of hop aroma (a-humulene and b-caryophyllene were detected in samples of series A. In addition, isomerized a-acids and a high content of b-acids were detected. The a-acids content in the samples of series B was the highest in the extract of the Magnum cultivar (it is a bitter variety of hop. The low contents of a-acids in all the other hop samples resulted in extracts with low a-acids content, i.e., that contents were under the prescribed a-acids content.

  4. Supercritical fluids processing: emerging opportunities

    International Nuclear Information System (INIS)

    Kovaly, K.A.

    1985-01-01

    This publication on the emerging opportunities of supercritical fluids processing reveals the latest research findings and development trends in this field. These findings and development trends are highlighted, and the results of applications of technology to the business of supercritical fluids are reported. Applications of supercritical fluids to chemical intermediates, environmental applications, chemical reactions, food and biochemistry processing, and fuels processing are discussed in some detail

  5. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  6. PALM KERNEL OIL SOLUBITY EXAMINATION AND ITS MODELING IN EXTRACTION PROCESS USING SUPERCRITICAL CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Wahyu Bahari Setianto

    2013-11-01

    Full Text Available Application of  supercritical carbon dioxide (SC-CO2 to vegetable oil extraction became an attractive technique due to its high solubility, short extraction time and simple purification. The method is considered as earth friendly technology due to the absence of chemical usage. Solubility of solute-SC-CO2 is an important data for application of the SC-CO2 extraction. In this work, the equilibrium solubility of the palm kernel oil (PKO in SC-CO2 has been examined using extraction curve analysis. The examinations were performed at temperature and pressure ranges of  323.15 K to 353.15 K and 20.7 to 34.5 MPa respectively. It was obtained that the experimental solubility were from 0.0160 to 0.0503 g oil/g CO2 depend on the extraction condition. The experimental solubility data was well correlated with a solvent density based model with absolute percent deviation of 0.96. PENENTUAN KELARUTAN MINYAK INTI KELAPA SAWIT DAN PEMODELAN EKSTRAKSI DENGAN KARBON DIOKSIDA SUPERKRITIK. Sehubungan dengan kelarutan yang tinggi, waktu ekstraksi yang pendek dan pemurnian hasil yang mudah, aplikasi karbon dioksida superkritis (SC-CO2 pada ekstraksi minyak nabati menjadi sebuah teknik ekstraksi yang menarik. Karena tanpa penggunaan bahan kimia, metode ekstraksi ini dianggap sebagai teknologi yang ramah lingkungan. Kelarutan zat terlarut pada SC-CO2 merupakan data yang penting dalam aplikasi SC-CO2 pada proses ekstraksi.  Pada penelitian ini,  kelarutan kesetimbangan dari minyak biji sawit (PKO dalam SC-CO2 telah diuji dengan mengunakan analisa kurva proses ekstraksi. Pengujian kelarutan tersebut dilakukan pada rentang suhu 323,15 K sampai 353,15 K dan rentang tekanan 20,7 MPa sampai 34,5 MPa. Hasil analisa menunjukkan bahwa kelarutan kesetimbangan hasil percobaan  PKO pada SC-CO2 adalah 0.0160 g minyak/g CO2 sampai 0,0503 g minyak/g CO2 tergantung pada kondisi ekstraksi. Data kelarutan kesetimbangan hasil percobaan  telah dikorelasaikan dengan baik menggunakan

  7. Sustainable extraction of molecules for human food, cosmetic and pharmaceutical products: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, GianPaolo; Ferri, Donatella

    2015-01-01

    Since several years, the ENEA Innovation Laboratory for Agro-Industrial, proposed activities of research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), focusing on sustainability characteristics of the process. The technique, in fact, makes no use of organic solvents, has a low energy consumption and requires a lower number of process steps compared to conventional extractions. The process also responds to the requirements imposed by the legislation for human food, cosmetic and pharmaceutical extracts. [it

  8. Sustainable extraction of molecules for potable alcohol, cosmetics and pharmaceuticals: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Ferri, Donatella

    2015-01-01

    Since many years the Laboratory of Agro-Industrial Innovation (UTAGRI-INN) ENEA proposed research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), aiming on the sustainability of the process characteristics. The technique, in fact, makes no use of organic solvents, It has reduced energy consumption and requires a number of process step lower than the extractions traditional. The process also responds to the requirements required by the regulations for food use, cosmetics and pharmaceutical extracts. [it

  9. Supercritical solvent extraction of oil sand bitumen

    Science.gov (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  10. Supercritical extraction of oleaginous: parametric sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Santos M.M.

    2000-01-01

    Full Text Available The economy has become universal and competitive, thus the industries of vegetable oil extraction must advance in the sense of minimising production costs and, at the same time, generating products that obey more rigorous patterns of quality, including solutions that do not damage the environment. The conventional oilseed processing uses hexane as solvent. However, this solvent is toxic and highly flammable. Thus the search of substitutes for hexane in oleaginous extraction process has increased in the last years. The supercritical carbon dioxide is a potential substitute for hexane, but it is necessary more detailed studies to understand the phenomena taking place in such process. Thus, in this work a diffusive model for semi-continuous (batch for the solids and continuous for the solvent isothermal and isobaric extraction process using supercritical carbon dioxide is presented and submitted to a parametric sensitivity analysis by means of a factorial design in two levels. The model parameters were disturbed and their main effects analysed, so that it is possible to propose strategies for high performance operation.

  11. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil.

    Science.gov (United States)

    Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2017-04-01

    A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.

  12. Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique.

    Science.gov (United States)

    Ilgaz, Saziye; Sat, Ihsan Gungor; Polat, Atilla

    2018-04-01

    In this pilot-scale study supercritical carbon dioxide (SCCO 2 ) extraction technique was used for decaffeination of black tea. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO 2 flow rate (1, 2, 3 L/min) and modifier quantity (0, 2.5, 5 mol%) were selected as extraction parameters. Three-level and five-factor response surface methodology experimental design with a Box-Behnken type was employed to generate 46 different processing conditions. 100% of caffeine from black tea was removed under two different extraction conditions; one of which was consist of 375 bar pressure, 62.5 °C temperature, 300 min extraction time, 2 L/min CO 2 flow rate and 5 mol% modifier concentration and the other was composed of same temperature, pressure and extraction time conditions with 3 L/min CO 2 flow rate and 2.5 mol% modifier concentration. Results showed that extraction time, pressure, CO 2 flow rate and modifier quantity had great impact on decaffeination yield.

  13. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  14. Supercritical fluid technologies for ceramic-processing applications

    International Nuclear Information System (INIS)

    Matson, D.W.; Smith, R.D.

    1989-01-01

    This paper reports on the applications of supercritical fluid technologies for ceramic processing. The physical and chemical properties of these densified gases are summarized and related to their use as solvents and processing media. Several areas are identified in which specific ceramic processes benefit from the unique properties of supercritical fluids. The rapid expansion of supercritical fluid solutions provides a technique for producing fine uniform powders and thin films of widely varying materials. Supercritical drying technologies allow the formation of highly porous aerogel products with potentially wide application. Hydrothermal processes leading to the formation of large single crystals and microcrystalline powders can also be extended into the supercritical regime of water. Additional applications and potential applications are identified in the areas of extraction of binders and other additives from ceramic compacts, densification of porous ceramics, the formation of powders in supercritical micro-emulsions, and in preceramic polymer processing

  15. Supercritical Carbon Dioxide Extraction of the Oak Silkworm (Antheraea pernyi Pupal Oil: Process Optimization and Composition Determination

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Wei

    2012-02-01

    Full Text Available Supercritical carbon dioxide (SC-CO2 extraction of oil from oak silkworm pupae was performed in the present research. Response surface methodology (RSM was applied to optimize the parameters of SC-CO2 extraction, including extraction pressure, temperature, time and CO2 flow rate on the yield of oak silkworm pupal oil (OSPO. The optimal extraction condition for oil yield within the experimental range of the variables researched was at 28.03 MPa, 1.83 h, 35.31 °C and 20.26 L/h as flow rate of CO2. Under this condition, the oil yield was predicted to be 26.18%. The oak silkworm pupal oil contains eight fatty acids, and is rich in unsaturated fatty acids and α-linolenic acid (ALA, accounting for 77.29% and 34.27% in the total oil respectively.

  16. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  17. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  18. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  19. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  20. Application of supercritical fluid extraction in analytical science

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2015-01-01

    In the recent years, supercritical fluid extraction (SFE) has emerged as a promising alternative to conventional solvent extraction process owing to its potential to minimize the generation of the liquid volume and simplification of the extraction process.This technology is some times referred to as 'green technology' and 'clean technology'. Supercritical fluid extraction process assumes significance as it exhibits practical advantages such as enhanced extraction rate due to rapid mass transfer in supercritical fluid medium and change of solvent properties such as density by tuning pressure/temperature conditions. Supercritical fluids (SCF) offer faster, cleaner and efficient extraction owing to low viscosity, high density, low surface tension and better diffusivity properties. Higher diffusivity than liquids facilitates rapid mass transfer and faster completion of reaction. Due to low viscosity and surface tension, SCF can penetrate deep inside the material, extracting the component of interest. Liquid like solvating characteristics of SCFs enable dissolution of compounds whereas gas like diffusion characteristics provide conditions for high degree of extraction in shorter time duration. CO 2 has been widely employed as supercritical fluid owing to its moderate critical constants (Pc= 72.9 atm, Tc =304.3 K, ñ c = 0.47 g mL -1 ) and attractive properties such as being easily available, recyclable, non-toxic, chemically inert, non inflammable and radio-chemically stable. SCF finds application in variety of fields. In nuclear industry for separation and purification of actinides from liquids and solid matrices. In food industry, Decaffeination of coffee is done by SCF. Pharmaceutical industry, organic compounds can be extracted from plants by SC CO 2 avoiding liquid solvent usage. SCF may also be utilised for the production of fine powders. In polymer and plastics industries, examples of applications include the impregnation of medical material

  1. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  2. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  3. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluids ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  4. Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: An optimization study.

    Science.gov (United States)

    Akay, Seref; Alpak, Ilknur; Yesil-Celiktas, Ozlem

    2011-08-01

    The aim of this work was to optimize total phenolic yield of Arbutus unedo fruits using supercritical fluid extraction. A Box-Behnken statistical design was used to evaluate the effect of various values of pressure (50-300 bar), temperature (30-80°C) and concentration of ethanol as co-solvent (0-20%) by CO2 flow rate of 15 g/min for 60 min. The most effective variable was co-solvent ratio (p<0.005). Evaluative criteria for both dependent variables (total phenols and radical scavenging activity) in the model were assigned maximum. Optimum extraction conditions were elicited as 60 bar, 48°C and 19.7% yielding 25.72 mg gallic acid equivalent (GAE) total phenols/g extract and 99.9% radical scavenging capacity, which were higher than the values obtained by conventional water (24.89 mg/g; 83.8%) and ethanol (15.12 mg/g; 95.8%) extractions demonstrating challenges as a green separation process with improved product properties for industrial applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Obtaining of the antioxidants by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Babović Nada V.

    2011-01-01

    Full Text Available One of the important trends in the food industry today is demand for natural antioxidants from plant material. Synthetic antioxidants such as butylated hydroxytoluene (BHT, and butylated hydroxyanisole (BHA are now being replaced by the natural antioxidants because of theirs possible toxicity and as they may act as promoters of carcinogens. The natural antioxidants may show equivalent or higher antioxidant activity than the endogenous or the synthetic antioxidants. Thus, great effort is being devoted to the search for alternative and cheap sources of natural antioxidants, as well as to the development of efficient and selective extraction techniques. The supercritical fluid extraction (SFE with carbon dioxide is considered to be the most suitable method for producing natural antioxidants for the use in food industry. The supercritical extract does not contain residual organic solvents as in conventional extraction processes, which makes these products suitable for use in food, cosmetic and pharmaceutical industry. The recovery of antioxidants from plant sources involves many problematic aspects: choice of an adequate source (in terms of availability, cost, difference in phenolic content with variety and season; selection of the optimal recovery procedure (in terms of yield, simplicity, industrial application, cost; chemical analysis of extracts (for optimization purposes a fast colorimetric method is more preferable than a chromatographic one; evaluation of the antioxidant power (preferably by the different assay methods. The paper presents information about different operational methods for SFE of bioactive compounds from natural sources. It also includes the various reports on the antioxidant activity of the supercritical extracts from Lamiaceae herbs, in comparison with the activity of the synthetic antioxidants and the extracts from Lamiaceae herbs obtained by the conventional methods.

  6. Blended polymer materials extractable with supercritical carbon dioxide

    Science.gov (United States)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical

  7. Supercritical Carbon Dioxide Extraction of Selected Herbal Leaves: An Overview

    Science.gov (United States)

    Hamid, I. A. Abd; Ismail, N.; Rahman, N. Abd

    2018-05-01

    Supercritical fluid extraction of carbon dioxide (SC-CO2) is one of new alternative extraction method that has been widely used to isolate bioactive components from variety of plant materials. The method was proved to be clean and safe, compatible for the extraction of edible products such as spices, food additives, medicines and nutritional supplement products compared to traditional extraction techniques such as solvent extraction, hydro distillation and steam distillation. The SC-CO2 extraction was known as highly influenced by its process parameter such as temperature and pressure for obtaining maximum yield. Therefore, a clear review on the optimum range of temperature and pressure for herbal leaves extraction using SC-CO2 is necessary for future reference. The aim of this work is to analyze the effect of temperature and pressure of SC-CO2 process without modifier on extraction yield of some selected herbal leaves i.e clubmoss, drumstick leaves, kratom leaves, mallee and myrtle leaves. The values of investigated parameters were; pressure from 8.9 to 50 MPa and temperature from 35 to 80°C. The results showed that the highest extraction yields were obtained when the pressure and temperature were above 30 MPa and 40°C. The interaction between pressure and temperature for SC-CO2 extraction of plant leaves are crucial since the values cannot be very high or very low in order to preserve the quality of the extracts.

  8. Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrea del Pilar Sánchez-Camargo

    2016-12-01

    Full Text Available In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116. The processes, carried out under optimal conditions, were: (1 pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent at lab-scale; (2 Single-step supercritical fluid extraction (SFE at pilot scale; (3 Intensified two-step sequential SFE at pilot scale; (4 Integrated PLE plus supercritical antisolvent fractionation (SAF at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight, this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA and carnosol (CS at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide, suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts.

  9. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  10. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  11. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  12. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review.

    Science.gov (United States)

    Uddin, Md Salim; Sarker, Md Zaidul Islam; Ferdosh, Sahena; Akanda, Md Jahurul Haque; Easmin, Mst Sabina; Bt Shamsudin, Siti Hadijah; Bin Yunus, Kamaruzzaman

    2015-05-01

    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2. © 2014 Society of Chemical Industry.

  13. Antioxidant effects of supercritical fluid garlic extracts in canned artichokes.

    Science.gov (United States)

    Bravi, E; Marconi, O; Sileoni, V; Rollo, M R; Perretti, G

    2016-10-01

    The effects of adding supercritical carbon dioxide extracts of garlic (at two different concentrations of allicin) on select chemical indices in extra-virgin olive oil used to canned artichokes were studied. Tests were performed after processing and over a storage period of 1 year. A sensorial test was also conducted on the canned artichokes to establish the impact on flavor (in particular perceptions of rancidity and garlic flavor). Acidity, peroxide levels and p -anisidine values were measured as quality analytical parameters. Radical scavenging activity was also evaluated using the DPPH assay. The samples containing supercritical garlic extracts were compared with several other formulations, including control sample (prepared by mixing artichokes with powdered chili pepper and fresh garlic), artichokes with only garlic or only chili pepper, and artichokes treated with the synthetic antioxidant BHT. The results suggested that the allicin extract may be superior, or at least comparable, with BHT in preserving canned artichokes as demonstrated by its positive effects on oxidative stability and sensory profile.

  14. Improvement of soluble coffee aroma using an integrated process of supercritical CO2 extraction with selective removal of the pungent volatiles by adsorption on activates carbon

    Directory of Open Access Journals (Sweden)

    S. Lucas

    2006-06-01

    Full Text Available In this paper a two-step integrated process consisting of CO2 supercritical extraction of volatile coffee compounds (the most valuable from roasted and milled coffee, and a subsequent step of selective removal of pungent volatiles by adsorption on activated carbon is presented. Some experiments were carried out with key compounds from roasted coffee aroma in order to study the adsorption step: ethyl acetate as a desirable compound and furfural as a pungent component. Operational parameters such as adsorption pressure and temperature and CO2 flowrate were optimized. Experiments were conducted at adsorption pressures of 12-17 MPa, adsorption temperatures of 35-50ºC and a solvent flow rate of 3-5 kg/h. In all cases, the solute concentration and the activated particle size were kept constant. Results show that low pressures (12 MPa, low temperatures (35ºC and low CO2 flowrates (3 kg/h are suitable for removing the undesirable pungent and smell components (e.g. furfural and retaining the desirable aroma compounds (e.g. ethyl acetate. The later operation with real roasted coffee has corroborated the previous results obtained with the key compounds.

  15. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluid s ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  16. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    Science.gov (United States)

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  17. Studies on supercritical fluid extraction of uranium from sodium diuranate

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Vithal, G.K.; Rao, Ankita; Kumar, Pradeep; Tomar, B.S.

    2014-01-01

    Crude sodium diuranate (SDU) produced from phosphoric acid by solvent extraction process with di-2-ethyl hexyl phosphoric acid (D2EHPA) and tri-n-butyl phosphate(TBP) contains iron and other rare earth impurities along with uranium. For further use of this uranium for fuel fabrication and its subsequent use in nuclear reactors, it has to be purified up to nuclear grade ammonium diuranate (ADU) specifications. Conventionally crude SDU is being purified by dissolving it in nitric acid followed by solvent extraction process using TBP in diluent. Use of large amount of acid and organic solvents for industrial processes is an environmental concern. Nowadays there are efforts to minimize use of acid and organic solvents in industrial processes. Supercritical Fluid Extraction (SFE) of uranium from different matrices (solid as well as liquid) has been reported by several authors in recent years. Near complete extraction of uranium from UO 2 (powder, green pellet and sintered pellet) using TBP-HNO 3 adduct by SFE has been reported. We attempted to explore possibility to purify crude SDU to nuclear grade by SFE of uranium from crude SDU matrix and study the effect of different operational parameters, mode of extraction and complexation

  18. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  19. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. Supercritical fluid extraction of uranium and neodymium nitrates

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Supercritical fluid extraction (SFE) of uranyl nitrate and neodymium nitrate salts from a mixture was investigated in the present study using Sc-CO 2 modified with various ligands such as organophosphorous compounds, amides, and diketones. Preferential extraction of uranyl nitrate over neodymium nitrate was demonstrated using Sc-CO 2 modified with amide, di-(2ethylhexyl) isobutyramide (D2EHIBA). (author)

  1. Supercritical Fluid Extraction of Plant Flavors and Fragrances

    Directory of Open Access Journals (Sweden)

    Massimo E. Maffei

    2013-06-01

    Full Text Available Supercritical fluid extraction (SFE of plant material with solvents like CO2, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  2. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  3. Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Seegers, Christel L C; Tepper, Pieter G; Setroikromo, Rita; Quax, Wim J

    2018-05-01

    Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris . This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G 2 /M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods. Georg Thieme Verlag KG Stuttgart · New York.

  4. Critical review of supercritical carbon dioxide extraction of selected oil seeds

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2010-01-01

    Full Text Available Supercritical carbon dioxide extraction, as a relatively new separation technique, can be used as a very efficient process in the production of essential oils and oleoresins from many of plant materials. The extracts from these materials are a good basis for the new pharmaceutical products and ingredients in the functional foods. This paper deals with supercritical carbon dioxide extraction of selected oil seeds which are of little interest in classical extraction in the food industry. In this article the process parameters in the supercritical carbon dioxide extraction, such as pressure, temperature, solvent flow rate, diameter of gound materials, and moisture of oil seed were presented for the following seeds: almond fruits, borage seed, corn germ, grape seed, evening primrose, hazelnut, linseed, pumpkin seed, walnut, and wheat germ. The values of investigated parameters in supercritical extraction were: pressure from 100 to 600 bar, temperature from 10 to 70oC, diameter of grinding material from 0.16 to 2.0 mm, solvent flow used from 0.06 to 30.0 kg/h, amount of oil in the feed from 10.0 to 74.0%, and moisture of oil seed from 1.1 to 7.5%. The yield and quality of the extracts of all the oil seeds as well as the possibility of their application in the pharmaceutical and food, industries were analyzed.

  5. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  6. Safety study of an experimental apparatus for extraction with supercritical CO2

    Directory of Open Access Journals (Sweden)

    V. B. Soares

    2012-09-01

    Full Text Available During the process of supercritical CO2 extraction it is necessary to use high pressures in the procedure. The explosion of a pressure vessel can be harmful to people and cause serious damage to the environment. The aim of this study is to investigate the probability of death and injury in a laboratory unit for supercritical fluid extraction in the case of an explosion of the extractor vessel. The procedure is explained via a case study involving fatty acid extraction from vegetable oils with carbon dioxide above its supercritical conditions and under optimum operating conditions. According to the results, more importance should be given to the use of a protective headset because the probability of eardrum injury is superior to the probability of death from lung injury.

  7. Optimization of Process Parameters of Extraction of Amentoflavone, Quercetin and Ginkgetin from Taxus chinensis Using Supercritical CO2 Plus Co-Solvent

    Directory of Open Access Journals (Sweden)

    Xiao Ruan

    2014-10-01

    Full Text Available The effects of extraction time, temperature, pressure and different concentration of ethanol and their interactions on the yields of amentoflavone, quercetin and ginkgetin extracted from Taxus chinensis by supercritical CO2 were investigated by using a central composite design (CCD. An CCD experimental design with four factors and five levels was used to optimize the extraction parameters. Ultra performance liquid chromatography (UPLC was used to analyze the content of the tree components in the extracts. Experimental results show that the main effects of factors and their interactions are significant on the yields (p < 0.05. The optimal extraction conditions were established for the three compounds: yield of 4.47 mg/g for amentoflavone at 48 °C, 25 MPa, 2.02 h and 78.5% ethanol, 3.73 mg/g for quercetin at 46 °C, 24 MPa, 2.3 h, 82% ethanol and 3.47 mg/g for ginkgetin at 48 °C, 20 MPa, 2.38 h, 82% ethanol, respectively.

  8. Supercritical carbon dioxide extraction of oil from Clanis bilineata ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... temperature, 35°C; pressure, 25 MPa; supercritical CO2 flow rate, 20 L/min and time, 60 min. ... methyl esters were recovered after solvent evaporation in vacuum ... Effect of time on extraction of the oil from C. bilineata larvae.

  9. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  10. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.

    Science.gov (United States)

    Calgaro, C O; Schlemmer, D F; da Silva, M D C R; Maziero, E V; Tanabe, E H; Bertuol, D A

    2015-11-01

    Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. BP and NCB to collaborate in coal liquefaction study. [Supercritical gas extraction; dissolution in anthracene oil

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-17

    British Petroleum and NCB are collaborating in a two year study of coal liquefaction which could result in a demonstration plant being built. The two liquefaction techniques which the NCB is developing at present are supercritical extraction, and dissolution in anthracene oil. A disadvantage of the latter process is that high grade coking coals must be used.

  12. A Novel Model for Multicomponent Supercritical Fluid Extraction and its Application to Ruta graveolens.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Sajfrtová, Marie; Stateva, R.P.

    2017-01-01

    Roč. 120, Part 1 (2017), s. 102-112 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * multicomponent equilibrium * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  13. Extraction process

    International Nuclear Information System (INIS)

    Rendall, J.S.; Cahalan, M.J.

    1979-01-01

    A process is described for extracting at least two desired constituents from a mineral, using a liquid reagent which produces the constituents, or compounds thereof, in separable form and independently extracting those constituents, or compounds. The process is especially valuable for the extraction of phosphoric acid and metal values from acidulated phosphate rock, the slurry being contacted with selective extractants for phosphoric acid and metal (e.g. uranium) values. In an example, uranium values are oxidized to uranyl form and extracted using an ion exchange resin. (U.K.)

  14. Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from Argania spinosa L.

    Directory of Open Access Journals (Sweden)

    Chouaa Taribak

    2013-01-01

    Full Text Available Argan oil has been extracted using supercritical CO2. The influence of the variables pressure (100, 200, 300, and 400 bar and temperature (35, 45, 55°C was investigated. The best extraction yields were achieved at a temperature of 45°C and a pressure of 400 bar. The argan oil extracts were characterized in terms of acid, peroxide and iodine values, total tocopherol, carotene, and fatty acids content. Significant compositional differences were not observed between the oil samples obtained using different pressures and temperatures. The antioxidant capacity of the argan oil samples was high in comparison to those of walnut, almond, hazelnut, and peanut oils and comparable to that of pistachio oil. The physicochemical parameters of the extracted oils obtained by SFE, Soxhlet, and traditional methods are comparable. The technique used for oil processing does not therefore markedly alter the quality of argan oil.

  15. Supercritical fluid extraction of 2-alkylcyclobutanones formed from triglycerides by irradiation

    International Nuclear Information System (INIS)

    Horvatovich, P.; Farkas, J.; Hasselmann, C.; Marchioni, E.

    1998-01-01

    Complete text of publication follows. Radiation processing is employed to improve the microbiological safety of foodstuffs, and at the same time to suit the 'minimal processing' principle. However adequate information for consumers to enable their free choices requires specific detection methods of irradiation processes. For this purpose one of the most suitable methods is the detection of 2-alkylcyclobutanones which are formed - according to the present knowledge - only by irradiation from the fatty acid part of triglycerides. For detection of these compounds a European Norm (EN 1785) has been established. The method consists of Sohxlet extraction of fatty acids from the food sample, separation of 2-alkylcyclobutanones from other fatty components with liquid chromatography on Florisil TM , and the GC-MS analysis of the appropriate fraction with single ion monitoring (SIM) monitoring of 98 and 112 ions. But this method has a relatively high detection limit (∼1 kGy), it is time consuming and needs costly and sophisticated apparates. To improve the detection of 2-alkylcyclobutanones we replaced the Sohxlet extraction step with a supercritical fluid extraction. We optimised trapping and extraction parameters. It was found that supercritical fluid extraction is more selective than Sohxlet extraction used in the standard protocol. The extract obtained by supercritical fluid extraction contains less quantity and number of detection-disturbing components. This work is the first step towards decreasing the detection limit which will be the derivatization of 2-alkylcyclobutanones with halogen-containing reagent, and detection of derivatives with electron-capture detector (ECD)

  16. Extraction of Thyme Oil: Comparison between Hydrodistillation and Supercritical CO2 Extraction

    Czech Academy of Sciences Publication Activity Database

    Aleksovski, S. A.; Sovová, Helena; Poposka, F. A.

    2001-01-01

    Roč. 51, č. 4 (2001), s. 305-310 ISSN 1330-0075 Institutional research plan: CEZ:AV0Z4072921 Keywords : thymus serpyllum * supercritical fluid extraction * assential oil Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  17. Supercritical fluid extraction of uranium from tissue paper matrix using organic extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Bhattacharyya, A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct extraction of dried uranyl nitrate from tissue paper matrix was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) and di-n-hexyl octanamide (DHOA)). The effects of temperature, pressure, extractant and nitric acid concentration on the extraction of uranyl ion were investigated. (author)

  18. Supercritical Extraction of Scopoletin from Helichrysum italicum (Roth) G. Don Flowers.

    Science.gov (United States)

    Jokić, Stela; Rajić, Marina; Bilić, Blanka; Molnar, Maja

    2016-09-01

    The increasing popularity of immortelle (Helichrysum italicum (Roth) G. Don) and its products, particularly in the cosmetic industry, is evident nowadays. This plant is a source of coumarins, especially scopoletin, which are highly soluble in supercritical CO2 . The objective of this study was to perform the supercritical CO2 extraction process of Helichrysum italicum flowers at different values of pressure and temperature and to optimise the extraction process using response surface methodology in terms of obtaining the highest extraction yield and yield of extracted scopoletin. Extraction was performed in a supercritical extraction system under different extraction conditions of pressure and temperature determined by central composite rotatable design. The mass of flowers in the extractor of 40 g, extraction time of 90 min and CO2 mass flow rate of 1.94 kg/h were kept constant during experiments. Antioxidant activity was determined using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay method. Scopoletin concentration was determined by HPLC. Changes in extraction conditions affect the extracting results remarkably. The greatest extraction yield (6.31%) and the highest yield of scopoletin (1.933 mg/100 g) were obtained under extraction conditions of 20 MPa and 40°C. Extracts have also proven to possess antioxidant activity (44.0-58.1% DPPH scavenging activity) influenced by both temperature and pressure applied within the investigated parameters. The extraction conditions, especially pressure, exhibited significant influence on the extraction yield as well as the yield of extracted scopoletin and antioxidant activity of extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. HPLC/MS identification of the polyphenols present in an extract of Myrtus communis L. obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Paula Pereira

    2017-12-01

    Full Text Available In this work, we studied an extract obtained by supercritical fluid extraction (SFE using a simpler method of cosolvent (ethanol addition. Instead of using a liquid pump, which is the most common process, the ethanol was directly introduced in the extraction cell, immediately after loading the cell with the plant sample. it was our intent to investigate if this change would have any effect in the composition of the extract obtained. The experimental conditions used were: temperature 48° C, pressure 10 MPa, supercritical fluid (SCF flow rate 130.71dm3h-1 (0.238 kgh-1 and an ethanol volume of 104 cm3. The composition of the extract obtained was different from previous tests, and the compounds identified by HPLC-MS were quinic acid, quinic acid 3,5-di-O-gallate, quinic acid 3,4,5-galloyl, myricetin-galactoside gallate, quercetin-galactoside gallate, quercetin, and myricetin-galactosiderhamnoside.

  20. Phytochemical profile, antioxidant and antimicrobial activity of extracts obtained from erva-mate (Ilex paraguariensis) fruit using compressed propane and supercritical CO2.

    Science.gov (United States)

    Fernandes, Ciro E F; Scapinello, Jaqueline; Bohn, Aline; Boligon, Aline A; Athayde, Margareth L; Magro, Jacir Dall; Palliga, Marshall; Oliveira, J Vladimir; Tres, Marcus V

    2017-01-01

    Traditionally, Ilex paraguariensis leaves are consumed in tea form or as typical drinks like mate and terere, while the fruits are discarded processing and has no commercial value. The aim of this work to evaluate phytochemical properties, total phenolic compounds, antioxidant and antimicrobial activity of extracts of Ilex paraguariensis fruits obtained from supercritical CO 2 and compressed propane extraction. The extraction with compressed propane yielded 2.72 wt%, whereas with supercritical CO 2 1.51 wt% was obtained. The compound extracted in larger amount by the two extraction solvents was caffeine, 163.28 and 54.17 mg/g by supercritical CO 2 and pressurized propane, respectively. The antioxidant activity was more pronounced for the supercritical CO 2 extract, with no difference found in terms of minimum inhibitory concentration for Staphylococcus aureus for the two extracts and better results observed for Escherichia coli when using supercritical CO 2 .

  1. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.

    2002-01-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil

  2. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    Science.gov (United States)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  3. Extraction of heavy oil by supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2010-01-01

    The present study deals with the extraction of heavy oil by supercritical carbon dioxide at the pressure values changing from 16 to 56 MPa at the fixed value of temperature: 60oC. The amount of the recovered liquid phase of oil was calculated as a percentage of the extracted amount to the initial...... 40 gm of oil. The noticeable breackover point in the graph of the oil recovery versus pressure was observed at 27 MPa, which was in concordance with the conclusions from chromatographic analysis of the extracted oil samples. But the recovery rate of 14 % at this pressure value was not high enough...

  4. Extraction of pesticides in soil using supercritical carbon dioxide co-solvents

    International Nuclear Information System (INIS)

    Forero, Jose R; Castro, Henry I; Guerrero, Jairo A.

    2009-01-01

    In this study, three organic solvents (ethyl acetate, methanol and acetone) were used as co solvent in supercritical fluid extraction (SFE) of a mixture of pesticides with different physical and chemical properties present in soil. These pesticides were determined by gas chromatography with electronic micro capture detector μECD and nitrogen-phosphorus detector (NPD), coupled in parallel. The extractions were performed on spiked soil samples using supercritical carbon dioxide (CO 2 SC) as the extracting phase to 35 celsius degrade and 14 MPa, using 10 mL of each co solvent and it was found that methanol offers the greatest efficiency in the extraction process obtaining recovery values between 51.24 and 123.50%.

  5. Supercritical CO2 Extraction of Essential Oil from Yarrow.

    Czech Academy of Sciences Publication Activity Database

    Bocevska, M.; Sovová, Helena

    2007-01-01

    Roč. 40, 3 (2007) , s. 360-367 ISSN 0896-8446 R&D Projects: GA AV ČR(CZ) KSK4040110 Grant - others:BEMUSAC(XE) G1MA/CT/2002/04019 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical CO2 * essential oil * extraction curves Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.189, year: 2007

  6. Supercritical CO2 Extraction of Salvia officinalis L

    Czech Academy of Sciences Publication Activity Database

    Aleksovski, S.A.; Sovová, Helena

    2007-01-01

    Roč. 40, č. 2 (2007), s. 239-245 ISSN 0896-8446 R&D Projects: GA AV ČR(CZ) IAA4072102 Grant - others:GA_(MK) 40108601/0 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical fluid extraction * essential oil * collection efficiency Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.189, year: 2007

  7. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  8. Supercritical extraction of carqueja essential oil: experiments and modeling

    Directory of Open Access Journals (Sweden)

    R. M. F. Vargas

    2006-09-01

    Full Text Available Baccharis trimera is a native Brazilian plant which has medicinal properties. In this work a method of supercritical extraction was studied to obtain the popularly essential oil from Baccharis trimera, known as carqueja. The aim was to obtain experimental data and to compare two mathematical models used in the simulation of carqueja (Baccharis trimera oil extraction by supercritical CO2. The two mathematical models are based on mass transfer. One of the models, proposed by Reverchon, is solved numerically and requires two adjustable parameters from the experimental data. The other model chosen is the one proposed by Sovová. This model is solved analytically and requires four adjustable parameters. Numerical results are presented and discussed for the adjusted parameters. The experimental results are obtained in a temperature range of 313.15 K to 343.15 K at 90 bar. The extraction yield of carqueja essential oil using supercritical carbon dioxide ranged between 1.72 % (w/w at 323.15 K and 2.34 % (w/w at 343.15 K, 90 bar with a CO2 flow rate of 3.34.10-8 m³/s for a 0.0015 kg sample of Baccharis trimera.

  9. The effect of selected supercritical CO2 plant extract addition on user properties of shower gels

    Directory of Open Access Journals (Sweden)

    Vogt Otmar

    2014-12-01

    Full Text Available The formulations of washing cosmetics i.e. shower gels, containing extracts obtained during supercritical CO2 extraction process as active ingredient, were developed. The subject of the study was the analysis of the physicochemical and user properties of the obtained products. In the work supercritical CO2 extracts of black currant seeds, strawberry seeds, hop cones and mint leafs were used. The formulation contains a mixture of surfactants (disodium cocoamphodiacetate, disodium laureth sulfosuccinate, cocoamide DEA, cocoamidepropyl betaine, Sodium Laureth Sulfate. Various thickener agents were applied to the obtained desired rheological properties of the cosmetics. Among others, sorbitol acetal derivatives, methylhydroxypropylcellulose and C10-30 alkyl acrylate crosspolymer were used. For stable products, the effect of extracts addition (black currants seeds, strawberries seeds, mint and hops, obtained from supercritical CO2 extraction process on the cosmetics properties, such as pH, viscosity, detergency and foam ability, were determined. The obtained results showed that the extracts could be used as components of shower gels.

  10. Extraction of Co ions from ion-exchange resin by supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Ju, Min Su; Koh, Moon Sung; Yang, Sung Woo; Park, Kwang Heon; Kim, Hak Won; Kim, Hong Doo

    2005-01-01

    There are a number of liquid treatment processes for eliminating radioactive ionic contaminants in nuclear facilities. One of the most common treatment methods for aqueous streams is the use of ion exchange, which is a well-developed technique that has been employed for many years in the nuclear industry. More specifically speaking, systems that ion exchange method is applied to in nuclear power plants are liquid radioactive waste treatment system, chemical and volume control system, steam generator blowdown treatment system, and service water supply system. During the operation of nuclear power plants, radioactive contaminants such as Co-60, Mn-54, Fe-59 and Cs-137 are contained in liquid radioactive wastes. And the wastes containing small amount of uranium are generated in nuclear fuel cycle facilities. To treat the liquid radioactive waste, we usually install ion exchangers rather than evaporators due to their simplicity and effectiveness, and this trend is increasing. However, the ion exchange process produces large volume of spent organic resin, and has some problems of radiation damage and thermal instability. And the reuse of the resin is limited due to the degradation of ion-exchanging ability. For this reason, were should consider a better method to expand the lifetime of the resin or to reduce the volume of radioactive resin wastes by extracting radioactive contaminants located in the resin. Supercritical fluid CO 2 has many good points as a process solvent that include low viscosity, negligible surface tension, and variable selectivity. And supercritical fluids have physical properties of both liquid and gas such as good penetration with a high dissolution capability. Supercritical fluids have been widely used in extraction, purification, and recovery processes. A number of workers applied supercritical CO 2 solvent for cleaning of precision devices and waste treatments. Since supercritical CO 2 has its mild critical point at 31 and 73.8bar as .deg. C

  11. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    Science.gov (United States)

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical Profiling of Acalypha Indica Obtained from Supercritical Carbon Dioxide Extraction and Soxhlet Extraction Methods

    OpenAIRE

    Surangkana Chaichoowong; Jan Bernd Bol; Pornprapa Bol; Thomas Gamse; Malinee Sriariyanun

    2017-01-01

    Acalypha indica is a weed that grows in South-East Asia. It contains several valuable compounds that can be used for curing various diseases such as rheumatism, skin infection and blood dysentery. Here, the extraction of A. indica using Soxhlet extraction with two different solvents and supercritical CO2 extraction (SCE) with two different temperatures (40 and 60°C) was performed. In Soxhlet extraction, ethanol solvent provided the highest extraction yield of 34.36%. For SCE, the increased te...

