WorldWideScience

Sample records for supercooled liquid fragility

  1. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, P. [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Corradini, D.; Rovere, M., E-mail: rovere@fis.uniroma3.it [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  2. Linking structure to fragility in bulk metallic glass-forming liquids

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-01-01

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  3. Linking structure to fragility in bulk metallic glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  4. Determination of Fragility in Organic Small Molecular Glass Forming Liquids: Comparison of Calorimetric and Spectroscopic Data and Commentary on Pharmaceutical Importance.

    Science.gov (United States)

    Chakravarty, Paroma; Pandya, Keyur; Nagapudi, Karthik

    2018-03-05

    The fragility index ( m) and conversely the strength parameter ( D) are widely used to categorize glass forming liquids and are used to characterize temperature dependency of viscosity and relaxation time as the supercooled liquid approaches glass transition. The currently used calorimetric methods in pharmaceutical literature lead to wide variability in measured values of m. In this work, a modulated differential scanning calorimetry (DSC) method is introduced that can directly determine m with minimal variability. Although calorimetric fragility is easy to measure due to availability and ease of use of DSC, there is no correlation between calorimetric and dielectric fragility (calculated spectroscopically from relaxation times). In addition, there is also no correlation between calorimetric fragility and the so-called "thermodynamic fragility" that can be calculated using only thermodynamic parameters. No relationship can be found between the crystallization propensity in the supercooled liquid state and D. However, the crystallization propensity shows a reasonable correlation with the Kohlrausch distribution parameter β k , which defines the breadth of the relaxation time distribution.

  5. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  6. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  7. Anomalous structural evolution and liquid fragility signatures in Cu–Zr and Cu–Hf liquids and glasses

    International Nuclear Information System (INIS)

    Mauro, N.A.; Vogt, Adam J.; Johnson, Mark L.; Bendert, James C.; Soklaski, Ryan; Yang, Li; Kelton, K.F.

    2013-01-01

    The results of high energy X-ray scattering studies of equilibrium and supercooled Cu 100−x Zr x (x = 46 and 54) and Cu x Hf 100−x (x = 55 and 60.8) liquids and the corresponding glasses are presented. The liquid data were obtained in a containerless environment using the beamline electrostatic levitation (BESL) technique. The total structure factor and total pair correlation functions were measured as a function of temperature for the liquids, and for the glasses at room temperature. A developing asymmetry in the peak of the first coordination shell in the total pair correlation function suggests chemical ordering in the liquids with cooling. This asymmetry takes the form of two prominent peaks, suggesting two prominent ordering length scales. When the magnitudes of these peaks are extrapolated to the glass transition temperature a discontinuity is observed, indicating that an abrupt increase in the magnitude is required to match the observed peak heights in the glass. This suggests that the structure of the supercooled liquid orders more rapidly near the glass transition temperature, a conclusion that is supported by molecular dynamics simulations. This observed structural evolution of the liquid indicates that the concept of fragility, typically defined from the behavior of viscosity with temperature, has a measurable structural signature as well, which can be observed in X-ray diffraction studies

  8. Structure, thermodynamics, and dynamical properties of supercooled liquids

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-12-01

    The equilibrium properties of supercooled liquids with repulsive soft-sphere potentials, u(r) = ε(σ/r) n , have been obtained by solving the integral equation of the theory of liquids and by performing constant-temperature molecular dynamics (MD) simulations. A thermodynamically consistent approximation, proposed recently by Rogers and Young (RY), has been examined for the supercooled soft-sphere fluids. Then, a new approximation for the integral equation, called MHNCS (modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids) approximation, is proposed. The solution of the MHNCS integral equation for highly supercooled liquid states agrees well with the results of computer simulations. The MHNCS integral equation has also been applied for binary soft-sphere mixtures. Dynamical properties of soft-sphere fluids have been investigated by molecular dynamics (MD) simulations. The reduced diffusion constant is found to be insensitive to the choice of the softness of the potential. On the other hand, the spectrum of the velocity autocorrelation function shows a pronounced dependence on the softness of the potential. These significant dynamical properties dependent on the softness parameter (n) are consistent to dynamical behavior observed in liquid alkali metals and liquefied inert gases. The self-part of the density-density autocorrelation function obtained shows a clear nonexponential decay in intermediate time, as the liquid-glass transition is approached. (J.P.N.) 105 refs

  9. Supercooled liquid dynamics for the charged hard-sphere model

    International Nuclear Information System (INIS)

    Lai, S.K.; Chang, S.Y.

    1994-08-01

    We study the dynamics of supercooled liquid and the liquid-glass transition by applying the mode coupling theory to the charged hard-sphere model. By exploiting the two independent parameters inherent in the charged hard-sphere system we examine structurally the subtle and competitive role played by the short-range hard-core correlation and the long-range Coulomb tail. It is found in this work that the long-range Coulombic charge factor effect is generally a less effective contribution to structure when the plasma parameter is less than 500 and becomes dominant when it is greater thereof. To extend our understanding of the supercooled liquid and the liquid-glass transition, an attempt is made to calculate and to give physical relevance to the mode-coupling parameters which are frequently used as mere fitting parameters in analysis of experiments on supercooled liquid systems. This latter information enables us to discuss the possible application of the model to a realistic system. (author). 22 refs, 4 figs

  10. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    International Nuclear Information System (INIS)

    Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.

    2014-01-01

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature

  11. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    Science.gov (United States)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the

  12. Mixing effects in the crystallization of supercooled quantum binary liquids

    International Nuclear Information System (INIS)

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-01-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH 2 ) or orthodeuterium (oD 2 ) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH 2 and oD 2 crystal growth rates, similarly to what found in our previous work on supercooled pH 2 -oD 2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites

  13. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  14. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Anisimov, Mikhail A

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  15. Strain Pattern in Supercooled Liquids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  16. Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Saida, Junji; Imafuku, Muneyuki; Sato, Shigeo; Sanada, Takashi; Matsubara, Eiichiro; Inoue, Akihisa

    2007-01-01

    The correlation between the local structure and stability of supercooled liquid state is investigated in the Zr 70 (Ni, Cu) 30 binary and Zr 70 Al 10 (Ni, Cu) 20 (numbers indicate at.%) ternary metallic glasses. The Zr 70 Ni 30 binary amorphous alloy with a low stability of supercooled liquid state has a tetragonal Zr 2 Ni-like local structure around Ni atom. Meanwhile, the Zr 70 Cu 30 binary metallic glass has a different local structure of tetragonal Zr 2 Cu, where we suggest the icosahedral local structure by the quasicrystallization behavior in addition of a very small amount of noble metals. The effect of Al addition on the local structure in the Zr-Ni alloy is also examined. We have investigated that the dominant local structure changes in the icosahedral-like structure from the tetragonal Zr 2 Ni-like local structure by the Al substitution with Ni accompanying with the significant stabilization of supercooled liquid state. It is concluded that the formation of icosahedral local structure contributes to the enhancement of stability of supercooled liquid state in the Zr-based alloys

  17. Linking density functional and mode coupling models for supercooled liquids.

    Science.gov (United States)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.

  18. Linking density functional and mode coupling models for supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.

  19. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  20. Scaling in soft spheres: fragility invariance on the repulsive potential softness

    International Nuclear Information System (INIS)

    Michele, Cristiano De; Sciortino, Francesco; Coniglio, Antonio

    2004-01-01

    We address the question of the dependence of the fragility of glass forming supercooled liquids on the 'softness' of an interacting potential by performing numerical simulation of a binary mixture of soft spheres with different power n of the interparticle repulsive potential. We show that the temperature dependence of the diffusion coefficients for various n collapses onto a universal curve, supporting the unexpected view that fragility is not related to the hard core repulsion. We also find that the configurational entropy correlates with the slowing down of the dynamics for all studied n. (letter to the editor)

  1. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    Science.gov (United States)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  2. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.

    Science.gov (United States)

    Dell, Zachary E; Schweizer, Kenneth S

    2015-11-13

    We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.

  3. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lan, S.; Ma, J. L.; Fan, J. [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); Blodgett, M.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University One Brookings Drive, St. Louis, Missouri 63130-4899 (United States); Wang, X.-L., E-mail: xlwang@cityu.edu.hk [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China)

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  4. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  5. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  6. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  7. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong

    2001-01-01

    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus......, and Lame parameter), together with Debye temperature, gradually decrease with increasing temperature through the glass transition temperature as the Poisson's ratio increases. The behavior of the velocity of transverse wave vs. temperature in the supercooled liquid region could be explained by viscosity...

  8. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    Science.gov (United States)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  9. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H{sub 2}O-NaCl and H{sub 2}O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  10. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    International Nuclear Information System (INIS)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H 2 O-NaCl and H 2 O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases

  11. Slow Dynamics and Structure of Supercooled Water in Confinement

    Directory of Open Access Journals (Sweden)

    Gaia Camisasca

    2017-04-01

    Full Text Available We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossover from a fragile to a strong regime. We relate this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point, and in confinement we connect this crossover also to a crossover of the two body excess entropy of water upon cooling. Hydration water exhibits a second, distinctly slower relaxation caused by its dynamical coupling with the protein. The crossover upon cooling of this long relaxation is related to the protein dynamics.

  12. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom

    2013-01-01

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising...... asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  13. The highly fragile glass former Decalin

    International Nuclear Information System (INIS)

    Eibl, Stefan

    2009-01-01

    Systems exhibiting the glass transition can be classified by fragility. In this work we studied structural and dynamical aspects of highly fragile C 10 H 18 Decalin. Trans Decalin is locked into a pseudo-flat centrosymmetric conformation, while cis Decalin interchanges dynamically between chiral, pseudo-spherical ground states. On investigation of the phase behaviour trans Decalin was found to crystallise rapidly and cleanly; its crystal structure could be determined. From the crystal structure the dynamics of crystalline trans Decalin could be calculated using ab-initio lattice energy calculations and compared to measurements. Using neutron diffraction and molecular dynamics simulations the amorphous structure of Decalin was investigated. The difference in structure to the common molecular liquid Cumene is significant. The features of the amorphous structure of sphere-like cis Decalin show strong resemblance to the ones of Argon and metallic glasses. The dynamics of Decalin were investigated in the slightly supercooled liquid range. Using neutron scattering and optical spectroscopy, data was collected for a wide spectral range and several temperatures. The data suggests high fragility for the generic Decalin mixture, which is in agreement with the reported results. By contrast to previous estimations, an extrapolation of our data indicates cis Decalin to be only slightly less fragile than the generic mixture. Finally a lower limit to the four point susceptibility function χ 4 could be calculated and the number of correlated molecules determined. The evolution of this value as a function of T g /T and relaxation time are in agreement with literature. (author) [fr

  14. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei; He, Li [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Besser, Matthew F. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, Ze; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511 (United States); Kramer, Matthew J. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Voyles, Paul M., E-mail: paul.voyles@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2017-07-15

    Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} amorphous nanorods and Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g{sub 2}(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g{sub 2}(t) data even with low signal per frame. - Highlights: • Electron Correlation Microscopy (ECM) technique was applied to measure structural relaxation times of supercooled liquids in metallic glass. • In Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} nanowire, τ and β decreases over the measured supercooled liquid regime. • In Pd{sub 40}Ni{sub 40}P{sub 20} bulk alloy, τ decreases from T{sub g}+28 °C to T{sub g}+48 °C, then increases as the temperature approaches T{sub x}. • ECM experiment requires a length of time series at least 40 times the characteristic relaxation time and a time per diffraction pattern at most 0.1 times the relaxation time.

  15. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  16. Using Peltier cells to study solid-liquid-vapour transitions and supercooling

    International Nuclear Information System (INIS)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat

  17. The correlation between fragility, density, and atomic interaction in glass-forming liquids.

    Science.gov (United States)

    Wang, Lijin; Guan, Pengfei; Wang, W H

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as RI, RII, and RIII, respectively, with qualitatively disparate dynamic behaviors: RI which can be described by "softness makes strong glasses," RII where fragility is independent of softness and can only be tuned by density, and RIII with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  18. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Errington, Jeffrey R; Truskett, Thomas M; Dyre, Jeppe C

    2013-12-06

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times-spanning six decades as a function of temperature, density, and degree of confinement-collapse when plotted versus excess entropy. The data also collapse when plotted versus excess isochoric heat capacity, a behavior consistent with the existence of isomorphs in the bulk and confined states.

  19. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    International Nuclear Information System (INIS)

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.

    2001-01-01

    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10 -11 s time scale and has a low activation energy (E a f =0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than ∼10 6 Hz

  20. Correlation between supercooled liquid relaxation and glass poisson’s ratio

    DEFF Research Database (Denmark)

    Sun, Q.J.; Hu, L.N.; Zhou, C.

    2015-01-01

    in the ratio r and this relation can be described by the empirical function v = 0.5 − A ∗ exp(−B ∗ r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation......We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson’s ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson’s ratio v generally increases with an increase...... lies in the heredity of the structural heterogeneity from liquid to glass. This work gives insights into both the microscopic mechanism of glass deformation through the SL dynamics and the complex structural evolution during liquid-glass transition....

  1. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100193 (China); Wang, W. H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III} with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  2. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    International Nuclear Information System (INIS)

    Wang, Lijin; Guan, Pengfei; Wang, W. H.

    2016-01-01

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R I, R II , and R III , respectively, with qualitatively disparate dynamic behaviors: R I which can be described by “softness makes strong glasses,” R II where fragility is independent of softness and can only be tuned by density, and R III with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  3. Atomic and electronic structures of an extremely fragile liquid.

    Science.gov (United States)

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-12-18

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

  4. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  5. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  6. Evidence for compact cooperatively rearranging regions in a supercooled liquid

    International Nuclear Information System (INIS)

    Elenius, M; Dzugutov, M

    2009-01-01

    We examine structural relaxation in a supercooled glass-forming liquid simulated by constant-energy constant-volume (NVE) molecular dynamics. Time correlations of the total kinetic energy fluctuations are used as a comprehensive measure of the system's approach to the ergodic equilibrium. We find that, under cooling, the total structural relaxation becomes delayed as compared with the decay of the component of the intermediate scattering function corresponding to the main peak of the structure factor. This observation can be explained by collective movements of particles preserving many-body structural correlations within compact three-dimensional (3D) cooperatively rearranging regions.

  7. Nature of the anomalies in the supercooled liquid state of the mW model of water

    Science.gov (United States)

    Holten, Vincent; Limmer, David T.; Molinero, Valeria; Anisimov, Mikhail A.

    2013-05-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  8. Nature of the anomalies in the supercooled liquid state of the mW model of water.

    Science.gov (United States)

    Holten, Vincent; Limmer, David T; Molinero, Valeria; Anisimov, Mikhail A

    2013-05-07

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  9. Mechanical annealing in the flow of supercooled metallic liquid

    International Nuclear Information System (INIS)

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-01-01

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr 58.5 Cu 15.6 Al 10.3 Ni 12.8 Nb 2.8 , at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10 −1 s −1 to different strains were performed at the end of glass transition (T g-end  = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10 −1 s −1 to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model

  10. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition

    Science.gov (United States)

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen

    2018-03-01

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

  11. The Widom line of supercooled water

    International Nuclear Information System (INIS)

    Franzese, Giancarlo; Stanley, H Eugene

    2007-01-01

    Water can be supercooled to temperatures as low as -92 deg. C, the experimental crystal homogeneous nucleation temperature T H at 2 kbar. Within the supercooled liquid phase its response functions show an anomalous increase consistent with the presence of a liquid-liquid critical point located in a region inaccessible to experiments on bulk water. Recent experiments on the dynamics of confined water show that a possible way to understand the properties of water is to investigate the supercooled phase diagram in the vicinity of the Widom line (locus of maximum correlation length) that emanates from the hypothesized liquid-liquid critical point. Here we explore the Widom line for a Hamiltonian model of water using an analytic approach, and discuss the plausibility of the hypothesized liquid-liquid critical point, as well as its possible consequences, on the basis of the assumptions of the model. The present analysis allows us (i) to find an analytic expression for the spinodal line of the high-density liquid phase, with respect to the low-density liquid phase, showing that this line becomes flat in the P-T phase diagram in the physical limit of a large number of available orientations for the hydrogen bonds, as recently seen in simulations and experiments (Xu et al 2005 Proc. Natl Acad. Sci. 102 16558); (ii) to find an estimate of the values for the hypothesized liquid-liquid critical point coordinates that compare very well with Monte Carlo results; and (iii) to show how the Widom line can be located by studying the derivative of the probability of forming hydrogen bonds with local tetrahedral orientation which can be calculated analytically within this approach

  12. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  13. Measurements of the Poisson ratio and fragility of glass-forming liquids

    DEFF Research Database (Denmark)

    Christensen, Tage Emil; Olsen, Niels Boye

    Recently much attention has been given to models and phenomenology of glass-forming liquids that correlates fast and slow degrees of freedom . In particular the Poisson ratio has been correlated with fragility. We present data on shear - and bulk modulus obtained by the techniques...... of the piezoelectric transducers PBG and PSG on a number of glass-forming liquids. Hereby the Poisson ratio can be found. Furthermore the PSG also gives the temperature dependence of shear viscosity and thereby the fragility. The validity of the conjectured relation is discussed...

  14. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang [ORNL; Tyagi, M. [NCNR and University of Maryland; Mamontov, Eugene [ORNL; Chen, Sow-hsin H [ORNL

    2011-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.

  15. The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass former-supercooled liquids on a long time scale

    International Nuclear Information System (INIS)

    Busch, R.; Johnson, W.L.

    1998-01-01

    Viscosity and enthalpy relaxation from the amorphous state into the supercooled liquid state was investigated in the bulk metallic glass forming Zr 46.75 Ti 8.25 Cu 7.5 Ni 10 Be 27.5 alloy below the calorimetric glass transition. At different temperatures, the viscosities relax into states that obey the same Vogel endash Fulcher endash Tammann relation as the data obtained at higher temperatures in the supercooled liquid. Enthalpy recovery experiments after relaxation in the same temperature range show that the enthalpy of the material reaches values that also corresponds to the supercooled liquid state. The glass relaxes into a metastable supercooled liquid state, if it is observed on a long time scale. Equilibration is possible far below the calorimetric glass transition and very likely even below the isentropic temperature. copyright 1998 American Institute of Physics

  16. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    Science.gov (United States)

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  17. General rules prospected for the liquid fragility in various material groups and different thermodynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, M.; Masiewicz, E.; Grzybowski, A.; Pawlus, S.; Wojnarowska, Z. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Pionteck, J. [Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden (Germany)

    2014-10-07

    The fragility parameter has been acknowledged as one of the most important characteristics of glass-forming liquids. We show that the mystery of the dramatic change in molecular dynamics of systems approaching the glass transition can be better understood by the high pressure study of fragility parameters defined in different thermodynamic conditions. We formulate and experimentally confirm a few rules obeyed by the fragility parameters, which are also rationalized by the density scaling law and its modification suggested for associated liquids. In this way, we successfully explore and gain a new insight into the pressure effect on molecular dynamics of van der Waals liquids, polymer melts, ionic liquids, and hydrogen-bonded systems near the glass transition.

  18. Structural stability of Pd40Cu30Ni10P20 metallic glass in supercooled liquid region

    International Nuclear Information System (INIS)

    Jiang, J.Z.; Saksl, K.

    2004-01-01

    Phase separation of bulk and ribbon Pd 40 Cu 30 Ni 10 P 20 glasses, annealed in the supercooled liquid region at ambient pressure and high pressures, has been studied by means of differential scanning calorimetry (DSC) and X-ray diffraction techniques. DSC measurements show only one glass transition event in all annealed samples, indicating that no phase separation occurs in the alloy annealed in the supercooled liquid region. Phase analyses reveal at least six crystalline phases in the crystallized sample: monoclinic, tetragonal Cu 3 Pd-like, rhombohedral, fcc-Ni 2 Pd 2 P, fcc-(Ni, Pd) solid solution, and body-centered tetragonal (bct) Ni 3 P-like phases. Annealing treatments under external pressures in the vicinity of the glass transition temperature neither induce phase separation nor alter the glass transition temperature of the Pd 40 Cu 30 Ni 10 P 20 bulk glass

  19. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    Science.gov (United States)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  20. Time scales of supercooled water and implications for reversible polyamorphism

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  1. Orientational ordering as a possible mechanism for viscosity-enhancement of supercooled liquids

    International Nuclear Information System (INIS)

    Dattagupta, S.

    1990-07-01

    A supercooled liquid is viewed to have regions of local orientational order which can be picturized in terms of cages that restrict single particle diffusion. The mismatch in the orientation of two locally ordered neighbouring regions causes an internal stress which is added to the stress that appears in the Maxwell model of viscoelasticity. This leads to a ''renormalized'' Maxwell time which is related to the susceptibility associated with the orientational order. Hence, when the latter becomes very large, one obtains a large enhancement of the viscosity. (author). 7 refs

  2. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rakesh S.; Debenedetti, Pablo G. [Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Biddle, John W.; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute of Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2016-04-14

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  3. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Debenedetti, Pablo G.; Biddle, John W.; Anisimov, Mikhail A.

    2016-01-01

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  4. Acoustic and thermal anomalies in a liquid-glass transition of racemic S(+)-R(-) ketoprofen

    Science.gov (United States)

    Shibata, Tomohiko; Takayama, Haruki; Kim, Tae Hyun; Kojima, Seiji

    2014-01-01

    Acoustic and thermal properties of pharmaceutical racemic S(+)-R(-) ketoprofen were investigated in wide temperature range including glassy, supercooled liquid and liquid states by Brillouin scattering and temperature modulated DSC. Sound velocity and acoustic attenuation exhibited clear changes at 265 K indicating a liquid-glass transition and showed the typical structural relaxation above Tg. The high value of the fragility index m = 71 was determined by the dispersion of the complex heat capacity. New relaxation map was suggested in combination with previous study of dielectric measurement.

  5. Air oxidation of Zr65Cu17.5Ni10Al7.5 in its amorphous and supercooled liquid states, studied by thermogravimetric analysis

    International Nuclear Information System (INIS)

    Dhawan, A.; Sharma, S.K.; Raetzke, K.; Faupel, F.

    2003-01-01

    The oxidation behaviour of the bulk amorphous alloy Zr 65 Cu 17.5 Ni 10 Al 7.5 was studied in air at various temperatures in the temperature range 591-732 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy obeys the parabolic rate law showing two different linear regions (in the plots of mass gain versus square root of oxidation time) which are attributed to the amorphous and the supercooled liquid states of the alloy. The value of the activation energy Q for the amorphous state as calculated from the temperature dependence of the rate constants is found to be 1.80±0.1 eV and the corresponding value obtained for the supercooled liquid state is 1.20±0.1 eV. It is suggested that the rate controlling process during oxidation of the amorphous state is the back-diffusion of Ni, and possibly Cu also, while the oxidation in the supercooled liquid state is dominated by the inward diffusion of oxygen. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    International Nuclear Information System (INIS)

    Zhang Yang; Mamontov, Eugene; Tyagi, Madhusudan; Chen, Sow-Hsin

    2012-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ 0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χ T (Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement (x 2 ) and the non-Gaussian parameter α 2 extracted from the elastic scattering.

  7. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    Science.gov (United States)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  8. Fragility correlates thermodynamic and kinetic properties of glass forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.Narayana [Maharani’s Science College for Women, Bangalore 560001 (India); Viswanatha, R.; Chethana, B.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Gowda, V.C.Veeranna [Government First Grade College, Jayanagara, Bangalore 560070 (India); Rao, K.J., E-mail: kalyajrao@yahoo.co.in [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)

    2015-03-15

    Graphical abstract: The suggested new fragility parameter correlates viscosity and configurational entropy. - Highlights: • A new fragility function, F=ΔT/ΔC{sub p}×C{sub p}{sup l}/T{sub g} has been proposed. • A three parameter viscosity function using the new F reproduces Angell fragility plot. • A new ΔC{sub p} function is derived which directly relates Adam–Gibbs function with the fragility based viscosity function. - Abstract: In our earlier communication we proposed a simple fragility determining function, ([NBO]/V{sub m}{sup 3}T{sub g}), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, ΔC{sub p}/C{sub p}{sup l}, introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both ΔC{sub p} and ΔT and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters ΔC{sub p}, C{sub p}{sup l}, T{sub g} and T{sub m}. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam–Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the ΔC{sub p} versus ln(T{sub r}) curves and hence the configurational entropy.

  9. Singularity-free interpretation of the thermodynamics of supercooled water

    International Nuclear Information System (INIS)

    Sastry, S.; Debenedetti, P.G.; Sciortino, F.; Stanley, H.E.

    1996-01-01

    The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water. copyright 1996 The American Physical Society

  10. Poor glass-forming ability of Fe-based alloys

    DEFF Research Database (Denmark)

    Zheng, H.J.; Hu, L.N.; Zhao, X.

    2017-01-01

    processes. By using the concept of fluid cluster and supercooled liquid fragility in metallic liquids, it has been found that this dynamic transition makes the Fe-based supercooled liquids become more unstable, which leads to the poor GFA of Fe-based alloys. Further, it has been found that the degree...

  11. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    International Nuclear Information System (INIS)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-01-01

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  12. Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7

    Science.gov (United States)

    Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus

    Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.

  13. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  14. Strong to fragile transition in a model of liquid silica

    OpenAIRE

    Barrat, Jean-Louis; Badro, James; Gillet, Philippe

    1996-01-01

    The transport properties of an ionic model for liquid silica at high temperatures and pressure are investigated using molecular dynamics simulations. With increasing pressure, a clear change from "strong" to "fragile" behaviour (according to Angell's classification of glass-forming liquids) is observed, albeit only on the small viscosity range that can be explored in MD simulations.. This change is related to structural changes, from an almost perfect four-fold coordination to an imperfect fi...

  15. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    Science.gov (United States)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  16. The molecular dynamics simulation of structure and transport properties of sheared super-cooled liquid metal

    International Nuclear Information System (INIS)

    Wang Li; Liu Xiangfa; Zhang Yanning; Yang Hua; Chen Ying; Bian Xiufang

    2003-01-01

    Much more attention has been paid to the microstructure of liquid metal under non-ordinary condition recently. In this Letter, the pair correlation function (PCF), together with internal energy of sheared super-cooled liquid Co as a function of temperature has been calculated by molecular dynamics simulation based upon the embedded atom method (EAM) and analyzed compared to that under normal condition. The finding indicates that there exist three obvious peaks of PCF for liquid Co; while as the shear stress is applied to the liquid, the first and second peaks of PCF become lower, the third peak disappeared. The concentric shell structure representing short-range order of liquid still exists, however, it is weakened by the addition of shear stress, leading to the increases of disordering degree of liquid metal. The curves of energy versus temperature suggest the higher crystalline temperature compared to that under normal condition at the same cooling rate. In addition, the viscosity of super-liquid Co is calculated by non-equilibrium molecular dynamics (NEMD)

  17. Hybrid glasses from strong and fragile metal-organic framework liquids.

    Science.gov (United States)

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  18. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  19. What occurs in the fragile-to-strong liquid transition regime?

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Hu, L.N.

    The slow dynamics of glass-forming liquids is a complex subject of the condensed matter science. But the fragile-to-strong transition, which was observed not long ago [Ito, et al, Nature 1999], makes this subject even more complex since it is extremely challenging to directly probe the structural...

  20. Mean-coordination number dependence of the fragility in Ge-Se-In glass-forming liquids

    International Nuclear Information System (INIS)

    Saffarini, G.; Saiter, A.; Garda, M.R.; Saiter, J.M.

    2007-01-01

    Differential scanning calorimetry measurements have been performed on elemental Se as well as on Ge x Se 94- x In 6 (x=4, 8, and 11 at%) and on Ge y Se 88- y In 12 (y=5, 7, and 9 at%) chalcogenide glasses. From the cooling rate dependence of the fictive temperature, the apparent activation energies, Δh*, and the fragility indices, m, as defined in the strong-fragile glass-forming liquid concept, are determined. It is found that, in Ge-Se-In system, there is an evolution from strong (m=67) to fragile (m=116) glass-forming liquids. The dependence of 'm' on the mean-coordination number, Z, is also obtained. This dependence is rationalized by assuming that, in this glassy alloy system, there is a tendency for the formation of In 2 Se 3 clusters

  1. Fragile-to-strong transition in liquid silica

    Science.gov (United States)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2016-03-01

    We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  2. Fragile-to-strong transition in liquid silica

    Directory of Open Access Journals (Sweden)

    Julian Geske

    2016-03-01

    Full Text Available We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  3. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state.

    Science.gov (United States)

    Adrjanowicz, K; Zakowiecki, D; Kaminski, K; Hawelek, L; Grzybowska, K; Tarnacka, M; Paluch, M; Cal, K

    2012-06-04

    Antibiotics are chemical compounds of extremely important medical role. Their history can be traced back more than one hundred years. Despite the passing time and significant progress made in pharmacy and medicine, treatment of many bacterial infections without antibiotics would be completely impossible. This makes them particularly unique substances and explains the unflagging popularity of antibiotics within the medical community. Herein, using dielectric spectroscopy we have studied the molecular mobility in the supercooled liquid and glassy states of three well-known antibiotic agents: azithromycin, clarithromycin and roxithromycin. Dielectric studies revealed a number of relaxation processes of different molecular origin. Besides the primary α-relaxation, observed above the respective glass transition temperatures of antibiotics, two secondary relaxations in the glassy state were identified. Interestingly, the fragility index as well as activation energies of the secondary processes turned out to be practically the same for all three compounds, indicating probably much the same molecular dynamics. Long-term stability of amorphous antibiotics at room temperature was confirmed by X-ray diffraction technique, and calorimetric studies were performed to evaluate the basic thermodynamic parameters. Finally, we have also checked the experimental solubility advantages given by the amorphous form of the examined antibiotics.

  4. Molecular dynamics study of dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qi-Long; Huang, Duo-Hui; Yang, Jun-Sheng; Wan, Min-Jie; Wang, Fan-Hou, E-mail: eatonch@gmail.com

    2014-10-01

    Molecular dynamics simulations were applied to study the dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes. The mean-square displacement and the non-Gaussian parameter were used to describe the dynamic properties. The evolution of structural properties was investigated using the pair distribution functions and bond-angle distribution functions. Results for dynamic and structural relaxations indicate that the dynamic features are consistently correlated with the structure evolution, and there are three temperature regions as the temperature decreases: (1) at higher temperatures (1500 K, 1300 K, and 1100 K), the system remains in the liquid characteristics during the overall relaxation process. (2) At medial temperatures (1050 K, 900 K, and 700 K), a fast β-relaxation is followed by a much slower α-relaxation. There is a little change in the structural properties in the β-relaxation region, while major configuration rearrangements occurred in the α-relaxation range and the crystallization process was completed at the end of α-relaxation region. (3) At lower temperature (500 K), the system shows glassy characteristics during the overall relaxation process. In addition, the melting temperature, glass transition temperature and diffusion coefficients of supercooled liquid iron are also computed.

  5. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Bagchi, Biman

    2014-01-01

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments

  6. Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2015-01-01

    Vapor deposition of molecules on a substrate often results in glassy materials of high kinetic stability and low enthalpy. The extraordinary properties of such glasses are attributed to high rates of surface diffusion during sample deposition, which makes it possible for constituents to find a configuration of much lower energy on a typical laboratory time scale. However, the exact nature of the resulting phase and the mechanism of its formation are not completely understood. Using fast scanning calorimetry technique, we show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited films of toluene and ethylbenzene, archetypical fragile glass formers, are distinct from those of ordinary supercooled phase even when the deposition takes place at temperatures above the ordinary glass softening transition temperatures. These observations along with the absolute enthalpy dependences on deposition temperatures support the conjecture that the vapor-deposition may result in formation of non-crystalline phase of unique structural, thermodynamic, and kinetic properties

  7. The iso-structural viscosity, configurational entropy and fragility of oxide liquids

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2009-01-01

    the variation of the configurational entropy (Sc) with temperature (T) are obtained from the Avramov-Milchev (AM) and the Vogel-Fulcher- Tammann (VFT) viscosity equations, respectively. The two Sc(T) functions exhibit different relations to the liquid fragility. The AM Sc(T) function is a power function...

  8. The effect of atom mismatch on the fragility of supercooled Lennard-Jones binary mixtures

    International Nuclear Information System (INIS)

    Sun Minhua; Sun Yongli; Wang Aiping; Ma Congxiao; Li Jiayun; Cheng Weidong; Liu Fang

    2006-01-01

    The shear viscosity of the well-known binary Lennard-Jones mixture is simulated under constant temperature and constant volume conditions (NVT) by a molecular-dynamics (MD) method. The effect of atomic size mismatch on the fragility parameter and glass-forming ability is studied. The fragility parameters calculated from shear viscosity data decrease with the increment of the atomic size mismatch. The value of the fragility changes from 168.963 to 22.976 when the mismatch changes from 0.023 to 0.25. It is shown that the fragility parameter is sensitive to the atomic size mismatch. The calculated pair distribution functions and mean square displacements indicate that the glass-forming ability increases with the atomic size mismatch

  9. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  10. Importance of liquid fragility for energy applications of ionic liquids

    Science.gov (United States)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  11. Deuteron-NMR investigation on the dynamics of supercooled, confined water

    Energy Technology Data Exchange (ETDEWEB)

    Sattig, Matthias; Vogel, Michael [TU Darmstadt, Institut fuer Festkoerperphysik (Germany)

    2013-07-01

    The dynamical behaviour of water in the regime of the supercooled liquid is a topic of large interest. In particular, the existence of a fragile-to-strong transition (FST) at T=225K related to the transition between two distinct phases of liquid water is controversially discussed. Due to crystallization the temperature range proposed for the FST is hardly accessible in bulk water. Therefore, we confine heavy water to narrow pores in the mesoporous silicate MCM-41. This suppresses the freezing of a substantial fraction of water, enabling direct investigation of the interesting temperatures. Deuteron-NMR methods are utilised to determine the rotational correlation times τ of water on time scales from ns up to s. The spin-lattice-relaxation time T{sub 1} exhibits a typical minimum at about T = 230 K. Above this minimum the correlation times follow a Vogel-Fulcher-Tammann law. Below the minimum, two relaxation processes could be observed. The low-temperature processes show a different temperature dependence, where the curves τ(T) of all processes intersect at about T = 230 K. A comparison with literature data from neutron scattering and dielectric spectroscopy gives rise to the idea that the observed crossover is due to this intersection of processes rather than to a FST. To test this idea studies on water confined to MCM-41 with different pore sizes and fillings are in progress.

  12. Supercooling of natural water, heavy water and of the blends H2O-D2O

    International Nuclear Information System (INIS)

    Lafargue, C.; Babin, L.; Clausse, D.; Lere-Porte, M.; Broto, F.

    1975-01-01

    It is shown that the coherency of the results of various measurements on water freezing temperatures proves that freezing temperatures must be dependent on the structure of the supercooled liquid. Recent experiments that confirm this interpretation are described: study of the stability of supercooled water as a function of time at fixed temperature, study of the influence of various thermal treatments on the behavior of supercooled water, study of the supercooling of heavy water and of D 2 O-H 2 O blends [fr

  13. Measurement of Density, Sound Velocity, Surface Tension, and Viscosity of Freely Suspended Supercooled Liquids

    Science.gov (United States)

    Trinh, E. H.