  13. Supercritical fluid extraction of uranium and thorium employing dialkyl amides

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep

    2014-01-01

    Extraction and purification of actinides from different matrices is of utmost importance to the nuclear industry. In recent decades, supercritical fluid extraction (SFE) has emerged as a promising alternative to solvent extraction owing to its inherent potential of minimization of liquid waste generation. N,N-dialkyl aliphatic amides have been proposed to be an alternative to TBP in the reprocessing of spent nuclear fuel due to several attractive features like innocuous nature of degradation products (mainly carboxylic acids/ amines), possibility of complete incineration of the used extractant leading to reduction in volume of secondary waste. Also, physico-chemical properties of this class of extractants can be tuned by the judicious choice of alkyl groups. In the present work, N,N-dialkyl aliphatic amides with varying alkyl groups viz. N,N-dibutyl-2-ethylhexanamide (DBEHA), N,N-dibutyl-3,3-dimethylbutanamide (DBDMBA), N,N-dihexyloctanamide (DHOA), N,N-disecbutylpentamide (DBPA), N,N-dibutyloctanamide (DBOA), have been evaluated for supercritical fluid extraction (SFE) of uranium and thorium from nitric acid medium as well as tissue paper matrix. Amides were obtained from Department of Chemistry, Delhi University and were used as such. This fact could be exploited for separation of thorium and uranium

  14. Extraction of lapachol from Tabebuia avellanedae wood with supercritical CO2: an alternative to Soxhlet extraction?

    Directory of Open Access Journals (Sweden)

    Viana L.M.

    2003-01-01

    Full Text Available The solubility of lapachol in supercritical CO2 was determined at 40°C and pressures between 90 and 210 bar. Supercritical fluid extraction of lapachol and some related compounds by CO2 from Tabebuia avellanedae wood is compared to Soxhlet extraction with different solvents. A standard macroscale (100-200 g wood and a microscale (~10 mg wood experimental setup are described and their results are compared. The latter involved direct spectrophotometric quantification in a high-pressure autoclave with an integrated optical path and a magnetic stirrer, fitted directly into a commercial spectrophotometer. The relative amount of lapachol extracted by supercritical CO2 at 40°C and 200 bar was about 1.7%, which is similar to the results of Soxhlet extractions. Lower contents of alpha- and beta-lapachone as well as dehydro-alpha-lapachone are also reported.

  15. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    Science.gov (United States)

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    International Nuclear Information System (INIS)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest

  17. Extraction of Genistein from Sophora flavescens with Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang-Nam; Kang, Choon-Hyoung [Chonnam National University, Gwangju (Korea, Republic of)

    2015-08-15

    This study was directed to finding an optimum extraction condition of genistein from the S. flavescens with supercritical carbon dioxide as a solvent. In this effort, effects of the extraction conditions including pressure, temperature and a co-solvent on the extraction efficiency were investigated. The aqueous ethanol and methanol solutions were used as co-solvents while the tested operating pressure and temperature ranges were from 200 bar to 300 bar and from 308.15 K to 323.15 K, respectively. The concentration of genistein was determined by means of HPLC equipped with a UV detector. From the results, it was observed that an increase in pressure led to the higher extraction efficiency. Further, methanol showed better performance as a co-solvent than ethanol. The DPPH radical scavenging activities were measured to compare antioxidant activities of S. flavescens extracts.

  18. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  19. Kinetic models for supercritical CO2 extraction of oilseeds - a review

    Directory of Open Access Journals (Sweden)

    B. Nagy

    2011-01-01

    Full Text Available The supercritical fluid extraction of oilseeds is gaining increasing interest in commercial application for the last few decades, most particularly thanks to technical and environmental advantages of supercritical fluid extraction technology compared to current extraction methods with organic solvents. Furthermore, CO2 as a solvent is generally recognized as safe (GRAS. At present moment, supercritical fluid extractions on a commercial scale are limited to decaffeination, production of soluble hops extracts, sesame seed oil production and extraction of certain petroleum products. When considering industrial application, it is essential to test the applicability of the appropriate model for supercritical fluid extraction of oilseeds used for scale up of laboratory data to industrial design purposes. The aim of this paper is to review the most significant kinetic models reported in the literature for supercritical fluid extraction.

  20. 179 Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Meyer

    Several extractions of coal-tar pitch were performed using supercritical fluid ..... pressure and temperature, unlike exhaustive extraction, which involves a change in ... mechanism that is operative on extracting coal-tar pitch components with.

  1. Supercritical fluid extraction of selected pharmaceuticals from water and serum.

    Science.gov (United States)

    Simmons, B R; Stewart, J T

    1997-01-24

    Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.

  2. Extraction of cobalt ion from textile using a complexing macromolecular surfactant in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Chirat, Mathieu; Ribaut, Tiphaine; Clerc, Sebastien; Lacroix-Desmazes, Patrick; Charton, Frederic; Fournel, Bruno

    2013-01-01

    Cobalt ion under the form of cobalt nitrate is removed from a textile lab coat using supercritical carbon dioxide extraction. The process involves a macromolecular additive of well-defined architecture, acting both as a surfactant and a complexing agent. The extraction efficiency of cobalt reaches 66% when using a poly(1,1,2,2-tetrahydroperfluoro-decyl-acrylate-co-vinyl-benzylphosphonic diacid) gradient copolymer in the presence of water at 160 bar and 40 C. The synergy of the two additives, namely the copolymer and water which are useless if used separately, is pointed out. The potential of the supercritical carbon dioxide process using complexing macromolecular surfactant lies in the ability to modulate the complexing unit as a function of the metal as well as the architecture of the surface-active agent for applications ranging for instance from nuclear decontamination to the recovery of strategic metals. (authors)

  3. Supercritical CO2 extraction of raw propolis and its dry ethanolic extract

    Directory of Open Access Journals (Sweden)

    L. C. Paviani

    2012-06-01

    Full Text Available Three types of propolis extract were prepared and analyzed with respect to their global extraction yields and with respect to the concentration of the following markers: 3,5-diprenyl-4-hydroxycinnamic acid; 3-prenyl-4-hydroxycinnamic acid; 4-hydroxycinnamic acid and 4-methoxy-3,5,7-trihydroxyflavone. The extract EEP (ethanolic extract of propolis was obtained by the conventional method from raw propolis using ethanol as solvent. The extracts (SFE were obtained by supercritical solvent extraction from the raw propolis using supercritical carbon dioxide (sc-CO2, with and without the addition of ethanol as a co-solvent. The fractionated supercritical extracts (FSCE were obtained by fractionation (extract and raffinate of the dry EEP with sc-CO2. EEP yields of 39.5% were obtained and maximum global extraction yields were 7.3% for SFE with no co-solvent, 51% for SFE with 15% ethanol and 18% for the FSCE extract fraction. The concentrations of the markers in the different extracts differed as a function of the operational parameters, indicating that the addition of co-solvent and the selectivity of sc-CO2 could be manipulated so as to obtain extracts with the yields and concentrations of interest.

  4. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena

    2012-01-01

    Roč. 42, SI (2012), s. 1682-1691 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * sea buckthom leaves * solute-solute interaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. Extraction of uranium from simulated ore by the supercritical carbon dioxide fluid extraction method with nitric acid-TBP complex

    International Nuclear Information System (INIS)

    Dung, Le Thi Kim; Imai, Tomoki; Tomioka, Osamu; Nakashima, Mikio; Takahashi, Kuniaki; Meguro, Yoshihiro

    2006-01-01

    The supercritical fluid extraction (SFE) method using CO 2 as a medium with an extractant of HNO 3 -tri-n-butyl phosphate (TBP) complex was applied to extract uranium from several uranyl phosphate compounds and simulated uranium ores. An extraction method consisting of a static extraction process and a dynamic one was established, and the effects of the experimental conditions, such as pressure, temperature, and extraction time, on the extraction of uranium were ascertained. It was found that uranium could be efficiently extracted from both the uranyl phosphates and simulated ores by the SFE method using CO 2 . It was thus demonstrated that the SFE method using CO 2 is useful as a pretreatment method for the analysis of uranium in ores. (author)

  6. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    Science.gov (United States)

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    Science.gov (United States)

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  8. Near-critical and supercritical fluid extraction of polycyclic aromatic hydrocarbons from town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Cutright, T.J.; Lee, S.

    1995-01-01

    The contamination of soil by hazardous and toxic organic pollutants is an ever-growing problem facing the global community. One particular family of contaminants that are of major importance are polycyclic aromatic hydrocarbons (PAHs). PAHs are the result of coal gasification and high-temperature processes. Sludges from these town gas operations were generally disposed of into unlined pits and left there for eventual biodegradation. However, the high levels of PAH contained in the pits prevented the occurrence of biodegradation. PAH contaminated soil is now considered hazardous and must be cleaned to environmentally acceptable standards. One method for the remediation is extraction with supercritical water. Water in or about its critical region exhibits enhanced solvating power toward most organic compounds. Contaminated soil containing 4% by mass of hydrocarbons was ultra-cleaned in a 300-cm 3 semicontinuous system to an environmentally acceptable standard of less than 200 ppm residual hydrocarbon concentration. The effects of subcritical or supercritical extraction, solvent temperature, pressure, and density have been studied, and the discerning characteristics of this type of fluid have been identified. The efficiencies of subcritical and supercritical extraction have been discussed from a process engineering standpoint

  9. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems

    Directory of Open Access Journals (Sweden)

    Markus Armbruster

    2017-03-01

    Full Text Available Triterpene compounds like betulin, betulinic acid, erythrodiol, oleanolic acid and lupeol are known for many pharmacological effects. All these substances are found in the outer bark of birch. Apart from its pharmacological effects, birch bark extract can be used to stabilise semisolid systems. Normally, birch bark extract is produced for this purpose by extraction with organic solvents. Employing supercritical fluid technology, our aim was to develop a birch bark dry extract suitable for stabilisation of lipophilic gels with improved properties while avoiding the use of toxic solvents. With supercritical carbon dioxide, three different particle formation methods from supercritical solutions have been tested. First, particle deposition was performed from a supercritical solution in an expansion chamber. Second, the Rapid Expansion of Supercritical Solutions (RESS method was used for particle generation. Third, a modified RESS-procedure, forming the particles directly into the thereby gelated liquid, was developed. All three methods gave yields from 1% to 5.8%, depending on the techniques employed. The triterpene composition of the three extracts was comparable: all three gave more stable oleogels compared to the use of an extract obtained by organic solvent extraction. Characterizing the rheological behaviour of these gels, a faster gelling effect was seen together with a lower concentration of the extract required for the gel formation with the supercritical fluid (SCF-extracts. This confirms the superiority of the supercritical fluid produced extracts with regard to the oleogel forming properties.

  10. Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO₂ extraction.

    Science.gov (United States)

    Jaime, Laura; Vázquez, Erika; Fornari, Tiziana; López-Hazas, María del Carmen; García-Risco, Mónica R; Santoyo, Susana; Reglero, Guillermo

    2015-03-15

    In this work three different techniques were applied to extract dry leaves of spinach (Spinacia oleracea): solid-liquid extraction (SLE), pressurised liquid extraction (PLE) and supercritical fluid extraction (SFE) to investigate the influence of extraction solvent and technique on extracts composition and antioxidant activity. Moreover, the influence of carotenoids and phenolic compounds on the antioxidant and anti-inflammatory activities of spinach extracts was also studied. The higher concentrations of carotenoids and the lower content of phenolic compounds were observed in the supercritical CO₂ extracts; whereas water and/or ethanol PLE extracts presented low amounts of carotenoids and the higher concentrations of phenolic compounds. PLE extract with the highest content of phenolic compounds showed the highest antioxidant activity, although SFE carotenoid rich extract also showed a high antioxidant activity. Moreover, both extracts presented an important anti-inflammatory activity. PLE seems to be a good technique for the extraction of antioxidant and anti-inflammatory compounds from spinach leaves. Moreover, spinach phenolic compounds and carotenoids present a high antioxidant activity, whereas spinach carotenoids seem to show a higher anti-inflammatory activity than phenolic compounds. It is worth noting that of our knowledge this is the first time the anti-inflammatory activity of lipophilic extracts from spinach leaves is reported. © 2014 Society of Chemical Industry.

  11. Supercritical CO2 extraction of Schinus molle L with co-solvents: mathematical modeling and antimicrobial applications

    Directory of Open Access Journals (Sweden)

    Rodrigo Scopel

    2013-06-01

    Full Text Available This work investigates the antimicrobial activity of the Schinus molle L. leaves extracts obtained under supercritical conditions using carbon dioxide and co-solvents. Antimicrobial qualitative evaluation was carried out through the bioautography technique and the microorganisms studied were Staphylococcus aureus, Pseudomonas aeruginosas, Escherichia coli, Micrococcus luteus, and Salmonella choleraesuis. The supercritical fluid extraction was carried out in a pilot scale equipment using carbon dioxide modified by the addition of co-solvents, such as ethanol and water at 150 bar and 333 K. A mathematical modeling of the process was also performed.

  12. Multivessel supercritical fluid extraction of food items in Total Diet Study.

    Science.gov (United States)

    Hopper, M L; King, J W; Johnson, J H; Serino, A A; Butler, R J

    1995-01-01

    An off-line, large capacity, multivessel supercritical fluid extractor (SFE) was designed and constructed for extraction of large samples. The extractor can simultaneously process 1-6 samples (15-25 g) by using supercritical carbon dioxide (SC-CO2), which is relatively nontoxic and nonflammable, as the solvent extraction medium. Lipid recoveries for the SFE system were comparable to those obtained by blending or Soxhlet extraction procedures. Extractions at 10,000 psi, 80 degrees C, expanded gaseous CO2 flow rates of 4-5 L/min (35 degrees C), and 1-3 h extraction times gave reproducible lipid recoveries for pork sausage (relative standard deviation [RSD], 1.32%), corn chips (RSD, 0.46%), cheddar cheese (RSD, 1.14%), and peanut butter (RSD, 0.44%). In addition, this SFE system gave reproducible recoveries (> 93%) for butter fortified with cis-chlordane and malathion at the 100 ppm and 0.1 ppm levels. Six portions each of cheddar cheese, saltine crackers, sandwich cookies, and ground hamburger also were simultaneously extracted with SC-CO2 and analyzed for incurred pesticide residues. Results obtained with this SFE system were reproducible and comparable with results from organic-solvent extraction procedures currently used in the Total Diet Study; therefore, use and disposal of large quantities of organic solvents can be eliminated.

  13. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review

    Directory of Open Access Journals (Sweden)

    Natália Mezzomo

    2016-01-01

    Full Text Available Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.

  14. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  15. Supercritical fluid extraction (SFE) and gas chromatographic (GC) analysis of products from irradiated foods containing fat

    International Nuclear Information System (INIS)

    Adam, S.T.

    1993-01-01

    Official analytical methods specify the use of organic liquid solvents which may be hazardous to human health. Non-toxic chlorinated fluorocarbons (CFC) which are still recommended for extracting soil samples are known to be detrimental to the stratospheric ozone layer and therefore subject to the ''FCKW-Halon-Verbots-Verordnung''. Therefore, alternative extraction methods using solvents in the supercritical state are currently being developed (Supercritical Fluid Extraction (SFE)). Their low viscosity and the high diffusivity of solutes in the fluids allow selective, efficient and timesaving extractions. Carbon dioxide (CO 2 ) is the fluid of choice in many applications because its critical parameters permit mild operating conditions. CO 2 of high purity is available at low cost, it is neither inflammable nor explosive, physiologically harmless and part of natural cycle processes. Furthermore, it is simply removed from the matrix without any residues left. The combination of SFE and sorptive collection of the extracted substances has been found to lead to high enrichment factors for the analytes. Distillative concentration and solid phase elution steps, required in the classical solvent extraction procedure, are no longer necessary. Loss of analytes occurring in cryogenic or solvent traps is completeley avoided. Plugging of the restrictor as a consequence of the Joule Thomson effect was not observed in the presented method. (orig./vhe)

  16. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    Science.gov (United States)

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  17. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    P. Zacchi

    2006-03-01

    Full Text Available Wheat germ oil was obtained by mechanical pressing using a small-scale screw press and by supercritical extraction in a pilot plant. With this last method, different pressures and temperatures were tested and the tocopherol concentration in the extract was monitored during extraction. Then supercritical extracted oil as well as commercial pressed oil were deacidified in a countercurrent column using supercritical carbon dioxide as solvent under different operating conditions. Samples of extract, refined oil and feed oil were analyzed for free fatty acids (FFA and tocopherol contents. The results show that oil with a higher tocopherol content can be obtained by supercritical extraction-fractionation and that FFA can be effectively removed by countercurrent rectification while the tocopherol content is only slightly reduced.

  18. Supercritical CO2 Extraction of Volatile Thymoquinone from Monarda didyma and M. fistulosa Herbs.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Sajfrtová, Marie; Topiař, Martin

    2015-01-01

    Roč. 105, OCT (2015), s. 29-34 ISSN 0896-8446. [European Meeting on Supercritical Fluids /14./. Marseille, 18.05.2014-21.05.2014] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * kinetics * volatile oil Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.579, year: 2015

  19. Control of temperature distribution in a supercritical gas extraction tower

    International Nuclear Information System (INIS)

    Yoshida, M.; Matsumoto, S.; Honda, G.; Iwama, T.; Suzuki, Y.; Odagiri, S.

    1989-01-01

    A control scheme recently proposed by the authors is applied to the control of axial temperature distribution in a bench-scale supercritical-gas extractor. The extraction unit is constructed from a packed column 3 m long covered by a coaxial cylindrical casing. Although the actual structure of the extractor is very complicated, it is modeled by a simple double-pipe and therefore its mathematical model can be described by a pair of partial differential equations. The models are reduced to a lumped parameter system with a finite dimension by use of the finite Fourier transform technique. The controller is designed on the basis of the reduced model. An extended Kalman filter is used to estimate simultaneously the state variables and the unknown parameters. The results demonstrate that both the state estimation and the controller performance are satisfactory. This implies that the control scheme is very robust in spite of the incompleteness of the model used

  20. Extraction Of Cobalt From Spent CMB Catalyst Using Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Joo S.-H.

    2015-06-01

    Full Text Available The metal extraction from spent CMB catalyst using supercritical CO2(scCO2 was investigated with single organic system, binary organic system and ternary organic system to extract metal ions. Leaching solution of spent CMB catalyst containing 389 mg L−1 Co2+, 187 mg L−1 Mn2+, 133 mg L−1 Na+, 14.97 mg L−1 Ca2+ and 13.2 mg L−1 Mg2+. The method consists of scCO2/ligands complexation process and metal extraction process at 60°C and 200bar. The result showed the Co and Mn was selectively extracted from Mg, Ca and Na in the ternary system of mixture of Cyanex272, DEA and Alamine304-I.

  1. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.

    Science.gov (United States)

    Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang

    2009-01-01

    Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.

  2. Supercritical Fluid Extraction (SFE) of uranium and thorium nitrates using carbon dioxide modified with phosphonates

    International Nuclear Information System (INIS)

    Pitchaiah, K.C.; Sujatha, K.; Brahmananda Rao, C.V.S.; Sivaraman, N.; Vasudeva Rao, P.R.

    2014-01-01

    Supercritical Fluid Extraction (SFE) has emerged as a powerful technique for the extraction of metal ions.The liquid like densities and gas like physical properties of supercritical fluids make them unique to act as special solvents. SFE based procedures were developed and demonstrated in our laboratory for the recovery of actinides from various matrices. In the present study, we have examined for the first time, the use of dialkylalkylphosphonates in supercritical carbon dioxide (Sc-CO 2 ) medium to study the extraction behavior of uranium and thorium nitrates. A series of phosphonates were synthesised by Michaelis-Becker reaction in our laboratory and employed for the SFE

  3. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-01-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations

  4. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  5. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  6. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  7. Evaluation of supercritical fluid extraction/gas chromatography/matrix isolation-infrared spectrometry for analysis of organic compounds

    International Nuclear Information System (INIS)

    Bopari, A.S.; Bierma, D.R.; Applegate, D.V.

    1991-01-01

    Analysis of soil samples for organic compounds typically first requires Soxhlet extraction or sonication. These processes are time consuming and generate large amounts of waste solvent. Supercritical fluid extraction (SFE), which uses a supercritical fluid such as carbon dioxide, has recently been shown to extract organic compounds from soil samples in good yields. Moreover, SFE does not generate waste solvent and can be performed rapidly. Gas Chromatography/Matrix Isolation-Infrared Spectrometry (GC/MI-IR) has been used in our laboratories for determining organic compounds present in extracts from various matrices. The authors have interfaced an SFE extraction apparatus to GC/MI-IR instruments. In this paper the utility of SPE/GC/MI-IR instrumentation is discussed

  8. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    Science.gov (United States)

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  9. A mass transfer model applied to the supercritical extraction with CO2 of curcumins from turmeric rhizomes (Curcuma longa L

    Directory of Open Access Journals (Sweden)

    Chassagnez-Méndez A. L.

    2000-01-01

    Full Text Available Increasing restrictions on the use of artificial pigments in the food industry, imposed by the international market, have increased the importance of raw materials containing natural pigments. Of those natural substances with potential applications turmeric rhizomes (Curcuma longa L, are one of the most important natural sources of yellow coloring. Three different pigments (curcumin, desmetoxycurcumin, and bis-desmetoxycurcumin constitute the curcuminoids. These pigments are largely used in the food industry as substitutes for synthetic dyes like tartrazin. Extraction of curcuminoids from tumeric rhizomes with supercritical CO2 can be applied as an alternative method to obtain curcuminoids, as natural pigments are in general unstable, and hence degrade when submitted to extraction with organic solvents at high temperatures. Extraction experiments were carried out in a supercritical extraction pilot plant at pressures between 25 and 30 MPa and a temperature of 318 K. The influence of drying pretreatment on extraction yield was evaluated by analyzing the mass transfer kinetics and the content of curcuminoids in the extracts during the course of extraction. The chemical identification of curcuminoids in both the extract and the residual solid was performed by spectrophotometry. Mass transfer within the solid matrix was described by a linear first-order desorption model, while that in the gas phase was described by a convective mass transfer model. Experimental results showed that the concentration profile for curcuminoids during the supercritical extraction process was higher when the turmeric rhizomes were submitted to a drying pretreatment at 343 K.

  10. Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials

    OpenAIRE

    Michalak, Izabela; Chojnacka, Katarzyna; Dmytryk, Agnieszka; Wilk, Rados?aw; Gramza, Mateusz; R?j, Edward

    2016-01-01

    The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur). As a raw material for the supercritical fluid extraction (SFE), the biomass of microalga Spirulina plantensis, brown seaweed – Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant...

  11. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  12. Experimental Study On The Optimization Of Extraction Process Of ...

    African Journals Online (AJOL)

    The objective is to study the extraction process of garlic oil and its antibacterial effects. Materials and Methods: CO2 Supercritical extraction was used to investigate the optimal processing conditions for garlic oil extraction; filter paper test and suspension dilution test were applied to determine the bacteriostatic action of ...

  13. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  14. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  15. Supercritical fluid extraction for the determination of optimum oil recovery conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Marzouqi, Ali H.; Zekri, Abdulrazag Y.; Jobe, Baboucarr; Dowaidar, Ali [Chemical and Petroleum Engineering Department, U.A.E. University, P.O. Box: 17555, Al-Ain (United Arab Emirates)

    2007-01-15

    CO{sub 2} under supercritical (SC) conditions is a powerful solvent capable of extracting hydrocarbons from crude oil. The extraction capacity of CO{sub 2} is a function of pressure, temperature and composition of the crude oil. This paper presents the results of a laboratory study investigating the capacity of CO{sub 2} to extract hydrocarbons from an oil-saturated soil under a wide range of pressures and temperatures (80-120 bar for temperatures ranging from 40 to 60 C and 200-300 bar for temperatures varying from 100 to 140 C). The soil samples were collected from Sahel oil filed, which is near Bu Hasa oil field (Abu Dhabi, UAE) where the crude oil was obtained from. The extracted oil from the SC CO{sub 2} process and the residual oil remaining in the soil sample were analyzed by gas chromatography to shed more light on the extraction phenomenon. Extraction efficiency of CO{sub 2} increased with pressure and decreased with temperature. Moreover, the amount of extracted heavy fractions increased with pressure for all temperatures. On the other hand, the amount of extracted heavy hydrocarbons decreased with temperature for the low pressure range (80-120 bar) and remained the same for the pressure range of 250-300 bar. The maximum extraction efficiency of CO{sub 2} was 72.4%, which was obtained at the highest pressure (300 bar) and a temperature of 100 C. (author)

  16. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  17. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    Directory of Open Access Journals (Sweden)

    Helena Sovová

    2016-05-01

    Full Text Available Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters.

  18. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    Science.gov (United States)

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    TOC content (r2 = 0.97 and 0.86, respectively). Given that supercritical CO2 is able to mobilize residual organic matter present in overmature shales, this study contributes to a better understanding of the extent and potential factors affecting the extraction process.

  19. Extraction of bixin from annatto seeds using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    G. F. Silva

    2008-06-01

    Full Text Available The solubility of 93% pure bixin in supercritical carbon dioxide (SC-CO2 and of the bixin present in annatto seeds (Bixa orellana L. was measured. For the seeds, the measurements were made in a temperature range from 30 to 50ºC and pressure between 10 and 35 MPa and for the pure bixin, at 40ºC from 10 to 35 MPa. The main pigments of annatto seeds are bixin and norbixin, but the extracts only showed the presence of cis and trans-bixin, indicating that norbixin is not soluble in SC-CO2. The annatto seeds used in the experiments contained about 2.7% bixin and 3.1% oil. In the seeds, the crossover point of solubility was at about 28 MPa and values for solubility were about ten times higher than those of the pure bixin, giving evidence that the oil acted as a co-solvent with the CO2.

  20. Supercritical fluid extraction for the detection of 2-dodecylcyclobutanone in low dose irradiated plant foods

    NARCIS (Netherlands)

    Horvatovich, Peter; Miesch, Michel; Hasselmann, Claude; Marchioni, Eric

    2002-01-01

    Supercritical carbon dioxide extraction [152 bar (15,200 kPa), 80 degrees C, 4 ml min(-1), 60 min], performed on lipids (2 g) previously extracted from irradiated plant foods, allowed a selective extraction of 2-dodecylcyclobutanone and its further detection by gas chromatography-mass spectrometry

  1. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    Science.gov (United States)

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  2. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    Science.gov (United States)

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  3. Off-flavors removal and storage improvement of mackerel viscera by supercritical carbon dioxide extraction.

    Science.gov (United States)

    Lee, Min Kyung; Uddin, M Salim; Chun, Byung Soo

    2008-07-01

    The oil in mackerel viscera was extracted by supercritical carbon dioxide (SCO2) at a semi-batch flow extraction process and the fatty acids composition in the oil was identified. Also the off-flavors removal in mackerel viscera and the storage improvement of the oils were carried out. As results obtained, by increasing pressure and temperature, quantity was increased. The maximum yield of oils obtained from mackerel viscera by SCO, extraction was 118 mgg(-1) (base on dry weight of freeze-dried raw anchovy) at 50 degrees C, 350 bar And the extracted oil contained high concentration of EPA and DHA. Also it was found that the autoxidation of the oils using SCO2 extraction occurred very slowly compared to the oils by organic solvent extraction. The off-flavors in the powder after SCO2 extraction were significantly removed. Especially complete removal of the trimethylamine which influences a negative compound to the products showed. Also other significant off-flavors such as aldehydes, sulfur-containing compounds, ketones, acids or alcohols were removed by the extraction.

  4. A comparative study of solvent and supercritical Co2 extraction of Simarouba gluaca seed oil

    International Nuclear Information System (INIS)

    Anjaneyulu, B.; Satyannarayana, S.; Kanjilal, S.; Siddaiah, V.; Prasanna Rani, K.N.

    2017-01-01

    In the present study, the supercritical carbon dioxide (Co2) extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar), temperature (50–70 °C) and CO2 flow rate (10–30 g·min-1). The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1) extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1). Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1) was found to be higher than the solvent extracted oil (111 mg·kg-1). The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil. [es

  5. A comparative study of solvent and supercritical CO2 extraction of Simarouba gluaca seed oil

    Directory of Open Access Journals (Sweden)

    B. Anjaneyulu

    2017-09-01

    Full Text Available In the present study, the supercritical carbon dioxide (CO2 extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar, temperature (50–70 °C and CO2 flow rate (10–30 g·min-1. The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1 extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1. Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1 was found to be higher than the solvent extracted oil (111 mg·kg-1. The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil.

  6. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihe; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-05-15

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases.

  7. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    International Nuclear Information System (INIS)

    Park, Jihe; Park, Kwangheon

    2015-01-01

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases

  8. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    NJD

    2005-12-17

    Dec 17, 2005 ... a Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Hexing Road 26, 150040, ... Carbon dioxide, the most commonly used supercritical fluid, has ... absorb the remaining water that the chloroform layer had.

  9. Basil (Ocimum basilicum L. essential oil and extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2015-01-01

    Full Text Available The extracts obtained from sweet basil (Ocimum basilicum L. by hydrodistillation and supercritical fluid extraction (SFE were qualitative and quantitative analyzed by GC-MS and GC-FID. Essential oil (EO content of basil sample, determined by an official method, was 0.565% (V/w. The yields of basil obtained by SFE were from 0.719 to 1.483% (w/w, depending on the supercritical fluid (carbon dioxide density (from 0.378 to 0.929 g mL-1. The dominant compounds detected in all investigated samples (EO obtained by hydrodistillation and different SFE extracts were: linalool, as the major compound of basil EO (content from 10.14 to 49.79%, w/w, eugenol (from 3.74 to 9.78% and ä-cardinene (from 3.94 to 8.07%. The quantitative results of GC-MS from peak areas and by GC-FID using external standard method involving main standards, were compared and discussed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31013

  10. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds

    Science.gov (United States)

    Norodin, N. S. M.; Salleh, L. M.; Hartati; Mustafa, N. M.

    2016-11-01

    Swietenia mahagoni (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction. Swietenia mahagoni seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO2 was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO2 of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

  11. Extraction of Uranium from Aqueous Solutions Using Ionic Liquid and Supercritical Carbon Dioxide in Conjunction

    International Nuclear Information System (INIS)

    Wang, Joanna S.; Sheaff, Chrystal N.; Yoon, Byunghoon; Addleman, Raymond S.; Wai, Chien M.

    2009-01-01

    Uranyl ions (UO2)2+ in aqueous nitric acid solutions can be extracted into supercritical CO2 (sc-CO2) via an imidazolium-based ionic liquid using tri-n-butylphosphate (TBP) as a complexing agent. The transfer of uranium from the ionic liquid to the supercritical fluid phase was monitored by UV/Vis spectroscopy using a high-pressure fiberoptic cell. The form of the uranyl complex extracted into the supercritical CO2 phase was found to be UO2(NO3)2(TBP)2. The extraction results were confirmed by UV/Vis spectroscopy and by neutron activation analysis. This technique could potentially be used to extract other actinides for applications in the field of nuclear waste management.

  12. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  13. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

    Directory of Open Access Journals (Sweden)

    Saravana Periaswamy Sivagnanam

    2015-05-01

    Full Text Available The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri was extracted by using environmentally friendly supercritical CO2 (SC-CO2 with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v. The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  14. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction.

    Science.gov (United States)

    Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-05-29

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  15. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  16. Supercritical fluid extraction of hydrocarbons and 2-alkylcyclobutanones for the detection of irradiated foodstuffs

    NARCIS (Netherlands)

    Horvatovich, P; Miesch, M; Hasselmann, C; Marchioni, E

    2000-01-01

    Supercritical carbon dioxide can be used to carry out a selective and fast extraction (30 min) of volatile hydrocarbons and 2-alkylcyclobutanones contained in irradiated foods. After elimination of the traces of triglycerides still contained in the extracts on a silica column, the compounds were

  17. Phytochemical profile and anticholinesterase and antimicrobial activities of supercritical versus conventional extracts of Satureja montana.

    Science.gov (United States)

    Silva, Filipa V M; Martins, Alice; Salta, Joana; Neng, Nuno R; Nogueira, José M F; Mira, Delfina; Gaspar, Natália; Justino, Jorge; Grosso, Clara; Urieta, José S; Palavra, António M S; Rauter, Amélia P

    2009-12-23

    Winter savory Satureja montana is a medicinal herb used in traditional gastronomy for seasoning meats and salads. This study reports a comparison between conventional (hydrodistillation, HD, and Soxhlet extraction, SE) and alternative (supercritical fluid extraction, SFE) extraction methods to assess the best option to obtain bioactive compounds. Two different types of extracts were tested, the volatile (SFE-90 bar, second separator vs HD) and the nonvolatile fractions (SFE-250 bar, first and second separator vs SE). The inhibitory activity over acetyl- and butyrylcholinesterase by S. montana extracts was assessed as a potential indicator for the control of Alzheimer's disease. The supercritical nonvolatile fractions, which showed the highest content of (+)-catechin, chlorogenic, vanillic, and protocatechuic acids, also inhibited selectively and significantly butyrylcholinesterase, whereas the nonvolatile conventional extract did not affect this enzyme. Microbial susceptibility tests revealed the great potential of S. montana volatile supercritical fluid extract for the growth control and inactivation of Bacillus subtilis and Bacillus cereus, showing some activity against Botrytis spp. and Pyricularia oryzae. Although some studies were carried out on S. montana, the phytochemical analysis together with the biological properties, namely, the anticholinesterase and antimicrobial activities of the plant nonvolatile and volatile supercritical fluid extracts, are described herein for the first time.

  18. Supercritical fluid extraction of uranium and thorium using modifier free delivery of ligands

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    The modifier free controlled delivery of octyl (phenyl)-N,N-diisobutylcarbamoylmethy phosphineoxide (CMPO) using supercritical carbon dioxide was established for the extraction of uranyl nitrate as well as uranyl nitrate sorbed on tissue paper matrix and the results were compared with modifier method. The preferential extraction of uranium over thorium was also demonstrated using di (2-ethylhexyl)isobutyramide (D2EHIBA). (author)

  19. The use of supercritical fluid extraction as a sample preparation technique for soils

    International Nuclear Information System (INIS)

    Levy, J.M.; Dolata, L.A.; Rosselli, A.C.; Ravey, R.M.

    1994-01-01

    Using off-line supercritical fluid extraction (SFE), polynuclear aromatic hydrocarbons (PAHs) were extracted at different levels from various soil and sediment matrices. Based upon GC/MS measurements a number of SFE operational parameters including pressure, temperature and flow rate, were optimized to yield the highest efficiencies with the best precision

  20. Squalene Extraction by Supercritical Fluids from Traditionally Puffed Amaranthus hypochondriacus Seeds

    Directory of Open Access Journals (Sweden)

    Teresa Rosales-García

    2017-01-01

    Full Text Available Extraction of squalene, a potent natural antioxidant, from puffed A. hypochondriacus seeds was performed by supercritical fluid extraction (SCFE; besides, to have a blank for comparison, extraction was performed also by Soxhlet method using organic solvents (hexane. Chemical proximal composition and seed morphology were determined in raw, puffed, and SCFE-extracted seeds. Extracts were obtained with a 500 mL capacity commercial supercritical extractor and performed between 10 and 30 MPa at 313, 323, and 333 K under constant CO2 flow of 0.18 kg CO2/h during 8 h. The squalene content was determined and the fatty acids present in the extracts were identified by GC-MS. The extract obtained by SCFE from puffed amaranth seeds reached 460 ± 28.1 g/kg squalene in oily extract at 313 K/20 MPa.

  1. Supercritical CO₂assisted extraction and LC-MS identification of picroside I and picroside II from Picrorhiza kurroa.

    Science.gov (United States)

    Patil, Ajit A; Sachin, Bhusari S; Shinde, Devanand B; Wakte, Pravin S

    2013-02-01

    Picroside I and picroside II have been studied intensively because of their pharmacological actions and clinical applications. Numerous methods have been reported for extracting picroside I and picroside II from Picrorrhiza. kurroa rhizomes. This is the first report of picroside I and picroside II extraction using the supercritical carbon dioxide assisted extraction technique. To develop supercritical carbon dioxide assisted extraction and LC-MS identification of picroside I and picroside II from the Picrorrhiza kurroa Royle rhizomes. Surface response methodology based on 3³ fractional factorial design was used to extract picroside I and picroside II from P. kurroa rhizomes. The effects of various process factors, namely temperature (40-80°C), pressure (25-35 MPa) and co-solvent (methanol) concentration (0-10% v/v) on extraction yield of the two compounds were evaluated. The picroside I and picroside II contents were determined using validated LC-MS methodology. The maximum yield of picroside I (32.502 ± 1.131 mg/g) and picroside II (9.717 ± 0.382 mg/g) was obtained at the 10% v/v co-solvent concentration, 40°C temperature and 30 MPa pressure. The conventional Soxhlet assisted methanol extract of P. kurroa powder resulted in 36.743 ± 1.75 and 11.251 ± 0.54 mg/g yield of picroside I and picroside II, respectively. Variation of concentration and extraction time showed a significant effect on the picroside I and picroside II yield. Supercritical carbon dioxide assisted extraction using methanol as a co-solvent is an efficient and environmentally sustainable method for extracting picroside I and picroside II from P. kurroa rhizomes. Copyright © 2012 John Wiley & Sons, Ltd.

  2. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil.

    Science.gov (United States)

    Wicker, A Paige; Carlton, Doug D; Tanaka, Kenichiro; Nishimura, Masayuki; Chen, Vivian; Ogura, Tairo; Hedgepeth, William; Schug, Kevin A

    2018-06-01

    On-line supercritical fluid extraction - supercritical fluid chromatography - mass spectrometry (SFE-SFC-MS) has been applied for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil. The purpose of this study was to develop and validate the first on-line SFE-SFC-MS method for the quantification of PAHs in various types of soil. By coupling the sample extraction on-line with chromatography and detection, sample preparation is minimized, diminishing sample loss and contamination, and significantly decreasing the required extraction time. Parameters for on-line extraction coupled to chromatographic analysis were optimized. The method was validated for concentrations of 10-1500 ng of PAHs per gram of soil in Certified Reference Material (CRM) sediment, clay, and sand with R 2  ≥ 0.99. Limits of detection (LOD) were found in the range of 0.001-5 ng/g, and limits of quantification (LOQ) in the range of 5-15 ng/g. The method developed in this study can be effectively applied to the study of PAHs in the environment, and may lay the foundation for further applications of on-line SFE-SFC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L. from Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    D. M. Triana-Maldonado

    2017-03-01

    Full Text Available Sacha inchi (Plukenetia volubilis L. seeds were employed for oil extraction with supercritical CO2 at laboratory scale. The supercritical extraction was carried out at a temperature of 60 °C, pressure range of 400–500 bars and CO2 flow of 40–80 g/min. The maximum recovery was 58% in 180 min, favored by increasing the residence time of CO2 in the extraction tank. Subsequently, the process was evaluated at pilot scale reaching a maximum recovery of 60% in 105 min, with a temperature of 60 °C, pressure of 450 bars and CO2 flow of 1270 g/min. The fatty acid composition of the oil was not affected for an extraction period of 30–120 min. The Sacha inchi oil was fractionated with supercritical CO2 to obtain an omega-3 concentrate oil without finding a considerable increase in the proportion of this compound, due to the narrow range in the carbon number of fatty acids present in the oil (16–18 carbons, making it difficult for selective separation.

  4. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia, Colombia

    International Nuclear Information System (INIS)

    Torijano-Gutiérrez, S.A.; Triana-Maldonadoa, D.M.; Giraldo-Estradaa, C.

    2017-01-01

    Sacha inchi (Plukenetia volubilis L.) seeds were employed for oil extraction with supercritical CO2 at laboratory scale. The supercritical extraction was carried out at a temperature of 60 °C, pressure range of 400–500 bars and CO2 flow of 40–80 g/min. The maximum recovery was 58% in 180 min, favored by increasing the residence time of CO2 in the extraction tank. Subsequently, the process was evaluated at pilot scale reaching a maximum recovery of 60% in 105 min, with a temperature of 60 °C, pressure of 450 bars and CO2 flow of 1270 g/min. The fatty acid composition of the oil was not affected for an extraction period of 30–120 min. The Sacha inchi oil was fractionated with supercritical CO2 to obtain an omega-3 concentrate oil without finding a considerable increase in the proportion of this compound, due to the narrow range in the carbon number of fatty acids present in the oil (16–18 carbons), making it difficult for selective separation. [es

  5. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  6. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone

    International Nuclear Information System (INIS)

    Lin, Y.; Brauer, R.D.; Laintz, K.E.; Wai, C.M.

    1993-01-01

    Direct extraction of metal ions by supercritical carbon dioxide is highly inefficient because of the charge neutralization requirement and the weak solute-solvent interactions. One suggested approach of extracting metal ions by supercritical carbon dioxide is to convert the charged species into metal chelates using a chelating agent in the fluid phase. This paper describes a method of extracting lanthanide and uranyl ions from a solid material by supercritical carbon dioxide containing a fluorinated beta-diketone, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione(FOD). Potential applications of this SFE method for separating the f-block elements from environmental samples are discussed. 13 refs., 2 tabs

  7. Supercritical Fluid Extraction of Lovastatin from the Wheat Bran Obtained after Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Ruchir C. Pansuriya

    2009-01-01

    Full Text Available The objective of the present work is to extract lovastatin with minimum impurity by using supercritical carbon dioxide (SC-CO2. A strain of Aspergillus terreus UV 1617 was used to produce lovastatin by solid-state fermentation (SSF on wheat bran as a solid substrate. Extraction of lovastatin and its hydroxy acid form was initially carried out using organic solvents. Among the different screened solvents, acetonitrile was found to be the most efficient. SC-CO2 was used for extraction of lovastatin from the dry fermented matter. The effect of supercritical extraction parameters such as the amount of an in situ pretreatment solvent, temperature, pressure, flow rate and contact time were investigated. The maximum recovery of lovastatin was obtained with 5 mL of methanol as an in situ pretreatment solvent for 1.5 g of solid matrix, flow rate of the supercritical solvent 2 L/min, temperature 50 °C, and contact time 155 min at a pressure 300 bar. The lovastatin extract obtained after optimizing the conditions of supercritical fluid extraction was found to have 5-fold more HPLC purity than the organic solvent extract.

  8. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Fathordoobady, Farahnaz; Mirhosseini, Hamed; Selamat, Jinap; Manap, Mohd Yazid Abd

    2016-07-01

    The main objective of the present study was to investigate the effect of solvent type and ratio as well as the extraction techniques (i.e. supercritical fluid extraction (SFE) and conventional solvent extraction) on betacyanins and antioxidant activity of the peel and fresh extract from the red pitaya (Hylocereus polyrhizus). The peel and flesh extracts obtained by SFE at 25MPa pressure and 10% EtOH/water (v/v) mixture as a co-solvent contained 24.58 and 91.27mg/100ml total betacyanin, respectively; while the most desirable solvent extraction process resulted in a relatively higher total betacyanin in the peel and flesh extracts (28.44 and 120.28mg/100ml, respectively). The major betacyanins identified in the pitaya peel and flesh extracts were betanin, isobetanin, phyllocactin, butyrylbetanin, isophyllocactin and iso-butyrylbetanin. The flesh extract had the stronger antioxidant activity than the peel extract when the higher proportion of ethanol to water (E/W) was applied for the extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L. Seeds

    Directory of Open Access Journals (Sweden)

    Marie Sajfrtová

    2010-04-01

    Full Text Available Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L. seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40-80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  10. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    Science.gov (United States)

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  11. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis

    Directory of Open Access Journals (Sweden)

    Diego A. Esquivel-Hernández

    2016-05-01

    Full Text Available Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE and microwave-assisted extraction (MAE. The temperature (T factor was evaluated for MAE, while for SFE, pressure (P, temperature (T, and co-solvent (ethanol (CS were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14% and (4.27% ± 0.10% for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS and gas chromatography flame ionization detector (GC-FID. The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.

  12. Influence of economical variables on a supercritical biodiesel production process

    International Nuclear Information System (INIS)

    Marchetti, J.M.

    2013-01-01

    Highlights: • Biodiesel production from supercritical process. • Economical analysis. • Influence of market variables. - Abstract: Biodiesel has becoming more and more relevant in today’s society and economy due to its environmental advantages such as biodegradability, lower CO and CO 2 emissions as well as less particulate pollutants. In this work the study of market and economic variables is presented and their effects compared when biodiesel is being produced using a supercritical technology. The production process is based on a supercritical technology with no catalyst and no co-solvent. Price for the raw materials, such as price for the alcohol as well as the oil has been studied. Also, selling price for biodiesel as well as glycerin has been analyzed and compared with prices from other biodiesel production technologies. Economic decisions such as percentage of failure in the production process, investment in research and development, and advertisement have been evaluated; also it has been considered the influence of the tax incentives on the global economy of the production process. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases

  13. Supercritical fluid extraction of uranium for its purification from various yellow cake matrices

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Rao, Ankita; Tomar, B.S.; Kumar, Pradeep

    2016-01-01

    Uranium is produced from different uranium ores as crude yellow cake of different chemical composition such as sodium diuranate (SDU), ammonium diuranate (ADU), magnesium diuranate (MDU), high temperature uranium peroxide (HTUP) etc. This depends on nature of ores and ore processing methods, availability of required facilities at processing site and other economic as well as environmental factors. These yellow cakes are further processed to produce pure uranium suitable for fuel fabrication facility by conventional solvent extraction process. Supercritical Fluid Extraction (SFE) is being developed as an alternate method for separation in nuclear fields due to its inherent potential to minimize liquid waste generation and process simplification. In present study, SFE of uranium from various yellowcake of different chemical composition has been carried out. Chemical parameter such as effect of TBP amount on SFE of uranium has been carried out and optimized at 2 ml for 200 mg SDU. Instrumental parameter such as temperature and pressure on SFE of uranium has been optimized at 323 K and 15.2 MPa. Extraction efficiency (%) achieved at optimized condition is 91.45 ± 0.2, 97.01 ± 0.75 and 96.72 ± 0.27 for SDU, MDU and HTUP respectively. Purity of uranium before SFE and after has been compared. Further studies is in progress for better understanding of chemical composition of matrix on SFE of uranium and improving purity of uranium separated from this route. (author)

  14. Impacts of Extraction Methods in the Rapid Determination of Atrazine Residues in Foods using Supercritical Fluid Chromatography and Enzyme-Linked Immunosorbent Assay: Microwave Solvent vs. Supercritical Fluid Extractions

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Saeid

    2005-01-01

    Full Text Available It is an accepted fact that many food products that we eat today have the possibility of being contaminated by various chemicals used from planting to processing. These chemicals have been shown to cause illnesses for which some concerned government agencies have instituted regulatory mechanisms to minimize the risks and the effects on humans. It is for these concerns that reliable and accurate rapid determination techniques are needed to effect proper regulatory standards for the protection of people's nutritional health. This paper, therefore, reports the comparative evaluation of the extraction methods in the determination of atrazine (commonly used in agricultural as a herbicide residues in foods using supercritical fluid chromatography (SFC and enzyme-linked immunosorbent assay (ELISA techniques. Supercritical fluid extraction (SFE and microwave solvent extraction (MSE methods were used to test samples of frozen vegetables, fruit juice, and jam from local food markets in Houston. Results showed a high recovery percentage of atrazine residues using supercritical fluid coupled with ELISA and SFC than with MSE. Comparatively, however, atrazine was detected 90.9 and 54.5% using SFC and ELISA techniques, respectively. ELISA technique was, however, less time consuming, lower in cost, and more sensitive with low detection limit of atrazine residues than SFC technique.

  15. Study of supercritical CO2 extraction and nanofiltration membrane separation coupling

    International Nuclear Information System (INIS)

    Sarrade, S.

    1994-12-01

    The aim of this thesis is to study the coupling of two extraction techniques, nanofiltering and supercritical fluids, designing and building an experimental device that enables both supercritical CO 2 extraction and nanofiltering membrane separation. The purpose is to reach high splitting up levels on small molecule mixtures. The document is divided in four parts : a bibliographic study on these two techniques; a description of the membranes and the products, as well as the experimental device; the characterization and modelization of transfer mechanism in aqueous solutions; a presentation of the results obtained by coupling the two techniques. (TEC). 45 tabs., 70 figs., 98 refs

  16. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  17. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax.

    Science.gov (United States)

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-12-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO₂-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  18. Extraction of citronella (Cymbopogon nardus essential oil using supercritical co2: experimental data and mathematical modeling

    Directory of Open Access Journals (Sweden)

    C. F. Silva

    2011-06-01

    Full Text Available Citronella essential oil has more than eighty components, of which the most important ones are citronellal, geranial and limonene. They are present at high concentrations in the oil and are responsible for the repellent properties of the oil. The oil was extracted using supercritical carbon dioxide due to the high selectivity of the solvent. The operational conditions studied varied from 313.15 to 353.15 K for the temperature and the applied pressures were 6.2, 10.0, 15.0 and 180.0 MPa. Better values of efficiency of the extracted oil were obtained at higher pressure conditions. At constant temperature, the amount of extracted oil increased when the pressure increased, but the opposite occurred when the temperature increased at constant pressure. The composition of the essential oil was complex, although there were several main components in the oil and some waxes were presented in the extracted oils above 10.0 MPa. The results were modeled using a mathematical model in a predictive way, reproducing the extraction curves over the maximum time of the process.

  19. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    Directory of Open Access Journals (Sweden)

    Jiaojiao Zheng

    2012-11-01

    Full Text Available Gloiopeltis tenax (G. tenax is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH, lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction, and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical, compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC = 3.9 mg/mL, Enterococcus faecalis (7.8 mg/mL, Pseudomonas aeruginosa (15.6 mg/mL, and Escherichia coli (3.9 mg/mL. Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  20. Supercritical carbon dioxide extraction of pigments from Bixa orellana seeds (experiments and modeling

    Directory of Open Access Journals (Sweden)

    B. P. Nobre

    2006-06-01

    Full Text Available Supercritical CO2 extraction of the pigments from Bixa orellana seeds was carried out in a flow apparatus at a pressure of 200 bar and a temperature of 40 ºC at two fluid flow rates (0.67g/min and 1.12g/min. The efficiency of the extraction was low (only about 1% of the pigment was extracted. The increase in flow rate led to a decrease in pigment recovery. A large increase in recovery (from 1% to 45% was achieved using supercritical carbon dioxide with 5 mol % ethanol as extraction fluid at pressures of 200 and 300 bar and temperatures of 40 and 60 ºC. Although the increase in temperature and pressure led to an increase in recovery, the changes in flow rate did not seem to affect it. Furthermore, two plug flow models were applied to describe the supercritical extraction of the pigments from annatto seeds. Mass transfer coefficients were determined and compared well with those obtained by other researchers with similar models for the supercritical extraction of solutes from plant materials.

  1. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    Science.gov (United States)

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  2. Applications of Supercritical Fluid Extraction (SFE of Palm Oil and Oil from Natural Sources

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-02-01

    Full Text Available Supercritical fluid extraction (SFE, which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE that uses carbon dioxide (CO2 as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO2 extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  3. Supercritical CO2 Extracts and Volatile Oil of Basil (Ocimum basilicum L. Comparison with Conventional Methods

    Directory of Open Access Journals (Sweden)

    José Coelho

    2018-03-01

    Full Text Available Interest in new products from aromatic plants as medical and nutritional compounds is increasing. The aim of this work was to apply different extraction methods, including the use of supercritical carbon dioxide extraction, and to test the antioxidant activity of basil (Ocimum basilicum L. extracts. In vitro efficacy assessments were performed using enzymatic assays. Essential oil obtained by hydrodistillation and volatile oil obtained from supercritical fluid extraction were analyzed by gas chromatography to quantify components. The total phenolic content in the extracts ranged from 35.5 ± 2.9 to 85.3 ± 8.6 mg of gallic acid equivalents and the total flavonoid content ranged from 35.5 ± 2.9 to 93.3 ± 3.9 micromole catechin equivalents per gram of dry weight of extract. All the extracts showed an antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH, 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS, and the reducing power test. Extracts obtained from methanol had a higher antioxidant capacity per the DPPH test results (IC50 = 3.05 ± 0.36 mg/mL and the reducing power test assay 306.8 ± 21.8 μmol of trolox equivalents per gram of extract (TE/g compared with ethanolic or supercritical fluid extracts. However, using the ABTS assay, the extract obtained by supercritical fluid extraction had a higher antioxidant capacity with an IC50 of 1.74 ± 0.05 mg/mL. Finally, the examined extracts showed practically no acetylcholinesterase (AChE inhibitory capacity and a slight inhibitory activity against tyrosinase.

  4. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    Science.gov (United States)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  5. ENCAPSULATION OF EXTRACT FROM WINERY INDUSTRY RESIDUE USING THE SUPERCRITICAL ANTI-SOLVENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    N. Mezzomo

    Full Text Available Abstract Grape pomace (seed, skin and stem is a winery byproduct with high levels of biologically active compounds, such as antioxidants and antimicrobials, that could be converted into high added-value products. Since these components are easily degraded by oxygen, light and high temperature exposure, stabilization is important, for instance, by a microencapsulation process. Therefore, the objective of this study was to investigate the influence on the particle characteristics of the operational conditions applied in the Supercritical Anti-Solvent (SAS process for the co-precipitation of grape pomace extract and poly(-lactic-co-glycolic acid (PLGA. The morphology and size of the particles formed, their stability and thermal profile were evaluated, and also the co-precipitation efficiency. The conditions studied allowed the production of microparticles with spherical shape for all operational conditions, with estimated particle size between 4 ± 2 and 11 ± 5 µm, and very good co-precipitation efficiencies (up to 94.4 ± 0.6%. The co-precipitated extract presented higher stability compared to the crude extract, indicating the effectiveness of the co-precipitation process and coating material against degradation processes.

  6. Effect of Supercritical Carbon Dioxide Extraction Parameters on the Biological Activities and Metabolites Present in Extracts from Arthrospira platensis.

    Science.gov (United States)

    Esquivel-Hernández, Diego A; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P; García-Pérez, J Saúl; Mancera-Andrade, Elena I; Núñez-Echevarría, Jade E; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M; Torres, J Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto

    2017-06-12

    Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO₂). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett-Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin-Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects ( p extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g.

  7. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    Science.gov (United States)

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  8. Studies on supercritical fluid extraction behaviour of uranium and thorium nitrates using amides

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Supercritical fluid extraction studies of uranyl nitrate and thorium nitrate in mixture were carried out using various amides such as N,N-di(2-ethylhexyl) isobutyramide (D2EHIBA),N,N-dihexyl octanamide (DHOA) and Diisooctyl Butanamide (DiOBA). These studies established a preferential extraction of uranium over thorium. Among the various amides studied, D2EHIBA offered the best rate of preferential extraction of uranium over thorium. (author)

  9. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Li, Liang; Foo, Selin Ee Min [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Dai, Yun; Tan, Timothy Thatt Yang [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Tan, Nguan Soon [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); KK Research Centre, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Wong, Marcus Thien Chong [Plastic, Reconstructive & Aesthetic Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO{sub 2}) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO{sub 2}-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO{sub 2}-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO{sub 2}-treated ECM coating can be potentially used for various biomedical applications. The SC-CO{sub 2}-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO{sub 2}-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO{sub 2}-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall

  10. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    Science.gov (United States)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  11. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue

    International Nuclear Information System (INIS)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-01-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  12. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography.

    Science.gov (United States)

    Zhang, Xiaotian; Ji, Feng; Li, Yueqi; He, Tian; Han, Ya; Wang, Daidong; Lin, Zongtao; Chen, Shizhong

    2018-01-01

    In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO 2 ) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, R s = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, R s = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.

  13. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  14. Quality Parameters of Curcuma Longa L. Extracts by Supercritical Fluid Extraction (SFE) and Ultrasonic Assisted Extraction (UAE)

    International Nuclear Information System (INIS)

    Zaibunnisa Abdul Haiyee; Siti Hafsah Mohd Shah; Khudzir Ismail; Nooraain Hashim; Wan Iryani Wan Ismail

    2016-01-01

    Turmeric is one of the prominently use herbal plants due to its diverse beneficial effects especially in Indian medicine. The rhizome part of the turmeric contains valuable compounds which have been said to owe its antimicrobial effects, anti-cancer, anti-inflammatory and enhance wound healing. Due to its short-life span and perishable properties, the conversion of the rhizome into turmeric extract is desirable. Several methods have been used for extraction such as Soxhlet extraction and pressurized liquid extraction (PLE). However, these techniques are tedious, laborious, time consuming and involves the usage of toxic organic solvent, of which safeness of the end product is doubtful. In this study, a rapid, reliable and green extraction method of supercritical fluid extraction (SFE) and ultrasonic assisted extraction (UAE) were used. SFE without modifier has resulted in 0.0006 mg/ 100 g of curcuminoids concentration and 5.62 % of yield (dry weight basis). UAE using ethanol was able to produce significantly the highest yield (6.40 %, dry weight basis) and the highest curcuminoids concentration (0.1020 mg/ 100 g). However, SFE was able to produce extract that contain significantly higher major volatile compounds; tumerone, ar-turmerone and curlone. Therefore, this study proves that both extraction methods were able to produce high quality turmeric extract. (author)

  15. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity.

    Science.gov (United States)

    Kobori, Kinji; Maruta, Yuto; Mineo, Shigeru; Shigematsu, Toru; Hirayama, Masao

    2013-10-14

    Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO₂) extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1%) and polyphenols (84.7%). The antioxidant activity of the decaffeinated cocoa powder (DCP) made with this optimized SCCO₂ extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO₂ extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC). The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO₂ extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  16. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Kinji Kobori

    2013-10-01

    Full Text Available Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO2 extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1% and polyphenols (84.7%. The antioxidant activity of the decaffeinated cocoa powder (DCP made with this optimized SCCO2 extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO2 extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC. The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO2 extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  17. Extraction of Lepidium apetalum Seed Oil Using Supercritical Carbon Dioxide and Anti-Oxidant Activity of the Extracted Oil

    Directory of Open Access Journals (Sweden)

    Xuchong Tang

    2011-12-01

    Full Text Available The supercritical fluid extraction (SFE of Lepidium apetalum seed oil and its anti-oxidant activity were studied. The SFE process was optimized using response surface methodology (RSM with a central composite design (CCD. Independent variables, namely operating pressure, temperature, time and flow rate were evaluated. The maximum extraction of Lepidium apetalum seed oil by SFE-CO2 (about 36.3% was obtained when SFE-CO2 extraction was carried out under the optimal conditions of 30.0 MPa of pressure, 70 °C of temperature, 120 min of extraction time and 25.95 L/h of flow rate. GC-MS analysis showed the presence of four fatty acids in Lepidium apetalum seed oil, with a high content (91.0% of unsaturated fatty acid. The anti-oxidant activity of the oil was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical-scavenging assay and 2,2′-azino- bis(3-ethylbenzthiazoline-6-sulphonic acid diammonium salt (ABTS test. Lepidium apetalum seed oil possessed a notable concentration-dependent antioxidant activity, with IC50 values of 1.00 and 3.75 mg/mL, respectively.

  18. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples.

    Science.gov (United States)

    Punín Crespo, M O; Lage Yusty, M A

    2005-06-01

    The efficiency of supercritical fluid extraction for the determination of 12 polychlorinated biphenyls from algae samples is compared to Soxhlet extraction. Analytical detection limits for the individual congeners ranged from 0.62 microgl(-1) to 19 microgl(-1). Recovery was tested for both methods using standard addition procedure. At maximum spike level of concentration, the mean recoveries were not significantly different (P>0.05) of all PCBs studied, with the exception of PCBs 28, 52, 77 and 169. Method precision for Soxhlet extraction (yield comparable results, SFE offers the advantage of detecting all PCBs studied at lower concentrations, reducing extraction time, and reducing the amount of solvents needed. The optimized methods were applied to the analysis of three real seaweed samples, except for PCB101 the concentrations of all PCBs were low or below the detection limits. The levels of PCB101 found in sample 1 were 6.6+/-0.54 ng g(-1) d.w., in sample 2 the levels were 8.2+/-0.86 ng g(-1) d.w. and in sample 3 they were 7.7+/-0.08 ng g(-1) d.w.

  19. Mathematical Modelling of Supercritical CO2 Extraction of Volatile Oils from Aromatic Plants

    Czech Academy of Sciences Publication Activity Database

    Grosso, C.; Coelho, J.P.; Pessoa, F.L.P.; Fareleira, J.M.N.A.; Barroso, J.G.; Urieta, J.S.; Palavra, A.F.; Sovová, Helena

    2010-01-01

    Roč. 65, č. 11 (2010), s. 3579-3590 ISSN 0009-2509 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical fluid extraction * modelling * volatile oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.379, year: 2010

  20. Modeling the Supercritical Fluid Extraction of Essential Oils from Plant Materials

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 1250, SI (2012), s. 27-33 ISSN 0021-9673 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * essential oils * model for kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.612, year: 2012

  1. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 66, SI (2012), s. 73-79 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * vegetable oils * essential oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.732, year: 2012

  2. Supercritical Fluid Extraction of Minor Components of Vegetable Oils: beta-Sitosterol

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Galushko, A.A.; Stateva, R.P.; Rochová, Kristina; Sajfrtová, Marie; Bártlová, Milena

    2010-01-01

    Roč. 101, č. 2 (2010), s. 201-209 ISSN 0260-8774 R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical fluid extraction * sea buckthorn oil * beta-sitosterol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.168, year: 2010

  3. Residual monomer reduction in polymer latex products by extraction with supercritical carbon dioxide

    NARCIS (Netherlands)

    Aerts, M.; Meuldijk, J.; Kemmere, M.F.; Keurentjes, J.T.F.

    2011-01-01

    Extraction of residual monomer from a latex product with supercritical carbon dioxide ((sc)CO2) in a column was studied. Operating conditions were chosen at 35¿°C and 100 bar. For reducing the residual styrene level in a polystyrene latex from 104 ppm to 100¿ppm and from 104 ppm to 10¿ppm, a

  4. Extraction of Botanical Pesticides from Pelargonium graveolens using Supercritical Carbon Dioxide

    Czech Academy of Sciences Publication Activity Database

    Machalová, Zdeňka; Sajfrtová, Marie; Pavela, R.; Topiař, Martin

    2015-01-01

    Roč. 67, MAY (2015), s. 310-317 ISSN 0926-6690 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : botanical pesticides * geranium oil * supercritical fluid extraction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.449, year: 2015

  5. Investigation of parameters affecting the online combination of supercritical fluid extraction with capillary gas chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1996-01-01

    Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the

  6. Wheat germ oil extracted by supercritical carbon dioxide with ethanol: Fatty acid composition

    International Nuclear Information System (INIS)

    Parczewska-Plesnar, B.; Brzozowski, R.; Gwardiak, H.; Białecka-Florjańczyk, E.; Bujnowski, Z.

    2016-01-01

    In this work, supercritical fluid extraction (SFE) using CO2 with ethanol as entrainer was performed at a temperature of 40 o C under a pressure of 21 MPa. For comparison, a similar extraction without the entrainer was carried out. The extraction yield of wheat germ using supercritical CO2 with ethanol was slightly higher (10.7 wt%) than that of extraction without the entrainer (9.9 wt%). Fractions of SFE extracts were collected separately during the experiments and the composition of fatty acids in each fraction was analyzed. The SFE extracted oils were rich (63.4-71.3%) in the most valuable polyunsaturated fatty acids (PUFA) and their content in all collected fractions was approximately constant. Similar PUFA contents were found in the reference samples of oils extracted by n-hexane (66.2-67.0%), while the commercial cold-pressed oil contained significantly less PUFA (60.2%). These results show a higher nutritional value of the oil obtained by extraction with supercritical CO2 than cold pressed oil which is generally considered to be very valuable. [es

  7. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Nobre, B.P.; Palavra, A.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 423-441 ISSN 1996-1944 Grant - others:FCT(PT) UID/QUI/00100/2013; FCT(PT) SFRH/BPD/100283/2014 Institutional support: RVO:67985858 Keywords : microalgae * supercritical extraction * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.654, year: 2016

  8. Determination of persistent organic pollutants in solid environmental samples using accelerated solvent extraction and supercritical fluid extraction. Exhaustive extraction and sorption/desorption studies of PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, E.

    1998-10-01

    to verify that the developed SFE methods are exhaustive. It is quite clear though that there is no reason to continue using for example Soxhlet extraction, which should be replaced in routine laboratories. The possibility of utilizing SFE as a selective tool in sorption/desorption studies of POPs in natural sediments was also addressed. This second objective was proven successful and sediments could be characterized in terms of resistance towards desorption of bound analytes under supercritical conditions. These data could be correlated to desorption processes occurring under natural conditions. Additionally it could be verified that sorption of POPs from water to sediment is a very slow process requiring months or even years. This supports recent research results, demonstrating that distribution coefficients many times are underestimated since the system has not reached equilibrium 205 refs, 10 figs, 3 tabs

  9. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  10. Supercritical fluid extraction of γ-Pyrones from Ammi visnaga L. fruits

    Directory of Open Access Journals (Sweden)

    Mokhtar Bishr

    2018-06-01

    Full Text Available Extraction with supercritical fluid technique has proved to be effective in many applications including extraction and separation of various active principals from medicinal plants. It was used due to its advantages especially safety, specificity, selectivity and ease of component recovery.Ammi visnaga, L. belongs to the family Apiaceae. The fruits are used specifically for the treatment of kidney stones depending on its γ-Pyrones (mainly khellin and visnagin [2]. The supercritical fluid extraction technique of khellin and visnagin was investigated and the operating conditions for their extraction were optimized. The effect of different pressure (150, 200, 300, 400 and 500 bars, temperature (35, 40, 45, 50 and 55 °C, and particle sizes of the raw material (0.5, 1, 1.4 mm and entire fruits on the extract yield was studied under dynamic conditions for extraction for a run time of 90 min. Optimum supercritical extraction condition was found to be 200 bars at 45 °C and optimum particle size was found to be 1.4 mm. The yield is yellowish white bitter powder and measures 1.74% w/w relative to the dried weight of the fruits containing 38.414% w/w average γ-Pyrones content of which 29.4%w/w khellin, and 9.014%w/w visnagin.The obtained extracts were analyzed by reversed phase HPLC. Keywords: Ammi visnaga fruits, γ-Pyrones (khellin and visnagin, Supercritical fluid extraction and HPLC

  11. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  12. Supercritical fluid extraction of triterpenes and aliphatic hydrocarbons from olive tree derivatives

    Directory of Open Access Journals (Sweden)

    Aimen Issaoui

    2017-05-01

    Full Text Available Olive leaves and tree bark were extracted through supercritical fluid extraction (SFE and the chemical composition of the extracted mixture was determined by Gas Chromatography–Mass Spectrometry (GC–MS. Both samples contain a great number of triterpenes as squalene, which were used since 1997 as a main constituent of the flu vaccine (FLUAD, and the alpha-tocopherol the most biologically active form of vitamin E. We also underline the presence of many aliphatic compounds such nonacosane and heptacosane in low concentrations. The extractions were carried out at 313 and 333 K, at a pressure varying from 90 to 250 bars and using pure carbon dioxide in its supercritical phase. Therefore, their solubilities at equilibrium were numerically optimized via two assumptions and compared with the experimental values. Indeed, a good agreement between several results was shown.

  13. Modified approaches to the complexometric extraction of metal ions into supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Ager, P.; Lopez, C.D.; Marshall, W.D.

    2000-01-01

    A modified nebulizing assembly from a commercial atomic absorption spectrometry (AAS) unit served to interface the eluate from a supercritical carbon, dioxide (Sc-CO 2 ) extractor with a flame atomic absorption spectrometer and provided low to sub-ng limits of detection for several elements that were detected only inefficiently with an all-silica T-tube interface. The unit was used to monitor the progress of complexometric extractions of cobalt and nickel (2.5 or 25 μg/ml) from aqueous medium. Modifications to the general process for metal mobilisation included (i) a back-filling procedure during the initial pressurisation of the extractor and (ii) the separation of the derivatization reaction from the subsequent extraction. When coupled with (iii) the addition of ethyl acetate or methylisobutyl Ketone to the mobile phase, residual levels of analyte Co and Ni were reduced to the limit of detection with a single extraction. A heated column of iron granules Fe o efficiently removed metal 2,4-pentanedionate and diethyldithiocarbamate complexes from the SCF extractor eluate but did not liberate any complexing reagent. A sea sand column, heated to the same temperature, was less efficient at removing metals but did liberate modest amounts of 2,4-pentanedione back into the mobile phase. (author)

  14. Effect of various experimental parameters on the swelling and supercritical extraction properties of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Hacimehmetoglu, S.; Sinag, A.; Tekes, A.T.; Misirlioglu, Z.; Canel, M. [Ankara University, Ankara (Turkey). Faculty of Science

    2007-07-01

    The original lignite sample, the samples swollen in dimethylsulfoxide (DMSO), dimethylformamide (DMF), pyridine, tetrahydrofuran (THF), acetone, ethylenediamine (EDA), N-methyl-2-pyrrolidone (NMP), tetrabutylammonium hydroxide (TBAH), the samples impregnated by ZnCl{sub 2} as catalyst and the samples both swollen in the solvents and impregnated by ZnCl{sub 2} were subjected to the supercritical toluene extraction and the effects of temperature, pressure, pre-swelling procedure, hydrogen donor solvent (tetralin), and catalyst on the extract yields were investigated.

  15. Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S. Brahmmananda; Subramaniam, S.; Sivaraman, N.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2015-06-01

    In recent years, Supercritical Fluid Extraction (SFE) technique has been widely used for the extraction of metal ions. In the present study, extraction of uranium from nitric acid medium was investigated using supercritical carbon dioxide (Sc-CO{sub 2}) containing various organophosphorous compounds such as trialkyl phosphates e.g. tri-iso-amyl phosphate (TiAP), tri-sec-butyl phosphate (TsBP) and tri-n-butyl phosphate (TBP), dialkylalkyl phosphonates, e.g. diamylamyl phosphonate (DAAP) and dibutyl butyl phosphonate (DBBP), dialkyl hydrogen phosphonates, e.g. dioctyl hydrogen phosphonate (DOHP), dioctylphosphineoxide (DOPO), trioctyl phosphine oxide (TOPO), n-octylphenyl N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) and di-2-ethyl-hexyl phosphoric acid (HDEHP). Some of these ligands have been investigated for the first time in the supercritical phase for the extraction of uranium. The extraction efficiency of uranium was studied with TiAP, DAAP and DBBP as a function of nitric acid concentration; the kinetics of the equilibration period (static extraction) and transportation of the metal complex (dynamic extraction) was investigated. The influence of pressure and temperature on the extraction behaviour of uranium with DAAP was studied from 4 N HNO{sub 3}. The extraction efficiency of uranium from 4 N nitric acid medium was found to increase in the order of phosphates < phosphonates < HDEHP < TOPO < CMPO. In the case of phosphates and phosphonates, the maximum extraction of uranium was found to be from 4 N HNO{sub 3} medium. The acidic extractants, HDEHP and DOHP showed relatively higher extraction at lower acidities. The relative extraction of uranium and thorium from their mixture was also examined using Sc-CO{sub 2} containing phosphates, phosphonates and TOPO. The ligand, TsBP provided better fractionation between uranium and thorium compared to trialkyl phosphates, dialkyl alkyl phosphonates and TOPO.

  16. Studies on supercritical fluid extraction of uranium and thorium from liquid and solid matrix

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Pal, Ankita; Saxena, M.K.; Ramakumar, K.L.

    2006-05-01

    Supercritical fluid extraction (SFE) is being widely used in pharmaceutical and food industry. Because of its simplicity, ease of operation and more importantly the reduction in the analytical waste generation, this technique is being viewed as a potential application technique in nuclear industry also. CO 2 is employed as supercritical fluid (SCF) as it is easily recyclable, non-toxic, chemically inert, radiochemically stable and inexpensive. Radioanalytical chemistry section (Radiochemistry and Isotope group) has recently procured a supercritical fluid extraction/chromatography system. The present report describes the work carried out on the system. Detailed study on uranium and thorium extraction from highly acidic medium and tissue paper matrix has been carried out. Direct dissolution and extraction of uranium compounds employing SCF has been carried out. CO 2 was employed as supercritical fluid along with very small amount of Tri n-butyl phosphate (TBP) and Tri n-octyl phosphine oxide (TOPO) as co-solvents. The effect of various operating parameters like CO 2 flow rate, co-solvent percentage, temperature and pressure on extraction was investigated and parameters for maximum extraction were optimized. For comparison, the modes of extraction viz. static and dynamic and modes of complexation viz. in-situ and online were studied. Uranium extraction of ∼98% has been achieved from nitric acid medium employing TBP as co-solvent in 30 minutes extraction time, whereas with TOPO ∼99% uranium extraction could be achieved. Uranium from tissue paper matrix could be extracted upto the extent of 98% with TOPO as co-solvent whereas with TBP extraction of (66.83± 9.80)% was achievable. Direct dissolution of UO 2 , U 3 O 8 , U metal, U-Al alloy solids into SCF CO 2 was carried out employing TBP-HNO 3 complex and SFE of uranium was performed using TBP as co-solvent. UO 2 and U 3 O 8 solids could be dissolved within 20 minutes and extraction of ∼98% was achieved. For U

  17. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    Science.gov (United States)

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  18. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)*

    Science.gov (United States)

    He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny

    2005-01-01

    Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413

  19. Preparation of Cefquinome Nanoparticles by Using the Supercritical Antisolvent Process

    Directory of Open Access Journals (Sweden)

    Xiao Kefeng

    2015-01-01

    Full Text Available The supercritical antisolvent process was used successfully to prepare nanoparticles of cefquinome. These particles were observed by scanning electron microscope (SEM and their average diameter was measured by laser particle size analyzer. In the experiments, dimethyl sulfoxide (DMSO was selected as solvent to dissolve cefquinome sulfate. It was confirmed by orthogonal experiments that the concentration of solution was the primary factor in this process followed by feeding speed of solution, precipitation pressure, and precipitation temperature. Moreover, the optimal conditions of preparing nanoparticles of cefquinome by supercritical antisolvent process were that solution concentration was 100 mg/mL, solution flow speed was 1.5 mL/min, operating pressure was 13 Mpa, and operating temperature was 33°C. Confirmatory experiment was conducted under this condition. It was found that the appearance of particles was flakes and the average diameter of particles was 0.71 microns. Finally, influence law of individual factor on particle size was investigated by univariate analysis.