    1995-01-01

    Non-contact methods have been implemented in conjunction with levitation techniques to carry out the measurement of the macroscopic properties of liquids significantly cooled below their nominal melting point. Free suspension of the sample and remote methods allow the deep excursion into the metastable liquid state and the determination of its thermophysical properties. We used this approach to investigate common substances such as water, o-terphenyl, succinonitrile, as well as higher temperature melts such as molten indium, aluminum and other metals. Although these techniques have thus far involved ultrasonic, electromagnetic, and more recently electrostatic levitation, we restrict our attention to ultrasonic methods in this paper. The resulting magnitude of maximum thermal supercooling achieved have ranged between 10 and 15% of the absolute temperature of the melting point for the materials mentioned above. The physical properties measurement methods have been mostly novel approaches, and the typical accuracy achieved have not yet matched their standard equivalent techniques involving contained samples and invasive probing. They are currently being refined, however, as the levitation techniques become more widespread, and as we gain a better understanding of the physics of levitated liquid samples.

  14. Transport properties of supercooled confined water

    International Nuclear Information System (INIS)

    Mallamace, F.; Baglioni, P.; Corsaro, C.; Spooren, J.; Stanley, H.E.; Chen, S.-H.

    2011-01-01

    We present an overview of recent experiments performed on water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We examine data generated by nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, and study water confined in nanometer-scale environments. When contained within small pores, water does not crystallize and can be supercooled well below its homogeneous nucleation temperature T H. On this basis, it is possible to carry out a careful analysis of the well-known thermodynamic anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, liquid water is a mixture of two different local structures: a low density liquid (LDL) and a high-density liquid (HDL). The LLPT line terminates at a low-T liquid-liquid critical point. We discuss the following experimental findings: 1.) the crossover from non-Arrhenius behavior at high T to Arrhenius behavior at low T in transport parameters; 2.) the breakdown of the Stokes-Einstein relation; 3.) the existence of a Widom line, which is the locus of points corresponding to a maximum correlation length in the P-T phase diagram and which ends in the liquid-liquid critical point; 4.) the direct observation of the LDL phase; and 5.) the minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results strongly support the LLPT hypothesis. All of the basic science and technology community should be impressed by the fact that, although the few ideas (apparently elementary) developed concerning water approximately 27 centuries ago have changed very little up to now, because of the current expansion in our knowledge in this area, they can begin to change in the near future.

  15. Kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation

    International Nuclear Information System (INIS)

    Zhou Lili; Liu Rangsu; Tian Zean; Liu Hairong; Hou Zhaoyang; Peng Ping; Zhu Xuanmin; Liu Quanhui

    2012-01-01

    The kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation process have been investigated by molecular dynamics simulations, and the microstructure evolution analyzed by the cluster-type index method (CTIM) and the tracing method. It has been found that, the dynamic features are consistently correlated with the microstructure evolution and the crystallization characteristics in the mean square displacement (MSD) and the non-Gaussian parameter (NGP): the β relaxation regime corresponds to the minor structural rearrangement because of the “cage effect”, and the atoms attempt to escape from the “cages”; the α relaxation regime is related to a more diffusive movement of atoms, and the appearance of the second plateau in MSD and the non-zero plateau in NGP corresponds to the completion of crystallization. In addition, three distinct stages of nucleation, growth of nuclei and coarsening of crystallites in the crystallization process have been clearly revealed.

  16. Exploring the Origin of Fragile-to-Strong Transition in Some Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Hu, L. N.

    2014-01-01

    , topological and thermodynamic changes causing this transition. The theory for describing the transition has not been fully established. In this paper, we summarize our current understanding of the fragile-to-strong transition in some glass-forming liquids basedon our two published papers and recent...

  17. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2015-01-01

    In the present work, we show experimental evidence for the dynamic fragile-to-strong (F-S) transition in a series of CuZr(Al) glass-forming liquids (GFLs). A detailed analysis of the dynamics of 98 glass-forming liquids indicates that the F-S transition occurs around Tf-s ≈ 1.36 Tg. Using...... the hyperquenching-annealing-x-ray scattering approach, we have observed a three-stage evolution pattern of medium-range ordering (MRO) structures during the F-S transition, indicating a dramatic change of the MRO clusters around Tf-s upon cooling. The F-S transition in CuZr(Al) GFLs is attributed to the competition...... among the MRO clusters composed of different locally ordering configurations. A phenomenological scenario has been proposed to explain the structural evolution from the fragile to the strong phase in the CuZr(Al) GFLs....

  18. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  19. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    International Nuclear Information System (INIS)

    Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.

    2014-01-01

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures

  20. Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2011-03-01

    To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.

  1. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-06-07

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  2. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  3. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  4. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  5. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    Science.gov (United States)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  6. Mechanism of supercooled droplet freezing on surfaces.

    Science.gov (United States)

    Jung, Stefan; Tiwari, Manish K; Doan, N Vuong; Poulikakos, Dimos

    2012-01-10

    Understanding ice formation from supercooled water on surfaces is a problem of fundamental importance and general utility. Superhydrophobic surfaces promise to have remarkable 'icephobicity' and low ice adhesion. Here we show that their icephobicity can be rendered ineffective by simple changes in environmental conditions. Through experiments, nucleation theory and heat transfer physics, we establish that humidity and/or the flow of a surrounding gas can fundamentally switch the ice crystallization mechanism, drastically affecting surface icephobicity. Evaporative cooling of the supercooled liquid can engender ice crystallization by homogeneous nucleation at the droplet-free surface as opposed to the expected heterogeneous nucleation at the substrate. The related interplay between droplet roll-off and rapid crystallization is also studied. Overall, we bring a novel perspective to icing and icephobicity, unveiling the strong influence of environmental conditions in addition to the accepted effects of the surface conditions and hydrophobicity.

  7. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Science.gov (United States)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  8. Decompression-induced melting of ice IV and the liquid-liquid transition in water

    Science.gov (United States)

    Mishima, Osamu; Stanley, H. Eugene

    1998-03-01

    Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.

  9. Kinetics of crystal growth in amorphous solid and supercooled liquid TeSe20 using DTA and d.c. conductivity measurements

    International Nuclear Information System (INIS)

    Kotkata, M.F.; Mahmoud, E.A.; El-Mously, M.K.

    1979-07-01

    Curves of reaction rate versus temperature for constant heating rates (phi=1-10 0 C/min) constructed by analytical methods have been used to demonstrate the crystallization kinetics of amorphous solid TeSe 20 . The devitrification process takes place with predominance of random nucleation and one-dimensional growth, and is limited by combined switching and splitting of the chemical bonds. The mean value for the activation energy of the amorphous-crystal transformation, average E, is found to be 64 Kcal/mole. While, the quantity E calculated on the basis of d.c. conductivity changes during different isothermal crystallization (120-175 0 C) in supercooled liquid TeSe 20 , amounts to 11.5 Kcal/mole and suggests the existence of mixed chains in the liquid alloys. (author)

  10. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  11. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  12. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids

    Science.gov (United States)

    Zhang, Meng; Liu, Lin

    2018-06-01

    To unravel the true nature of glass transition, broader insights into glass forming have been gained by examining the stress-driven glassy systems, where strong shear thinning, i.e. a reduced viscosity under increasing shear rate, is encountered. It is argued that arbitrarily small stress-driven shear rates would ‘melt’ the glass and erase any memory of its thermal history. In this work, we report a glass transition memorized by the enthalpy-entropy compensation in strongly shear-thinned supercooled metallic liquids, which coincides with the thermal glass transition in both the transition temperature and the activation Gibbs free energy. Our findings provide distinctive insights into both glass forming and shear thinning, and enrich current knowledge on the ubiquitous enthalpy-entropy compensation empirical law in condensed matter physics.

  13. Surface Tension of Supercooled Water Determined by Using a Counterpressure Capillary Rise Method

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Fransen, M. A. L. J.; Hykl, Jiří; Hrubý, Jan

    2015-01-01

    Roč. 119, č. 17 (2015), s. 5567-5575 ISSN 1520-6106 R&D Projects: GA MŠk LG13056; GA ČR GJ15-07129Y Institutional support: RVO:61388998 Keywords : capillary tube * interfacial tension * metastable liquid * supercooled liquid Subject RIV: BJ - Thermodynamics Impact factor: 3.187, year: 2015 http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b00545

  14. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  15. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    International Nuclear Information System (INIS)

    Li, Rong; Wu, Yongquan; Xiao, Junjiang

    2014-01-01

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms

  16. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime o...

  17. Supercooling as a viable non-freezing cell preservation method of rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    O Berk Usta

    Full Text Available Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4(oC on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics to that of static cold storage (CS at +4(oC and cryopreservation. We consider two prominent preservation solutions a Hypothermosol (HTS-FRS and b University of Wisconsin solution (UW and a range of preservation temperatures (-4 to -10 (oC. We find that there exists an optimum temperature (-4(oC for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture. With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%; moreover we also show that the preservation can be performed in large batches (50 million cells with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells performed in cryovials.

  18. Pressure effect on crystallization of metallic glass Fe72P11C6Al5B4Ga2 alloy with wide supercooled liquid region

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. S.; Gerward, Leif

    2000-01-01

    The effect of pressure on the crystallization behavior of metallic glass Fe72P11C6Al5B4Ga2 alloy with a wide supercooled liquid region has been investigated by in situ high-pressure and high-temperature x-ray diffraction measurements using synchrotron radiation. In the pressure range from 0 to 2...... mobility and changes of the Gibbs free energy of various phases with pressure. ©2000 American Institute of Physics....

  19. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering

    Science.gov (United States)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang

    2013-02-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  20. BANKING SYSTEM FRAGILITY: CASE OF THE REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    Dorina CLICHICI

    2014-04-01

    Full Text Available The paper studied the determinants of Moldovan banking system fragility. It underlines the existing researches into the empirical determinants of banking fragility. The analysis revealed that there are numerous channels through which weaknesses within the macroeconomic conditions and structural characteristics might increase banking system fragility. The main macroeconomic determinants which may have an impact on Moldovan banking system fragility are: excessive domestic liquidity, pro-cyclical character of the banking system, dependence on remittances, financial dollarization. There are also several banking characteristics which play a role for Moldovan banking system fragility: the undermined intermediation function, high level of bad loans, uncertainties in the ownership structure, low presence of foreign strategic investors. The paper employed a quantitative, a qualitative and a comparative analysis using the financial soundness and structural indicators of the Moldovan banking system in order to assess the impact of various determinants on Moldovan banking system fragility. The results reveal a high degree of capitalization and liquidity of Moldovan banking system, factors which contribute and maintain the general stability of the entire financial system.

  1. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    Science.gov (United States)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  2. Essays on financial fragility and regulation

    NARCIS (Netherlands)

    Ma, K.

    2013-01-01

    This thesis investigates various issues in regulation, with three chapters on financial fragility and banking regulation, and one chapter on competition policy. Chapter 2 studies banks’ herding driven by their need for market liquidity, highlighting a trade-off between systemic risk and liquidity

  3. The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics

    International Nuclear Information System (INIS)

    Cho, Ju-Young; Kim, Dohyung; Park, Yong-Jin; Yang, Tae-Youl; Lee, Yoo-Yong; Joo, Young-Chang

    2015-01-01

    For high switching speed and high reliability of phase-change random access memory (PcRAM), we need to identify materials that enable fast crystallization at elevated temperatures but are stable at and above room temperature. Achieving this goal requires a breakthrough in our understanding of the unique crystallization kinetics of amorphous phase change materials as a fragile glass, described as the non-Arrhenius behavior of atomic mobility. It is a highly rewarding task to unravel the unconventional crystallization kinetics and related properties, because these properties can be utilized to predict the device characteristics. This manuscript utilizes the thin-film mechanics to investigate the crystallization kinetics of amorphous Ge 2 Sb 2 Te 5 phase-change materials doped with Al, Bi, C and N, which is an effective method to analyze the structural changes in amorphous materials. Crystallization temperature, super-cooled liquid region, glass transition temperature and fragility are measured to describe the crystallization kinetics tuned by doping; characteristic fragile-to-strong transition is observed for C and N dopings due to their structural feature as an interstitial dopant. Consequently, doping effects on the phase stability and atomic mobility manifested by the crystallization temperature and the super-cooled liquid region (or 1/fragility) successfully correspond with PcRAM characteristics, i.e., reliability and switching speed, respectively

  4. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press...

  5. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    Science.gov (United States)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  6. Thermo-physical characterization of the Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 bulk metallic glass forming alloy

    International Nuclear Information System (INIS)

    Bochtler, Benedikt; Gross, Oliver; Gallino, Isabella; Busch, Ralf

    2016-01-01

    The iron-phosphorus based bulk metallic glass forming alloy Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 is characterized with respect to its thermophysical properties, crystallization and relaxation behavior, as well as its viscosity. The alloy provides a high critical casting thickness of 13 mm, thus allowing for the casting of amorphous parts with a considerable size. Calorimetric measurements reveal the characteristic transformation temperatures, transformation enthalpies, and the specific heat capacity. The analyses show that no stable supercooled liquid region exists upon heating. The specific heat capacity data are used to calculate the enthalpy, entropy, and Gibbs free energy differences between the crystalline and the supercooled liquid state. The crystallization behavior of amorphous samples upon heating is analyzed by differential scanning calorimetry and X-ray diffraction, and a time-temperature-transformation diagram is constructed. Dilatometry is used to determine the thermal expansion behavior. The equilibrium viscosity below the glass transition as well as volume relaxation behavior are measured by three-point beam bending and dilatometry, respectively, to assess the kinetic fragility. With a kinetic fragility parameter of D* = 21.3, the alloy displays a rather strong liquid behavior. Viscosity above the melting point is determined using electromagnetic levitation in microgravity on a reduced gravity aircraft in cooperation with the German Aerospace Center (DLR). These high-temperature viscosity data are compared with the low-temperature three-point beam bending measurements. The alloy displays a strong liquid behavior at low temperatures and a fragile behavior at high temperatures. These results are analogous to the ones observed in several Zr-based bulk metallic glass forming liquids, indicating a strong to fragile liquid-liquid transition in the undercooled liquid, which is obscured by crystallization.

  7. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  8. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    International Nuclear Information System (INIS)

    Limmer, David T.; Chandler, David

    2013-01-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light

  9. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  10. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  11. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  12. Supercooling of Water Controlled by Nanoparticles and Ultrasound

    Science.gov (United States)

    Cui, Wei; Jia, Lisi; Chen, Ying; Li, Yi'ang; Li, Jun; Mo, Songping

    2018-05-01

    Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

  13. Raman non-coincidence effect of boroxol ring: The interplay between repulsion and attraction forces in the glassy, supercooled and liquid state

    Science.gov (United States)

    Kalampounias, Angelos G.; Papatheodorou, George N.

    2018-06-01

    Temperature dependent Raman spectra of boric oxide have been measured in a temperature range covering the glassy, supercooled and liquid state. The shift of the isotropic band assigned to boroxol rings relative to the anisotropic component upon heating the glass is measured and attributed to the Raman non-coincidence effect. The measured shift is associated with the competition between attraction and repulsion forces with increasing temperature. The relation of dephasing and orientational relaxation times to the non-coincidence effect of the condensed phases has been examined. We discuss our results in the framework of the current phenomenological status of the field in an attempt to separate the attraction and repulsion contributions corresponding to the observed non-coincidence effect.

  14. Essays on bank liquidity : contributions to the measurement of liquidity risk and to the management of bank liquidity production

    OpenAIRE

    Soula , Jean-Loup

    2017-01-01

    Bank liquidity risk reflects the function of banks to create liquidity. Banks are fragile, exposed to the possibility of runs from short-term creditors. This dissertation contributes to a better understanding of bank liquidity risk. The second chapter proposes a measure of bank fragility based on the value of the assets held by a bank. Results confirm, in an original way, the fragile nature of banks. However, bank liquidity creation benefits to the economy. The third chapter analyses the capa...

  15. Metastable liquid-liquid transition in a molecular model of water

    Science.gov (United States)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  16. Super-cool Dark Matter arXiv

    CERN Document Server

    Hambye, Thomas; Teresi, Daniele

    In dimension-less theories of dynamical generation of the weak scale, the Universe can undergo a period of low-scale inflation during which all particles are massless and super-cool. This leads to a new mechanism of generation of the cosmological Dark Matter (DM) relic density: super-cooling can easily suppress the amount of DM to the desired level. This is achieved for TeV-scale DM, if super-cooling ends when quark condensates form at the QCD phase transition. Along this scenario, the baryon asymmetry can be generated either at the phase transition or through leptogenesis. We show that the above mechanism takes place in old and new dimension-less models.

  17. Thermodynamic basis for cluster kinetics

    DEFF Research Database (Denmark)

    Hu, Lina; Bian, Xiufang; Qin, Xubo

    2006-01-01

    Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. Thermodynamic basis for the stability...... of locally ordered structure in the MMG liquids is discussed in terms of the two-order-parameter model. It is found that the Arrhenius activation energy of clusters, h, is proportional to the chemical mixing enthalpy of alloys, Hchem. Fragility of the MMG forming liquids can be described by the ratio...

  18. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  19. Atomic mobility in the overheated amorphous GeTe compound for phase change memories

    International Nuclear Information System (INIS)

    Sosso, G.C.; Behler, J.; Bernasconi, M.

    2016-01-01

    Abstractauthoren Phase change memories rest on the ability of some chalcogenide alloys to undergo a fast and reversible transition between the crystalline and amorphous phases upon Joule heating. The fast crystallization is due to a high nucleation rate and a large crystal growth velocity which are actually possible thanks to the fragility of the supercooled liquid that allows for the persistence of a high atomic mobility at high supercooling where the thermodynamical driving force for crystallization is also high. Since crystallization in the devices occurs by rapidly heating the amorphous phase, hysteretic effects might arise with a different diffusion coefficient and viscosity on heating than on cooling. In this work, we have quantified these hysteretic effects in the phase change compound GeTe by means of molecular dynamics simulations. The atomic mobility in the overheated amorphous phase is lower than in supercooled liquid at the same temperature and the viscosity is consequently higher. Still, the simulations of the overheated amorphous phase reveal a breakdown of the Stokes-Einstein relation between the diffusion coefficient and the viscosity, similarly to what we found previously in the supercooled liquid. Evidences are provided that the breakdown is due to the emergence of dynamical heterogeneities at high supercooling. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Ari; Merilaeinen, Arttu [Helsinki University of Technology, Department of Energy Technology, Applied Thermodynamics, P.O. Box 4400, 02015 TKK (Finland); Wikstroem, Lisa; Kauranen, Pertti [VTT Technical Research Centre of Finland, Advanced Materials, P.O. Box 1300, 33101 Tampere (Finland)

    2010-07-15

    Some liquids can be kept in a supercooled or supersaturated metastable state for substantially long periods. Such liquids can be applied as long-term heat storage where the latent heat can be released when needed. As xylitol possesses a relatively high value of latent heat and as it can be easily supercooled, it has promising properties for this application. However, the speed of the crystallization of xylitol is low, leading to a low release rate of latent heat. Several additives have been experimentally tested for the purpose of accelerating the crystallization speed. The effect of the additives on the latent heat, on the melting temperatures, and on the long-term durability of the supercooled state was also measured. The highest speeds of the crystallization front, at a temperature of 22 C, were achieved with methanol as an additive leading to speeds 33 times higher in vertical experiments and in 170 times higher in horizontal ones than with pure xylitol. The improved speed of the crystallization front is mostly caused by the methanol flow currents generated as a result of the separation of methanol during crystallization, and to a lesser extent, as a result of the increase in the speed of the growth of the crystals. (author)

  1. Effects of poly-vinyl alcohol on supercooling phenomena of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Kudoh, Tomoya [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano City, 380-8553 (Japan)

    2009-05-15

    The effects of a polymer additive on the supercooling of water were investigated experimentally. Poly-vinyl alcohols (PVAs) were used as the additives, and samples were prepared by dissolving the PVA in water. Since the characteristics of PVA are decided by its degrees of polymerization and saponification, these were varied along with the concentration as the experimental parameters. Moreover, the effect of purity of the water was also considered. Each sample was cooled and the temperature at the instant when ice appeared was measured. Since the freezing of supercooled water is a statistical phenomenon, many experiments were carried out and the average degree of supercooling was obtained. It was found that PVA affects the nucleation of ice in supercooled water and the degree of supercooling increases with the addition of PVA even for water with low purity. The average degree of supercooling increases with an increase in the degree of saponification of PVA. (author)

  2. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  3. Liquid-liquid phase transition in Stillinger-Weber silicon

    International Nuclear Information System (INIS)

    Beaucage, Philippe; Mousseau, Normand

    2005-01-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase

  4. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    Science.gov (United States)

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  5. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  6. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  7. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    International Nuclear Information System (INIS)

    Shi, L.; Skinner, J. L.

    2015-01-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS

  8. On the pressure evolution of dynamic properties of supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C Michael [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Imre, Attila R [KFKI Atomic Energy Research Institute, 1525 Budapest, POB 49 (Hungary)

    2008-06-18

    A pressure counterpart of the Vogel-Fulcher-Tammann (VFT) equation for representing the evolution of dielectric relaxation times or related dynamic properties is discussed: {tau}(P) = {tau}{sub 0}{sup P}exp[D{sub P}{delta}P(P{sub 0}-{delta}P)], where {delta}P = P-P{sub SL}, P{sub 0} is the ideal glass pressure estimation, D{sub P} is the pressure fragility strength coefficient, and the prefactor {tau}{sub 0}{sup P} is related to the relaxation time at the stability limit (P{sub SL}) in the negative pressure domain. The discussion is extended to the Avramov model (AvM) relation {tau}(T,P) = {tau}{sub 0}exp[{epsilon}(T{sub g}(P)/T){sup D}], supplemented with a modified Simon-Glatzel-type equation for the pressure dependence of the glass temperature (T{sub g}(P)), enabling an insight into the negative pressure region. A recently postulated (Dyre 2006 Rev. Mod. Phys. 78 953) comparison between the VFT and the AvM-type descriptions is examined, for both the temperature and the pressure paths. Finally, we address the question 'Does fragility depend on pressure?' from the title of Paluch M et al (2001 J. Chem. Phys. 114 8048) and propose a pressure counterpart for the 'Angell plot'.

  9. Seasonal change in the capacity for supercooling by neonatal painted turtles.

    Science.gov (United States)

    Packard, G C; Packard, M J; McDaniel, L L

    2001-05-01

    Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed incubation the preceding summer. This facet of their natural history commonly causes neonates in northerly populations to be exposed in mid-winter to ice and cold, which many animals survive by remaining unfrozen and supercooled. We measured the limit of supercooling in samples of turtles taken shortly after hatching and in other samples after 2 months of acclimation (or acclimatization) to a reduced temperature in the laboratory or field. Animals initially had only a limited capacity for supercooling, but they acquired an ability to undergo deeper supercooling during the course of acclimation. The gut of most turtles was packed with particles of soil and eggshell shortly after hatching, but not after acclimation. Thus, the relatively high limit of supercooling for turtles in the days immediately after hatching may have resulted from the ingestion of soil (and associated nucleating agents) by the animals as they were freeing themselves from their eggshell, whereas the relatively low limit of supercooling attained by acclimated turtles may have resulted from their purging their gut of its contents. Parallels may, therefore, exist between the natural-history strategy expressed by hatchling painted turtles and that expressed by numerous terrestrial arthropods that withstand the cold of winter by sustaining a state of supercooling.

  10. Surface Tension of Supercooled Water: No Inflection Point down to-25 degrees C

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Jan; Vinš, Václav; Mareš, R.; Hykl, Jiří; Kalová, J.

    2014-01-01

    Roč. 5, č. 3 (2014), s. 425-428 ISSN 1948-7185 R&D Projects: GA AV ČR(CZ) IAA200760905; GA ČR(CZ) GPP101/11/P046; GA MŠk(CZ) LG13056 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761201 Institutional support: RVO:61388998 Keywords : liquid * metastable * supercooled Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 7.458, year: 2014

  11. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  12. Fundamental research on supercooling phenomenon on heat transfer surface

    International Nuclear Information System (INIS)

    Saito, A.; Okawa, S.; Koganezawa, S.

    1991-01-01

    In relation to the problem of supercooling for ice storage devices, experiments on freezing a relatively large volume of supercooled water is carried out. In the experiment, an experimental method to determine a probability of freezing a large volume of supercooled water with a uniform temperature distribution is introduced. It is accomplished by dividing the water into many smaller droplets. In a statistical analysis, a method to improve an accuracy in a case of having a limited number of experiments is introduced, and the probability of freezing is calculated for each degree of supercooling. The average freezing temperature for the experiment is placed just at the extended region of the other researchers results worked on small droplets. By relating the value with the probability of freezing on various kinds of heat transfer surfaces, the probability of freezing which is independent of the surface is calculated. In this paper it is confirmed to be negligible compared with the one on the surface

  13. Comment on "Spontaneous liquid-liquid phase separation of water".

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  14. Xylem development in prunus flower buds and the relationship to deep supercooling.

    Science.gov (United States)

    Ashworth, E N

    1984-04-01

    Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool.

  15. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  16. Fe-based bulk metallic glasses with a larger supercooled liquid region and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, K.Q. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110178 (China)], E-mail: kqqiu@yahoo.com.cn; Pang, J.; Ren, Y.L.; Zhang, H.B. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110178 (China); Ma, C.L.; Zhang, T. [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-12-20

    Bulk metallic glasses (BMGs) with compositions of Fe{sub 61.5-x}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}M{sub x} (x = 2, 3; M = Ni, Nb) were fabricated by copper mold casting using raw industrial materials. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical tester and scanning electron microscope (SEM) were employed to check the phase constituent, the thermal stability, the mechanical properties and the fracture surfaces of as-cast samples. The results indicate that the BMGs with diameters of 1.5-3 mm were fabricated for the alloys investigated. The largest supercooled liquid region (SLR) up to 76 K was found for Fe{sub 58.5}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}Ni{sub 3} BMG. The BMGs with Ni addition exhibit not only high fracture strengths reaching 3770 MPa for x = 2 and 3980 MPa for x = 3 alloys, respectively, but also apparently plastic strains up to 0.67% and 0.93%, respectively. The fracture surfaces of the Fe{sub 61.5-x}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}Ni{sub x} (x = 2, 3) alloys with plasticity show narrow ridges characteristic of venous patterns combining with tearing flow between the ridges. While the Nb containing alloys show not only a lower SLR below 60 K but also a lower stress below 2400 MPa, as well as almost no plastic strain before fracture.

  17. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    Science.gov (United States)

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  18. On the pressure dependence of the fragility of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, S; Paluch, M; Ziolo, J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2009-08-19

    This work was motivated by ostensibly contradictory results from different groups regarding the effect of pressure on the fragility of glycerol. We present new experimental data for an intermediate pressure regime showing that the fragility increases with pressure up to about 1.8 GPa, becoming invariant at higher pressures. There is no discrepancy among the various literature data taken in toto. The behavior of glycerol is quite distinct from that of normal liquids, a result of its substantial hydrogen bonding. (fast track communication)

  19. Surface Tension of Supercooled Water: Inflection Point-Free Course down to 250 K Confirmed Using a Horizontal Capillary Tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2017-01-01

    Roč. 62, č. 11 (2017), s. 3823-3832 ISSN 0021-9568 R&D Projects: GA ČR(CZ) GJ15-07129Y Institutional support: RVO:61388998 Keywords : horizontal technique * metastable liquid * supercooled Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.323, year: 2016 http://pubs.acs.org/doi/pdf/10.1021/acs.jced.7b00519

  20. More accurate X-ray scattering data of deeply supercooled bulk liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Neuefeind, Joerg C [ORNL; Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Paschek, Dietmar [Rostock University, Rostock, Germany

    2011-01-01

    Deeply supercooled water droplets held container-less in an acoustic levitator are investigated with high energy X-ray scattering. The temperature dependence X-ray structure function is found to be non-linear. Comparison with two popular computer models reveals that structural changes are predicted too abrupt by the TIP5P model, while the rate of change predicted by TIP4P is in much better agreement with experiment. The abrupt structural changes predicted by the TIP5P model to occur in the temperature range between 260-240K as water approaches the homogeneous nucleation limit are unrealistic. Both models underestimate the distance between neighbouring oxygen atoms and overestimate the sharpness of the OO distance distribution, indicating that the strength of the H-bond is overestimated in these models.

  1. Comment on "Spontaneous liquid-liquid phase separation of water"

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014), 10.1103/PhysRevE.89.020301] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  2. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  3. Solidity of viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1999-01-01

    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Böhmer show that small rotation angles dominate with only a few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solidlike on short length scales. A characteristic length...

  4. Long term thermal energy storage with stable supercooled sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Schultz, Jørgen M.; Johansen, Jakob Berg

    2015-01-01

    Utilizing stable supercooling of sodium acetate trihydrate makes it possible to store thermal energy partly loss free. This principle makes seasonal heat storage in compact systems possible. To keep high and stable energy content and cycling stability phase separation of the storage material must...... it expands and will cause a pressure built up in a closed chamber which might compromise stability of the supercooling. This can be avoided by having an air volume above the phase change material connected to an external pressure less expansion tank. Supercooled sodium acetate trihydrate at 20 °C stores up...

  5. Supercooling release of micro-size water droplets on microporous surfaces with cooling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chun Wan; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of)

    2012-06-15

    The gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells plays a key role in controlling moisture in these cells. When the GDL is exposed to a cold environment, the water droplets or water nets in the GDL freeze. This work observed the supercooling and freezing behaviors of water droplets under low temperature. A GDL made of carbon fiber was coated with a waterproof material with 0%, 40%, and 60% PTFE (polytetrafluoroethylene) contents. The cooling process was investigated according to temperature, and the water droplets on the GDL were supercooled and frozen. Delay in the supercooling release was correlated with the size of water droplets on the GDL and the coating rate of the layer. Moreover, the supercooling degree of the droplets decreased as the number of freeze thaw cycles in the GDL increased.

  6. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    Science.gov (United States)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  7. Analysis of supercooling activity of tannin-related polyphenols.

    Science.gov (United States)

    Kuwabara, Chikako; Wang, Donghui; Endoh, Keita; Fukushi, Yukiharu; Arakawa, Keita; Fujikawa, Seizo

    2013-08-01

    Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water

  8. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    Science.gov (United States)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  9. Fragile X syndrome and fragile X-associated tremor ataxia syndrome.

    Science.gov (United States)

    Hall, Deborah A; Berry-Kravis, Elizabeth

    2018-01-01

    Fragile X-associated disorders encompass several conditions, which are caused by expansion mutations in the fragile X mental retardation 1 (FMR1) gene. Fragile X syndrome is the most common inherited etiology of intellectual disability and results from a full mutation or >200 CGG repeats in FMR1. It is associated with developmental delay, autism spectrum disorder, and seizures. Fragile X-associated tremor/ataxia syndrome is a progressive neurodegenerative disease that occurs in premutation carriers of 55-200 CGG repeats in FMR1 and is characterized by kinetic tremor, gait ataxia, parkinsonism, executive dysfunction, and neuropathy. Fragile X-associated primary ovarian insufficiency also occurs in premutation carrier women and manifests with infertility and early menopause. The diseases constituting fragile X-associated disorders differ mechanistically, due to the distinct molecular properties of premutation versus full mutations. Fragile X syndrome occurs when there is a lack of fragile X mental retardation protein (FMRP) due to FMR1 methylation and silencing. In fragile X-associated tremor ataxia syndrome, a toxic gain of function is postulated with the production of excess CGG repeat-containing FMR1 mRNA, abnormal translation of the repeat sequence leading to production of polyglycine, polyalanine, and other polypeptides and to outright deficits in translation leading to reduced FMRP at larger premutation sizes. The changes in underlying brain chemistry due to FMR1 mutations have led to therapeutic studies in these disorders, with some progress being made in fragile X syndrome. This paper also summarizes indications for testing, genetic counseling issues, and what the future holds for these disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  11. The Role of Chain Length in Nonergodicity Factor and Fragility of Polymers

    DEFF Research Database (Denmark)

    Dalle-Ferrie, Cecile; Niss, Kristine; Sokolov, Alexei

    2010-01-01

    The mechanism that leads to different fragility values upon approaching the glass transition remains a topic of active discussion. Many researchers are trying to find an answer in the properties of the frozen glassy state. Following this approach, we focus here on a previously proposed relationship...... between the fragility of glass-formers and their nonergodicity factor, determined by inelastic X-ray scattering (IXS) in the glass. We extend this molecular liquid study to two model polymers— polystyrene (PS) and polyisobutylene (PIB)—for which we change the molecular weight. Polymers offer...... the opportunity to change the fragility without altering the chemical structure, just by changing the chain length. Thus, we specifically chose PS and PIB because they exhibit opposite dependences of fragility with molecular weight. Our analysis for these two polymers reveals no unique correlation between...

  12. Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?

    Science.gov (United States)

    Sen, Sabyasachi

    2012-10-01

    The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.

  13. Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man's land

    Science.gov (United States)

    Ni, Yicun; Hestand, Nicholas J.; Skinner, J. L.

    2018-05-01

    According to the liquid-liquid critical point (LLCP) hypothesis, there are two distinct phases of supercooled liquid water, namely, high-density liquid and low-density liquid, separated by a coexistence line that terminates in an LLCP. If the LLCP is real, it is located within No Man's Land (NML), the region of the metastable phase diagram that is difficult to access using conventional experimental techniques due to rapid homogeneous nucleation to the crystal. However, a recent ingenious experiment has enabled measurement of the diffusion constant deep inside NML. In the current communication, these recent measurements are compared, with good agreement, to the diffusion constant of E3B3 water, a classical water model that explicitly includes three-body interactions. The behavior of the diffusion constant as the system crosses the Widom line (the extension of the liquid-liquid coexistence line into the one-phase region) is analyzed to derive information about the presence and location of the LLCP. Calculations over a wide range of temperatures and pressures show that the new experimental measurements are consistent with an LLCP having a critical pressure of over 0.6 kbar.

  14. Influence of Nanoparticles and Graphite Foam on the Supercooling of Acetamide

    International Nuclear Information System (INIS)

    Yu, J.; Chen, X.; Ma, X.; Song, Q.; Zhao, Y.; Cao, J.

    2014-01-01

    Acetamide is a promising phase change materials (PCMs) for thermal storage,but the large supercooling during the freezing process has limited its application. In this study, we prepared acetamide-SiO 2 composites by adding nano-SiO 2 into acetamide. This modified PCM was then impregnated into the porous graphite foam forming acetamide-SiO 2 -graphite foam form-stable composites. These composites were subjected to melting-solidification cycles 50 times; the time-temperature curves were tracked and recorded during these cycles. The time-temperature curves showed that, for the acetamide containing 2 wt. % SiO 2 , the supercooling phenomenon was eliminated and the material’s performance was stable for 50 cycles. The solidification temperature of the acetamide-SiO 2 -graphite foam samples was 65°C and the melting temperature was lowered to 65°C. The samples exhibited almost no supercooling and the presence of SiO 2 had no significant effect on the melting-solidification temperature. The microscopic supercooling of the acetamide-SiO 2 composite was measured using differential scanning calorimetry (DSC). The results indicated that when the content of SiO 2 was 1 wt. to 2 wt. %, the supercooling could be reduced to less than 10°C and heat was sufficiently released during solidification. Finally, a set of algorithms was derived using MATLAB software for simulating the crystallization of samples based on the classical nucleation theory. The results of the simulation agreed with the experiment results.