  20. Effect of matrix pretreatment on the supercritical CO2 extraction of Satureja montana essential oil

    Directory of Open Access Journals (Sweden)

    Damjanović-Vratnica Biljana

    2016-01-01

    Full Text Available The effect of different matrix pretreatment of winter savory(Satureja montana L. on the supercritical CO2(SC-CO2 extraction - yield, composition and antimicrobial activity of extracts and essential oil (EO was investigated. Herb matrix was submitted to conventional mechanical grinding, physical disruption by fast decompression of supercritical and subcritical CO2 and physical disruption by mechanical compression. The analyses of the essential oil obtained by SC-CO2 extraction and hydrodistillation were done by GC/FID method. Major compounds in winter savory EO obtained by SC-CO2 extraction and hydrodistillation were: thymol (30.4-35.4% and 35.3%, carvacrol (11.5-14.1% and 14.1%, γ-terpinene (10.2-11.4% and 9.1% and p-cymene (8.3-10.1% and 8.6%, respectively. The gained results revealed that physical disruption of essential oils glands by fast CO2 decompression in supercritical region (FDS achieved the highest essential oil yield as well as highest content of thymol, carvacrol and thymoquinone. Antimicrobial activity of obtained winter savory SC-CO2 extracts was the same (FDS or weaker compared to essential oil obtained by hydrodistillation.

  1. Extraction of Stevia rebaudiana bertoni sweetener glycosides by supercritical fluid methods.

    Directory of Open Access Journals (Sweden)

    Juan José Hinojosa-González

    2017-05-01

    Full Text Available Aim. The aim was to evaluate the supercritical carbon dioxide extraction method with and without the addition of co-solvent to the system (mixture water: ethanol to obtain the glycosides from leaves of Stevia rebaudiana Bertoni. Methods. A SFT-150 SFE / SFR model with CO2 as a fluid was used for the supercritical extraction. The variables studied were temperature, pressure, extraction time and the presence or absence of the co-solvent (water-ethanol mixture in a concentration of 70:30 v/v, incorporated in different proportions to determine the effect on yield. The amount of glycoside sweeteners was analyzed by High Performance Liquid Chromatography (HPLC. Results. The pressure was the factor that favored the extraction, which was selective in obtaining Rebaudioside A with yields no greater than 2%. The inclusion of the co-solvent achieved an increase in yield to values of 2.9% Conclusion. Supercritical CO2 individually and mixed with ethanol-water as a co-solvent was not efficient to extract Stevia rebaudiana stevioside sweeteners

  2. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  3. Extraction of lipid components from hibiscus seeds by supercritical carbon dioxide and ethanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Holser, Ronald A.; King, J. W. (Jerry W.); Bost, G.

    2002-01-01

    The genus Hibiscus exhibits great diversity in the production of natural materials with edible and industrial applications. The seeds of twelve varieties of Hibiscus were investigated as a source for triglycerides and phospholipids that could be used in functional foods. Lipid components were extracted from seed samples ground to a nominal particle diameter of 0.1 mm. Extractions were performed with an ISCO model 3560 supercritical fluid extractor using carbon dioxide and a mixture of carbon dioxide modified with ethanol. The neutral lipids were extracted with carbon dioxide at 80 C and 5370 MPa for 45 min. Polar lipids were subsequently extracted with a mixture of carbon dioxide and 15% ethanol at the same temperature and pressure. High performance liquid chromatography (HPLC) was used to analyze extracts for major neutral and polar lipid classes. A silica column was used with a solvent gradient of hexane/isopropanol/ water and ultraviolet (UV) and evaporative light scattering detectors (ELSD). An aliquot of each triglyceride fraction was trans-methylated with sodium methoxide and analyzed by gas chromatography to obtain the corresponding fatty acid methyl esters. The total lipids extracted ranged from 8.5% for a variety indigenous to Madagascar (H. calyphyllus) to 20% for a hybrid species (Georgia Rose). The average oil yield was 11.4% for the other varieties tested. The fatty acid methyl ester analysis displayed a high degree of unsaturation for all varieties tested, e. g., 75 ' 83%. Oleic, linoleic, and linolenic fatty acids were the predominate unsaturated fatty acids with only minor amounts of C14, C18, and C20 saturated fatty acids measured. Palmitic acid was identified as the predominate saturated fatty acid. The distribution of the major phospholipids, i. e., phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylcholine, and lysophosphatidylcholine, was found to vary significantly among the hibiscus species examined

  4. Supercritical Carbon Dioxide Extraction of Seed Oil from Winter Melon (Benincasa hispida and Its Antioxidant Activity and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Ali Ganjloo

    2013-01-01

    Full Text Available In the present study, supercritical carbon dioxide (SC-CO2 extraction of seed oil from winter melon (Benincasa hispida was investigated. The effects of process variables namely pressure (150–300 bar, temperature (40–50 °C and dynamic extraction time (60–120 min on crude extraction yield (CEY were studied through response surface methodology (RSM. The SC-CO2 extraction process was modified using ethanol (99.9% as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE and ultrasound assisted extraction (UAE. It was found that the antioxidant activity of the extract obtained by SC-CO2 extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO2 extraction conditions.

  5. Supercritical fluid processing: a new dry technique for photoresist developing

    Science.gov (United States)

    Gallagher-Wetmore, Paula M.; Wallraff, Gregory M.; Allen, Robert D.

    1995-06-01

    Supercritical fluid (SCF) technology is investigated as a dry technique for photoresist developing. Because of their unique combination of gaseous and liquid-like properties, these fluids offer comparative or improved efficiencies over liquid developers and, particularly carbon dioxide, would have tremendous beneficial impact on the environment and on worker safety. Additionally, SCF technology offers the potential for processing advanced resist systems which are currently under investigation as well as those that may have been abandoned due to problems associated with conventional developers. An investigation of various negative and positive photoresist systems is ongoing. Initially, supercritical carbon dioxide (SC CO2) as a developer for polysilane resists was explored because the exposure products, polysiloxanes, are generally soluble in this fluid. These initial studies demonstrated the viability of the SCF technique with both single layer and bilayer systems. Subsequently, the investigation focused on using SC CO2 to produce negative images with polymers that would typically be considered positive resists. Polymers such as styrenes and methacrylates were chemically modified by fluorination and/or copolymerization to render them soluble in SC CO2. Siloxane copolymers and siloxane-modified methacrylates were examined as well. The preliminary findings reported here indicate the feasibility of using SC CO2 for photoresist developing.

  6. High-performance separation and supercritical extraction of lanthanides and actinides

    International Nuclear Information System (INIS)

    Datta, Arpita; Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Extensive studies were carried out at Chemistry Group, IGCAR for the rapid separation of individual lanthanides and actinides using dynamic ion-exchange chromatographic technique. The atom percent fission was determined from the concentrations of the lanthanide fission products, uranium and plutonium contents of dissolver solution. These advantages were exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator. Supercritical fluid extraction (SFE) of actinides from waste matrices was studied in detail at our laboratory using modified supercritical carbon dioxide (Sc-CO 2 ). Complete extraction and recovery of uranium, plutonium and americium from various matrices was achieved using Sc-CO 2 modified with suitable ligands. The technique was demonstrated for the recovery of plutonium from actual waste received from different laboratories. (author)

  7. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests.

    Science.gov (United States)

    Jackowski, J; Hurej, M; Rój, E; Popłoński, J; Kośny, L; Huszcza, E

    2015-08-01

    Xanthohumol, a prenylated flavonoid from hops, and a supercritical carbon dioxide extract of spent hops were studied for their antifeedant activity against stored product insect pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. Xanthohumol exhibited medium deterrent activity against the adults of S. granarius L. and larvae of T. confusum Duv. The spent hops extract was more active than xanthohumol towards the adults of T. confusum Duv. The potential application of the crude spent hops extract as a feeding deterrent against the stored product pests is proposed.

  8. Evaluation of various Crown ethers for the supercritical fluid extraction of uranium from nitric acid medium

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Rao, Ankita; Ramakumar, K.L.

    2009-01-01

    Various crowns have been evaluated for supercritical fluid extraction of uranium from nitric acid medium employing HPFOA as counter ion. Uranium extraction efficiency was found to be influenced by cavity size of crown ether and nature of substituents. Complexation tendency of UO 2 2+ increases with increasing cavity size of crown ether. Electron withdrawing substituents decreased the extraction efficiency which could be attributed to decrease in the basicity of four oxygen atoms and hence their bonding ability. Whereas electron donating substituents increased the efficiency due to increases in basicity of oxygen atoms and hence in increase in bonding ability. (author)

  9. Recovery of environmental analytes from clays and soils by supercritical fluid extracting/gas chromatography

    International Nuclear Information System (INIS)

    Emery, A.P.; Chesler, S.N.; MacCrehan, W.A.

    1992-01-01

    This paper reports on Supercritical Fluid Extraction (SFE) which promises to provide rapid extractions of organic analytes from environmental sample types without the use of hazardous solvents. In addition, SFE protocols using commercial instrumentation can be automated lowering analysis costs. Because of these benefits, we are investigating SFE as an alternative to the solvent extraction (eg. Soxhlet and sonication) techniques required in many EPA test procedures. SFE, using non-polar carbon dioxide as well as more polar supercritical fluids, was used to determine n-alkane hydrocarbons and polynuclear aromatic hydrocarbons (PAHs) in solid samples. The extraction behavior of these analyte classes from environmentally-contaminated soil matrices and model soil and clay matrices was investigated using a SFE apparatus in which the extracted analytes were collected on a solid phase trap and then selectively eluted with a solvent. The SFE conditions for quantitative recovery of n-alkane hydrocarbons in diesel fuel from a series of clays and soils were determined using materials prepared at the 0.02% level with diesel fuel oil in order to simplify analyte collection and analysis after extraction. The effect of extraction parameters including temperature, fluid flow rate and modifier addition were investigated by monitoring the amount of diesel fuel extracted as a function of time

  10. Supercritical Fluid Extraction of Lignans and Cinnamic Acid from Schizandra chinensis.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Opletal, L.; Bártlová, Milena; Sajfrtová, Marie; Křenková, M.

    2007-01-01

    Roč. 42, 1 (2007) , s. 88-95 ISSN 0896-8446 R&D Projects: GA ČR(CZ) GA203/01/0550; GA AV ČR IAA4072102; GA AV ČR KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical extraction * solubility * lignans Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.189, year: 2007

  11. Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide

    Science.gov (United States)

    Kimthet, Chhouk; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Curcumin is one of phenolic compounds, which has been recently shown to have useful pharmacological properties such as anti-inflammatory, anti-bacterial, anti-carcinogenic, antifungal, and antimicrobial activities. The objective of this research is to extract the curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide extraction (USC-CO2). The extraction was performed at 50°C, 25 MPa, CO2 flow rate of 3 mL/min with 10% cosolvent. The result of extraction, thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) showed that ultrasound power could disrupt cell wall and release the target compounds from Curcuma longa L. USC-CO2 could provide higher curcumin content in the extracts and faster extraction compared to SC-CO2 extraction without ultrasound.

  12. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    Directory of Open Access Journals (Sweden)

    Diego Tresinari SANTOS

    2015-01-01

    Full Text Available AbstractIn this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions. Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.

  13. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    Science.gov (United States)

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  14. Recrystallization of andrographolide using the supercritical fluid antisolvent process

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Yin, Wenhong

    2005-01-01

    The supercritical antisolvent (SAS) process was used to modify the solid-state properties of andrographolide. Ethanol was employed as solvents for the pharmaceutical compound and carbon dioxide was used as an antisolvent. The effect of process parameters on the precipitate crystals such as pressure, organic solution flow rate, and concentration of the andrographolide solution were investigated. The crystal habit is column-like and its size changed from longer and thicker to shorter and thinner when pressure increased and when the solution flow rate increased, the size of the crystal decreased. The X-ray diffraction (XRD) patterns revealed variations of crystallinity and crystal orientation depending on pressure, where the degree of crystallinity increased when pressure increased. The differential scanning calorimetry patterns also showed the same results as XRD.

  15. Optimization of metals extraction using cyanex series and NaDDC reagents in liquid/supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ko, M. S.; Kim, S. H.; Park, K. H.; Kim, H. D.; Kim, H. W. [Kyunghee Univ., Youngin (Korea, Republic of)

    2002-05-01

    In this research, extraction of small fraction of radioactive elements from mixed contaminated working dress has been conducted by organic solvent extraction, but use of organic solvents has created secondary wastes. In this study, liquid/supercritical fluid CO{sub 2}, an environmentally friendly solvent, was used to extract five metals(Co, Cu, Pb, Cd, Zn). Using five metals selective ligand Cyanex-272 and NaDDC, the most optimized extraction conditions were founded 20 .deg. C, 100atm and complexed ratio(Cyanex-272: 100mg, NaDDC:5mg). The results suggest the possibility of utilizing supercritical fluid technology for extraction of metals from contaminated working dress.

  16. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification

    NARCIS (Netherlands)

    Kasteren, van J.M.N.; Nisworo, A.P.

    2007-01-01

    This paper describes the conceptual design of a production process in which waste cooking oil is converted via supercritical transesterification with methanol to methyl esters (biodiesel). Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great

  17. Studies on In-situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique

    International Nuclear Information System (INIS)

    Lin, Yuehe; Wu, Hong; Smart, Neil G.; Wai, Chien M.

    2001-01-01

    Radioisotope tracer techniques were used to study the process of in-situ chelation/supercritical fluid extraction(SFE) of La3+ and Lu3+ from solid matrix using mixed ligand hexafluoroacetylacetone (HFA) and tributylphosphate (TBP) as chelating agents. A lab-built SFE extactor was used in this study and the extractor design was optimized based on the experimental results. Quantitative recovery of La and Lu was achieved when the extrator design was optimized. Extraction of uranium from real world samples was also investigated to demonstrate the capability of this chelation/SFE technology for environmental remediation applications. A novel on-line back extraction technique for the recovery of metal ions and regeneration of ligands is also reported.

  18. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae, or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae were extracted using supercritical carbon dioxide (SC-CO2 and conventional solvents (ethanol, water. The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae, with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant.

  19. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  20. Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials.

    Science.gov (United States)

    Michalak, Izabela; Chojnacka, Katarzyna; Dmytryk, Agnieszka; Wilk, Radosław; Gramza, Mateusz; Rój, Edward

    2016-01-01

    The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur ). As a raw material for the supercritical fluid extraction, the biomass of microalga Spirulina plantensis , brown seaweed - Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant height, length of ear, and shank length. The ear number per m 2 was the highest in the group where the Baltic macroalgae extract was applied in the dose 1.0 L/ha (statistically significant differences). Number of grains in ear (statistically significant differences) and shank length was the highest in the group treated with Spirulina at the dose 1.5 L/ha. In the group with Ascophyllum at the dose 1.0 L/ha, the highest length of ear was observed. The yield was comparable in all the experimental groups (lack of statistically significant differences). Among the tested supercritical extracts, the best results were obtained for Spirulina (1.5 L/ha). The mass of 1000 grains was the highest for extract from Baltic macroalgae and was 3.5% higher than for Asahi, 4.0% higher than for Forthial and 18.5% higher than for the control group (statistically significant differences). Future work is needed to fully characterize the chemical composition of the applied algal extracts. A special attention should be paid to the extracts obtained from Baltic algae because they are inexpensive source of naturally occurring bioactive compounds, which can be used in sustainable agriculture and horticulture.

  1. Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2016-10-01

    Full Text Available The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur. As a raw material for the supercritical fluid extraction (SFE, the biomass of microalga Spirulina plantensis, brown seaweed – Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant height, length of ear and shank length. The ear number per square meter was the highest in the group where the Baltic macroalgae extract was applied in the dose 1.0 L/ha (statistically significant differences. Number of grains in ear (statistically significant differences and shank length was the highest in the group treated with Spirulina at the dose 1.5 L/ha. In the group with Ascophyllum at the dose 1.0 L/ha, the highest length of ear was observed. The yield was comparable in all the experimental groups (lack of statistically significant differences.Among the tested supercritical extracts, the best results were obtained for Spirulina (1.5 L/ha. The mass of 1000 grains was the highest for extract from Baltic macroalgae and was 3.5% higher than for Asahi, 4.0% higher than for Forthial and 18.5% higher than for the control group (statistically significant differences. Future work is needed to fully characterize the chemical composition of the applied algal extracts. A special attention should be paid to the extracts obtained from Baltic algae because they are inexpensive source of naturally occurring bioactive compounds, which can be used in sustainable agriculture and horticulture.

  2. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  3. Supercritical extraction of pupunha (Guilielma speciosa oil in a fixed bed using carbon dioxide

    Directory of Open Access Journals (Sweden)

    Araújo M.E.

    2000-01-01

    Full Text Available The pupunha (Guilielma speciosa is the fruit of a palm tree typical of the Brazilian Northern region, whose stem is used as a source of heart of palm. The fruit, which is about 65% pulp, is a source of oil and carotenes. In the present work, an analysis of the kinetics of supercritical extraction of oil from the pupunha pulp is presented. Carbon dioxide was used as solvent. The extractions were carried out at 25 MPa and 323 K and 30 MPa and 318 K. The chemical composition of the extracts in terms of fatty acids was determined by gas chromatography. The amount of oleic acid, a saturated fatty acid, in the CO2 extracts was larger than that in the extract obtained with hexane. The overall extraction curves were modeled using the single-parameter model proposed in the literature to describe the desorption of toluene from activated coal.

  4. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    Science.gov (United States)

    Oefelein, Joseph C.

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  5. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  6. Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    OpenAIRE

    Stela Jokić; B. Nagy; K. Aladić; B. Simándi

    2013-01-01

    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was det...

  7. A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland.

    Science.gov (United States)

    Wajs-Bonikowska, Anna; Stobiecka, Agnieszka; Bonikowski, Radosław; Krajewska, Agnieszka; Sikora, Magdalena; Kula, Józef

    2017-08-01

    Large quantities of blackberry seeds are produced as a pomace during the processing of juice and jam production; this by-product is a very interesting raw material both for oil manufacturing and as a source of bioactive compounds. In this work the composition, yield and antioxidant activity of three types of Rubus fructicosus pomace extracts isolated by liquid extraction using solvents of different polarity, as well with supercritical CO 2 fluid extraction have been compared. The highest extract yield was reported for Soxhlet extraction using ethanol as a solvent (14.2%). Supercritical carbon dioxide and hexane extracts were characterised by the highest content of phytosterols (1445 and 1583 mg 100 g -1 of extract, respectively) among which β-sitosterol was the main one, while the concentration of tocopherols, with predominant γ-isomer, was the highest for both hexane and ethanol extracts, being 2364 and 2334 mg 100 g -1 , respectively. Using a GC-MS method 95 volatiles, in which non-saturated aldehydes were predominant, were identified in the essential oil of seed pomace and in the volatile oil isolated from supercritical extract. The ethanolic extract which is characterised by the highest phenolic content (9443 mg GAE 100 g -1 ) exhibited the highest antioxidant activity (according to the ABTS •+ and DPPH • assays). All pomace extracts examined were of high quality, rich in essential omega fatty acids and with a very high content of bioactive compounds, such as phytosterols and tocopherols. The high nutritional value of extracts from berry seed pomace could justify the commercialisation of specific extracts not only as food additives but also as cosmetic components. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    Science.gov (United States)

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  9. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide.

    Science.gov (United States)

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO(2)) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20-90 min), temperature (35-45 °C) and pressure (50-90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO(2) extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO(2) contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO(2) is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO(2) is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets.

  10. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L. Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2011-11-01

    Full Text Available Seeds are another product in addition to leaves (raw materials for teas of tea (Camellia sinensis L. plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2 extraction edible oil from tea seed was carried out, response surface methodology (RSM was used to optimize processing parameters including time (20–90 min, temperature (35–45 °C and pressure (50–90 MPa. The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6% was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively, which was significantly higher (p < 0.05 than that (25.3 ± 1.0% given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets.

  11. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    OpenAIRE

    SANTOS, Diego Tresinari; MEIRELES, Maria Angela de Almeida

    2015-01-01

    Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extr...

  12. Application of GC–MS chromatography for the analysis of the oil fractions extracted by supercritical CO2 at high pressure

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2013-01-01

    GC–MS chromatographic analysis has been applied for the investigation of the fractions of oil extracted by supercritical carbon dioxide at a temperature of 60 °C and at pressure values ranging from 22 to 56 MPa. The observations revealed, that the whole extraction process is clearly reflected...... in the chromatograms, demonstrating how the heavier hydrocarbon fractions were gradually involved in the extraction process. The shape of the chromatograms alters with increasing pressure from triangle to trapezoid, approaching the shape of the chromatogram of the crude oil. The observation of the fingerprints...

  13. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.

    Science.gov (United States)

    Quitain, Armando T; Oro, Kazuyuki; Katoh, Shunsaku; Moriyoshi, Takashi

    2006-09-01

    Recovery of the oil components of okara by ethanol-modified supercritical carbon dioxide extraction was investigated at 40-80 degrees C temperature and 12-30 MPa pressure. In a typical run (holding period of 2 h, continuous flow extraction of 5 h), results indicated that the oil component could be best obtained with a recovery of 63.5% at relatively low temperature of 40 degrees C and mild pressure of 20 MPa in the presence of 10 mol% EtOH as entrainer. Based on gas chromatography-mass spectrometry (GC-MS) analysis, the extracts consisted mainly of fatty acids and phytosterols, and traces of decadienal. Folin-Ciocalteau estimates of total phenols showed that addition of EtOH as entrainer increased the yield and the amount of phenolic compounds in the extracts. The amounts of two primary soy isoflavones, genistein and daidzein, in the extracts also increased with increasing amount of EtOH.

  14. Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2016-06-01

    Full Text Available Recently, supercritical fluid extraction (SFE has been indicated to be utilized as part of a biorefinery, rather than as a stand-alone technology, since besides extracting added value compounds selectively it has been shown to have a positive effect on the downstream processing of biomass. To this extent, this work evaluates economically the encouraging experimental results regarding the use of SFE during annatto seeds valorization. Additionally, other features were discussed such as the benefits of enhancing the bioactive compounds concentration through physical processes and of integrating the proposed annatto seeds biorefinery to a hypothetical sugarcane biorefinery, which produces its essential inputs, e.g., CO2, ethanol, heat and electricity. For this, first, different configurations were modeled and simulated using the commercial simulator Aspen Plus® to determine the mass and energy balances. Next, each configuration was economically assessed using MATLAB. SFE proved to be decisive to the economic feasibility of the proposed annatto seeds-sugarcane biorefinery concept. SFE pretreatment associated with sequential fine particles separation process enabled higher bixin-rich extract production using low-pressure solvent extraction method employing ethanol, meanwhile tocotrienols-rich extract is obtained as a first product. Nevertheless, the economic evaluation showed that increasing tocotrienols-rich extract production has a more pronounced positive impact on the economic viability of the concept.

  15. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    CO2) extraction. The oil was analysed by GC-MS after methylation. Compounds were identified according to their mass spectra (EI, 70 eV) by comparison with authentic reference substances and literature data. Five fatty acids were identified, with ...

  16. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Determination of Oleanolic and Ursolic Acids in Hedyotis diffusa Using Hyphenated Ultrasound-Assisted Supercritical Carbon Dioxide Extraction and Chromatography

    Directory of Open Access Journals (Sweden)

    Ming-Chi Wei

    2015-01-01

    Full Text Available Oleanolic acid (OA and ursolic acid (UA were extracted from Hedyotis diffusa using a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2 extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2 flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant and UA (3.540 mg/g of dry plant were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v cosolvent (ethanol/water = 82/18, v/v and SC–CO2 flowing at 2.3 mL/min (STP. The extracted yields were then analyzed by high performance liquid chromatography (HPLC to quantify the OA and UA. The present findings revealed that H. diffusa is a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA from H. diffusa at high concentrations.

  18. Determination of Oleanolic and Ursolic Acids in Hedyotis diffusa Using Hyphenated Ultrasound-Assisted Supercritical Carbon Dioxide Extraction and Chromatography

    Science.gov (United States)

    Hong, Show-Jen

    2015-01-01

    Oleanolic acid (OA) and ursolic acid (UA) were extracted from Hedyotis diffusa using a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2 flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2 flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed that H. diffusa is a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA from H. diffusa at high concentrations. PMID:26089939

  19. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    Science.gov (United States)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  20. PREPARATION OF MESOPOROUS TITANIA-SILICA AEROGELS BY CO2 SUPERCRITICAL EXTRACTION

    Directory of Open Access Journals (Sweden)

    Silvester Tursiloadi

    2010-06-01

    Full Text Available Stable anatase is attractive because of its notable functions for photocatalysis and photon-electron transfer.  TiO2-nanoparticles dispersed SiO2 wet gels were prepared by hydrolysis of Ti(OC4H9n4 and Si(OC2H54 in a 2-propanol solution with acid catalyst.  The solvent in the wet gels was supercritically extracted using CO2 at 60 oC and 22 Mpa in one-step.  Thermal evolution of the microstructure of the extracted gels (aerogels was evaluated by XRD measurements, TEM and N2 adsorption measurements. The as-extracted aerogel with a large specific surface area, more than 365 m2g-1, contained anatase nanoparticles, about 5 nm in diameter.  The anatase phase was stable after calcinations at temperatures up to 1000 oC, and BET specific surface area, total pore volume and average pore diameter did not change significantly after calcinations at temperature up to 800 oC.   Keywords: Stable anatase, sol-gel, CO2 supercritical extraction.

  1. Pigments and their solubility in and extractability by supercritical CO2 - I: the case of curcumin

    Directory of Open Access Journals (Sweden)

    Baumann W.

    2000-01-01

    Full Text Available A specially designed high-pressure cell was used simultaneously as extractor/autoclave and photometric cell in a Perkin Elmer Lambda 5 spectrophotometer. Based on this cell, a simple method was developed to determine the extractability of pigments by pure and by modified supercritical (sc CO2. The method is demonstrated with curcumin from turmeric. With sc CO2 modified by 10% ethanol, the extraction yield for curcumin from two commercial finely ground dry turmeric samples was about 100%, measured by reference to the (complete extraction of samples of the same charge with pure ethanol under standard conditions. Extractable curcumin content was from 1.8 to 2.5%, with three samples of turmeric of different origins.

  2. The experimental study of heat extraction of supercritical CO2 in the geothermal reservoir

    Directory of Open Access Journals (Sweden)

    Huang Cyun-Jie

    2016-01-01

    Full Text Available The heat transfer phenomena of supercritical CO2 are experimentally investigated in a horizontal tube for improving the efficiency of CO2-EGS.This study discuss the experimental verification of the numerical simulations. The experiment is conducted for the pressure, the flow rate, and particle size 1.54mm. In addition, the experiment and simulation that the maximum heat extraction is occurred at the 9MPa pressure and mass flow rate of 0.00109 kg/s. The maximum specific heat extraction at 9MPa and flow rate of 0.00082 kg/s. The results show that the numerical model has been experimentally verified of the feasibility. Furthermore, the pseudo-critical point had a significant influence on the heat extraction, temperature difference and specific heat extraction.

  3. Construction of a supercritical fluid extraction (SFE equipment: validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Flores JOHNER

    2016-01-01

    Full Text Available Abstract The present work describes setting up a laboratory unit for supercritical fluid extraction. In addition to its construction, a survey of cost was done to compare the cost of the homemade unit with that of commercial units. The equipment was validated using an extraction of annatto seeds’ oil, and the extraction and fractionation of fennel oil were used to validate the two separators; for both systems, the solvent was carbon dioxide. The chemical profiles of annatto and fennel extracts were assessed using thin layer chromatography; the images of the chromatographic plates were processed using the free ImageJ software. The cost survey showed that the homemade equipment has a very low cost (~US$ 16,000 compared to commercial equipment. The extraction curves of annatto were similar to those obtained in the literature (yield of 3.8% oil. The separators were validated, producing both a 2.5% fraction of fennel seed extract rich in essential oils and another extract fraction composed mainly of oleoresins. The ImageJ software proved to be a low-cost tool for obtaining an initial evaluation of the chemical profile of the extracts.

  4. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-01-01

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094

  5. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.: A Review

    Directory of Open Access Journals (Sweden)

    Miriana Durante

    2014-04-01

    Full Text Available Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp. flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE, have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2 extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1 dehydration pre-treatments; (2 extraction parameters (temperature and pressure; the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  6. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  7. Conversion of a deasphalting unit for use in the process of supercritical solvent recovery

    Directory of Open Access Journals (Sweden)

    Waintraub S.

    2000-01-01

    Full Text Available In order to reduce energy consumption and to increase deasphalted oil yield, an old PETROBRAS deasphalting unit was converted for use in the process of supercritical solvent recovery. In-plant and pilot tests were performed to determine the ideal solvent-to-oil ratio. The optimum conditions for separation of the supercritical solvent from the solvent-plus-oil liquid mixture were determined by experimental tests in PVT cells. These tests also allowed measurement of the dew and bubble points, determination of the retrograde region, observation of supercritical fluid compressibility and as a result construction of a phase equilibrium diagram.

  8. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract

    NARCIS (Netherlands)

    Arranz, E.; Mes, J.J.; Wichers, H.J.; Jaime, L.; Reglero, G.; Santoyo, S.

    2015-01-01

    The anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract was examined. Uptake of rosemary extract fractions was tested on Caco-2 cell monolayers (2–12 h incubation times) and the quantification of carnosic acid and carnosol was performed

  9. Microencapsulation of fish oil using supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Fahim Tamzeedul Karim

    2017-07-01

    Full Text Available In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high.

  10. Microencapsulation of fish oil using supercritical antisolvent process.

    Science.gov (United States)

    Karim, Fahim Tamzeedul; Ghafoor, Kashif; Ferdosh, Sahena; Al-Juhaimi, Fahad; Ali, Eaqub; Yunus, Kamaruzzaman Bin; Hamed, Mir Hoseini; Islam, Ashraful; Asif, Mohammad; Sarker, Mohammed Zaidul Islam

    2017-07-01

    In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high. Copyright © 2017. Published by Elsevier B.V.

  11. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  12. Simultaneous quantification of vitamin E, γ-oryzanols and xanthophylls from rice bran essences extracted by supercritical CO2.

    Science.gov (United States)

    Sookwong, Phumon; Suttiarporn, Panawan; Boontakham, Pittayaporn; Seekhow, Pattawat; Wangtueai, Sutee; Mahatheeranont, Sugunya

    2016-11-15

    Since the nutrition value of rice is diminished during rice processing, technology that can preserve and sustain functional compounds is necessary. In this study, supercritical carbon dioxide (SC-CO2) extraction was optimized for operational conditions (time, temperature, pressure and modifier) to extract vitamin E, γ-oryzanols and xanthophylls from rice bran. The simultaneous quantification of the compounds was developed using high-performance liquid chromatography with diode array and fluorescence detectors. Central composite design and respond surface methodology were applied to achieve optimum extraction conditions. The optimized conditions were 60min, 43°C, 5420psi with 10% ethanol as a modifier. Pigmented rice bran extracts contained greater amounts of functional phytochemicals than non-pigmented rice bran extracts (0.68, 1410, and non-detectable μg/g compared with 16.65, 2480, and 0.10μg/g of vitamin E, γ-oryzanols and xanthophylls in pigmented and non-pigmented ones, respectively). SC-CO2 extraction with modifier would be promising for preparation of phytochemical essences for therapeutic purpose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137 Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137 Cs. On the other hand, 137 Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10 -3 M CC + 4 M HNO 3 dissolved in acetonitrile. (author)

  14. Wheat germ oil extracted by supercritical carbon dioxide with ethanol: Fatty acid composition

    Directory of Open Access Journals (Sweden)

    Parczewska-Plesnar, B.

    2016-09-01

    Full Text Available In this work, supercritical fluid extraction (SFE using CO2 with ethanol as entrainer was performed at a temperature of 40 oC under a pressure of 21 MPa. For comparison, a similar extraction without the entrainer was carried out. The extraction yield of wheat germ using supercritical CO2 with ethanol was slightly higher (10.7 wt% than that of extraction without the entrainer (9.9 wt%. Fractions of SFE extracts were collected separately during the experiments and the composition of fatty acids in each fraction was analyzed. The SFE extracted oils were rich (63.4-71.3% in the most valuable polyunsaturated fatty acids (PUFA and their content in all collected fractions was approximately constant. Similar PUFA contents were found in the reference samples of oils extracted by n-hexane (66.2-67.0%, while the commercial cold-pressed oil contained significantly less PUFA (60.2%. These results show a higher nutritional value of the oil obtained by extraction with supercritical CO2 than cold pressed oil which is generally considered to be very valuable.En este trabajo, la extracción con fluidos supercríticos (SFE usando CO2 con etanol como agente de arrastre se realizó a 40 °C bajo una presión de 21 MPa. Se ha llevado a cabo la comparación con una extracción similar sin agente de arrastre. El rendimiento de la extracción de germen de trigo usando CO2 supercrítico con etanol fue ligeramente mayor (10,7% en peso que la de extracción sin agente de arrastre (9,9% en peso. Se recogieron por separado fracciones de extractos SFE durante los experimentos y se analizó la composición de ácidos grasos en cada fracción. Los aceites extraídos mediante SFE eran ricos en los ácidos grasos poliinsaturados más valiosos (63,4-71,3%, (PUFA y su contenido en todas las fracciones recogidas fue aproximadamente constante. Un contenido similar de PUFA fueron encontrados en muestras de referencia de los aceites extraídos con n-hexano (66,2-67,0%, mientras que el

  15. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    Science.gov (United States)

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  16. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    Science.gov (United States)

    Gilmour, Iain; Pillinger, Colin

    1993-03-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  17. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers (Capsicum chinense Jacq.).

    Science.gov (United States)

    Zoccali, Mariosimone; Giuffrida, Daniele; Dugo, Paola; Mondello, Luigi

    2017-10-01

    Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run-to-run precision, enables the setting of batch-type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4-65.4%, with a %CV range of 2-12. Twenty-one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β-carotene was carried out by using the optimized conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2

    Directory of Open Access Journals (Sweden)

    Pedro T.W. Barroso

    2016-09-01

    Full Text Available Among the most important tropical fruit grown in the world today and in Brazil, papaya occupies a prominent place. Native to tropical America, papaya has spread to several regions of the world, and Brazil accounts for 12.74% of the world production, followed by Mexico, Nigeria and India. The culture reached a harvested area of 441,042 ha and production of 12,420,585 t worldwide. The largest interest in this fruit relies on its main constituent compounds, like vitamins A, B and C, alkaloids (carpaine and pseudocarpaine, proteolytic enzymes (papain and quimiopapain and benzyl isothiocyanate, more known as BITC, which has anthelmintic activity. Because of that, the present work has as objective the evaluation of the efficiency and composition of the oil extracted from Carica papaya L. seeds with supercritical carbon dioxide. The experiments were performed in a unit containing mainly a high-pressure pump and a stainless steel extractor with 42 mL of volume. The sampling was performed at each 20 min until the saturation of the process. About 6.5 g of sample were fed for each experiment done at 40, 60 and 80 °C under the pressures of 100, 150 and 200 bar. Samples of the Carica papaya L. fruit were acquired in a popular market and free for personal use intended for the study. After collection, the seeds were crushed with the help of a pestle, and dried at 60 °C for 60 min. For each operational condition, the extraction curves were constructed relating cumulative mass of oil extracted in function of the operational time. The better efficiencies were found at 40 °C and 200 bar (1.33% followed by 80 °C and 200 bar (2.56%. Gas chromatography and NMR analysis could identify an insecticide component (BITC that enables new applications of this residue in pharmaceutical and chemical industries.

  19. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2.

    Science.gov (United States)

    Barroso, Pedro T W; de Carvalho, Pedro P; Rocha, Thiago B; Pessoa, Fernando L P; Azevedo, Debora A; Mendes, Marisa F

    2016-09-01

    Among the most important tropical fruit grown in the world today and in Brazil, papaya occupies a prominent place. Native to tropical America, papaya has spread to several regions of the world, and Brazil accounts for 12.74% of the world production, followed by Mexico, Nigeria and India. The culture reached a harvested area of 441,042 ha and production of 12,420,585 t worldwide. The largest interest in this fruit relies on its main constituent compounds, like vitamins A, B and C, alkaloids (carpaine and pseudocarpaine), proteolytic enzymes (papain and quimiopapain) and benzyl isothiocyanate, more known as BITC, which has anthelmintic activity. Because of that, the present work has as objective the evaluation of the efficiency and composition of the oil extracted from Carica papaya L. seeds with supercritical carbon dioxide. The experiments were performed in a unit containing mainly a high-pressure pump and a stainless steel extractor with 42 mL of volume. The sampling was performed at each 20 min until the saturation of the process. About 6.5 g of sample were fed for each experiment done at 40, 60 and 80 °C under the pressures of 100, 150 and 200 bar. Samples of the Carica papaya L. fruit were acquired in a popular market and free for personal use intended for the study. After collection, the seeds were crushed with the help of a pestle, and dried at 60 °C for 60 min. For each operational condition, the extraction curves were constructed relating cumulative mass of oil extracted in function of the operational time. The better efficiencies were found at 40 °C and 200 bar (1.33%) followed by 80 °C and 200 bar (2.56%). Gas chromatography and NMR analysis could identify an insecticide component (BITC) that enables new applications of this residue in pharmaceutical and chemical industries.

  20. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  1. Optimization of co-solvent addition in supercritical fluid extraction of fat with carbon dioxide

    Directory of Open Access Journals (Sweden)

    Ivanov Dušica S.

    2011-01-01

    Full Text Available This investigation is concerned with supercritical fluid extraction (SFE using CO2, as an analytical technique for total fat extraction from food and feed samples. Its most significant advantages are safety, cleanness, and shorter extraction time. The main limitation of this technique includes the difficulty of extracting polar lipids due to the non-polar character of the solvent (CO2 used for the extraction. The influence of ethanol as a co-solvent on the SFE of mash pig feed was investigated in this paper. Total fat content was determined by SFE and Soxhlet method for ten commercially available mesh pig feeds. Yields of the fat extracted by both methods were plotted one against the other and compared. Statistically significant difference (p ≤ 0.05 has been found only between the total fat obtained by the Soxhlet extraction and SFE by pure CO2. Based on the mathematical model, maximum yield of the extracted fat is achieved at an ethanol addition of 0.67 ml/g of sample, when the other parameters are the same as recommended by the producer’s procedure.

  2. Characterization of lecithin isolated from anchovy (Engraulis japonica) residues deoiled by supercritical carbon dioxide and organic solvent extraction.

    Science.gov (United States)

    Lee, Seung-Mi; Asaduzzaman, A K M; Chun, Byung-Soo

    2012-07-01

    Lecithin was isolated and characterized from anchovy (Engraulis japonica) deoiled residues using supercritical carbon dioxide (SC-CO(2)) at a semibatch flow extraction process and an organic solvent (hexane) extraction. SC-CO(2) extraction was carried out to extract oil from anchovy at different temperatures (35 to 45 °C) and pressures (15 to 25 MPa). Extraction yield of oil was influenced by physical properties of SC-CO(2) with temperature and pressure changes. The major phospholipids of anchovy lecithin were quantitatively analyzed by high-performance liquid chromatography. Phosphatidylcholine (PC) (68%± 1.00%) and phosphatidylethanolamine (PE) (29%± 0.50%) were the main phospholipids. Thin layer chromatography was performed to purify the individual phospholipids. The fatty acid compositions of lecithin, PC, and PE were analyzed by gas chromatography. A significant amount of eicosapentaenoic acid and docosahexaenoic acid were present in both phospholipids of PC and PE. Emulsions of lecithin in water were prepared through the use of a homogenizer. Oxidative stability of anchovy lecithin was high in spite of its high concentration of long-chain polyunsaturated fatty acids. Lecithin can be totally metabolized by humans, so is well tolerated by humans and nontoxic when ingested. Lecithin from anchovy contain higher amounts of ω-3 fatty acids especially EPA and DHA, it may have positive outcome to use in food and pharmaceutical industries. © 2012 Institute of Food Technologists®

  3. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    Science.gov (United States)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  4. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  5. Supercritical fluid extraction of meat lipids: an alternative approach to the identification of irradiated meats

    International Nuclear Information System (INIS)

    Hampson, J.W.; Jones, K.C.; Foglia, T.A.; Kohout, K.M.

    1996-01-01

    Ionizing radiation is currently under study as an alternative method for extending the shelf life of meats and meat products. Accordingly, methods are needed to determine if a meat or meat product has been exposed to ionizing radiation. In this study, a method is described for the isolation and analysis of volatile hydrocarbons formed in meat lipids after exposure to ionizing radiation. The method is based on supercritical fluid extraction of the hydrocarbons from meat lipids and subsequent identification and quantitation of individual hydrocarbons by gas chromatography (GC) with a mass selection detector (MSD). Supercritical carbon dioxide at 175 bar and 40°C extracted the hydrocarbon fraction from total meat lipids within 20 min. The presence of radiolytic hydrocarbons, as determined by GC/MSD, was then correlated to the degree of irradiation of the meat from 0 to 10 kGy. Besides being faster, this method has the advantage of reduced solvent consumption when compared to current methods for determining if a meat or meat product has been irradiated

  6. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice

    Directory of Open Access Journals (Sweden)

    Hongyan Zhu

    2016-10-01

    Full Text Available Schisandra chinensis is a traditional Chinese medicine that has been used for treating insomnia and neurasthenia for centuries. Lignans, which are considered to be the bioactive components, are apt to be extracted by supercritical carbon dioxide. This study was conducted to investigate the sedative and hypnotic activities of the supercritical carbon dioxide fluid extraction of S. chinensis (SFES in mice and the possible mechanisms. SFES exhibited an obvious sedative effect on shortening the locomotor activity in mice in a dose-dependent (10–200 mg/kg manner. SFES (50 mg/kg, 100 mg/kg, and 200 mg/kg, intragstrically showed a strong hypnotic effect in synergy with pentobarbital in mouse sleep, and reversal of insomnia induced by caffeine, p-chlorophenylalanine and flumazenil by decreasing sleep latency, sleep recovery, and increasing sleeping time. In addition, it produced a synergistic effect with 5-hydroxytryptophan (2.5 mg/kg, intraperitoneally. The behavioral pharmacological results suggest that SFES has significant sedative and hypnotic activities, and the mechanisms might be relevant to the serotonergic and γ-aminobutyric acid (GABAergic system.

  7. Extraction of garlic with supercritical CO2 and conventional organic solvents

    Directory of Open Access Journals (Sweden)

    J. M. del Valle

    2008-09-01

    Full Text Available Garlic (Allium sativum L. and garlic extracts have therapeutical properties that stem from their sulfur-containing compounds, mainly allicin. The main objective of this work was to compare conventional and "premium" garlic extracts in terms of yield and quality, with the latter being obtained using supercritical carbon dioxide (SC-CO2 as the solvent. Yield ranged between 0.65 and 1.0% and increased with extraction pressure (150-400 bar at a constant temperature of 50°C. Extraction temperature (35-60°C, on the other hand, had little effect at a constant pressure of 300 bar. Based on yield and quality considerations, the best extraction conditions using SC-CO2 were 35-50°C and 300-400 bar. A yield of 5.5% was obtained by conventional extraction using ethanol as the solvent, but ethanol appeared to be less selective for valuable components than SC-CO2. The use of fresh garlic resulted in extracts that more closely resembled commercial products, possibly because of thermal and oxidative degradation of valuable microconstituents during drying.

  8. Extraction of oil and minor lipids from cold-press rapeseed cake with supercritical CO2

    Directory of Open Access Journals (Sweden)

    E. Uquiche

    2012-09-01

    Full Text Available This study examines the extraction of oil from cold-press rapeseed cake using Supercritical CO2(SC-CO2. The effects of pressure (20, 30, and 40 MPa, temperature (40, 50, and 60 ºC, and extraction time (60, 90, and 120 min on oil yield and composition (tocopherols and carotenoids were studied using response surface design. The results indicated that pressure influenced the most the yield of oil, followed by temperature and extraction time. Extraction time had no effect on oil composition. Extraction pressure and temperature did not affect the tocopherol concentration of the oil to a great extent, whereas temperature had no affect in its carotenoid concentration. A comparison was made between the relative qualities of oil extracted with SC-CO2at 40 MPa and 60 ºC and with n-hexane. Neither solvent affected the unsaponifiable matter content or the composition of phytosterols (mainly β-sitosterol, campesterol and brassicasterol of the oils, although there was a significant difference (p<0.05 in tocopherol. Extraction with SC-CO2at 40 MPa and 60 ºC is recommended to obtain rapeseed-oil enriched with tocopherols and carotenoids as important functional components.

  9. Supercritical carbon dioxide extraction of antioxidants from rosemary (Rosmarinus officinalis L. and sage (Salvia officinalis L.

    Directory of Open Access Journals (Sweden)

    JASNA IVANOVIĆ

    2009-07-01

    Full Text Available The aim of the present study was to isolate and characterize antioxidant extracts obtained from dried leaves of rosemary (Rosmarinus officinalis L. and sage (Salvia officinalis L., originating from the southern Balkan Region. The antioxidant fraction was isolated from the plant material by supercritical carbon dioxide (SC-CO2 fractional extraction under a pressure of 30 MPa and at temperatures of 40 and 100 °C. In the present study, kinetic data and yields of antioxidant extracts obtained from dried leaves of rosemary and sage under different conditions were determined. Electron spin resonance (ESR spectroscopy assay on the ability of the extracts to scavenge stable 2,2-diphenyl-1-picrylhydrazyl (DPPH free radicals and reactive hydroxyl radicals during the Fenton reaction trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO showed that the investigated extracts had antioxidant activity comparable to that of butylated hydroxyanisole (BHA and commercial rosemary extract. The antioxidant fractions isolated at the higher temperature had higher antioxidant activities. A tentative analysis of the chemical composition of the antioxidant fractions obtained at the higher temperature was accomplished by LC-DAD and LC-MS analytical methods. Abietane-type diterpenoids, flavonoids and fatty acids were identified in the SC-CO2 extract of rosemary and sage.

  10. Supercritical Fluid Extraction of Quinones from Compost for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Ni Luh Gede Ratna Juliasih

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE was used to extract quinones from compost to monitor the microbial community dynamics during composting. The 0.3 g of dried compost was extracted using 3 mL min−1 of carbon dioxide (90% and methanol (10% at 45°C and 25 MPa for a 30 min extraction time. The extracted quinones were analysed using ultra performance liquid chromatography (UPLC with 0.3 mL min−1 of methanol mobile phase for a 50 min chromatographic run time. A comparable detected amount of quinones was obtained using the developed method and an organic solvent extraction method, being 36.06 μmol kg−1 and 34.54 μmol kg−1, respectively. Significantly low value of dissimilarity index (D between the two methods (0.05 indicated that the quinone profile obtained by both methods was considered identical. The developed method was then applied to determine the maturity of the compost by monitoring the change of quinone during composting. The UQ-9 and MK-7 were predominant quinones in the initial stage of composting. The diversity of quinone became more complex during the cooling and maturation stages. This study showed that SFE had successfully extracted quinones from a complex matrix with simplification and rapidity of the analysis that is beneficial for routine analysis.

  11. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    Science.gov (United States)

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.

    Science.gov (United States)

    Salmaso, Stefano; Elvassore, Nicola; Bertucco, Alberto; Caliceti, Paolo

    2009-02-01

    A supercritical carbon dioxide micronization technique based on gas-assisted melting atomization has been designed to prepare protein-loaded solid lipid submicron particles. The supercritical process was applied to homogeneous dispersions of insulin in lipid mixtures: (1) tristearin, Tween-80, phosphatidylcholine and 5 kDa PEG (1:0.1:0.9:1 and 1:0.1:0.9:2 weight ratio); and (2) tristearin, dioctyl sulfosuccinate and phosphatidylcholine (1:1:0.5 weight ratio). Optimized process conditions yielded dry nonagglomerated powders with high product recovery (70%, w/w). Dynamic light scattering and transmission electron microscopy showed that two size fractions of particles, with 80-120 and 200-400 nm diameters, were produced. In all final products, dimethylsulfoxide used to prepare the insulin/lipid mixture was below 20 ppm. Protein encapsulation efficiency increased up to 80% as the DMSO content in the insulin/lipid mixture increased. Compared to the particles without PEG, the polymer-containing particles dispersed rapidly in water, and the dispersions were more stable under centrifugation as less than 20% of suspended particles precipitated after extensive centrifugation. In vitro, the protein was slowly released from the formulation without PEG, while a burst and faster release were obtained from the formulations containing PEG. Subcutaneous injection to diabetic mice of insulin extracted from the particles showed that the supercritical process did not impair the protein hypoglycemic activity.

  13. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Science.gov (United States)

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  14. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2015-01-01

    Full Text Available Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier-transformed infrared spectroscopy (FT-IR fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method.

  15. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    Directory of Open Access Journals (Sweden)

    Ghahramanloo KH

    2017-07-01

    Full Text Available Kourosh Hasanzadeh Ghahramanloo,1 Behnam Kamalidehghan,2 Hamid Akbari Javar,3 Riyanto Teguh Widodo,1 Keivan Majidzadeh,4 Mohamed Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB, 3Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS, 4Breast Cancer Research Center (BCRC Academic Center for Education, Culture and Research, Tehran, Iran Abstract: The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85% and oleic acid (1.64%–18.97%. Thymoquinone (0.72%–21.03% was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05 higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. Keywords: Nigella sativa L., essential oil extraction, supercritical fluid extraction, solvent extraction, fatty acid composition, thymoquinone, linoleic acid

  16. PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS

    International Nuclear Information System (INIS)

    HOLROYD, R.

    2007-01-01

    Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications

  17. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  18. Supercritical CO2 extract from strawberry seeds as a valuable component of mild cleansing compositions.

    Science.gov (United States)

    Sikora, E; Michorczyk, P; Olszańska, M; Ogonowski, J

    2015-12-01

    The aim of this work was an elaboration of mild cleansing compositions, containing supercritical CO2 extract from strawberry seeds (SC-CO2 strawberry seed oil), as a moisturizing and skin-softening agent. The influence of concentration of the oil on user properties of shower/bath products was studied. A series of products (shower/bath cosmetics) composed mainly of mild surfactants (amphoacetates, sulfosuccinates, betaines) and containing different amounts of the oil (0.5 up to 5.0%) were prepared. For the stable products (formulations containing up to 2% of the oil), the influence of the SC-CO2 strawberry seed oil addition on the products' stability, foam ability, surface tension, pH and rheological properties was studied. Moreover, the skin compatibility and moisturizing efficiency of the cleansing products were recorded in a group of 15 volunteers (including 10 women and five men, aged 20-30 years), using skin diagnosis system AramoTS, Aram Huvis Co. Additionally, characterization of CO2 extract from strawberry seeds was performed. Measurements of the oil's analytical constants, that is acid value and saponification number, were conducted according to Polish Standard PN-EN ISO 660:2010 and PN-EN ISO 3657:2013, respectively. The oil concentration influences stability of the products. Only the formulations containing 0.5-2% of the extract have shown high stability. Moreover, used in the amount up to 2% the SC-CO2, strawberry seed oil does not affect significantly the cleansing and foaming properties of the products. The obtained shower/bath cosmetics showed good user properties and additionally good skin-moisturizing effect. The supercritical CO2 extract from strawberry seeds, rich source of unsaturated fatty acid, could be successfully used in the formulation of body washing compositions as a moisturizing and skin-softening agent. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Selective recovery of tagatose from mixtures with galactose by direct extraction with supercritical CO2 and different cosolvents.

    Science.gov (United States)

    Montañés, Fernando; Fornari, Tiziana; Martín-Alvarez, Pedro J; Corzo, Nieves; Olano, Agustin; Ibañez, Elena

    2006-10-18

    A selective fractionation method of carbohydrate mixtures of galactose/tagatose, using supercritical CO(2) and isopropanol as cosolvent, has been evaluated. Optimization was carried out using a central composite face design and considering as factors the extraction pressure (from 100 to 300 bar), the extraction temperature (from 60 to 100 degrees C), and the modifier flow rate (from 0.2 to 0.4 mL/min, which corresponded to a total cosolvent percentage ranging from 4 to 18% vol). The responses evaluated were the amount (milligrams) of tagatose and galactose extracted and their recoveries (percent). The statistical analysis of the results provided mathematical models for each response variable. The corresponding parameters were estimated by multiple linear regression, and high determination coefficients (>0.96) were obtained. The optimum conditions of the extraction process to get the maximum recovery of tagatose (37%) were 300 bar, 60 degrees C, and 0.4 mL/min of cosolvent. The predicted value was 24.37 mg of tagatose, whereas the experimental value was 26.34 mg, which is a 7% error from the predicted value. Cosolvent polarity effects on tagatose extraction from mixtures of galactose/tagatose were also studied using different alcohols and their mixtures with water. Although a remarkable increase of the amount of total carbohydrate extracted with polarity was found, selective extraction of tagatose decreased with increase of polarity of assayed cosolvents. To improve the recovery of extracted tagatose, additional experiments outside the experimental domain were carried out (300 bar, 80 degrees C, and 0.6 mL/min of isopropanol); recoveries >75% of tagatose with purity >90% were obtained.

  20. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana.

    Science.gov (United States)

    Wu, S J; Tsai, J Y; Chang, S P; Lin, D L; Wang, S S; Huang, S N; Ng, L T

    2006-12-06

    Physalis peruviana L. (PP) is a medicinal herb widely used in folk medicine. In this study, supercritical carbon dioxide (SFE-CO2) method was employed to obtain three different PP extracts, namely SCEPP-0, SCEPP-4 and SCEPP-5. The total flavonoid and phenol concentrations, as well as antioxidant and anti-inflammatory activities of these extracts were analyzed and compared with aqueous and ethanolic PP extracts. Among all the extracts tested, SCEPP-5 demonstrated the highest total flavonoid (234.63+/-9.61 mg/g) and phenol (90.80+/-2.21 mg/g) contents. At concentrations 0.1-30 microg/ml, SCEPP-5 also demonstrated the strongest superoxide anion scavenging activity and xanthine oxidase inhibitory effect. At 30 microg/ml, SCEPP-5 significantly prevented lipopolysaccharide (LPS; 1 microg/ml)-induced cell cytotoxicity in murine macrophage (Raw 264.7) cells. At 10-50 microg/ml, it also significantly inhibited LPS-induced NO release and PGE2 formation in a dose-dependent pattern. SCEPP-5 at 30 microg/ml remarkably blocked the LPS induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Taken together, these results suggest that SCEPP-5, an extract of SFE-CO2, displayed the strongest antioxidant and anti-inflammatory activities as compared to other extracts. Its protection against LPS-induced inflammation could be through the inhibition of iNOS and COX-2 expression.

  1. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    Science.gov (United States)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  2. Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

    Directory of Open Access Journals (Sweden)

    Peggy Rigou

    2002-01-01

    Full Text Available Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

  3. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO2 Algal Extracts

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2017-01-01

    Full Text Available The review paper presents the use of algal extracts as safe and solvent-free components of plant growth biostimulants, dietary feed additives and cosmetics. Innovative technology that uses extracts obtained by supercritical CO2 extraction, as a method of isolation of biologically active compounds from algal biomass, is presented. An important part of the complete technology is the final formulation of the product. This enabled realization of the further step which was assessment of the utilitarian properties of the extract-based products. The extracts were analysed for the presence of biologically active molecules (e.g., plant hormones, polyphenols which provide useful properties such as antioxidant, antiviral, anti-inflammatory and antibacterial. The bio-products were tested in germination tests and underwent field trials to search for plant growth biostimulatory properties. Tests on animals (laying hens experiments were conducted to assess pro-health properties of new dietary feed supplement. Another application were cosmetic formulations (dermatological tests. The results of the application tests were very promising, however further studies are required for the registration of the products and successful implementation to the market.

  4. Supercritical carbon dioxide extraction of methylxanthines from maté tea leaves

    Directory of Open Access Journals (Sweden)

    M.D.A. Saldaña

    2000-09-01

    Full Text Available Methylxanthines are alkaloids found in natural products such as tea, coffee and guaraná. These alkaloids are commonly used in cola drinks and pharmaceutical products due principally to their stimulant and diuretic effects on the human organism. In this work, experimental data on the supercritical CO2 extraction of caffeine, theophylline and theobromine from herbal maté tea, a beverage traditionally consumed by the gauchos of southern Brazil, the Argentine, Paraguay and Uruguay, were obtained using high pressure extraction equipment that allows adequate control of temperature and pressure. The continuous extraction/fractionation of maté tea leaves, Ilex paraguariensis in natura using carbon dioxide was carried out at 313.2 and 343.2 K and pressures of 13.8 and 25.5 MPa. Extraction/fractionation curves revealed the large influence of temperature and pressure on extraction yield. CO2 was also found to show a higher selectivity for caffeine than for theophylline and theobromine.

  5. Microbiological metal extraction processes

    International Nuclear Information System (INIS)

    Torma, A.E.

    1991-01-01

    Application of biotechnological principles in the mineral processing, especially in hydrometallurgy, has created new opportunities and challenges for these industries. During the 1950's and 60's, the mining wastes and unused complex mineral resources have been successfully treated in bacterial assisted heap and dump leaching processes for copper and uranium. The interest in bio-leaching processes is the consequence of economic advantages associated with these techniques. For example, copper can be produced from mining wastes for about 1/3 to 1/2 of the costs of copper production by the conventional smelting process from high-grade sulfide concentrates. The economic viability of bio leaching technology lead to its world wide acceptance by the extractive industries. During 1970's this technology grew into a more structured discipline called 'bio hydrometallurgy'. Currently, bio leaching techniques are ready to be used, in addition to copper and uranium, for the extraction of cobalt, nickel, zinc, precious metals and for the desulfurization of high-sulfur content pyritic coals. As a developing technology, the microbiological leaching of the less common and rare metals has yet to reach commercial maturity. However, the research in this area is very active. In addition, in a foreseeable future the biotechnological methods may be applied also for the treatment of high-grade ores and mineral concentrates using adapted native and/or genetically engineered microorganisms. (author)

  6. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T. [Los Alamos National Lab., NM (United States). Physical Organic Chemistry Group; Tiefert, K. [Hewlett-Packard Co., Inc., Santa Clara, CA (United States)

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  7. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    Science.gov (United States)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  8. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    Science.gov (United States)

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Systematic study of the influence of modifiers on the CO2- supercritical extraction of PAHs in soil

    International Nuclear Information System (INIS)

    Tena, M.T.; Luque de Castro, M.D.; Valcarcel, M.

    1994-01-01

    An exhaustive study of the behaviour in supercritical fluid extraction of eight PAHs in real smaples of soil compared to spiked sampls in silica has been carried out. The presence of a modifier is mandatory for quantitative extraction of the naive analytes, but is unnecessary in spiked samples. The type and volume of modifier to be added and the sample-modifier contact time were optimized and the influence of the particle size assessed. (orig.)

  10. Extraction of polycyclic aromatic hydrocarbons from polluted soils with binary and ternary supercritical phases

    International Nuclear Information System (INIS)

    Hollender, J.; Shneine, J.; Dott, W.; Heinzel, M.; Hagemann, H.W.; Gotz, G.K.E.

    1997-01-01

    The paper describes how supercritical fluid extractions (SFE) using carbon dioxide and modifiers (n-hexane, cyclohexane, toluene, methyl tert-butyl ether, methoxybenzene, dichloromethane, propanone, pyridine, methanol) as well as modifier mixtures (methanol-containing diethylamide, 2-aminoethan-1-ol, acetic acid) were performed to extract polycyclic aromatic hydrocarbons (PAHs) from real environmental samples polluted to a minor extent by mineral oil products and highly contaminated by brown coal tar. Comparing the results with those from Soxhlet extraction utilizing dichloromethane and SFE using pure carbon dioxide show that acidic or basic co-solvents give the highest PAH yields. Extraction efficiency decreases with reduced polarity of the modifier used and increases at higher concentrations of co-solvent. To explain the SFE results, several mechanisms of disruption of matrix-PAH interactions are considered: the competition between the modifier molecules and the active sites of soil's organic and inorganic matter to interact with non-covalent bondings to the analytes; and the splitting of electron donor-acceptor complexes between humic substances and PAHs induced by Lewis acids or Lewis bases

  11. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    Science.gov (United States)

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  12. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Science.gov (United States)

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  13. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Mohamed Zaidul Islam Sarker

    2012-09-01

    Full Text Available Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2. A Central Composite Design of Response Surface methodology (RSM was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method.

  14. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  15. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  16. Comparative analysis of the oil and supercritical CO(2) extract of Artemisia arborescens L. and Helichrysum splendidum (Thunb.) Less.

    Science.gov (United States)

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia

    2006-05-10

    Isolation of volatile concentrate from the dried leaves of Artemisia arborescens and of Helichrysum splendidum has been obtained by supercritical extraction with carbon dioxide. To obtain a pure volatile extract devoid of cuticular waxes, the extraction products were fractionated in two separators operating in series. A good extraction process was obtained operating at 90 bar and 50 degrees C in the extraction vessel, at 90 bar and at -5 degrees C in the first separator and at a pressure between 20 and 15 bar and temperatures in the range 10-20 degrees C in the second one. The composition of the volatile concentrate has been analyzed by GC/MS. The volatile concentrate of A. arborescens was found to contain: trans-thujone (13.96%), camphor (6.15%) and chamazulene (5.95%). The main constituents in the extract of H. splendidum were: germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and delta-cadinene (8.43%). A comparison with the oils obtained by hydrodistillation is also given. The differences observed between the composition of the SFE volatile concentrates and of the hydrodistilled (HD) oils were relevant. Indeed, the HD oils had a blue color whereas the volatile concentrates were pale yellow. The HD oil of H. splendidum had a blue color due to the presence of guaiazulene (0.42% vs 0%), whereas the coloration of HD oil of A. arborecens was due to the high concentration of chamazulene (26.64% vs 3.37%).

  17. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Aggregation, Extraction, and Solubility Properties of Silicon-Substituted Alkylenediphosphonic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Mark L.; McAlister, Daniel R.; Stepinski, Dominique C.; Zalupski, Peter R.; Dzilawa, Julie A.; Barrans, Richard E.; Hess, J.N.; Rubas, Audris V.; Chiarizia, Renato; Lubbers, Christopher M.; Scurto, Aaron M.; Brennecke, Joan F.; Herlinger, Albert W.

    2003-09-11

    Partially esterified alkylenediphosphonic acids (DPAs) have been shown to be effective reagents for the extraction of actinide ions from acidic aqueous solution into conventional organic solvents. Efforts to employ these compounds in supercritical fluid extraction have been hampered by their modest solubility in unmodified supercritical carbon dioxide (SC-CO2). In an effort to design DPAs that are soluble in SC-CO2, a variety of silicon-substituted alkylenediphosphonic acids have been prepared and characterized, and their behavior compared with that of conventional alkyl-substituted reagents. Silicon substitution is shown to enhance the CO2-philicity of the reagents, while other structural features, in particular, the number of methylene groups bridging the phosphorus atoms of the extractant, are shown to exert a significant influence on their aggregation and extraction properties. The identification of DPAs combining desirable extraction properties with adequate solubility in SC-CO2 is shown to be facilitated by the application of molecular connectivity indices.

  18. Comparison study of moisture content, colour properties and essential oil compounds extracted by hydrodistillation and supercritical fluid extraction between stem and leaves of lemongrass (Cymbopogun citratus)

    Science.gov (United States)

    Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul

    2018-04-01

    The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (pleaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).

  19. Chemical and Antimicrobial Evaluation of Supercritical and Conventional Sideritis scardica Griseb., Lamiaceae Extracts

    Directory of Open Access Journals (Sweden)

    Marko Stamenić

    2012-03-01

    Full Text Available Sideritis scardica Griseb., Lamiaceae (ironwort, mountain tea, an endemic plant of the Balkan Peninsula, has been used in traditional medicine in the treatment of antimicrobial infections, gastrointestinal complaints, inflammation and rheumatic disorders. This study reports a comparison between conventional (hydrodistillation HD and solvent extraction SE and alternative (supercritical carbon dioxide SC CO2 extraction methods regarding the qualitative and quantitative composition of the obtained extracts as analyzed by GC and GC-MS techniques and their anitimicrobial activity. Different types of extracts were tested, the essential oil EO obtained by HD, EO-CO2 and AO-CO2 obtained by SC CO2 at different preasures 10 and 30 MPa, at 40 °C, respectively, and the fractions A, B, C and D obtained by successive solvent extraction (SE A: ethanol, B: diethyl ether, C: ethyl acetate and D: n-butanol. While EO was characterized by the presence of the high percentage of oxygenated monoterpenes and sesquiterpenes (30.01 and 25.54%, respectively, the rest of the investigated samples were the most abundant in fatty acids and their esters and diterpenes (from 16.72 to 71.07% for fatty acids and their esters, and from 23.30 to 72.76%, for diterpenes. Microbial susceptibility tests revealed the strong to moderate activity of all investigated extracts against the tested microorganisms (MIC from 40 to 2,560 μg/mL. Although differences in the chemical compositions determined by GC and GC-MS analysis were established, the displayed antimicrobial activity was similar for the all investigated extracts.

  20. Supercritical gas extracts from low-quality coals. On the search of new precursors for carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Roberto; Arenillas, Ana; Rubiera, Fernando; Moinelo, Sabino R. [Instituto Nacional del Carbon INCAR, CSIC, Apartado 73, 33080, Oviedo (Spain)

    2004-11-25

    This paper studies the chemical composition of several supercritical gas (SCG) extracts and its influence on the thermal behaviour under carbonisation conditions. The extracts were obtained from a Spanish lignite (Mequinenza), a low-quality coal from the point of view of energy applications. The lignite was treated with toluene, ethanol (EtOH) and tetrahydrofuran (THF) as solvents under different supercritical temperature and pressure conditions. The extracts display high aliphatic nature and enhanced concentrations of oxygen functional groups, aided by the contribution of hydrogenation and oxygen incorporation reactions occurring in the SCG extraction with EtOH and THF. Thiophenic compounds are also present in great concentrations derived from the exceptionally high organic sulphur content of the parent coal. The carbonisation of the extracts renders anisotropic material with fine mosaic texture, as a consequence of the significant thermal reactivity inferred by the aliphatic and oxygenated groups. The size of the mosaic increases with the temperature of the SCG extraction and varies with the supercritical solvent in the order: toluene

  1. Feasibility studies on supercritical fluid extraction of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Dubey, B.P.; Agarwal, A.K.

    2014-01-01

    Supercritical fluid extraction (SFE) is a promising novel technology for extraction of many materials. Work has been carried out worldwide on SFE of uranium from various matrices. However, there are no references indicating the R and D on uranium extraction from phosphoric acid using this technology. Heavy Water Board is involved in technology development for recovery of uranium from secondary source, hence it was considered prudent to investigate the technology of SFE for this purpose. Various experiments were carried out with both WPA (P 2 O 5 content 28%) and MGPA (P 2 O 5 content 54%) using bench scale facility available with one of the private party. Extraction experiments were carried out using several chelating agents including TBP, D2EHPA, D2EHPA+TBP/TOPO, TTA, TTA+TBP etc. Feasibility studies revealed the hydrodynamics of operation indicating liquid expansion by about three times during flow of super critical (SC) CO 2 . No flooding was observed when the extraction column filled 20% of its volume capacity, no carryover of entrained/extracted liquid with SC CO 2 with MGPA, material balance of inputs and outputs established i.e. 100% recovery of MGPA and chelating agent, No operational problems with raw MGPA (untreated). No significant extraction of impurities from phosphoric acid to SC CO 2 , 40℃ temperature and 160 bar pressure found ideal for extraction experiments since no other materials found extracted at these conditions and no apparent change/deterioration in PA and chelating agents. Experiments established feasibility of SCE with CO 2 , proper recovery of PA and chelating agents, no need for pretreatment/gunk removal from PA; however, extraction of uranium was found inadequate even though ORP of feed acid was boosted by H 2 O 2 addition. Investigations revealed that SCE column created reducing environment in phosphoric acid, which was not favourable for uranium extraction, which resulted in difficulty in extraction of Uranium. HWB has now designed

  2. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology.

    Science.gov (United States)

    Huang, Yi-Hsun; Tseng, Fan-Wei; Chang, Wen-Hsin; Peng, I-Chen; Hsieh, Dar-Jen; Wu, Shu-Wei; Yeh, Ming-Long

    2017-08-01

    In this study, we developed a novel method using supercritical carbon dioxide (SCCO 2 ) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO 2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO 2 -treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. We decellularized the porcine cornea using SCCO 2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO 2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO 2 extraction technology. SCCO 2 -treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by

  3. Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot

    Directory of Open Access Journals (Sweden)

    Batista Daniela

    2017-04-01

    Full Text Available Plants belonging to the genus Salvia (Lamiaceae are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL, and acetylcholinesterase (IC50 = 487.7 μg/ mL enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL and β-carotene/linoleic acid (IC50 = 30.0 μg/mL assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.

  4. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions.

    Science.gov (United States)

    Zhou, Dan; Qiao, Baoquan; Li, Gen; Xue, Song; Yin, Jianzhong

    2017-08-01

    Raw material for biodiesel has been expanded from edible oil to non-edible oil. In this study, biodiesel continuous production for two kinds of microalgae Chrysophyta and Chlorella sp. was conducted. Coupling with the supercritical carbon dioxide extraction, the oil of microalgae was extracted firstly, and then sent to the downstream production of biodiesel. The residue after decompression can be reused as the material for pharmaceuticals and nutraceuticals. Results showed that the particle size of microalgae, temperature, pressure, molar ration of methanol to oil, flow of CO 2 and n-hexane all have effects on the yield of biodiesel. With the optimal operation conditions: 40mesh algae, extraction temperature 60°C, flow of n-hexane 0.4ml/min, reaction temperature: 340°C, pressure: 18-20MPa, CO 2 flow of 0.5L/min, molar ration of methanol to oil 84:1, a yield of 56.31% was obtained for Chrysophyta, and 63.78% for Chlorella sp. due to the higher lipid content. Copyright © 2017. Published by Elsevier Ltd.

  5. Fiscal 1995 research investigation on chemical process technology using supercritical fluid; 1995 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the supercritical fluid utilization technology, conducted in fiscal 1995 were collection of basic data, extraction of R and D subjects and survey/analysis of application fields based on the literature survey and overseas field survey. From the research results, the following were selected as research subjects: as to the clean/recycling process technology, non-selection cascade treatment process of mixed waste plastics, hazardous waste treatment process, and radioactive waste treatment process. As to the unused resource utilization process technology, the supercritical submerged combustion power generation process, heavy hydrocarbon resource reutilization process, biomass synthetic utilization process, and carbon dioxide reutilization process. As to the next generation reaction process technology, the simple reaction process, de-organic solvent process, chemical materialization process for methane, and reaction separation combined process. As the innovative material process technology, the plastic forming process, high-functional materials, high-efficiency energy conversion materials, and heightening of function of solid wastes. 537 refs., 116 figs., 54 tabs.

  6. Immunomodulatory effects of supercritical fluid CO2 extracts from freeze-dried powder of Tenebrio molitor larvae (yellow mealworm

    Directory of Open Access Journals (Sweden)

    QingFeng TANG

    2016-01-01

    Full Text Available Abstract In order to take full advantage of Tenebrio molitor larvae (yellow mealworm resources, the supercritical CO2 fluid freeze-dried powder of T. molitor larvae (fdTML extraction on the immune systems of mice was carried out. The results about the effects of supercritical CO2 fluid fdTML extraction on carbon expurgation and phagocytosis of peritoneal macrophages experiments of mice indicated that the fdTML extraction enhanced observably carbon expurgatory index, phagocytic rate and phagocytic index. The fdTML extraction could stimulate response of delayed hypersensitivity. The proliferation of ConA-induced mitogenic reponse for spleen lymphocyte was also increased. The amount of hemolytic antibody in mice serum increased compared with those of the control group mice. The half of hemolysis values in serum of treated mice increased compared to the control group. Furthermore, serum NO content in all treatment groups was higher than that of the control group whereas acid phosphatase and alkaline phosphatase activity was only significantly higher relative to the control group. Our findings suggest that supercritical CO2 fluid the fdTML extraction has potential as a health food supplement.

  7. Mass transfer and kinetic modelling of supercritical CO 2 extraction of fresh tea leaves (Camellia sinensis L.

    Directory of Open Access Journals (Sweden)

    Pravin Vasantrao Gadkari

    Full Text Available Abstract Supercritical carbon dioxide extraction was employed to extract solids from fresh tea leaves (Camellia sinensis L. at various pressures(15 to 35 MPa and temperatures (313 to 333K with addition of ethanol as a polarity modifier. The diffusion model and Langmuir model fit well to experimental data and the correlation coefficients were greater than 0.94. Caffeine solubility was determined in supercritical CO2 and the Gordillo model was employed to correlate the experimental solubility values. The Gordillo model fit well to the experimental values with a correlation coefficient 0.91 and 8.91% average absolute relative deviation. Total phenol content of spent materials varied from 57 to 85.2 mg of gallic acid equivalent per g spent material, total flavonoid content varied from 50.4 to 58.2 mg of rutin equivalent per g spent material and the IC50 value (antioxidant content varied from 27.20 to 38.11 µg of extract per mL. There was significant reduction in polyphenol, flavonoid and antioxidant content in the extract when supercritical CO2 extraction was carried out at a higher pressure of 35 MPa.