  15. Droplet-Sizing Liquid Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  16. Supercooling and cold energy storage characteristics of nano-media in ball-packed porous structures

    Directory of Open Access Journals (Sweden)

    Zhao Qunzhi

    2015-04-01

    Full Text Available The presented experiments aimed to study the supercooling and cold-energy storage characteristics of nanofluids and water-based nano-media in ball-packed porous structures (BPS. Titanium dioxide nanoparticles (TiO2 NPs measuring 20nm and 80nm were used as additives and sodium dodecyl benzene sulphonate (SDBS was used as anionic surfactant. The experiments used different concentrations of nanofluid, distilled with BPS of different spherical diameter and different concentrations of nano-media, and were conducted 20 times. Experimental results of supercooling were analysed by statistical methods. Results show that the average and peak supercooling degrees of nanofluids and nano-media in BPS are lower than those of distilled water. For the distilled water in BPS, the supercooling degree decreases on the whole with the decrease of the ball diameter. With the same spherical diameter (8mm of BPS, the supercooling degree of TiO2 NPs measuring 20nm is lower than the supercooling degree of distilled water in BPS. Step-cooling experiments of different concentrations of nanofluids and nano-media in BPS were also conducted. Results showed that phase transition time is reduced because of the presence of TiO2 NPs. The BPS substrate and the NPs enhance the heat transfer. Distilled water with a porous solid base and nanoparticles means the amount of cold-energy storage increases and the supercooling degree and the total time are greatly reduced. The phase transition time of distilled water is about 3.5 times that of nano-media in BPS.

  17. Influence of Nanoparticles and Graphite Foam on the Supercooling of Acetamide

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2014-01-01

    Full Text Available Acetamide is a promising phase change materials (PCMs for thermal storage,but the large supercooling during the freezing process has limited its application. In this study, we prepared acetamide-SiO2 composites by adding nano-SiO2 into acetamide. This modified PCM was then impregnated into the porous graphite foam forming acetamide-SiO2-graphite foam form-stable composites. These composites were subjected to melting-solidification cycles 50 times; the time-temperature curves were tracked and recorded during these cycles. The time-temperature curves showed that, for the acetamide containing 2 wt. % SiO2, the supercooling phenomenon was eliminated and the material’s performance was stable for 50 cycles. The solidification temperature of the acetamide-SiO2-graphite foam samples was 65°C and the melting temperature was lowered to 65°C. The samples exhibited almost no supercooling and the presence of SiO2 had no significant effect on the melting-solidification temperature. The microscopic supercooling of the acetamide-SiO2 composite was measured using differential scanning calorimetry (DSC. The results indicated that when the content of SiO2 was 1 wt. to 2 wt. %, the supercooling could be reduced to less than 10°C and heat was sufficiently released during solidification. Finally, a set of algorithms was derived using MATLAB software for simulating the crystallization of samples based on the classical nucleation theory. The results of the simulation agreed with the experiment results.

  18. Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures

    Science.gov (United States)

    Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.

    2018-03-01

    A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.

  19. Equipment fragility testing

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.; Cummings, G.E.

    1985-01-01

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize component fragilities which are for the most part based on a limited data base and engineering judgement. The seismic design of components is based on code limits and NRC requirements that do not reflect the actual capacity of a component to resist failure. In order to improve the present component fragility data base and establish component seismic design margins, the NRC has commissioned a projected three-year program to compile existing fragilities data and at the same time independently perform fragilities tests on selected mechanical and electrical components. This paper presents the planning and technical approach being taken by LLNL in the NRC Component Fragility Program

  20. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    Science.gov (United States)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  1. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  2. Density-temperature scaling of the fragility in a model glass-former

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Sengupta, Shiladitya; Sastry, Srikanth

    2013-01-01

    . Such a scaling, referred to as density-temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass......Dynamical quantities e.g. diffusivity and relaxation time for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable......-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence...

  3. Thermodynamics of Supercooled and Glassy Water

    Science.gov (United States)

    Debenedetti, Pablo G.

    1998-03-01

    The behavior of metastable water at low temperatures is unusual. The isothermal compressibility, the isobaric heat capacity, and the magnitude of the thermal expansion coefficient increase sharply upon supercooling, and structural relaxation becomes extremely sluggish at temperatures far above the glass transition(Angell, C.A., Annu. Rev. Phys. Chem., 34, 593, 1983)(Debenedetti, P.G., Metastable Liquids. Concepts and Principles, Princeton University Press, 1996). Water has two distinct glassy phases, low- and high-density amorphous ice (LDA, HDA). The transition between LDA and HDA is accompanied by sharp volume and enthalpy changes, and appears to be first-order(Mishima, O., L.D.Calvert, and E. Whalley, Nature, 314, 76, 1985)(Mishima, O., J. Chem. Phys., 100, 5910, 1994). The understanding of these observations in terms of an underlying global phase behavior remains incomplete(Speedy, R.J., J. Phys. Chem., 86, 982, 1982)(Poole, P.H., F. Sciortino, U. Essman, and H.E. Stanley, Nature, 360, 324, 1992)(Sastry, S., P.G. Debenedetti, F. Sciortino, and H.E. Stanley, Phys. Rev. E, 53, 6144, 1996)(Tanaka, H., Nature, 380, 328, 1996)(Xie, Y., K.F. Ludwig, G. Morales, D.E. Hare, and C.M. Sorensen, Phys. Rev. Lett., 71, 2050, 1993). Microscopic theories and computer simulations suggest several scenarios that can reproduce some experimental observations. Interesting and novel ideas have resulted from this body of theoretical work, such as the possibility of liquid-liquid immiscibility in a pure substance(Poole, P.H., F.Sciortino, T.Grande, H.E. Stanley, and C.A. Angell, Phys. Rev. Lett., 73, 1632, 1994)(Roberts, C.J., and P.G. Debenedetti, J. Chem. Phys., 105, 658, 1996)(Roberts, C.J., P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. Lett., 77, 4386, 1996)(Harrington, S., R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett., 78, 2409, 1997). In this talk I will review the experimental facts, discuss their theoretical interpretation, and identify key

  4. Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Kelton, K F

    2017-01-01

    The liquid phase remains poorly understood. In many cases, the densities of liquids and their crystallized solid phases are similar, but since they are amorphous they lack the spatial order of the solid. Their dynamical properties change remarkably over a very small temperature range. At high temperatures, near their melting temperature, liquids flow easily under shear. However, only a few hundred degrees lower flow effectively ceases, as the liquid transforms into a solid-like glass. This temperature-dependent dynamical behavior is frequently characterized by the concept of kinetic fragility (or, generally, simply fragility). Fragility is believed to be an important quantity in glass formation, making it of significant practical interest. The microscopic origin of fragility remains unclear, however, making it also of fundamental interest. It is widely (although not uniformly) believed that the dynamical behavior is linked to the atomic structure of the liquid, yet experimental studies show that although the viscosity changes by orders of magnitude with temperature, the structural change is barely perceptible. In this article the concept of fragility is discussed, building to a discussion of recent results in metallic glass-forming liquids that demonstrate the presumed connection between structural and dynamical changes. In particular, it becomes possible to define a structural fragility parameter that can be linked with the kinetic fragility. (topical review)

  5. Perspective on the structure of liquid water

    International Nuclear Information System (INIS)

    Nilsson, A.; Pettersson, L.G.M.

    2011-01-01

    Graphical abstract: Liquid water can be described in a fluctuating inhomogeneous picture with two local structural motifs that are spatially separated. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds giving higher density (yellow), which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations (blue), i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. Highlights: ► Two components maximizing either enthalpy (tetrahedral, low-density) or entropy (non-specific H-bonding, higher density). ► Interconvert discontinuously and ratio depends on temperature. ► Density fluctuations on 1 nm length scale. ► Increasing size in supercooled region. ► Connection to Widom line and 2nd critical point. - Abstract: We present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water in the ambient regime. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid–liquid critical point hypothesis in supercooled water corresponding to high density liquid and low density liquid. We will discuss the interpretation of X-ray absorption spectroscopy, X-ray emission

  6. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids.

    Science.gov (United States)

    Langstaff, D; Gunn, M; Greaves, G N; Marsing, A; Kargl, F

    2013-12-01

    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

  7. Gelation on heating of supercooled gelatin solutions.

    Science.gov (United States)

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak

    Science.gov (United States)

    Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.

    2012-12-01

    We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.

  9. Two-Order-Parameter Description of Liquids: Critical Phenomena and Phase Separation of Supercooled Liquids

    OpenAIRE

    Tanaka, Hajime

    1997-01-01

    Because of the isotropic and disordered nature of liquids, the anisotropy hidden in intermolecular interactions are often neglected. Accordingly, the order parameter describing a simple liquid has so far been believed to be only density. In contrast to this common sense, we propose that two order parameters, namely, density and bond order parameters, are required to describe the phase behavior of liquids since they intrinsically tend to form local bonds. This model gives us clear physical exp...

  10. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.

    Science.gov (United States)

    Costanzo, Jon P; Baker, Patrick J; Dinkelacker, Stephen A; Lee, Richard E

    2003-02-01

    Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this change is incompletely understood. We report that the crystallization temperature (T(c)) of recently hatched (summer) turtles acclimated to 22 degrees C and reared on a substratum of vermiculite or nesting soil was approximately 5 degrees C higher than the T(c) determined for turtles acclimated to 4 degrees C and tested in winter. This increase in supercooling capacity coincided with elimination of substratum (and, in fewer cases, eggshell) that the hatchlings had ingested; however, this association was not necessarily causal because turtles reared on a paper-covered substratum did not ingest exogenous matter but nevertheless showed a similar increase in supercooling capacity. Our results for turtles reared on paper revealed that seasonal development of supercooling capacity fundamentally requires elimination of ice-nucleating agents (INA) of endogenous origin: summer turtles, but not winter turtles, produced feces (perhaps derived from residual yolk) that expressed ice-nucleating activity. Ingestion of vermiculite or eggshell, which had modest ice-nucleating activity, had no effect on the T(c), whereas ingestion of nesting soil, which contained two classes of potent INA, markedly reduced the supercooling capacity of summer turtles. This effect persisted long after the turtles had purged their guts of soil particles, because the T(c) of winter turtles reared on nesting soil (mean +/- S.E.M.=-11.6+/-1.4 degrees C) was approximately 6 degrees C higher than the T(c) of winter turtles reared on vermiculite or paper. Experiments in which winter turtles were fed INA commonly found in

  11. Scaling of viscous dynamics in simple liquids

    DEFF Research Database (Denmark)

    Bøhling, Lasse; Ingebrigtsen, Trond; Grzybowski, A.

    2012-01-01

    Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. From a single assumption follows a scaling law according to which the relaxation time is a function of h(ρ) over temperature, where ρ is the density and the function h(ρ) depends on the...

  12. Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''

    Science.gov (United States)

    Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders

    2013-03-01

    Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.

  13. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    NARCIS (Netherlands)

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  14. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    OpenAIRE

    Kim, Yiseul; Hong, Geun-Pyo

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4? for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4?. Despite that SSF was conducted with the ...

  15. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    Directory of Open Access Journals (Sweden)

    Hua Tong

    2018-03-01

    Full Text Available The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t, following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity is maximized with a characteristic length ξ_{4}, when t reaches the relaxation time τ_{α}. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t=0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ∼ξ_{4}, indicating that the static length ξ grows coherently with the dynamic one ξ_{4} upon cooling. This further suggests an intrinsic link between τ_{α} and ξ: the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ, which control dynamics in local and nonlocal manners, resulting

  16. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    Science.gov (United States)

    Tong, Hua; Tanaka, Hajime

    2018-01-01

    The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t , following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity) is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t =0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ˜ξ4, indicating that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an intrinsic link between τα and ξ : the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ , which control dynamics in local and nonlocal manners, resulting in the emergence of the two

  17. Liquidity Risk, Liquidity Creation, and Financial Fragility: A Theory of Banking

    OpenAIRE

    Douglas W. Diamond; Raghuram G. Rajan

    2001-01-01

    Both investors and borrowers are concerned about liquidity. Investors desire liquidity because they are uncertain about when they will want to eliminate their holding of a financial asset. Borrowers are concerned about liquidity because they are uncertain about their ability to continue to attract or retain funding. Because borrowers typically cannot repay investors on demand, investors will require a premium or significant control rights when they lend to borrowers directly, as compensation ...

  18. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    Science.gov (United States)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  19. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang

    2016-01-01

    Latent heat storage units utilizing stable supercooling of sodium acetate trihydrate (SAT) composites were tested in a laboratory. The stainless steel units were 1.5 m high cylinders with internal heat exchangers of tubes with fins. One unit was tested with 116 kg SAT with 6% extra water. Another...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...

  20. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    Science.gov (United States)

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  1. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    Science.gov (United States)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  2. Experimental evidence of a liquid-liquid transition in interfacial water

    Science.gov (United States)

    Zanotti, J.-M.; Bellissent-Funel, M.-C.; Chen, S.-H.

    2005-07-01

    At ambient pressure, bulk liquid water shows an anomalous increase of thermodynamic quantities and apparent divergences of dynamic properties on approaching a temperature Ts of 228 K. At normal pressure, supercooled water spontaneously freezes below the homogeneous nucleation temperature, TH = 235 K. Upon heating, the two forms of Amorphous Solid Water (ASW), LDA (Low Density Amorphous Ice) and HDA (High Density Amorphous Ice), crystallise above TX = 150 K. As a consequence, up to now no experiment has been able to explore the properties of liquid water in this very interesting temperature range between 150 and 235 K. We present nanosecond-time-scale measurements of local rotational and translational dynamics of interfacial, non-crystalline, water from 77 to 280 K. These experimental dynamic results are combined with calorimetric and diffraction data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first-order liquid-liquid transition at 240 K from a low-density to a high-density liquid. This is the first direct evidence of the existence of a liquid-liquid transition involving water.

  3. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... capacity. An external expansion vessel minimized the pressure built up in the module while heating and reduced the risk of instable supercooling. The module was stable supercooled at indoor ambient temperature for up to two months after which it was discharged. The energy discharged after activating...

  4. Seismic fragility of nuclear power plant components (Phase 2): A fragility handbook on eighteen components

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Shteyngart, S.

    1991-06-01

    Fragility estimates of seven equipment classes were published in earlier reports. This report presents fragility analysis results from eleven additional equipment categories. The fragility levels are expressed in probabilistic terms. For users' convenience, this concluding report includes a summary of fragility results of all eighteen equipment classes. A set of conversion factors based on judgment is recommended for use of the information for early vintage equipment. The knowledge gained in conducting the Component Fragility Program and similar other programs is expected to provide a new direction for seismic verification and qualification of equipment. 15 refs., 12 tabs

  5. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  6. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    Science.gov (United States)

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the same method with SAF, application of artificial supercooling accelerated the phase transition (traverse from -0.6℃ to -5℃) from 3.07 h (SAF) to 2.23 h (SSF). The observation of a microstructure indicated that the SSF prevented tissue damage caused by ice crystallization and maintained the structural integrity. The estimated quality parameters reflected that SSF exhibited superior meat quality compared with slow freezing (SAF). SSF showed better water-holding capacity (lower thawing loss, cooking loss and expressible moisture) and tenderness than SAF, and these quality parameters of SSF were not significantly different with ultra-fast freezing treatment (EIF). Consequently, the results demonstrated that the generation of supercooling followed by conventional freezing potentially had the advantage of minimizing the quality deterioration caused by the slow freezing of meat. PMID:27857541

  7. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin.

    Science.gov (United States)

    Kim, Yiseul; Hong, Geun-Pyo

    2016-10-31

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the same method with SAF, application of artificial supercooling accelerated the phase transition (traverse from -0.6℃ to -5℃) from 3.07 h (SAF) to 2.23 h (SSF). The observation of a microstructure indicated that the SSF prevented tissue damage caused by ice crystallization and maintained the structural integrity. The estimated quality parameters reflected that SSF exhibited superior meat quality compared with slow freezing (SAF). SSF showed better water-holding capacity (lower thawing loss, cooking loss and expressible moisture) and tenderness than SAF, and these quality parameters of SSF were not significantly different with ultra-fast freezing treatment (EIF). Consequently, the results demonstrated that the generation of supercooling followed by conventional freezing potentially had the advantage of minimizing the quality deterioration caused by the slow freezing of meat.

  8. Illiquidity Contagion and Liquidity Crashes

    OpenAIRE

    Giovanni Cespa; Thierry Foucault

    2014-01-01

    Liquidity providers often learn information about an asset from prices of other assets. We show that this generates a self-reinforcing positive relationship between price informativeness and liquidity. This relationship causes liquidity spillovers and is a source of fragility: a small drop in the liquidity of one asset can, through a feedback loop, result in a very large drop in market liquidity and price informativeness (a liquidity crash). This feedback loop provides a new explanation for c...

  9. SHORT COMMUNICATION: Recognition of supercooled dew in a quartz crystal microbalance dew-point sensor by slip phenomena

    Science.gov (United States)

    Kwon, Su-Yong; Kim, Jong-Chul; Choi, Byung-Il

    2007-10-01

    Distinguishing between a supercooled dew and frost below 0 °C in dew/frost-point measurements is an important and challenging problem that has not yet been completely solved. This study presents a new method for the recognition of a supercooled dew in a dew/frost-point sensor. A quartz crystal microbalance (QCM) sensor was used as a dew/frost-point sensor to detect a dew and a supercooled dew as well as frost. The slip phenomenon occurring at an interface between the water droplet and the surface of the quartz crystal resonator of the QCM sensor gives a simple and accurate way of distinguishing between a supercooled dew and frost below 0 °C. This method can give a highly accurate measurement of the dew or the frost point without misreading in the dew-point sensor at temperatures below 0 °C.

  10. Superheating and supercooling of Ge nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Xu, Q; Sharp, I D; Yuan, C W; Yi, D O; Liao, C Y; Glaeser, A M; Minor, A M; Beeman, J W; Ridgway, M C; Kluth, P; Iii, J W Ager; Chrzan, D C; Haller, E E

    2007-01-01

    Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 deg. C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO 2 exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature

  11. Magnetic, electric and optic properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, St.C.

    1980-01-01

    We study the nematic liquid crystals of thermotrop type. We also studied the crystals whose mesomorphism occured both at temperature increasing and decreasing and during the supercooling phase (monotrope). Investigation results performed by us have had in view the following: clearing up and experimental support of a new mechanism of nuclear relaxation in liquid crystals, proposed by author; usage of experimental techniques and methods for to characterize and test some mesomorph media used in very important applications, such as color TV. (author)

  12. Fragile X-associated tremor/ataxia syndrome: another phenotype of the fragile X gene.

    Science.gov (United States)

    Hessl, David; Grigsby, Jim

    2016-08-01

    Neuropsychologists have an important role in evaluating patients with fragile X-associated disorders, but most practitioners are unaware of the recently identified neurodegenerative movement disorder known as fragile X-associated tremor ataxia syndrome (FXTAS). The objective of this editorial is to orient the reader to FXTAS and highlight the importance of clinical neuropsychology in describing the fragile X premutation phenotype and the role practitioners may have in assessing and monitoring patients with or at risk for neurodegeneration. We issued a call for papers for the special issue, highlighting the primary objective of familiarizing clinical neuropsychologists with FXTAS, and with the neuropsychological phenotype of both male and female asymptomatic carriers. Eight papers are included, including an overview of the fragile X-associated disorders (Grigsby), a review of the neuroradiological and neurological aspects of FXTAS and how the disorder compares to other movement disorders (O'Keefe et al.), a perspective on the prominence of white matter disease and dementia in FXTAS (Filley), and a review of mouse models of FXTAS (Foote). There are four research papers, including one on self-reported memory problems in FXTAS (Birch et al.), and three papers focused on the neuropsychiatric aspects of the fragile X premutation, a review (Bourgeois), an examination of autism-related traits (Schneider), and a research paper on executive functioning and psychopathology (Grigsby). The issue highlights the importance of awareness of fragile X-associated disorders for neuropsychologists, an awareness that must reach beyond neurodevelopmental aspects related to fragile X syndrome into the realm of neurodegenerative disease and aging.

  13. Effect of freeze-thaw repetitions upon the supercooling release ability of ice-nucleating bacteria

    International Nuclear Information System (INIS)

    Tsuchiya, Yooko; Hasegawa, Hiromi; Sasaki, Kazuhiro

    2004-01-01

    We have studied the durability of ice-nucleating bacteria with a potent supercooling release capacity through repeated freeze-thaw cycles. Through experiment, we confirmed that UV sterilized Erwinia ananas maintains a superior supercooling release capacity at around -1degC through 2000 freeze-thaw cycles. We also found that γ-ray sterilization, which is more suitable than UV for large-scale sterilization treatment, has a similar effect at appropriately selected doses. (author)

  14. Density of states of colloidal glasses and supercooled liquids

    NARCIS (Netherlands)

    Ghosh, A.; Mari, R.; Chikkadi, V.; Schall, P.; Kurchan, J.; Bonn, D.

    2010-01-01

    The glass transition is perhaps the greatest unsolved problem in condensed matter physics: the main question is how to reconcile the liquid-like structure with solid-like mechanical properties. In solids, structure and mechanics are related directly through the vibrational density of states of the

  15. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    Science.gov (United States)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  16. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  17. Genetics Home Reference: fragile X syndrome

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Fragile X syndrome Fragile X syndrome Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Fragile X syndrome is a genetic condition that causes a ...

  18. Review of solid–liquid phase change materials and their encapsulation technologies

    OpenAIRE

    Su, Weiguang; Darkwa, Jo; Kokogiannakis, Georgios

    2017-01-01

    Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segre...

  19. Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Hensel-Bielowka, S [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Casalini, R [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Chemistry Department, George Mason University, Fairfax, VA 22030 (United States)

    2005-06-01

    An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification. Recent advances have been made by using hydrostatic pressure as an experimental variable. These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers.

  20. On the temperature dependence of the Adam-Gibbs equation around the crossover region in the glass transition

    Science.gov (United States)

    Duque, Michel; Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe

    2018-04-01

    The Adam-Gibbs equation has been used for more than five decades, and still a question remains unanswered on the temperature dependence of the chemical potential it includes. Nowadays, it is a well-known fact that in fragile glass formers, actually the behavior of the system depends on the temperature region it is being studied. Transport coefficients change due to the appearance of heterogeneity in the liquid as it is supercooled. Using the different forms for the logarithmic shift factor and the form of the configurational entropy, we evaluate this temperature dependence and present a discussion on our results.

  1. Systems fragility: The sociology of chaos.

    Science.gov (United States)

    Hodges, Lori R

    2016-01-01

    This article examines the concept of community fragility in emergency management from a systems perspective. Using literature that addresses fragility in four areas of complex systems, including ecosystems, social systems, sociotechnical systems, and complex adaptive systems, a theoretical framework focused on the emergency management field is created. These findings illustrate how community fragility factors can be used in the emergency management field to not only improve overall outcomes after disaster but also build less fragile systems and communities in preparation for future disasters.

  2. Improvement of the thermoplastic formability of Zr65Cu17.5Ni10Al7.5 bulk metallic glass by minor addition of Erbium

    International Nuclear Information System (INIS)

    Hu, Q.; Zeng, X.R.; Fu, M.W.; Chen, S.S.; Jiang, J.

    2016-01-01

    The softness of Zr 65 Cu 17.5 Ni 10 Al 7.5 bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr 65 Cu 17.5 Ni 10 Al 7.5 ) 98 Er 2 (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  3. Improvement of the thermoplastic formability of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass by minor addition of Erbium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zeng, X.R., E-mail: zengxier@szu.edu.cn [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); JANUS Precision Components Co., LTD., Dongguan 523000 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Chen, S.S. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Jiang, J. [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2016-12-01

    The softness of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5}){sub 98}Er{sub 2} (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  4. Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors.

    Science.gov (United States)

    Vikas; Chayawan

    2014-01-01

    For predicting physico-chemical properties related to environmental fate of molecules, quantitative structure-property relationships (QSPRs) are valuable tools in environmental chemistry. For developing a QSPR, molecular descriptors computed through quantum-mechanical methods are generally employed. The accuracy of a quantum-mechanical method, however, rests on the amount of electron-correlation estimated by the method. In this work, single-descriptor QSPRs for supercooled liquid vapor pressure of chloronaphthalenes and polychlorinated-naphthalenes are developed using molecular descriptors based on the electron-correlation contribution of the quantum-mechanical descriptor. The quantum-mechanical descriptors for which the electron-correlation contribution is analyzed include total-energy, mean polarizability, dipole moment, frontier orbital (HOMO/LUMO) energy, and density-functional theory (DFT) based descriptors, namely, absolute electronegativity, chemical hardness, and electrophilicity index. A total of 40 single-descriptor QSPRs were developed using molecular descriptors computed with advanced semi-empirical (SE) methods, namely, RM1, PM7, and ab intio methods, namely, Hartree-Fock and DFT. The developed QSPRs are validated using state-of-the-art external validation procedures employing an external prediction set. From the comparison of external predictivity of the models, it is observed that the single-descriptor QSPRs developed using total energy and correlation energy are found to be far more robust and predictive than those developed using commonly employed descriptors such as HOMO/LUMO energy and dipole moment. The work proposes that if real external predictivity of a QSPR model is desired to be explored, particularly, in terms of intra-molecular interactions, correlation-energy serves as a more appropriate descriptor than the polarizability. However, for developing QSPRs, computationally inexpensive advanced SE methods such as PM7 can be more reliable than

  5. Fragile X syndrome and fragile X-associated disorders [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Akash Rajaratnam

    2017-12-01

    Full Text Available Fragile X syndrome (FXS is caused by a full mutation on the FMR1 gene and a subsequent lack of FMRP, the protein product of FMR1. FMRP plays a key role in regulating the translation of many proteins involved in maintaining neuronal synaptic connections; its deficiency may result in a range of intellectual disabilities, social deficits, psychiatric problems, and dysmorphic physical features. A range of clinical involvement is also associated with the FMR1 premutation, including fragile X-associated tremor ataxia syndrome, fragile X-associated primary ovarian insufficiency, psychiatric problems, hypertension, migraines, and autoimmune problems. Over the past few years, there have been a number of advances in our knowledge of FXS and fragile X-associated disorders, and each of these advances offers significant clinical implications. Among these developments are a better understanding of the clinical impact of the phenomenon known as mosaicism, the revelation that various types of mutations can cause FXS, and improvements in treatment for FXS.

  6. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid

    Science.gov (United States)

    Puosi, F.; Jakse, N.; Pasturel, A.

    2018-04-01

    As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.

  7. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage

    International Nuclear Information System (INIS)

    Tang, Xiaofen; Li, Wei; Zhang, Xingxiang; Shi, Haifeng

    2014-01-01

    Microencapsulated phase change material with a low supercooling degree is one of the increasing important researches as well as industrial application for thermal energy storage. This study develops a novel and low supercooling microencapsulated n-octadecane (MicroC18) with n-octadecyl methacrylate (ODMA)–methacrylic acid (MAA) copolymer as shell using suspension-like polymerization. The fabrication and properties of MicroC18 were characterized by using a field-emission scanning electron microscope (FE-SEM), Fourier transformed infrared spectroscopy (FTIR), particle size distribution analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The MicroC18 with spherical shapes and an average diameter of 1.60–1.68 μm are fabricated. The onset crystallizing temperatures of MicroC18 are only 4 °C below that of n-octadecane. The unique copolymer shell has a significant impact on the low supercooling of MicroC18. The n-octadecane in all of the samples crystalizes by heterogeneous nucleation. The content of n-octadecane in the microcapsules is low; however, the microcapsules still exhibit high enthalpy through the contribution of the shells. At a monomers/n-octadecane mass ratio is 2:1, as used in the recipes, the MicroC18 with highest phase change enthalpy was obtained. The temperature of thermal resistant of MicroC18 is approximately 235.6 °C, which is affected by the thickness of the polymer shell. - Highlights: • Microencapsulated n-octadecane with comb-like copolymer shell has low supercooling. • The unique shell plays a significant role in suppressing supercooling. • The types of cross-linker affect morphologies and heat enthalpies of microcapsules. • Microcapsules exhibit high phase change enthalpies and thermal stabilities

  8. Evaluation of liquid fragility and thermal stability of Al-based metallic glasses by equivalent structure parameter

    International Nuclear Information System (INIS)

    Li Xuelian; Bian Xiufang; Hu Lina

    2010-01-01

    Based on extended Ideal-Atomic-Packing model, we propose an equivalent structure parameter '6x+11y' to evaluate fragility and thermal stability of Al-TM-RE metallic glasses, where x and y are composition concentrations of transition metal (TM) and rare earth (RE), respectively. Experimental results show that glass forming compositions with '6x+11y' near 100 have the smallest fragility parameter and best structure stability. In addition, '6x+11y' parameter has a positive relationship with onset-crystallization temperature, T x . Al-TM-RE glassy alloys with (6x+11y)≤100 undergo primary crystallization of fcc-Al nanocrystals, while alloys with (6x+11y)>100 exhibit nanoglassy or glassy crystallization behavior.

  9. Three Faces of Fragile X.

    Science.gov (United States)

    Lieb-Lundell, Cornelia C E

    2016-11-01

    Fragile X syndrome (FXS) is the first of 3 syndromes identified as a health condition related to fragile X mental retardation (FMR1) gene dysfunction. The other 2 syndromes are fragile X-associated primary ovarian insufficiency syndrome (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS), which together are referred to as fragile X-associated disorders (FXDs). Collectively, this group comprises the 3 faces of fragile X. Even though the 3 conditions share a common genetic defect, each one is a separate health condition that results in a variety of body function impairments such as motor delay, musculoskeletal issues related to low muscle tone, coordination limitations, ataxia, tremor, undefined muscle aches and pains, and, for FXTAS, a late-onset neurodegeneration. Although each FXD condition may benefit from physical therapy intervention, available evidence as to the efficacy of intervention appropriate to FXDs is lacking. This perspective article will discuss the genetic basis of FMR1 gene dysfunction and describe health conditions related to this mutation, which have a range of expressions within a family. Physical therapy concerns and possible assessment and intervention strategies will be introduced. Understanding the intergenerational effect of the FMR1 mutation with potential life-span expression is a key component to identifying and treating the health conditions related to this specific genetic condition. © 2016 American Physical Therapy Association.

  10. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala; Ockendon, John; Howell, Peter; Surovyatkina, Elena

    2013-01-01

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  11. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  12. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    Science.gov (United States)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  13. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl₂·2H₂O/CaCl₂.

    Science.gov (United States)

    Xu, Xiaoxiao; Dong, Zhijun; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi

    2017-06-23

    Salt hydrates have issues of supercooling when they are utilized as phase change materials (PCMs). In this research, a new method was adopted to prepare a salt hydrate PCM (based on a mixture of calcium chloride dihydrate and calcium chloride anhydrous) as a novel PCM system to reduce the supercooling phenomenon existing in CaCl₂·6H₂O. Six samples with different compositions of CaCl₂ were prepared. The relationship between the performance and the proportion of calcium chloride dihydrate (CaCl₂·2H₂O) and calcium chloride anhydrous (CaCl₂) was also investigated. The supercooling degree of the final PCM reduced with the increase in volume of CaCl₂·2H₂O during its preparation. The PCM obtained with 66.21 wt % CaCl₂·2H₂O reduced the supercooling degree by about 96.8%. All six samples, whose ratio of CaCl₂·2H₂O to (CaCl₂ plus CaCl₂·2H₂O) was 0%, 34.03%, 53.82%, 76.56%, 90.74%, and 100% respectively, showed relatively higher enthalpy (greater than 155.29 J/g), and have the possibility to be applied in buildings for thermal energy storage purposes. Hence, CaCl₂·2H₂O plays an important role in reducing supercooling and it can be helpful in adjusting the solidification enthalpy. Thereafter, the influence of adding different percentages of Nano-SiO₂ (0.1 wt %, 0.3 wt %, 0.5 wt %) in reducing the supercooling degree of some PCM samples was investigated. The test results showed that the supercooling of the salt hydrate PCM in Samples 6 and 5 reduced to 0.2 °C and 0.4 °C respectively. Finally, the effect of the different cooling conditions, including frozen storage (-20 °C) and cold storage (5 °C), that were used to prepare the salt hydrate PCM was considered. It was found that both cooling conditions are effective in reducing the supercooling degree of the salt hydrate PCM. With the synergistic action of the two materials, the performance and properties of the newly developed PCM systems were better especially in terms of reducing

  14. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).

    Science.gov (United States)

    Wilson, Peter W; Lu, Weizhe; Xu, Haojun; Kim, Philseok; Kreder, Michael J; Alvarenga, Jack; Aizenberg, Joanna

    2013-01-14

    Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze-thaw cycles.

  15. Contrasting dynamics of fragile and non-fragile polyalcohols through the glass, and dynamical, transitions: A comparison of neutron scattering and dielectric relaxation data for sorbitol and glycerol.

    Science.gov (United States)

    Migliardo, F; Angell, C A; Magazù, S

    2017-01-01

    Glycerol and sorbitol are glass-forming hydrogen-bonded systems characterized by intriguing properties which make these systems very interesting also from the applications point of view. The goal of this work is to relate the hydrogen-bonded features, relaxation dynamics, glass transition properties and fragility of these systems, in particular to seek insight into their very different liquid fragilities. The comparison between glycerol and sorbitol is carried out by collecting the elastic incoherent neutron scattering (EINS) intensity as a function of temperature and of the instrumental energy resolution. Intensity data vs temperature and resolution are analyzed in terms of thermal restraint and Resolution Elastic Neutron Scattering (RENS) approaches. The number of OH groups, which are related to the connecting sites, is a significant parameter both in the glass transition and in the dynamical transition. On the other hand, the disordered nature of sorbitol is confirmed by the existence of different relaxation processes. From the applications point of view, glycerol and sorbitol have remarkable bioprotectant properties which make these systems useful in different technological and industrial fields. Furthermore, polyols are rich in glassforming liquid phenomenology and highly deserving of study in their own right. The comparison of EINS and calorimetric data on glycerol and sorbitol helps provide a connection between structural relaxation, dynamical transition, glass transition, and fragility. The evaluation of the inflection point in the elastic intensity behavior as a function of temperature and instrumental energy resolution provides a confirmation of the validity of the RENS approach. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016. Published by Elsevier B.V.

  16. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...

  17. A simulation study of homogeneous ice nucleation in supercooled salty water

    Science.gov (United States)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  18. On abnormal decomposition of supercooled austenite in carbon and alloy steels

    International Nuclear Information System (INIS)

    Parusov, V.V.; Dolzhenkov, I.I.; Podobedov, L.V.; Vakulenko, I.A.

    1980-01-01

    Residual stresses which appear as a result of thermal cycling in the temperature range of 300-700 deg C are investigated in an austenitic class steel (03Kh18N11) to ground the assumption on the effect of plastic deformation, appearing due to thermal stresses, on the mechanism of supercooled austenite decomposition. The determination of residual stresses is carried out with the help of X-ray diffraction analysis. It is established that the deformation brings about an increase in density of dislocation the interaction of which leads to the formation of a typical austenite substructure which conditions the proceeding of the eutectoid transformation according to an abnormal mechanism. It is noted, that the grain pearlite formation due to plastic and microplastic deformation of supercooled austenite induced by thermal stresses should be taken into account when developing steel heat treatment shedules [ru

  19. Testing of Frank's hypothesis on a containerless packing of macroscopic soft spheres and comparison with mono-atomic metallic liquids

    International Nuclear Information System (INIS)

    Sahu, K.K.; Wessels, V.; Kelton, K.F.; Loeffler, J.F.

    2011-01-01

    Highlights: → Testing of Frank's hypothesis for Centripetal Packing (CP) has been proposed. → It is shown that CP is an idealized model for Monatomic Supercooled Liquid (MSL). → The CP is fit for comparing with studies on MSL in a containerless environment. → We measure local orders in CP by HA and BOO methods for the first time. → It is shown that icosahedral order is greater in CP than MSL and reasons explored. - Abstract: It is well-known that metallic liquids can exist below their equilibrium melting temperature for a considerable time. To explain this, Frank proposed that icosahedral ordering, incompatible with crystalline long-range order, is prevalent in the atomic structure of these liquids, stabilizing them and enabling them to be supercooled. Some studies of the atomic structures of metallic liquids using Beam-line Electrostatic Levitation (BESL; containerless melting), and other techniques, support this hypothesis . Here we examine Frank's hypothesis in a system of macroscopic, monodisperse deformable spheres obtained by containerless packing under the influence of centripetal force. The local structure of this packing is analyzed and compared with atomic ensembles of liquid transition metals obtained by containerless melting using the BESL method.

  20. Radiation-induced polymerization of glass-forming systems. VII. Polymerization in supercooled state under high pressure

    International Nuclear Information System (INIS)

    Kaetsu, I.; Yoshii, F.; Watanabe, Y.

    1978-01-01

    Radiation-induced polymerization of glass-forming monomers such as 2-hydroxyethyl methacrylate and glycidyl methacrylate under high pressure was studied. The glass transition temperature of these monomers was heightened by increased pressure. The temperature dependence of polymerizability showed a characteristic relation, similar to those in supercooled-phase polymerization under normal pressure, that had a maximum at T/sub ν/ which shifted to higher levels of temperature as well as to T/sub g/ under high pressure. Polymerizability in the supercooled state also increased under increased pressure

  1. Enzyme kinetics in acoustically levitated droplets of supercooled water: a novel approach to cryoenzymology.

    Science.gov (United States)

    Weis, David D; Nardozzi, Jonathan D

    2005-04-15

    The rate of the alkaline phosphatase-catalyzed hydrolysis of 4-methylumbelliferone phosphate was measured in acoustically levitated droplets of aqueous tris (50 mM) at pH 8.5 at 22 +/- 2 degrees C and in supercooled solution at -6 +/- 2 degrees C. At 22 degrees C, the rate of product formation was in excellent agreement with the rate observed in bulk solution in a cuvette, indicating that the acoustic levitation process does not alter the enzyme activity. The rate of the reaction decreased 6-fold in supercooled solution at -6 +/- 2 degrees C. The acoustic levitator apparatus is described in detail.

  2. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure

    International Nuclear Information System (INIS)

    Cao, Fangyu; Yang, Bao

    2014-01-01

    Highlights: • A new method for supercooling suppression of microPCMs by optimizing the structure of the microcapsule shell. • Large effective latent heat (up to 213 J/g) of the microPCMs, much higher than those using additive as nucleating agents. • Change of shell composition and structure significantly affects the phase transition processes of the encapsulated PCMs. • The latent heat of the shell-induced phase transition is maximized, reaching 83.7% of the latent heat of bulk octadecane. • Hollow spheres with porous rather than solid resin shell are also formed when the SDS concentration is very high. - Abstract: A new method for supercooling suppression of microencapsulated phase change materials (PCMs) has been developed by optimizing the composition and structure of the microcapsule resin shell. The microcapsules comprising paraffin octadecane encapsulated in melamine–formaldehyde resin shell were synthesized with the use the oil-in-water emulsion technique. These PCM microcapsules are 5–15 μm in diameter. The supercooling of these octadecane microcapsules can be as large as 13.6 °C, when the homogeneous nucleation is dominant during the melt crystallization into the thermodynamically stable triclinic phase. It is discovered that the homogeneous nucleation can be mediated by shell-induced nucleation of the triclinic phase and the metastable rotator phase when the shell composition and structure are optimized, without need of any nucleating additives. The effects of synthesis parameters, such as ratio of melamine to formaldehyde, pH of pre-polymer, and pH of emulsion, on the phase transition properties of the octadecane microcapsules have been investigated systemically. The optimum synthesis conditions have been identified in terms of minimizing the supercooling while maintaining heat capacity. Potential applications of this type of phase changeable microcapsules include high heat capacity thermal fluids, thermal management in smart buildings

  3. Equilibrium and out-of-equilibrium thermodynamics in supercooled liquids and glasses

    International Nuclear Information System (INIS)

    Mossa, S; Nave, E La; Tartaglia, P; Sciortino, F

    2003-01-01

    We review the inherent structure thermodynamical formalism and the formulation of an equation of state (EOS) for liquids in equilibrium based on the (volume) derivatives of the statistical properties of the potential energy surface. We also show that, under the hypothesis that during ageing the system explores states associated with equilibrium configurations, it is possible to generalize the proposed EOS to out-of-equilibrium (OOE) conditions. The proposed formulation is based on the introduction of one additional parameter which, in the chosen thermodynamic formalism, can be chosen as the local minimum where the slowly relaxing OOE liquid is trapped

  4. Variation along liquid isomorphs of the driving force for crystallization

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine

    2017-01-01

    at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...

  5. Flooding Fragility Experiments and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tahhan, Antonio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Muchmore, Cody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nichols, Larinda [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Bishwo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the work that has been performed on flooding fragility, both the experimental tests being carried out and the probabilistic fragility predictive models being produced in order to use the text results. Flooding experiments involving full-scale doors have commenced in the Portal Evaluation Tank. The goal of these experiments is to develop a full-scale component flooding experiment protocol and to acquire data that can be used to create Bayesian regression models representing the fragility of these components. This work is in support of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluation research and development.

  6. Long range stress correlations in the inherent structures of liquids at rest

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sadrul; Abraham, Sneha; Hudson, Toby; Harrowell, Peter [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia)

    2016-03-28

    Simulation studies of the atomic shear stress in the local potential energy minima (inherent structures) are reported for binary liquid mixtures in 2D and 3D. These inherent structure stresses are fundamental to slow stress relaxation and high viscosity in supercooled liquids. We find that the atomic shear stress in the inherent structures (IS’s) of both liquids at rest exhibits slowly decaying anisotropic correlations. We show that the stress correlations contribute significantly to the variance of the total shear stress of the IS configurations and consider the origins of the anisotropy and spatial extent of the stress correlations.

  7. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and interme...

  8. The role of the dynamic crossover temperature and the arrest in glass-forming fluids.

    Science.gov (United States)

    Mallamace, F; Corsaro, C; Stanley, H E; Chen, S-H

    2011-09-01

    We discuss the role of the dynamic glass-forming fragile-to-strong crossover (FSC) in supercooled liquids. In the FSC, significant dynamic changes such as the decoupling (the violation of the Stokes-Einstein relation) of homologous transport parameters, e.g., the density relaxation time τ and the viscosity η, occur at a characteristic temperature T(c). We study the FSC using a scaling law approach. In particular, we use both forms of the mode-coupling theory (MCT): the original (ideal) and the extended form, which explicitly describes energy hopping processes. We demonstrate that T(c) plays the most important physical role in understanding dynamic arrest processes.

  9. Fragile X-associated disorders: Don't miss them.

    Science.gov (United States)

    Birch, Rachael C; Cohen, Jonathan; Trollor, Julian N

    2017-01-01

    Fragile X-associated disorders are a family of inherited disorders caused by expansions in the Fragile X Mental Retardation 1 (FMR1) gene. Premutation expansions of the FMR1 gene confer risk for fragile X-associated primary ovarian insufficiency and fragile X-associated tremor ataxia syndrome, as well as other medical and psychiatric comorbidities. Premutation expansions of the FMR1 gene are common in the general population. However, fragile X-associated disorders are frequently under-recognised and often misdiagnosed. The aim of this article is to describe fragile X-associated disorders and identify specific considerations for general practitioners (GPs) during identification and management of these disorders. GPs have a critical role in the identification of fragile X-associated disorders, as well as coordination of complex care needs. Prompt recognition and appropriate management of these disorders and potential medical and psychiatric comorbidities will have important implications not only for the affected patient, but also other family members who may be at risk.

  10. Component fragilities - data collection, analysis and interpretation

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-01-01

    As part of the component fragility research program sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment with emphasis on electrical equipment, by identifying, collecting and analyzing existing test data from various sources. BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical and control devices of various manufacturers and models. Through a cooperative agreement, BNL has also obtained test data from EPRI/ANCO. An analysis of the collected data reveals that fragility levels can best be described by a group of curves corresponding to various failure modes. The lower bound curve indicates the initiation of malfunctioning or structural damage, whereas the upper bound curve corresponds to overall failure of the equipment based on known failure modes occurring separately or interactively. For some components, the upper and lower bound fragility levels are observed to vary appreciably depending upon the manufacturers and models. An extensive amount of additional fragility or high level test data exists. If completely collected and properly analyzed, the entire data bank is expected to greatly reduce the need for additional testing to establish fragility levels for most equipment

  11. Apparent Violation of the Fluctuation-Dissipation Theorem due to Dynamic Heterogeneity in a Model Glass-Forming Liquid

    International Nuclear Information System (INIS)

    Kawasaki, Takeshi; Tanaka, Hajime

    2009-01-01

    Here we study the relation between the mobility and the translational diffusion in supercooled two-dimensional polydisperse colloidal liquids, using numerical simulations. We find an apparent violation of the Einstein-Smoluchowski (ES) relation D=k B Tμ (D: diffusion constant; μ: mobility; k B ; Boltzmann's constant; T: temperature). The violation is a direct consequence of the fact that it is difficult for a driven particle to enter a jammed region with high order due to its yield stress. The degree of this apparent ES violation is controlled solely by the characteristic size of slow jammed regions, ξ. Our finding implies that the characteristic time of this problem is not the structural relaxation time τ α but the lifetime of dynamic heterogeneity, τ ξ . A supercooled liquid can be regarded to be ergodic only over τ ξ , which may be the slowest intrinsic time scale of the system.

  12. Experimental Evidence of Low Density Liquid Water under Decompression

    Science.gov (United States)

    Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.

    2017-12-01

    Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for

  13. Component fragility research program

    International Nuclear Information System (INIS)

    Tsai, N.C.; Mochizuki, G.L.; Holman, G.S.

    1989-11-01

    To demonstrate how ''high-level'' qualification test data can be used to estimate the ultimate seismic capacity of nuclear power plant equipment, we assessed in detail various electrical components tested by the Pacific Gas ampersand Electric Company for its Diablo Canyon plant. As part of our Phase I Component Fragility Research Program, we evaluated seismic fragility for five Diablo Canyon components: medium-voltage (4kV) switchgear; safeguard relay board; emergency light battery pack; potential transformer; and station battery and racks. This report discusses our Phase II fragility evaluation of a single Westinghouse Type W motor control center column, a fan cooler motor controller, and three local starters at the Diablo Canyon nuclear power plant. These components were seismically qualified by means of biaxial random motion tests on a shaker table, and the test response spectra formed the basis for the estimate of the seismic capacity of the components. The seismic capacity of each component is referenced to the zero period acceleration (ZPA) and, in our Phase II study only, to the average spectral acceleration (ASA) of the motion at its base. For the motor control center, the seismic capacity was compared to the capacity of a Westinghouse Five-Star MCC subjected to actual fragility tests by LLNL during the Phase I Component Fragility Research Program, and to generic capacities developed by the Brookhaven National Laboratory for motor control center. Except for the medium-voltage switchgear, all of the components considered in both our Phase I and Phase II evaluations were qualified in their standard commercial configurations or with only relatively minor modifications such as top bracing of cabinets. 8 refs., 67 figs., 7 tabs

  14. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.

    Science.gov (United States)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  15. Prediction of supercooled liquid vapor pressures and n-octanol/air partition coefficients for polybrominated diphenyl ethers by means of molecular descriptors from DFT method

    International Nuclear Information System (INIS)

    Wang Zunyao; Zeng Xiaolan; Zhai Zhicai

    2008-01-01

    The molecular geometries of 209 polybrominated diphenyl ethers (PBDEs) were optimized at the B3LYP/6-31G* level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two novel QSPR models for predicting supercooled liquid vapor pressures (P L ) and octanol/air partition coefficients (K OA ) of PBDEs based on the theoretical linear solvation energy relationship (TLSER) model, respectively. The two models achieved in this work both contain three variables: most negative atomic partial charge in molecule (q - ), dipole moment of the molecules (μ) and mean molecular polarizability (α), of which R 2 values are both as high as 0.997, their root-mean-square errors in modeling (RSMEE) are 0.069 and 0.062 respectively. In addition, the F-value of two models are both evidently larger than critical values F 0.05 and the variation inflation factors (VIF) of variables herein are all less than 5.0, suggesting obvious statistic significance of the P L and K OA predicting models. The results of Leave-One-Out (LOO) cross-validation for training set and validation with external test set both show that the two models obtained exhibited optimum stability and good predictive power. We suggest that the QSPRs derived here can be used to predict accurately P L and K OA for non-tested PBDE congeners from Mono-BDEs to Hepta-BDEs and from Mono-BDEs to Hexa-BDEs, respectively

  16. Structural evolution on medium-range-order during the fragile-strong transition in Ge_1_5Te_8_5

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Hembree, William; Hechler, Simon; Bednarcik, Jozef; Busch, Ralf; Lucas, Pierre

    2017-01-01

    Using synchrotron X-ray scattering, we investigate liquid Ge_1_5Te_8_5 spanning a wide temperature range from near T_g to the melt, and demonstrate that the density anomaly and fragile-strong transition are not only related to short-range-order (SRO) structural change (e.g. Peierls-like distortion), but also accompanied by a remarkable development of medium-range-order (MRO). The latter manifests as an emerging pre-peak in total structure factor S(Q) and atomic pair correlations on the length scale of ∼8 Å in the real space G(r) function. The results highlight the role of medium-range structural ordering in the evolution of the configurational entropy which, according to the Adam-Gibbs theory, can be linked to the fragile-strong transition (FS-transition). Based on the relation between structure and liquid dynamics, the FS-transitions at high pressures are examined in terms of experimental data and the Ehrenfest relation. This work identifies the length scale for the atomic correlations in MRO structural evolutions and presents a structural approach to exploring liquid dynamics, which may be useful for investigating relevant phase-change alloys.

  17. Fragility, anharmonicity and anelasticity of silver borate glasses

    International Nuclear Information System (INIS)

    Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di

    2006-01-01

    The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions

  18. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  19. MUS81 promotes common fragile site expression

    DEFF Research Database (Denmark)

    Ying, Songmin; Minocherhomji, Sheroy; Chan, Kok Lung

    2013-01-01

    Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair the fait......Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair...... the faithful disjunction of sister chromatids in mitosis. However, the mechanisms by which CFSs express their fragility, and the cellular factors required to suppress CFS instability, remain largely undefined. Here, we report that the DNA structure-specific nuclease MUS81-EME1 localizes to CFS loci in early...

  20. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ionic liquid pre-treatment of microalgae and extraction of biomolecules

    NARCIS (Netherlands)

    Desai, Rupali K.

    2016-01-01

    Liquid-liquid extraction (LLE) techniques are widely used in separation primarily due to ease of scale up. Conventional (LLE) systems based on organic solvents are not suitable for extraction of fragile molecules such as proteins as it would result in denaturation. On the other hand aqueous

  2. Determinants of Banking System Fragility : A Regional Perspective

    NARCIS (Netherlands)

    Degryse, H.A.; Elahi, M.A.; Penas, M.F.

    2012-01-01

    Abstract: Banking systems are fragile not only within one country but also within and across regions. We study the role of regional banking system characteristics for regional banking system fragility. We find that regional banking system fragility reduces when banks in the region jointly hold more

  3. Contact freezing of supercooled cloud droplets on collision with mineral dust particles: effect of particle size

    Science.gov (United States)

    Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas

    2013-04-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974

  4. Employment Impact and Financial Burden for Families of Children with Fragile X Syndrome: Findings from the National Fragile X Survey

    Science.gov (United States)

    Ouyang, L.; Grosse, S.; Raspa, M.; Bailey, D.

    2010-01-01

    Background: The employment impact and financial burden experienced by families of children with fragile X syndrome (FXS) has not been quantified in the USA. Method: Using a national fragile X family survey, we analysed data on 1019 families with at least one child who had a full FXS mutation. Out-of-pocket expenditures related to fragile X were…

  5. Synaptic vesicle dynamic changes in a model of fragile X.

    Science.gov (United States)

    Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine

    2016-01-01

    Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

  6. Financial fragility in the Great Moderation

    NARCIS (Netherlands)

    Bezemer, Dirk; Grydaki, Maria

    2014-01-01

    A nascent literature explores the measurement of financial fragility. This paper considers evidence for rising financial fragility during the 1984-2007 Great Moderation in the U.S. The literature suggests that macroeconomic stability combined with strong growth of credit to asset markets, in asset

  7. Effect of plastic deformation on the supercooled austenite transformations of the Cr-Mo steel with Nb, Ti and B microadditions

    International Nuclear Information System (INIS)

    Adamczyk, J.; Opiela, M.

    1998-01-01

    Effect of plastic deformation at austenizing temperature was investigated on phase transformations, structure and hardness of the supercooled austenite transformation products of the Cr-Mo constructional steel with Nb, Ti and B microadditions. Basing on the analysis of the phase transformation plots of the supercooled undeformed austenite and of the supercooled and plastically deformed one, it was found out that direct cooling of specimens after completing their plastic deformation in the above mentioned conditions, results in significant acceleration of the α→β, and ferritic and pearlitic transformations, and in the decrease of transformation products hardness. These phenomena are of great importance for working out of the thermo-mechanical treatment of products made from the heat-treated microalloyed steel. (author)

  8. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    Science.gov (United States)

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  9. The fragile X syndrome: Isolation of the FMR-1 gene and characterization of the fragile X mutation

    NARCIS (Netherlands)

    B.A. Oostra (Ben); A. Verkerk

    1992-01-01

    markdownabstractConclusion Rapid progress has been made in the analysis of the fragile X syndrome during 1991. Different groups have discovered that fragile X chromosomes are preferentially methylated. In these X chromosomes an insertion has been found in the methylated region. The FMR-1 gene,

  10. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  11. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  12. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  13. Fragile X syndrome

    Science.gov (United States)

    ... problems, or intellectual disability may not be present. Symptoms Behavior problems associated with fragile X syndrome include: Autism spectrum disorder Delay in crawling, walking, or twisting Hand flapping ...

  14. A glance on the glass-transition phenomenon from the viewpoint of devitrification

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2007-01-01

    The formation of a supercooled liquid region and devitrification behaviour of metallic glasses on heating are discussed in relation with the glass-transition phenomenon observed using differential scanning and isothermal calorimetries as well as X-ray diffraction and transmission electron microscopy (TEM). One of the most clear sequences of the glassy ↔ supercooled liquid phase transition is the change of the devitrification behaviour and the kinetics of the devitrification reaction in Al-based and some other alloys after the transition from the glassy to the supercooled liquid state. The significant variation in the devitrification behaviour and thermodynamic parameters indicate the difference between the glassy and the supercooled liquid phases

  15. The Detection and Analysis of Chromosome Fragile Sites

    DEFF Research Database (Denmark)

    Bjerregaard, Victoria A; Özer, Özgün; Hickson, Ian D

    2018-01-01

    A fragile site is a chromosomal locus that is prone to form a gap or constriction visible within a condensed metaphase chromosome, particularly following exposure of cells to DNA replication stress. Based on their frequency, fragile sites are classified as either common (CFSs; present in all...... for detection and analysis of chromosome fragile sites....

  16. Experimental-statistical model of liquid-phase epitaxy for InP/InGaAsP/InP heterostructures

    International Nuclear Information System (INIS)

    Vasil'ev, M.G.; Selin, A.A.; Shelyakin, A.A.

    1985-01-01

    A mathematic model of the process of liquid-phase epitaxy for double InP/InGaAsP/InP heterostructures is constructed using statistical methods of experiment planning. The analysis of the model shows that the degree of In-P system melt supercooling affects considerably the characteristics of double heterostructures

  17. Crossover integral equation theory for the liquid structure study

    International Nuclear Information System (INIS)

    Lai, S.K.; Chen, H.C.

    1994-08-01

    The main purpose of this work is to report on a calculation that describes the role of the long-range bridge function [H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982)] as applied to the study of structure of simple liquid metals. It was found here that this bridge function accounts pretty well for the major part of long-range interactions but is physically inadequate for describing the short-range part of liquid structure. To improve on the theory we have drawn attention to the crossover integral equation method which, in essence, amounts to adding to the above bridge function a short-range correction of bridge diagrams. The suggested crossover procedure has been tested for the case of liquid metal Cs. Remarkably good agreement with experiment was obtained confirming our conjecture that the crossover integral equation approach as stressed in this work is potentially an appropriate theory for an accurate study of liquid structure possibly for the supercooled liquid regime. (author). 21 refs, 3 figs

  18. The relationship between gut contents and supercooling capacity in hatchling painted turtles (Chrysemys picta).

    Science.gov (United States)

    Packard, Gary C; Packard, Mary J

    2006-05-01

    Painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest) where they seemingly withstand exposure to ice and cold by resisting freezing and becoming supercooled. However, turtles ingest soil and fragments of eggshell as they are hatching from their eggs, and the ingestate usually contains efficient nucleating agents that cause water to freeze at high subzero temperatures. Consequently, neonatal painted turtles have only a modest ability to undergo supercooling in the period immediately after hatching. We studied the limit for supercooling (SCP) in hatchlings that were acclimating to different thermal regimes and then related SCPs of the turtles to the amount of particulate matter in their gastrointestinal (GI) tract. Turtles that were transferred directly from 26 degrees C (the incubation temperature) to 2 degrees C did not purge soil from their gut, and SCPs for these animals remained near -4 degrees C for the 60 days of the study. Animals that were held at 26 degrees C for the duration of the experiment usually cleared soil from their GI tract within 24 days, but SCPs for these turtles were only slightly lower after 60 days than they were at the outset of the experiment. Hatchlings that were acclimating slowly to 2 degrees C cleared soil from their gut within 24 days and realized a modest reduction in their SCP. However, the limit of supercooling in the slowly acclimating animals continued to decline even after all particulate material had been removed from their GI tract, thereby indicating that factors intrinsic to the nucleating agents themselves also may have been involved in the acclimation of hatchlings to low temperature. The lowest SCPs for turtles that were acclimating slowly to 2 degrees C were similar to SCPs recorded in an earlier study of animals taken from natural nests in late autumn, so the current findings affirm the importance of seasonally declining temperatures in

  19. Behavioral Phenotype of Fragile X Syndrome in Adolescence and Adulthood

    Science.gov (United States)

    Smith, Leann E.; Barker, Erin T.; Seltzer, Marsha Mailick; Abbeduto, Leonard; Greenberg, Jan S.

    2012-01-01

    The present study explored the behavioral profile of individuals with fragile X syndrome during adolescence and adulthood. Individuals with both fragile X syndrome and autism (n = 30) were compared with (a) individuals diagnosed with fragile X syndrome (but not autism; n = 106) and (b) individuals diagnosed with autism (but not fragile X syndrome;…

  20. On the Fluctuations that Order and Frustrate Liquid Water

    Science.gov (United States)

    Limmer, David Tyler

    At ambient conditions, water sits close to phase coexistence with its crystal. More so than in many other materials, this fact is manifested in the fluctuations that maintain a large degree of local order in the liquid. These fluctuations and how they result in long-ranged order, or its absence, are emergent features of many interacting molecules. Their study therefore requires using the tools of statistical mechanics for their their systematic understanding. In this dissertation we develop such an understanding. In particular, we focus on collective behavior that emerges in liquid and solid water. At room temperatures, the thermophysical properties of water are quantified and rationalized with simple molecular models. A key feature of these models is the correct characterization of the competition between entropic forces of packing and the energetic preference for tetrahedral order. At cold temperatures, the properties of ice surfaces are studied with statistical field theory. The theory we develop for the long wavelength features of ice interfaces allows us to explain the existence of a premelting layer on the surface of ice and the stability of ice in confinement. In between these extremes, the dynamics of supercooled water are considered. A detailed theory for the early stages of coarsening is developed and used to explain the peculiar observation of a transient second liquid state of water. When coarsening dynamics are arrested, the result is the formation of a glassy states of water. We show that out-of-equilibrium the phase diagram for supercooled water exhibits a rich amount of structure, including a triple point between two glass phases of water and the liquid. At the end, we explore possible technological implications for the interplay between ordering and frustration in studies of water at metal interfaces.

  1. Autism Spectrum Disorder and Fragile X Syndrome

    Science.gov (United States)

    ... only after another family member has been diagnosed. Autism Spectrum Disorder and Fragile X Syndrome Fragile X syndrome is ... gene cause of ASD What Is Autism Spectrum Disorder? Autism spectrum disorder (ASD) is a behavioral diagnosis. The range ...

  2. Relay testing parametric investigation of seismic fragility

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    The seismic capacity of most electrical equipment is governed by malfunction of relays. An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic fragility of a relay may depend on various parameters related to the design or the input motion. In particular, the electrical mode, contact state, adjustment, chatter duration acceptance limit, and the frequency and the direction of the vibration input have been considered to influence the relay fragility level. For a particular relay type, the dynamics of its moving parts depends on the exact model number and vintage and hence, these parameters may also influence the fragility level. In order to investigate the effect of most of these parameters on the seismic fragility level, BNL has conducted a relay test program. The testing has been performed at Wyle Laboratories. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. This paper discusses the methodology used for testing and presents a brief summary of important test results. 1 ref., 10 figs

  3. Seismic fragility of nuclear power plant components (Phase II)

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E.

    1990-02-01

    As part of the Component Fragility Program which was initiated in FY 1985, three additional equipment classes have been evaluated. This report contains the fragility results and discussions on these equipment classes which are switchgear, I and C panels and relays. Both low and medium voltage switchgear assemblies have been considered and a separate fragility estimate for each type is provided. Test data on cabinets from the nuclear instrumentation/neutron monitoring system, plant/process protection system, solid state protective system and engineered safeguards test system comprise the BNL data base for I and C panels (NSSS). Fragility levels have been determined for various failure modes of switchgear and I ampersand C panels, and the deterministic results are presented in terms of test response spectra. In addition, the test data have been evaluated for estimating the respective probabilistic fragility levels which are expressed in terms of a median value, an uncertainty coefficient, a randomness coefficient and an HCLPF value. Due to a wide variation of relay design and the fragility level, a generic fragility level cannot be established for relays. 7 refs., 13 figs., 12 tabs

  4. Resilience and the Fragile City

    Directory of Open Access Journals (Sweden)

    John de Boer

    2015-04-01

    Full Text Available Humanitarian, security, and development actors are witnessing two distinct but intertwined trends that will have a dramatic impact on their operations. The first relates to the fact that the locus of global poverty and vulnerability to disaster are increasingly concentrated in fragile and conflict affected states. The second trend is associated with the notion that the world has entered a period of unprecedented urbanization. For the first time in history, more people live inside urban centres than outside of them. As the world continues to urbanize, global emergencies will increasingly be concentrated in cities, particularly in lower income and fragile countries where the pace of urbanization is fastest. Yet, despite the growing risks facing urban populations living in fragile and conflict affected countries, there is very little understanding of what can be done to reduce the risks posed to these cities and their populations.

  5. Substrate and surfactant effects on the glass-liquid transition of thin water films.

    Science.gov (United States)

    Souda, Ryutaro

    2006-09-07

    Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.

  6. Seismic fragility levels of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided

  7. Study on the Progress of Ecological Fragility Assessment in China

    Science.gov (United States)

    Chen, Pei; Hou, Kang; Chang, Yue; Li, Xuxiang; Zhang, Yunwei

    2018-02-01

    The basic elements of human survival are based on the ecological environment. The development of social economic and the security of the ecological environment are closely linked and interact with each other. The fragility of the environment directly affects the stability of the regional ecosystem and the sustainable development of the ecological environment. As part of the division of the national ecological security, the assessment of ecological fragility has become a hot and difficult issue in environmental research, and researchers at home and abroad have systematically studied the causes and states of ecological fragility. The assessment of regional ecological fragility is a qualitative and quantitative analysis of the unbalanced distribution of ecological environment factors caused by human socio-economic activities or changes in ecosystems. At present, researches on ecological fragility has not formed a complete and unified index assessment system, and the unity of the assessment model has a direct impact on the accuracy of the index weights. Therefore, the discussion on selection of ecological fragility indexes and the improvement of ecological fragility assessment model is necessary, which is good for the improvement of ecological fragility assessment system in China.

  8. Frequency of fragile-x in x‑linked mental retardation

    African Journals Online (AJOL)

    ... with isolated mental retardation or autism of unknown etiology with considerable fragile X dysmorphic features or established family history of fragile X syndrome, chromosomal study that identifies the fragile site at Xq27.3 in addition to other cytogenetic abnormalities could be useful or early diagnosis and intervention by ...

  9. Component fragilities. Data collection, analysis and interpretation

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1985-01-01

    As part of the component fragility research program sponsored by the US NRC, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment with emphasis on electrical equipment. To date, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical and control devices, e.g., switches, transmitters, potentiometers, indicators, relays, etc., of various manufacturers and models. BNL has also obtained test data from EPRI/ANCO. Analysis of the collected data reveals that fragility levels can best be described by a group of curves corresponding to various failure modes. The lower bound curve indicates the initiation of malfunctioning or structural damage, whereas the upper bound curve corresponds to overall failure of the equipment based on known failure modes occurring separately or interactively. For some components, the upper and lower bound fragility levels are observed to vary appreciably depending upon the manufacturers and models. For some devices, testing even at the shake table vibration limit does not exhibit any failure. Failure of a relay is observed to be a frequent cause of failure of an electrical panel or a system. An extensive amount of additional fregility or high level test data exists

  10. Longitudinal Profiles of Adaptive Behavior in Fragile X Syndrome

    Science.gov (United States)

    Quintin, Eve-Marie; Jo, Booil; Lightbody, Amy A.; Hazlett, Heather Cody; Piven, Joseph; Hall, Scott S.; Reiss, Allan L.

    2014-01-01

    OBJECTIVE: To examine longitudinally the adaptive behavior patterns in fragile X syndrome. METHOD: Caregivers of 275 children and adolescents with fragile X syndrome and 225 typically developing children and adolescents (2–18 years) were interviewed with the Vineland Adaptive Behavior Scales every 2 to 4 years as part of a prospective longitudinal study. RESULTS: Standard scores of adaptive behavior in people with fragile X syndrome are marked by a significant decline over time in all domains for males and in communication for females. Socialization skills are a relative strength as compared with the other domains for males with fragile X syndrome. Females with fragile X syndrome did not show a discernible pattern of developmental strengths and weaknesses. CONCLUSIONS: This is the first large-scale longitudinal study to show that the acquisition of adaptive behavior slows as individuals with fragile X syndrome age. It is imperative to ensure that assessments of adaptive behavior skills are part of intervention programs focusing on childhood and adolescence in this condition. PMID:25070318

  11. Fragile Butterfly

    DEFF Research Database (Denmark)

    2011-01-01

    Valg af materiale/medie/form: Med indlevelse og en unik balance af sårbarhed i stemmen synger og fortolker Heidie sine egne sange, hvis lyriske tekster grundlæggende har to temaer: En dyb kærlighed til livet og det at turde kærligheden. Toneuniverset i Fragile Butterfly tager sit afsæt i jazzen...

  12. Tracking development assistance for health to fragile states: 2005-2011.

    Science.gov (United States)

    Graves, Casey M; Haakenstad, Annie; Dieleman, Joseph L

    2015-03-19

    Development assistance for health (DAH) has grown substantially, totaling more than $31.3 billion in 2013. However, the degree that countries with high concentrations of armed conflict, ethnic violence, inequality, debt, and corruption have received this health aid and how that assistance might be different from the funding provided to other countries has not been assessed. We combine DAH estimates and a multidimensional fragile states index for 2005 through 2011. We disaggregate and compare total DAH disbursed for fragile states versus stable states. Between 2005 and 2011, DAH per person in fragile countries increased at an annualized rate of 5.4%. In 2011 DAH to fragile countries totaled $6.2 billion, which is $5.05 per person. This is 43% of total DAH that is traced to a country. Comparing low-income countries, funding channeled to fragile countries was $7.22 per person while stable countries received $11.15 per person. Relative to stable countries, donors preferred to provide more funding to low-income fragile countries that have refugees or ongoing external intervention but tended to avoid providing funding to countries with political gridlock, flawed elections, or economic decline. In 2011, Ethiopia received the most health aid of all fragile countries, while the United States provided the most funds to fragile countries. In 2011, 1.2 billion people lived in fragile countries. DAH can bolster health systems and might be especially valuable in providing long-term stability in fragile environments. While external health funding to these countries has increased since 2005, it is, in per person terms, almost half as much as the DAH provided to stable countries of comparable income levels.

  13. Dynamics of supercooled liquids: excess wings, β peaks, and rotation-translation coupling

    International Nuclear Information System (INIS)

    Cummins, H Z

    2005-01-01

    Dielectric susceptibility spectra of liquids cooled towards the liquid-glass transition often exhibit secondary structure in the frequency region between the α peak and the susceptibility minimum, in the form of either an 'excess wing' or a secondary peak-the Johari-Goldstein β peak. Recently, Goetze and Sperl (2004 Phys. Rev. Lett. 92 105701) showed that a simple schematic mode coupling theory model, which incorporates rotation-translation (RT) coupling, successfully describes the nearly logarithmic decay observed in optical Kerr effect data. This model also exhibits both excess wing and β peak features, qualitatively resembling experimental dielectric data. It also predicts that the excess wing slope decreases with decreasing temperature and gradually evolves into a β peak with increasing RT coupling. We therefore suggest that these features and their observed evolution with temperature may be consequences of RT coupling

  14. A note on families of fragility curves

    International Nuclear Information System (INIS)

    Kaplan, S.; Bier, V.M.; Bley, D.C.