  8. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Kobayashi, Takashi; Sakai, Arata; Iwata, Yosuke; Uchikata, Takato; Izumi, Yoshihiro; Azuma, Takeshi; Bamba, Takeshi; Yoshida, Masaru

    2017-05-30

    The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Concentrations of tocols and γ-oryzanol compounds in rice bran oil obtained by fractional extraction with supercritical carbon dioxide.

    Science.gov (United States)

    Yoon, Sung Won; Pyo, Young-Gil; Lee, Junsoo; Lee, Jeom-Sig; Kim, Byung Hee; Kim, In-Hwan

    2014-01-01

    Rice bran oil (RBO) is a good source of several commercially important bioactive phytochemicals, such as tocols (i.e. tocopherols and tocotrienols) and ferulic esters of sterols (i.e. γ-oryzanol). The aims of the present study were to examine the effects of different pressure and temperature combinations on the fractional extraction of RBO using supercritical carbon dioxide (SC-CO2) and to assess the levels of tocols homologues and γ-oryzanol components in the resulting oil fractions. Fractional extraction of rice bran oil was performed using SC-CO2 at either 27.6 or 41.4 MPa and either 40 or 60°C. The effects of the four different pressure and temperature combinations on the levels of seven tocols homologues (α-, β-, γ- and δ-tocopherol and α-, γ- and δ-tocotrienol) and the four major components of γ-oryzanol in the resulting oil fractions were investigated. Superior extraction efficiency was obtained using the higher pressure of 41.4 MPa. The tocols (particularly α-tocopherol and α-tocotrienol) were recovered early in the extraction process, while the γ-oryzanol compounds were obtained in the later stages. With regard to SC-CO2 extraction, tocols are more soluble than γ-oryzanol components, α-tocopherol is the most soluble of the tocols and the four γ-oryzanol components all have similar solubilities. Valuable data on solubilities of tocols homologues in SC-CO2 were provided from present study.

  10. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process

    International Nuclear Information System (INIS)

    Lavric, E.D.; Weyten, H.; Ruyck, J. de; Plesu, V.; Lavric, V.

    2005-01-01

    Supercritical water oxidation (SCWO) is a recent development aiming at the destruction of organic pollutants present with low concentrations in waste waters. The present paper focuses on the process simulation of SCWO with emphasis on the proper modelling of supercritical thermodynamic conditions and on the possibility to make the SCWO process self-sufficient from the energetic viewpoint. Self-sufficiency may be of interest to encourage more delocalization of waste water treatment. The process of SCWO for dilute waste water (no more than 5 wt.%) is modelled through the ASPEN Plus copyright process simulator. Studies were made to search for energetic self-sufficiency conditions using various technologies for power production from the heat of reaction, like supercritical water expansion in a turbine, use of a closed Brayton cycle (CBC) and use of an organic Rankine cycle (ORC). The results obtained showed that the process is energetically self-sufficient using either a small supercritical turbine, or an ORC. In less restrictive conditions regarding the component efficiencies, the CBC, in theory, also leads to self-sufficiency, but from the analysis, it appears that this solution is less realistic

  11. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    Directory of Open Access Journals (Sweden)

    J. Saúl García-Pérez

    2016-09-01

    Full Text Available Supercritical fluid extraction (SFE is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P, temperature (T, and co-solvent (CoS, four treatments (T were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min, followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min. Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0, followed by linoleic acid (C18:2ω6c, α-linolenic acid (C18:3ω3 and stearic acid (C18:0 differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  12. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    Science.gov (United States)

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  14. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    International Nuclear Information System (INIS)

    Hendrickson, D.W.; Biyani, R.K.; Brown, C.M.; Teter, W.L.

    1995-11-01

    Proposals for demonstration work under the Department of Energy's Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document

  15. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  16. Characterization of Arachis hypogaea L. oil obtained from different extraction techniques and in vitro antioxidant potential of supercritical fluid extraction extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2016-01-01

    Full Text Available Aim: The present investigation was aimed to characterize the fixed oil of Arachis hypogaea L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound assistance extraction, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO 2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high-performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier transform infrared spectrometry (FT-IR fingerprinting. Anti-oxidant activity was also determined using DPPH and superoxide scavenging method. Results: The main fatty acids were oleic, linoleic, palmitic, and stearic acids as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods was superimposable. Conclusion: Analysis reported that the fixed oil of A. hypogaea L. is a good source of unsaturated fatty acid, mainly n-6 and n-9 fatty acid with a significant antioxidant activity of oil obtained from SFE extraction method.

  17. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Mariod, A.; Bagalkotkar, G.; Ling, H. S

    2010-07-01

    The effect of supercritical fluid extraction (SFE) fractionation of three oil fractions (1st, 2nd, 3rd fraction) on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO) and Golden Langkawi oil (GLO) were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1{sup s}t fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of {beta}-carotene in beta-carotene bleaching assay (BCB) and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH). (Author) 41 refs.

  18. Extraction and Separation of Volatile and Fixed Oils from Berries of Laurus nobilis L. by Supercritical CO2

    Directory of Open Access Journals (Sweden)

    M. Assunta Dessì

    2008-08-01

    Full Text Available Isolation of volatile and fixed oils from dried berries of Laurus nobilis L. from Tunisia have been obtained by supercritical fractioned extraction with carbon dioxide. Extraction experiments were carried out at a temperature of 40 °C and pressures of 90 and 250 bar. The extraction step performed at 90 bar produced a volatile fraction mainly composed of (E-β-ocimene (20.9%, 1,8-cineole (8.8%, α-pinene (8.0%, β-longipinene (7.1%, linalool acetate (4.5%, cadinene (4.7%, β-pinene (4.2%, α-terpinyl acetate (3.8% and α-bulnesene (3.5%. The oil yield in this step of the process was 0.9 % by weight charged. The last extraction step at 250 bar produced an odorless liquid fraction, in which a very small percentage of fragrance compounds was found, whereas triacylglycerols were dominant. The yield of this step was 15.0 % by weight. The most represented fatty acids of the whole berry fixed oil were 12:0 (27.6%, 18:1 n-9 (27.1%, 18:2 n-6 (21.4%, and 16:0 (17,1%, with the 18:1 n-9 and 18:2 n-6 unsaturated fatty acids in particular averaging 329 μg/mg of oil.

  19. Low Temperature Synthesis of Metal Oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process

    DEFF Research Database (Denmark)

    Jensen, Henrik; Brummerstedt Iversen, Steen; Joensen, Karsten Dan

    2006-01-01

    A novel method for producing crystalline nanosized metal oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process has been developed. The process is a modified sol-gel process taking place at temperatures as low as 95 ºC with supercritical CO2 as solvent and polypropylene as seeding...... material. The nanocrystalline product is obtained without having to resort to costly post-reaction processing and the product is obtained directly after the SSEC process. TiO2 powders produced by the SSEC process were shown to have a crystallinity of 60 % and a crystal size of 7.3 ± 2.6 nm....... The crystallinity can be controlled by changing the heating rate of the initial formation of the nanoparticles and the morphology can be altered by changing the process time....

  20. Plant extraction process

    DEFF Research Database (Denmark)

    2006-01-01

    A method for producing a plant extract comprises incubating a plant material with an enzyme composition comprising a lipolytic enzyme.......A method for producing a plant extract comprises incubating a plant material with an enzyme composition comprising a lipolytic enzyme....

  1. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    Science.gov (United States)

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  2. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    Directory of Open Access Journals (Sweden)

    Ajit A. Patil

    2014-11-01

    Full Text Available The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05 effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  3. Production of nanostructured molecular liquids by supercritical CO2 processing

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Sharma

    2017-01-01

    Full Text Available Stable molecular clusters of ibuprofen and naproxen were prepared in dry ice, by supersonic jet expansion of their supercritical CO2 drug formulations into a liquid nitrogen cooled collection vessel, with up to 80% yield. Mixing the “dry ice” in water, resulted in the solubilization of the clusters and in the case of ibuprofen, we were able to create solutions, with concentrations of up to 6 mg/ml, a 300-fold increase over previously reported values. Drop casting and ambient drying of these solutions on silicon substrate resulted in a stable, viscous liquid film, referred to as nanostructured molecular liquids. These liquids exhibited a highly aligned, fine (self-assembled super lattice features. In vitro cancer cell viability studies of these formulations exhibited similar cytotoxicity to that of the original raw materials, thus retaining their original potency. Besides its scientific importance, this invention is expected to open up new drug delivery platforms.

  4. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    OpenAIRE

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysi...

  5. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines

    OpenAIRE

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ? -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars...

  6. Composition of the volatile compounds from Aniba canelilla (H. B. K. Mez. extracted by CO2 in the supercritical state

    Directory of Open Access Journals (Sweden)

    Janete H. Y. Vilegas

    Full Text Available The volatile compounds obtained by SFE-CO2 (supercritical fluid extraction utilizing CO2 from the barks of Aniba canelilla (H. B. K. Mez. (Lauraceae were analyzed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography -mass spectrometry. Phenylpropanoids and lower amounts of sesquiterpenoids, representing ca. 97% of the total oil, were identified. The main compound, 2-phenylnitroethane, corresponds to 71,12% of the total oil.

  7. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Schilling, J.B.

    1997-09-01

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction

  8. Lift-off process for deep-submicron-size junctions using supercritical CO2

    International Nuclear Information System (INIS)

    Fukushima, A.; Kubota, H.; Yuasa, S.; Takahachi, T.; Kadoriku, S.; Miyake, K.

    2007-01-01

    Deep-submicron-size (∼100-nm-size) junctions are a key element to investigate spin-torque transfer phenomena such as current induced magnetization reversal or the spin-torque diode effect. In the fabrication of submicron-size junctions using an etching method, the lift-off process after the etching process tends to be difficult as the size of junctions shrinks. In this study, we present a new lift-off process using supercritical CO 2 . In this process, the samples were immersed in solvent (mixture of N-Methyl-2-pyrrolidone and isopropanol), and pressurized by CO 2 gas. The CO 2 gas then went into supercritical phase and the solvent was removed by a continuous flow of CO 2 . We obtained considerable yield rate (success ratio in lift-off process) of more than 50% for the samples down to 100-nm-size junctions

  9. Comparative analyses of diffusion coefficients for different extraction processes from thyme

    Directory of Open Access Journals (Sweden)

    Petrovic Slobodan S.

    2012-01-01

    Full Text Available This work was aimed to analyze kinetics and mass transfer phenomena for different extraction processes from thyme (Thymus vulgaris L. leaves. Different extraction processes with ethanol were studied: Soxhlet extraction and ultrasound-assisted batch extraction on the laboratory scale as well as pilot plant batch extraction with mixing. The extraction processes with ethanol were compared to the process of supercritical carbon dioxide extraction performed at 10 MPa and 40°C. Experimental data were analyzed by mathematical model derived from the Fick’s second law to determine and compare diffusion coefficients in the periods of constant and decreasing extraction rate. In the fast extraction period, values of diffusion coefficients were one to three orders of magnitude higher compared to those determined for the period of slow extraction. The highest diffusion coefficient was reported for the fast extraction period of supercritical fluid extraction. In the case of extraction processes with ethanol, ultrasound, stirring and extraction temperature increase enhanced mass transfer rate in the washing phase. On the other hand, ultrasound contributed the most to the increase of mass transfer rate in the period of slow extraction.

  10. Application of a microchip to supercritical carbon dioxide extraction of lanthanoids

    International Nuclear Information System (INIS)

    Ohashi, Akira; Kim, Haeng-Boo

    2009-01-01

    Fundamental investigation on the supercritical carbon dioxide (SC-CO 2 ) extraction on the microchip was carried out. Firstly, the distribution constants of 8-quinolinol derivatives between SC-CO 2 and water were determined from the absorbance of 8-quinolinol derivatives both in the SC-CO 2 and aqueous phases. The distribution constants increased with the increase in the SC-CO 2 pressure. A linear relationship was observed between log K D,org and log K D,CO2 . The linear relationship between log K D,org and log K D,CO2 suggests the possibility that one can estimate the K D,CO2 value of a HA from its K D,org value. The optimum condition that the separation-flow of SC-CO 2 and water was formed at the cross section in the microchip was investigated. The separation-flow was observed at 6 MPa. However, the two-phase flow was disturbed at 13 MPa. (author)

  11. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

    International Nuclear Information System (INIS)

    Dietz, Mark L.

    2001-01-01

    Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effective method for the removal of radioactive contaminants would release this valuable material for salvage. The objective of this project is to develop novel, substituted diphosphonic acid ligands that can be used for supercritical carbon dioxide extraction of actinide ions from solid wastes. Specifically, selected diphosphonic acids, which are known to form extremely stable complexes with actinides in aqueous and organic solution, are to be rendered carbon dioxide-soluble by the introduction of appropriate alkyl- or silicon-containing substituents. The metal complexation chemistry of these new ligands in SC-CO2 will then be investigated and techniques for their use in actinide extraction from porous solids developed

  12. Comparative analysis of the oil and supercritical CO(2) extract of Schinus molle L. growing in Yemen.

    Science.gov (United States)

    Ali, Nasser A Awadh; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Al-Othman, Al-Husein M R

    2011-08-01

    In this study, we report the preliminary data on the chemical composition of Yemeni Schinus molle L. volatile oil obtained by supercritical extraction with carbon dioxide (40°C and 90 bar), SFE, and by hydrodistillation (HD). The composition of the volatile oil has been analysed by GC and GC-MS. The content of the major constituents in the oils from leaves varied in the following ranges: germacrene D 3.7% in SFE and 16.7% in HD; β-caryophyllene 19.1% in SFE and 13.5% in HD. The amount of monoterpenes constituted 4%, in all the analysed samples, while the number of sesquiterpenes was 44% in supercritical and 67% in HD oil. Some compounds were not identified by GC-MS and it will require further analysis using other analytical techniques.

  13. Supercritical Production of Nanoparticles - Part I: The SSEC Process - Part II: Characterization of Nanopartic

    DEFF Research Database (Denmark)

    Jensen, Henrik

    with the crystallite size. Therefore special interest is being devoted to investigating these changes by developing new synthesis and characterizing methods. Wet chemical and gas phase syntheses are among the number of synthesis techniques that have been developed for nanoparticle formation. The sol-gel technique...... is the most broadly applied wet chemical process and it can be used for the production of nanosized materials in the formof particles or coatings for a wide range of materials. However, conventional sol-gel techniques have a number of drawbacks. The process maintains long reaction times and requires post....... The work presented in this thesis addresses the problems related to the conventional sol-gel techniques by using supercritical CO2 as the reaction media. Supercritical fluids exhibit gas like mass transfer properties and liquid like densities which are both particularly attractive to the sol-gel process...

  14. Supercritical fluid extraction and chromatographic analysis (HRGC-FID and HRGC-MS of Lupinus spp. alkaloids

    Directory of Open Access Journals (Sweden)

    Nossack Ana C.

    2000-01-01

    Full Text Available The alkaloid extracts from Lupinus spp., obtained by conventional methods (maceration/sonication - solid phase extraction; maceration/sonication - liquid-liquid extraction and SFE (supercritical fluid extraction using CO2 and modified CO2 (CO2/MeOH, CO2/EtOH, CO2/iPrOH and CO2/H2O were analysed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography - mass spectrometry. The HRGC-FID quantitative analyses were performed with an internal standard method for quantification of lupanine, multiflorine and a spartein-like alkaloid. HRGC-MS allowed identification of the chemical constituents (alkaloids and other compounds from these extracts.

  15. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction

    International Nuclear Information System (INIS)

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-01-01

    The study is focused on artificial soil which is supposed to be a standardized “soil like” medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3–89%) was observed. The extractability was strongly related (R 2 = 0.87) to total organic carbon content, 0.1–2 mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%) = 1.35 * sand (%) − 0.77 * TOC (%)2 + 0.27 * HA/FA. - Highlights: ► We compared properties and extractability of Phe from 25 different artificial soils. ► Substantial range of soil properties was found, also for important parameters. ► Phe extractability was measured by supercritical fluid extraction (SFE) at 2 modes. ► Phe extractability was highly variable from different soils (3–89%). ► Extractability was strongly related to TOC, 0.1–2 mm particles, and HA/FA. - Significant variability in physico-chemical properties exists between artificial soils prepared at different laboratories and affects behavior of contaminants in these soils.

  16. Analysis of prompt supercritical process with heat transfer and temperature feedback

    Institute of Scientific and Technical Information of China (English)

    ZHU BO; ZHU Qian; CHEN Zhiyun

    2009-01-01

    The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.

  17. Resinous constituent extracting process

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, W F

    1947-10-07

    The method of recovering oily constituents from coal or oil shale comprising the saturation of coal or oil shale in a sealed vessel with an organic solution having a boiling point at atmospheric pressure of not exceeding 220/sup 0/C, elevating the temperature within the vessel to a temperature below the cracking temperature of the constituents and maintaining the pressure within the vessel below 51 pounds, to extract the oily material from the coal or oil shale and subsequently separating the solvent from the oily material.

  18. Optimisation of supercritical fluid extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives adsorbed on highly sorptive diesel particulate matter

    International Nuclear Information System (INIS)

    Portet-Koltalo, F.; Oukebdane, K.; Dionnet, F.; Desbene, P.L.

    2009-01-01

    Supercritical fluid extraction (SFE) was performed to extract complex mixtures of polycyclic aromatic hydrocarbons (PAHs), nitrated derivatives (nitroPAHs) and heavy n-alkanes from spiked soot particulates that resulted from the incomplete combustion of diesel oils. This polluted material, resulting from combustion in a light diesel engine and collected at high temperature inside the particulate filter placed just after the engine, was particularly resistant to conventional extraction techniques, such as soxhlet extraction, and had an extraction behaviour that differed markedly from certified reference materials (SRM 1650). A factorial experimental design was performed, simultaneously modelling the influence of four SFE experimental factors on the recovery yields, i.e.: the temperature and the pressure of the supercritical fluid, the nature and the percentage of the organic modifier added to CO 2 (chloroform, tetrahydrofuran, methylene chloride), as a means to reach the optimal extraction yields for all the studied target pollutants. The results of modelling showed that the supercritical fluid pressure had to be kept at its maximum level (30 MPa) and the temperature had to be kept relatively low (75 o C). Under these operating conditions, adding 15% of methylene chloride to the CO 2 permitted quantitative extraction of not only light PAHs and their nitrated derivatives, but also heavy n-alkanes from the spiked soots. However, heavy polyaromatics were not quantitatively extracted from the refractory carbonaceous solid surface. As such, original organic modifiers were tested, including pyridine, which, as a strong electron donor cosolvent (15% into CO 2 ), was the most successful. The addition of diethylamine to pyridine, which enhanced the electron donor character of the cosolvent, even increased the extraction yields of the heaviest PAHs, leading to a quantitative extraction of all PAHs (more than 79%) from the diesel particulate matter, with detection limits

  19. Optimization and evaluation of wheat germ oil extracted by supercritical CO2

    Directory of Open Access Journals (Sweden)

    Niu, LiYa

    2011-06-01

    Full Text Available Box-Behnken design combined with response surface methodology (RSM was used to optimize the parameters of supercritical CO2 extraction (SFE of wheat germ oil. The quality of the oil and residual meal obtained by SFE and solvent extraction (SE were evaluated from proximate analysis, fatty acid composition and antioxidant activity. A maximum oil yield of 10.46% was achieved under the optimal conditions of wheat germ particle size 60-80 mesh; water content 4.37%; pressure 30MPa; temperature 40°C extraction time 1.7h. The oil obtained by SFE showed stronger DPPH radical scavenging ability than SE oil at the same concentration. The fatty acid composition of SFE oil was similar to SE oil. Higher contents of protein (34.3% and lysine (2.47g/100g were found in the residual meal obtained by SFE. The results show that oil and defatted meal obtained by SFE can be promising nutritional sources for food.Un diseño Box-Behnken combinado con metodología de superficie de respuesta (RSM fue usado para optimizar los parámetros de extracción con fluido supercrítico (SFE del aceite de germen de trigo. La calidad del aceite y de la harina residual obtenida por SFE y por extracción con solvente (SE fue evaluada mediante su análisis porcentual, composición de ácidos grasos y actividad antioxidante. Un máximo rendimiento de aceite del 10.46% fue obtenido con las condiciones óptimas de 60-80 mesh de tamaño de partícula del germen de trigo; 4.37% contenido de agua; 30MPa de presión; 40°C de temperatura y 1.7 h de tiempo de extracción. El aceite obtenido por SFE mostró una capacidad atrapadora de radicales libres mucho mayor que el aceite obtenido por SE a la misma concentración. La composición de ácidos grasos del aceite SFE fue similar al aceite SE. El mayor contenido de proteínas (34% y de lisina (2.47g/100g fue encontrado en las harinas residuales obtenidas por SFE. Los resultados muestran que el aceite y la harina desengrasada obtenidas por SFE

  20. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  1. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2016-12-01

    Full Text Available As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco, Tankan (C. tankan Hayata, and Murcott (C. reticulate × C. sinensis face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g, limonoids (111.7~406.2 mg/g, and phytosterols (686.1~1316.4 μg/g. The DPPH (1,1-Diphenyl-2-picrylhydrazyl, ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.

  2. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  3. Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Bárbara Elizabeth Teixeira COSTA

    2016-01-01

    Full Text Available Abstract The vast Amazon region has considerable territorial peculiarities and plant species diversity, sometimes from the same botanical family, which can exhibit significant differences in physicochemical properties. From this diversity, two species stand out – Amazonas tucumã (Astrocaryum aculeatum Meyer and Pará tucumã (Astrocaryum vulgare Mart.. The research focus is to analyze, comparatively, these oleaginous fruits, their similarities, particularities and potentials regarding the oil quality extracted from two tucumã varieties from the states of Amazonas and Pará, obtained using supercritical carbon dioxide, under different extraction parameters. The results demonstrate the biometric particularities of each species, highlighting the Amazon fruit, which also showed higher oil yield using supercritical CO2 extraction. The fatty acid quality and profile aspects of the oils show their unsaturated predominance, considering carotenoid content and how the extraction temperature can influence the nutritional quality of the oils. The statistical analyses indicated that the Amazon tucumã oil is superior to the Pará tucumã oil. However, in terms of added value both oils have potential applications in various industrial segments.

  4. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  5. Supercritical fluid extraction-gas chromatography of volatile organic compounds (VOC) from Tenax devices. Final report, November 1985-September 1986

    International Nuclear Information System (INIS)

    Wright, B.W.; Kopriva, A.J.; Smith, R.D.

    1987-11-01

    This report describes the development and evaluation of on-line supercritical-fluid extraction - gas-chromatography instrumentation and methodology for the analysis of volatile organic compounds (VOC) from adsorbent sampling devices. Supercritical fluid extraction offers potential advantages for the removal and transport of organic components from adsorbent matrices including rapid and efficient extraction at mild temperatures. Extraction at mild temperatures eliminates potential problems such as analyte decomposition that can be encountered with the high temperatures needed for thermal desorption analysis. Since a major objective of the study was to develop viable instrumentation and methodology, a relatively detailed description of the instrumentation design requirements and present limitations are discussed. The results of several series of methodology validation studies are also presented. These studies included recovery studies of model VOC spiked on three types of Tenax sampling devices including authentic actively pumped (VOST) and passive (EPA) devices. Replicate devices spiked in an exposure chamber were also subjected to parallel analyses using the new methodology and traditional thermal-desorption gas chromatography

  6. Identification of significant process variables for a flow-through supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Rossi, R.E.

    1992-05-01

    The effects of four process variables on the destruction efficiency of a flow-through supercritical water oxidation reactor were investigated. These process variables included: (1) reactor throughput (GPH), (2) concentration of the surrogate waste (% acetone), (3) maximum reactor tube-wall temperature (OC), and (4) applied stoichiometric oxygen. The analysis was conducted utilizing two-level factorial experiments, steepest ascent methods, and central composite designs. This experimental protocol assures efficient experimentation and allows for an empirical response surface model of the system to be developed. This experimentation identified a significant positive effect for stoichiometric oxygen applied and temperature variations between 400 to 500 degrees C. The increase in destruction efficiency due to stoichiometric 0 2 provides strong evidence that supercritical water oxidations are catalyzed by excess oxygen, and the strong temperature effect is a result of large increases in the kinetic rates for this temperature range. However, increasing temperature between 550 to 650 degrees C does not provide substantial increases in destruction efficiency. In addition, destruction efficiency is significantly unproved by increasing the Reynolds number and residence time. The destruction efficiency of the reactor is also dependent upon the initial concentration of surrogate waste. This concentration dependence may indicate first-order supercritical CO kinetics is inadequate for describing all waste types and reactor configurations. Alternatively, it may indicate reactant mixing, caused by local turbulence at the oxidation fronts of these higher concentration waste streams, results in higher destruction efficiencies

  7. Process for extracting oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process is described for recovering bituminous material from oil shale, characterized in that the oil shale is extracted with wood spirits oil (byproduct of woodspirit rectification), if necessary in admixture with other solvents in the cold or the hot.

  8. Evaluation of pretreatment processes for supercritical water oxidation

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended

  9. Evaluation of pretreatment processes for supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  10. Optimization and evaluation of foxtail millet (Setaria italica bran oil by supercritical carbon dioxide extraction

    Directory of Open Access Journals (Sweden)

    Pang, M.

    2015-12-01

    Full Text Available A Box-Behnken central composite design combined with the response surface methodology (RSM was used to optimize the parameters of a supercritical fluid extraction (SFE of foxtail millet bran oil (FMBO. Results showed that a maximum oil yield of 7.97% was achieved under the optimal conditions with an extracting pressure of 30.03MPa, extracting temperature of 47.93 °C; and an extraction time of 2.3 h. The quality of the oil obtained from SFE and solvent extraction (SE was evaluated by proximate analysis to include physicochemical properties, fatty acids and sterol compounds. The FBMO obtained from SFE showed a much lower phospholipid (0.188 mg/g content and a preferable color compared to the oil from SE, while it contained a higher content of total sterols, 1.55%. The thermal gravimetric analysis results showed one major regime of weight loss over a temperature range of 300–500 °C. The results show that FBMO obtained by SFE can be a promising nutritional source for food fortification and is understood to have more potentially healthy biological properties.Un diseño Box-Behnken combinado con la metodología de superficie de respuesta (RSM se usó para optimizar los parámetros de extracción mediante fluido supercrítico (SFE de aceite de salvado de mijo (FMBO. Los resultados mostraron que un rendimiento máximo de extracción de aceite del 7,97% se logró en las condiciones óptimas correspondientes a una presión de 30.03MPa, una temperatura 47.93 °C y un tiempo 2,3H. Además, se evaluó la calidad del aceite obtenido por SFE y mediante extracción con disolvente (SE a partir de un análisis proximal que incluye propiedades fisicoquímicas, ácidos grasos y esteroles. El aceite de FBMO obtenido mediante SFE mostró un contenido mucho menor de fosfolípidos (0.188 mg/g y un color mas aceptable que el aceite de la SE, mientras que contenía un mayor contenido de esteroles totales: 1,55%. El resultado del análisis térmico gravimétrico mostr

  11. Production of extracts from preserved olives using supercritical CO2 and preliminary evaluation of its polyphenol content

    Directory of Open Access Journals (Sweden)

    Maria João Cebola

    2014-06-01

    Full Text Available The supercritical fluid extraction (SFE technique was used to obtain extracts from a sample simulating an olive pomace, obtained from preserved olives. The objective was to achieve the extraction of polyphenolic components from this matrix which is considered a hazardous waste from the production of olive oil. The supercritical fluid used was carbon dioxide and the SFE studies were conducted in two stages, the first at a pressure of 200 bar and 40 ºC and the second stage at 300 bar, 45 ºC and using ethanol as co-solvent. In both cases the SFE was performed for 3 hours. The first stage was carried out to obtain a cleaner matrix and the second step was aimed at the components of interest. The overall mass yield obtained was 5.5 %. Preliminary HPLC screening of the samples obtained and also of the water in which the olives were preserved showed that the polyphenol compounds were mostly in the latter.

  12. Challenges of selecting materials for the process of biomass gasification in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Boukis, N.; Habicht, W.; Hauer, E.; Dinjus, E. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Chemie

    2010-07-01

    A new process for the gasification of wet biomass is the reaction in supercritical water. The product is a combustible gas, rich in hydrogen with a high calorific value. The reaction is performed under high temperatures - up to 700 C - and pressures up to 30 MPa. The combination of these physical conditions and the corrosive environment is very demanding for the construction materials of the reactor. Only few alloys exhibit the required mechanical properties, especially the mechanical strength at temperatures higher than 600 C. Ni-Base alloys like alloy 625 can be applied up to a temperature of 700 C and are common materials for application under supercritical water conditions. During gasification experiments with corn silage and other biomasses, corrosion of the reactor material alloy 625 appears. The gasification of an aqueous methanol solution in supercritical water at temperatures up to 600 C and 25 - 30 MPa pressure results in an product gas rich in hydrogen, carbon dioxide and some methane. Alloy 625 shows very low corrosion rates in this environment. It is obvious that the heteroatoms and salts present in biomass cause corrosion of the reactor material. (orig.)

  13. Mathematical modelling of nonstationary processes in a regenerator with dissociating coolant at supercritical parameters

    International Nuclear Information System (INIS)

    Tashchilova, Eh.M.; Sharovarov, G.A.

    1985-01-01

    The mathematical model of nonstationary processes in heat exchangers with dissociating coolant at supercritical parameters is given. Its dimensionless criteria are deveped. The effect of NPP regenerator parameters on criteria variation is determined. The proceeding nonstationary processes are estimated qualitatively using the dimensionless parameters. Dynamics of the processes in heat exchangers is described by the energy, mass and moment-of-momentum equations for heating and heated medium taking into account heat accumulation in the heat-transfer wall and distribution of parameters along the length of a heat exchanger

  14. Optimization of artemisinin extraction from artemisia annua l. With supercritical carbon dioxide + ethanol using response surface methodology.

    Science.gov (United States)

    Ciftci, Ozan Nazim; Cahyadi, Jessica; Guigard, Selma E; Saldaña, Marleny D A

    2018-05-13

    Malaria is a high priority life-threatening public health concern in developing countries, and therefore there is a growing interest to obtain artemisinin for the production of artemisinin-based combination therapy products. In this study, artemisinin was extracted from the Artemisia annua L. plant using supercritical carbon dioxide (SC-CO 2 ) modified with ethanol. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the extraction conditions of pressure (9.9-30 MPa), temperature (33-67°C), and co-solvent (ethanol, 0-12.6 wt.%). Optimum SC-CO 2 extraction conditions were found to be 30 MPa and 33°C. Under optimized conditions, the predicted artemisinin yield was 1.09% whereas the experimental value was 0.71±0.07%. Soxhlet extraction with hexane resulted in higher artemisinin yields and there was no significant difference in the purity of the extracts obtained with SC-CO 2 and Soxhlet extractions. Results indicated that SC-CO 2 and SC-CO 2 +ethanol extraction is a promising alternative for the extraction of artemisinin to eliminate the use of organic solvents, such as hexane and produce extracts that can be used for the production of antimalarial products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Bioaccessibility and Antioxidant Activity of Calendula officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil.

    Science.gov (United States)

    Martin, Diana; Navarro Del Hierro, Joaquín; Villanueva Bermejo, David; Fernández-Ruiz, Ramón; Fornari, Tiziana; Reglero, Guillermo

    2016-11-23

    Supercritical extracts of marigold (ME) were produced and characterized. The bioaccessibility of terpenes, especially that of pentacyclic triterpenes (PT), the particle-size distribution, and antioxidant activity after the in vitro codigestion of ME with olive oil (OO) were determined. ME produced without cosolvent was richer in taraxasterol, lupeol, α-amyrin, and β-amyrin than extracts with cosolvent. All terpenes showed high bioaccessibility without OO (>75%). Significant correlations were found between the molecular properties of compounds (logP and number of rotatable bonds) and their bioaccessibility. Codigestion with OO enhanced the bioaccessibility (around 100% for PT), which could be related to a higher abundance of low-size particles of the digestion medium. The antioxidant activity of the digested ME increased around 50%, regardless of OO. PT-rich extracts from marigold display high bioaccessibility and improved antioxidant activity after in vitro digestion, although complete bioaccessibility of PT can be reached by codigestion with oil, without affecting antioxidant activity.

  16. EXTRACTION OF OIL FROM PRESSED PALM OIL (Elaes guineensis FIBERS USING SUPERCRITICAL CO2

    Directory of Open Access Journals (Sweden)

    Luiz F. FRANÇA

    1997-12-01

    Full Text Available Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil. Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.As fibras residuais do processo de produção de óleo de palma (óleo de dendê, podem ser uma boa fonte de carotenos, pois contém, ainda, mais de 5% do óleo original, com cerca de 5.000 ppm de carotenóides. Como os carotenóides são moléculas termodegradáveis, é importante um estudo do emprego de CO2 supercrítico na extração deste óleo, visto que esta é uma técnica que emprega baixas temperaturas. Neste trabalho são mostrados os resultados de experimentos de extração do óleo das fibras prensadas de dendê, feitas a 200, 250 e 300 bar e temperaturas de 45 e 55oC. As fibras prensadas foram obtidas da produção industrial da indústria AGROPALMA, localizada em Tailândia (Pará, Brasil. O óleo obtido foi analisado por espectrofotometria UV/vis para a determinação do teor de carotenos totais. Os resultados mostram um aumento na taxa de extração entre 200 e 250 bar, mas esta variação foi pequena entre 250 e 300 bar. O teor de carotenos totais não aumenta

  17. Extraction of Volatile Oil from Aromatic Plants with Supercritical Carbon Dioxide: Experiments and Modeling

    Czech Academy of Sciences Publication Activity Database

    Coelho, J.P.; Cristino, A.F.; Matos, P.G.; Rauter, A.P.; Nobre, B.P.; Mendes, R.L.; Barroso, J.G.; Mainar, A.; Urieta, J.S.; Fareleira, J.M.N.A.; Sovová, Helena; Palavra, A.F.

    2012-01-01

    Roč. 17, č. 9 (2012), s. 10550-10573 ISSN 1420-3049 Grant - others:FST(PT) SFRH/BPD/42004/2007; FST(PT) SFRH/BD/48596/2008 Institutional support: RVO:67985858 Keywords : essential oils * volatile iols * supercritical fluids Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.428, year: 2012

  18. Reduction of residual monomer in latex products by enhanced polymerization and extraction in supercritical carbon dioxide

    NARCIS (Netherlands)

    Kemmere, M.F.; Schilt, van M.A.; Cleven, M.H.W.; Herk, van A.M.; Keurentjes, J.T.F.

    2002-01-01

    The redn. of Me methacrylate (MMA) in a PMMA latex was chosen as a representative model system. Pulsed electron beam expts. were performed to study the effect of supercrit. carbon dioxide (scCO2) on the monomer concn. inside the polymer particles during the polymn. reaction. The partitioning

  19. Off-line supercritical fluid extraction-capillary GC applications in environmental analysis

    NARCIS (Netherlands)

    David, F.; Verschuere, M.; Sandra, P.J.F.

    1992-01-01

    The successful application of supercrit. fluid extn. for environmental samples requires that the extn. for environmental samples requires that the extn. conditions detd. for spiked samples must be optimized in order to overcome the solute-matrix interactions that are responsible for lower recoveries

  20. New Approach to Modeling Supercritical CO2 Extraction of Cuticular Waxes: Interplay between Solubility and Kinetics.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Stateva, R. P.

    2015-01-01

    Roč. 54, č. 17 (2015), s. 4861-4870 ISSN 0888-5885 Institutional support: RVO:67985858 Keywords : n-alkanes * supercritical CO2 * solubility Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.567, year: 2015

  1. Supercritical Carbon Dioxide Extraction of Flavonoids from Pomelo (Citrus grandis (L.) Osbeck) Peel and Their Antioxidant Activity

    Science.gov (United States)

    He, Jin-Zhe; Shao, Ping; Liu, Jian-Hua; Ru, Qiao-Mei

    2012-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of flavonoids from pomelo (Citrus grandis (L.) Osbeck) peel and their antioxidant activity were investigated. Box-Behnken design combined with response surface methodology was employed to maximize the extraction yield of flavonoids. Correlation analysis of the mathematical-regression model indicated that a quadratic polynomial model could be used to optimize the SC-CO2 extraction of flavonoids. The optimal conditions for obtaining the highest extraction yield of flavonoids from pomelo peel were a temperature of 80 °C, a pressure of 39 MPa and a static extraction time of 49 min in the presence of 85% ethanol as modifier. Under these conditions, the experimental yield was 2.37%, which matched positively with the value predicted by the model. Furthermore, flavonoids obtained by SC-CO2 extraction showed a higher scavenging activity on hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals than those obtained by conventional solvent extraction (CSE). Therefore, SC-CO2 extraction can be considered as a suitable technique for the obtainment of flavonoids from pomelo peel. PMID:23202938

  2. Supercritical Carbon Dioxide Extraction of Flavonoids from Pomelo (Citrus grandis (L. Osbeck Peel and Their Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Qiao-Mei Ru

    2012-10-01

    Full Text Available Supercritical carbon dioxide (SC-CO2 extraction of flavonoids from pomelo (Citrus grandis (L. Osbeck peel and their antioxidant activity were investigated. Box-Behnken design combined with response surface methodology was employed to maximize the extraction yield of flavonoids. Correlation analysis of the mathematical-regression model indicated that a quadratic polynomial model could be used to optimize the SC-CO2 extraction of flavonoids. The optimal conditions for obtaining the highest extraction yield of flavonoids from pomelo peel were a temperature of 80 °C, a pressure of 39 MPa and a static extraction time of 49 min in the presence of 85% ethanol as modifier. Under these conditions, the experimental yield was 2.37%, which matched positively with the value predicted by the model. Furthermore, flavonoids obtained by SC-CO2 extraction showed a higher scavenging activity on hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS radicals than those obtained by conventional solvent extraction (CSE. Therefore, SC-CO2 extraction can be considered as a suitable technique for the obtainment of flavonoids from pomelo peel.