    1989-01-01

    In the quantitative assessment of seismic risk, uncertainty in the fragility of a structural component is usually expressed by putting forth a family of fragility curves, with probability serving as the parameter of the family. Commonly, a lognormal shape is used both for the individual curves and for the expression of uncertainty over the family. A so-called composite single curve can also be drawn and used for purposes of approximation. This composite curve is often regarded as equivalent to the mean curve of the family. The equality seems intuitively reasonable, but according to the authors has never been proven. The paper presented proves this equivalence hypothesis mathematically. Moreover, the authors show that this equivalence hypothesis between fragility curves is itself equivalent to an identity property of the standard normal probability curve. Thus, in the course of proving the fragility curve hypothesis, the authors have also proved a rather obscure, but interesting and perhaps previously unrecognized, property of the standard normal curve

  15. 21 CFR 864.6600 - Osmotic fragility test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic fragility...

  16. Thermal and fragility studies on microwave synthesized K_2O-B_2O_3-V_2O_5 glasses

    International Nuclear Information System (INIS)

    Harikamalasree; Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-01-01

    Glasses with composition xK_2O–60B_2O_3–(40-x) V_2O_5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔC_p) at glass transition (T_g), width of glass transition (ΔT_g), heat capacities in the glassy (C_p_g) and liquid (C_p_l) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(V_m"3T_g) and (ΔC_p/C_p_l)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K_2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K_2O concentration. The observed variations are qualitatively analyzed.

  17. Usng subjective percentiles and test data for estimating fragility functions

    International Nuclear Information System (INIS)

    George, L.L.; Mensing, R.W.

    1981-01-01

    Fragility functions are cumulative distribution functions (cdfs) of strengths at failure. They are needed for reliability analyses of systems such as power generation and transmission systems. Subjective opinions supplement sparse test data for estimating fragility functions. Often the opinions are opinions on the percentiles of the fragility function. Subjective percentiles are likely to be less biased than opinions on parameters of cdfs. Solutions to several problems in the estimation of fragility functions are found for subjective percentiles and test data. How subjective percentiles should be used to estimate subjective fragility functions, how subjective percentiles should be combined with test data, how fragility functions for several failure modes should be combined into a composite fragility function, and how inherent randomness and uncertainty due to lack of knowledge should be represented are considered. Subjective percentiles are treated as independent estimates of percentiles. The following are derived: least-squares parameter estimators for normal and lognormal cdfs, based on subjective percentiles (the method is applicable to any invertible cdf); a composite fragility function for combining several failure modes; estimators of variation within and between groups of experts for nonidentically distributed subjective percentiles; weighted least-squares estimators when subjective percentiles have higher variation at higher percents; and weighted least-squares and Bayes parameter estimators based on combining subjective percentiles and test data. 4 figures, 2 tables

  18. Molecular characterization of X chromosome fragility in idiopathic ...

    African Journals Online (AJOL)

    Heba Alla Hosny Omar

    2015-11-23

    Nov 23, 2015 ... Frequency of fragile X syndrome among male siblings and relatives of mentally retarded patients ... hence the wide clinical spectrum of disorders caused by this ... fragile X syndrome, autism and other less well-characterized.

  19. Trio Fragile / Olga Kaljundi

    Index Scriptorium Estoniae

    Kaljundi, Olga, 1941-2001

    1998-01-01

    Tallinna Vene Draamateatri galeriis esinenud trupi "Trio Fragile" vernissaazhist. Trio loomingust ja osalejatest : kahe muusiku seltskonnas esineb ka 1984.a. Kunstiülikooli lõpetanud kunstnik Tõnu Talve.

  20. Attentional Set-Shifting in Fragile X Syndrome

    Science.gov (United States)

    Van der Molen, M. J. W.; Van der Molen, M. W.; Ridderinkhof, K. R.; Hamel, B. C. J.; Curfs, L. M. G.; Ramakers, G. J. A.

    2012-01-01

    The ability to flexibly adapt to the changing demands of the environment is often reported as a core deficit in fragile X syndrome (FXS). However, the cognitive processes that determine this attentional set-shifting deficit remain elusive. The present study investigated attentional set-shifting ability in fragile X syndrome males with the…

  1. Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.

    Science.gov (United States)

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2011-12-01

    The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.

  2. High functioning male with fragile X syndrome and fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Basuta, Kirin; Schneider, Andrea; Gane, Louise; Polussa, Jonathan; Woodruff, Bryan; Pretto, Dalyir; Hagerman, Randi; Tassone, Flora

    2015-09-01

    Fragile X syndrome (FXS) affects individuals with more than 200 CGG repeats (full mutation) in the fragile X mental retardation 1 (FMR1) gene. Those born with FXS experience cognitive and social impairments, developmental delays, and some features of autism spectrum disorders. Carriers of a premutation (55-200 CGG repeats) are generally not severely affected early in life; however, are at high risk of developing the late onset neurodegenerative disorder, Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), or Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and may have other medical conditions such as developmental delay, autism spectrum disorders, hypertension, anxiety, and immune-mediated disorders. Here we present a case of a 58-year-old man with a borderline IQ, average memory skills, and executive function deficits. He met criteria for multiple psychiatric diagnoses and presented with tremor and ataxia, meeting criteria for FXTAS. Molecular testing unveiled a completely unmethylated FMR1 full mutation in peripheral blood mononucleated cells with elevated FMR1 mRNA and premutation alleles of different sizes in two other tissues (primary fibroblasts and sperm), indicating the presence of allele instability based on both inter- and intra-tissue mosaicism. The observation of FXTAS in this case of a full mutation mosaic man suggests that the pathogenic mechanism underlying this disorder is not observed exclusively in premutation carriers as it was originally thought. The concomitant presence of features of FXS and late onset neurological deterioration with probable FXTAS likely result from a combined molecular pathology of elevated FMR1 mRNA levels, a molecular hallmark of FXTAS and low FMRP expression that leads to FXS. © 2015 Wiley Periodicals, Inc.

  3. Improvements in or relating to storage or shipping containers for fragile objects

    International Nuclear Information System (INIS)

    1979-01-01

    A storage or shipping container for fragile objects such as pellets for use in a laser fusion chamber is described. It comprises a base, a stem having a reduced tip in which a pellet can be mounted and a frangible bulb (glass or plastic) adapted to fit over the stem and be sealed on the base. Protective material (fluid or gas) can be introduced into the bulb. The space within the sealed capsule between the stem and the bulb can be filled with an appropriate gas, solid or liquid to reduce chemical reaction or vibration. A modified container allows several small pellets to be stored or shipped. Several of the containers described can be placed inside a second container which has recesses to take their bases and the surrounding space filled with viscous liquid or solid such as paraffin to reduce shock. (U.K.)

  4. Developing empirical collapse fragility functions for global building types

    Science.gov (United States)

    Jaiswal, K.; Wald, D.; D'Ayala, D.

    2011-01-01

    Building collapse is the dominant cause of casualties during earthquakes. In order to better predict human fatalities, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program requires collapse fragility functions for global building types. The collapse fragility is expressed as the probability of collapse at discrete levels of the input hazard defined in terms of macroseismic intensity. This article provides a simple procedure for quantifying collapse fragility using vulnerability criteria based on the European Macroseismic Scale (1998) for selected European building types. In addition, the collapse fragility functions are developed for global building types by fitting the beta distribution to the multiple experts’ estimates for the same building type (obtained from EERI’s World Housing Encyclopedia (WHE)-PAGER survey). Finally, using the collapse probability distributions at each shaking intensity level as a prior and field-based collapse-rate observations as likelihood, it is possible to update the collapse fragility functions for global building types using the Bayesian procedure.

  5. Molecular dynamics studies of the dynamics of supercooled Lennard-Jones liquids

    International Nuclear Information System (INIS)

    De Leeuw, S.W.; Brakkee, M.J.D.

    1990-01-01

    Results are presented of molecular dynamics experiments, in which the Lennard-Jones liquid is cooled isobarically into the metastable temperature region below the freezing temperature. The variation of the density-density and transverse current correlation functions with temperature is studied. We observed a power-law behaviour for the temperature dependence of dynamical properties (viscosity and coefficienty of self-diffusion) with an exponent in good agreement with prediction of mode coupling theories and recent experimental results. (author). 23 refs, 5 figs

  6. Treatment of Fragile X Syndrome with a Neuroactive Steroid

    Science.gov (United States)

    2013-08-01

    Fulks JL, O’Bryhim BE et al (2010) Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile x mental...D2 dopamine receptor agonist. J Cogn Neurosci 4(1):58–68 Luo Y, Shan G et al (2010) Fragile x mental retardation protein regulates proliferation and...AD_________________ Award Number: W81XWH-11-1-0626 TITLE: Treatment of Fragile X Syndrome with a

  7. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    Energy Technology Data Exchange (ETDEWEB)

    Pope, C. L. [Idaho State Univ., Pocatello, ID (United States); Savage, B. [Idaho State Univ., Pocatello, ID (United States); Johnson, B. [Idaho State Univ., Pocatello, ID (United States); Muchmore, C. [Idaho State Univ., Pocatello, ID (United States); Nichols, L. [Idaho State Univ., Pocatello, ID (United States); Roberts, G. [Idaho State Univ., Pocatello, ID (United States); Ryan, E. [Idaho State Univ., Pocatello, ID (United States); Suresh, S. [Idaho State Univ., Pocatello, ID (United States); Tahhan, A. [Idaho State Univ., Pocatello, ID (United States); Tuladhar, R. [Idaho State Univ., Pocatello, ID (United States); Wells, A. [Idaho State Univ., Pocatello, ID (United States); Smith, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-24

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  8. Seismic fragility of nuclear power plant components. Phase I

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-06-01

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies

  9. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  10. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  11. Kerr black holes are not fragile

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)

    2012-04-21

    Certain AdS black holes are 'fragile', in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be 'fragile', which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.

  12. Tirilazad mesylate protects stored erythrocytes against osmotic fragility.

    Science.gov (United States)

    Epps, D E; Knechtel, T J; Bacznskyj, O; Decker, D; Guido, D M; Buxser, S E; Mathews, W R; Buffenbarger, S L; Lutzke, B S; McCall, J M

    1994-12-01

    The hypoosmotic lysis curve of freshly collected human erythrocytes is consistent with a single Gaussian error function with a mean of 46.5 +/- 0.25 mM NaCl and a standard deviation of 5.0 +/- 0.4 mM NaCl. After extended storage of RBCs under standard blood bank conditions the lysis curve conforms to the sum of two error functions instead of a possible shift in the mean and a broadening of a single error function. Thus, two distinct sub-populations with different fragilities are present instead of a single, broadly distributed population. One population is identical to the freshly collected erythrocytes, whereas the other population consists of osmotically fragile cells. The rate of generation of the new, osmotically fragile, population of cells was used to probe the hypothesis that lipid peroxidation is responsible for the induction of membrane fragility. If it is so, then the antioxidant, tirilazad mesylate (U-74,006f), should protect against this degradation of stored erythrocytes. We found that tirilazad mesylate, at 17 microM (1.5 mol% with respect to membrane lecithin), retards significantly the formation of the osmotically fragile RBCs. Concomitantly, the concentration of free hemoglobin which accumulates during storage is markedly reduced by the drug. Since the presence of the drug also decreases the amount of F2-isoprostanes formed during the storage period, an antioxidant mechanism must be operative. These results demonstrate that tirilazad mesylate significantly decreases the number of fragile erythrocytes formed during storage in the blood bank.

  13. Improved Erythrocyte Osmotic Fragility and Packed Cell Volume ...

    African Journals Online (AJOL)

    Improved Erythrocyte Osmotic Fragility and Packed Cell Volume following administration of Aloe barbadensis Juice Extract in Rats. ... Abstract. Aloe barbadensis is a popular house plant that has a long history of a multipurpose folk remedy. ... Keywords: osmotic fragility, packed cell volume, haemoglobin, Aloe vera ...

  14. Experimental evidence for two distinct deeply supercooled liquid states of water – Response to “Comment on ‘Water's second glass transition”’, by G.P. Johari, Thermochim. Acta (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J.; Seidl, M. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Gainaru, C. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Fuentes-Landete, V.; Amann-Winkel, K.; Handle, P.H. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Köster, K.W.; Nelson, H. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Böhmer, R., E-mail: roland.bohmer@tu-dortmund.de [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Loerting, T., E-mail: thomas.loerting@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria)

    2015-10-10

    Highlights: • Two samples of amorphous ices quench-recovered from 140 K to 0.07 GPa are compared. • Calorimetry, X-ray diffraction, dielectric spectroscopy and volumetry are employed. • The two samples are distinct and cannot both be termed “pressure-densified glassy water”. • One route of preparation leads to high- (HDA), and the other to low-density amorphous ice (LDA). • Two distinct glass transitions are observed and interpreted to indicate two liquid H{sub 2}O phases. - Abstract: Recently, our earlier data which led us to conclude that deeply supercooled water displays a second glass transition (Amann-Winkel et al., 2013) was reinterpreted (Johari, 2015). In particular, the increase in heat capacity observed for high-density amorphous ice (HDA) samples at 116 K was reinterpreted to indicate sub-T{sub g} features of low-density amorphous ice's (LDA's) glass transition. We reply to the criticism in detail and report an experiment triggered by the comment on our work. This experiment unequivocally confirms our original interpretation of the observations and reinforces the case for water's second glass transition, its polyamorphism, and the observation of two distinct ultraviscous states of water differing by about 25% in density.

  15. Component Fragility Research Program: Phase 1 component prioritization

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.

    1987-06-01

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize seismic ''fragilities'' - probabilities of failure conditioned on the severity of seismic input motion - that are based largely on limited test data and on engineering judgment. Under the NRC Component Fragility Research Program (CFRP), the Lawrence Livermore National Laboratory (LLNL) has developed and demonstrated procedures for using test data to derive probabilistic fragility descriptions for mechanical and electrical components. As part of its CFRP activities, LLNL systematically identified and categorized components influencing plant safety in order to identify ''candidate'' components for future NRC testing. Plant systems relevant to safety were first identified; within each system components were then ranked according to their importance to overall system function and their anticipated seismic capacity. Highest priority for future testing was assigned to those ''very important'' components having ''low'' seismic capacity. This report describes the LLNL prioritization effort, which also included application of ''high-level'' qualification data as an alternate means of developing probabilistic fragility descriptions for PRA applications

  16. Empirical Formulae for The Calculation of Austenite Supercooled Transformation Temperatures

    Directory of Open Access Journals (Sweden)

    Trzaska J.

    2015-04-01

    Full Text Available The paper presents empirical formulae for the calculation of austenite supercooled transformation temperatures, basing on the chemical composition, austenitising temperature and cooling rate. The multiple regression method was used. Four equations were established allowing to calculate temperature of the start area of ferrite, perlite, bainite and martensite at the given cooling rate. The calculation results obtained do not allow to determine the cooling rate range of ferritic, pearlitic, bainitic and martensite transformations. Classifiers based on logistic regression or neural network were established to solve this problem.

  17. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  18. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    International Nuclear Information System (INIS)

    Kuehnel, Matthias

    2014-02-01

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  19. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  20. Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Jeon, Sangho; Park, Cheolmin; Kang, Dong-Hee

    2013-01-01

    Highlights: • Thermophysical properties of liquid Ti are obtained by electrostatic levitation. • How to measure the thermophysical properties is shown with non-contact method. • Hypercooling limit of liquid Ti guarantying homogeneous nucleation is 341 K. • Accurate ratio C p /ε T of the liquid Ti is obtained with weak temperature dependence. • Interfacial free energy of Ti is estimated with the thermophysical parameters. -- Abstract: Thermophysical properties of liquid Ti are measured by a newly developed electrostatic levitation. In this study, we measure a hypercooling limit (ΔT hyp ), specific heat (C p ), total hemispherical emissivity (ε T ), and density (ρ) of liquid Ti. The ΔT hyp of the liquid Ti is 341 K. The C p of the liquid Ti shows very weak temperature dependence during supercooling. The ε T and ρ of the liquid Ti are given by 0.329 and ρ(T) (g/cm 3 ) = (4.16 − 2.36) · 10 −4 (T − T m ). Finally, the interfacial free energy is estimated with the measured thermophysical parameters. The interfacial free energy is 0.164 J/m 2 , and Turnbull’s coefficient is 0.48

  1. Molecular characterization of X chromosome fragility in idiopathic ...

    African Journals Online (AJOL)

    Background: Fragile X syndrome (FXS) is the most common form of inherited mental retardation. Frequency of fragile X syndrome among male siblings and relatives of mentally retarded patients is relatively high. Cytogenetic diagnosis of FXS is unreliable since it is ineffective for the diagnosis of premutated males or ...

  2. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  3. Computer simulations of supercooled polymer melts in the bulk and in confined geometry

    International Nuclear Information System (INIS)

    Baschnagel, J; Varnik, F

    2005-01-01

    We survey results of computer simulations for the structure and dynamics of supercooled polymer melts and films. Our survey is mainly concerned with features of a coarse grained polymer model-a bead-spring model-in the temperature regime above the critical glass temperature T c of the ideal mode-coupling theory (MCT). We divide our discussion into two parts: a part devoted to bulk properties and a part dealing with thin films. The discussion of the bulk properties focuses on two aspects: a comparison of the simulation results with MCT and an analysis of dynamic heterogeneities. We explain in detail how the analyses are performed and what results may be obtained, and we critically assess their strengths and weaknesses. In discussing the application of MCT we also present first results of a quantitative comparison which does not rely on fits, but exploits static input from the simulation to predict the relaxation dynamics. The second part of this review is devoted to extensions of the simulations from the bulk to thin films. We explore in detail the influence of the boundary condition, imposed by smooth or rough walls, on the structure and dynamics of the polymer melt. Geometric confinement is found to shift the glass transition temperature T g (or T c in our case) relative to the bulk. We compare our and other simulation results for the T g shift with experimental data, briefly survey some theoretical ideas for explaining these shifts and discuss related simulation work on the glass transition of confined liquids. Finally, we also present some technical details of how to perform fits to MCT and give a brief introduction to another approach to the glass transition based on the potential energy landscape of a liquid. (topical review)

  4. Invertible chaotic fragile watermarking for robust image authentication

    International Nuclear Information System (INIS)

    Sidiropoulos, Panagiotis; Nikolaidis, Nikos; Pitas, Ioannis

    2009-01-01

    Fragile watermarking is a popular method for image authentication. In such schemes, a fragile signal that is sensitive to manipulations is embedded in the image, so that it becomes undetectable after any modification of the original work. Most algorithms focus either on the ability to retrieve the original work after watermark detection (invertibility) or on detecting which image parts have been altered (localization). Furthermore, the majority of fragile watermarking schemes suffer from robustness flaws. We propose a new technique that combines localization and invertibility. Moreover, watermark dependency on the original image and the non-linear watermark embedding procedure guarantees that no malicious attacks will manage to create information leaks.

  5. Clinical neurogenetics: fragile x-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Hall, Deborah A; O'Keefe, Joan A

    2013-11-01

    This article summarizes the clinical findings, genetics, pathophysiology, and treatment of fragile X-associated tremor ataxia syndrome. The disorder occurs from a CGG repeat (55-200) expansion in the fragile X mental retardation 1 gene. It manifests clinically in kinetic tremor, gait ataxia, and executive dysfunction, usually in older men who carry the genetic abnormality. The disorder has distinct radiographic and pathologic findings. Symptomatic treatment is beneficial in some patients. The inheritance is X-linked and family members may be at risk for other fragile X-associated disorders. This information is useful to neurologists, general practitioners, and geneticists. Copyright © 2013. Published by Elsevier Inc.

  6. Genetics Home Reference: fragile X-associated primary ovarian insufficiency

    Science.gov (United States)

    ... Share: Email Facebook Twitter Home Health Conditions FXPOI Fragile X-associated primary ovarian insufficiency Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Fragile X-associated primary ovarian insufficiency ( FXPOI ) is a condition ...

  7. Genetics Home Reference: fragile X-associated tremor/ataxia syndrome

    Science.gov (United States)

    ... Share: Email Facebook Twitter Home Health Conditions FXTAS Fragile X-associated tremor/ataxia syndrome Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Fragile X-associated tremor/ataxia syndrome ( FXTAS ) is characterized by ...

  8. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  9. Bond particle model for semiconductor melts and its application to liquid structure germanium

    International Nuclear Information System (INIS)

    Ferrante, A.; Tosi, M.P.

    1988-08-01

    A simple type of liquid state model is proposed to describe on a primitive level the melt of an elemental group IV semiconductor as a mixture of atoms and bond particles. The latter, on increase of a coupling strength parameter becomes increasingly localized between pairs of atoms up to local tetrahedral coordination of atoms by bond particles. Angular interatomic correlations are built into the model as bond particle localization grows, even though the bare interactions between the components of the liquid are formally described solely in terms of central pair potentials. The model is solved for liquid structure by standard integral equation techniques of liquid state theory and by Monte Carlo simulation, for values of the parameters which are appropriate to liquid germanium down to strongly supercooled states. The calculated liquid structure is compared with the results of diffraction experiments on liquid germanium near freezing and discussed in relation to diffraction data on amorphous germanium. The model suggests simple melting criteria for elemental and polar semiconductors, which are empirically verified. (author). 25 refs, 9 figs, 3 tabs

  10. Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Collaborative Fragile X Study Group

    NARCIS (Netherlands)

    B.B.A. de Vries (Bert); B.A. Oostra (Ben); M.F. Niermeijer (Martinus); A. Tibben (Arend); A.M.W. van den Ouweland (Ans); S. Mohkamsing; H.J. Duivenvoorden (Hugo); E. Mol; K. Gelsema; M. van Rijn; D.J.J. Halley (Dicky); L.A. Sandkuijl (Lodewijk)

    1997-01-01

    textabstractThe fragile X syndrome is an X-linked mental retardation disorder caused by an expanded CGG repeat in the first exon of the fragile X mental retardation (FMR1) gene. Its frequency, X-linked inheritance, and consequences for relatives all prompt for

  11. Space resolved x-ray diffraction measurements of the supercooled state of polymers

    International Nuclear Information System (INIS)

    Asano, Tsutomu; Yoshida, Shinya; Nishida, Akira; Mina, M.F.

    2002-01-01

    In order to measure an ordering process of polymers, the supercooled state near the crystallizing surface was observed by a space resolved X-ray diffraction method at Photon Factory (PF). Using temperature slope crystallization, low density polyethylene and even-number paraffins were examined during crystallization from the melt state. The results indicate that polyethylene shows a sharp b-axis orientation where the lamellar normal and crystalline c-axis are perpendicular to the temperature slope. The crystalline lamellae are well-developed with lamellar thickness of 180 A. The supercooled melt state just above the crystallizing plane shows some diffraction in the small angle region without any crystalline reflection in the wide angle. This fact suggests that a long-range ordering (lamellar structure) appears prior to the short-range one (crystalline structure). The in-situ crystallizing surface was observed by an optical microscope connected to a TV system. The crystallizing surface of even-number paraffins moves to upwards in the temperature slope. In-situ X-ray measurements at PF revealed that the crystalline c-axis and lamellar normal of the even number paraffins are parallel to the temperature slope. From these results, the crystalline ordering and the surface movement of even number paraffins are explained using special nucleation mechanism including a screw dislocation. (author)

  12. Preserved entropy and fragile magnetism.

    Science.gov (United States)

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  13. Microviscosity of supercooled water confined within aminopropyl-modified mesoporous silica as studied by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio

    2012-01-01

    The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.

  14. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    International Nuclear Information System (INIS)

    Delpouve, N.; Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M.

    2012-01-01

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T g .

  15. Finiteness Marking in Boys with Fragile X Syndrome

    Science.gov (United States)

    Sterling, Audra M.; Rice, Mabel L.; Warren, Steven F.

    2012-01-01

    Purpose: The current study investigated finiteness marking (e.g., he walk "s", he walk "ed") in boys with fragile X syndrome (FXS); the boys were grouped based on receptive vocabulary (i.e., borderline, impaired). Method: Twenty-one boys with the full mutation of fragile X, between the ages of 8 and 16 years participated. The…

  16. Dilemmas in counselling females with the fragile X syndrome

    NARCIS (Netherlands)

    B.B.A. de Vries (Bert); H.M. van den Boer-van den Berg; M.F. Niermeijer (Martinus); A. Tibben (Arend)

    1999-01-01

    textabstractThe dilemmas in counselling a mildly retarded female with the fragile X syndrome and her retarded partner are presented. The fragile X syndrome is an X linked mental retardation disorder that affects males and, often less severely, females. Affected females

  17. Seismic fragilities for nuclear power plant risk studies

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Ravindra, M.K.

    1983-01-01

    Seismic fragilities of critical structures and equipment are developed as families of conditional failure frequency curves plotted against peak ground acceleration. The procedure is based on available data combined with judicious extrapolation of design information on plant structures and equipment. Representative values of fragility parameters for typical modern nuclear power plants are provided. Based on the fragility evaluation for about a dozen nuclear power plants, it is proposed that unnecessary conservatism existing in current seismic design practice could be removed by properly accounting for inelastic energy absorption capabilities of structures. The paper discusses the key contributors to seismic risk and the significance of possible correlation between component failures and potential design and construction errors

  18. Institutional investors' involuntary trading behaviors,commonality in liquidity change and stock price fragility

    Institute of Scientific and Technical Information of China (English)

    Guojin Chen; Aihuan Xu; Xiangqin Zhao

    2013-01-01

    Purpose-The aim of this paper is to empirically analyze the source of commonality in liquidity change in China's stock market.Design/methodology/approach-This paper used two-step test method in Coughenour and Saad and empirically tested the relationship between institutional investors' involuntary trading behaviors and commonality in liquidity change in China's stock market.Findings-The results showed that to take the open-end fund as a representative of institutional investors,their involuntary trading behaviors were an important source of commonality in liquidity change in China's stock market.Originality/value-For a long time,the domestic researchers have ignored the study about the source of commonality in liquidity change in China's stock market.But,this study's conclusion expanded the explanation about the source of commonality in liquidity change in China's stock market from a new point of view that the demand-side explanation.Because there is no market-maker trading behaviors in China's stock market,the paper cannot explain the source of commonality in liquidity change in China's stock market from the point of view of the supply-side explanation.

  19. Effective updating process of seismic fragilities using Bayesian method and information entropy

    International Nuclear Information System (INIS)

    Kato, Masaaki; Takata, Takashi; Yamaguchi, Akira

    2008-01-01

    Seismic probabilistic safety assessment (SPSA) is an effective method for evaluating overall performance of seismic safety of a plant. Seismic fragilities are estimated to quantify the seismically induced accident sequences. It is a great concern that the SPSA results involve uncertainties, a part of which comes from the uncertainty in the seismic fragility of equipment and systems. A straightforward approach to reduce the uncertainty is to perform a seismic qualification test and to reflect the results on the seismic fragility estimate. In this paper, we propose a figure-of-merit to find the most cost-effective condition of the seismic qualification tests about the acceleration level and number of components tested. Then a mathematical method to reflect the test results on the fragility update is developed. A Bayesian method is used for the fragility update procedure. Since a lognormal distribution that is used for the fragility model does not have a Bayes conjugate function, a parameterization method is proposed so that the posterior distribution expresses the characteristics of the fragility. The information entropy is used as the figure-of-merit to express importance of obtained evidence. It is found that the information entropy is strongly associated with the uncertainty of the fragility. (author)

  20. Forests, Fragility and Conflict : Overview and Case Studies

    OpenAIRE

    Harwell, Emily; Farah, Douglas; Blundell, Arthur G.

    2011-01-01

    This book provides a synthesis of key themes and current knowledge about the links among forests, armed conflict, poverty, and various aspects of state fragility. The main themes addressed are: how predatory, incapable, or absent states are fragile in different ways, and their diverse relationships to forests and conflict; the mechanisms by which forests facilitate or prolong conflict, inc...

  1. Data-Driven Decision Making in Fragile Contexts : Evidence from Sudan

    OpenAIRE

    Hamilton, Alexander; Hammer, Craig

    2017-01-01

    Data deficiencies contribute to state fragility and exacerbate fragile states’ already limited capacity to provide basic services, public security and rule of law. The lack of robust, good quality data can also have a disabling effect on government efforts to manage political conflict, and indeed can worsen conflict, since violent settings pose substantial challenges to knowledge generation, capture and application. In short, in fragile contexts the need for reliable evidence at all levels ...

  2. Bayesian methodology for generic seismic fragility evaluation of components in nuclear power plants

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Campbell, R.D.; Ravindra, M.K.

    1991-01-01

    Bayesian methodology for updating the seismic fragility of components in nuclear power plants is presented. The generic fragility data which have been evaluated based on the past SPSAs are combined with the seismic experience data. Although the seismic experience is limited to the acceleration range below the median capacity of the components, it has been found that the evidence is effective to update the fragility tail. In other words, the uncertainty of the fragility is reduced although the median capacity itself is not modified to a great extent. The annual frequency of failure is also reduced as a result of the updating of the fragility tail. The PDF of the seismic capacity is handled in discrete form, which enables the use of arbitrary type of prior distribution. Accordingly, the Log-N prior can be used which is consistent with the widely used fragility model. For evaluating posterior fragility parameters (A m and B U ), two methods have been proposed. Furthermore, it has been found that the importance of evidence used in the Bayesian methodology can be quantified by the entropy of the evidence. Only the events with high entropy need to be considered in the Bayesian updating of the fragility. The currently available seismic experience database for typical components can be utilized to develop the fragility tail which is contributive to the seismically-induced failure frequency. The combined use of generic fragility and seismic experience data, with the aid of Bayesian methodology, provides refined generic fragility curves which are useful for SPSA studies. (author)

  3. Perspective on Structural Evolution and Relations with Thermophysical Properties of Metallic Liquids.

    Science.gov (United States)

    Wang, Xiao-Dong; Jiang, Jian-Zhong

    2017-11-01

    The relationship between the structural evolution and properties of metallic liquids is a long-standing hot issue in condensed-matter physics and materials science. Here, recent progress is reviewed in several fundamental aspects of metallic liquids, including the methods to study their atomic structures, liquid-liquid transition, physical properties, fragility, and their correlations with local structures, together with potential applications of liquid metals at room temperature. Involved with more experimentally and theoretically advanced techniques, these studies provide more in-depth understanding of the structure-property relationship of metallic liquids and promote the design of new metallic materials with superior properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Trial of Metformin in Individuals With Fragile X Syndrome

    Science.gov (United States)

    2018-04-10

    Fragile X Syndrome; Fragile X Mental Retardation Syndrome; Mental Retardation, X Linked; Genetic Diseases, X-Linked; Trinucleotide Repeat Expansion; Fra(X) Syndrome; Intellectual Disability; FXS; Neurobehavioral Manifestations; Sex Chromosome Disorders

  5. Theory of terahertz electric oscillations by supercooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mishonov, Todor M; Mishonov, Mihail T [Department of Theoretical Physics, Faculty of Physics, University of Sofia St Kliment Ohridski, 5 J Bourchier Boulevard, 1164 Sofia (Bulgaria); Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D B-3001 Leuven (Belgium)

    2005-11-15

    We predict that below T{sub c} a regime of negative differential conductivity (NDC) can be reached. The superconductor should be supercooled to Tsupercooled superconductors to be used as an active medium for generation of electric oscillations. Such generators can be used in the superconducting electronics as a new type THz source of radiation. Oscillations can be modulated by the change of the bias voltage, electrostatic doping by a gate electrode when the superconductor is the channel of a field effect transistor, or by light. When small amplitude oscillations are stabilized near the critical temperature T{sub c} the generator can be used as a bolometer. NDC, which is essential for the applications, is predicted on the basis of analysis of known results for fluctuation conductivity, obtained in previous papers by solving the Boltzmann kinetic equation for the Cooper pairs metastable in the normal phase. The Boltzmann equation for fluctuation Cooper pairs is a result of state-of-the-art application of the microscopic theory of superconductivity. Our theoretical conclusions are based on some approximations like time dependent Ginzburg-Landau theory initially derived for gapless superconductors, but nevertheless can reliably predict the appearance of NDC. NDC is the main ingredient of the proposed technical applications. The maximal frequency at which superconductors can operate as generators is determined by the critical temperature {Dirac_h}/2{pi}{omega}{sub max} {approx} k{sub B}T{sub c}. For high-T{sub c} superconductors this maximal frequency falls well inside the terahertz range. Technical conditions to avoid nucleation of the superconducting phase are briefly discussed. We suggest that nanostructured high-T{sub c} superconductors patterned in a single chip can

  6. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures

    DEFF Research Database (Denmark)

    Dannemand, Mark; Dragsted, Janne; Fan, Jianhua

    2016-01-01

    Laboratory tests of two heat storage units based on the principle of stable supercooling of sodium acetate trihydrate (SAT) mixtures were carried out. One unit was filled with 199.5 kg of SAT with 9% extra water to avoid phase separation of the incongruently melting salt hydrate. The other unit...

  7. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Delpouve, N., E-mail: delpouve.nicolas@gmail.com [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M. [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France)

    2012-09-01

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T{sub g}.

  8. Seismic fragility analysis of structural components for HFBR facilities

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1992-01-01

    The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations

  9. Sonocrystallization of Interesterified Soybean Oil: Effect of Saturation Level and Supercooling.

    Science.gov (United States)

    Lee, Juhee; Claro da Silva, Roberta; Gibon, Veronique; Martini, Silvana

    2018-04-01

    The aim of this study was to investigate the effects of supercooling and degree of saturation on lipid sonocrystallization under similar driving force of crystallization. Samples consisting of 100%, 50%, and 20% interesterified soybean oil (IESBO) diluted in high-oleic sunflower oil (HOSFO) were crystallized with and without high-intensity ultrasound (HIU). Two power levels were used by changing the amplitude of vibration of the tip (24 μm and 108 μm of tip amplitude). HIU operating at a frequency of 20 kHz was applied for 10 s. Sonication induced crystallization in the 100% IESBO sample and sonication power did not affect the results. A greater induction in crystallization was observed when higher power levels were used in the 50% IESBO sample, while no effect was observed in the crystallization kinetics of the 20% IESBO samples. Changes in the crystallization kinetics affected physical properties of the material, influencing elasticity. For example, sonication increased the elasticity of the 100% IESBO sample for both tip amplitudes from 435.9 ± 173.3 Pa to 72735.0 ± 9547.9 Pa for the nonsonicated and sonicated samples using 108 μm of amplitude, respectively. However, sonication only increased the elasticity in the 50% sample when used at the higher power level of 108 μm from 564.2 ± 175.2 Pa to 21774.0 ± 5694.9 Pa, and it did not affect the elasticity of the 20% IESBO samples. These results show that the level of saturation and the degree of supercooling affect sonication efficiency. High-intensity ultrasound (HIU) has been used as a novel method for changing the crystallization behavior of fats. HIU can be used to improve the physical properties of trans-free fats that are low in saturated fatty acids. Although recent studies have proven the effectiveness of this method to induce crystallization, the process must still be optimized to the industrial setting. All process parameters should be considered during the application of HIU, as they directly

  10. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute and Department of Chemistry, University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 (United States)

    2014-10-14

    A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, “The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition” [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

  11. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.

    Science.gov (United States)

    Freed, Karl F

    2014-10-14

    A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition" [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

  12. An energy landscape model for glass-forming liquids in three dimensions

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Hecksher, Tina; Dyre, Jeppe

    2006-01-01

    different densities at several temperatures. At high densities and low temperatures the model captures the important characteristics of viscous liquid dynamics. We thus observe non-exponential relaxation in the self part of the density auto-correlation function, and fragility plots of the self...

  13. On the decoupling of relaxation modes in a molecular liquid caused by isothermal introduction of 2 nm structural inhomogeneities.

    Science.gov (United States)

    Ueno, Kazuhide; Angell, C Austen

    2011-12-08

    To support a new interpretation of the origin of the dynamic heterogeneity observed pervasively in fragile liquids as they approach their glass transition temperatures T(g), we demonstrate that the introduction of ~2 nm structural inhomogeneities into a homogeneous glass former leads to a decoupling of diffusion from viscosity similar to that observed during the cooling of orthoterphenyl (OTP) below T(A,) where Arrhenius behavior is lost. Further, the decoupling effect grows stronger as temperature decreases (and viscosity increases). The liquid is cresol, and the ~2 nm inhomogeneities are cresol-soluble asymmetric derivatized tetrasiloxy-based (polyhedral oligomeric silsesquioxane (POSS)) molecules. The decoupling is the phenomenon predicted by Onsager in discussing the approach to a liquid-liquid phase separation with decreasing temperature. In the present case the observations support the notion of a polyamorphic transition in fragile liquids that is hidden below the glass transition. A similar decoupling can be expected as a globular protein is dissolved in dilute aqueous solutions or in protic ionic liquids. © 2011 American Chemical Society

  14. Collective excitations in liquid and glassy 3-methylpentane

    KAUST Repository

    Benassi, Paola

    2015-09-28

    We present a detailed investigation of the terahertz vibrational dynamics of 3-methylpentane performed by means of high-resolution inelastic x-ray scattering (IXS). We probe the dynamics in a large temperature range, which includes the glass, the supercooled liquid, and the liquid phases. The characteristic frequency of the excitations follows a well-defined dispersion curve extending beyond 8nm−1 at all the investigated temperatures, indicating the persistence of a solidlike behavior also in the liquid phase. This implies the existence of a pseudo-Brillouin zone whose size compares surprisingly well with the periodicity inferred from the first sharp diffraction peak in the static structure factor. We show that, in the investigated temperature range, both sizes undergo a variation of about 15%–20%, comparable to that of the average intermolecular distance. We finally show that the IXS sound velocity coincides with the infinite frequency sound velocity previously inferred from visible and ultraviolet Brillouin spectroscopy data. This analysis confirms the role of the shear relaxation processes in determining the variation with frequency of the apparent sound velocity.

  15. Collective excitations in liquid and glassy 3-methylpentane

    KAUST Repository

    Benassi, Paola; Nardone, Michele; Giugni, Andrea; Baldi, Giacomo; Fontana, Aldo

    2015-01-01

    We present a detailed investigation of the terahertz vibrational dynamics of 3-methylpentane performed by means of high-resolution inelastic x-ray scattering (IXS). We probe the dynamics in a large temperature range, which includes the glass, the supercooled liquid, and the liquid phases. The characteristic frequency of the excitations follows a well-defined dispersion curve extending beyond 8nm−1 at all the investigated temperatures, indicating the persistence of a solidlike behavior also in the liquid phase. This implies the existence of a pseudo-Brillouin zone whose size compares surprisingly well with the periodicity inferred from the first sharp diffraction peak in the static structure factor. We show that, in the investigated temperature range, both sizes undergo a variation of about 15%–20%, comparable to that of the average intermolecular distance. We finally show that the IXS sound velocity coincides with the infinite frequency sound velocity previously inferred from visible and ultraviolet Brillouin spectroscopy data. This analysis confirms the role of the shear relaxation processes in determining the variation with frequency of the apparent sound velocity.

  16. The occurrence of ice production in slightly supercooled Arctic stratiform clouds as observed by ground-based remote sensors at the ARM NSA site

    Science.gov (United States)

    Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor

    2017-03-01

    Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.

  17. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  18. The Seismic Fragility Evaluation of an Offsite Transformer according to Aging Effects

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil

    2008-01-01

    A seismic fragility analysis was performed, especially for an aged electric power transmission system, in this study. A real electric transformer system for Korean Nuclear Power Plants was selected for the seismic fragility evaluation. In the case of a seismic fragility analysis we should use design material properties and conditions. However material properties and environmental conditions of most structures and equipment are changed according to a lapse of time. Aging conditions greatly affect the integrity of the structures and equipment at NPP sites, but it is very difficult to estimate them qualitatively. Integrity of an anchor bolt system was considered with the aging conditions for an electric transformer system. At first, a seismic fragility analysis was performed for a fine condition for an electric transformer system. After that, a seismic fragility analysis according to the fastener of an anchor bolt system was conducted. This study showed that a looser anchor bolt creates seismic responses and seismic fragility changes of more 10%

  19. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  20. Isolated ecosystems on supercooled scree slopes in subalpine environments - interaction between permafrost, soil and vegetation

    Science.gov (United States)

    Schwindt, Daniel; Kozák, Johanna-Luise; Kohlpaintner, Michael

    2017-04-01

    In the central European Alps, permafrost can be expected in altitudes above 2300 m a.s.l., where mean annual air temperatures are below -1°C. However, attributed to the thermally induced "chimney effect", isolated permafrost lenses can be found in scree slopes far below the timberline where mean annual air temperature is positive. Usually the supercooled subsurface appears as lenses at the foot of talus slopes, covered by a thick layer of organic material and a unique vegetation composition most obviously characterized by dwarf grown trees ("Hexenwäldli") and azonal plant species. The fact that mean annual air temperature is positive and therefore can be excluded as a driving factor makes these sites unique for studying interdependencies between a supercooled subsurface, plant adaptation and vegetation sociology as well as the soil development. Three study sites in the Swiss Alps, differing in altitude and substrate (granite, dolomite, limestone) were investigated. Studies covered the permafrost-affected central parts of the slope as well as the surrounding areas. For characterizing distribution and temporal variability of ground ice geophysical methods were applied (electrical resistivity- and seismic refraction tomography). Temperature data loggers were used for monitoring the thermal regime (air-, surface- and soil temperatures). Chemical parameters (pH, C/N ratio) and nutrient contents (N, P, Ca, Mg, Mn, K) were analyzed in different depth levels. Plant communities were analyzed with the Braun-Blanquet method. To characterize physiognomic adaptation of trees, transects have been determined parallel to slope, measuring tree height, diameter and age. Results show a strong spatial correlation between frozen ground, formation of a thick organic layer (Tangelhumus), azonal plant species distribution and pronounced dwarfing of trees. Surrounding areas with unfrozen subsurface show an - for the particular altitude - expected species and soil composition and normal

  1. Diagnostic, carrier and prenatal genetic testing for fragile X ...

    African Journals Online (AJOL)

    Background. Fragile X syndrome (FXS), the most common inherited cause of intellectual disability (ID) worldwide, is caused by the expansion of a CGG repeat in the fragile X mental retardation gene (FMR-1) gene. Objectives. To review, retrospectively, the genetic services for FXS and other FMR-1-related disorders ...

  2. Whole-of-Government Approaches to Fragile States in Africa

    DEFF Research Database (Denmark)

    Olsen, Gorm Rye

    2013-01-01

    For a number of years fragile states have been high on the foreign policy agendas of the USA and the EU. Both actors look upon fragile states with great concern and consider them as security threats. Officially they give priority to ‘whole-of-government approaches’ (wga) when addressing the threats...

  3. Cities could hold the key to understanding fragility | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cities are engines of economic growth and the primary sites of basic service delivery. Yet weak governance, along with inequalities related to income, social class, religion, and gender, may lead to a breakdown of systems and structures, and eventually to "fragile cities." Although the fragile cities concept is relatively new, ...

  4. EMQN best practice guidelines for the molecular genetic testing and reporting of fragile X syndrome and other fragile X-associated disorders

    Science.gov (United States)

    Biancalana, Valérie; Glaeser, Dieter; McQuaid, Shirley; Steinbach, Peter

    2015-01-01

    Different mutations occurring in the unstable CGG repeat in 5' untranslated region of FMR1 gene are responsible for three fragile X-associated disorders. An expansion of over ∼200 CGG repeats when associated with abnormal methylation and inactivation of the promoter is the mutation termed ‘full mutation' and is responsible for fragile X syndrome (FXS), a neurodevelopmental disorder described as the most common cause of inherited intellectual impairment. The term ‘abnormal methylation' is used here to distinguish the DNA methylation induced by the expanded repeat from the ‘normal methylation' occurring on the inactive X chromosomes in females with normal, premutation, and full mutation alleles. All male and roughly half of the female full mutation carriers have FXS. Another anomaly termed ‘premutation' is characterized by the presence of 55 to ∼200 CGGs without abnormal methylation, and is the cause of two other diseases with incomplete penetrance. One is fragile X-associated primary ovarian insufficiency (FXPOI), which is characterized by a large spectrum of ovarian dysfunction phenotypes and possible early menopause as the end stage. The other is fragile X-associated tremor/ataxia syndrome (FXTAS), which is a late onset neurodegenerative disorder affecting males and females. Because of the particular pattern and transmission of the CGG repeat, appropriate molecular testing and reporting is very important for the optimal genetic counselling in the three fragile X-associated disorders. Here, we describe best practice guidelines for genetic analysis and reporting in FXS, FXPOI, and FXTAS, including carrier and prenatal testing. PMID:25227148

  5. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    Science.gov (United States)

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    Science.gov (United States)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  7. Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J., E-mail: jo316@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Greer, A.L., E-mail: alg13@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2015-03-10

    Highlights: • Study of ultra-fast DSC applied to the crystallization of glass-forming liquids. • Numerical modeling of DSC traces at heating rates exceeding 10 orders of magnitude. • Identification of three regimes in Kissinger plots. • Elucidation of the effect of liquid fragility on the Kissinger method. • Modeling to study the regime in which crystal growth is thermodynamically limited. - Abstract: Numerical simulation of DSC traces is used to study the validity and limitations of the Kissinger method for determining the temperature dependence of the crystal-growth rate on continuous heating of glasses from the glass transition to the melting temperature. A particular interest is to use the wide range of heating rates accessible with ultra-fast DSC to study systems such as the chalcogenide Ge{sub 2}Sb{sub 2}Te{sub 5} for which fast crystallization is of practical interest in phase-change memory. Kissinger plots are found to show three regimes: (i) at low heating rates the plot is straight, (ii) at medium heating rates the plot is curved as expected from the liquid fragility, and (iii) at the highest heating rates the crystallization rate is thermodynamically limited, and the plot has curvature of the opposite sign. The relative importance of these regimes is identified for different glass-forming systems, considered in terms of the liquid fragility and the reduced glass-transition temperature. The extraction of quantitative information on fundamental crystallization kinetics from Kissinger plots is discussed.

  8. Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry

    International Nuclear Information System (INIS)

    Orava, J.; Greer, A.L.

    2015-01-01

    Highlights: • Study of ultra-fast DSC applied to the crystallization of glass-forming liquids. • Numerical modeling of DSC traces at heating rates exceeding 10 orders of magnitude. • Identification of three regimes in Kissinger plots. • Elucidation of the effect of liquid fragility on the Kissinger method. • Modeling to study the regime in which crystal growth is thermodynamically limited. - Abstract: Numerical simulation of DSC traces is used to study the validity and limitations of the Kissinger method for determining the temperature dependence of the crystal-growth rate on continuous heating of glasses from the glass transition to the melting temperature. A particular interest is to use the wide range of heating rates accessible with ultra-fast DSC to study systems such as the chalcogenide Ge 2 Sb 2 Te 5 for which fast crystallization is of practical interest in phase-change memory. Kissinger plots are found to show three regimes: (i) at low heating rates the plot is straight, (ii) at medium heating rates the plot is curved as expected from the liquid fragility, and (iii) at the highest heating rates the crystallization rate is thermodynamically limited, and the plot has curvature of the opposite sign. The relative importance of these regimes is identified for different glass-forming systems, considered in terms of the liquid fragility and the reduced glass-transition temperature. The extraction of quantitative information on fundamental crystallization kinetics from Kissinger plots is discussed

  9. Conductivity relaxation and charge transport of trihexyl tetradecyl phosphonium dicyanamide ionic liquid by broadband dielectric spectroscopy

    Science.gov (United States)

    Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.

    2018-04-01

    Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.

  10. Fragility and hysteretic creep in frictional granular jamming.

    Science.gov (United States)

    Bandi, M M; Rivera, M K; Krzakala, F; Ecke, R E

    2013-04-01

    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.

  11. Obesity, Food Selectivity, and Physical Activity in Individuals with Fragile X Syndrome

    Science.gov (United States)

    Raspa, Melissa; Bailey, Donald B., Jr.; Bishop, Ellen; Holiday, David; Olmsted, Murrey

    2010-01-01

    National survey data from 884 families were used to examine the overall health of children and adults with fragile X syndrome. Results indicate the rate of obesity in adults with fragile X syndrome is similar to the general population (30%). Male children with fragile X syndrome, however, had higher rates of obesity (31%) when compared with…

  12. Ectodermal dysplasia-skin fragility syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    Subhash Kashyap

    2015-01-01

    Full Text Available Ectodermal dysplasia/skin fragility syndrome (ED-SFS is a newly described autosomal recessive disorder characterized by skin fragility and blistering, palmoplantar keratoderma, abnormal hair growth, nail dystrophy, and occasionally defective sweating. It results from mutations in the PKP1 gene encoding plakophilin 1 (PKP1, which is an important component of stratifying epithelial desmosomes and a nuclear component of many cell types. Only 12 cases of this rare genodermatosis have been reported so far. We present an unusual case of ED-SFS in a 12-year boy who was normal at birth but subsequently developed skin fragility, hair and nail deformities, abnormal dentition, palmoplantar keratoderma, and abnormal sweating but no systemic abnormality.

  13. Fast and slow crystal growth kinetics in glass-forming melts

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J.; Greer, A. L., E-mail: alg13@cam.ac.uk [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-06-07

    Published values of crystal growth rates are compared for supercooled glass-forming liquids undergoing congruent freezing at a planar crystal-liquid interface. For the purposes of comparison pure metals are considered to be glass-forming systems, using data from molecular-dynamics simulations. For each system, the growth rate has a maximum value U{sub max} at a temperature T{sub max} that lies between the glass-transition temperature T{sub g} and the melting temperature T{sub m}. A classification is suggested, based on the lability (specifically, the propensity for fast crystallization), of the liquid. High-lability systems show “fast” growth characterized by a high U{sub max}, a low T{sub max} / T{sub m}, and a very broad peak in U vs. T / T{sub m}. In contrast, systems showing “slow” growth have a low U{sub max}, a high T{sub max} / T{sub m}, and a sharp peak in U vs. T / T{sub m}. Despite the difference of more than 11 orders of magnitude in U{sub max} seen in pure metals and in silica, the range of glass-forming systems surveyed fit into a common pattern in which the lability increases with lower reduced glass-transition temperature (T{sub g} / T{sub m}) and higher fragility of the liquid. A single parameter, a linear combination of T{sub g} / T{sub m} and fragility, can show a good correlation with U{sub max}. For all the systems, growth at U{sub max} is coupled to the atomic/molecular mobility in the liquid. It is found that, across the diversity of glass-forming systems, T{sub max} / T{sub g} = 1.48 ± 0.15.

  14. Fragility Analysis of Concrete Gravity Dams

    Science.gov (United States)

    Tekie, Paulos B.; Ellingwood, Bruce R.

    2002-09-01

    Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.

  15. Ectodermal Dysplasia Skin Fragility Syndrome

    Directory of Open Access Journals (Sweden)

    Ayça Alan Atalay

    2014-06-01

    Full Text Available Ectodermal dysplasia-skin fragility syndrome (EDSFS is a rare autosomal recessive genodermatosis first described in 1997 by Mc Grath. EDSFS results from loss of function mutations in plakophilin-1 (PKP1. PKP1 is a structural component of desmosomes, cellcell adhesion complexes. It is also found as a nuclear protein in several cell types that are lack of desmosomes. In skin, however, PKP1 expression is confined mainly to suprabasal keratinocytes and the outer root sheath of hair follicules. Loss of function mutation in PKP1 leads to extensive skin fragility, bullae and erosions following minor trauma, focal keratoderma with painful fissures, alopecia, and nail dystrophy. In some patients hypohidrosis may also be seen. EDSFS is now considered as a specific suprabasal form of epidermolysis bullosa simplex. In this report we describe a 20 year old EDSFS case.

  16. In search of invariants for viscous liquids in the density scaling regime: investigations of dynamic and thermodynamic moduli.

    Science.gov (United States)

    Jedrzejowska, Agnieszka; Grzybowski, Andrzej; Paluch, Marian

    2017-07-19

    In this paper, we report the nontrivial results of our investigations of dynamic and thermodynamic moduli in search of invariants for viscous liquids in the density scaling regime by using selected supercooled van der Waals liquids as representative materials. Previously, the dynamic modulus M p-T (defined in the pressure-temperature representation by the ratio of isobaric activation energy and activation volume) as well as the ratio B T /M p-T (where B T is the thermodynamic modulus defined as the inverse isothermal compressibility) have been suggested as some kinds of material constants. We have established that they are not valid in the explored wide range of temperatures T over a dozen decades of structural relaxation times τ. The temperature dependences of M p-T and B T /M p-T have been elucidated by comparison with the well-known measure of the relative contribution of temperature and density fluctuations to molecular dynamics near the glass transition, i.e., the ratio of isochoric and isobaric activation energies. Then, we have implemented an idea to transform the definition of the dynamic modulus M p-T from the p-T representation to the V-T one. This idea relied on the disentanglement of combined temperature and density fluctuations involved in isobaric parameters and has resulted in finding an invariant for viscous liquids in the density scaling regime, which is the ratio of thermodynamic and dynamic moduli, B T /M V-T . In this way, we have constituted a characteristic of thermodynamics and molecular dynamics, which remains unchanged in the supercooled liquid state for a given material, the molecular dynamics of which obeys the power density scaling law.

  17. International Companies in Fragile States

    DEFF Research Database (Denmark)

    Patey, Luke; Kragelund, Peter

    Denmark must not fail to promote corporate social responsibility in fragile states. International companies remain active in these environments, and often worsen rather than alleviate poor governance. Financial transparency and human rights initiatives offer the first step in ensuring...

  18. Robust-yet-fragile nature of interdependent networks

    Science.gov (United States)

    Tan, Fei; Xia, Yongxiang; Wei, Zhi

    2015-05-01

    Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.

  19. Epidemiology of "fragile skin": results from a survey of different skin types

    Directory of Open Access Journals (Sweden)

    Haftek M

    2013-12-01

    Full Text Available Marek Haftek,1 Christine Coutanceau,2 Charles Taïeb3 1Université Lyon 1, Laboratoire de Recherche Dermatologique, Faculté de Médecine et de Pharmacie, Lyon, 2Département Médical, Laboratoires Dermatologiques A-Derma, Lavaur, 3Public Health, Pierre Fabre SA, Paris, France Background: Epidemiologic information regarding the prevalence of "fragile skin" in different adult populations is currently limited. The objective of the current survey was to assess the occurrence of perceived "fragile skin" across different skin types in the general adult population. Methods: Individuals aged 15–65 years from five representative geographic regions (France, Spain, Sweden, Japan, and the US were interviewed and grouped into the following skin types: Caucasian North skin (n=1,218, Caucasian South skin (n=1,695, Asian skin (n=1,500, and Black skin (n=500. The main survey question was "In your opinion, do you have fragile skin?" Concepts relating to the nature and appearance of an individual's skin were also evaluated. Results: A total of 4,913 individuals were interviewed. Subjects in the Caucasian North, Caucasian South, Asian, and Black skin type groups responded positively to the question "In your opinion, do you have fragile skin?" in the following proportions: 24.44%, 29.71%, 52.67%, and 42.20%, respectively. With the exception of individuals in the Black skin group, "fragile skin" was prevalent in significantly more women than men (P<0.0001. Compared with other age categories, the prevalence of "fragile skin" was significantly higher in individuals aged 15–34 years (P<0.0001, regardless of skin type. In general, individuals reporting "fragile skin" were 2–3-fold more likely to respond positively to a series of questions relating to the nature and appearance of their skin. The prevalence of "fragile skin" was also higher in individuals who experienced dermatosis (skin lesions of any type in the previous 12 months. Conclusion: Whilst these

  20. Influence of pressure on the structural properties of liquid D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Bellissent-Funel, M.C.

    1994-12-31

    Results about the structure of liquid water under pressure and using neutron diffraction are presented. The structural data are compared with that of low density amorphous ice (LDA) and of high density amorphous ice (HDA). The low density amorphous ice which is well accounted for a continuous random network model appears as the limit of deeply supercooled water while the high density amorphous ice which is a more disordered form of ice appears as the limit of water under high pressure and at high temperature. (author). 29 refs., 6 figs.

  1. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    Science.gov (United States)

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Survey of seismic fragilities used in PRA studies of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Chokshi, N.C.

    1998-01-01

    In recent years, seismic PRA studies have been performed on a large number of nuclear power plants in the USA. This paper presents a summary of a survey on fragility databases and the range of evaluated fragility values of various equipment categories based on past PRAs. The survey includes the use of experience data, the interpretations of available test data, and the quantification of uncertainties. The surveyed fragility databases are limited to data available in the public domain such as NUREG reports, conference proceedings and other publicly available reports. The extent of the availability of data as well as limitations are studied and tabulated for various equipment categories. The survey of the fragility values in past PRA studies includes not only the best estimate values, but also the dominant failure modes and the estimated uncertainty levels for each equipment category. The engineering judgments employed in estimating the uncertainty in the fragility values are also studied. This paper provides a perspective on the seismic fragility evaluation procedures for equipment in order to clearly identify the engineering analysis and judgment used in past seismic PRA studies

  3. Prevalence and factors associated with fragility syndrome in older adults attending

    Directory of Open Access Journals (Sweden)

    Milton Carlos Gonzáles-Mechán

    2017-03-01

    Full Text Available Objectives: To identify the prevalence and factors associated with fragility syndrome in older adults attending the EsSalud (Peruvian Social Security Health Insurance primary health care service, Chiclayo - Peru. Materials and methods: A descriptive, prospective and cross-sectional study was conducted on a sample consisting of 326 older adults from urban areas and surrounding districts of Chiclayo, who attend the outpatient service at the Hospital Naylamp and Policlínico Chiclayo Oeste. A data collection sheet including social-demographic variables, comorbidity and polypharmacy, and fragility syndrome clinical criteria was filled in. Results: The prevalence of fragility was 17.5% and that of pre-fragility, 40.9%. The most frequent fragility clinical criteria were as follows: self-reported fatigue (42.3% and decreased grip strength (32.8%. The bivariate analysis showed an association with age, level of education, occupation (class IV and V concerning manual work, comorbidity (class II, asymptomatic disease or asymptomatic disease that requires medication but is under control, polypharmacy, anemia, Parkinson’s disease and non-vascular neurological disease. The final prediction model covering the age (1.08, 95% CI: 1.03 to 1.12, higher education level as a preventive variable (0.21, 95% CI: 0.07 to 0.62, type II comorbidity (11 08, 95% CI: 1.45 to 84.38 and polypharmacy (2.49, 95% CI: 1.24 to 5.03 predicts the likelihood of fragility syndrome in 75.6%. Conclusions: There is a high prevalence of fragility in the elderly population attending the primary health care service, and a significant association with age, higher education level, type II comorbidity and polypharmacy

  4. Fragility: The Next Wave in Critical Infrastructure Protection

    OpenAIRE

    Allan McDougall

    2009-01-01

    In North America today, we are about to embark on a significant effort to repair, or even upgrade, many aspects of our infrastructure. Many of these efforts are linked to economic recovery packages. Others are based on sheer need. The challenge for decision makers and planners involves ensuring that scarce economic resources are put to their best use. Understanding the concept of fragility plays a pivotal part in reaching that understanding.Fragility, like many other systems—particularly Info...

  5. Mathematical Definition, Mapping, and Detection of (Anti)Fragility

    OpenAIRE

    Taleb, Nassim N.; Douady, Raphael

    2012-01-01

    URL des Documents de travail : http://centredeconomiesorbonne.univ-paris1.fr/documents-de-travail/; Documents de travail du Centre d'Economie de la Sorbonne 2014.93 - ISSN : 1955-611X; We provide a mathematical definition of fragility and antifragility as negative or positive sensitivity to a semi-measure of dispersion and volatility (a variant of negative or positive "vega") and examine the link to nonlinear effects. We integrate model error (and biases) into the fragile or antifragile conte...

  6. Fabrication and transfer of fragile 3D PDMS microstructures

    International Nuclear Information System (INIS)

    Karlsson, J Mikael; Haraldsson, Tommy; Carlborg, Carl Fredrik; Van der Wijngaart, Wouter; Hansson, Jonas; Russom, Aman

    2012-01-01

    We present a method for PDMS microfabrication of fragile membranes and 3D fluidic networks, using a surface modified water-dissolvable release material, poly(vinyl alcohol), as a tool for handling, transfer and release of fragile polymer microstructures. The method is well suited for the fabrication of complex multilayer microfluidic devices, here shown for a PDMS device with a thin gas permeable membrane and closely spaced holes for vertical interlayer connections fabricated in a single layer. To the authors’ knowledge, this constitutes the most advanced PDMS fabrication method for the combination of thin, fragile structures and 3D fluidics networks, and hence a considerable step in the direction of making PDMS fabrication of complex microfluidic devices a routine endeavour. (paper)

  7. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae).

    Science.gov (United States)

    Mohammadzadeh, M; Izadi, H

    2018-01-01

    Trogoderma granarium Everts (Coleoptera: Dermestidae) is an important insect pest of stored products. In this study, the survival strategies of T. granarium fourth instar larvae were investigated at different sub-zero temperatures following different cooling rates, acclimation to different relative humidity (RH) and different starvation times. Our results show that larvae of T. granarium are freeze-intolerant. There was a strong link between cooling rates and supercooling point, which means the slower the decrease in temperature, the lower the supercooling point. Trehalose content was greater in insects cooled at a rate of 0.5°C/min. According to results, the RH did not affect supercooling point. However, acclimation to an RH of 25% increased mortality following exposure to - 10°C/24h. The time necessary to reach 95% mortality was 1737h and 428h at - 5°C and - 10°C. The lowest lipid and trehalose content was detected in insects acclimated to 25% RH, although, the different RH treatments did not significantly affect glycogen content of T. granarium larvae. The supercooling point of larvae was gradually increased following starvation. By contrast, fed larvae had the greatest lipid, glycogen, and trehalose content, and insects starved for eight days had the lowest energy contents. There was a sharp decline in the survival of larvae between - 11 and - 18°C after 1h exposure. Our results indicate the effects of cooling rate and starvation on energy reserves and survival of T. granarium. We conclude that T. granarium may not survive under similar stress conditions of the stored products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fragility Variation of Lithium Borate Glasses Studied by Temperature-Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Fukawa, Yasuteru; Kawashima, Mitsuru; Kojima, Seiji

    2008-02-01

    The fragility of lithium borate glass system has been investigated by Temperature-Modulated Differential Scanning Calorimetry (TMDSC). The frequency and temperature dependences of dynamic specific heat have been observed in the vicinity of a glass transition temperature Tg. It is shown that the value of the fragility index m can be determined from the temperature dependence of the α-relaxation times observed by TMDSC, when the raw phase angle is properly corrected. The composition dependence of the fragility has been also discussed.

  9. Breaking the glass ceiling: Configurational entropy measurements in extremely supercooled liquids

    Science.gov (United States)

    Berthier, Ludovic

    Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, due to the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally-relevant timescales. In this work we not only close the colossal gap between experiments and simulations but manage to create in-silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four independent estimates of their configurational entropy. These measurements consistently indicate that the steep entropy decrease observed in experiments is found in simulations even beyond the experimental glass transition. Our numerical results thus open a new observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.

  10. Fragility non-hip fracture patients are at risk.

    Science.gov (United States)

    Gosch, M; Druml, T; Nicholas, J A; Hoffmann-Weltin, Y; Roth, T; Zegg, M; Blauth, M; Kammerlander, C

    2015-01-01

    Fragility fractures are a growing worldwide health care problem. Hip fractures have been clearly associated with poor outcomes. Fragility fractures of other bones are common reasons for hospital admission and short-term disability, but specific long-term outcome studies of non-hip fragility fractures are rare. The aim of our trial was to evaluate the 1-year outcomes of non-hip fragility fracture patients. This study is a retrospective cohort review of 307 consecutive older inpatient non-hip fracture patients. Patient data for analysis included fracture location, comorbidity prevalence, pre-fracture functional status, osteoporosis treatments and sociodemographic characteristics. The main outcomes evaluated were 1-year mortality and post-fracture functional status. As compared to the expected mortality, the observed 1-year mortality was increased in the study group (17.6 vs. 12.2 %, P = 0.005). After logistic regression, three variables remained as independent risk factors for 1-year mortality among non-hip fracture patients: malnutrition (OR 3.3, CI 1.5-7.1), Charlson comorbidity index (CCI) (OR 1.3, CI 1.1-1.5) and the Parker Mobility Score (PMS) (OR 0.85, CI 0.74-0.98). CCI and PMS were independent risk factors for a high grade of dependency after 1 year. Management of osteoporosis did not significantly improve after hospitalization due to a non-hip fragility fracture. The outcomes of older non-hip fracture patients are comparable to the poor outcomes of older hip fracture patients, and appear to be primarily related to comorbidities, pre-fracture function and nutritional status. The low rate of patients on osteoporosis medications likely reflects the insufficient recognition of the importance of osteoporosis assessment and treatment in non-hip fracture patients. Increased clinical and academic attention to non-hip fracture patients is needed.

  11. Risk factors for fragility fracture in Seremban district, Malaysia: a comparison of patients with fragility fracture in the orthopedic ward versus those in the outpatient department.

    Science.gov (United States)

    Keng Yin Loh; King Hock Shong; Soo Nie Lan; Lo, Wan-Yi; Shu Yuen Woon

    2008-01-01

    Osteoporosis is a silent disease and becomes clinically significant in the presence of fragility fracture. Identifying risk factors that are associated with osteoporosis in the community is important in reducing the incidence of fragility fracture. The aim of this study is to identify risk factors associated with fragility fracture in the Seremban District of Malaysia. This is a population comparison study between orthopedic ward patients and outpatients attending a community health clinic for 6 months. Epidemiological data and the possible risk factors for osteoporosis were collected by direct interview. This study demonstrates that advancing age, low body weight, smoking, lack of regular exercise, low consumption of calcium containing foods, and using bone depleting drugs (steroids, thyroid hormone, and frusemides) are major risk factors for fragility fracture. Most of these risk factors are modifiable through effective lifestyle intervention.

  12. Liquid Oxygen Propellant Densification Unit Ground Tested With a Large-Scale Flight-Weight Tank for the X-33 Reusable Launch Vehicle

    Science.gov (United States)

    Tomsik, Thomas M.

    2002-01-01

    Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.

  13. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.

    Science.gov (United States)

    Micoulaut, Matthieu

    2010-07-21

    A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.

  14. Clinical aspects of the fragile X syndrome.

    Science.gov (United States)

    Brown, W Ted

    2012-01-01

    Fragile X syndrome patients express a wide array of cognitive and other gender-specific phenotypic features. These manifestations result not only from molecular mechanisms that are altered as a result of the expansion of a CGG-repeat region in the FMR1 promoter, but also genetic factors such as founder effects and mosaicism. In this chapter, I will summarize the many and varied features of fragile X syndrome as they present themselves in a clinical setting and describe the procedures that are used to diagnose patients. Finally, I will briefly touch on recent developments that will affect patient screening in the future.

  15. The World Bank and Fragile States: Dynamics of Cooperation and Aid Structure

    Directory of Open Access Journals (Sweden)

    Solomatin A.

    2018-03-01

    Full Text Available The eradication of extreme poverty in fragile states is one of the central problems of global governance at the present time. Development of these states is hindered by instability, weak public and social institutions or ongoing conflicts and violence. The World Bank is a key partner of fragile states, which account for almost a third of the world’s population. This article is a continuation of research exploring the evolution of conceptual and practical approaches by the World Bank to cooperation with fragile states. Its methodology is based on a multilevel analysis of the securitization of foreign aid as proposed by J. Lind and J. Howell of the London School of Economics. The main focus of this examination is on the dynamics of the change of scale and structure of the World Bank’s aid to fragile states in comparison with global armed trends of providing aid to fragile states as well. This article concludes that statements about the priority of the Bank’s work in fragile states have not yet been realized in practice. The Bank remains committed to the standard approach to working with this group of recipients, which involves serious risks. The World Bank leans toward supporting projects in fragile states which increases volatility and reduces aid predictability. This trend undermines the development potentials of recipient states. Attention is drawn to political factors influencing aid flows to fragile states and particularly to the tendency of increasing the share of aid provided to fragile states through multi donor trust funds rather than through the mechanisms of the International Development Association (IDA. This trend indicates that the Bank is no longer a central point of aid distribution to the recipients, pointing to the lack of trust of donor states in the existing mechanisms and rules of aid distribution. It also reveals the expanding role of donors’ strategic interests in the process of choosing recipients of World Bank aid.

  16. Acoustic levitation: recent developments and emerging opportunities in biomaterials research.

    Science.gov (United States)

    Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R

    2012-04-01

    Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

  17. Heart Activity and Autistic Behavior in Infants and Toddlers with Fragile X Syndrome

    Science.gov (United States)

    Roberts, Jane E.; Tonnsen, Bridgette; Robinson, Ashley; Shinkareva, Svetlana V.

    2012-01-01

    The present study contrasted physiological arousal in infants and toddlers with fragile X syndrome to typically developing control participants and examined physiological predictors early in development to autism severity later in development in fragile X syndrome. Thirty-one males with fragile X syndrome (ages 8-40 months) and 25 age-matched…

  18. Raman and DSC studies of fragility in tellurium-zinc oxide glass formers

    International Nuclear Information System (INIS)

    Stavrou, Elissaios; Kripotou, Sotiria; Raptis, Constantine; Turrell, Sylvia; Syassen, Karl

    2011-01-01

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out in four mixed (TeO 2 ) 1-x (ZnO) x (x = 0.1, 0.2, 0.3, 0.4) glasses at high temperatures (Raman and DSC through the glass transition) and high pressures (Raman) with the aim of determining the fragility of these glass forming oxides. Four different criteria, corresponding to four parameters, were applied to assess the fragility of the glasses. From the DSC studies, we have obtained the fragility parameter m which corresponds to the slopes of Arrhenius (lnQ vs. 1/T g , were Q is the heating rate) plots, and the glass transition width ΔT g . Also, from the low-frequency Raman scattering, and in particular the boson peak intensity of the glasses at T g , we have estimated the fragility ratio r R (T g ) = I min /I max whose value serves as another (empirical) fragility criterion. Finally, from high pressure Raman measurements on the glasses, we have estimated the Grueneisen parameter γ T for each glass, which constitutes the fourth fragility parameter adopted in this work. Considering the four parameters ΔT g , m, r (T g ) and γ T and the generally accepted (empirical) fragility criteria, we conclude that the mixed tellurium-zinc oxides constitute strong-to-intermediate glass formers (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Seismic fragility of ventilation stack of nuclear power plant

    International Nuclear Information System (INIS)

    Nefedov, S.S.; Yugai, T.Z.; Kalinkin, I.V.; Vizir, P.L.