  3. Extraction of Flavonoids from the Flowers of Abelmoschus manihot (L. Medic by Modified Supercritical CO2 Extraction and Determination of Antioxidant and Anti-Adipogenic Activity

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2016-06-01

    Full Text Available Abelmoschus manihot (L. Medic has been used for many years in Chinese traditional medicine. In this study, supercritical CO2 plus a modifier was utilized to extract flavonoids from the flowers of Abelmoschus manihot (L. Medic. The effects of temperature (40 °C–60 °C, pressure (10–30 MPa and different concentrations of ethanol as modifier (60%–90%, ethanol:water, v/v on major flavonol content and the antioxidant activity of the extracts were studied by response surface methodology (RSM using a Box-Behnken design. The flavonol content was calculated as the sum of the concentrations of seven major flavonoids, namely rutin, hyperin, isoquercetin, hibifolin, myricetin, quercetin-3′-O-glucoside and quercetin, which were simultaneously determined by a HPLC method. The antioxidant activity was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH free radical-scavenging assay. The results showed that three factors and their interactions could be well fitted to second-order polynomial models (p < 0.05. At the optimal extraction conditions for flavonol content (20 MPa, 52 °C, and 85% ethanol content, the yield of flavonoids was 41.96 mg/g and the IC50 value was 0.288 mg/mL, respectively, suggesting the extract has high antioxidant activity. Furthermore, the anti-adipogenic activity of the extract on the 3T3-L1 cell line was investigated. The results indicated that it can downregulate PPARγ and C/EBPα expression at mRNA. In summary, in this study, we have established a cost-effective method for the extraction of flavonoids from the flowers of Abelmoschus manihot (L. Medic using supercritical fluid extraction and the extracts exhibited potent antioxidant and anti-adipogenic effects, suggesting a possible therapeutic approach for the prevention and treatment of obesity.

  4. Preparation and Characterization of Tripterygium wilfordii Multi-Glycoside Nanoparticle Using Supercritical Anti-Solvent Process

    Directory of Open Access Journals (Sweden)

    Fengli Chen

    2014-02-01

    Full Text Available The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW powders by the supercritical antisolvent precipitation process (SAS, and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15–35 MPa, precipitation temperature (45–65 °C, drug solution flow rates (3–7 mL/min and drug concentrations (10–30 mg/mL were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund’s complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β and tumor necrosis factor-α (TNF-α. It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW.

  5. Extraction of Phytochemical Compounds from Eucheuma cottonii and Gracilaria sp using Supercritical CO2 Followed by Subcritical Water

    Directory of Open Access Journals (Sweden)

    Setyorini Dwi

    2018-01-01

    Full Text Available Extraction of phytochemical compounds (such as β-carotene, linoleic acids, carrageenan, and polyphenols from algae Eucheuma cottonii and Gracilaria sp with supercritical CO2 followed by subcritical water has been investigated. Supercritical CO2 extraction was carried out at pressure of 25 MPa, temperature of 60°C, CO2 flowrate of 15 ml/min, and ethanol flowrate of 0.25 ml/min. To determine the content of carotenoids and linoleic acids, the extracted compounds were analyzed using a spectrophotometer UV-Vis. The residue of algae starting material was subsequently extracted by subcritical water at pressures of 3, 5, and 7 MPa, and temperatures of 120, 140, 160, and 180 °C. Carrageenan extracted by subcritical water was analyzed using Fourier Transform Infra Red (FTIR, while the total phenolic compound was analyzed with UV-vis spectrophotometer. Moreover, the antioxidant efficiency of extract was also examined by DPPH assay method. Based on the analytical result, β-carotene and linoleic acid content in Eucheuma cottonii were 209.91 and 321.025 μg/g sample, respectively. While β-carotene and linoleic acid content in Gracilaria sp were 219.99 and 286.52 μg/g sample, respectively. The optimum condition of subcritical water extraction was at 180°C and 7 MPa. At this condition, the highest TPC content in the extract from Eucheuma cottonii and Gracilaria sp were 18.51 mg GAE/g sample and 22.47 mg GAE/g sample, respectively; while the highest yield of carrageenan extracted from Eucheuma cottonii and Gracilaria sp were 61.33 and 65.54 g/100 g dried algae, respectively. At the same condition, the antioxidant efficiency was 0.513 min-1 for Eucheuma cottonii and 0,277 min-1 for Gracilaria sp. Based on the results the extraction method effectively separated non-polar and polar compounds, then increased the antioxidant efficiency of extract.

  6. Preparative isolation and purification of capsaicin and dihydrocapsaicin from Capsici Fructus using supercritical fluid extraction combined with high speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Zhao, Leilei; Tao, Junfei; Zou, Yong; Xu, Xinjun

    2018-05-01

    Supercritical fluid extraction with CO 2 (SFE-CO 2 ) was utilized for extraction of capsaicin (CA) and dihydrocapsaicin (DHCA) from Capsici Fructus, and then a two-step enrichment method for separating capsaicinoids from SFE-CO 2 extracts was developed. The process involved extraction with aqueous methanol and crystallization by alkali extraction and acid precipitation. Finally, a consecutive high-speed countercurrent chromatography (HSCCC) separation method was successfully applied in the purification of CA and DHCA from capsaicinoid crystal. The extraction pressure, extraction temperature and volume of co-solvent were optimized at 33 MPa, 41 °C and 75 mL, respectively, using response surface methodology; the extraction rates of CA and DHCA were about 93.18% and 93.49%, respectively. 407.43 mg capsaicinoid crystal was isolated from the SFE-CO 2 extracts obtained from 100 g capsicum powder by the two-step enrichment method. About 506 mg and 184 mg CA and DHCA with purities up to 98.31% and 96.68%, respectively, were obtained from 1 g capsaicinoid crystal in one HSCCC of three consecutive sample loadings without exchanging any solvent system. This method comprising SFE-CO 2 , a two-step enrichment and HSCCC was efficient, powerful and practical for the large-scale preparation of CA and DHCA from Capsici Fructus with high purity and high yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. A rapid supercritical fluid extraction method for the qualitative detection of 2-alkylcyclobutanones in gamma-irradiated fresh and sea water fish

    International Nuclear Information System (INIS)

    Tewfik, I.H.; Ismail, H.M.; Sumar, S.

    1999-01-01

    2-Alkylcyclobutanones are routinely used as chemical markers for irradiated foods containing lipids. However, current extraction procedures (soxhlet-Florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to GC-MS identification. A simple and rapid method for the isolation of these markers using carbon dioxide as a super critical fluid is described for low lipid content fish samples (fresh and sea water) irradiated up to 8kGy. The presence of 2-dodecylcyclobutanone (2-DCB), a radiolytic marker, was confirmed in all irradiated fish samples at all doses. This was a clear indication that the fish samples had been irradiated and that both methods of isolation (florisil and supercritical fluid extraction) were capable of qualitatively extracting this marker. Supercritical fluid extraction is proposed as an alternative extraction procedure to the florisil chromatography method currently in use and has the added advantage of a considerably shorter extraction time

  8. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  9. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization

    Science.gov (United States)

    Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2017-06-01

    The aging products of the electrolyte from a commercially available state-of-the-art 18650-type cell were investigated. During long term cycling a huge difference in their performance and lifetime at different temperatures was observed. By interpretation of a strong capacity fading of cells cycled at 20 °C compared to cells cycled at 45 °C a temperature depending aging mechanism was determined. To investigate the influence of the electrolyte on this fading, the electrolyte was extracted by supercritical fluid extraction (SFE) and then analyzed by gas chromatography (GC) with electron impact (EI) ionization and mass selective detection. To obtain more information with regard to the identification of unknown decomposition products further analysis with positive chemical ionization (PCI) and negative chemical ionization (NCI) was performed. 17 different volatile organic aging products were detected and identified. So far, seven of them were not yet known in literature and several formation pathways were postulated taking previously published literature into account.

  10. Direct dissolution and supercritical fluid extraction of uranium from UO2 powder, granule, green pellet and sintered pellet

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep; Ramakumar, K.L.

    2009-01-01

    In the present work, direct dissolution and extraction of UO 2 from the solid rejects various stages of fuel fabrication viz. powder granules green pellet and, sintered pellet has been studied. Powder and granules could be easily dissolved in TBP-HNO 3 complex at 50 deg C., whereas in case of green and sintered pellets at elevated temperature at raised to 80 deg C in TBP-HNO 3 complex. With supercritical (SC) CO 2 alone the efficiency was ∼70%. But with SC CO 2 +2.5% TBP, the efficiency was ∼95% for powder and granules, and ∼60% for green and sintered pellets. Nearly complete extraction (∼99%) was achievable for SC CO 2 + 2.5 % TTA in all cases. The method has distinct advantage of elimination of acid usage and minimization of liquid waste generation. (author)

  11. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    Science.gov (United States)

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao; Zhang, Jinjie; Qiu, Jiying

    2012-01-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and 13 C-NMR. (author)

  13. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao, E-mail: wxjn1998@126.com [Process Control Research Center of TCM. Shandong Academy of Sciences. Shandong Analysis and Test Center (China); Zhang, Jinjie [College of Biosystems Engineering and Food Science, Zhejiang University (China); Qiu, Jiying [Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Science, Shandong (China)

    2012-07-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and {sup 13}C-NMR. (author)

  14. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Daijie Wang

    2012-01-01

    Full Text Available Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio. The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.

  15. Beta-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Ličková, I.; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Roč. 11, č. 4 (2010), s. 1842-1850 E-ISSN 1422-0067 R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50380511 Keywords : sea buckthorn seed * supercritical carbon dioxide * beta-sitosterol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.279, year: 2010

  16. The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method

    Science.gov (United States)

    Kamali, Hossein; Aminimoghadamfarouj, Noushin; Golmakani, Ebrahim; Nematollahi, Alireza

    2015-01-01

    Aim: The aim of this study was to examine and evaluate crucial variables in essential oils extraction process from Lavandula hybrida through static-dynamic and semi-continuous techniques using response surface method. Materials and Methods: Essential oil components were extracted from Lavandula hybrida (Lavandin) flowers using supercritical carbon dioxide via static-dynamic steps (SDS) procedure, and semi-continuous (SC) technique. Results: Using response surface method the optimum extraction yield (4.768%) was obtained via SDS at 108.7 bar, 48.5°C, 120 min (static: 8×15), 24 min (dynamic: 8×3 min) in contrast to the 4.620% extraction yield for the SC at 111.6 bar, 49.2°C, 14 min (static), 121.1 min (dynamic). Conclusion: The results indicated that a substantial reduction (81.56%) solvent usage (kg CO2/g oil) is observed in the SDS method versus the conventional SC method. PMID:25598636

  17. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks.

    Science.gov (United States)

    Nishiura, Hiroshi; Yan, Ping; Sleeman, Candace K; Mode, Charles J

    2012-02-07

    Use of the final size distribution of minor outbreaks for the estimation of the reproduction numbers of supercritical epidemic processes has yet to be considered. We used a branching process model to derive the final size distribution of minor outbreaks, assuming a reproduction number above unity, and applying the method to final size data for pneumonic plague. Pneumonic plague is a rare disease with only one documented major epidemic in a spatially limited setting. Because the final size distribution of a minor outbreak needs to be normalized by the probability of extinction, we assume that the dispersion parameter (k) of the negative-binomial offspring distribution is known, and examine the sensitivity of the reproduction number to variation in dispersion. Assuming a geometric offspring distribution with k=1, the reproduction number was estimated at 1.16 (95% confidence interval: 0.97-1.38). When less dispersed with k=2, the maximum likelihood estimate of the reproduction number was 1.14. These estimates agreed with those published from transmission network analysis, indicating that the human-to-human transmission potential of the pneumonic plague is not very high. Given only minor outbreaks, transmission potential is not sufficiently assessed by directly counting the number of offspring. Since the absence of a major epidemic does not guarantee a subcritical process, the proposed method allows us to conservatively regard epidemic data from minor outbreaks as supercritical, and yield estimates of threshold values above unity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Effect of drying and co-matrix addition on the yield and quality of supercritical CO₂ extracted pumpkin (Cucurbita moschata Duch.) oil.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello S; D'Amico, Leone; Piro, Gabriella; Mita, Giovanni

    2014-04-01

    In this work a process for obtaining high vitamin E and carotenoid yields by supercritical carbon dioxide (SC-CO₂) extraction from pumpkin (Cucurbita moschata Duch.) is described. The results show that the use of a vacuum oven-dried [residual moisture (∼8%)] and milled (70 mesh sieve) pumpkin flesh matrix increased SC-CO₂ extraction yields of total vitamin E and carotenoids of ∼12.0- and ∼8.5-fold, respectively, with respect to the use of a freeze-dried and milled flesh matrix. The addition of milled (35 mesh) pumpkin seeds as co-matrix (1:1, w/w) allowed a further ∼1.6-fold increase in carotenoid yield, besides to a valuable enrichment of the extracted oil in vitamin E (274 mg/100 g oil) and polyunsaturated fatty acids. These findings encourage further studies in order to scale up the process for possible industrial production of high quality bioactive ingredients from pumpkin useful in functional food or cosmeceutical formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Introduction to supercritical fluids a spreadsheet-based approach

    CERN Document Server

    Smith, Richard; Peters, Cor

    2013-01-01

    This text provides an introduction to supercritical fluids with easy-to-use Excel spreadsheets suitable for both specialized-discipline (chemistry or chemical engineering student) and mixed-discipline (engineering/economic student) classes. Each chapter contains worked examples, tip boxes and end-of-the-chapter problems and projects. Part I covers web-based chemical information resources, applications and simplified theory presented in a way that allows students of all disciplines to delve into the properties of supercritical fluids and to design energy, extraction and materials formation systems for real-world processes that use supercritical water or supercritical carbon dioxide. Part II takes a practical approach and addresses the thermodynamic framework, equations of state, fluid phase equilibria, heat and mass transfer, chemical equilibria and reaction kinetics of supercritical fluids. Spreadsheets are arranged as Visual Basic for Applications (VBA) functions and macros that are completely (source code) ...

  1. Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells.

    Science.gov (United States)

    Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik

    2009-06-01

    Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.

  2. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  3. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  4. Use of Immobilised Lipase from Candida antarctica in Supercritical Fluid Extraction of Borage (Borago officinalis L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Egidijus Daukšas

    2008-01-01

    Full Text Available This study aims at the investigation of the possibilities to use immobilised lipase from Candida antarctica in supercritical fluid extraction (SFE of borage (Borago officinalis L. see doil. The first series of experiments was performed to measure the extract yields obtained with pure CO2 and with the added entrainer (ethanol. The yield increased more than twice after increasing the extraction pressure from 15 to 25 MPa. Further increase to 35 MPa was less effective. The effect of the entrainer was not significant in most cases. Palmitic (13.1–16.1 %, oleic (13.4–23.8 %, linoleic (33.8–48.4 % and linolenic (8.8–16.3 % acids were dominant in all extracted oils. Further experiments involved the use of enzyme. In this case the first extractor was loaded with ground borage seeds, the second one was filled with the enzyme. The total yield obtained at 15, 25 and 35 MPa was (8.8±0.2, (23.6±0.2 and (28.9±1.1 %, respectively. Thin layer chromatography (TLC of fatty acid ethyl esters showed that the content of esters was higher in the extract obtained in one extractor system at 15 MPa, compared to 35 MPa.

  5. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    Science.gov (United States)

    Huang, Yang; Zhang, Tingting; Zhao, Yumei; Zhou, Haibo; Tang, Guangyun; Fillet, Marianne; Crommen, Jacques; Jiang, Zhengjin

    2017-09-10

    Nucleobases, nucleosides and ginsenosides, which have a significant impact on the physiological activity of organisms, are reported to be the active components of ginseng, while they are less present in ginseng extracts. Few analytical methods have been developed so far to simultaneously analyze these three classes of compounds with different polarities present in ginseng extracts. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation of 17 nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The effect of various experimental factors on the separation performance, such as the column type, temperature and backpressure, the type of modifier and additive, and the concentration of make-up solvent were systematically investigated. Under the selected conditions, the developed method was successfully applied to the quality evaluation of 14 batches of ginseng extracts from different origins. The results obtained for the different batches indicate that this method could be employed for the quality assessment of ginseng extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Techno-economic analysis of biodiesel production from Jatropha curcas via a supercritical methanol process

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.

    2013-01-01

    Highlights: • This paper presents the techno-economic of a production of biodiesel from JCO. • The results obtained 99.96% of biodiesel with 96.49% of pure glycerol. • This proved that biodiesel from JCO is the least expensive compare to other resources. - Abstract: This paper presents the conceptual design and economic evaluation of a production of methyl esters (biodiesel) from Jatropha curcas oil (JCO) via a supercritical methanol process with glycerol as a by-product. The process consists of four major units: transesterification (PFR), methanol recovery (FT) and (DC1), recovery of glycerol (DEC), and biodiesel purification (DC2). The material and heat balance are also presented here. A biodiesel production of 40,000 tonnes-yr −1 is taken as case study. Biodiesel obtained from supercritical transesterification with Jatropha curcas oil as feedstock resulting in high purity methyl esters (99.96%) with almost pure glycerol (96.49%) obtained as by-product. The biodiesel can be sold at USD 0.78 kg −1 , while the manufacturing and capital investment costs are in the range of USD 25.39 million-year −1 and USD 9.41 million year −1 , respectively. This study proved that biodiesel from JCO is the least expensive with purities comparable to those found in other studies

  7. Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process

    Science.gov (United States)

    Wu, Wei-Yi; Su, Chie-Shaan

    2017-02-01

    In this study, the supercritical antisolvent (SAS) process was used to recrystallize an active pharmaceutical ingredient, sulfasalazine, to modify the solid-state properties including particle size, crystal habit and polymorphic form. Supercritical CO2 and tetrahydrofuran were used as the antisolvent and solvent, respectively. SAS results obtained from different operating temperatures (35, 45, 55 and 65 °C) were compared and discussed. The results indicate that at 55 °C, spherical sulfasalazine crystals were produced and that their mean particle size was micronized to approximately 1 μm. In addition, according to the analytical results of powder X-ray diffractometry (PXRD), a novel polymorphic form of sulfasalazine was obtained after SAS. Furthermore, the spectroscopic and thermal behavior of produced sulfasalazine crystals were also studied by Fourier transform infrared spectrometry (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Finally, SAS results obtained from different operating temperature was discussed on the basis of the mixture critical point (MCP) of CO2 and tetrahydrofuran. Operation at slightly higher than the MCP is favorable for recrystallization of sulfasalazine through SAS. These results demonstrate that the SAS process is an efficient tool for controlling and modifying the solid-state property of sulfasalazine.

  8. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    Science.gov (United States)

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of

  9. Unstable Simple Volatiles and Gas Chromatography-Tandem Mass Spectrometry Analysis of Essential Oil from the Roots Bark of Oplopanax Horridus Extracted by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Li Shao

    2014-11-01

    Full Text Available Volatile oil from the root bark of Oplopanax horridus is regarded to be responsible for the clinical uses of the title plant as a respiratory stimulant and expectorant. Therefore, a supercritical fluid extraction method was first employed to extract the volatile oil from the roots bark of O. horridus, which was subsequently analyzed by GC/MS. Forty-eight volatile compounds were identified by GC/MS analysis, including (S,E-nerolidol (52.5%, τ-cadinol (21.6% and S-falcarinol (3.6%. Accordingly, the volatile oil (100 g was subjected to chromatographic separation and purification. As a result, the three compounds, (E-nerolidol (2 g, τ-cadinol (62 mg and S-falcarinol (21 mg, were isolated and purified from the volatile oil, the structures of which were unambiguously elucidated by detailed spectroscopic analysis including 1D- and 2D-NMR techniques.

  10. Development of Nordic Standard for analysis of oil and fat in water based on supercritical fluid extraction. Preliminary study, part 2

    International Nuclear Information System (INIS)

    Jenssen, L.

    1994-06-01

    This report describes a preliminary study of a method of determining oil in water. The method is based on solid phase extraction and supercritical fluid extraction (SPE-SFE). The oil is extracted from the water by absorption to extraction disks from which it is then desorbed by supercritical carbon dioxide and detected by means of infrared spectrophotometry or gas chromatography. The results of the study will indicate if the method is suitable as a future substitute for the present Norwegian Standard, NS 9803 (Swedish Standard, SS 02 8145). The method has been validated using water samples with addition of real oil to 1-100 ppm. The accuracy is almost 70%, and the method has good repeatability and is linear in the 1-100 ppm range. 5 refs., 6 figs., 10 tabs

  11. Novel bitter melon extracts highly yielded from supercritical extraction reduce the adiposity through the enhanced lipid metabolism in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Li Xu

    2016-12-01

    Full Text Available Bitter melon (Momordica charantia is a species of edible plant known for its medicinal value towards diabetes and obesity. Due to the various compositions of bitter melon extracts (BME, the comprehensive knowledge concerning their anti-obesity effects was insufficient. Here we first introduced supercritical extraction to BME's preparation, (supercritical extraction is a relatively advanced extraction method with a better efficiency and selectivity and expected to be extensively used in future applications and the resultants were subjected to HPLC analysis, validating the presence of 42.60% of conjugated linolenic acid (CLnA, cis9, trans11, trans13-18:3 and 13.17% of conjugated linoleic acid (CLA, cis9, trans11-18:2. The BMSO (bitter melon seed oil was then administered to the HFD mice, an obesity model established by feeding C57BL/6J mice a high fat diet. Consequently, due to the BMSO's supplementation, the HFD mice showed a significantly decreased body-weight, Lee's index, fat index and adipose size, whereas the liver weight stayed unchanged. Meanwhile, the serum FFA (free fatty acids levels returned to normal at the dosage of 10 g/kg, and the elevated serum leptin levels were also recovered by BMSO's supplementation with moderate and high dose. These findings suggested that BMSO restored the balance between lipid intake and metabolism, which was probably mediated by leptin's variation. In summary, a detailed anti-obesity effect was described with regard to a potent CFA's (conjugated fatty acid combination offered by BME. A potential mechanism underlying BME's beneficial effects was proposed, paving the way for the better use of BME's pharmaceutical function to serve the obesity's treatment.

  12. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  13. Fiscal 1996 investigational research on the chemical process technology using supercritical fluids; 1996 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Importance was studied of making a research on the chemical process technology using the supercritical fluid. As for its effect on global warming, the amount of CO2 emission was compared during the operation between the conventional process and the process using the supercritical fluid, the CO2 reduction rate and amount were trially calculated, and a CO2 reduction of a several ten thousand ton scale in carbon conversion was predicted. As to hazardous materials and the reaction of waste retrieval, it was made clear that the process using the supercritical fluid was valid also for objects for which the chemical process used to be impossible, which indicates a possibility of the widening field of application. Concerning its effect on the energy conservation, energy reduction of several ten thousand tons in heavy oil conversion was predicted by replacing all the existing processes with supercritical fluids. Relating to the recycling, with the use of supercritical fluids, the process is possible which produces higher quality and yield and fewer unnecessary products such as char than the conventional process. 197 refs., 102 figs., 71 tabs.

  14. Evaluation of Anticancer and Antioxidant Activity of a Commercially Available CO2 Supercritical Extract of Old Man's Beard (Usnea barbata.

    Directory of Open Access Journals (Sweden)

    Ana Zugic

    Full Text Available There is a worldwide ongoing investigation for novel natural constituents with cytotoxic and antioxidant properties. The aim of this study was to investigate chemical profile and stated biological activities of the supercritical CO2 extract (SCE of old man's beard compared to the extracts obtained using the conventional techniques (Soxhlet extracts and macerate. The most abundant compound identified was usnic acid, which content was inversely proportional to the polarity of the solvent used and was the highest in the SCE, which was the sample revealing the highest cytotoxic activity in tested tumor cell lines (B16 mouse melanoma and C6 rat glioma, with lower IC50 values compared to pure usnic acid. Further investigations suggested both SCE and usnic acid to induce apoptosis and/or autophagy in B16 and C6, indicating higher cytotoxicity of SCE to be related to the higher degree of ROS production. A good correlation of usnic acid content in the extracts and their antioxidant capacity was established, extricating SCE as the most active one. Presented results support further investigations of SCE of old man's beard as a prospective therapeutic agent with potential relevance in the treatment of cancer and/or in oxidative stress-mediated conditions.

  15. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Portalatin, Gilda; Quirin, Karl-W; Escalon, Enrique; Khatib, Ziad; Melnick, Steven J

    2015-12-01

    Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.

  16. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum).

    Science.gov (United States)

    Dias, Arthur Luiz Baião; Arroio Sergio, Camilla Scarelli; Santos, Philipe; Barbero, Gerardo Fernandéz; Rezende, Camila Alves; Martínez, Julian

    2016-07-01

    Extracts with bioactive compounds were obtained from the red pepper variety "dedo de moça" (Capsicum baccatum L. var. pendulum) through supercritical fluid extraction with carbon dioxide assisted by ultrasound (SFE-US). The process was tested at pressures of 15, 20 and 25 MPa; temperatures of 40, 50 and 60 °C, and ultrasonic powers of 200, 400 and 600 W applied during 40, 60 and 80 min of extraction. The CO2 mass flow rate was fixed at 1.7569 × 10(-4) kg/s. Global yield, phenolic content, antioxidant capacity and capsaicinoid concentration were evaluated in the extracts. The application of ultrasound raised the global extraction yield of SFE up to 45%. The phenolic content of the extract increased with the application of higher ultrasound power and radiation time. The capsaicinoid yield was also enhanced with ultrasound up to 12%. However, the antioxidant capacity did not increase with the ultrasound application. The BET-based model and the broken and intact cell model fitted well to the kinetic SFE curves. The BET-based model with three adjustable parameters resulted in the best fits to the experimental data. Field emission scanning electron microscopy (FESEM) images showed that SFE disturbed the vegetable matrix, releasing particles from the inner region of the plant cells to their surface. When the ultrasound was applied this effect was more pronounced. On the other hand, cracks, fissures or any sign of rupture were not identified on the sample surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Supercritical CO2 extract and essential oil of bay (Laurus nobilis L. – chemical composition and antibacterial activity

    Directory of Open Access Journals (Sweden)

    JASNA IVANOVIĆ

    2010-03-01

    Full Text Available The present study deals with the supercritical carbon dioxide (SC-CO2 extraction and hydrodistillation (HD of dried bay leaves (Laurus nobilis L.. The chemical composition and antibacterial activity of the SC-CO2 extract and essential oil (EO from dried leaves of bay were compared to each other and literature data. Qualitative and quantitative analyses of the SC-CO2 extract and EO were performed using GC–FID and GC–MS analytical methods. A significant difference in the chemical composition of the SC-CO2 extract and EO was observed. The EO comprised high contents of monoterpenes and their oxygenated derivates (98.4 %, principally 1,8-cineole (33.4 %, linalool (16.0 % and α-terpinyl acetate (13.8 %, sabinene (6.91 % and methyl eugenol (5.32 %. The SC-CO2 extract comprised twice less monoterpenes and their oxygenated derivates (43.89 %, together with sesquiterpenes (12.43 %, diterpenes (1.33 % and esters (31.13 %. The major components were methyl linoleate (16.18 %, α-terpinyl acetate (12.88 %, linalool (9.00 %, methyl eugenol (8.67 %, methyl arachidonate (6.28 % and eugenol (6.14 %. An investigation of the antibacterial activity of bay SC-CO2 extract and EO was completed on different Staphylococcus strains using the broth macrodilution method. Staphylococcus intermedius strains were the most susceptible to both the SC-CO2 extract and EO (MIC = 640 µg/ml.

  18. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  19. Comparison of the Apoptotic Effects of Supercritical Fluid Extracts of Antrodia cinnamomea Mycelia on Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2014-06-01

    Full Text Available Antrodia cinnamomea (AC has been widely used as a folk medicine in the prevention and treatment of liver diseases, such as hepatitis, hepatic fibrosis, and hepatocellular carcinoma. Previous studies have indicated that triterpenoids and benzenoids show selective cytotoxicity against human hepatoma cell lines. The aim of the study was to compare the triterpenoid content of extract and the extract-induced cytotoxicity in HepG2 cells from mycelia extracts of solid state cultured AC obtained by supercritical fluid extraction (SFE and the conventional solvent extraction method. SFE with CO2 mixed with a constant amount of ethanol co-solvent (10% of CO2 volume applied at different temperatures and pressures (40, 60 and 80 °C and, 20.7, 27.6 and 34.5 Mpa was also compared in the study. Although the extraction yield of triterpenoids (59.7 mg/g under the optimal extraction conditions of 34.5 MPa (5000 psi/60 °C (designated as sample S-5000-60 was equivalent to the extraction yield using conventional liquid solvent extraction with ethanol (ETOH-E at room temperature (60.33 mg/g, the cytotoxicity of the former against the proliferation of HepG2 cell line measured as the inhibition of 50% of cell growth activity (IC50 at dosages of 116.15, 57.82 and 43.96 µg/mL was superior to that of EtOH-E at 131.09, 80.04 and 48.30 µg/mL at 24, 48 and 72 h, respectively. Additionally, we further proved that the apoptotic effect of S-5000-60 presented a higher apoptosis ratio (21.5% than ETOH-E (10.5% according to annexin V-FITC and propidium iodide double staining assay results. The high affinity and selectivity of SFE on bioactive components resulted in a higher extraction efficiency than conventional solvent extraction. The chemical profile of the obtained extracts from solid state cultivated mycelium of AC was also determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS, whereby three benzenoids and four

  20. Predicting the supercritical carbon dioxide extraction of oregano bract essential oil

    Directory of Open Access Journals (Sweden)

    Abdolreza Moghadassi

    2011-10-01

    Full Text Available The extraction of essential oils using compressed carbon dioxide is a modern technique offering significant advantagesover more conventional methods, especially in particular applications. The prediction of extraction efficiency is a powerful toolfor designing and optimizing the process. The current work proposed a new method based on the artificial neural network(ANN for the estimation of the extraction efficiency of the essential oil oregano bract. In addition, the work used the backpropagationlearning algorithm, incorporating different training methods. The required data were collected; pre-treating wasused for ANN training. The accuracy and trend stability of the trained networks were verified according to their ability to predictunseen data. The Levenberg-Marquardt algorithm has been found to be the most suitable algorithm, with the appropriatenumber of neurons (i.e., ten neurons in the hidden layer and a minimum average absolute relative error (i.e., 0.019164. Inaddition, some excellent predictions with maximum error of 0.039313 were observed. The results demonstrated the ANN’scapability to predict the measured data. The ANN model performance was also compared to a suitable mathematical model,thereby confirming the superiority of the ANN model.

  1. 3-D loaded scaffolds obtained by supercritical CO2 assisted process

    Science.gov (United States)

    Cardea, S.; Reverchon, E.

    2014-08-01

    In this work, a supercritical CO2 (SC-CO2) drying process for the formation of 3-D PVDF-HFP loaded scaffolds was tested. Experiments at pressures ranging between 150 and 250 bar and at temperatures ranging between 35 and 55°C were performed. The PVDF-HFP- acetone-ethanol solution at 15% w/w polymer was selected as the base case. The drug (amoxicillin) concentration was varied from 20 to 30% w/w with respect to PVDF-HFP. SC- CO2 drying process was confirmed to be a valid alternative to generate loaded structures; indeed, scaffolds characterized by nanometric networks (with mean pore diameter of about 300 nm) with a homogeneous drug distribution were obtained. Drug controlled release experiments were also performed and a quasi-zero order release kinetic was observed.

  2. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  3. Continuous Process for the Etching, Rinsing and Drying of MEMS Using Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seon Ki; Han, Gap Su; You, Seong-sik [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2015-10-15

    The previous etching, rinsing and drying processes of wafers for MEMS (microelectromechanical system) using SC-CO{sub 2} (supercritical-CO{sub 2}) consists of two steps. Firstly, MEMS-wafers are etched by organic solvent in a separate etching equipment from the high pressure dryer and then moved to the high pressure dryer to rinse and dry them using SC-CO{sub 2}. We found that the previous two step process could be applied to etch and dry wafers for MEMS but could not confirm the reproducibility through several experiments. We thought the cause of that was the stiction of structures occurring due to vaporization of the etching solvent during moving MEMS wafer to high pressure dryer after etching it outside. In order to improve the structure stiction problem, we designed a continuous process for etching, rinsing and drying MEMS-wafers using SC-CO{sub 2} without moving them. And we also wanted to know relations of states of carbon dioxide (gas, liquid, supercritical fluid) to the structure stiction problem. In the case of using gas carbon dioxide (3 MPa, 25 .deg. C) as an etching solvent, we could obtain well-treated MEMS-wafers without stiction and confirm the reproducibility of experimental results. The quantity of rinsing solvent used could be also reduced compared with the previous technology. In the case of using liquid carbon dioxide (3 MPa, 5 .deg. C), we could not obtain well-treated MEMS-wafers without stiction due to the phase separation of between liquid carbon dioxide and etching co-solvent(acetone). In the case of using SC-CO{sub 2} (7.5 Mpa, 40 .deg. C), we had as good results as those of the case using gas-CO{sub 2}. Besides the processing time was shortened compared with that of the case of using gas-CO{sub 2}.

  4. Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent

    NARCIS (Netherlands)

    Nalawade, Sameer P.; Picchioni, Francesco; Janssen, L. P. B. M.

    The major advantage of using supercritical carbon dioxide (CO2) as a solvent in polymer processing is an enhancement in the free volume of a polymer due to dissolved CO2, which causes a considerable reduction in the viscosity. This allows spraying the polymer melt at low temperatures to produce

  5. Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Ana Rita C., E-mail: aduarte@dep.uminho.pt [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal); Caridade, Sofia G.; Mano, Joao F.; Reis, Rui L. [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal)

    2009-08-31

    The aim of this study was to develop a new process for the production of bioactive 3D scaffolds using a clean and environmentally friendly technology. The possibility of preparing composite scaffolds of Bioglass and a polymeric blend of starch and poly(L-lactic acid) (SPLA50) was evaluated. Supercritical phase-inversion technique was used to prepare inorganic particles loaded starch-based porous composite matrixes in a one-step process for bone tissue engineering purposes. Due to their osteoconductive properties some glasses and ceramics are interesting materials to be used for bone tissue engineering purposes; however their poor mechanical properties create the need of a polymeric support where the inorganic fraction can be dispersed. Samples impregnated with different concentrations of Bioglass (10 and 15% wt/wt polymer) were prepared at 200 bar and 55 deg. C. The presence of Bioglass did not affect the porosity or interconnectivity of the polymeric matrixes. Dynamic mechanical analysis has proven that the modulus of the SPLA50 scaffolds increases when glass particles are impregnated within the matrix. In vitro bioactivity studies were carried out using simulated body fluid and the results show that a calcium-phosphate layer started to be formed after only 1 day of immersion. Chemical analysis of the apatite layer formed on the surface of the scaffold was performed by different techniques, namely EDS and FTIR spectroscopy and X-ray diffraction (XRD). The ion concentration in the simulated body fluid was also carried out by ICP analysis. Results suggest that a bone-like apatite layer was formed. This study reports the feasibility of using supercritical fluid technology to process, in one step, a porous matrix loaded with a bioactive material for tissue engineering purposes.

  6. Supercritical CO2 Extraction of Lavandula angustifolia Mill. Flowers: Optimisation of Oxygenated Monoterpenes, Coumarin and Herniarin Content.

    Science.gov (United States)

    Jerković, Igor; Molnar, Maja; Vidović, Senka; Vladić, Jelena; Jokić, Stela

    2017-11-01

    Lavandula angustifolia is good source of oxygenated monoterpenes containing coumarins as well, which are all soluble in supercritical CO 2 (SC-CO 2 ). The study objective is to investigate SC-CO 2 extraction parameters on: the total yield; GC-MS profile of the extracts; relative content of oxygenated monoterpenes; the amount of coumarin and herniarin; and to determine optimal SC-CO 2 extraction conditions by response surface methodology (RSM). SC-CO 2 extraction was performed under different pressure, temperature and CO 2 flow rate determined by Box-Behnken design (BBD). The sample mass and the extraction time were kept constant. The chemical profiles and relative content of oxygenated monoterpenes (as coumarin equivalents, CE) were determined by GC-MS. Coumarin and herniarin concentrations were dosed by HPLC. SC-CO 2 extracts contained linalool (57.4-217.9 mg CE/100 g), camphor (10.6-154.4 mg CE/100 g), borneol (6.2-99.9 mg CE/100 g), 1,8-cineole (5.0-70.4 mg CE/100 g), linalyl acetate (86.1-267.9 mg CE/100 g), coumarin (0.95-18.16 mg/100 g), and herniarin (0.95-13.63 mg/100 g). The interaction between the pressure and CO 2 flow rate as well as between the temperature and CO 2 flow rate showed statistically significant influence on the extraction yield. Applying BBD, the optimum extraction conditions for higher monoterpenes and lower coumarin content were at 10 MPa, 41°C and CO 2 flow rate 2.3 kg/h, and at 30 MPa, 50°C and CO 2 flow rate 3 kg/h for higher monoterpenes and coumarin content. SC-CO 2 extraction is a viable technique for obtaining lavender extracts with desirable flavour components. The second-order model based on BBD predicts the results for SC-CO 2 extraction quite satisfactorily. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  8. Pesticide residues in canned foods, fruits, and vegetables: the application of Supercritical Fluid Extraction and chromatographic techniques in the analysis.