    2003-01-01

    Fragility study of safety related elements is necessary step in seismic PSA of nuclear power plant (NPP). In present work fragility was analyzed after the example of the ventilation stack of NPP. Ventilation stack, considered in present work, is a separately erected construction with height of 100 m made of cast-in-place reinforced concrete. In accordance with IAEA terminology fragility of element is defined as conditional probability of its failure at given level of seismic loading. Failure of a ventilation stack was considered as development of the plastic hinge in some section of a shaft. Seismic ground acceleration a, which corresponds to failure, could be defined as limit seismic acceleration of ventilation stack [a]. Limit seismic acceleration [a] was considered as random value. Sources of its variation are connected with stochastic nature of factors determining it (properties of construction materials, soils etc.), and also with uncertainties of existing analytical techniques. Random value [a] was assumed to be distributed lognormally. Median m[a] and logarithmically standard deviation β of this distribution were defined by 'scaling method' developed by R.P. Kennedy et al. Using this values fragility curves were plotted for different levels of confidence probability. (author)

  20. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  1. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.

    Science.gov (United States)

    Kawarasaki, Yuta; Teets, Nicholas M; Denlinger, David L; Lee, Richard E

    2013-10-15

    During the austral summer, larvae of the terrestrial midge Belgica antarctica (Diptera: Chironomidae) experience highly variable and often unpredictable thermal conditions. In addition to remaining freeze tolerant year-round, larvae are capable of swiftly increasing their cold tolerance through the rapid cold-hardening (RCH) response. The present study compared the induction of RCH in frozen versus supercooled larvae. At the same induction temperature, RCH occurred more rapidly and conferred a greater level of cryoprotection in frozen versus supercooled larvae. Furthermore, RCH in frozen larvae could be induced at temperatures as low as -12°C, which is the lowest temperature reported to induce RCH. Remarkably, as little as 15 min at -5°C significantly enhanced larval cold tolerance. Not only is protection from RCH acquired swiftly, but it is also quickly lost after thawing for 2 h at 2°C. Because the primary difference between frozen and supercooled larvae is cellular dehydration caused by freeze concentration of body fluids, we also compared the effects of acclimation in dehydrated versus frozen larvae. Because slow dehydration without chilling significantly increased larval survival to a subsequent cold exposure, we hypothesize that cellular dehydration caused by freeze concentration promotes the rapid acquisition of cold tolerance in frozen larvae.

  2. Fused Microknot Optical Resonators in Folded Photonic Tapers for in-Liquid Durable Sensing

    Directory of Open Access Journals (Sweden)

    Alexandra Logvinova

    2018-04-01

    Full Text Available Optical microknot fibers (OMFs serve as localized devices, where photonic resonances (PRs enable self-interfering elements sensitive to their environment. However, typical fragility and drifting of the knot severely limit the performance and durability of microknots as sensors in aqueous settings. Herein we present the fabrication, electrical fusing, preparation, and persistent detection of volatile liquids in multiple wetting–dewetting cycles of volatile compounds and quantify the persistent phase shifts with a simple model relating to the ambient liquid, enabling durable in-liquid sensing employing OMF PRs.

  3. Electro-suppression of water nano-droplets' solidification in no man's land: Electromagnetic fields' entropic trapping of supercooled water

    Science.gov (United States)

    Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.

    2018-01-01

    Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.

  4. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well

  5. Cities could hold the key to understanding fragility | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cities are engines of economic growth and the primary sites of basic service delivery. Yet weak governance, along with inequalities related to income, social class, religion, and gender, may lead to a breakdown of systems and structures, and eventually to "fragile cities." Although the fragile cities concept is relatively new, ...

  6. Communication: Fast dynamics perspective on the breakdown of the Stokes-Einstein law in fragile glassformers.

    Science.gov (United States)

    Puosi, F; Pasturel, A; Jakse, N; Leporini, D

    2018-04-07

    The breakdown of the Stokes-Einstein (SE) law in fragile glassformers is examined by Molecular-Dynamics simulations of atomic liquids and polymers and consideration of the experimental data concerning the archetypical ortho-terphenyl glassformer. All the four systems comply with the universal scaling between the viscosity (or the structural relaxation) and the Debye-Waller factor ⟨u 2 ⟩, the mean square amplitude of the particle rattling in the cage formed by the surrounding neighbors. It is found that the SE breakdown is scaled in a master curve by a reduced ⟨u 2 ⟩. Two approximated expressions of the latter, with no and one adjustable parameter, respectively, are derived.

  7. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    Directory of Open Access Journals (Sweden)

    Aisling Frizzell

    2014-03-01

    Full Text Available Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG repeat expansions and fragility, likely by unwinding problematic hairpins.

  8. Fragile X syndrome: A review of clinical management

    Science.gov (United States)

    Lozano, Reymundo; Azarang, Atoosa; Wilaisakditipakorn, Tanaporn; Hagerman, Randi J

    2016-01-01

    Summary The fragile X mental retardation 1 gene, which codes for the fragile X mental retardation 1 protein, usually has 5 to 40 CGG repeats in the 5′ untranslated promoter. The full mutation is the almost always the cause of fragile X syndrome (FXS). The prevalence of FXS is about 1 in 4,000 to 1 in 7,000 in the general population although the prevalence varies in different regions of the world. FXS is the most common inherited cause of intellectual disability and autism. The understanding of the neurobiology of FXS has led to many targeted treatments, but none have cured this disorder. The treatment of the medical problems and associated behaviors remain the most useful intervention for children with FXS. In this review, we focus on the non-pharmacological and pharmacological management of medical and behavioral problems associated with FXS as well as current recommendations for follow-up and surveillance. PMID:27672537

  9. Fluorescent in-situ hybridization of cattle and sheep chromosomes with cloned human fragile-X DNA

    DEFF Research Database (Denmark)

    Ali, Ahmd; Thomsen, Preben Dybdahl; Babar, M.E.

    2009-01-01

    An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG....../CGG(n) trinucleotide repeat sequence was carried out to determine homology between human and bovine fragile-X. The hybridisation results showed only a weak signal on a human chromosome that was not an X with all three fragile site probes. No signals were detected in sheep chromosomes. The signal of all three human...... fragile-X probes on cattle chromosomes was however, medium-prominent sub-centromeric signal on two homologues. BrdU administration in 12 h before harvesting identified these homologues to be chromosome number 5. In addition retrospective slides of cattle and sheep chromosomes used for fragile site studies...

  10. Modeling Fragile X Syndrome in Drosophila

    Science.gov (United States)

    Drozd, Małgorzata; Bardoni, Barbara; Capovilla, Maria

    2018-01-01

    Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5′-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS. PMID:29713264

  11. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is the hyperquench-anneal-calorimetric scan approach, by which the structural information of a basaltic supercooled liquid and three binary silicate liquids is acquired. Another is the calorimetrically repeated up- and downscanning approach, by which the structural heterogeneity, the intermediate range order...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  12. Association between change in BMD and fragility fracture in women and men.

    Science.gov (United States)

    Berger, Claudie; Langsetmo, Lisa; Joseph, Lawrence; Hanley, David A; Davison, K Shawn; Josse, Robert G; Prior, Jerilynn C; Kreiger, Nancy; Tenenhouse, Alan; Goltzman, David

    2009-02-01

    Our objective was to estimate the relationship between longitudinal change in BMD and fragility fractures. We studied 3635 women and 1417 men 50-85 yr of age in the Canadian Multicentre Osteoporosis Study who had at least two BMD measurements (lumbar spine, femoral neck, total hip, and trochanter) within the first 5 yr of the study and fragility fractures (any, main, forearm/wrist, ribs, hip) within the first 7 yr. Multiple logistic regression was used to model the relationship between baseline BMD, BMD change, and fragility fractures. We found that, among nonusers of antiresorptives, independent of baseline BMD, a decrease of 0.01 g/cm(2)/yr in total hip BMD was associated with an increased risk of fragility fracture with ORs of 1.15 (95% CI: 1.01; 1.32) in women and 1.34 (95% CI: 1.02; 1.78) in men. The risk of fragility fractures in subgroups such as fast losers and those with osteopenia was better estimated by models that included BMD change than by models that included baseline BMD but excluded BMD change. Although the association between baseline BMD and fragility fractures was similar in users and nonusers of antiresorptives, the association was stronger in nonusers compared with users. These results show that BMD change in both men and women is an independent risk factor for fragility fractures and also predicts fracture risk in those with osteopenia. The results suggest that BMD change should be included with other variables in a comprehensive fracture prediction model to capture its contribution to osteoporotic fracture risk.

  13. Thermalization as an Invisibility Cloak for Fragile Quantum Superpositions

    OpenAIRE

    Hahn, Walter; Fine, Boris V.

    2017-01-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time reversal manipulation known as Loschmidt echo. The thermalization dynamics makes t...

  14. Babies at Double Jeopardy: Medically Fragile Infants and Child Neglect

    Science.gov (United States)

    Fullar, Suzanne A.

    2008-01-01

    Medically fragile infants, those born prematurely or with other complex medical or genetic problems, are at risk of long-term health and developmental problems. When a medically fragile infant comes home to a family with significant social problems such as domestic violence, mental illness, or substance abuse, the infant is at double jeopardy--at…

  15. Self-Injurious Behavior and Fragile X Syndrome: Findings from the National Fragile X Survey

    Science.gov (United States)

    Symons, Frank J.; Byiers, Breanne J.; Raspa, Melissa; Bishop, Ellen; Bailey, Donald B., Jr.

    2010-01-01

    We used National Fragile X Survey data in order to examine reported self-injurious behavior (SIB) to (a) generate lifetime and point prevalence estimates, (b) document detailed features of SIB (frequency, types, location, severity) in relation to gender, and (c) compare comorbid conditions between matched pairs (SIB vs. no SIB). Results indicate…

  16. Positron Emission Tomography (PET Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    Directory of Open Access Journals (Sweden)

    Charlotte D'Hulst

    Full Text Available Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS, a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  17. Fragility curves for bridges under differential support motions

    DEFF Research Database (Denmark)

    Konakli, Katerina

    2012-01-01

    This paper employs the notion of fragility to investigate the seismic vulnerability of bridges subjected to spatially varying support motions. Fragility curves are developed for four highway bridges in California with vastly different structural characteristics. The input in this analysis consists...... of simulated ground motion arrays with temporal and spectral nonstationarities, and consistent with prescribed spatial variation patterns. Structural damage is quantified through displacement ductility demands obtained from nonlinear time-history analysis. The potential use of the ‘equal displacement’ rule...... to approximately evaluate displacement demands from analysis of the equivalent linear systems is examined....

  18. Fragility of chalcogenide glass in relation to characteristic temperature T0/Tg

    Science.gov (United States)

    Shaker, A. M.; Shanker Rao, T.; Lilly Shanker Rao, T.; Venkataraman, K.

    2018-03-01

    The present study reports the mutual relationship between the fragility index m and the characteristic temperature T0/Tg. The fragility of the chalcogenide amorphous glass of Ge10Se50Te40 is calculated by utilizing glass transition temperature (Tg) measured by DSC (Differential Scanning Calorimetry) at different heating rates (β) in the range 5 to 20 K/min. Vogel-Fulcher-Tammann (VFT) equation is fitted to the data of Tg. In addition to the VFT method, three other methods are also used to evaluate m. The fragility index m of the Ge10Se50Te40 system showed the trend of decrease with increasing heating rate but remained stable around 22 for the heating rate 10 K/min. The value of m for the glass is near the lower limit (m ≈ 16) this indicates the alloy is a strong glass forming material in accordance of Angell’s interpretation of fragility. The calculated values of characteristic temperature T0/Tg is very close to 1 which also indicates that clearly the system is most fragile.

  19. Thermal and fragility studies on microwave synthesized K{sub 2}O-B{sub 2}O{sub 3}-V{sub 2}O{sub 5} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Harikamalasree [R& D Center, Bharatiar University, Coimbatore, Tamil Nadu (India); Department of Physics, M LR Institute of Technology Hyderabad-043 (India); Reddy, M. Sudhakara [Department of Physics, School of Graduate Studies, Jain University, Bangalore56002 (India); Viswanatha, R. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Reddy, C. Narayana, E-mail: nivetejareddy@gmail.com [Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur 572102 (India)

    2016-05-06

    Glasses with composition xK{sub 2}O–60B{sub 2}O{sub 3}–(40-x) V{sub 2}O{sub 5} (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔC{sub p}) at glass transition (T{sub g}), width of glass transition (ΔT{sub g}), heat capacities in the glassy (C{sub pg}) and liquid (C{sub pl}) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(V{sub m}{sup 3}T{sub g}) and (ΔC{sub p}/C{sub pl})increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K{sub 2}O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K{sub 2}O concentration. The observed variations are qualitatively analyzed.

  20. Resonant inelastic X-ray scattering of liquid water

    International Nuclear Information System (INIS)

    Nilsson, Anders; Tokushima, Takashi; Horikawa, Yuka; Harada, Yoshihisa; Ljungberg, Mathias P.; Shin, Shik; Pettersson, Lars G.M.

    2013-01-01

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b 1 origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H 2 O and D 2 O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and higher pressures

  1. Resonant inelastic X-ray scattering of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders, E-mail: nilsson@slac.stanford.edu [SUNCAT Ctr Interface Sci and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Tokushima, Takashi [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Horikawa, Yuka [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Harada, Yoshihisa [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Ljungberg, Mathias P. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra (Spain); Shin, Shik [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Pettersson, Lars G.M. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden)

    2013-06-15

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b{sub 1} origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H{sub 2}O and D{sub 2}O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and

  2. Fragile X premutation carriers: A systematic review of neuroimaging findings.

    Science.gov (United States)

    Brown, Stephanie S G; Stanfield, Andrew C

    2015-05-15

    Expansion of the CGG repeat region of the FMR1 gene from less than 45 repeats to between 55 and 200 repeats is known as the fragile X premutation. Carriers of the fragile X premutation may develop a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS). Recent evidence suggests that premutation carriers experience other psychiatric difficulties throughout their lifespan. Medline, EMBASE and PsychINFO were searched for all appropriate English language studies published between January 1990 and December 2013. 419 potentially relevant articles were identified and screened. 19 articles were included in the analysis. We discuss key structural magnetic resonance imaging (MRI) findings such as the MCP sign and white matter atrophy. Additionally, we discuss how functional MRI results have progressed our knowledge of how FXTAS may manifest, including reduced brain activation during social and memory tasks in multiple regions. This systematic review may have been limited by the search for articles on just 3 scientific databases. Differing techniques and methods of analyses between research groups and primary research articles may have caused differences in results between studies. Current MRI studies into the fragile X premutation have been important in the diagnosis of FXTAS and identifying potential pathophysiological mechanisms. Associations with blood based measures have also demonstrated that neurodevelopmental and neurodegenerative aspects of the fragile X premutation could be functionally and pathologically separate. Larger longitudinal studies will be required to investigate these conclusions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fragile Cities: a Critical Perspective on the Repertoire for New Urban Humanitarian Interventions

    Directory of Open Access Journals (Sweden)

    Manoela Miklos

    Full Text Available Abstract At the end of the 1990s, researchers involved in the debate on the new wars introduced discussion about the urban dimension of contemporary conflicts into the International Relations discipline. The innovative debate about urban fragility is one of the many lines of inquiry that emerge within the framework of the relationship between cities and contemporary conflicts. This paper seeks to demonstrate that the concept of ‘fragile city’ offers a new and relevant analytical framework for understanding contemporary urban violence and inequality. Moreover, this same concept could also be instrumental in making fragile cities the new locus of international humanitarianism. The notion of fragile city emerges to describe new emergency situations more closely linked to urban contexts than to national dynamics, as previously described in the literature on fragile states. The concept of fragile city is a groundbreaking tool for understanding the human consequences of inequality in urban settings, but might also be used as a rhetorical vehicle for the reproduction of old dynamics and the inauguration of new intervention practices in urban areas that were previously inaccessible to humanitarian action, especially cities in Latin America.

  4. Component Fragility Research Program: Phase 1, Demonstration tests: Volume 1, Summary report

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.; Shipway, G.D.; Glozman, V.

    1987-08-01

    This report describes tests performed in Phase I of the NRC Component Fragility Research Program. The purpose of these tests was to demonstrate procedures for characterizing the seismic fragility of a selected component, investigating how various parameters affect fragility, and finally using test data to develop practical fragility descriptions suitable for application in probabilistic risk assessments. A three-column motor control center housing motor controllers of various types and sizes as well as relays of different types and manufacturers was subjected to seismic input motions up to 2.5g zero period acceleration. To investigate the effect of base flexibility on the structural behavior of the MCC and on the functional behavior of the electrical devices, multiple tests were performed on each of four mounting configurations: four bolts per column with top bracking, four bolts per column with no top brace, four bolts per column with internal diagonal bracking, and two bolts per column with no top or internal bracking. Device fragility was characterized by contact chatter correlated to local in-cabinet response at the device location. Seismic capacities were developed for each device on the basis of local input motion required to cause chatter; these results were then applied to develop probabilistic fragility curves for each type of device, including estimates of the ''high-confidence low probability of failure'' capacity of each

  5. Fragile X mental retardation protein participates in non-coding RNA pathways.

    Science.gov (United States)

    Li, En-Hui; Zhao, Xin; Zhang, Ce; Liu, Wei

    2018-02-20

    Fragile X syndrome is one of the most common forms of inherited intellectual disability. It is caused by mutations of the Fragile X mental retardation 1(FMR1) gene, resulting in either the loss or abnormal expression of the Fragile X mental retardation protein (FMRP). Recent research showed that FMRP participates in non-coding RNA pathways and plays various important roles in physiology, thereby extending our knowledge of the pathogenesis of the Fragile X syndrome. Initial studies showed that the Drosophila FMRP participates in siRNA and miRNA pathways by interacting with Dicer, Ago1 and Ago2, involved in neural activity and the fate determination of the germline stem cells. Subsequent studies showed that the Drosophila FMRP participates in piRNA pathway by interacting with Aub, Ago1 and Piwi in the maintenance of normal chromatin structures and genomic stability. More recent studies showed that FMRP is associated with lncRNA pathway, suggesting a potential role for the involvement in the clinical manifestations. In this review, we summarize the novel findings and explore the relationship between FMRP and non-coding RNA pathways, particularly the piRNA pathway, thereby providing critical insights on the molecular pathogenesis of Fragile X syndrome, and potential translational applications in clinical management of the disease.

  6. Multiple critical points and liquid-liquid equilibria from the van der Waals like equations of state

    International Nuclear Information System (INIS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-01-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema

  7. Extended Smoluchowski models for interpreting relaxation phenomena in liquids

    International Nuclear Information System (INIS)

    Polimeno, A.; Frezzato, D.; Saielli, G.; Moro, G.J.; Nordio, P.L.

    1998-01-01

    Interpretation of the dynamical behaviour of single molecules or collective modes in liquids has been increasingly centered, in the last decade, on complex liquid systems, including ionic solutions, polymeric liquids, supercooled fluids and liquid crystals. This has been made necessary by the need of interpreting dynamical data obtained by advanced experiments, like optical Kerr effect, time dependent fluorescence shift experiments, two-dimensional Fourier-transform and high field electron spin resonance and scattering experiments like quasi-elastic neutron scattering. This communication is centered on the definition, treatment and application of several extended stochastic models, which have proved to be very effective tools for interpreting and rationalizing complex relaxation phenomena in liquids structures. First, applications of standard Fokker-Planck equations for the orientational relaxation of molecules in isotropic and ordered liquid phase are reviewed. In particular attention will be focused on the interpretation of neutron scattering in nematics. Next, an extended stochastic model is used to interpret time-domain resolved fluorescence emission experiments. A two-body stochastic model allows the theoretical interpretation of dynamical Stokes shift effects in fluorescence emission spectra, performed on probes in isotropic and ordered polar phases. Finally, for the case of isotropic fluids made of small rigid molecules, a very detailed model is considered, which includes as basic ingredients a Fokker-Planck description of the molecular vibrational motion and the slow diffusive motion of a persistent cage structure together with the decay processes related to the changing structure of the cage. (author)

  8. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    Science.gov (United States)

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Selective Spatial Processing Deficits in an At-Risk Subgroup of the Fragile X Premutation

    Science.gov (United States)

    Hocking, Darren R.; Kogan, Cary S.; Cornish, Kim M.

    2012-01-01

    Until a decade ago, it was assumed that males with the fragile X premutation were unaffected by any cognitive phenotype. Here we examined the extent to which CGG repeat toxicity extends to visuospatial functioning in male fragile X premutation carriers who are asymptomatic for a late-onset neurodegenerative disorder, fragile X-associated…

  10. Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering

    CERN Document Server

    Chang, Xiao-Heng

    2012-01-01

    "Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering" investigates the problem of non-fragile H-infinity filter design for T-S fuzzy systems. The nonlinear plant is represented by a T-S fuzzy model. Given a T-S fuzzy system, the objective of this book is to design an H-infinity filter with the gain variations such that the filtering error system guarantees a prescribed H-infinity performance level. Furthermore, it demonstrates that the solution of non-fragile H-infinity filter design problem can be obtained by solving a set of linear matrix inequalities (LMIs). The intended audiences are graduate students and researchers both from the fields of engineering and mathematics. Dr. Xiao-Heng Chang is an Associate Professor at the College of Engineering, Bohai University, Jinzhou, Liaoning, China. He is also a Postdoctoral Researcher at the College of Information Science and Engineering, Northeastern University, Shenyang, China.

  11. Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling

    Science.gov (United States)

    Hacker, Jürgen; Ladinig, Ursula; Wagner, Johanna; Neuner, Gilbert

    2011-01-01

    Freezing patterns in the high alpine cushion plants Saxifraga bryoides, Saxifraga caesia, Saxifraga moschata and Silene acaulis were studied by infrared thermography at three reproductive stages (bud, anthesis, fruit development). The single reproductive shoots of a cushion froze independently in all four species at every reproductive stage. Ice formation caused lethal damage to the respective inflorescence. After ice nucleation, which occurred mainly in the stalk or the base of the reproductive shoot, ice propagated throughout that entire shoot, but not into neighboring shoots. However, anatomical ice barriers within cushions were not detected. The naturally occurring temperature gradient within the cushion appeared to interrupt ice propagation thermally. Consequently, every reproductive shoot needed an autonomous ice nucleation event to initiate freezing. Ice nucleation was not only influenced by minimum temperatures but also by the duration of exposure. At moderate subzero exposure temperatures (−4.3 to −7.7 °C) the number of frozen inflorescences increased exponentially. Due to efficient supercooling, single reproductive shoots remained unfrozen down to −17.4 °C (cooling rate 6 K h−1). Hence, the observed freezing pattern may be advantageous for frost survival of individual inflorescences and reproductive success of high alpine cushion plants, when during episodic summer frosts damage can be avoided by supercooling. PMID:21151351

  12. Family Environment and Behavior Problems in Children, Adolescents, and Adults with Fragile X Syndrome

    Science.gov (United States)

    Greenberg, Jan S.; Seltzer, Marsha Mailick; Baker, Jason K.; Smith, Leann E.; Warren, Steven F.; Brady, Nancy; Hong, Jinkuk

    2012-01-01

    We examine how the family environment is associated with aspects of the Fragile X syndrome phenotype during childhood, adolescence, and adulthood. Mothers of children (n = 48), adolescents (n = 85), and adults (n = 34) with Fragile X syndrome participated in a multisite study. For children and adults with Fragile X syndrome, the presence of warmth…

  13. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    Science.gov (United States)

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  14. Fragile Elite

    DEFF Research Database (Denmark)

    Bregnbæk, Susanne

    China's One Child Policy and its rigorous national focus on educational testing are well known. But what happens to those "lucky" few at the very top of the pyramid? Fragile Elite explores the contradictions of being an elite student through ethnographic research conducted at two top universities...... in China. It uncovers the intimate psychological strains students suffer under the pressure imposed on them by parents and state, where the state acts as a parent, and the parents sometimes reinforce the state. The book offers insights into the intergenerational tensions as work in relation to the ongoing...... shifts in educational policy and definition of what a "quality" student, child, and citizen is in contemporary China....

  15. The Evaluation of Corneal Fragility After UVA/Riboflavin Crosslinking.

    Science.gov (United States)

    Li, Zhiwei; Wang, Yumeng; Xu, Yanyun; Jhanji, Vishal; Zhang, Chunxiao; Mu, Guoying

    2017-03-01

    To evaluate the fragility of cornea after UVA/riboflavin crosslinking (CXL). Sixty New Zealand rabbits received UVA/riboflavin crosslinking treatment (wavelength 365 nm, irradiance 3.0 mW/cm, and total dose 5.4 J/cm) on right eyes. Animals were sacrificed before and immediately after treatment (day 0), day 1, 3, 7, and 28 after treatment. A 4×10 mm corneal strip for biomechanical evaluation was harvested after sacrifice. The corneal fragility was evaluated by measurement of elongation rate, whereby the elongation rate equals elongation length/baseline length. The Youngs modulus and maximal stress were 1.41±0.51 MPa and 5.56±1.84 MPa before CXL, and increased to 2.31±0.68 MPa (P=0.008) and 9.25±2.74 MPa (P=0.04), respectively, on day 0, then maintained a stable level within a 28 days follow-up. The elongation rate was 62.04±9.34% before CXL and decreased to 48.95%±8.24% (P=0.02) on day 0, then maintained a stable level within a 28 days follow-up. This study showed an increase in the corneal fragility after UVA/riboflavin crosslinking along with an increase in the corneal stiffness. A long-term follow-up should be taken to evaluate the potential deleterious effect of the increasing corneal fragility after UVA/riboflavin crosslinking.

  16. Manipulations of attention dissociate fragile visual short-term memory from visual working memory.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F

    2011-05-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Influence of carbide precipitation upon hydrogen fragilization of an AISI 304 steel

    International Nuclear Information System (INIS)

    Hazarabedian, A.E.; Ovejero Garcia, J.

    1991-01-01

    The present work deals with austenitic stainless steels for a family of steels that is renowned for its high resistance to hydrogen fragilization. Nevertheless, these steels may suffer hydrogen fragilization under severe working conditions. This fact is strongly dependent on many factors -composition, grain size, other phases present, corrosion sensitivity, etc.-. While there are studies that show how intergranular corrosion is influenced by corrosion sensitivity -mainly due to carbide precipitation in grain boundaries-, there are no reports about the effect of the carbide precipitation itself on hydrogen fragilization for these steels. (Author) [es

  18. Behavioral Intervention for Problem Behavior in Children with Fragile X Syndrome

    Science.gov (United States)

    Moskowitz, Lauren J.; Carr, Edward G.; Durand, V. Mark

    2011-01-01

    Parents and professionals typically report problem behavior as a significant concern for children with fragile X syndrome. In the present study, the authors explored whether behaviorally based interventions would result in a reduction in problem behavior and an improvement in quality of life for 3 children with fragile X syndrome and their…

  19. Fragile X syndrome in two siblings with major congenital malformations

    Energy Technology Data Exchange (ETDEWEB)

    Giampietro, P.F.; Haas, B.R.; Lipper, E. [Cornell Univ. Medical Center, New York, NY (United States)] [and others

    1996-05-17

    We report on 2 brothers with both fragile X and VACTERL-H syndrome. The first sibling, age 5, had bilateral cleft lip and palate, ventricular septal defect, and a hypoplastic thumb. The second sibling, age 2{1/2}, had a trachesophageal fistula, esophageal atresia, and vertebral abnormality. High-resolution chromosome analysis showed a 46,XY chromosome constitution in both siblings. By PCR and Southern blot analysis, the siblings were found to have large triplet repeat expansions in the fragile X gene (FMR 1) and both had methylation mosaicism. Enzyme kinetic studies of iduronate sulfatase demonstrated a two-fold increase in activity in the first sib as compared to the second. Possible mechanisms through which the fragile X mutation can cause down-regulation of adjacent loci are discussed. 24 refs., 4 figs.

  20. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  1. Dielectric relaxation studies in super-cooled liquid and glassy phases of anti-cancerous alkaloid: Brucine

    Science.gov (United States)

    Afzal, Aboothahir; Shahin Thayyil, M.; Sulaiman, M. K.; Kulkarni, A. R.

    2018-05-01

    Brucine has good anti-tumor effects, on both liver cancer and breast cancer. It has bioavailability of 40.83%. Since the bioavailability of the drug is low, an alternative method to increase its bioavailability and solubility is by changing the drug into glassy form. We used Differential Scanning Calorimetry (DSC) for studying the glass forming ability of the drug. Brucine was found to be a very good glass former glass transition temperature 365 K. Based on the DSC analysis we have used broadband dielectric spectroscopy (BDS) for studying the drug in the super cooled and glassy state. BDS is an effective tool to probe the molecular dynamics in the super cooled and glassy state. Molecular mobility is found to be present even in the glassy state of this active pharmaceutical ingredient (API) which is responsible for the instability. Our aim is to study the factors responsible for instability of this API in amorphous form. Cooling curves for dielectric permittivity and dielectric loss revealed the presence of structural (α) and secondary relaxations (β and γ). Temperature dependence of relaxation time is fitted by Vogel-Fulcher-Tammann equation and found the values of activation energy of the α relaxation, fragility and glass transition temperature. Paluch's anti correlation is also verified, that the width of the α-loss peak at or near the glass transition temperature Tg is strongly anticorrelated with the polarity of the molecule. The larger the dielectric relaxation strength Δɛ (Tg) of the system, the narrower is the α-loss peak (higher value of βKWW).

  2. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  3. Managing Public Finance and Procurement in Fragile and Conflicted Settings

    OpenAIRE

    Porter, Doug; Andrews, Matt; Turkewitz, Joel; Wescotttz, Clay

    2011-01-01

    Discusses ways to enhance the incentives for elites to invest political capital in achieving (1) functional results through the formal public finance management (PFM) system; (2) the effectiveness of agencies responsible for services and regulating activities; and (3) better performance of civil service officials. Using the Public Expenditure and Financial Accountability (PEFA) Performance Measurement Framework, countries affected by conflict and fragility can be compared with non-fragile poo...

  4. Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling

    Science.gov (United States)

    Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho

    2017-10-01

    Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.

  5. Potential Energy Landscape of the Liquid-Liquid Phase Transition in Water and the transformation between Low-Density and High-Density Amorphous Ice

    Science.gov (United States)

    Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.

  6. Fragility Modeling of Aging Containment Metallic Pressure Boundaries

    International Nuclear Information System (INIS)

    Cherry, J.L.; Ellingwood, B.R.

    1999-01-01

    The containment in a nuclear power plant (NPP) provides a barrier against the release of radioactivity in the event of an accident. Corrosion that has been observed in some steel containments and liners of reinforced concrete containments has raised questions about their ability to perform this function. The performance of corroded containments during events at or beyond the design basis is impacted by numerous sources of uncertainty. A fragility model of the containment provides a relatively simple depiction of the impact of uncertainties on structural performance and a basis for decision-making in the presence of uncertainty. Moreover, it is a necessary ingredient of any time-dependent structural reliability analysis. A nonlinear finite element analysis of containment response furnishes the necessary platform to perform numerical experiments to determine containment fragility. A statistically-based sampling plan minimizes the finite element computations required to develop the fragility curve. The -percentile (or other fractile) then gives a statistically based indication of the lower bound on containment capacity, and can be used as a screening tool to determine whether more refined further analysis or tests to support service life evaluations are warranted

  7. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand.

    Science.gov (United States)

    Teasley, Daniel C; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A

    2015-06-12

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Seismic fragility analysis of the block masonry wall in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Z-L.; Pandey, M.D.; Xie, X-C.

    2014-01-01

    The evaluation of seismic fragility of a structure is an integral part in the Seismic Probabilistic Risk Analysis (SPRA). The block masonry wall, a commonly used barrier in nuclear power plants, is fairly vulnerable to failure under an earthquake. In practice, the seismic fragility of block walls is commonly evaluated using a simple deterministic approach called Conservative Deterministic Failure Margin (CDFM) method. This paper presents a more formal fragility analysis of a block wall based on rigorous probabilistic methods and the accuracy of the CDFM method is evaluated by comparison to the more rigorous FA method. (author)

  9. Scaling parallels in the non-Debye dielectric relaxation of ionic glasses and dipolar supercooled liquids

    International Nuclear Information System (INIS)

    Sidebottom, D.L.; Green, P.F.; Brow, R.K.

    1997-01-01

    We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion σ(ω)∝ω n , where n∼0.67, but frequently the dielectric response is analyzed using the electrical modulus M * (ω)=1/var-epsilon * (ω), where var-epsilon * (ω)=var-epsilon(ω)-iσ(ω)/ω is the complex permittivity. We reexamine two specific examples where the shape of M * (ω) changes in response to changes in (a) temperature and (b) ion concentration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes in the shape of M * (ω) occur in the absence of changes in the scaling properties of σ(ω), for which n remains constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which var-epsilon * (ω) likewise exhibits changes in shape on approach to the glass transition. Guided by similarities of M * (ω) in ionic glasses and var-epsilon * (ω) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon and co-workers for var-epsilon * (ω) of dipolar relaxation also appears valid for M * (ω) in the ionic case. While this suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how the dielectric response can be scaled in a linear manner using an alternative data representation. copyright 1997 The American Physical Society

  10. Fragility and structure of Al-Cu alloy melts

    International Nuclear Information System (INIS)

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  11. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  12. Comparison of intraerythrocyte and intraleucocyte Sodium content and erythrocyte fragility in normotensive subjects

    International Nuclear Information System (INIS)

    Paci, A.; Cocci, F.; Cristofani, R.; Piras, F.; Balzan, S.; Mezzasalma, L.; Ghione; Giachetti, M.

    1988-01-01

    The Sodium content of mononuclear leucocytes and erythrocytes and the osmotic fragility of erythrocytes were measured in 22 young male volunteers before and after three days of increased Sodium intake. Analysis of variance for repeated measurements showed no significant correlations between intraleucocyte and intraerythrocyte Sodium and between intraerythrocyte Sodium and osmotic fragility. On the other hand, a highly significant relation was present between osmotic fragility and intraleucocyte Sodium before high salt intake, which disappeared after 3 days of increased salt intake

  13. Structure and management of tuberculosis control programs in fragile states--Afghanistan, DR Congo, Haiti, Somalia.

    Science.gov (United States)

    Mauch, Verena; Weil, Diana; Munim, Aayid; Boillot, Francois; Coninx, Rudi; Huseynova, Sevil; Powell, Clydette; Seita, Akihiro; Wembanyama, Henriette; van den Hof, Susan

    2010-07-01

    Health care delivery is particularly problematic in fragile states often connected with increased incidence of communicable diseases, among them tuberculosis. This article draws upon experiences in tuberculosis control in four fragile states from which four lessons learned were derived. A structured inventory to extract common themes specific for TB control in fragile states was conducted among twelve providers of technical assistance who have worked in fragile states. The themes were applied to the TB control programs of Afghanistan, DR Congo, Haiti and Somalia during the years 2000-2006. Case notifications and treatment outcomes have increased in all four countries since 2003 (treatment success rates 81-90%). Access to care and case detection however have remained insufficient (case detection rates 39-62%); There are four lessons learned: 1. TB control programs can function in fragile states. 2. National program leadership and stewardship are essential for quality and sustained TB control. 3. Partnerships with non-governmental providers are vital for continuous service delivery; 4. TB control programs in fragile states require consistent donor support. Despite challenges in management, coordination, security, logistics and funding, TB control programs can function in fragile states, but face considerable problems in access to diagnosis and treatment and therefore case detection. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  14. I’m incredible—or am I? : On the socialization of fragile self-views in children

    NARCIS (Netherlands)

    Brummelman, E.

    2015-01-01

    I’m incredible—or am I? This is a recurring and daunting question for children with fragile self-views, whose feelings of self-worth crumble in the face of setbacks. What are the origins of children’s fragile self-views, and how can interventions reduce the fragility of children’s self-views? The

  15. Thermalization as an invisibility cloak for fragile quantum superpositions

    Science.gov (United States)

    Hahn, Walter; Fine, Boris V.

    2017-07-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during most of the above procedure. We validate the method by applying it to a cluster of spins ½.

  16. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment....... This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence...

  17. Dopamine transporter imaging study in parkinsonism occurring in fragile X premutation carriers.

    Science.gov (United States)

    Ceravolo, R; Antonini, A; Volterrani, D; Rossi, C; Goldwurm, S; Di Maria, E; Kiferle, L; Bonuccelli, U; Murri, L

    2005-12-27

    The authors studied four patients with parkinsonism carrying the fragile X premutation using SPECT with ([23)I]FP-CIT. They found evidence of preserved presynaptic nigrostriatal function, suggesting that parkinsonism in the X fragile premutation might be related to postsynaptic dopaminergic changes or different neurotransmitter alterations.

  18. Epilepsy in fragile-X-syndrome mimicking panayiotopoulos syndrome: Description of three patients.

    Science.gov (United States)

    Bonanni, Paolo; Casellato, Susanna; Fabbro, Franco; Negrin, Susanna

    2017-10-01

    Fragile-X-syndrome is the most common cause of inherited intellectual disability. Epilepsy is reported to occur in 10-20% of individuals with Fragile-X-syndrome. A frequent seizure/electroencephalogram (EEG) pattern resembles that of benign rolandic epilepsy. We describe the clinical features, EEG findings and evolution in three patients affected by Fragile-X-syndrome and epilepsy mimicking Panayiotopoulos syndrome. Age at seizure onset was between 4 and about 7 years. Seizures pattern comprised a constellation of autonomic symptoms with unilateral deviation of the eyes and ictal syncope. Duration of the seizures could be brief or lengthy. Interictal EEGs revealed functional multifocal abnormalities. The evolution was benign in all patients with seizures remission before the age of 14. This observation expands the spectrum of benign epileptic phenotypes present in Fragile-X-syndrome and may be quite helpful in guiding anticonvulsant management and counseling families as to expectations regarding seizure remission. © 2017 Wiley Periodicals, Inc.

  19. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    Science.gov (United States)

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  20. Preface: Proceedings of the ESF Exploratory Workshop on Glassy Liquids under Pressure: Fundamentals and Applications (Ustroń, Poland, 10-12 October 2007) Proceedings of the ESF Exploratory Workshop on Glassy Liquids under Pressure: Fundamentals and Applications (Ustroń, Poland, 10-12 October 2007)

    Science.gov (United States)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Tamarit, Josep Ll

    2008-06-01

    ] Stanley H E 1971/1987 Introduction to Critical Phenomena (New York: Oxford University Press) [8] Anisimov M A 1993 Critical Phenomena in Liquids and in Liquid Crystals (Reading: Gordon and Breach) [9] McMillan P F 2003 New materials from high pressure experiments: challenges and opportunities High Press. Res. 67 031507 [10] Craig D Q M, Royall P G, Kett V L and Hopton M L 1999 The relevance of the amorphous state to pharmaceutical dosage forms: glass drugs and freeze dried systems Int. J. Pharm. 179 179 [11] Poirier J P 2000 Introduction to the physics of the earth's interior (Cambridge: Cambridge University Press) [12] Mezzega E, Shurtenberger P, Burbridge A and Michel M 2005 Understanding food as soft materials Nature Mater. 4 729 [13] Jones R A L 2002 Soft Condensed Matter Physics (New York: Oxford University Press) [14] Angell C A 1985 Strong and fragile liquids Relaxations in Complex Systems Ngai K L and Wright (ed) (Springfield: National Technical Information Service, US Department of Commerce) 1 [15] Böhmer R, Ngai K L, Angell C A and Plazek D J 1993 Nonexponential relaxations in strong and fragile glass formers J. Chem. Phys. 99 4201 [16] Floudas G 2004 Effects of pressure on systems with intristic orientational order Prog. Polym. Sci. 29 1143 [17] Roland C M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure Rep. Prog. Phys. 68 1405 [18] Rzoska S J and Mazur V (ed) 2007 Soft Matter Under Exogenic Impacts(NATO Science Series II vol 242) (Berlin: Springer) [19] Sastry S, Debenedetti P G and Stillinger F H 1998 Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid Nature 393 54 [20] Niss K, Alba-Simionesco Ch 2006 Effect of density and temperature on correlations between fragility and glassy properties Phys. Rev. B 74 54 024205 [21] Charpeć J, Rzoska S J and Zioło J 1985 The influence of pressure and temperature on the critical properties of a

  1. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    International Nuclear Information System (INIS)

    Xiong, L.H.; Lou, H.B.; Wang, X.D.; Debela, T.T.; Cao, Q.P.; Zhang, D.X.; Wang, S.Y.; Wang, C.Z.; Jiang, J.Z.

    2014-01-01

    The local atomic structure evolution in Al 2 Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt–Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al 2 Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of 〈0, 4, 4, 0〉, 〈0, 3, 6, 0〉 and 〈0, 4, 4, 2〉 with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF 2 -type Al 2 Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al 2 Au alloy

  3. Fiscal 2000 survey report. Basic research on hot molding of amorphous ceramics; 2000 nendo amorphous netsukan ceramics seikeiho ni kansuru kiso kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted on the plasticity processing of heat resistant ceramics making use of the viscous deformation of amorphous ceramics in the supercooled liquid temperature domain. Concerning the preparation of powder of amorphous ceramics, the plasma rotating electrode method of Institute for Materials Research, Tohoku University, was employed, and a bamboo leaf shaped amorphous flake was successfully fabricated by increasing the arc discharge current. In a search of texture easy to turn amorphous, it was observed that Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} had a supercooled liquid domain of as large as 70K, and this enabled a conclusion that it was a promising candidate for hot molding in a supercooled liquid domain. In an experiment of molding in a supercooled liquid domain, Al{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} was used in a press molding process. As the result, a compact bulk mold was obtained in a temperature domain far lower than in the case of conventional sintering. Crystallization had already advanced in all the molds experimentally fabricated by press molding, and this disabled a study of characteristics to be exhibited by an amorphous mold, but it was found that they had a compressive strength of approximately 1,800MPa. (NEDO)

  4. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  5. A nonsense mutation in FMR1 causing fragile X syndrome

    DEFF Research Database (Denmark)

    Grønskov, Karen; Brøndum-Nielsen, Karen; Dedic, Alma

    2011-01-01

    Fragile X syndrome is a common cause of inherited intellectual disability. It is caused by lack of the FMR1 gene product FMRP. The most frequent cause is the expansion of a CGG repeat located in the 5'UTR of FMR1. Alleles with 200 or more repeats become hypermethylated and transcriptionally silent....... Only few patients with intragenic point mutations in FMR1 have been reported and, currently, routine analysis of patients referred for fragile X syndrome includes solely analysis for repeat expansion and methylation status. We identified a substitution in exon 2 of FMR1, c.80C>A, causing a nonsense...... mutation p.Ser27X, in a patient with classical clinical symptoms of fragile X syndrome. The mother who carried the mutation in heterozygous form presented with mild intellectual impairment. We conclude that further studies including western blot and DNA sequence analysis of the FMR1 gene should...

  6. Seismic margins review of nuclear power plants: Fragility aspects

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.

    1987-01-01

    The fragility analysis is utilised in the seismic margin review in initial screening of certain components in the plant based on their generically high seismic capacities. A detailed walkdown of the plant is conducted to confirm that the initial screening is valid i.e., the generically high seismic capacity components do not possess any potential weaknesses (e.g., inadequate bracing, inadequate anchorage and potential systems interaction). For the components that are screened in, their seismic capacities are evaluated using either a probabilistic analysis of a deterministic evaluation. Based on a system analysis, the Boolean expressions for critical accident sequences are derived. These Boolean expressions are quantified using the component fragilities and nonseismic unavailabilities of components. The final product is the High Confidence Low Probability of Failure (HCLPF) capacity of the plant and the identification of potential seismic vulnerabilities in the plant. The objective of the paper is to describe the application of fragility analysis procedures in the seismic margin review of Maine Yankee and to document the insights obtained in this trial plant review. (orig./HP)

  7. Clinical assessment tools identify functional deficits in fragility fracture patients

    Directory of Open Access Journals (Sweden)

    Ames TD

    2016-05-01

    Full Text Available Tyler D Ames,1 Corinne E Wee,1 Khoi M Le,1 Tiffany L Wang,1 Julie Y Bishop,2 Laura S Phieffer,2 Carmen E Quatman2 1The Ohio State University College of Medicine, 2Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA Purpose: To identify inexpensive, noninvasive, portable, clinical assessment tools that can be used to assess functional performance measures that may put older patients at risk for falls such as balance, handgrip strength, and lumbopelvic control.Patients and methods: Twenty fragility fracture patients and 21 healthy control subjects were evaluated using clinical assessment tools (Nintendo Wii Balance Board [WBB], a handheld dynamometer, and an application for the Apple iPod Touch, the Level Belt that measure functional performance during activity of daily living tasks. The main outcome measurements were balance (WBB, handgrip strength (handheld dynamometer, and lumbopelvic control (iPod Touch Level Belt, which were compared between fragility fracture patients and healthy controls.Results: Fragility fracture patients had lower scores on the vertical component of the WBB Torso Twist task (P=0.042 and greater medial–lateral lumbopelvic sway during a 40 m walk (P=0.026 when compared to healthy controls. Unexpectedly, the fracture patients had significantly higher scores on the left leg (P=0.020 and total components (P=0.010 of the WBB Single Leg Stand task as well as less faults during the left Single Leg Stand task (P=0.003.Conclusion: The clinical assessment tools utilized in this study are relatively inexpensive and portable tools of performance measures capable of detecting differences in postural sway between fragility fracture patients and controls. Keywords: fall risk, geriatric fracture, Nintendo Wii Balance Board, Level Belt, fragility fracture

  8. Acoustic levitator for containerless measurements on low temperature liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  9. Fragility analysis methodology for degraded structures and passive components in nuclear power plantsIllustrated using a condensate storage tank

    International Nuclear Information System (INIS)

    Nie, Jinsuo; Braverman, Joseph; Hofmayer, Charles; Choun, Young Sun; Kim, Min Kyu; Choi, In Kil

    2010-06-01

    This report describes the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5) a perfect correlation of the three degradation scenarios. Insights from these fragility analyses are also presented. An overview of the methods for seismic fragility analysis and generic approaches to incorporate time-dependent degradation models into a fragility analysis is presented. Fundamental concepts of seismic fragility analysis are summarized to facilitate discussions in later sections. The seismic fragility analysis of the undegraded CST, which is assumed to have all of its components in design condition, is described. The subject CST was located in an operating Korean NPP. The baseline fragility capacity of the CST is calculated and the basic procedure of seismic fragility analysis is established. This report presents the results and insights of the seismic fragility analysis of the CST under various postulated degradation scenarios

  10. Ocular Motor Indicators of Executive Dysfunction in Fragile X and Turner Syndromes

    Science.gov (United States)

    Lasker, Adrian G.; Mazzocco, Michele M. M.; Zee, David S.

    2007-01-01

    Fragile X and Turner syndromes are two X-chromosome-related disorders associated with executive function and visual spatial deficits. In the present study, we used ocular motor paradigms to examine evidence that disruption to different neurological pathways underlies these deficits. We tested 17 females with fragile X, 19 females with Turner…

  11. Visual Pathway Deficit in Female Fragile X Premutation Carriers: A Potential Endophenotype

    Science.gov (United States)

    Keri, Szabolcs; Benedek, Gyorgy

    2009-01-01

    Previous studies indicated impaired magnocellular (M) and relatively spared parvocellular (P) visual pathway functioning in patients with fragile X syndrome. In this study, we assessed M and P pathways in 22 female fragile X premutation carriers with normal intelligence and in 20 healthy non-carrier controls. Testing procedure included visual…

  12. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    KAUST Repository

    Style, Robert W.

    2011-10-14

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates. © 2011 American Physical Society.

  13. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole.

    Science.gov (United States)

    Tarnacka, M; Madejczyk, O; Adrjanowicz, K; Pionteck, J; Kaminska, E; Kamiński, K; Paluch, M

    2015-06-14

    Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.

  14. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole

    Energy Technology Data Exchange (ETDEWEB)

    Tarnacka, M., E-mail: mtarnacka@us.edu.pl; Madejczyk, O.; Kamiński, K.; Paluch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Adrjanowicz, K. [NanoBioMedical Centre, ul. Umultowska 85, 61-614 Poznan (Poland); Pionteck, J. [Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden (Germany); Kaminska, E. [Department of Pharmacognosy and Phytochemistry, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jagiellonska 4, 41-200 Sosnowiec (Poland)

    2015-06-14

    Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT{sub g}/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT{sub n}/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ {sub α} = 10{sup −5} s. Furthermore, we plotted the obtained relaxation times as a function of T{sup −1}v{sup −γ}, which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals’ properties of itraconazole molecule.

  15. Mechanisms of diabetes mellitus-induced bone fragility

    DEFF Research Database (Denmark)

    Napoli, Nicola; Chandran, Manju; Pierroz, Dominique D

    2017-01-01

    The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM...... and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia......-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus....

  16. Dynamics of glass-forming liquids

    DEFF Research Database (Denmark)

    Hansen, Henriette Wase

    on alpha relaxation dynamics, and for the two van der Waals liquids, also when we have separation of timescales, i.e. the alpha relaxation is not contributing to the picosecond dynamics. The concept of isomorphs is observed to break down in two cases for the hydrogen bonding system: in density scaling......The overall theme of this work has been to experimentally test the shoving model and isomorph theory related to the dynamics of glass-forming liquids, both of which, rather than being universal explanations, are expected to work in the simplest case. We test the connection between fast and slow...... dynamics in light of the shoving model from the temperature dependence of the mean-squared displacement from neutron scattering at nanosecond timescale and the elastic modulus from shear mechanics. We find the fast dynamics to correlate with the alpha relaxation time and fragility in agreement...

  17. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Motor Dysfunction Modeled in Mice.

    Science.gov (United States)

    Foote, Molly; Arque, Gloria; Berman, Robert F; Santos, Mónica

    2016-10-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some carriers of the fragile X premutation (PM). In PM carriers, there is a moderate expansion of a CGG trinucleotide sequence (55-200 repeats) in the fragile X gene (FMR1) leading to increased FMR1 mRNA and small to moderate decreases in the fragile X mental retardation protein (FMRP) expression. The key symptoms of FXTAS include cerebellar gait ataxia, kinetic tremor, sensorimotor deficits, neuropsychiatric changes, and dementia. While the specific trigger(s) that causes PM carriers to progress to FXTAS pathogenesis remains elusive, the use of animal models has shed light on the underlying neurobiology of the altered pathways involved in disease development. In this review, we examine the current use of mouse models to study PM and FXTAS, focusing on recent advances in the field. Specifically, we will discuss the construct, face, and predictive validities of these PM mouse models, the insights into the underlying disease mechanisms, and potential treatments.

  18. Evaluation of structural fragilities for an IPEEE seismic probabilistic risk assessment study

    International Nuclear Information System (INIS)

    Ghiocel, D.M.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The paper presents the main issues and results of a structural fragility analysis for a Seismic Probabilistic Risk Assessment (SPRA) study of a nuclear power plant (NPP) in the Eastern US. The fragility evaluations were performed for the Reactor Building, Auxiliary Building, Intake Structure and Diesel Generator Building. The random seismic input is defined in terms of the Uniform Hazard Spectrum (UHS) earthquake on the NPP site anchored to a reference level of 0.40 g Zero Period Ground Acceleration (ZPGA). Because of the soft soil conditions new Soil-Structure Interaction (SSI) analyses were performed using the original finite element (stick) structural models and the complex frequency approach. The soil deposit randomness was described by the variations in both the low strain soil shear modules and in its dependence with the shear strain. The probabilistic SSI analyses were performed using digital simulation techniques. The critical failure modes for each structure are investigated and the fragility evaluations are discussed. Concluding remarks and recommendations for improving the quality of the structural fragility analyses are included

  19. Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) Motor Dysfunction Modeled in Mice

    Science.gov (United States)

    Foote, Molly; Arque, Gloria; Berman, Robert F.; Santos, Mónica

    2016-01-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder that affects some carriers of the Fragile X premutation (PM). In PM carriers there is a moderate expansion of a CGG trinucleotide sequence (55-200 repeats) in the fragile X gene (FMR1) leading to increased FMR1 mRNA and small to moderate decreases in the Fragile X Mental Retardation Protein (FMRP) expression. The key symptoms of FXTAS include cerebellar gait ataxia, kinetic tremor, sensorimotor deficits, neuropsychiatric changes, and dementia. While the specific trigger(s) that cause PM carriers to progress to FXTAS pathogenesis remains elusive, the use of animal models has shed light on the underlying neurobiology of the altered pathways involved in disease development. In this review, we examine the current use of mouse models to study PM and FXTAS, focusing on recent advances in the field. Specifically we will discuss the construct, face and predictive validities of these PM mouse models, the insights into the underlying disease mechanisms and potential treatments. PMID:27255703

  20. Seismic Margin Assessment for Research Reactor using Fragility based Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jong-Min; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The research reactor has been often subjected to external hazards during the design lifetime. Especially, a seismic event can be one of significant threats to the failure of structure system of the research reactor. This failure is possibly extended to the direct core damage of the reactor. For this purpose, the fault tree for structural system failure leading to the core damage under an earthquake accident is developed. The failure probabilities of basic events are evaluated as fragility curves of log-normal distributions. Finally, the plant-level seismic margin is investigated by the fault tree analysis combining with fragility data and the critical path is identified. The plant-level probabilistic seismic margin assessment using the fragility based fault tree analysis was performed for quantifying the safety of research reactor to a seismic hazard. For this, the fault tree for structural system failure leading to the core damage of the reactor under a seismic accident was developed. The failure probabilities of basic events were evaluated as fragility curves of log-normal distributions.

  1. Fragile X Syndrome: An Aging Perspective

    Science.gov (United States)

    Schneider, Andrea; Ligsay, Andrew; Hagerman, Randi J.

    2013-01-01

    Cognitive and behavioral correlates of molecular variations related to the FMR1 gene have been studied rather extensively, but research about the long-term outcome in individuals with fragile X spectrum disorders remains sparse. In this review, we present an overview of aging research and recent findings in regard to cellular and clinical…

  2. Fragility of superheated melts and glass-forming ability in Pr-based alloys

    International Nuclear Information System (INIS)

    Meng, Q.G.; Zhou, J.K.; Zheng, H.X.; Li, J.G.

    2006-01-01

    The kinetic viscosity (η) of superheated melts, thermal properties (T x , T m , T L ) and X-ray diffraction analysis on the Pr-based bulk metallic glasses (BMG) are reported and discussed. A new refined concept, the superheated fragility defined as M' = E S δ x /k B , has been developed based on common solidification theory and the Arrhenius equation. The interrelationship between this kind of fragility and the glass-forming ability (GFA) is elaborated on and evaluated in Pr-based BMG and Al-based amorphous ribbon alloys. Using viscosity data of superheated melts, it is shown, theoretically and experimentally, that the fragility parameter M' may be used as a GFA indicator for metallic alloys

  3. Banking Fragility in Colombia: An Empirical Analysis Based on Balance Sheets

    OpenAIRE

    Ignacio Lozano; Alexander Guarín

    2014-01-01

    In this paper, we study the empirical relationship between credit funding sources and the financial vulnerability of the Colombian banking system. We propose a statistical model to measure and predict banking-fragility episodes associated with credit funding sources classified into retail deposits and wholesale funds. We compute the probability of financial fragility for both the aggregated banking system and the individual banks. Our approach performs a Bayesian averaging of estimated logit ...

  4. The prospects for ecosystem services provision in fragile states’ urban areas

    OpenAIRE

    Bogadi, Antonija

    2018-01-01

    In fragile states context of climate change vulnerability, poverty and lack of infrastructure, the ability of ecosystem services to provide for numerous human needs is indispensable. The focus of this paper is describing the prospects for ecosystem services provision in fragile states’ urban areas. This paper presents a distinct approach by analyzing actors with capacity to provide ecosystem services in urban areas: government, international partners and citizens. Using infrastructure investm...

  5. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency.

    Science.gov (United States)

    Hoyos, Luis R; Thakur, Mili

    2017-03-01

    Fragile X premutation carriers have 55-200 CGG repeats in the 5' untranslated region of the FMR1 gene. Women with this premutation face many physical and emotional challenges in their life. Approximately 20% of these women will develop fragile X-associated primary ovarian insufficiency (FXPOI). In addition, they suffer from increased rates of menstrual dysfunction, diminished ovarian reserve, reduction in age of menopause, infertility, dizygotic twinning, and risk of having an offspring with a premutation or full mutation. Consequent chronic hypoestrogenism may result in impaired bone health and increased cardiovascular risk. Neuropsychiatric issues include risk of developing fragile X-associated tremor/ataxia syndrome, neuropathy, musculoskeletal problems, increased prevalence of anxiety, depression, and sleep disturbances independent of the stress of raising an offspring with fragile X syndrome and higher risk of postpartum depression. Some studies have reported a higher prevalence of thyroid abnormalities and hypertension in these women. Reproductive health providers play an important role in the health supervision of women with fragile X premutation. Awareness of these risks and correlation of the various manifestations could help in early diagnosis and coordination of care and services for these women and their families. This paper reviews current evidence regarding the possible conditions that may present in women with premutation-sized repeats beyond FXPOI.

  6. Side Effects of Minocycline Treatment in Patients with Fragile X Syndrome and Exploration of Outcome Measures

    Science.gov (United States)

    Utari, Agustini; Chonchaiya, Weerasak; Rivera, Susan M.; Schneider, Andrea; Hagerman, Randi J.; Faradz, Sultana M. H.; Ethell, Iryna M.; Nguyen, Danh V.

    2010-01-01

    Minocycline can rescue the dendritic spine and synaptic structural abnormalities in the fragile X knock-out mouse. This is a review and preliminary survey to document side effects and potential outcome measures for minocycline use in the treatment of individuals with fragile X syndrome. We surveyed 50 patients with fragile X syndrome who received…

  7. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  8. Connection between slow and fast dynamics of molecular liquids around the glass transition

    International Nuclear Information System (INIS)

    Niss, Kristine; Dalle-Ferrier, Cecile; Frick, Bernhard; Russo, Daniela; Dyre, Jeppe; Alba-Simionesco, Christiane

    2010-01-01

    The mean-square displacement (MSD) was measured by neutron scattering at various temperatures and pressures for a number of molecular glass-forming liquids. The MSD is invariant along the glass-transition line at the pressure studied, thus establishing an 'intrinsic' Lindemann criterion for any given liquid. A one-to-one connection between the MSD's temperature dependence and the liquid's fragility is found when the MSD is evaluated on a time scale of ∼4 ns, but does not hold when the MSD is evaluated at shorter times. The findings are discussed in terms of the elastic model and the role of relaxations, and the correlations between slow and fast dynamics are addressed.

  9. An Investigation of Narrative Ability in Boys with Autism and Fragile X Syndrome

    Science.gov (United States)

    Hogan-Brown, Abigail L.; Losh, Molly; Martin, Gary E.; Mueffelmann, Deborah J.

    2013-01-01

    Whereas pragmatic language difficulties are characteristic of both autism and Fragile X syndrome, it is unclear whether such deficits are qualitatively similar or whether certain skills are differentially affected. This study compared narrative competence in boys with autism, Fragile X syndrome, Down syndrome, and typical development. Results…

  10. The Search for an Effective Therapy to Treat Fragile X Syndrome: Dream or Reality?

    OpenAIRE

    Castagnola, Sara; Bardoni, Barbara; Maurin, Thomas

    2017-01-01

    Fragile X Syndrome (FXS) is the most common form of intellectual disability and a primary cause of autism. It originates from the lack of the Fragile X Mental Retardation Protein (FMRP), which is an RNA-binding protein encoded by the Fragile X Mental Retardation Gene 1 (FMR1) gene. Multiple roles have been attributed to this protein, ranging from RNA transport (from the nucleus to the cytoplasm, but also along neurites) to translational control of mRNAs. Over the last 20 years many studies ha...

  11. Fragility analysis of a seismically-isolated emergency diesel generator

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, In Kil; Ohtori, Yasuki

    2005-01-01

    The seismic capacity of an Emergency Diesel Generator (EDG) in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to the pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. The fragility curves for a base-isolated EDG should be different from those for a conventional type because the major failure mode of the base-isolated EDG will not be a concrete coning one any more. The governing failure mode of the base-isolated EDG must be the damage of the isolators. This study introduces a fragility evaluation method for an isolated EDG, and evaluates the fragilities for the isolated EDG and compares them with those for the conventional one. Evaluation of the ground motion index is also carried out to determine the governing parameter suitable for representing the seismic responses of the base isolator

  12. Breastfeeding of a medically fragile foster child.

    Science.gov (United States)

    Gribble, Karleen D

    2005-02-01

    A case is presented in which a medically fragile baby was breastfed by her foster mother. As a result, the child's physical and emotional health were improved. The mechanisms whereby human milk improves health are well known. The act of breastfeeding may also have an analgesic and relaxant effect as a result of hormonal influences and skin-to-skin contact. Many foster babies may benefit from human milk or breastfeeding. However, the risk of disease transmission must be minimized. Provision of human milk to all medically fragile foster babies is desirable. Breastfeeding by the foster mother may be applicable in cases in which the child is likely to be in long-term care, the child has been previously breastfed, or the child's mother expresses a desire that the infant be breastfed. However, social barriers must be overcome before breastfeeding of foster babies can become more common.

  13. Effects of hyperoxia and caffeine on the expression of fragile site at Xq27.3

    Energy Technology Data Exchange (ETDEWEB)

    Rafi, S.K.; Surana, R.B.; Christopher, K.L. [Armed Forces Institute of Pathology, Washington, DC (United States)] [and others

    1996-02-02

    To enhance the cytogenetic expression of the fragile X chromosome, we studied the effects of hyperoxia and caffeine on the induction of fragile Xq27.3. A lymphoblastoid cell line (GM 06912) derived from a fragile X male proband was cultured in RPMI 1640 containing 16% dialyzed fetal calf serum. The cells were synchronously subjected to one of 3 different atmospheric oxygen tensions (21%, 21.3 kPa, hyperoxic) during the last 24 hours of the 72 hour culture, immediately after the addition of 2{prime}-deoxy-5-fluorouridine (FUdR) at 25 ng/ml. To study the enhancing effect of caffeine, with or without hyperoxia, a second set of cultures was additionally subjected to caffeine (2.5 mM) during the last 6 hours of the culture. When the fragility of hyperoxic cells (38.1 kPa dissolved oxygen) was compared to that of normoxic control cells (13.3 kPa dissolved oxygen), the difference was significant (P < 0.05). These data suggest that there is a mean increase in the fragile Xq27.3 expressivity as the dissolved oxygen tension increases. Additionally, we observed that caffeine, with or without hyperoxia, significantly (P <0.05) suppressed the expression of the fragile X site in this lymphoblastoid cell line. 34 refs., 2 tabs.

  14. Liquidity crises on different time scales

    Science.gov (United States)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  15. Non-fragile multivariable PID controller design via system augmentation

    Science.gov (United States)

    Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan

    2017-07-01

    In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.

  16. Resolution of Spatial and Temporal Visual Attention in Infants with Fragile X Syndrome

    Science.gov (United States)

    Farzin, Faraz; Rivera, Susan M.; Whitney, David

    2011-01-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the…

  17. Fragile X checklists: A meta-analysis and development of a simplified universal clinical checklist.

    Science.gov (United States)

    Lubala, Toni Kasole; Lumaka, Aimé; Kanteng, Gray; Mutesa, Léon; Mukuku, Olivier; Wembonyama, Stanislas; Hagerman, Randi; Luboya, Oscar Numbi; Lukusa Tshilobo, Prosper

    2018-04-06

    Clinical checklists available have been developed to assess the risk of a positive Fragile X syndrome but they include relatively small sample sizes. Therefore, we carried out a meta-analysis that included statistical pooling of study results to obtain accurate figures on the prevalence of clinical predictors of Fragile X syndrome among patients with intellectual disability, thereby helping health professionals to improve their referrals for Fragile X testing. All published studies consisting of cytogenetic and/or molecular screening for fragile X syndrome among patients with intellectual disability, were eligible for the meta-analysis. All patients enrolled in clinical checklists trials of Fragile X syndrome were eligible for this review, with no exclusion based on ethnicity or age. Odds ratio values, with 95% confidence intervals as well as Cronbach coefficient alpha, was reported to assess the frequency of clinical characteristics in subjects with intellectual disability with and without the fragile X mutation to determine the most discriminating. The following features were strongly associated with Fragile X syndrome: skin soft and velvety on the palms with redundancy of skin on the dorsum of hand [OR: 16.85 (95% CI 10.4-27.3; α:0.97)], large testes [OR: 7.14 (95% CI 5.53-9.22; α: 0.80)], large and prominent ears [OR: 18.62 (95% CI 14.38-24.1; α: 0.98)], pale blue eyes [OR: 8.97 (95% CI 4.75-16.97; α: 0.83)], family history of intellectual disability [OR: 3.43 (95% CI 2.76-4.27; α: 0.81)] as well as autistic-like behavior [OR: 3.08 (95% CI 2.48-3.83; α: 0.77)], Flat feet [OR: 11.53 (95% CI 6.79-19.56; α:0.91)], plantar crease [OR: 3.74 (95% CI 2.67-5.24; α: 0.70)]. We noted a weaker positive association between transverse palmar crease [OR: 2.68 (95% CI 1.70-4.18; α: 0.51)], elongated face [OR: 3.69 (95% CI 2.84-4.81; α: 0.63)]; hyperextensible metacarpo-phalangeal joints [OR: 2.68 (95% CI 2.15-3.34; α: 0.57)] and the Fragile X syndrome. This study

  18. THE IMPORTANCE OF THE ERYTHROCYTES OSMOTIC FRAGILITY TEST PERFORMED IN CHILDREN WITH INDIRECT HYPERBILIRUB1NEMIA

    Directory of Open Access Journals (Sweden)

    Ivana Stojanović

    2005-07-01

    Full Text Available The osmotic fragility test of erythrocytes is useful in the diagnosis of different types of hereditary hemolytic anemias followed with hyperbilirubinemia. Hemolytic anemias, characterized by accelerated destruction of red blood cells, are usually the consequence of many metabolic abnormalities like cellular membrane defect, erythrocyte enzymes defect or hemoglobin abnormalities – hemoglobinopathies. The object of our study was to assess the relationship between osmotic fragility test of erythrocytes and severity of indirect hyperbilirubinemia in some inherited erythrocytes’ disorders. We did the osmotic fragility test of erythrocytes by using Dacie, s method with normal values of erythrocytes hemolysis between 0,48 to 0,34% NaCl (minimal to maximal hemolysis. In hereditary spherocytosis, fragility of erythrocytes was increased (min. at 0,50 % NaCl to max. 0,44 % NaCl . In the child with β- thalassemia and cycle cell anemia erythrocytes fragility was decreased (min . at 0,42 to max. 0,32 % NaCl, that is 0,40% min. of hemolysis and 0,34% max. hemolysis in the second case. In newborn infants with high levels of indirect bilirubin in serum as a cause of physiological jaundice, the osmotic fragility test was within a normal range. Our findings point out the diagnostic value of osmotic fragility test in assessing patients with the indirect hyperbilirubinemia. This simple and important diagnostic test can be performed in small laboratories.

  19. State fragility and its regional implications for peace and stability

    DEFF Research Database (Denmark)

    Mandrup, Thomas

    of the Cold war left a security void, and the fragility, and in some instances collapse, of the state structures resulted in new state formations and new conflicts, both intra- and inter-state in nature. However, conflicts and security challenges in East Africa are due to amongst other things porous borders......, fragile states and bad governance regional in nature, and cannot be solved by the individual states alone. Regional institutions have been in a weak position dealing with these challenges, and attempts have been to strengthen the capacity of these regional institutions. This paper investigates...

  20. Fragility fractures at Auckland City Hospital: we can do better.

    Science.gov (United States)

    Braatvedt, Geoffrey; Wilkinson, Susan; Scott, Marilyn; Mitchell, Paul; Harris, Roger

    2017-12-01

    This study describes in detail the burden of caring for patients aged ≥ 50 years seen in one year with a fragility fracture in a large urban environment and shows that these fractures result in a long length of stay and significant mortality. Intervention to prevent further fracture was poorly done. To examine the epidemiology of fragility fracture in patients over age 50 years and record the number who received appropriate secondary prevention treatment. All patients aged ≥ 50 years presenting with a fracture during the 12 months following July 1 st 2011, to Auckland City Hospital or residing in central Auckland at the time of their fracture, were identified from hospital and Accident Compensation Corporation records. A random sample of 55% of these patient's records were reviewed to establish the type of fracture, prior fracture and falls history, and use of bisphosphonates in the 12 months before presentation. Their length of stay (LOS) by type of fracture was recorded. The use of bisphosphonate drugs in the following 12 months was obtained from centralised national records of prescriptions. 2729 patients aged ≥ 50 years presented with a fragility fracture in the central Auckland region in one year. Fifty-six percent of these patients were seen at Auckland Hospital and of these, 82% patients required admission with a mean LOS of 20 days (SD ± 24 days).The remaining 44% of patients were looked after in the private outpatient sector. Approximately 30% of the admissions were for hip fracture. Sixty-four percent of patients with a fragility fracture did not receive a potent bisphosphonate, 12% were considered not appropriate for treatment, and 24% received a potent bisphosphonate during their admission or in the next 12 months. Approximately 1 in 18 people aged ≥ 50 years presented in one year with a fragility fracture.Secondary prevention strategies were poorly implemented. Additional resources for identifying and initiating secondary fracture prevention