    Science.gov (United States)

    El-Saeid, Mohamed H

    2003-12-11

    Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE) and Supercritical Fluid Chromatography (SFC) techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates. By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues +/- RSD% ranging from 0.03 +/- 0.005 to 0.05 +/- 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 +/- 0.005 to 0.8 +/- 0.01 ppm. Five different fungicides, ranging from 0.05 +/- 0.02 to 0.8 +/- 0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  9. Pesticide Residues in Canned Foods, Fruits, and Vegetables: The Application of Supercritical Fluid Extraction and Chromatographic Techniques in the Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed H. EL-Saeid

    2003-01-01

    Full Text Available Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE and Supercritical Fluid Chromatography (SFC techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates.By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues ± RSD% ranging from 0.03 ± 0.005 to 0.05 ± 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 ± 0.005 to 0.8 ± 0.01 ppm. Five different fungicides, ranging from 0.05 ± 0.02 to 0.8 ±0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  10. A new method based on supercritical fluid extraction for polyacetylenes and polyenes from Echinacea pallida (Nutt.) Nutt. roots.

    Science.gov (United States)

    Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica

    2017-11-30

    The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MS n by using an Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC 50 values ranging from 21.01±2.89 to 31.11±2.l4μg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. OPTIMISATION OF SUPERCRITICAL FLUID EXTRACTION OF ASTAXANTHIN FROM PENAEUS MONODON WASTE USING ETHANOL-MODIFIED CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    SHAZANA A. RADZALI

    2016-05-01

    Full Text Available Some studies demonstrated that astaxanthin surpasses the antioxidant benefits of beta-carotene, zeaxanthin, canthaxanthin, vitamin C, and vitamin E. Penaeus monodon (Tiger shrimp is one of the most valuable traded crustacean products in which astaxanthin can be found in its by-products. The extraction of thermolabile compound like carotenoids at lower temperatures through supercritical carbon dioxide (SC-CO2 can reduce the potential isomerization and degradation of the extraction product. In this study, astaxanthin had been extracted using SC-CO2 with 15% (v/v ethanol as an entrainer and the recovered astaxanthin was analyzed using High performance liquid chromatography (HPLC. A central composite design (CCD was employed to study the effect of three SC-CO2 parameters namely temperature (X1 from 40 to 80°C, pressure (X2 from 150 to 250 bar and extraction flow rate (X3 from 1 to 3 ml/min on the astaxanthin complex yield, (Y1 and free astaxanthin content, (Y2. The nonlinear regression equations were significantly (p0.9261, which had no indication of lack of fit. The results indicated that a combined set of values of temperature (56.88°C, pressure (215.68 bar and extraction flow rate (1.89 ml/min was predicted to provide the optimum region in terms of astaxanthin complex yield, (58.50 ± 2.62 µg/g and free astaxanthin content (12.20 ± 4.16 µg/g studied.

  12. Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Two crown ethers (CEs) viz. dibenzo18crown6, and dibenzo12crown7 and three calix-crown derivatives viz. (octyloxy)calix[4]arene-mono-crown-6 (CMC), calix[4]arene-bis(o-benzocrown-6) (CBC), and calix[4]arene-bis(naphthocrown-6) (CNC) were evaluated for the recovery of 137 Cs from synthetic soil, cellulose (tissue paper), and plant samples by supercritical fluid extraction (SFE) route. CEs showed poor extraction of 137 Cs from soil matrix. SFE experiments using 1 × 10 -3 M solutions of CMC, CBC and CNC in acetonitrile at 3 M HNO 3 as modifiers displayed better extraction of 137 Cs, viz. 21(±2) % (CMC), 16.5(±3) % (CBC), and 4(±1) % (CNC). It was not possible to recover 137 Cs quantitatively from soil matrix. The inefficient extraction of 137 Cs from soil matrix was attributed to its incorporation into the interstitial sites. Experiments on tissue papers using CMC showed near quantitative 137 Cs recovery. On the other hand, recovery from plant samples varied between 50(±5) % (for stems) and 75(±5) % (for leaves). (author)

  13. Comparison of composition and antifungal activity of Artemisia argyi Lévl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide.

    Science.gov (United States)

    Wenqiang, Guan; Shufen, Li; Ruixiang, Yan; Yanfeng, Huang

    2006-09-01

    Essential oil of Artemisia argyi Lévl. et Vant inflorescence was obtained by supercritical CO(2) extraction and hydrodistillation. The oil was analyzed by gas chromatography/mass spectrometry to characterize its components and was also tested for antifungal activity. A total of 61 compounds were identified in the hydrodistilled oil. The major components were 1,8-cineole (4.46%), borneol (3.58%), terpinol (10.18%), spathulenol (10.03%), caryophyllene oxide (6.51%), juniper camphor (8.74%), Camazulene (2.05%), and camphor (3.49%). By using supercritical CO(2) at 50 degrees C and 10 MPa, the concentrations of previous main components were lower than oil obtained by hydrodistillation, while miscellaneous compounds were higher. The essential oil extracted by these two methods exhibited antifungal activity against Botrytis cinerea and Alternaria alternate, two common storage pathogens of fruits and vegetables. The inhibition of B. cinerea and A. alternate were 93.3 and 84.7% for oil extracted by hydrodistillation when exposed to a concentration of 1,000 mg L(-1), while values of 70.8 and 60.5% were observed from oil extracted by supercritical CO(2).

  14. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  15. Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) Lag.

    Science.gov (United States)

    Maxia, Andrea; Falconieri, Danilo; Piras, Alessandra; Porcedda, Silvia; Marongiu, Bruno; Frau, Maria Assunta; Gonçalves, Maria J; Cabral, Célia; Cavaleiro, Carlos; Salgueiro, Lígia

    2012-07-01

    Aerial parts of Apium nodiflorum collected in Portugal and Italy were submitted to hydrodistillation; also a supercritical fluid extract was obtained from Italian plants. The extracts were analyzed by GC and GC/MS. Both essential oils, obtained from Portuguese and Italian plants, posses high content of phenylpropanoids (51.6 vs. 70.8%); in the former, the percentage split in myristicin (29.1%) and dillapiol (22.5%), whereas in the latter, the total percentage is only of dillapiol (70.8%). The co-occurrence of myristicin and dillapiol is frequent because dillapiol results from enzymatic methoxylation of myristicin. Antimicrobial activity of phenylpropanoids has been patented, what suggest the potential of plants with high amounts of these compounds. Minimal inhibitory concentration (MIC) and minimal lethal concentration, determined according to NCCLS, were used to evaluate the antifungal activity of the essential oils against yeasts, Aspergillus species and dermatophytes. Essential oils exhibited higher antifungal activity than other Apiaceae against dermatophytes, with MIC ranging from 0.04 to 0.32 μl/ml. These results support the potential of A. nodiflorum oil in the treatment of dermatophytosis and candidosis.

  16. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  17. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    Science.gov (United States)

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    Science.gov (United States)

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Avaliação do potencial antioxidante de extratos ativos de plantas obtidos por extração com fluido supercrítico Evaluation of the antioxidant potential of plant extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Oselys Rodriguez Justo

    2008-01-01

    Full Text Available The aim of this work was to evaluate the antioxidant properties of ginger and rosemary extracts, obtained by supercritical extraction. The extracts were characterized by HPLC, GC-MS, phenolic compounds content and antioxidant activity. The main active compounds were identified and high content of phenolic compounds was observed. The extracts presented high antioxidant activity against the free radicals ABTS•+ (350 and 200 mM Trolox/g, for ginger and rosemary, respectively and DPPH•+ (145 and 80 mM Trolox/g, for ginger and rosemary, respectively. These results suggested that the attained extracts are potential substitutes of synthetic antioxidants used in chemical, food and pharmaceutical industries.

  20. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  1. Comparison of anti-inflammatory activity of extracts with supercritical carbon dioxide from radiation mutant perilla frutescens(L.) Britton and wild-type

    Energy Technology Data Exchange (ETDEWEB)

    Park, Han Chul; So, Yang Kang; Kim, Jin Baek; Jin, Chang Hyun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yuk, Hong Sun [Dept. of Food and Nutrition, Chungnam National University Daejeon (Korea, Republic of)

    2016-11-15

    In previous study, the radiation mutant Perilla frutescens (L.) Britton with a higher anti-inflammatory activity was selected. The extracts were obtained from the mutant and wildtype using a supercritical carbon dioxide technique. This study aimed to compare the antiinflammatory activities between the mutant supercritical extract (MSE) and wild-type supercritical extract (WSE). The contents of isoegomaketone (IK) of MSE and WSE were measured through an HPLC analysis. MSE contained IK contents approximately 7-fold higher than those of WSE. To compare the anti-inflammatory activities of MSE and WSE, the expression levels of the mRNA and protein of pro-inflammatory mediators were measured in lipopolysaccharide (LPS)-induced RAW264.7 cells. As a result, MSE inhibited the expression levels of the mRNA and protein of pro-inflammatory mediators, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) to a much greater extent than did WSE. Taken together, MSE had more IK contents and higher antiinflammatory activities than WSE. Therefore, MSE is proposed based on its therapeutic potential in the prevention of inflammatory disease.

  2. Supercritical water gasification of biomass for H2 production: process design.

    Science.gov (United States)

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. High performance supercapacitor using N-doped graphene prepared via supercritical fluid processing with an oxime nitrogen source

    International Nuclear Information System (INIS)

    Balaji, S. Suresh; Elavarasan, A.; Sathish, M.

    2016-01-01

    Graphical abstract: N-doped graphene prepared via supercritical fluid processing with oxime nitrogen source (DMG) showed enhanced performance in electrochemical supercapacitor application. A maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g was achieved with a high specific capacity retention of 98% after 1000 cycles at 5 A/g. - Highlights: • N-functionalised graphene synthesized via supercritical fluid processing. • DMG, an oxime based nitrogen precursor. • Maximum specific capacitance of 286 F/g at 0.5 A/g in aqueous solution. • Pyridinic as well as quarternary nitrogen for enhanced capacitance. - Abstract: Heteroatom doped graphene has been proved for its promising applications in electrochemical energy storage systems. Here, nitrogen (N) doped graphene was prepared via two different techniques namely supercritical fluid assisted processing and hydrothermal heat treatment using dimethylglyoxime (DMG) as an oxime nitrogen precursor. The FT-IR and Raman spectra showed the N-containing functional group in the graphene. The XRD analysis revealed the complete reduction of graphene oxide during the supercritical fluid processing. The elemental analysis and X-ray photoelectron spectroscopy revealed the amount and nature of N-doping in the graphene, respectively. The surface morphology and physical nature of the samples were analyzed using scanning and transmission electron microscopic analysis. The electrochemical performance of prepared electrode materials was evaluated using cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy. The N-doped graphene prepared via supercritical fluid assisted processing exhibit enhanced capacitive behaviour with a maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g. The cycling studies showed 98% specific capacity retention with 100% coulombic efficiency over 1000 cycles at 5 A/g. The enhanced specific capacitance of N

  4. Technology with Supercritical Fluid. Part 2. Applications

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    The present article is based on a bibliographical analysis of the main applications of the supercritical fluid in various fields, as: extraction from solid matrices, division of liquid charges, chromatography HPLC with supercritical eluent, chemical and biochemical reactions in supercritical solvents etc [it

  5. Auraptene, a Major Compound of Supercritical Fluid Extract of Phalsak (Citrus Hassaku Hort ex Tanaka, Induces Apoptosis through the Suppression of mTOR Pathways in Human Gastric Cancer SNU-1 Cells

    Directory of Open Access Journals (Sweden)

    Jeong Yong Moon

    2015-01-01

    Full Text Available The supercritical extraction method is a widely used process to obtain volatile and nonvolatile compounds by avoiding thermal degradation and solvent residue in the extracts. In search of phytochemicals with potential therapeutic application in gastric cancer, the supercritical fluid extract (SFE of phalsak (Citrus hassaku Hort ex Tanaka fruits was analyzed by gas chromatography-mass spectrometry (GC-MS. Compositional analysis in comparison with the antiproliferative activities of peel and flesh suggested auraptene as the most prominent anticancer compound against gastric cancer cells. SNU-1 cells were the most susceptible to auraptene-induced toxicity among the tested gastric cancer cell lines. Auraptene induced the death of SNU-1 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, the proteolytic cleavage of caspase-3 and poly(ADP-ribose polymerase (PARP protein, and depolarization of the mitochondrial membrane. Interestingly, auraptene induces an increase in the phosphorylation of Akt, which is reminiscent of the effect of rapamycin, the mTOR inhibitor that triggers a negative feedback loop on Akt/mTOR pathway. Taken together, these findings provide valuable insights into the anticancer effects of the SFE of the phalsak peel by revealing that auraptene, the major compound of it, induced apoptosis in accompanied with the inhibition of mTOR in SNU-1 cells.

  6. Therapeutic Effect of Supercritical CO2 Extracts of Curcuma Species with Cancer Drugs in Rhabdomyosarcoma Cell Lines.

    Science.gov (United States)

    Ramachandran, Cheppail; Quirin, Karl-W; Escalon, Enrique A; Lollett, Ivonne V; Melnick, Steven J

    2015-08-01

    Synergistic effect of supercritical CO2 extracts of Curcuma species with conventional chemotherapeutic drugs was investigated in human alveolar (SJRH30) and embryonal (RD) rhabdomyosarcoma cell lines. The Curcuma amada (mango ginger) (CA) extract showed the highest levels of cytotoxicity with inhibitory concentration IC50 values of 7.133 µg/ml and 7.501 µg/ml for SJRH30 and RD cell lines, respectively, as compared with Curcuma longa (turmeric) and Curcuma xanthorrhiza (Javanese turmeric) extracts. CA showed synergistic cytotoxic effects with vinblastine (VBL) and cyclophosphamide (CP) as indicated by the combination index values of <1 for VBL + CA, CP + CA, and VBL + CP + CA combinations in both embryonal and alveolar rhabdomyosarcomas. When lower doses of CA (0.1-0.2 µg/ml) were combined with cancer drugs like CP and VBL, caspase-3 activity increased significantly compared with individual agents and correlated with the percentage of apoptotic cells. CA in combination with VBL and CP induced a higher percentage of apoptosis than single agents in both cell lines. CA also modulated the expression of genes associated with intrinsic pathway of apoptosis (Bcl-2, Bax, Bak, and p53) and also inhibited the expression of genes associated with inflammation such as COX-2 and NF-κB. Xenograft studies with SJRH30 tumors in nude mice showed that CA treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly. These results suggest that CA can be evaluated further as an adjuvant with cancer drugs for the treatment of rhabdomyosarcoma patients. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    Science.gov (United States)

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  8. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    Science.gov (United States)

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  9. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    Science.gov (United States)

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  10. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  11. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  12. MATHEMATICAL MODELING AND SIMULATION OF SUPERCRITICAL CO2 EXTRACTION OF ZIZIPHORA TENUIOR VOLATILES

    Directory of Open Access Journals (Sweden)

    Bizhan Honarvar

    2016-01-01

    Full Text Available Ziziphora Tenuior is an edible medicinal plant which belongs to Labiatae family. It is often used as a treatment for some diseases such as edema, insomnia, and hypertension in Turkey, Iran and China. The main components of the Ziziphora Tenuior essential oil are p-mentha-3-en-8-ol and pulegone. In this study, the extractions of Ziziphora essential oil has been described by a two-dimensional mathematical model, and the effects of some extraction parameter variations on the extraction yield have been examined. Amongst the said parameters were fluid flow rate, extractor diameter and length and mean particle size.

  13. The use of supercritical carbon dioxide for contaminant removal from solid waste

    International Nuclear Information System (INIS)

    Adkins, C.L.J.; Russick, E.M.; Smith, H.M.; Olson, R.B.

    1994-01-01

    Supercritical carbon dioxide is being explored as a waste minimization technique for separating oils, greases and solvents from solid waste. The containments are dissolved into the supercritical fluid and precipitated out upon depressurization. The carbon dioxide solvent can then be recycled for continued use. Definitions of the temperature, pressure, flowrate and potential co-solvents are required to establish the optimum conditions for hazardous contaminant removal. Excellent extractive capability for common manufacturing oils, greases, and solvents has been observed in both supercritical and liquid carbon dioxide. Solubility measurements are being used to better understand the extraction process, and to determine if the minimum solubility required by federal regulations is met

  14. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.

    Science.gov (United States)

    Nelson, Andrew P; Farha, Omar K; Mulfort, Karen L; Hupp, Joseph T

    2009-01-21

    Careful processing of four representative metal-organic framework (MOF) materials with liquid and supercritical carbon dioxide (ScD) leads to substantial, or in some cases spectacular (up to 1200%), increases in gas-accessible surface area. Maximization of surface area is key to the optimization of MOFs for many potential applications. Preliminary evidence points to inhibition of mesopore collapse, and therefore micropore accessibility, as the basis for the extraordinarily efficacious outcome of ScD-based activation.

  16. Supercritical SC-CO2 and Soxhlet n-Hexane Extract of Tunisian Opuntia ficus indica Seeds and Fatty Acids Analysis

    OpenAIRE

    Nizar Yeddes; Jamila Kalthoum Chérif; Amel Jrad; Danielle Barth; Malika Trabelsi-Ayadi

    2012-01-01

    The fatty acids profiles of Tunisian Opuntia ficus indica seeds (spiny and thornless form) were investigated. Results of supercritical carbon dioxide (SC-CO2) and soxhlet n-hexane extract were compared. Quantitatively, the better yield was obtained through soxhlet n-hexane: 10.32% (spiny) and 8.91% (thornless) against 3.4% (spiny) and 1.94% (thornless) by SC-CO2 extract (T = 40°C, P=180 bar, time = 135 mn, CO2 flow rate = 15 mL·s−1). Qualitatively, the main fatty acids components were the sam...

  17. Supercritical Carbon Dioxide Assisted Processing of Silica/PMMA Nanocomposite Foams

    Science.gov (United States)

    Rende, Deniz; Schadler, Linda S.; Ozisik, Rahmi

    2012-02-01

    Polymer nanocomposite foams receive considerable attention in both scientific and industrial communities. These structures are defined as closed or open cells (pores) surrounded by bulk material and are widely observed in nature in the form of bone structure, sponge, corals and natural cork. Inspired by these materials, polymer nanocomposite foams are widely used in advanced applications, such as bone scaffolds, food packaging and transportation materials due to their lightweight and enhanced mechanical, thermal, and electrical properties compared to bulk polymer foams. The presence of the nanosized fillers facilitates heterogeneous bubble nucleation as a result, the number of bubbles increases while the average bubble size decreases. Therefore, the foam morphology can be controlled by the size, concentration, and surface chemistry of the nanofiller. In the current study, we used supercritical carbon dioxide as a foaming agent for silica/poly(methyl methacrylate), PMMA, foams. The silica nanoparticles were chemically modified by fluoroalkane chains to make them CO2-philic. The surface coverage was controlled via tethering density, and the effect of silica surface coverage and concentration on foam morphology was investigated through scanning electron microscopy and image processing. Results indicated that nanofiller concentration and filler surface chemistry (CO2-philicity) had tremendous effect on foam morphology but surface coverage did not have any effect.

  18. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

    Directory of Open Access Journals (Sweden)

    Aris Hosikian

    2010-01-01

    Full Text Available Chlorophyll is an essential compound in many everyday products. It is used not only as an additive in pharmaceutical and cosmetic products but also as a natural food colouring agent. Additionally, it has antioxidant and antimutagenic properties. This review discusses the process engineering of chlorophyll extraction from microalgae. Different chlorophyll extraction methods and chlorophyll purification techniques are evaluated. Our preliminary analysis suggests supercritical fluid extraction to be superior to organic solvent extraction. When compared to spectroscopic technique, high performance liquid chromatography was shown to be more accurate and sensitive for chlorophyll analysis. Finally, through CO2 capture and wastewater treatment, microalgae cultivation process was shown to have strong potential for mitigation of environmental impacts.

  19. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae.

    Science.gov (United States)

    Jazzar, Souhir; Quesada-Medina, Joaquín; Olivares-Carrillo, Pilar; Marzouki, Mohamed Néjib; Acién-Fernández, Francisco Gabriel; Fernández-Sevilla, José María; Molina-Grima, Emilio; Smaali, Issam

    2015-08-01

    A coupled process combining microalgae production with direct supercritical biodiesel conversion using a reduced number of operating steps is proposed in this work. Two newly isolated native microalgae strains, identified as Chlorella sp. and Nannochloris sp., were cultivated in both batch and continuous modes. Maximum productivities were achieved during continuous cultures with 318mg/lday and 256mg/lday for Chlorella sp. and Nannochloris sp., respectively. Microalgae were further characterized by determining their photosynthetic performance and nutrient removal efficiency. Biodiesel was produced by catalyst-free in situ supercritical methanol transesterification of wet unwashed algal biomass (75wt.% of moisture). Maximum biodiesel yields of 45.62wt.% and 21.79wt.% were reached for Chlorella sp. and Nannochloris sp., respectively. The analysis of polyunsaturated fatty acids of Chlorella sp. showed a decrease in their proportion when comparing conventional and supercritical transesterification processes (from 37.4% to 13.9%, respectively), thus improving the quality of the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  1. Development of Nuclear Decontamination Technology Using Supercritical Fluid

    International Nuclear Information System (INIS)

    Jung, Wonyoung; Park, Kwangheon; Park, Jihye; Lee, Donghee

    2014-01-01

    Soil cleaning technologies that have been developed thus far increase treatment costs in contaminated soil recovery processes because they generate large amounts of secondary wastes. In this respect, this study is intended to develop soil decontamination methods using CO 2 , which is a nontoxic, environmentally friendly substance, in order to fundamentally suppress the generation of secondary wastes from the decontamination process and to create high added values. In this study, to develop decontamination methods for uranium-contaminated soil using supercritical CO 2 , a soil decontamination system using supercritical CO 2 was constructed. In addition, the basic principle of supercritical CO 2 decontamination using a TBP-HNO3 complex was explained. According to the results of the study, sea-sand samples having the same degree of contamination showed different results of decontamination according to the quantities of the TBP-HNO3 complex used as an extraction agent, which resulted in high extraction rates. Thus far, a most widely used method of extracting uranium has been the dissolving of uranium in acids. However, this method has the large adverse effect of generating strong acidic wastes that cannot be easily treated. On the other hand, supercritical CO 2 requires critical conditions that are no more difficult to meet than those of other supercritical fluids, since its density can be changed from a very low state close to that of an ideal gas to a high state close to that of liquids. The critical gas conditions are a pressure of 71 bar and a temperature of 31 .deg. C, both of which are inexpensive to achieve. Moreover, CO 2 is a solvent that is not harmful to the human body and few effects on environmental pollution. Therefore, nontoxic and environment friendly processes can be developed using supercritical CO 2 . Supercritical CO 2 's advantages over prevailing methods suggest its potential for developing innovative decontamination methods, as demonstrated

  2. Supercritical fluid chromatography

    Science.gov (United States)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  3. Extraction of uranium with emulsion membrane process use tributylphosphate extractant

    International Nuclear Information System (INIS)

    Basuki, K.T.; Sudibyo, R.; Bambang EHB; Muhadi, A.W.

    1996-01-01

    To increase the effectiveness of extraction process with so for to occur, it was tried the extraction with a couple of extraction and stripping process. This couple process was called liquid membrane emulsion. As membrane was used mix surfactant (Span-80), tributylphosphate in kerosene, natrium carbonate, while as a feeder was uranium solution with 500 concentration ppm in 0.5 - 3 M nitrate acid. In this experiment the variable investigated were % surfactant (1 - 5 %), rotary speed for membrane making (2,500 - 10.000 rpm). The optimal condition result of experiment were 5 % surfactant, 3 M nitrate acid, rotary speed 10.000 rpm and (Kd eksU ) 57 %, and (Kd strippU ) 87 %, Kd eksU at liquid-liquid extraction is 44 %. (author)

  4. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    International Nuclear Information System (INIS)

    Arrington, C.A. Jr.

    1998-01-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  5. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor

    International Nuclear Information System (INIS)

    Moussiere, S.

    2006-12-01

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  6. Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Nikolić-Djorić, Emilija B.; Simikić, Mirko Ð.

    2014-01-01

    Highlights: • Transesterification in supercritical methanol, ethanol and 1-propanol investigated. • Effect of alcohol, reaction temperature, pressure and time on yields analyzed. • Temperature has the highest impact on yield, followed by time and pressure. • Direct material and energy costs for each of the production alternatives estimated. • Lowest costs are achieved at highest yields even at very low oil prices. - Abstract: Experiments with transesterification of rapeseed oil in supercritical alcohols (methanol, ethanol and 1-propanol) were carried out in a batch reactor at various reaction temperatures (250–350 °C), working pressure (8–12 MPa), reaction time, and constant 42:1 alcohol to oil molar ratio. Influence of different alcohols and reaction conditions on biodiesel yield was investigated using linear multiple regression models. Temperature had the highest impact on yields, followed by reaction time and pressure. With increased molecular weight of alcohols, relative importance of temperature for explanation of yields decreased and relative importance of time and pressure increased. Economic assessment has revealed that transesterification in supercritical methanol has the lowest direct material and energy costs. Yield has crucial impact on process economics. Direct costs decrease with increase in biodiesel yields. Even at very low prices of oil feedstock the lowest cost is achieved at the highest yield

  7. Optimization of supercritical carbon dioxide (CO2 extraction of sardine (Sardinella lemuru Bleeker oil using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    Gedi, M. A.

    2015-06-01

    Full Text Available Oil was extracted from freeze-dried sardine (Sardinella lemur fillets using supercritical carbon dioxide (SC-CO2 and a few milliliters of ethanol were optimized with response surface methodology (RSM. The impact of extraction pressure (200–400 bars and temperature (40–70 °C were studied on the total extraction yields, ratios of Eicosapentaenoic acid (EPA and Docosahexaenoic acid (DHA. The results were compared with those of Soxhlet and modified Kinsella methods (MKM. The oils obtained using the SC-CO2 and MKM methods were significantly (P El aceite se extrae de filetes de sardinas (Sardinella lemur liofilizando, mediante dióxido de carbono supercrítico (SC-CO2 y unos mililitros de etanol, optimizándose mediante la metodología de superficie de respuesta (RSM. Se ha estudiado la influencia de la presión de extracción (200–400 bars y la temperatura (40–70 °C sobre los rendimientos de extracción total, y sobre las relaciones de ácido eicosapentaenoico (EPA y ácido docosahexaenoico (DHA. Los resultados se compararon con los obtenidos mediante extracción con Soxhlet y el método de Kinsella modificado (MKM. Los aceites obtenidos mediante SC-CO2 y métodos MKM fueron significativamente (P < 0.05 superiores en rendimientos de aceite (8,04% y 6,83%, EPA (5,43% y 5,45% y DHA (18,76% y 18,54%, respectivamente, en comparación con rendimientos mediante Soxhlet (5,10%, EPA (2,17% y DHA (06,46%. De las dos variables independientes, la presión tuvo un efecto crítico sobre el rendimiento, mientras que los porcentajes de EPA y DHA estuvieron notablemente influenciados por la temperatura. Los valores óptimos fueron para una presión de 328 bar y una temperatura de 40 °C, y sus correspondientes respuestas fueron 7,20%, 5,68% y 20,09% para el rendimiento, EPA y DHA, respectivamente. Los valores experimentales de este estudio fueron los previstos y son comparables razonablemente con sus homólogos.

  8. SiC Coating Process Development Using H-PCS in Supercritical CO2

    International Nuclear Information System (INIS)

    Park, Kwangheon; Jung, Wonyoung

    2013-01-01

    We tried SiC coating using supercritical fluids. Supercritical fluids are the substance exists over critical temperature and critical pressure. It is hard to expect that there would be a big change as single-solvent as the fluid is incompressible and the space between the molecules is almost steady. But the fluid which is being supercritical can bring a great change when it is changed its pressure near its critical point, showing its successive change in the density, viscosity, diffusion coefficient and the polarity. We have tested the 'H-PCS into SiC' coating experiment with supercritical CO 2 which has the high penetration, low viscosity as well as the high density and the high solubility that shows the property of the fluid. This experiment is for SiC coating using H-PCS in supercritical CO 2 . It shows the clear difference that the penetration of H-PCS into the SiC between dip coating method and using the supercritical CO 2 If we can make a metal cladding with SiC composites as a protective layer, the use of the cladding will be very broad and diverse. Inherent safe nuclear fuels can be possible that can stand under severe accident conditions. SiC is known to be one of a few materials that maintain very corrosion-resistant properties under tough corrosive environments. The metal cladding with SiC composites as a protective layer will be a high-tech product that can be used in many applications including chemical, material, and nuclear engineering and etc

  9. Supercritical Carbon Dioxide extraction of Aloe Emodin and Barbaloin from Aloe Vera L. leaves and their in-vitro cytotoxic activity

    International Nuclear Information System (INIS)

    Kabbash, A.; El-Soud, K.A.; Zalat, E.; Shoeib, N.; Yagi, A.

    2008-01-01

    Aloe emodin and barbaloin, isolated as the active principles of the medicinal plant Aloe vera L., were extracted by supercritical fluid extraction (SFE) and analyzed by high performance liquid chromatography (HPLC). With optimized operating conditions for SFE, aloe emodin and barbaloin were quantitatively extracted from A. Vera leaves within 20 minutes at a flow rate of 0.3 ml/min, temperature and pressure at 40C and 3200 Psi respectively with the addition of 1 ml of methanol as a modifier. Separation of aloe emodin and barbaloin, in a pure form, from the SFE extract was achieved using a semi-preparative column. The cytotoxic activity of both aloe emodin and barbaloin were evaluated using the in-vitro MTT colorimetric assay. Aloe emodin showed a cytotoxic activity on two human colon cancer cells lines (DLD-1 and HD-29) with IC 8.94 and 10.78 M respectively, while barbaloin had no effect. (author)

  10. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions.

    Science.gov (United States)

    Molnar, Maja; Mendešević, Nikolina; Šubarić, Drago; Banjari, Ines; Jokić, Stela

    2017-08-05

    Chamomile, a well-known medicinal plant, is a rich source of bioactive compounds, among which two coumarin derivatives, umbelliferone and herniarin, are often found in its extracts. Chamomile extracts have found a different uses in cosmetic industry, as well as umbelliferone itself, which is, due to its strong absorption of UV light, usually added to sunscreens, while herniarin (7-methoxycoumarin) is also known for its biological activity. Therefore, chamomile extracts with certain herniarin and umbelliferone content could be of interest for application in pharmaceutical and cosmetic products. The aim of this study was to compare the extracts of different chamomile fractions (unprocessed chamomile flowers first class, processed chamomile flowers first class, pulvis and processing waste) and to identify the best material and method of extraction to obtain herniarin and umbelliferone. Various extraction techniques such as soxhlet, hydrodistillation, maceration and supercritical CO 2 extraction were used in this study. Umbelliferone and herniarin content was determined by high performance liquid chromatography (HPLC). The highest yield of umbelliferone (11.80 mg/100 g) and herniarin (82.79 mg/100 g) were obtained from chamomile processing waste using maceration technique with 50% aqueous ethanol solution and this extract has also proven to possess antioxidant activity (61.5% DPPH scavenging activity). This study shows a possibility of potential utilization of waste from chamomile processing applying different extraction techniques.

  11. Research activities on supercritical fluid science in food biotechnology.

    Science.gov (United States)

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  12. SEPARATION OF SATURED AND UNSATURATED FATTY ACIDS FROM PALM FATTY ACIDS DISTILLATES IN CONTINUOUS MULTISTAGE COUNTERCURRENT COLUMNS WITH SUPERCRITICAL CARBON DIOXIDE AS SOLVENT: A PROCESS DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Nélio Teixeira MACHADO

    1997-12-01

    Full Text Available In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic acids from PFAD-Palm Fatty Acids Distillates was used as a case study.

  13. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  14. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process

    International Nuclear Information System (INIS)

    Xiu Furong; Zhang Fushen

    2009-01-01

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu 2 O and β-PbO 2 in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11 h, 20 mA cm -2 , respectively. The recovery percentages of copper and lead under optimum SCWO + EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  15. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    Science.gov (United States)

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

    Science.gov (United States)

    Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A

    2014-10-17

    Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Combined transuranic-strontium extraction process

    Science.gov (United States)

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.

  18. Separation of Fischer-Tropsch Wax from Catalyst by Supercritical Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Thies; Patrick C. Joyce

    1998-04-30

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  19. Factors influencing the organic matter extraction from the coal by using the process of liquefaction in static system; Fatores que influenciam a extracao da materia organica do carvao mineral atraves do processo de liequefacao em sistema estatico

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Livia Mari; Lancas, Fernando Mauro

    1996-07-01

    This work describes the liquefaction process for extraction of the organic matter from coal, presently researched in Brazil, particularly with supercritical fluids. The extraction can be a future economically viable and environmentally correct alternative for supplying the emerging necessities of fuels, pharmaceuticals and chemicals sources.

  20. Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L-polylactide

    Directory of Open Access Journals (Sweden)

    Kalani M

    2011-05-01

    Full Text Available Mahshid Kalani, Robiah Yunus, Norhafizah AbdullahChemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor Darul Ehsan, MalaysiaBackground: The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.Methods and results: The optimized process parameters resulted in production of nanoencapsulated paracetamol in L-polylactide with a mean diameter of approximately 300 nm at 120 bar, 30°C, and a polymer concentration of 16 ppm. Thermogravimetric analysis illustrated the thermal characteristics of the nanoparticles. The high electrical charge on the surface of the nanoparticles caused the particles to repel each other, with the high negative zeta potential preventing flocculation.Conclusion: Our results illustrate the effect of different process parameters on particle size and morphology, and validate results obtained via RSM statistical software. Furthermore, the in vitro drug-release profile is consistent with a Korsmeyer–Peppas kinetic model.Keywords: supercritical, antisolvent, encapsulation, nanoparticles, biodegradable polymer, optimization, drug delivery

  1. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Divilio, R.J. [Combustion Systems Inc., Silver Spring, MD (United States)

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  2. Significant Enrichment of Polyunsaturated Fatty Acids (PUFAs) in the Lipids Extracted by Supercritical CO2 from the Livers of Australian Rock Lobsters (Jasus edwardsii).

    Science.gov (United States)

    Nguyen, Trung T; Zhang, Wei; Barber, Andrew R; Su, Peng; He, Shan

    2015-05-13

    Australian rock lobster (Jasus edwardsii) liver contains approximately 24.3% (w/w) lipids, which can contain a high amount of polyunsaturated fatty acids (PUFAs). However, this material has been found to be contaminated with arsenic (240 mg/kg) and cadmium (8 mg/kg). The high level of contaminants in the raw material and the large amount of PUFAs in the lipids prove a significant challenge in the extraction of high-quality lipids from this byproduct by conventional methods. Supercritical carbon dioxide (SC-CO2) extraction is a highly promising technology for lipid extraction with advantages including low contamination and low oxidation. The technique was optimized to achieve nearly 94% extraction of lipids relative to conventional Soxhlet extraction in Australian rock lobster liver at conditions of 35 MPa and 50 °C for 4 h. The extracted lipids are significantly enriched in PUFAs at 31.3% of total lipids, 4 times higher than those in the lipids recovered by Soxhlet extraction (7.8%). Specifically, the concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in SC-CO2 extraction are 7 times higher than those obtained by Soxhlet extraction. Moreover, very small amounts of toxic heavy metals such as lead (Pb), arsenic (As), mercury (Hg), and cadmium (Cd) were detected in the SC-CO2-extracted lipids, 0.5-27 times lower than those in the Soxhlet-extracted lipids, which are 40-200 times lower than the regulatory limit maximum values. The low levels of contaminants and the high proportion of PUFAs (dominated by DHA and EPA) found in the SC-CO2-extracted lipids from Australian rock lobster liver suggest that the material could potentially be used as a valuable source of essential fatty acids for human consumption.

  3. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    Science.gov (United States)

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  5. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.

    Science.gov (United States)

    Ha, Eun-Sol; Kim, Jeong-Soo; Baek, In-Hwan; Yoo, Jin-Wook; Jung, Yunjin; Moon, Hyung Ryong; Kim, Min-Soo

    2015-01-01

    In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS) process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was nanoparticles. Hydroxypropylmethyl cellulose (HPMC) solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by D-α-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0-24 hours) and maximum concentration,